B.Math 2013 entrance paper-problem-3-solution

Soumyadip Sarkar, ISI Bangalore

30 November 2019
Problem 3.
Let \(f: \mathbb{R} \to \mathbb{R} \) be a function satisfying \(|f(x + y) - f(x - y) - y| \leq y^2 \) for all \(x, y \in \mathbb{R} \). Show that, \(f(x) = \frac{x}{2} + a \), where \(a \) is a constant.

Solution:
Let’s define a function \(g: \mathbb{R} \to \mathbb{R} \), by \(g(x) = f(x) - \left(\frac{x}{2} \right) \).

The given condition reads as, \(|f(x + y) - f(x - y) - y| \leq y^2 \)

\[\Rightarrow |f(x + y) - \left(\frac{x + y}{2} \right) - f(x - y) + \left(\frac{x - y}{2} \right)| \leq y^2 \]

\[\Rightarrow |\{f(x + y) - \left(\frac{x + y}{2} \right)\} - \{f(x - y) - \left(\frac{x - y}{2} \right)\}| \leq y^2 \]

\[\Rightarrow |g(x + y) - g(x - y)| \leq y^2. \]

Now, let’s calculate the following limit.

\[\lim_{x \to c} \frac{g(x) - g(c)}{x - c} = \lim_{x \to c} \frac{g\left(\frac{x + c}{2} + \frac{c - x}{2} \right) - g\left(\frac{x + c}{2} - \frac{c - x}{2} \right)}{x - c}, \]

but the above condition says that, \(|g\left(\frac{x + c}{2} + \frac{c - x}{2} \right) - g\left(\frac{x + c}{2} - \frac{c - x}{2} \right)| \leq \left(\frac{x - c}{2} \right)^2; \)

Dividing both side of the inequality by \(|x - c| \),

we see that \(\left| \frac{g\left(\frac{x + c}{2} + \frac{c - x}{2} \right) - g\left(\frac{x + c}{2} - \frac{c - x}{2} \right)}{x - c} \right| \leq \left(\frac{x - c}{2} \right)^2 \)

now taking limit as \(x \to c \), and using sandwich principle we observe that

\[\lim_{x \to c} \frac{g(x) - g(c)}{x - c} = 0. \]

Hence, \(g \) is differentiable on whole of \(\mathbb{R} \) and \(g'(c) = 0 \) \(\forall c \in \mathbb{R} \)

\[\Rightarrow g \text{ is a constant function.} \]

\[\Rightarrow g(x) = a \text{ for some constant } a \in \mathbb{R}. \]

\[\Rightarrow f(x) - \left(\frac{x}{2} \right) = a \]

\[\Rightarrow f(x) = \left(\frac{x}{2} \right) + a. \text{ QED} \]
1. \(S = \log_a bc + \log_b ac + \log_c ba \)
 \[= \log_a b + \log_a c + \log_b a + \log_b c + \log_c a + \log_c b \]
 \[= \frac{\log b}{\log a} + \frac{\log c}{\log a} + \frac{\log c}{\log b} + \frac{\log a}{\log b} + \frac{\log a}{\log c} + \frac{\log b}{\log c} \]
 \[= \left(\frac{\log b}{\log a} + \frac{\log a}{\log b} \right) + \left(\frac{\log c}{\log a} + \frac{\log a}{\log c} \right) + \left(\frac{\log c}{\log b} + \frac{\log b}{\log c} \right) \]

 Now applying AM \(\geq \) GM inequalities we get,
 \[\geq 2 + 2 + 2 = 6.\]

2. \(f'(x) = \frac{2 \sin x - 1}{(x + 2 \cos x)^2} = 0 \) gives \(x = \frac{\pi}{6}. \)

 \[f(0) = \frac{1}{2}, \quad f\left(\frac{\pi}{6}\right) = \frac{1}{\frac{\pi}{6} + \sqrt{3}} \approx 0.44 \]

 The function is decreasing in the interval \(\left[0, \frac{\pi}{6}\right) \)

 Now, \(f\left(\pi - \frac{\pi}{6}\right) = \frac{1}{\frac{\pi}{6} + \sqrt{3}} \approx 1.13 \)

 For \(x \) in \(\left[\frac{\pi}{6}, \frac{5\pi}{6}\right), \) \(f(x) \) is positive & then again it becomes decreasing function.

 So, the range of the function is \(\left(0, \frac{6}{5\pi - 6\sqrt{3}}\right). \)

3. Given that

 \[-y^2 \leq f(x + y) - f(x - y) - y \leq y^2\]
 \[\Rightarrow -y^2 + y \leq f(x + y) - f(x - y) \leq y^2 + y\]
 \[\Rightarrow \frac{-y^2 + y}{(x + y) - (x - y)} \leq \frac{f(x + y) - f(x - y)}{(x + y) - (x - y)} \leq \frac{y^2 + y}{(x + y) - (x - y)}\]
 \[\Rightarrow \lim_{2y \to 0} \left(-\frac{y}{2} + \frac{1}{2} \right) \leq \lim_{2y \to 0} \frac{f(x + y) - f(x - y)}{(x + y) - (x - y)} \leq \lim_{2y \to 0} \left(\frac{y}{2} + \frac{1}{2} \right)\]
 \[\Rightarrow \frac{1}{2} \leq \lim_{2y \to 0} \frac{f(x + y) - f(x - y)}{(x + y) - (x - y)} \leq \frac{1}{2}\]

 So, \(f(x) \) is a linear function \(y = ax + c, \) where \(a = \frac{1}{2} \) & \(c \) is a constant.
4. Suppose there is no such player. Say X be the player with highest number of names in his list. Let A be the set of players in list of X whom X has directly defeated and B be the set of other players of X's list. Since there is no player with all others names, say X does not have Y's name. This implies Y has beaten X and hence in Y's list, there is X and also each member of set A. Now the members of set B are in X's list because each is beaten by someone of set A. Now if a member of set A beats Y, that would imply that Y is in X's list, which is not so. Hence Y has beaten each member of set A, which further implies he has the names of set B also in his list. Thus Y is a player with more names in his list than that of X, a contradiction.

5.

Let \(\angle AOB = \angle BOC = m \)

\[
\cos m = \frac{OA^2 + OB^2 - AB^2}{2 \times OA \times OB} = \frac{r^2 + r^2 - \frac{r^2}{4}}{2r^2} = \frac{7}{8}
\]

Then \(\cos 2m = 2\cos^2 m - 1 = \frac{34}{64} \)

Using Cosine Rule in \(\triangle AOC \), we get \(AC^2 = OA^2 + OC^2 - 2 \times OA \times OC \cos 2m \)

So, \(AC^2 = \frac{2r^2 \times 30}{64} \)

Now, \(CD^2 = AD^2 - AC^2 = \frac{2r^2 \times 98}{64} \)

So, \(CD = \frac{7r}{4} \)

\[
\iff \frac{CD}{r} = \frac{7}{4}
\]
6.

Assume \(P(x) - Q(x) = F(x) \). We will show that \(F(x) \) has repeated roots of \(x = 1 \). To prove this we will show that the derivatives of \(F(x) \) also has roots \(x = 1 \).

\[
(F(x))^2 - (Q(x))^2 = P(x^2) - Q(x^2)
\]

\[
\Rightarrow (F(x))^3 + 3PQ(P(x) - Q(x)) = P(x^2) - Q(x^2)
\]

\[
\Rightarrow (F(x))^3 + 3PQF(x) = F(x^2)
\]

Since sum of coefficients of \(P(x) \) and \(Q(x) \) are equal hence \(P(1) = Q(1) \). Thus \(F(1) = P(1) - Q(1) = 0 \).

Taking the Derivative we have

\[
3(F(x))F'(x) + 3(P'QF + PQ'F + PQF') = 3x^2F'(x)
\]

If we replace \(x \) by \(1 \), all terms containing \(F \) will vanish. Since \(P(1) \) and \(Q(1) \) equals \(S \)

We have \(S^2 F'(1) = F'(1) \) implying either \(F'(1) = 0 \) or \(S^2 = 1 \).

If \(S^2 \neq 1 \), we continue the differentiation. Again ignoring all terms containing \(F \) and \(F' \) (since \(F(1) = F'(1) = 0 \)), we have \(S^2 F''(1) = 3 F''(1) \) implying either \(S^2 = 3 \) or \(F''(1) = 0 \).

By induction we can easily show that if we perform a times differentiation we will have \(F^n(1) = 0 \) or \(S^2 = 3^{n-1} \). (one 3 will be generated in each differentiation from the \(x^3 \) term; all the derivatives till a-1th derivative will be ignored as at \(x = 1 \) they are 0.

(This is a sketch of the solution. The induction should be implemented at this step.)

Hence \(F(x) = P(x) - Q(x) = (x - 1)^n R(x) \) and \(S^2 = 3^{n-1} \).

7. For \(N \) be a positive integer \(N(N - 101) \) be a perfect square.

Since 101 is a prime number, so both \(N \) and \(N - 101 \) should be perfect squares.

Note that all consecutive perfect squares have a difference of successive odd numbers like

\[
2^2 - 1^2 = 3
\]

\[
3^2 - 2^2 =
\]

\[
4^2 - 3^2 = 7
\]

\[
................
\]

\[
51^2 - 50^2 = 101
\]

So, \(N = 51^2 \) or 2601 is our required solution.
8. Since ABCD is a square so AB \parallel CD.

Hence the equation to the line passing through C and D must be \(y = x + c \) (where \(c \) is a constant). That is the slope is 1 (as the line AB is \(y = x + 8 \); it has slope 1) and the y-intercept is \(c \).

Let the line \(y = x + c \) intersect the parabola \(y = x^2 \) at \(\alpha, \beta \) (x coordinates).

Thus \(x^2 = x + c \) has the solutions \(\alpha, \beta \).

Using Sridhar’s formula \(x = \frac{1 \pm \sqrt{1+4c}}{2} \). These must be the values of \(\alpha, \beta \). Thus \(\alpha - \beta = \sqrt{1+4c} \).

Distance between the lines \(y = x + 8 \) and \(y = x + c \) is \(\frac{|c-8|}{\sqrt{2}} \).

Also the coordinates of C and D are \((\alpha, \alpha+c), (\beta, \beta+c) \). Hence the length \(CD = \sqrt{2}(\alpha - \beta) \) (using distance formula). Since \(\alpha - \beta = \sqrt{1+4c} \); the length of \(CD = \sqrt{2\sqrt{1+4c}} \).

This length \(CD \) equals the distance between lines \(y = x + 8 \) and \(y = x + c \) since ABCD is a square.

Thus \(\frac{|c-8|}{\sqrt{2}} = \sqrt{2\sqrt{1+4c}} \); squaring both sides we have \((c-8)^2 = 4(1+4c) \).

From here we solve for \(c \): \(c^2 - 16c + 64 = 4 + 16c \) or \(c^2 - 32c + 60 = 0 \)
Thus \((c-30)(c-2) = 0 \).

Therefore \(c \) may have two values: 30 and 2.

Hence the possible length of sides are \(11\sqrt{2} \) or \(3\sqrt{2} \).