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1. Introduction 
 
 

Time series data is a collection of observations or data made sequentially in time. It has 

four components: Trend, Seasonality, Cyclical component & Irregular component. And 

Forecast is an estimate of the future value of some variable. 

There are some forecasting techniques that usually used to forecast data time series with 

trend and seasonality, including additive and multiplicative methods. Those methods are 

Winter’s exponential smoothing, Decomposition, Time series regression, and ARIMA models 

(see e.g. Bowerman and O’Connel (1993) or Hanke and Reitsch (1995)).  

Many business and economic time series are non-stationary time series that contain trend 

and seasonal variations. The trend is the long-term component that represents the growth or 

decline in the time series over an extended period of time. Seasonality is a periodic and recurrent 

pattern caused by factors such as weather, holidays, or repeating promotions. Accurate 

forecasting of trend and seasonal time series is very important for effective decisions in retail, 

marketing, production, inventory control, personnel, and many other business sectors 

(Makridakis and  Wheelwright, 1987). Thus, how to model and forecast trend and seasonal time 

series has long been a major research topic that has significant practical implications. 

In this study we examine the forecasting of incoming calls to Call Center. The two 

different approaches used for forecasting the daily call volume include Box and Jenkins 

(ARIMA) methodology and Smoothing methodology. Both methods are smoothing methods. 

Our objective is to use past data to develop a forecasting model for the closest days to come. 

We will to this end use data from Call Center to 

 
1. Develop different time series models for daily call volume.  

 
2. Make comparison of different forecasting techniques to suggest the better one. 

Our hope is that our findings will help to use better forecast model for Call Centre Data. 
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2. Review of Literature 

 

In this section we summarize some different research articles concerning the method of 

forecasting of volume of calls to call centers. 

 

2.1 Improving Forecasting For Telemarketing Centers by ARIMA Modeling With 
 
Intervention 
 
The incoming calls to telemarketing centers was analyzed for the purposes of planning and 

budgeting by Lisa Bianchi, Jeffrey Jarrett and R. Choudary Hanumara (1998). In their 

publication, they used Box–Jenkins (ARIMA) modeling with intervention analysis 

(Intervention analysis in time series refers to the analysis of how the mean level of a series 

changes after an intervention, when it is assumed that the same ARIMA structure for the 

series holds both before and after the intervention) and additive and multiplicative versions of 

Holt–Winters (HW) exponentially weighted moving average models. With aid of these models 

they forecasted the daily call volumes. The data used for analysis was from March 1, 1991 to 

June 26, 1991. 
 
Their first model was the ARIMA(p,d,q). Their second model was the multiplicative Holt-

Winter model 
 

Y (t) = (a (t) + b) s (t) + e (t) 
 
When seasonal variation is constant over time, an additive seasonal factor model is 

appropriate. Hence the third additive model used was 
 

Y (t) = (a (t) + b) + s (t) +e (t) 
 
The Root Mean Square Error (RMSE) is used to compare different model forecasts 

performance. It was found that ARIMA models with intervention analysis provided better 

forecasts for planning and control. 
 
A complete version of this study can be found from paper [1]. 

 

2.2 Wireless Traffic Modeling and Prediction 
 
In this article Yantai Shu, Minfang Yu, and Jiakun Liu (2003) studied wireless traffic. In their 

study to predict traffic, seasonal ARIMA model with two periodicities was used. The hourly 

traffic data from 0:00 June 1 2001 (Friday) to 0:00 April 27 2002(Saturday) was measured. A 

total of 330 days from the dial-up access network of China net-Tianjin. To trace the daily traffic 

the model ARIMA(1,0,1) and ARIMA(1,1,0) were found and for the hourly traffic 

ARIMA(0,1,1). For estimating the model the first 300 daily data was used. The last 30 days to 

evaluate the model. An adjusted traffic prediction method is proposed using seasonal ARIMA  
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Models. The comparison is repeated with many prediction experiments on the actual measured 

GSM traces of China Mobile of Tianjin.   

It is founded that the relative error between the actual values and forecasting values are all less 

than 0.02.Their study showed that the seasonal ARIMA model is a good traffic model capable 

of capturing the properties of real traffic.  
A complete version of this study can be found from paper [2]. 

 

2.3 The application of forecasting to modeling emergency medical system calls 

 
 
The emergency medical system calls of major Canadian city Alberta was analyzed by Nabil 

Channouf, Pierre L Ecuyer (2006). In their analysis two different methods was used, 

autoregressive model of data obtained after eliminating the trend, seasonality, special day effect 

and a double-seasonal ARIMA model with special day effect. Then the comparison of the both 

models is presented. For the purpose of analysis of the data for emergency medical calls was 

obtained from January 1, 2000 to March 16, 2004 including call priority, and the geographical 

zone where the call originated. The modeling is done on the first 1096 observations and the 

remaining 411 observation is used for evaluation. 
 
The model found was an ARIMA decomposed model with two seasonal cycles. 
 

𝑌𝑡 = 𝑁𝑡 + 𝑤1𝐻𝑡,1 + 𝑤2𝐻𝑡,2 
 
The ARIMA model with two seasonal cycles is suggested. They found that this model 

performed poorly when forecasting more than two weeks into the future. 
 
A complete version of this study can be found from paper [3]. 

 

 

2.4 Forecasting Police Calls during Peak Times for the City of Cleveland USA 
 
The police service calls during peak times for the city Cleveland, US was presented by the police 

department of the city. Professor John P.Holcomb Jr (2007) used autoregressive integrated 

moving average (ARIMA) modeling technique, Multiple Regression and different smoothing 

methods to analyze data. As a first step the data of call volume (per hour) is obtained and it was 

divided into 10 important categories. This provided 24,000 data points across all kinds of calls, 

further the calls are divided priority wise, priority 1 calls being the most important. Priority 1 

calls are the calls where crime is in progress: such as robbery or domestic violence. The 

researcher used different methodologies for building models. For model evaluation, the mean 

absolute percent error (MAPE) is used. 
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                 He suggested that multiple regression approach have difficulty. The final 
ARIMA(1,0,0) and ARIMA(5,1,0) model is used. This model produced an improved MAPE 
over the Holt-Winters method approximately 12%. A complete version of this study can be 
found from paper [4]. 

 

 

2.5 Predicting call arrivals in call centre 
 
The daily call volume of car damage insurance claims at Vrije University, Netherlands was 

analyzed by Koen Van Den Bergh (2006). In this publication he discussed four different 

methods:,ARIMA modeling, Dynamic Regression Modeling, Exponential smoothing and 

modeling by Regression. These four techniques are applied to the daily call center data to 

forecast the daily call volume. The models used for forecasting are given below. 
 
The ARIMA model is 

 

  𝑦𝑡 =  𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 

 

The dynamic regression model is 

 

 𝑦𝑡 =  𝛼 + 𝑣0𝑥𝑡 + 𝑣1𝑥𝑡−1 + ⋯ + 𝑣𝑘𝑥𝑡−𝑘 + 𝜇𝑡 
 
 
The single exponential smoothing model is 

 

𝑦�̂� =  𝑤0𝑦𝑡−1 + 𝑤1𝑦𝑡−2 + 𝑤2𝑦𝑡−3 + ⋯  
 

The regressions model is  

 

𝑌𝑡 =  𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 + ∑ 𝑏𝑖

𝑛

𝑖=1

𝑋𝑖 

 
 

 
It is presented that all of this methodology can at least deal with Randomness. Single 

Exponential smoothing is not good enough to deal with seasonality and trend pattern but this 

methodology can handle the random part which is a least result that a forecasting technique can 

give. The Dynamic Regression model and Regression model can deal with the interventions as 

well, where the ARIMA models can’t deal with intervention. 
 
A complete version of this study can be found from paper [5] 
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3. Methodology 

 

3.1 Necessity of Forecasting 
 
 
Uncertainty means that no clarity about future may be achieved when uncertain decisions are 

made upon historical experiences. Historical data can be smoothed in different ways. But the 

scientific approach is essential to make decision. The forecasting is one of the major scientific 

approaches that help in process of making decision in condition of uncertainty. Forecasting is 

based on the assumption that the past patterns and behavior of a variable will continue into the 

future. The objective is to use past data to develop a forecasting model for the future periods. 

To reach our goal of forecasting daily call volume of call center, the sophisticated forecasting 

techniques known as ARIMA (Auto Regressive Integrated Moving Average) and Smoothing 

Methodology are applied. 

 

3.2 Assumptions of Time Series Analysis 
 
A major assumption in time series analysis is the stationarity of the series, this means that the 

average value and the variation of the series should be constant with respect to time. If the series 

is not stationary then we make it stationary by the different transformations the most commonly 

used transformations are log and first difference. 

 

3.2.1 Stationarity Tests 

 
There are different tests for checking the stationarity of the data, two important 

tests are: Augmented Dickey- Fuller test (ADF Test) and Kwiatkowski Philips 

Schmidt Shin Test (KPSS Test). 
 
 

(i) Unit Root Test (ADF Test):- 
 
ADF Test checks whether any specific pattern exists in the data. Here small p-value 

suggests that the data is stationary. The unit root presence can be illustrated as follows 

by using a first order autoregressive process: 𝑦𝑡 = 𝜇 + 𝜌𝑦𝑡−1 + 𝜖𝑡  --------- (1) 

 where, 𝜖𝑡 ∼ 𝑁(0, 𝜎𝜖
2) 

  
The basic Dickey- Fuller test examines whether 𝜌 < 1  
 
After subtracting 𝑦𝑡−1 from both sides in equation above, 

 

 ∆𝑦𝑡 = 𝜇 + (𝜌 − 1)𝑦𝑡−1 + 𝜖𝑡    
 

 ∆𝑦𝑡 = 𝜇 + 𝜃𝑦𝑡−1 + 𝜖𝑡 ----------- (2) 
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𝐻0:  𝜃 = 0 (there is a unit root in 𝑦𝑡) 
 

𝐻1 : 𝜃 < 0 
 
Equation (1) and (2) are the simplest case where the residual is white noise. In general, there 

is serial correlation in the residuals and ∆𝑦𝑡 can be represented as an autoregressive process: 

 

∆𝑦𝑡 = 𝜇 + 𝜃𝑦𝑡−1 + ∑ ∅𝑖

𝑝

𝑖=1

∆𝑦𝑡−𝑖 + 𝜖𝑡 − − − −(3) 

----- 
 
 
Corresponding to equation (3), Dickey-Fuller procedure becomes the Augmented Dickey-

Fuller test. We can also include a deterministic trend in equation (2). Altogether, there are 

four test specification with regard to the combination of an intercept and a deterministic 

trend. [6] 

 
(ii) KPSS Test:-  
 
This is another test for stationary which check especially the existence of trend in the data set.  
 

𝐻0:  data is stationary 
 

𝐻1 : data is not stationary 

 

Larger p-value suggests data is stationary. 

 

 

3.2.2 Differencing Method 

 

 A method for making series stationary. A differenced series is the series of difference between 

each observation 𝑌𝑡 and the previous observation 𝑌𝑡−1  

    

Yt’ = Yt – 𝑌𝑡−1 
 
A series with trend can be made stationary with 1st differencing  
A series with seasonality can be made stationary with seasonal differencing 
 
3.2.3 White Noise & Lag 
 
 It describes the assumption that each element in a series is a random draw from a population 
with mean zero and constant variance. 
 
Lag shift a series down by a specific number of rows in the worksheet. 
 
3.3 Box-Jenkins modelling 
 
The methodology introduced 1970 by Box and Jenkins assumes that the data is dependent on 

itself. And the very first thing to decide on is the number of lags. Then a number of parameters 

are estimated, the residuals are checked and finally a forecast is made.  
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The general ARIMA(p,q,d) model looks like.   

 

  𝑦𝑡 =  𝑐 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 

 

Where  

 c: constant 

 1, 2, 1, 2 , - - - are model parameters 

 et-1 = yt-1 – st-1, et are called errors or residuals 

 st-1 : predicted value for the (t-1)th observation (yt-1) 

 

            p: number of auto regressive (AR) terms 

 q: number of moving average (MA) terms 

 d: level of differencing 

  

3. 3.1 Auto-Regressive (AR) Model 
 
In the pure AR (p) autoregressive with p lags model, we have  

 

𝑌𝑡 =  𝑈𝑡 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅1𝑝𝑌𝑡−𝑝 + 𝜖𝑡 

 

that is the series depend on itself up to p lags. The simplest and most widely used model with 

serial correlation is the first order autoregressive model of first order. The AR (1) model is 

specified by:   𝑌𝑡 =  𝑈𝑡 + ∅1𝑌𝑡−1 + 𝜖𝑡 

 

where, ∅1, ∅2, … , ∅𝑝are the parameters of the model, µt is constant with respect to t and 𝜖t 

is white noise. Many authors omit the constant term. 

 

3. 3.2 Moving Average (MA) model 
 
The moving average model models the error terms, which are not observed. The moving 

average model is defined as: 
 
 

𝑌𝑡 = 𝑈𝑡 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡 

 

Where 𝜃1, 𝜃2, … , 𝜃𝑞 are the parameters of the model, µt is a constant with respect to t and 𝜖t 

is white noise. Many authors omit the constant term. 

 

This model is useful when time series doesn’t exhibit a trend or a seasonal pattern.
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3. 3.3 Auto-Regressive Integrated Moving Average (ARIMA) model 
 
ARIMA (p, d, q) (P, D, Q) where (p is the order of AR process, q is the order of MA process 

and d is the order of differencing) is a regular model and (P, D, Q) are seasonal elements. The 

ARIMA models are generalization of the simple AR model that uses three tools for modeling 

series correlation in the disturbance. The first tool is the auto-regressive terms. The second tool 

is the integrated (difference) terms. A first order integrated component means that the 

forecasting model is designed for the first difference of the original series. A second order 

component difference of the original series and so on. The third tool is the moving average 

terms. A moving average forecasting model uses lagged values of the forecasted errors. A first 

order moving average term uses the forecasted errors from the two most recent periods, and so 

on [7]. 

 

3. 4 Exponential Smoothing 
 
There  are  several  exponential  smoothing  methods. The  majors which we use, are  Single 
 
Exponential  Smoothing,  Holt‟s  Linear  Model  (1957)  and  Holt-Winters Trend  and 
 
Seasonality Model.  

 

3.4.1 Single Exponential Smoothing 
 
The simplest form of exponential smoothing is single exponential smoothing, which may be 

used when data is without any systematic trend or seasonal components. Given such a time 

series, a logical approach is to take a weighted average of past values. So for a series 
 
𝑦1, 𝑦2, … , 𝑦𝑡−1, the estimate of the value of Yt , given the information available up to time t, is 

 

                              𝑌�̂� =  𝑤0𝑌𝑡−1 + 𝑤1𝑌𝑡−2 + 𝑤2𝑌𝑡−3 + ⋯  
 
 
 
Where wi = α (1 - α)i are the weights given to the past values of the series and they sum to 1. 
 
Here the “α” lies between 0 and 1. Since the most recent observations of the series are also the 

most relevant, it is logical that these forecasting observations should be given more weight 

than the observations further in the past. This is done by giving declining weights to the series. 

These decrease by a constant ratio. 

 

Single Exponential Smoothing gives more weight to recent values compared to the old values. 

More efficient for stationary data without any seasonality and trend.  
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3.4.2 Holt’s Linear Model 

 

Holt‟s linear model is an extension of single exponential smoothing. This method allowed 

forecasting data with trends. 
 
For a time series 𝑦1, 𝑦2, …. The estimate of the value of 𝑦𝑡−𝑘, is given by the formula: 

 

𝑦𝑡+�̂� =  𝑚𝑡 + 𝑏𝑡𝑘 where k = 1,2,3… 

 

Where mt denotes an estimate of the level of the series at time t and bt denotes an estimate of 

the slope of the series at time t. 

Where  𝑚𝑡 = 𝛼0𝑦𝑡 + (1 − 𝛼0)(𝑚𝑡+1 + 𝑏𝑡−1) 
 
𝑏𝑡 = 𝛼1(𝑚𝑡 + 𝑚𝑡−1) + (1 − 𝛼1)𝑏𝑡−1              with 0 < 𝛼0 < 1 and 0 < 𝛼1 < 1 

 

Holt’s Linear Model is useful when we smooth the series that gives weights to older 

observations and provide short-term forecasts. Useful when the series exhibits a seasonal 

pattern, with or without a trend. 

 

 

The following table presents a guideline of the different forecasting methods based on 

different conditions: 

 

Forecasting 

Method 

Data Pattern Data Points Forecast 

Horizon 

Quantitative 

Skills 

Moving 

Average  

Stationary At least the 

number of 

periods in MA 

Very Short Little 

Single 

Exponential 

Smoothing 

Stationary 5-10 Short Little 

Holt-Winter 

Method 

Trend & 

Seasonality 

4-5 per season Short to 

Medium 

Moderate 

ARIMA 

Methodology 

Stationary 

(Differencing/ 

Transformation) 

 

4-5 per season 

 

Medium 

 

High 
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3.5 Model Selection Criteria 
 
Here we discuss the few criteria we used in the study when selecting the best model among the 

competing models. Several criteria can be used for this purpose, here we discuss Akaike 

information criterion (AIC) and the Bayesian information criterion (BIC) or Schwarz 

information criterion (SIC). These criterions are used for measuring the goodness of fit of the 

model. These criterion are minimized over the choice of repressors, it will be minimum when 

the model is good fit and less complex. In comparing two or more models, the best model is the 

one having the least AIC and BIC values. 
 
In a regression setting, the estimates of the 𝛽𝐼 based on least squares and the maximum 

likelihood estimates are identical. The difference comes from estimating the common variance 

𝜎2 of the normal distribution for the errors around the true means. We have been using the best 

unbiased estimator of 𝜎2,  �̂�2 = 𝑅𝑆𝑆/(𝑛 − 𝑝), where there are p parameters for the means (p 

different 𝛽𝐼 parameters) and RSS is the residual sum of squares. This estimate does not tend to 

be too large or too small on average. The maximum likelihood estimate, on the other hand, is 

RSS/n. This estimate has a slight negative bias, but also has a smaller variance. Putting all of 

this together, we can write    -2 times the log-likelihood to be 

 

n + n log(2𝜋) + n log(RSS/n). 
 
 

In a regression setting. Now, AIC is defined to be -2 times the log-likelihood plus 2 times the 

number of parameters. If there are p different 𝛽𝐼 parameters, there are a total of p+1 parameters 

if we also count 𝜎2. The correct formula for the AIC for a model with parameters 
 
𝛽0, 𝛽1, … , 𝛽𝑝−1 and 𝜎2is  

 

𝐴𝐼𝐶 = 𝑛 + 𝑛𝑙𝑜𝑔2𝜋 + 𝑛𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑛
) + 2(𝑝 + 1) 

 
and the correct formula for BIC is 

 

𝐵𝐼𝐶 = 𝑛 + 𝑛𝑙𝑜𝑔2𝜋 + 𝑛𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑛
) + (𝑙𝑜𝑔𝑛)(𝑝 + 1) 
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3.6 Measurements of Forecasting Accuracy 
 
Before the forecasting results can be given, some measurements of forecasting accuracy must 

be determined. This section captures the equations of the most widely applied measurement 

methods. The following list of methods shall be utilized for assessing the accuracy of forecasts 

 
 
 

3.6.1 Mean Absolute Percentage Error (MAPE)  
 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑒𝑡

𝑦𝑡
| × 100

𝑛

𝑖=1

 

 
3.6.2 Mean Square Error (MSE) 

 

𝑀𝑆𝐸 = ∑
𝑒𝑡

2

𝑛

𝑛

𝑖=1

 

 

3.6.3 Root Mean Square Error (RME) 

 

𝑅𝑀𝑆𝐸 = √∑
𝑒𝑡

2

𝑛

𝑛

𝑖=1

 

 
 
 

3.6.4 Mean Absolute Error (MAE)  

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑡|

𝑛

𝑖=1
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3.7 Residual Analysis 
 
Residuals are the difference between the predicted output from the model and the original 

values (data). Residuals basically represent the portion of the data not explained by the model. 

Residual analysis may be regarded to consist of two tests: Whiteness Test and Normality Test. 

 

3.7.1 Normality Test 
 
A good model is the one for which the residuals fulfil the assumption of normality. The 

histogram of the residuals gives a good idea about the normality. The Normal probability graph 

is also used to assess that the data set is approximately normally distributed. In a normal 

probability graph the data is plotted against the theoretical normal distribution in such a way 

that it makes a straight line. If the points depart from straight line, we have a departure from 

normality. The Anderson Darling test is one of the three generally known tests for the normality. 

It is the modified form of Kolmogorov-Smirnov test and gives more weight to the tails as 

compared to the Kolmogorov-Smirnov test. In the Kolmogorov-Smirnov test the critical values 

do not depend on the specific distribution being tested but the Anderson Darling test use the 

specific distribution for calculating the critical value. The test statistic of the test is given below: 

                                                                          A2 = −N−S 

𝑆 = ∑
(2𝑖 − 1)

𝑁
[𝑙𝑜𝑔𝐹(𝑌𝑖) + log{1 − 𝐹(𝑌𝑁=1−𝑖)}]

𝑖

 

 
Where F is the cumulative distribution function of interest. 

 

3.7.2 Whiteness Test 
 
The purpose of this test is to analyze the correlation between the residuals at different lags. 

According to the whiteness test criteria all autocorrelation should be zero. 

 

3.7.3 Ljung–Box test 
 

This is an objective way to test the null hypothesis that there is no autocorrelation. The Q-

statistic at lag k is a test statistic for the null hypothesis that there is no autocorrelation up to 

order k. It is computed as 

𝑄 = 𝑇(𝑇 + 2) ∑
𝑟𝑗

2

𝑇 − 𝑗

𝑘

𝑗=1

 

Where rj is the j-th autocorrelation and T is the number of observations. k is the number of 
 
lags being tested.


