STATISTICAL INFERENCE I

BY

TANUJIT CHAKRABORTY
Indian Statistical Institute
Mail : tanujitisi@gmail.com

TOPICS:- i) Elements of Estimation \quad ii) Elements of Testing of Hypothesis.

Ques:- Distinquish between Point \& Interval estimation. [c.vi]

Abstract

Point Estimation In statiotics, point extimatoon involves the use of billpht data to taleulate a simple valow (kowow is is statistic) which is to serve as a "leest estimate" of an unknown (lised or random) propulation parameter.

Let ($X_{1}, X_{2}, \ldots, X_{n}$) is a random sample drawn from a population having distribution finction F_{8}, θ $\in 0$. where the finctional form of F is known except the parameter θ. If we are to guess a specific feature of the parent distribution, it can be explicitly written as a fiunction of θ.

Suppose we are to guess $\gamma(\theta)$ a real valued function of θ. The statistic $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is said to be an estimator of $\gamma^{\prime}(\theta)$, if we guess $\gamma(\theta)$ by $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ given $\left(X_{1}, X_{2}, \ldots ., X_{n}\right)=\left(x_{1}, X_{2}, \ldots \ldots, x_{n}\right)$, $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is said to be an estimate of $\gamma(\theta)$.

Interval Entimation!

In statistics, interval estimation is the use of sample data to calculate an intirval of pomaibla (of probailale) valum, of all unknown pronlation parameter, in contrast to point estimation, which is 11 sugige muntret Neyman (1937) identified interval estimation ("estimation by interval") as distinct from point estimation ("estimation by unique estimate"). In doing so, he recognized that then-recont work quating results in the fiom of an estimate plus-or-minus a standand deviation indicated that interval estimation was actually the problem statisticians really had in mind.

An interval estimate of a real-values parameter θ is any pair of finctions, $\mathrm{L}\left(\mathrm{x}_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathrm{U}\left(\mathrm{x}_{1}, x_{2}, \ldots ., x_{n}\right)$, of a sample that satisfy $\mathrm{L}(\mathrm{x}) \leq \mathrm{I}(\mathbf{x})$ for all $\mathrm{x} \in \mathbf{X}$. If $\mathbf{X}=\mathrm{x}$ is olserved, the inference $\mathrm{L}(\mathrm{x}) \leq \theta \leq \mathrm{I}^{\prime}(\mathbf{x})$ is made. The random interval $[L(X), U(X)]$ is called an interval estimator:

Although in the majority of cases we will work with finite values for L . and 1 , there is sometimes interest in one-sided interval estimates. Fon instance, if $\mathrm{L}(\mathrm{x})=-\infty$, then we have the one-sided interval $(-\infty, \mathrm{U}(\mathrm{x})]$ and the assertion is that $\theta \leq \mathrm{U}(\mathrm{x})$. We could similarly take $\mathrm{U}(\mathrm{x})=\infty$ and have at one-sided interval $[L(x), \infty)$. Athough the definition mentions a dosed interval $[\mathrm{L}(\mathbf{x}), \mathrm{U}(\mathbf{x})]$, it will sometimes be more natural to use an open interval $([L(x), U(x))$ or even a half-open and half-closed interval. We will use whichever seems most appropriate for the particular problem at hand.

The most prevalent forms of interval estimation are: Confidence intervals (a frequentist method) and Credible intervals (a Bayesian method). Other common approaches to interval estimation, which are encompassed by statistical theory, are: Tolerance \& Prediction intervals (used mainly in Regression Analysis).

- Credible intevals can readily deal with prior information, while confidence intervals camot.
- Confidence intervals are more llexible and can be used practically in more situations than credible intervals: one area where credible intervals sulter in comparison is in deating with non-parametric models.

5 TATISTICAL INFERENCE

STAIISTICAL. Inference

\qquad
A progress in science is often ascribed to experimentation. The research conkers perform an experiment and obtain some data. On the basis of the data, certain conclusions are drawn. The conclusions usually go beyond the materials and operations of the particular experiment. In other words, the scientist may generalise from a particular experiment to the class of all similar experiments. The theory is however designed to form a model of a contain group of phenomena in physical world, and the abstruct objects and propositions of the theory have their counter-parts in certain observable things and relation between Things. If the model is to be practically useful, there must be. some kind of general agreement between their theoretical proposition and empirical counterpart. When a certain proposition has its counter-part in some directly obsenvable relation, we must require that over observations should shoe that this relation holds. If in repented tests, an agreement of these character has been found and if we regard this agreement as sufficiently accurate and permanent, the theory may be accepted for practical use.

Inductive Inference is well known to be a hazardous process. In fact, it is a theorem of logic that in inductive inference, uncertainty is present, one can't make absolutely certain generalization. Howeven, uncertain inferences can be made md The degree of uncertainty can be measured if the experiment has been performed in accordance with certain principles. One function of statistics is the provision of techniques for making inductive inferences and for meascoing the degree of uncertainty of such inferences.
Introduction OF Estimation: \longrightarrow suppose woe are given a samplom from a population. the distribution of which has a known mathematical form but involves a certain number of unknocon parameters. In general, we can construct an infinite number of function of sample values that might claim to estimate the parameter. According to Prof. R. A. Fisher, An estimator is sid to be the best if it is.
i) Unbiased
ii) Consistent
iii) efficient
iv) sufficient.

These are the criteria for the 'best' estimates. It is noted that a parameters has a meaningful physical interpretation.

Theory Of Point. Estimation : \longrightarrow The rational behind point estimation is quite simple. Let $\left(x_{1}, \ldots, x_{n}\right)$ is a random sample drawn from a population having distribution function F_{θ}, where $\theta \in(H)$, the parameter space and here the function n form of F is known except the proramotor θ (O levels the parent distribution and it may be partially known, otherwise theirs is nothing to infer, monoover the labelling porometen θ may be vector valued). Now, we are interested to guess the unknown population parameter θ, as the knowledge of θ implies the knowledge about the the entire population. If we can guess a specific feature of the parent distribution, it can be explicitly written ans a function of θ. Suppose, we vi to guess $\gamma(\theta)$, a real valued function of θ,

The statistic $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is said to be m e stimatar of $\gamma(\theta)$, if we guess $\gamma(\theta)$ by $T\left(x_{1}, \ldots, x_{n}\right)$ given $\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the realised value of the random sample, $T\left(x_{1}, \ldots, x_{n}\right)$ is said to be an estimate of $\gamma(\theta)$.
This procedure is called parametric Point Estimation.
Definition: Point estimator
A point estimator is any function of $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, cohere $\left(x_{1}, \ldots, x_{n}\right)$ is a random sample. i.e, a point estimator is a function of random sample independent of unknocon population parameter, ie. estimator is a statistic.
EXAMPLE: - Suppose coeare given the lifes (in hours) of dry cells of a specific capacity and of a certainbrand. A dry cell scervives if it can be burnt of a stretch of 500 hours. Let the objective to guess the population projection of dry cells that would survives, i.e. We are to guess the chance of a survival. Here it would be reasonable to assume that the life distribution is exponential with mean θ. If denotes the sample of lifes by $\left(x_{1}, \ldots, x_{n}\right)$ then the parametric function of interest be $\gamma(\theta)=P_{\theta}\left[X_{1}>500\right]$

$$
=e^{-500 / \theta}
$$

If we guess θ, the population mean by the sample mean, \bar{x}, then an estimators of $\gamma(\theta)$ will be $e^{-500 / \bar{x}}$, where as if The sample mean is observed $A B 612$, then an estimate of $\gamma(\theta)$ coll be, $e^{-500 / 612}$.

Closeness:- Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random sample drawn from a population $F_{\theta}(\cdot), \theta \in \oplus$ (the parameter may be vector valued) . Consider the problems of estimating itself). Let $T(\underset{\sim}{x})$ is an estimator
function $\gamma(\theta)$ (often $\gamma(\theta)$ will be θ of which is as follows:
The sample is drawn from the population with distribution function

$$
f_{\theta}(x)= \begin{cases}1 & \text { if } \theta-\frac{1}{2}<x<\theta+\frac{1}{2} \\ 0 & \text { ow }\end{cases}
$$

where θ is an integer and $\theta \in \oplus \in$. The parameter space (Θ) consists. of all integer. Consider estimating θ based on a single observation X_{1} and the statistic. $T\left(x_{1}\right)$ is defined such that $T\left(x_{1}\right)=x_{1}$, then $T\left(x_{1}\right)$ coll always correctly estimate θ. The problem posed in this $a . g$. is really non statistical, since one knows the value of θ after taking one observation.

In general, we are not able to find any statistic that will estimate any parametric function $\gamma(\theta)$, correctly. For this reason, we look for an estimator. $T(\underset{\sim}{x})$ that is "close." to $\gamma(\theta)$ The term "close" can be. interpreted in many ways. The statistic $T(\underset{\sim}{x})$ has its distribution or a family of distribution depending on θ. So, we 100 k for those values of $T(x)$ which is concentrated near $\gamma(\theta)$. We know that mean and variance of a distribution measure its location and spread, respectively, So we might require of an estimator chose mean is near or equal to $\gamma^{\prime}(\theta)$ and have small variance. These two notion are the primary concepts of unbiasedness and minimum variance, Mathematical argument:- Let $T(x)$ be a close estimator of θ, ie, all the realised values of $T(\underset{\sim}{x})$, say $T_{1}, T_{2}, \ldots, T_{k}$ fall close to θ, ie. $\left|T_{i}-\theta\right|<\epsilon \quad \forall \epsilon>0 \quad \forall \quad i=1(1) k$. Now, $E(T)=\frac{1}{k} \sum_{i=1}^{k} T_{i}$
$\therefore|E(T)-\theta|=\left|\frac{1}{k} \sum_{i=1}^{k} T_{i}-\theta\right|=\frac{1}{k}\left|\left(T_{1}-\theta\right)+\left(T_{2}-\theta\right)+\cdots+\left(T_{k}-\theta\right)\right|$ $\leq \frac{1}{k}\left[\left|T_{1}-0\right|+\left|T_{2}-\theta\right|+\cdots+\left|T_{k}-\theta\right|\right]$

$$
\leq \frac{1}{k} \cdot k \epsilon=\epsilon \quad\left[B y \begin{array}{c}
\text { Triangle } \\
\text { inequality }
\end{array}\right]
$$

$$
\therefore|E(T)-\theta|<\epsilon
$$

\because If T is close then this implies that the values of $E(T)$ falls near to θ. This conditions lead us to the notion of unbiasedness.

Definition: More Concentrated estimator
Let $T(x)$ and $T^{\prime}(x)$ be too estimators of a real valued parametric function $\gamma(\theta)$. T is said to be more concentrated estimator of $\gamma(\theta)$ than T^{\prime} if and only if

$$
P_{\theta}[\gamma(\theta)-\lambda<T<\gamma(\theta)+\lambda] \geqslant P_{\theta}\left[\gamma(\theta)-\lambda<T^{\prime}<\gamma(\theta)+\lambda\right]
$$ $\forall \lambda>0$ and for each θ in (A)

Remark:The above is an ideal condition in the sense of closeness of the estimate and the parametric function. The condition implies that, realised T is expected to be more close to $\gamma(\theta)$ compared to the nival estimate of T^{\prime}, ie. realisation. on T is more concentrated arround $\gamma(\theta)$ compared to the realisation on T^{\prime}.
Definition:- Pitman-closer

$$
\text { Let } T(\underset{\sim}{x}) \text { and } T^{\prime}(\underset{\sim}{x}) \text { be too estimators of a real }
$$ valued parametric function $\gamma(\theta)$. T is said to be a Pitman closer estimator of $\gamma(\theta)$ than T^{\prime} if and only if

$$
P_{\theta}\left[|T-\gamma(\theta)|<\left|T^{\prime}-\gamma(\theta)\right|\right] \geqslant \frac{1}{2} \quad \forall \theta \in \Theta
$$

Remark:- The above is an ideal condition of closeness between an estimate and the parametric function but the mathematical handling of the conditions are too difficult. Hence, they can't be employed as criteria in choosing an estimation of a parametric function from a class of estimators.

20 The property of Pitman-closers is a desirable property of most concentrated estimator., yet rarely there will exist a Pitman-closer estimator. Both pitman closer and move concentrated estimator are intuitively attractive properties to be used to compare estimators, yet they are not always useful. Given too estimators T and T^{\prime}, one does not have to be more concentrated on Pitman-closer than the other. What often happens is that one, soy T^{\prime}, is Pitman-closen or more concentrated for some θ in (4), and the other T is pitman closer or more concentrated for some other θ in (1); since θ is unknown, we can't say which estimator is
preferred. Therefore, we need a criteria is given in terms some simple criteria and such o Mean square orson.

Mean-Squared Error (MSE): - A useful, though perhaps crude, measure of goodness or closeness of an estimator $T(X)$ of $\gamma(\theta)$ is cohat is called the mean-squared error of the estimator. Definition: Mean-squared en nor

Let $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an estimator of $\gamma(\theta)$, Here mean-sauared error (MSE) of T cohile. estimating $\gamma(0)$ is given by,

$$
\operatorname{MSE}_{\theta}(T)=E_{\theta}(T-\gamma(\theta))^{2}
$$

It is basically a second order risk function.
[as the areantity $E_{\theta}(T-\gamma(\theta))^{2}$ being the avenge of the squared errors $\left\{T\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\gamma(\theta)\right\}^{2}$, it is termed as Mean-squared error.]

$$
\begin{aligned}
& \operatorname{MSE}_{\theta}(T)=\sum_{x}\left\{T\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\gamma(\theta)\right\}^{2} P_{x_{1} \ldots x_{n}}\left(x_{1} \ldots . x_{n}\right) \text {, } \\
& \text { cohen } T \text { is discrete. } \\
& =\int_{\mathbb{R}^{n}}\left\{T\left(x_{1}, \ldots, x_{n}\right)-\gamma(\theta)\right\}^{2} f_{\sim}^{f} \underset{\sim}{x}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots . . .
\end{aligned}
$$

It is noted that the minimization of MSE of T, ensures that The realisations on T fall close to $\gamma^{\prime}(\theta)$. Therefore, with analogy to the ideal condition, woe prefer an estimator T to T 'while estimating $\gamma(\theta)$ if

$$
\begin{aligned}
& \operatorname{MSE} \theta(T) \leq M S E_{\theta}\left(T^{\prime}\right) \quad \forall \theta \in(H) \\
& \text { i.e. } E_{\theta}(T-\gamma(\theta))^{2} \leq E_{\theta}\left(T^{\prime}-\gamma(\theta)\right)^{2} \forall \theta \in(H)
\end{aligned}
$$

We can note that $E_{\theta}(T-\gamma(\theta))^{2}$ is a measure of goodness as coll as a moasure of spread of T values about $\gamma(\theta)$, just as the variance of a random variable is a measure of its spread about its mean. If we are to compare estimators by looking at their respective MSE, naturally wo would prefer one coith. Small or smallest MSE, but such estimator rarely exist. To overcome this difficulty we confine ourselves to some. restricted classes obtained by imposing some optimality criteria of point estimation and search. for the best estimator cotthin the restricted class.
Note that, $\operatorname{MSE}_{\theta}(T)=E_{\theta}(T-\gamma(\theta))^{2}$.

$$
\begin{aligned}
& =E \theta[(T-E(T))+(E(T)-\gamma(\theta))]^{2} \\
& =E_{\theta}(T-E(T))^{2}+(E(T)-\gamma(\theta))^{2}
\end{aligned}
$$

[Since the product term vanishes]

Idea of Unbiasedness and minimum variance :

$$
\begin{aligned}
\operatorname{MSE}_{\theta}(T) & =E_{\theta}(T-\gamma(\theta))^{2} \\
& =E_{\theta}\left(T-E_{\theta}(T)\right)^{2}+\left\{E_{\theta}(T)-\gamma(\theta)\right\}^{2} \\
& =V_{\theta}(T)+b_{\theta}^{2}(T)
\end{aligned}
$$

cohere, $V_{\theta}(T)=$ variance

$$
b_{\theta}(T)=\text { bias }
$$

Definition: Bias of an Estimator
Let T be an estimator of $\gamma(\theta)$, then the quantity $\left\{E_{\theta}(T)-\gamma(\theta)\right\}$ is termed as the bias of an estimator. We already have,

$$
\operatorname{MSE}_{\theta}(T)=\operatorname{bias}^{2}(T)+\operatorname{Var} \theta(T)
$$

Therefore, minimization of MSE is equivalent to the simultaneous minimization of both variance and bias. This leads us to the concept of unbiasedness and minimum variance.

Let θ be a scalar, suppose the MSE of the estimator T_{1} and T_{2} cohile estimating $\gamma(\theta)$ be as follows:

Here a choice betrosen T_{1} and T_{2} can not made uniformly, ie. for each θ in (H), but can be made locally. Namely, if $\theta<\theta_{0}$, it prefer the estimator T_{2} where as we prefer T_{1} cohen $\theta>\theta_{0}$.

But in case of the following situation, the estimator T_{3} is uniquely preferable compared to T_{1}, T_{2}.

In fact, there does not exist the best estimator of $\gamma(\theta)$ within the class of all estimators in the sense at least MSE for all values of θ. Since for each $\theta \in \mathbb{A}$. We can define a trivial estimator of $\gamma(\theta) \ni$ its MSE vanishes for that specific choice of θ. i.e. if $T_{0}=\gamma\left(\theta_{0}\right)$ are.
then $\operatorname{MSE}_{\theta_{0}}\left(T_{0}\right)=0$
But it does not imply that MSE of To will be small for other values of θ. In fact, those should be significantly large.

Thus in order to find a good estimator of $\gamma(\theta)$, We confine. ourselves to some restricted classes obtain by imposing same optimality erriterin of the point estimation. As for example, if we consider the class of unbiased estimators of $\gamma(\theta)$. We coould like to choose the one which has uniformly the least variance, called the uniformly minimum variance unbiased estimators, or, if we consider a class of consistent estimators of $\gamma(\theta)$ [all converges in probability to $\gamma(\theta)$].

We cooceld like to choose the one which converges move rapidly to $\gamma(\theta)$, i.e. efficient for $\gamma(\theta)$, etc. Thus choice of an estimator depends on a set of such criteria, namely, unbiasedness, minimum variance, consistency, efficiency, robustness 3 , etc. and the choice of such criteria depends on the purpose of estimation.

Definition: - Unbiased estimator
$T\left(X_{1}, x_{2}, \ldots, x_{n}\right)$ is said to be an unbiased estimator of a real valued parametric function $\gamma(\theta)$ if the mean of the sampling distribution of T is $\gamma(\theta)$ for each θ in (H), the parameter space.

$$
\text { i. e. } E_{\theta}(T)=\gamma(\theta) \quad \forall \theta \in(H)
$$

Othercoise, if $E_{\theta}(T) \neq \gamma(\theta)$ for some, θ, Tis said to be. biased for $\gamma(\theta)$.
with the bias $b_{\theta}(T)=E_{\theta}(T)-\gamma(\theta)$, average of the difference of realised T 's from $\gamma(\theta)$.
Note: If the arm. of the sampling distribution of T is $\gamma(\theta), T$ is said to be unbiased in mean. If the median of the acid to be unbiased in mean. Tistribution of T is $\gamma(\theta)$, T said to be unbiased sampling distribution of made of the sampling distribution of T in median and if the mode of T is said to be unbiased in mode.
is $\gamma(\theta)$, T
Remark 1. Unbiased estimator does not always exist.
example:
a) Let us consider a random variable, $x \sim \operatorname{bin}(1, P)$. Suppose we want to estimate the parametric function $\gamma(p)=p^{2}$. Now, for a statistic $T(x)$ to be unbiased for $P(p)$, one must require,

$$
\begin{aligned}
& \text { require, } \\
& \qquad E_{p}(T(x))=p^{2}, 0<p<1 \\
& \text { i.e. } p^{2}=p T(1)+(1-p) T(0) \\
& \Rightarrow p^{2}+p[T(0)-T(1)]-T(0)=0
\end{aligned}
$$

But the LHS of the above expression is a power series (with at least one co-efficient non-zero), which vanishes $\forall p \in(0,1)$, eohich is impossible. Therefore, we cant have an unbiased estimator for p^{2}.
ㅁํㅁ) Suppose $x \sim \operatorname{Bin}(n, p)$, cohere, n is specified. Here, no unbiased estimator of $\frac{1}{p}$ exists based on X. If possible let,
$T(x)$ is unbiased for $\frac{1}{P}$.

$$
\begin{aligned}
& \therefore E_{p}[T(x)]=\frac{1}{p} \forall p \in(0,1) \\
& \Rightarrow \sum_{j} T(j)\binom{n}{j} p^{j}(1-p)^{n-j}=\frac{1}{p}
\end{aligned}
$$

Note that, $L H S \leq \sum_{j}|T(j)|\binom{n}{j} p^{j}(1-p)^{n-j}[a$ finite quantity $]$
But RHS $\rightarrow \infty$ as $p \rightarrow 0$, i.e. a contradiction occlors.

옴ㅇ) Catch-recatch Problem: Let there be θ fishes in a tank of which M are caught, tagged and released. Thereafter n fishes are caught grain of which x are found to be tagged then there does not exist any unbiased estimator of θ based on x.
Note that,

$$
P_{\theta}[X=x]=\frac{\binom{M}{x}\binom{\theta-M}{n-x}}{\binom{\theta}{n}}
$$

Given the sample the parameter space is

$$
\theta \in\{(M+n-x),(M+n-x+1), \ldots \ldots \ldots\}
$$

i.e. The parameter space is not bounded above. If possible let, $T(x)$ be unbiased for θ,
Define, $a=\min \{T(0), T(1), \ldots, T(n)\}$

$$
b=\max \{T(0), T(1), \ldots, T(n)\}
$$

evidently,

$$
\begin{aligned}
& a \leq E_{\theta}\{T(x)\} \leq b \\
\Rightarrow & a \leq \theta \leq b
\end{aligned}
$$

Hence, the contradiction, since the parameter space is not bounded.
Remark 2. Unbiased estimator may sometimes be absurd.

example:

a) Let usconsiden the random variable, $x \sim P(\lambda)$. Let us define a statistic $T(x)=(-2)^{x}$ for estimating the parametric function $\gamma(\lambda)=e^{-3 \lambda}$

$$
\begin{aligned}
& \text { function } \gamma(\lambda)=e \\
& \therefore E_{\lambda}[T(x)]=\sum_{x=0}^{\infty}(-2)^{x} \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=0}^{\infty} e^{-\lambda} \cdot \frac{(-2 \lambda)^{x}}{x!} \\
&=e^{-\lambda} \cdot e^{-2 \lambda} \\
&=e^{-3 \lambda} \\
& \therefore T(x)=(-2)^{x} \text { is an unbiased estimator for } \gamma(\lambda)=e^{-3 \lambda}
\end{aligned}
$$ but $(-2)^{x}=\left\{\begin{array}{l}+v e \text { if } x \text { is even } \\ -v e \text { if } x \text { is odd }\end{array}\right.$

i.e. if x is odd, the $(-2)^{x}$ is negative., and 'it is absurd to have. a negative estimator of a positive parametric function. ㅇㅁ) Let X_{1}, \ldots, x_{n} be a random sample drawn from a $N(\mu, 1)$ population. We know $\bar{x} \sim N\left(\mu, \frac{1}{n}\right)$. Here $\bar{x}^{2}-\frac{1}{n}$ unbiasedly estimate μ^{2} conich is positive for $\mu \neq 0$, where as an unbiased estimate. may occasionally be negative.

Remark 3. There may exist infinitively many unbiased estimator. example: Let us consider $x_{1}, x_{2}, \ldots, x_{n} \sim$ i.i.d. $P(\lambda)$ Then $E_{\lambda}(\bar{x})=\frac{1}{n} \sum_{i=1}^{n} E_{\lambda}\left(x_{i}\right)=\frac{1}{n} \cdot n \lambda=\lambda$
and

$$
E_{\lambda}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]=(n-1) \lambda
$$

Be. $E_{\lambda}\left(s^{2}\right)=\lambda$, where $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
Let us define, $T_{\alpha}(\underset{\sim}{x})=\alpha \bar{x}+(1-\alpha) s^{2}, 0 \leq \alpha \leq 1$

$$
\begin{aligned}
E_{\lambda}\left\{T_{\alpha}(\underset{\sim}{x})\right\} & =\alpha E(\bar{x})+(1-\alpha) E\left(s^{2}\right) \\
& =\alpha \lambda+\lambda(1-\alpha) \\
& =\lambda
\end{aligned}
$$

\therefore For each $\alpha \in[0,1], T_{\alpha}(\underset{\sim}{x})$ is unbiased for λ. Hence this completes the proof.
Remark 4. Unbiasedness alone does not make any sense.
Justification:- There are situations cohere unbiasedness ensures estimator of θ poor estimation. Suppose T is an unbiased of T is extremely positively skewed, ie. θ lies on the right tail of the sampling distribution. If we regard an observed T That is an estimate to be likely then the estimate
should fall close to hence it should not be close to θ. This situation is quite natural since minimisation of MSE ensures the simultaneous minimisation of the bias and variance of the sampling distribution of the statistic.
Remark 5. Poling of Information
If there exists a number of unbiased estimators of a parameter θ then cohatever the precisian the individual estimator, the poled estimate θ based on all the estimators be a precise one.
Suppose $T_{1}, T_{2}, \ldots . T_{k}$ are all independently
distributed and unbiased for θ. Here θ can be unbiasedly
estimated by the polled estimate, estimated by the polled estimate,

$$
\begin{aligned}
& \frac{1}{T_{k}}=\frac{1}{k} \sum_{i=1}^{k} T_{i} \text {. If, moreover, the variances of the } \\
& \text { bounded, then in the long } r
\end{aligned}
$$ estimators are uniformly bounded, then in the long run, i.e. for large k, T_{k} converges in probability to θ.

$$
\begin{aligned}
V\left(T_{k}\right) & =\frac{1}{k^{2}} \sum_{i=1}^{k} V\left(T_{i}\right) \quad\{\text { covariance tom vanishes due to independence, } \\
& \leq \frac{1}{k^{2}} \sum_{i=1}^{k} C=\frac{c}{k}\left\{\begin{array}{l}
\text { Variance are uniformmly bounded } \\
\Rightarrow V\left(T_{i}\right) \leq C, \text { a finite positive quantity } \\
\forall i
\end{array}\right\} \\
& =\frac{c}{k} \rightarrow 0 \text { as } k \rightarrow \infty \\
\therefore E\left(\bar{T}_{k}\right) & =\theta, V\left(T_{k}\right) \rightarrow 0 \\
\therefore & \bar{T}_{k} \longrightarrow P
\end{aligned}
$$

On the other hand, if T_{i} 's are all biased with common bias β Then the pooled estimate. T_{k} approaches to $\theta+\beta$ in the long run instead of O. Thus, it is advisable not to combine the biased estimators of θ, even if the bins is nogligable.

Remarks. Leet T_{n} be an estimator of θ based on a couple of size n. T_{n} is said to be asymptotically unbiased for θ. If $E\left(T_{n}\right) \rightarrow \theta$, whenever $n \rightarrow \infty$.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample draco n from $R(0, \theta)$ population.

Here, $X_{(n)}$ is a biased estimator of θ. It can be shown that, $E(X(n))=\frac{n}{n+1} \cdot \theta$, but the bias vanishes in long run, since, $E(X(n)) \rightarrow \theta$ as $n \rightarrow \infty$.
$\therefore X_{(n)}$ is asymptotically unbiased toronrids θ.

Finding an unbiased estimator is a primary step forward, toconrds finding a good estimator. After finding the class of unbiased estimator 8 , we search for that estimator in that class in order to have minimum MSE. Next, we coould introduce the concept of minimum variance unbiased estimator.

Minimum Variance Unbiased Estimator (MVUE): \qquad
From the prion disccession, we know that for an estimator ($T\left(x_{n}\right)$, for estimating a parametric function $\gamma(\theta), \theta \in \Theta$, the mean squared error is given by,

$$
\operatorname{MSE}_{\theta}(T)=\operatorname{bias}^{2}(T)+\operatorname{var} \theta(T) \text {. }
$$

Since estimators with uniformly minimum mean-sauared error rarely exists, i, e, in order to have minimum MSE we find that class of estimators for which bias is zero and the variance is minimum for the estimator. From this condition the concept of MVUE is introduced.
Definition:- Uniformly Minimum variance Unbiased Estimator (U MYUE) Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random sample from a population $F_{\theta}, \theta \in(H)$, the parameter space. Then an estimator T for $\gamma(\theta)$ is said to be aUMVUE of $\gamma(\theta)$ if
i) $E_{\theta}(T)=\gamma(\theta) \quad \forall \quad \theta \in \Theta$
ii) $E_{\theta}\left(T^{2}\right)<\infty$ and $\operatorname{var} \theta(T) \leq \operatorname{var} \theta\left(T^{\prime}\right)$, where T^{\prime} being an another estimator of $\gamma(\theta)$ satisfying $E_{\theta}\left(T^{\prime}\right)=\gamma(\theta)$.
Definition:- Best linear Unbiased Estimator (BLIUE)
Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random sample from a population $F_{\theta}, \theta \in(H$, the parametric space. Then an estimator T for $\gamma(\theta)$ is said to be BLUE of $\gamma(\theta)$ if
i) T is linear in X_{i} 's, ie, the class of estimators are linear function of the random variables $X_{i}{ }^{\prime} s$.
ii) $E_{\theta}(T)=\gamma(\theta) \forall \theta \in$
iii) $E_{\theta}\left(T^{2}\right)<\infty$, and $\operatorname{var} \theta(T) \leq \operatorname{Var}_{\theta}\left(T^{\prime}\right)$, where T^{\prime} being an another estimator of $\gamma(\theta)$ satisfying $E_{\theta}\left(T^{\prime}\right)=\gamma(\theta)$.
Note:-1. Here 'best' refers to minimum variance.
2. $V_{\theta}(T) \leq V_{\theta}\left(T^{\prime}\right)$, here equality holds when $T=T^{\prime}$ almost every where.

Result:- Sample mean is the Best linear Unbiased estimator (BLUE) of the population mean.
Proof:-
$\operatorname{Let}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random sample from a population following a distribution with mean μ and variance σ^{2}.
\therefore Sample mean, $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
Let, $T=l_{0}+\sum_{i=1}^{n} l_{i} x_{i}$ be the BLUE of the mean and l_{i} 's are. suitable constants.
From the definition of BLUE
i) $E(T)=\mu$
ii) $V(T)$ is minimum among the yarianos of all other linear unbiased estimators of μ.
Now, $E\left(T_{n}\right)=\mu$

$$
\Rightarrow l_{0}+\sum_{i=1}^{n} l_{i} E\left(x_{i}\right)=\mu
$$

$\therefore l_{0}=0$ and $\sum_{i=1}^{n} l_{i}=1$, since the above is an identity.

$$
\begin{aligned}
V(T) & =0+\sigma^{2} \sum_{i=1}^{n} l i^{2} \\
& =\sigma^{2} \sum_{i=1}^{n} l i^{2}
\end{aligned}
$$

If $\sum_{i=1}^{n} l_{i}{ }^{2}$ is minimum then $r(T)$ is minimum,
$\therefore \sum_{i=1}^{n} l_{i}{ }^{2}$ is minimum subject to $\sum_{i=1}^{n} l_{i}=1$.
Now let us construct the function
$f\left(l_{1}, l_{2}, \ldots, l_{n}\right)=\sum_{i=1}^{n} l_{i}^{2}+\lambda\left(\sum_{i=1}^{n} l_{i}-1\right)$, where λ is lagrange multiplies.
Now, $\frac{\partial f}{\partial l_{i}}=0$

$$
\Rightarrow 2 l_{i}+\lambda=0 \Rightarrow l_{i}=-\frac{\lambda}{2}
$$

again, $\sum_{i=1}^{n} l_{i}=1$

$$
\begin{aligned}
& \Rightarrow-\frac{n \lambda}{2}=1 \\
& \Rightarrow \lambda=-\frac{2}{n}
\end{aligned}
$$

$$
\therefore l_{i}=\frac{1}{n}
$$

$$
\therefore T=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x}
$$

\therefore Simple mean is a BLUE of population mean.

Method of finding estimator: -
[c.U.]
Method of moments: \rightarrow A very important method of finding estimators is method of moments, proposed by karl pearson. Let $\left(X_{1}, x_{2}, \ldots, x_{n}\right)$ be a random sample from the population $F_{\theta_{i}}, i=1(1) k \forall \theta_{i} \in(H$. By method of moments, estimators are found by equating the first k sample moments to the corresponding K population moments and then solving the resulting system of simultaneous equations.
Mope precisely, define,

$$
\begin{aligned}
m_{1}^{\prime} & =\frac{1}{n} \sum x_{i}, \mu_{1}^{\prime}=E(x) \\
m_{2}^{\prime} & =\frac{1}{n} \sum x_{i}^{2}, \mu_{2}^{\prime}=E\left(x^{2}\right) \\
& \vdots \\
m_{k}^{\prime} & =\frac{1}{n} \sum x_{i}^{k}, \mu_{k}^{\prime}=E\left(x^{k}\right)
\end{aligned}
$$

The population moment μ_{j}^{\prime} will be typically a function of $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$, say $\mu_{j} j^{\prime}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$.
The method of moment estimator $\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \ldots, \hat{\theta}_{k}\right)$ is obtained by solving the simultaneous system of equations.

$$
\begin{aligned}
& m_{1}^{\prime}=\mu_{1}^{\prime}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right) \\
& m_{2}^{\prime}=\mu_{2}^{\prime}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right) \\
& \vdots \\
& m_{k}^{\prime}=\mu_{k}^{\prime}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)
\end{aligned}
$$

Now, we illustrate the method by an example:
For example, suppose $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample draco from $N\left(\mu, \sigma^{2}\right)$.
The parameters are $\theta_{1}=\mu, \theta_{2}=\sigma^{2}$
We have, $m_{1}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{x}$

$$
\begin{aligned}
& m_{2}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} x_{1}^{2} \\
& \mu_{1}^{\prime}= E(x)=\mu=\theta_{1} \\
& \mu_{2}^{\prime}= E\left(x^{2}\right)=V(x)+E^{2}(x)=\sigma^{2}+\mu^{2} \\
&=\theta_{1}^{2}+\theta_{2} \\
& \hat{\theta}_{1}=\hat{\mu}=\bar{x}=\text { sample mean. }
\end{aligned}
$$

ire. θ_{1} is estimated by \bar{x}.
and $\hat{\theta}_{2}=\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}{ }^{2}-\hat{\mu}^{2}$

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\bar{x}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\text { sample variance }
\end{aligned}
$$

$\therefore \theta_{2}$ is estimated by $\hat{\sigma}^{2}$.

- Method of moments: EXAMPLE : \longrightarrow

Example 1. Let $X_{1}, X_{2}, \ldots, x_{n}$ be a random sample from a Poisson distribution with parameter λ. As there is only one parameter, hence only one equation, which is

$$
M_{1}^{\prime}=\mu_{1}^{\prime}=\mu_{1}^{\prime}(\lambda)=\lambda .
$$

Hence the method-of-moments estimator of λ is $M_{1}^{\prime}=\bar{x}$, which says estimate the population mean λ with the sample mean \bar{x}.
Example 2. Let $X_{1}, x_{2} \ldots, x_{n}$ be a random sample from the negative exporvertial density $f(x ; \theta)=\theta e^{-\theta x} I_{(0, \infty)}(x)$. To estimate θ, The method-of-moments equation is

$$
M_{1}^{\prime}=\mu_{1}^{\prime}=\mu_{1}^{\prime}(\theta)=\frac{1}{\theta} \text {; }
$$

Hence the method-of-moments estimator of θ is $1 / M_{1}^{\prime}=\frac{1}{\bar{X}}$.
Example 3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample from a uniform distribution on $(\mu-\sqrt{3} \sigma, \mu+\sqrt{3} \sigma)$. Here the unknocon parameters are two, namely μ and σ, which are the population mean and standard deviation. the method-of-moments equations are

$$
M_{1}^{\prime}=\mu_{1}^{\prime}=\mu_{1}^{\prime}(\mu, \sigma)=\mu
$$

and

$$
M_{2}^{\prime}=\mu_{2}^{\prime}=\mu_{2}^{\prime}(\mu, \sigma)=\sigma^{2}+\mu^{2}
$$

Hence the method-of-moments estimators are \bar{X} for μ and

$$
\sqrt{\frac{1}{n} \sum x_{i}^{2}-\bar{x}^{2}}=\sqrt{\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}} \text { for } \sigma_{1}
$$

Remark:- Method-of-moments estimators are not uniquely defined.

Problem: - Distinguish between population and sample.

ANS:-
population

1. It is defined as a total of the items under consideration.
2. The characteristics of a population are called as parameters.
3. The population parameters are generally denoted by Greek letters. For example,
$\mu=$ Population mean
$\sigma=$ Population standard deviation
sample
4. It is defined as a proportion of the population selected.
5. The characteristics of a sample are known as statistics.
6. The sample statistics are generally denoted by italic letters. For example, $\bar{X}=$ sample mean
$S=$ Sample standard deviation

Problem:-
Let X be a single observation from $P(\lambda)$.
Is $\frac{1}{\lambda}$ unbiasedly estimable based on X ?
ANS: - X be a single observation from $P(\lambda)$.
PMF of x iss given by, $f(x)=\frac{e^{-\lambda}, \lambda^{x}}{x!}, x=0,1,2, \ldots$,
Now,

$$
\begin{aligned}
E(x) & =\sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!} \\
& =\lambda \sum_{x-1=0}^{\infty} \frac{e^{-\lambda} \cdot \lambda^{x-1}}{(x-1)!} \\
& =\lambda \cdot e^{-\lambda} \cdot e^{\lambda} \\
& =\lambda .
\end{aligned}
$$

$\therefore \frac{1}{\lambda}$ is not unbiasedly estimable based on X, where $X \sim P(\lambda)$.

Problem:- Explain the concept of "unbiasedness" and "minimum variance" in inference. [cu.]
Ans:-
Unbiasedness: \rightarrow The mean squared error (MSE) of an estimator $T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of a parameter θ is the function of θ defined by $E_{\theta}(T-\theta)^{2}$.

Now,

$$
\begin{align*}
E_{\theta}(T-\theta)^{2} & =E_{\theta}\left(T^{2}\right)-2 E_{\theta}(T \theta)+E_{\theta}\left(\theta^{2}\right) \\
& =E_{\theta}\left(T^{2}\right)-E_{\theta}^{2}(T)+E_{\theta}^{2}(T)-2 E_{\theta}(T \theta)+\theta^{2} \\
& =\operatorname{Var}_{\theta}(T)+\left[E_{\theta}(T)-\theta\right]^{2}
\end{align*}
$$

Now, we define, the bias of an estimator.
The bias of a point estimator T of a parameter θ is the difference between the expected value of T and θ.

$$
\begin{aligned}
& \therefore \operatorname{Bias}_{\theta}(T)=E_{\theta}(T)-\theta \\
& \therefore \text { From }\langle 1\rangle, E_{\theta}(T-\theta)^{2}=\operatorname{Var} \theta(T)+\operatorname{Bias}_{\theta}(T)
\end{aligned}
$$

Now T is said to be an unbiased estimator of θ if $\operatorname{Bias} \theta(T)=0$

$$
\text { ie. } E_{\theta}(T)=\theta \quad \forall \theta \in \text { (H) }
$$

Now, there may exist a biased estimator coth negligible bias such that the MSE of the estimator less than the variance of that of unbiased estimator cohile estimating the same parametric function since from 〈1>, for an unbiased estimator

$$
M S E=\operatorname{Var} \theta(T)
$$

Minimum Variance: \longrightarrow Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ bo a random sample drawn from $F_{\theta}, \theta \in(H$. Consider the following class of estimators of a real valued parametric function $\gamma(\theta)$ from the class of estimators

$$
U=\left\{\begin{array}{l}
T\left(x_{1}, \ldots, x_{n}\right): E_{\theta}(T)=\gamma(\theta) \forall \theta, E_{\theta}\left(T^{2}\right)<\infty \forall \theta
\end{array}\right.
$$

$T_{0} \in l l$ is said to be. The minimum variance variance estimator of $\gamma(\theta)$ if $V_{\theta}\left(T_{0}\right) \leq V_{\theta}(T) \quad \forall \theta \in(H)$ and $T \in \mathcal{C}$, with equality holds if $T_{0}=T$ almost everywhere.
BLUE:- If the above class of Unbiased estimator $l l$ becomes such that

$$
\begin{aligned}
& \text { ch that } \\
& l l\left(x_{1}, \ldots, x_{n}\right): T \text { is linear in } x_{i}^{\prime} s, \quad E_{\theta}(T)=\gamma(\theta) \forall \theta ; \\
& \left.E\left(T^{2}\right)<\infty, \forall \theta\right\}
\end{aligned}
$$

and $T_{0} \in l l$ is said to be BLUE of $\gamma(\theta)$ if $V_{\theta}\left(T_{0}\right) \leq V_{\theta}(T)$ $\forall T \in U \quad \forall \theta$, with equality holds if $T=T_{0}$ a.e.

Problem:-

1. $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ come from $B(\pi)$. Find the unbiased estimator: of i) π, ii) π^{2}, iii $\geqslant \pi(1-\pi)$, iv $\rangle(1+\pi)^{k}, k \in \mathbb{N}$ based on all
X_{i} 's.
Solution:- Define, $T=\sum_{i=1}^{n} X_{i}$, here T is sufficient for π.
Thus we obtain the unbiased estimators of the parametric. function based on T.
i) In order to have an unbiased estimator of π, we begin with

$$
\begin{aligned}
& E(T)=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \pi=n \pi . \\
& \therefore \pi=E\left(\frac{T}{n}\right)
\end{aligned}
$$

$\therefore \pi$ is unbiasedly estimated by $\frac{T}{n}=\bar{x}$.
ii) To have an unbiased estimator of π^{2}, first we. determine,

$$
\begin{aligned}
& \text { determine, } \\
& E\left(T^{2}\right)=V(T)+E^{2}(T) \quad[\because T \sim \operatorname{Bin}(n, \pi)] \\
& \Rightarrow E\left(T^{2}\right)=n \pi(1-\pi)+n^{2} \pi^{2} \\
& \Rightarrow E\left(T^{2}\right)-n \pi=n(n-1) \pi^{2} \\
& \Rightarrow E\left(T^{2}\right)-E(T)=n(n-1) \pi^{2} \\
& \Rightarrow E\left(\frac{T(T-1)}{n(n-1)}\right)=\pi^{2} .
\end{aligned}
$$

$\therefore \pi^{2}$ is unbiasedly estimated by $\frac{T(T-1)}{n(n-1)}=\frac{\bar{X}(n \bar{x}-1)}{(n-1)}$.
iii) To have an unbiased estimator of $\pi-\pi^{2}$, we will start from (i) and (i)

$$
\begin{aligned}
\pi-\pi^{2}=\pi(1-\pi) & =E\left[\frac{T}{n}-\frac{T(T-1)}{n(n-1)}\right] \\
& =E\left[\bar{X}\left(1-\frac{n \bar{X}-1}{n-1}\right)\right] \\
& =E\left[\bar{X}\left(\frac{n-1-\bar{n}+1}{n-1}\right)\right] \\
& =E\left[\frac{n \bar{x}}{n-1}(1-\bar{x})\right]
\end{aligned}
$$

iv)
$\therefore \pi(1-\pi)$ is unbiasedly estimated by $\frac{n \bar{x}}{n-1}(1-\bar{x})$.

$$
\begin{aligned}
& (1+\pi)^{k}=\sum_{x}\binom{k}{x} \pi^{x}=\sum_{x}\binom{k}{x} \frac{(T) x}{(n) x} \\
& \pi \hat{=} \frac{T}{n} \\
& \pi^{2} \triangleq \frac{(T) 2}{(n) 2} \quad \therefore(1+\pi)^{k} \text { is unbiasedly estir } \sum_{x}\binom{k}{x} \frac{(T) x}{(n) x} . \\
& \vdots \\
& \pi^{x^{\prime}} \triangleq \frac{(T) x}{(n) x}
\end{aligned}
$$

2. i.i.d.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be anvandom sample drawn from $R(0, \theta)$ population. suggest unbiased estimators of θ based on $X_{(1)}, X_{(n)}$ and \bar{X}. Compare the estimators.
ANS:-
i)

$$
\begin{aligned}
P[X(n) \leq x] & =P\left[X_{1}, X_{2}, \ldots, X_{n} \leq x\right] \\
& \left.=\prod_{i=1}^{n} P\left(x_{i} \leq x\right) \quad \text { [due to independence }\right] \\
& =\left\{P\left[X_{1} \leq x\right]\right\}^{n} \quad\left[\because X_{i}^{\prime} s \text { are id }\right] \\
& =\left(\frac{x}{\theta}\right)^{n} I_{0<x<\theta}+I_{x \geqslant \theta}
\end{aligned}
$$

PDF of $X_{(n)}$ is,

$$
\begin{aligned}
& f_{X_{(n)}}(x)=\frac{n x^{n-1}}{\theta^{n}} I_{0<x<\theta} \\
& E\left(X_{(n)}\right)=\frac{n}{\theta^{n}} \int_{0}^{\theta} x \cdot x^{n-1} d x=\frac{n}{n+1} \theta \\
& E\left[\frac{n+1}{n} X_{(n)}\right]=\theta
\end{aligned}
$$

$\therefore \theta$ is unbiasedly estimated by, $T_{1}=\frac{n+1}{n} X(n)$:
ii)

$$
\begin{aligned}
& P\left[X_{(1)} \leq x\right]=1-P\left[X_{(1)}>x\right] \\
&=1-P\left[X_{1}, \ldots, X_{n}>x\right] \\
&\left.=1-\prod_{i=1}^{n} P\left[X_{i}>x\right] \quad \text { hereto independence }\right] \\
&=\left\{1-\left(1-\frac{x}{\theta}\right)\right\}^{n} I_{0<x<\theta}+I_{x \geqslant 0} \\
& \text { PDF of } X_{(1)} \text { is, }
\end{aligned}
$$

$$
\begin{aligned}
& f_{X_{(1)}}(x)=\frac{n}{\theta}\left(1-\frac{x}{\theta}\right)^{n-1} I_{0<x<\theta} \\
& E(X(1))=\int_{0}^{1} x \cdot \frac{n}{\theta}\left(1-\frac{x}{\theta}\right)^{n-1} d x \\
&=n \theta \int_{0}^{1} y(1-y)^{n-1} d y \\
&=n \theta \beta(2, n) \\
&=\frac{\theta}{n+1} \cdot \\
& \therefore E\left[(n+1) X_{(1)}\right]=\theta
\end{aligned}
$$

$\therefore \theta$ is unbiasedly estimated by, $T_{2}=(n+1) X_{(1)}$.
iii)

$$
\begin{aligned}
& E(\bar{X})=\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)=\frac{1}{n} \cdot \sum_{i=1}^{n} \frac{\theta}{2}=\frac{\theta}{2} \\
& E(2 \bar{x})=\theta \\
& \therefore \theta \text { is unbiasedly estimated by } T_{3}=2 \bar{x} .
\end{aligned}
$$

Now, we compare the estimators from the view of MSE, as the estimates are unbiased, it is enough to have the sampling variance of the unbiased estimator.
i)

$$
\begin{aligned}
V\left(T_{1}\right) & =\left(\frac{n+1}{n}\right)^{2} V(X(n)) \\
E\left(X_{(n)}^{2}\right) & =\frac{n}{\theta^{n}} \int_{0}^{0} x^{n+1} d x \\
& =\theta^{2} \cdot \frac{n}{n+2} . \\
V\left(T_{1}\right) & =\left(\frac{n+1}{n}\right)^{2}\left[\theta^{2} \cdot \frac{n}{n+2}-\left(\frac{n \theta}{n+1}\right)^{2}\right] \\
& =\frac{\theta^{2}}{n(n+2)}
\end{aligned}
$$

ii)

$$
\begin{aligned}
V\left(T_{2}\right) & =V((n+1) X(1)) \\
& =(n+1)^{2} V(X(1)) \\
E\left(X_{(1)}^{2}\right) & =\int_{0}^{\theta} x^{2} \cdot \frac{n}{\theta}\left(1-\frac{x}{\theta}\right)^{n-1} d x \\
& =n \theta^{2} \int_{0}^{1} t^{2}(1-t)^{n-1} d t \\
& =n \theta^{2} \beta(3, n) \\
& =\frac{2 \theta^{2}}{(n+1)(n+2)} \\
\therefore V\left(T_{2}\right) & =(n+1)^{2}\left[\frac{2 \theta^{2}}{(n+1)(n+2)}-\frac{\theta^{2}}{(n+1)^{2}}\right] \\
& =\frac{\theta^{2} n}{n+2} .
\end{aligned}
$$

iii) $\quad v\left(T_{3}\right)=v(2 \bar{x})=4 v(\bar{x})=\frac{4}{n} v\left(x_{i}\right)=\frac{\theta^{3}}{3 n}$

$$
\left[\because v\left(x_{i}\right)=\frac{\theta^{2}}{12}\right]
$$

Statistich,
Statistical Inference
 been called statistical inference.
(1) Estimation: - Some features of the poplin in which an investigator is interested, may be knownto him and he may want to make a guess about this features, on the basis of a random sample drawn from the poplin. This type of problem is called problem of estimation.
(2) Testing of Hypothesis: - Some tentative information on a feature of the population may be available to the investigator and he may conto see conether the information is tenable in the light of the random sample taken from the population. This type of problem is called the problem of testing of hypothesis.
(1) Concept of Estimation: - The problem of estimation is loosely defined as: assume that some characteristics of the elements of the poplin. can be represented by a riv. X whose PMF or PDF if $\tilde{f}(x, \theta)$ cohere the functional form of the PMF or PDF is known except the parameter $\theta, \theta \in \Omega$. The set Ω is called the parameter space. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ bean observed random sample from $f(\dot{x}, \theta)$. On the basis of the observed random sample, it is desired to estimate the value of the parameter θ. This estimation is done in two ways,
(a) Point Estimation: - The problem of. point estimation is to pick or select a statistic $T\left(x_{1}\right)=T$ that best estimates the parameter.
The numerical value of $T(\underset{\sim}{x})$ cohen an observed value of x is $\underset{\sim}{x}$, is called an estimate of θ cohile such a statistic $T(\underset{\sim}{x})$ is called an estimator of θ. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be a random sample from $f(x, \theta)$. Then $\bar{x}=\frac{x_{1}+x_{2}+x_{3}}{3}$ is an estimator of θ. If the observed sample is $(-1,1,3)$, then the sample mean, $\bar{x}=1$ is anestimate of θ.
(b) Interval Estimation: - The problem of interval estimation is to define 2 statistic $T_{1}(\underset{\sim}{x})$ and $T_{2}(\underset{\text { a }}{ })$ such that $\left(T_{1}+T_{2}\right)$ constitutes an interval for which the probability can be determined that it contains the parameter θ.
(a) Point Estimation: - If is clear that if any given problem of $\approx \quad \begin{aligned} & \text { estimation, we may have a large, often an } \\ & \text { no. of estimators, we may choose from. }\end{aligned}$ Requirement of good estimator/ Measures of quality of the estimator Clearly we could like the estimator $T(\underset{\sim}{x})=T$ to be close to θ. Since T is a R.V., the usual measures of closeness $|T-\theta|$ is also a R.Y. Example of such measure of... closeness are

Part: 1: $P[|T-\theta|<\epsilon] \quad \forall \epsilon>0$

$$
\begin{equation*}
\text { Part : 2: } E\left[|T-\theta|^{r} \mid \text {, for some } r>0-\right. \tag{1}
\end{equation*}
$$

$$
\left[P[|T-\theta|<\epsilon]>1-\frac{E\left[|T-\theta|^{r}\right]}{\epsilon^{r}}\right]
$$

We want to be large (1) but to be small (2).
Mean Square Error (MSE): - A useful, though perhaps a crude measure of closeness of an estimator T of θ is $E(T-\theta)^{2}$, which is obtained from (2) by putting $r=2$.
Definition:- Let T is an estimator of θ. The quantity $E(T-\theta)^{2}$ is defined to be the MSE of estimation T.
Notation:- $M S ฺ E_{\theta}(T)=E[T-\theta]^{2}$.
Note that, $E[T-\theta]^{2}$ is a measure of spread of the values of T about the parameter θ. If we are to compare estimators by looking at there respective MSE 's, naturally we would prefer (1) with small or smallest MSE.
Here the requirement is to choose T_{0} such that $M S E_{\theta}\left(T_{0}\right) \leqslant M S E_{\theta}(T)$. for all T, for $\theta \in \Omega$. But such estimator nearly exists.
Note that, $\operatorname{MSE} \theta(T)=E(T-\theta)^{2}$

$$
\begin{aligned}
= & E[T-E(T)+E(T)-\theta]^{2} \\
= & E\{T-E(T)\}^{2}+\{E(T)-\theta\}^{2} \\
& +2 E\{T-E(T)\}\{E(T)-\theta\}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{var}(T)+\{b(\theta, T)\}^{2} \\
& \text { we need to }
\end{aligned}
$$

Hence, to control MSE, we meed to control both $\operatorname{Var}(T)$ and $\{b(\theta, T)\}^{2}$, the quantity $b(\theta, T)=E(T)-\theta$, is called the bias of T in estimating θ.

One approach is to restrict attention to those estimator which have zero bias, i.e. $E(T)=\theta \quad \forall \theta \in \Omega$.
If $b(\theta, T)=0$, then T is called an unbiased estimator of θ and $\operatorname{MSE}_{\theta}(T)=\operatorname{Var}(T)$.
Now, it is required to find an estimator coth uniformly minimum MSE among all unbiased estimator, which is equivalent to finding an estimator with uniformly minimum variance among all unbiased estimator. This is the concept of unbiasedness and minimum variance.
Unbiasedness:-
Definition: An estimator T is defined to be an unbiased estimator (UE) of θ if $E(T)=\theta \quad \forall \theta \in \Omega$.
Unbiasedness of T says that T has no systematic error, it neither overestimates non underestimates θ on an average.
Biasedness:-
Definition: ~ An estimator T is said to be biased for the parameters θ if $E(T) \neq \theta$ for some $\theta \in \Omega$.
Ex.1. Unbiased Estimator of population moments:-
Let $X_{1}, x_{2}, \ldots, x_{n}$ be a bis from a poplin. with finite k th order moment $\mu_{k}^{\prime}=E\left(x_{1}{ }^{k}\right)$. Nothing else is known about the poplin. distribution. Find an unbiased estimator of $\mu_{r}^{\prime}, 1 \leq r \leq k$.
Solution:- Define $m_{n}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} x_{i}{ }^{r}$
Then, $E\left(m_{n}^{\prime}\right)=\frac{1}{n} \sum_{i=1}^{n_{n}} E\left(X_{i}^{r}\right)$

$$
\begin{align*}
& i=1 \\
= & \frac{1}{n} \cdot n \cdot E\left(X_{1}^{r}\right), \text { as } x_{i}^{\prime} \text { s are i.i.d. } \\
= & E\left(X_{1}^{r}\right) \tag{VE}\\
= & \mu_{r}^{\prime}, ~
\end{align*}
$$

Hence, the sample r th order raw moment is an unbiased estimator of $\mu r^{\prime}, r=1(1) k$.

Ex.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the random sample from an infinite population with mean μ and variance $\sigma^{2}(<\infty)$. Show that

$$
s^{2}=\frac{i}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \text { is a biased estimator of } \sigma^{2} \text {. }
$$

Hence, find an ${ }^{i=1}$ UE of σ^{2}.
Solution:-

$$
\text { find an } \begin{aligned}
& \text { an }^{i=1} U E \text { of } \sigma^{2} . \\
& \because\left[S^{2}\right]=\frac{1}{n} E\left[\sum_{i=1}^{n}\left(x_{i}-\mu-\bar{x}+\mu\right)^{2}\right] \\
&=\frac{1}{n} E\left[\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-n(\bar{x}-\mu)^{2}\right] \\
&=\frac{1}{n}\left\{\sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)-n \operatorname{var}(\bar{x})\right\} \\
&=\frac{1}{n} \cdot\left\{n \sigma^{2}-\frac{n \cdot \sigma^{2}}{n}\right\}=\frac{n-1}{n} \sigma^{2}
\end{aligned}
$$

[Here, $E\left(x_{i}\right)=\mu, \operatorname{Var}\left(x_{i}\right)=\sigma^{2}$

$$
\begin{aligned}
& E\left(x_{i}\right)=\mu, \quad \operatorname{Var}\left(x_{i}\right)=\sigma^{2} \\
& E(\bar{x})=\mu, \quad \operatorname{Var}(\bar{x})=\frac{1}{n^{2}} \sum_{i=1}^{n} \gamma\left(x_{i}\right)=\frac{\sigma^{2}}{n} .
\end{aligned}
$$

Here, $f\left(s^{2}\right)=\frac{n-1}{n} \cdot \sigma^{2} \neq \sigma^{2} \therefore$ Bias $=E\left(s^{2}\right)-\sigma^{2}$

$$
\Rightarrow E\left(\frac{n s^{2}}{n-1}\right)=\sigma^{2}
$$

$$
\begin{aligned}
& =£\left(5^{2}\right) \\
& =-\sigma^{2} / n \\
& \longrightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $S^{12}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is a_{i} VE of σ^{2}.

$$
\begin{aligned}
\therefore \operatorname{Bias}\left(\sigma^{2}, s^{2}\right) & =E\left(s^{2}\right)-\sigma^{2} \\
& =-\frac{1}{n} \sigma^{2} \longrightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Ex.3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a rios. from $P(\lambda)$ distr. S.T. for $0 \leq \alpha \leq 1$, $T_{\alpha}=\alpha \bar{x}+(1-\alpha) s^{2}$ is an. UE of λ and comment.
Solution:- We know that \bar{x} and s^{2} are UEs of the poplin neap and variance, respectively. Since for $P(\lambda)$ distr., $\bar{X}=s^{2}=\lambda$.
Hence,

$$
\begin{aligned}
E\left(T_{\alpha}\right) & =\alpha E(\bar{x})+(1-\alpha) E\left(S^{2}\right) \\
& =\alpha, \lambda+(1-\alpha) \lambda \\
& =\lambda, \quad \alpha \in[0,1]
\end{aligned}
$$

For each $\alpha \in[0,1], T_{\alpha}$ is an UE of λ. Hence there are infitely many UBs of λ of the form

$$
T \alpha=\alpha \bar{x}+(1-\alpha) s^{2}
$$

Let T_{1} and T_{2} be two different UE s of θ. then there exists an infinitely many UBs of θ of the form:

$$
T_{\alpha}=\alpha T_{1}+(1-\alpha) T_{2} \quad, \quad 0 \leq \alpha \leq 1
$$

which of these should we choose?
Here comes the concept of UMVUE.
Definition: -
(a) An estimator T^{*} is defined to be UMVUE of θ iff
i) $E\left(T^{*}\right)=\theta \quad \forall \theta \in \Omega$.
ii) $\operatorname{var}_{\theta}\left(T^{*}\right) \leq \operatorname{var} \theta(T) \quad \forall \theta \in \Omega$,
for any estimator T cohich satisfies $E(T)=\theta \forall \theta \in \Omega$.
(b) An UE is said to be UMVUE of θ if it has minimum variance among all $V E_{s}$ of θ.
Ex.1. Wet $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $U(0, \theta)$. find two UEs of θ, one based on \bar{X} and other based on $X(n)$. Which one is betters?
Solution: -

$$
\begin{aligned}
& E(\bar{X})=E\left(X_{1}\right)=\frac{\theta}{2} \\
& \Rightarrow E(2 \bar{X})=\theta
\end{aligned}
$$

Hence $T_{1}=2 \bar{x}_{\theta}$ is an UE of θ.

$$
\begin{aligned}
& E[X(n)]=\int_{0} x \cdot \frac{n x^{n-1}}{\theta^{n}} d x \quad\left[\because f_{X_{(n)}}(x)=\left\{\begin{array}{ll}
\frac{n x^{n-1}}{\theta^{n}}, & 0<x<\theta] \\
0, & 0 w
\end{array}\right]\right. \\
& =\frac{n}{\theta^{n}} \int_{0} x^{n} d x=\frac{n \theta}{n+1} \\
& \Rightarrow E\left\{\frac{n+1}{n} X_{(n)}\right\}^{0}=\theta \\
& \text { Hence, } T_{2}=\frac{n+1}{n} X(n) \text { is an UE of } \theta \text {. } \\
& \text { for } X_{(1):-}^{-} \\
& P\left[X_{(1)} \leqslant x\right]=1-P\left[X_{(1)}>x\right] \\
& =1-P\left[X_{1}, \ldots, X_{n}>x\right] \\
& =1-\prod_{i=1}^{n} P\left[x_{i} \geq x\right] \\
& \text { [duet }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence, } T_{2}=\frac{n+1}{n} X(n) \text { is an UE of } \theta . \\
& \text { Now, } \operatorname{Var}\left(T_{1}\right)=4 \cdot V(\bar{X})=4 \cdot \frac{V(X 1)}{n}=4 \cdot \frac{\theta^{2}}{12 n}=\frac{\theta^{2}}{3 n} \\
& \text { and } \operatorname{Var}\left(T_{2}\right)=\left(\frac{n+1}{n}\right)^{2} E\left(X_{(n)}^{2}\right)-E^{2}\left(\frac{n+1}{n} X(n)\right) \\
&=\left(\frac{n+1}{n}\right)^{2} \cdot \int_{0}^{\theta} x^{2} \cdot \frac{n x^{n-1}}{\theta^{n}} d x-\theta^{2} \\
&=\left(\frac{n+1}{n}\right)^{2} \cdot \frac{n}{\theta^{n}} \cdot \frac{\theta^{n+2}}{n+2}-\theta^{2} \\
&=\left\{\frac{(n+1)^{2}}{n(n+2)}-1\right\} \theta^{2}=\frac{\theta^{2}}{n(n+2)} \\
& \text { Note that } \frac{V\left(T_{1}\right)}{V\left(T_{2}\right)}=\frac{n+2}{3} \geqslant 1, n \in \mathbb{N} \\
& \text { For } n>1 .
\end{aligned}
$$

n indeed.

$$
\begin{aligned}
& =\left\{1-\left(1-\frac{x}{\theta}\right)\right\}^{n}, 0<x<\theta \\
& \therefore f_{X_{(1)}}(\dot{x})=\frac{n}{\theta}\left(1-\frac{x}{\theta}\right)^{n-1} \\
& \therefore E\left(X_{(1)}\right)=\frac{\theta}{n+1} \\
& \therefore E\left((n+1) X_{(1)}\right)=\theta
\end{aligned}
$$

\therefore Dis unbiasedly estimated by $(n+1) x_{(1)}$.

For $n>1, V\left(T_{1}\right)>V\left(T_{2}\right)$ and T_{2} has smaller variance than T_{1}. Hence, $T_{2}=\frac{n+1}{n} X(n)$ is better estimator in estimating θ.

Scanned by CamScanner

Theorem:- The UMVUE of a parameter, if exists, is unique.
Proof:- If possible, let T_{1} and T_{2} be two VMVUE $\operatorname{\text {of}} \theta$.
Then $V\left(T_{1}\right)=\gamma\left(T_{2}\right)=\gamma$, say.
clearly $T=\frac{T_{1}+T_{2}}{2}$ is also an VE of θ.
Hence, $\operatorname{var}(T) \geqslant \gamma$

$$
\begin{aligned}
& \Rightarrow \operatorname{var}\left(\frac{T_{1}+T_{2}}{2}\right) \geqslant \gamma \\
& \Rightarrow \frac{1}{4}\left[V\left(T_{1}\right)+V\left(T_{2}\right)+2 \operatorname{cov}\left(T_{1}, T_{2}\right)\right] \geqslant \gamma \\
& \Rightarrow \frac{1}{4}[\gamma+\gamma+2 \rho \gamma] \geqslant \gamma \quad\left[\because \operatorname{cov}\left(T_{1}, T_{2}\right)=\rho \sqrt{\gamma\left(T_{1}\right) V\left(T_{2}\right)}\right. \\
& \Rightarrow \rho \geqslant 1, \text { but }|\rho| \leqslant 1 .
\end{aligned}
$$

Hence, $P=1$.

$$
\Rightarrow T_{1}=a+b T_{2}, b>0 \text { with prob. } 1
$$

Now, $E\left(T_{1}\right)=a+b \cdot E\left(T_{2}\right)$

$$
\Rightarrow \theta=a+b \theta \quad \forall \theta
$$

$\Rightarrow a=0, b=1$, equating the coefficients of constant term and θ.
$\left[V\left(T_{1}\right)=b^{2} \gamma\left(T_{2}\right) \Rightarrow b^{2}=1, b>0 \Rightarrow b=1\right.$, and

$$
\left.E\left(T_{1}\right)=a+b E\left(T_{2}\right) \Rightarrow \theta=a+1 . \theta \Rightarrow a=0\right]
$$

Hence $T_{1}=T_{2}$ with prob. 1 .
ire: UMVUE on if exists, is unique.
Ex. 2.
Let. T_{1}, T_{2} be two UEs with common variance $\alpha \sigma^{2}$, cohere σ^{2} is the variance of the UMVUE. Show that,

$$
\rho_{T_{1}, T_{2}} \geqslant \frac{2-\alpha}{\alpha}
$$

Solution:-
Note that, $T=\frac{T_{1}+T_{2}}{2}$ is an VE of the parameter.
Clearly, $V(T) \geqslant \sigma^{2}$

$$
\begin{aligned}
& \Rightarrow V\left(\frac{T_{1}+T_{2}}{2}\right) \geqslant \sigma^{2} \\
\Rightarrow & \frac{1}{4}\left[V\left(T_{1}\right)+\gamma\left(T_{2}\right)+2 \operatorname{cov}\left(T_{1}, T_{2}\right)\right] \geqslant \sigma^{2} \\
\Rightarrow & \frac{1}{4}\left[2 \alpha \sigma^{2}+2 \rho_{T_{1}, T_{2}} \cdot \alpha \sigma^{2}\right] \geqslant \sigma^{2} \\
\Rightarrow & \frac{\alpha}{2}\left\{1+\rho_{T_{1}}, T_{2}\right\} \geqslant 1 \\
\Rightarrow & \rho_{T_{1}}, T_{2} \geqslant \frac{2}{\alpha}-1=\frac{2-\alpha}{\alpha} .
\end{aligned}
$$

Further Problems:-
Ex.1. Estimating p^{2} for Bernoulli distribution
(a) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $B(1, p), 0<p<1, n \geqslant 2$. Can we estimate p^{2} unbiasedly based on x_{1}, \ldots, x_{n} ? If so, how?
(b) Let x be a single observation from $B(1, p)$. Can you estimate p^{2} unbiasedly based on X ?
Solution:-
(a) Let $T=\sum_{i=1}^{n} X_{i}$. Then T denotes the no. of successes in n independent ${ }^{i=1}$ Bernoulli trials.
Hence, $T \sim \operatorname{Bin}(n, p)$.

$$
\left[\because E[(T) r]=(n) r \cdot p^{r}, r \leq n\right]
$$

We have, $E\{T(T-1)\}=n(n-1) p^{2}$

$$
\Rightarrow E\left\{\frac{T(T-1)}{n(n-1)}\right\}=p^{2}
$$

Hence $h(T)=\frac{T(T-1)}{n(n-1)}$ is an UE of p^{2}.
(b) If possible, let $T(x)$ be an $U E$ of p^{2}.

Then by definition,

$$
\begin{align*}
& E(T(x))=p^{2} \quad \forall p \in(0,1) \\
\Rightarrow & \sum_{x=0}^{1} T(x) p[x=x]=p^{2} \\
\Rightarrow & T(0) \cdot(1-p)+T(1) p=p^{2} \\
\Rightarrow & p^{2}+\{T(0)-T(1)\} p-T_{0}=0_{2} \forall p \in(0,1) \tag{i}
\end{align*}
$$

Clearly, (i) is an identity in p.
Equating the coefficients of p^{2}, p and constant term, we get,

$$
1=0 \rightarrow \text { absurd }
$$

and $T(0)-T(1)=0$
Hence, there exists no $T(x)$ which will satisfy " $E[T(x)]=p^{2}$ " $\forall p \in(0,1)$.
Hence, there is no UE of p^{2} based on a single observation X from $\operatorname{Bin}(1, p)$.

Ex. (2). Let x be a single observation from $P(\lambda)$. Does there exist an UE of $\frac{1}{\lambda}$?
Solution: -
If possible, let $T(x)$ be an $U E$ of $\frac{1}{\lambda}$.
Then $E(T(x))=\frac{1}{\lambda} \quad \forall \lambda>0$

$$
\begin{aligned}
& \Rightarrow \sum_{x=0}^{\infty} T(x) e^{-\lambda} \cdot \frac{\lambda^{x}}{x!}=\frac{1}{\lambda} \quad \forall \lambda>0 \\
& \Rightarrow \sum_{x=0}^{\infty} T(x) \cdot \frac{\lambda^{x+1}}{x!}=e^{\lambda} \\
& \Rightarrow \sum_{x=0}^{\infty} T(x) \cdot \frac{\lambda^{x+1}}{x!}=\sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!}, \lambda>0 \\
& \Rightarrow 1+\left\{\frac{1}{1!}-\frac{T(0)}{0!}\right\} \lambda+\left\{\frac{1}{2!}+\frac{T(1)}{1!}\right\} \lambda^{2}+\cdots \cdot=0 \quad \forall \lambda>0
\end{aligned}
$$

By uniqueness of power semis, we have

$$
\begin{aligned}
1 & =0 \quad(\text { absurd }) \\
\frac{1}{1!}-\frac{T(0)}{0!} & =0, \quad \frac{1}{2!}-\frac{T(1)}{1!}=0, \ldots . .
\end{aligned}
$$

Hence, there exists no UE of $\frac{1}{\lambda}$ based on X.
Ex. 3.
(a) Starting from the equation $\sigma^{2}=E\left(x^{2}\right)-\mu^{2}$, we get $\mu^{2}=E\left(x^{2}-\sigma^{2}\right)$ and $\left(x^{2}-\sigma^{2}\right)$ is an UE of μ^{2}, what is $\mu^{2}=E\left(x^{2}\right.$ principal defects?
Solution:-
Hints: - (a) If σ is unknown, then $\left(x^{2}-\sigma^{2}\right)$ is not a statistic and not measurable or observable. Then, $\left(x^{2}-\sigma^{2}\right)$ can not be used as an estimator of μ^{2}..
(b) Show that if $\hat{\theta}$ is an UE of θ and $\operatorname{yor}(\hat{\theta}) \neq 0, \hat{\theta}^{2}$ is not an $U E$ of θ^{2}.
Hints:-

$$
\begin{aligned}
& 0<\operatorname{Var}(\hat{\theta})=E\left(\hat{\theta}^{2}\right)-E^{2}(\hat{\theta}) \\
&=E\left(\hat{\theta}^{2}\right)-\theta^{2} \\
& \Rightarrow E\left(\hat{\theta}^{2}\right)>\theta^{2}
\end{aligned}
$$

Ex.4. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N\left(0, \sigma^{2}\right)$ distr. Suggest an UE of σ based on $\sum_{i=1}^{n}\left|x_{i}\right|$ and also an alternative UE based on $\sum_{i=1}^{n} x_{i}^{2}$.
Solution: - Note that, $E\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)=\sum_{i=1}^{n} E\left|x_{i}\right|=\sum_{i=1}^{n} \sigma \sqrt{\frac{2}{\pi}}$

$$
=\sigma_{1} n \cdot \sqrt{\frac{2}{\pi}}
$$

$$
\Rightarrow E\left\{\sqrt{\frac{\pi}{2}} \cdot \frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|\right\}=\sigma
$$

$\Rightarrow T_{1}=\sqrt{\frac{\pi}{2}} \cdot\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}\right|\right)$ is an UE of σ^{2}.
Now,

$$
x^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}}{\sigma^{2}} \sim x_{n}^{2}
$$

$$
\begin{aligned}
{\left[E\left(x^{2}\right)=n\right.} & \Rightarrow E\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right)=\sigma^{2} \\
& \Rightarrow \sigma^{n} x: 2 \text { on UE of }
\end{aligned}
$$

Now,

$$
\left.\Rightarrow \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \text { is an UE of } \sigma^{2}\right]
$$

$$
\begin{aligned}
& E\left[\sqrt{x^{2}}\right]=\int_{0}^{\infty} \sqrt{x} \cdot \frac{1}{2^{n / 2} \sqrt{n / 2}} \cdot e^{-x / 2} x^{\frac{n}{2}-1} d x \\
&=\frac{2^{\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right)}{2^{n / 2} \Gamma(n / 2)}=\frac{\sqrt{2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}=c_{n}, s a y \\
& \Rightarrow E\left(\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sigma^{2}}\right)^{1 / 2}=C n \Rightarrow E\left(\frac{1}{e_{n}} \cdot \sqrt{\sum_{i=1}^{n} x_{i}^{2}}\right)=\sigma . \\
& \Rightarrow T_{2}=\frac{1}{C_{n}} \cdot \sqrt{\sum_{i=1}^{n} X_{i}^{2}} \text { is an UE of } \sigma .
\end{aligned}
$$

Ex.5. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $N(\mu, 1)$. Find an UE of μ^{2}.
Solution: -

$$
\begin{aligned}
& -V(\bar{x})=\frac{1}{n} \\
& \Rightarrow E\left(\bar{x}^{2}\right)-E^{2}(\bar{x})=\frac{1}{n} \\
& \Rightarrow E\left(\bar{x}^{2}-\frac{1}{n}\right)=\mu^{2}
\end{aligned}
$$

Note that, the estimator $\left(\bar{X}^{2}-\frac{1}{n}\right)$ can take negative values in estimating a positive parameter μ^{2} and $\left(\bar{x}^{2}-\frac{1}{n}\right)$ is not so sensitive.

Ex.6. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N(\mu, \mu), \mu>0$. Find an $U E$ of μ^{2} based on both \bar{x} and s^{2}.
Solution: -
Here \bar{X} is an UE of population mean $E\left(X_{1}\right)=\mu$ and s^{2} is UE of popln. variance $V\left(X_{1}\right)=\mu$.

Hence, $E\left(\bar{X}, s^{2}\right)=E(\bar{X}) \cdot E\left(s^{2}\right)=\mu^{2}$.
[For a normal sample, \bar{X} and s^{2} are independently distributed]
N.T. $\alpha \bar{x}+(1-\alpha) s^{2}$ is an $U E$ of $\mu, 0 \leq \alpha \leq 1$.

Ex.7. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from the PDF

$$
f(x)= \begin{cases}\theta x^{\theta-1}, & 0<x<1 \\ 0 & , 0 w, \text { where } \theta>0\end{cases}
$$

Find an UE of (i) $\frac{1}{\theta}$, (ii) θ.
Solution:-0i) Let $z_{i}=-2 \theta \ln x_{i}$, then $x_{i}=e^{-\frac{z_{i}}{2 \theta}}$
The PDF of Z_{i} is,

$$
\Rightarrow \sum_{i=1}^{n} z_{i} \sim \chi_{2 n}^{2}
$$

$$
\text { i.e. } y_{i}=\sum_{i=1}^{n}\left(-2 \theta \ln x_{i}\right) \sim x_{2 n}^{2}
$$

Now, $E\left(\sum_{i=1}^{n}-2 \theta \ln x_{i}\right)=2 n$

$$
\Rightarrow E\left(-\frac{1}{n} \sum_{i=1}^{n} \ln x_{i}\right)=\frac{1}{\theta}
$$

$\Rightarrow T_{1}=\frac{1}{n} \sum_{i=1}^{n}-\ln x_{i}$ is an UE of $\frac{1}{\theta}$.
ii) Now, $E\left(\frac{1}{y}\right)=E\left(\frac{1}{x_{2 n}^{2}}\right)=2^{-1} \frac{\Gamma\left(\frac{2 n}{2}-1\right)}{\Gamma\left(\frac{2 n}{2}\right)}$ if $n>1$

$$
\begin{aligned}
& =E\left(\frac{1}{\sum_{i=1}^{n}-2 \theta \ln x_{i}}\right)=\frac{1}{2} \cdot \frac{\Gamma(n-1)}{\Gamma(n)}=\frac{1}{2(n-1)}, n>1 . \\
& \Rightarrow E\left(\frac{n-1}{\sum_{i=1}^{n}-\ln x_{i}}\right)=\theta, n>1 .
\end{aligned}
$$

$$
\Rightarrow T_{2}=\frac{n-1}{\sum_{i=1}^{n}-\ln x_{i}} \text { is an UE of } \theta \text {. }
$$

Ex.8. Unbiased estimator may sometimes be absurd. Give an example of Absurd unbiased estimator.
Solution:- Let x be a single observation of $P(x)$. If possible, let, ann $T(X)$ be an UE of $e^{-3 \lambda}$.

Then

$$
E[T(x)]=e^{-3 \lambda}, \quad \sqrt{ }, ~ \lambda>0
$$

$$
\Rightarrow \sum_{x=0}^{\infty} T(x) \cdot e^{-\lambda} \cdot \frac{\lambda^{x}}{x!}=e^{-3 \lambda}
$$

$$
\Rightarrow \sum_{x=0}^{x=0} T(x) \cdot \frac{\lambda^{x}}{x!}=e^{-2 \lambda}=\sum_{x=0}^{\infty} \frac{(-2 \lambda)^{x}}{x!}, \lambda>0
$$

By uniqueness of Power series, we have

$$
\frac{T(x)}{x!}=\frac{(-2)^{x}}{x!} \quad \forall x=0,1,2, \ldots \ldots
$$

$\Rightarrow T(x)=(-2)^{x} \quad \forall x=0,1,2, \ldots$.
Hence, $T(x)=(-2)^{x}$ is the unique UE of $e^{-3 \lambda}$.
NiT. $T(x)=(-2)^{x}= \begin{cases}2^{x}, & x=0,2,4, \ldots \\ -2 x, & x=1,3,5, \ldots .\end{cases}$
Hence, $T(x)$ is UE but it, takes negative values in estimating a positive parameter $R^{-3 \lambda}$. This is an example of absurd UE.
Remark:- (1) Here $T(x)=(-2)^{x}$ is the only or unique UE of $e^{-3 \lambda}$. Hence, $T(x)=(-2)^{x}$ is the UMVUE of $e^{-3 x}$.
(2) For $x \sim P(\lambda), P_{x}(t)=e^{\lambda(t-1)}, t \in R$
$\Rightarrow E\left[t^{x}\right]=e^{\lambda(t-1)}, t \in R$
Put, $t=-2$,

$$
\begin{aligned}
& t=-2, \\
& E\left[(-2)^{x}\right]=e^{-3 \lambda} .
\end{aligned}
$$

Ex.9. If $x \sim \operatorname{Bin}(n, p)$, then show that only polynomial in p of degree $\leq n$ are unbiasedly estimable.
Solution: - [A parametric function $\Psi(\theta)$ is unbiasedly estimable if

$$
E\{T(x)\}=\Psi(\theta) \text {, for some } T(x), \forall \theta \in \Omega .]
$$

Let $\Psi(p)$ be an unbiasedly estimable parametric function.
Then \exists a statistic $T(x) \ni$
$\psi(p)=E(T(x)) \quad \forall p \in(0,1)$
$=\sum_{x=0}^{n} T(x)\binom{n}{x} p^{x}(1-p)^{n-x}$
$=\sum_{x=0}^{n} T(x) \cdot\binom{n}{x} p^{x}\left\{\sum_{k=0}^{n-x}\binom{n-x}{k}(-p)^{k}\right\}$
$=\sum_{x=0}^{n} \sum_{k=0}^{n-x}(-1)^{k} T(x)\binom{n}{x}\binom{n-x}{k} p^{x+k}$, which is a polynomial in p of degree
Remark:-N.T. (i) \sqrt{p}, (ii) $\frac{1}{p}$, (iii) e^{p}, (iv) $\log p$ are not polynomials and hence not unbiasedly estimable. If $X \sim B(1, p)$, then only linear function in p are usbiasedly estimable. Hence, p^{2}, a 2 nd degree polynomial is not unbiasedly estimable.

Best Linear Unbiased Estimator (BLUE):
Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from a population with mean μ and. variance $\sigma^{2}(<\infty)$. Then an estimator $T=\sum_{i=1}^{n} a_{i} x_{i}$ is called a liner estimator. A linear estimator $T=\sum_{i=1}^{n} a_{i} X_{i}$ is unbiased for μ
if $E(T)=\mu \quad \forall \mu$
iff $\left(\sum_{i=1}^{n} a_{i}\right) \mu=\mu \quad \forall \mu$
if $\sum_{i=1}^{n} a_{i}=1$.
[The estimator $T=\sum_{i=1}^{n} a_{i} e^{x_{i}} \quad$ is not linear estimator also, $T_{3}=\bar{x}^{2}, T_{4}=s^{2}$ are linear estimators.]
Definition:- A linear unbiased estimator $T=\sum_{i=1}^{n} a_{i} x_{i}$ with $\sum_{i=1}^{n} a_{i}=1$ of μ that has the minimum variance among all linear unbiased estimators of μ, is called the BLUE of μ.
Theorem:- If $x_{1}, x_{2}, \ldots ., x_{n}$ be a $b . S$. from a population with mean μ and variance σ^{2}, show that the sample mean \bar{x} is the BLUV of μ.
[WBSU'11]

Proof: - BLUUE of μ is the estimator which has the minimum variance in the class $C=\left\{T: T=\sum_{i=1}^{n} a_{i} x_{i}, \sum_{i=1}^{n} a_{i}=1\right\}$ of all linear UE \& of μ.
Note that, $\operatorname{var}(T)=\left(\sum_{i=1}^{n} a_{i}^{2}\right) \sigma^{2}$, as $X_{i}^{\prime} s$ are id and $\sum_{i=1}^{n} a_{i}=1$.
To minimize $\operatorname{var}(T)=\sigma^{2}\left(\sum_{i=1}^{n} a_{i}^{2}\right)$ subject to $\sum_{i=1}^{n} a_{i}=1$,
By cos inequality,

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} a_{i}^{2} \cdot 1\right)^{2} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} 1^{2}\right) \\
& \Rightarrow \sum_{i=1}^{n} a_{i}{ }^{2} \geqslant \frac{1}{n} \quad \text { as } \quad \sum_{i=1}^{n} a_{i}=1
\end{aligned}
$$

N.T. with $\sum_{i=1}^{n} a_{i}=1, \sum_{i=1}^{n} a_{i}^{2}$ attains its minimum
iff ' $=$ 'holds in $c-s$ inequality.
if $a_{i} \propto 1 \quad \forall i=1(1)^{n}$
iff $a_{i}=k \quad v \quad i=1(1) n$
iff $a_{i}=\frac{1}{n} \quad \forall i$ as $\quad J=\sum_{i=1}^{n} a_{i}=n k$
Hence, $T=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ has the minimum variance among all linear UE \& of μ.
$\Leftrightarrow T=\bar{X}$ is the BLUE of μ.

Ex.1. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n independent variables with common mean μ and variances $\sigma_{i}{ }^{2}=V\left(x_{i}\right), i=1(1) n$. Find the BLUE of μ.
Solution: - To find an estimator T such that it has the minimum variance in the class $l=\left\{T: T=\sum_{i=1}^{n} a_{i} x_{i}, \sum_{i=1}^{n} a_{i}=1\right\}$ of all UES of μ.
Note that $\operatorname{Var}(T)=\sum_{i=1}^{n} a_{i}{ }^{2} \sigma_{i}^{2}$ cohere $\sum_{i=1}^{n} a_{i}=1$.

- By $\mathrm{C}-3$ inequality,

$$
\begin{aligned}
& \text { By cos inequality, } \\
& \left(\sum_{i=1}^{n} a_{i} \cdot \sigma_{i} \cdot \frac{1}{\sigma_{i}}\right)^{n} \leq\left(\sum_{i=1}^{n} a_{i}{ }^{2} \sigma_{i}{ }^{2}\right)\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}\right) \\
& \Rightarrow \sum_{i=1}^{n} a_{i}{ }^{2} \sigma_{i}^{2} \geqslant \frac{1}{\sum_{n=1}^{n} \frac{1}{\sigma_{i}^{2}}} ; \text { as } \sum_{i=1}^{n} a_{i}=1
\end{aligned}
$$

Now, $\sum_{i=1}^{n} a_{i}=1, \sum_{i=1}^{n} a_{i}{ }^{2} \sigma_{i}^{2}$ attains its minimum value
of ' $=$ 'holds in cauchy. schwartz inequality,
if $a_{i} \sigma_{i} \propto \frac{1}{\sigma_{i}}$
rf $a_{i}=\frac{k}{\sigma_{i}{ }^{2}} \quad \forall i$
iff $a_{i}=\left(\frac{1}{\sigma_{i}^{2}}\right) /\left(\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}\right)$
Hence, $T=\frac{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \cdot x_{i}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}$ is the BLUE of μ,

$$
\begin{aligned}
& {\left[\because 1=\sum_{i=1}^{n} a_{i}=k \cdot \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}\right.} \\
& \\
& \left.\quad \Rightarrow k=\frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}\right]
\end{aligned}
$$

Ex.2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a wis. from a poplin. with mean $\vec{\mu}$ and variance σ^{2}. Suggest two UEs based on all $X_{i}{ }^{\prime} s$ and compare Their performances.
Solution:- Note that any weighted average of $x_{i}^{\prime \prime}$ b is an VE of μ n based on all $X_{i}{ }^{\prime} s$.

$$
T=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} \omega_{i}} \text { is an UE of } \mu \text {. }
$$

(i) $T_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$,

$$
\text { (ii) } T_{2}=\frac{\sum_{i=1}^{n} i X_{i}}{\frac{n(n+1)}{2}}
$$

Now, $\quad V\left(T_{1}\right)=\frac{\sigma^{2}}{n}$, and $\operatorname{Xar}\left(T_{2}\right)=\frac{4 \sqrt{2}}{\{n(n+1)\}^{2}} \cdot \sum_{i=1}^{n} i^{2} \sigma^{2}$

$$
\begin{aligned}
& =\frac{4 \sigma^{2}}{\{n(n+1)\}^{2}} \cdot \frac{n(n+1)(2 n+1)}{6} \\
\therefore \operatorname{xar}\left(T_{2}\right)>\operatorname{var}\left(T_{1}\right) \quad & =\frac{2(2 n+1)}{3 n(3+1)} \cdot \sigma^{2}=\frac{\sigma^{2}}{n}\left(\frac{4 n+2}{3 n+3}\right)>\frac{\sigma^{2}}{n}
\end{aligned}
$$

Hence, T_{1} has smaller H variance than T_{2} and T_{1} is better than T_{2}. Infect $T_{1}=\bar{x}$ is the BLUE of μ.

Method of finding Estimators: -
(I) Method of Moments : \sim [The substitution Principle]

One of the oldest and simplest method of estimation is the method of moments or the substitution principle. Let $f\left(x, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ be the PDF OF PMF of the given poplin., whose moments $\mu r^{\prime}, r=I(1) K$, exists. Then, in genera, $\mu_{r}{ }^{\prime}$ will be the function of $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$, wet $x_{1}, x_{2}, \ldots, x_{n}$ be a rus. from the given popln. '
Define, $m_{n}^{\prime}=\frac{1}{n} \sum_{i=1}^{n} X_{i} r$ as the $r^{\text {th }}$ order sample raw moment.

The method of moments consists in equating the k sample moments $m_{r} l^{\prime}$, with the corresponding population moments μ_{r} ' and solving k equations for k unknowns

$$
\begin{aligned}
& \mu r^{\prime}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)=m_{r^{\prime}}^{\prime}, r=1(1) k . \\
& \Rightarrow \theta_{i}=h\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{k}^{\prime}\right), i=1(1) k .
\end{aligned}
$$

Then, by method of moments,
$\hat{\theta}_{i}=h_{i}\left(m_{1}^{\prime}, \ldots ., m_{k}^{\prime}\right)$ is the required estimator $\theta_{i}, i=1$ (1)k.
This method is quite reasonable if the sample is a good representation of the population.
Rational behind the Method of Moments: -
Note that $X_{i}{ }^{\prime} s$ are ind $R V_{s}$.
$\Leftrightarrow X_{i}^{r}$'s are id RVs.
Hence, by Khinchin's WLLN,

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{r} \xrightarrow{P} E\left(X_{1}^{r}\right) \text {, provided } \mu_{r}^{\prime}=E\left(X_{1}^{r}\right) \text { exists. }
$$

$\Leftrightarrow m_{r} \prime \xrightarrow{P} \mu_{r^{\prime}}$, provided $\mu_{r^{\prime}}$ exists.
Again, $E\left(m_{r}^{\prime}\right)=\mu_{r^{\prime}}$
$\Rightarrow m_{r^{\prime}}$ is an UE of $\mu_{r^{\prime}}$.
It can be shown that, under general. conditions, $m_{r}{ }^{\prime}$ are asymptotically normal. Based on the above facts, we can eareate m_{r}^{\prime} to μ_{r}^{\prime}, quite reasonable.
Remankt Method of moments may lead to absurd estimators. "If we are asked to compute estimators of θ in $N(\theta, \theta)$ or, $N\left(\theta, \theta^{2}\right)$ by the method of moments, then we can verify this assertion.

Example:-
Leet $x_{1}, x_{2}, \ldots, x_{n}$ be a r, s. from $P(\lambda)$.
Note that, $E\left(x_{i}\right)=\lambda=V\left(x_{i}\right)$
By method of moments,

$$
\begin{aligned}
& \mu_{1}^{\prime}=m_{1}^{\prime} ; \mu_{2}^{\prime}=m_{2}^{\prime} \\
& \therefore \mu_{2}^{\prime}-\mu_{1}^{\prime}=m_{2}^{\prime}-m_{1}^{\prime} \\
& \Leftrightarrow \lambda=\bar{x} \text { and } \lambda=m_{2} \text { on s } s^{2} \\
& \Leftrightarrow \text { moments leads }+
\end{aligned}
$$

The method of moments leads to using either \bar{x} or s^{2}, as an estimator of λ.
To avoid ambiguity, we take the estimator involving the lowest order sample moments.
Ex.1. Let $X_{i} i^{\prime}$ be the res from Geometric (p) of $i=1(1) n$. Find an MME of the parameter. Comment on the quality of estimator.
Solution:-
By Method. of moments,

$$
\mu_{1}^{\prime}=\bar{x} \Rightarrow \frac{1}{p}=\bar{x}
$$

An MME of p is $p^{\wedge}=\frac{1}{\bar{x}}$
Note that, $0<\hat{p}=\frac{1}{\bar{x}} \leq 1$

$$
\Rightarrow \hat{p}=\frac{1}{\bar{x}} \hat{\epsilon} \Omega=(0,1)
$$

and $E(\hat{p})=E\left(\frac{1}{\bar{x}}\right)>\frac{1}{E(\bar{x})}=\frac{1}{1 / p}=p$.
$\Rightarrow \hat{p}$ is the unbiased estimator.
EX.2. Let $x_{i}{ }^{\prime} s(i=1(1) n)$ be a wis. from $B(\alpha, \alpha)$ of 1 st kind. Find an PIME of α and comment on the quality of the estimator.
Ex.3. Find the estimators for λ by the method of moments in the exponential distribution [WBSO 11]

$$
\begin{aligned}
f(x, \lambda) & =\frac{1}{\lambda} e^{-x / \lambda}, \\
& , \lambda>0, x>0 \\
& , \text { othercoise }
\end{aligned}
$$

Solution:-
For exponential distribution,

$$
\begin{aligned}
\mu_{1}^{\prime}=E(x) & =\int_{0}^{\infty} x \cdot \frac{1}{\lambda} e^{-x / \lambda} d x \\
& =\grave{\lambda}
\end{aligned}
$$

Now, the sample moment m_{1}^{\prime} is given by

$$
m_{1}^{\prime}=\frac{1}{n} \sum x_{i}=\bar{x}
$$

Equating μ_{1}^{\prime} and m_{1}^{\prime}, we get

$$
\hat{\lambda}=\bar{x}
$$

(II) Method of Least Squares:- leet $y=f\left(x, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ be the approximate regression equations of Y on X, which is assumed to be linear in parameters $\theta_{1}, \theta_{2}, \ldots, \theta k$.
Let $\left(x_{i}, y_{i}\right), i=1(1) n$, be an observed data on (x, y). Define, $R_{i}=y_{i}-f\left(x_{i}, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$ as the errors in the prediction. for a res. $\left(x_{i}, y_{i}\right), i=1(1)^{n}$, we assume that

$$
\begin{aligned}
E_{i} & =y_{i}-f\left(x_{i}, \theta_{1}, \ldots, \theta k\right) \\
& \sim N\left(0, \sigma^{2}\right), \text { where } \sigma^{2} \text { is }
\end{aligned}
$$

$$
\begin{aligned}
& =y_{i}-f\left(x_{i}, \theta_{1}, \ldots . ., \theta k\right) \\
& \sim N\left(0, \sigma^{2}\right) \text {, where } \sigma^{2} \text { is constant. } \\
& \text { olihond of the observed errors } e_{1}
\end{aligned}
$$

Then the likelihood of the observed errors $e_{1}, e_{2}, \ldots, e_{n}$ is $L\left(e_{1}, \ldots, e_{n}: \theta_{1}, \ldots, \theta k\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} e_{i}^{2}}$
The observed sample $\left\{\left(x_{i}, y_{i}\right): i=1(1) n\right\}$ may be regarded as the most likely on most probable.
Hence the observed error $\left(e_{1}, l_{2}, \ldots, e_{n}\right)$ is also most probable.
Hence, we shall maximize the likelihood L w.r.t. $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ Now, maximizing L is equivalent to minimizing $\sum_{i=1}^{n} e i^{2}$

$$
=\sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)\right\}^{2}
$$

Hence, the principle of Least squares consist in minimizing the sum of squares of errors writ. the parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$.
It can be shown that the least squares estimates are The solutions of $\frac{\partial}{\partial \theta_{i}} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}, \theta_{1}, \ldots, \theta_{k}\right)\right\}^{2}=0 \quad \forall i=1(1) k$.
Ex.1. If $y \sim N\left(\beta x_{i}, \frac{\sigma^{2}}{x_{i}}\right)$ cohen $x=x_{i}, i=1(1) n$, find the LSE of β based on the bis. $\left(x_{i}, y_{i}\right)$.
Solution:- Here $y / x=x_{i} \sim N\left(\beta x_{i}, \frac{\sigma^{2}}{x_{i}}\right)$

$$
\Rightarrow E\left(Y / X=x_{i}\right)=\beta x_{i} \quad \forall i=1(1) n .
$$

Note, $e_{i}=y_{i}-\beta x_{i} \sim N\left(0, \frac{\sigma^{2}}{x_{i}}\right)$, when $x=x_{i}$.

$$
\begin{aligned}
\Rightarrow \text { li } \sqrt{x_{i}} & \sim N\left(0, \sigma^{2}\right) \\
\text { maximize } L & =\frac{1}{-\frac{1}{2} \frac{\sum R i^{2}}{\sigma^{2} / x i}}
\end{aligned}
$$

To maximize $L=\frac{1}{\left(2 \pi \frac{\sigma^{2}}{x_{i}}\right)^{n / 2}} \cdot e$. ie. to minimize $\sum_{i=1}^{n} e i^{2} x_{i}$,

Normal equation is : $\frac{\partial}{\partial \beta}\left\{\sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2} x_{i}\right\}=0$

$$
\begin{aligned}
& \Rightarrow 2 \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)\left(-x_{i}^{2}\right)=0 \\
& \Rightarrow \sum x_{i}^{2} y_{i}=\beta \sum x_{i}^{3} \\
& \Rightarrow \beta=\frac{\sum x_{i}^{2} y_{i}}{\sum x_{i}^{3}}
\end{aligned}
$$

Ex.2. When $X=x_{i}$, then $E\left(Y_{i}\right)=\beta x_{i}$ and $\operatorname{Var}\left(Y_{i}\right)=0,^{2} v i=1(1) n$.
Define $\hat{\beta}=\frac{\sum x_{i} y_{i}}{\sum x_{i}}$, show that $\sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2} \geqslant \sum_{i=1}^{n}\left(y_{i}-\hat{\beta} x_{i}\right)^{2}$
Also, show that $E(\hat{\beta})=\beta$ and $\operatorname{var}(\hat{\beta})=\frac{\sigma^{2}}{\sum x_{i}^{2}}$. If each y_{i} follows normal distribution, sit. $\hat{\beta}$ is a normal variable.
Solution: - Here $E\left(Y / X=x_{i}\right)=\beta x_{i}$. Then $e_{i}=y_{i}-\beta x_{i} \quad \forall i=1(1) n$. By method of least squares, to minimize

$$
\sum_{i=1}^{n} i_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2} \text { w.r.t. } \beta,
$$

Normal equation is : $\frac{\partial}{\partial \beta} \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2}=0$

$$
\Rightarrow \beta=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=\hat{\beta}
$$

Hence, $\sum\left(y_{i}-\beta x_{i}\right)^{2}$ is minimum when $\beta=\hat{\beta}$.

$$
\begin{aligned}
& \Rightarrow \sum\left(y_{i}-\beta x_{i}\right)^{2} \geqslant \sum\left(y_{i}-\hat{\beta} x_{i}\right)^{2} \\
& E(\hat{\beta})=E\left(\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}\right)=\frac{\sum x_{i} E\left(y_{i}\right)}{\sum x_{i}^{2}}=\frac{\sum x_{i} \cdot \beta x_{i}}{\sum x_{i}^{2}}=\beta . \\
& \text { and } \gamma(\hat{\beta})=V\left(\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}\right)=\frac{\sum x_{i}^{2} \gamma\left(y_{i}\right)}{\left(\sum x_{i}^{2}\right)^{2}}=\frac{\sigma^{2}}{\sum x_{i}^{2}}
\end{aligned}
$$

Note that, $\hat{\beta}=\sum_{i=1}^{n}\left(\frac{x_{i}}{\sum x_{i}^{2}}\right) y_{i}$ is a linear combination of normal variables $y_{i}, i=1(1)^{n}$.
Hence, $\quad \hat{\beta} \sim N(E(\hat{\beta}), V(\hat{\beta})) \Rightarrow \hat{\beta} \sim N\left(\beta, \frac{\sigma^{2}}{\sum x_{i}^{2}}\right)$

$$
\left[Q \cdot E, D_{i}\right]
$$

Interval Estimation
Introduction: In the theory of point estimation we have tried to estimate the value of the unknocon parameter pointwise. But in the theory of point estimation it is far from our intention to point out an estimate of θ, the unknown parameter. Here we try y to find an interval in which the parameter value is contained with certain degree of confidence. This interval contains the parameter value with a curtain probability cohich is related to the level of significance of the testing problem choose acceptance region may have a relationship with that interval. This interval is termed as confidence interval and the probability for containing. the parameter value is termed as the confidence coefficient.
Level of significance and confidence interval $: \rightarrow$
Let us consider the following testing problem,
$H_{0}: \theta=\theta_{0}$ Vs $H_{1}: \theta \neq \theta_{0}$. Here $x_{1}, x_{2}, \ldots, x_{n}$ be the random sample and W be the critical region.
Let the level of significance is assigned to be α
$P\left[\right.$ Rejecting trove $\left.H_{0}\right] \leq \alpha$

$$
\begin{aligned}
& \Rightarrow P\left[\underset{\sim}{x} \in W / H_{0}\right] \leq \alpha \\
& \Rightarrow 1-P\left[\underset{\sim}{x} \in W / H_{0}\right] \geqslant 1-\alpha
\end{aligned}
$$

$\Rightarrow P[$ Accepting the null when it is true $] \geqslant 1-\alpha$
$\Rightarrow P[$ Containing the true value of the parameter $] \geqslant 1-\alpha$
Here the confidence coefficient is $100(1-\alpha) \%$.
Fundamental notation of confidence estimation: \rightarrow so far are have considered a random variable or some function of it as the basis observable quantity. Let x be a random variable and a, b be two given positive meal numbers then,
$P(a<x<b)=P(a<x$ and $x<b)=P\left(b<\frac{b x}{a}\right.$ and $\left.x<b\right)=P\left(x<b<\frac{b x}{a}\right)$ as if cor know the distribution of X and the oreantities a and b, then we can determine the probability $P(a<x<b)$. Consider the interval $I(X)=\left(x, \frac{b x}{a}\right)$. This is an interval coith a random variable in the end points and hence it takes the values $\left(x, \frac{b x}{a}\right.$) conenever the random variable. x takes the values if x. Thees $I(x)$ is a random quantity and is an example of a random interval. Note that $I(X)$ includes the value beoith a certain fixed probability. In general, larger the length of the interval, the largos the coverage probability.

Internal
Confidence
$: \sim$ Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample of size n on a random variable x having distribution belonging to the family

$$
\mathcal{H}=\left\{f_{\theta}(x): \theta \in(H\}\right.
$$

if $\theta(\underline{x})$ and $\bar{\theta}(\bar{x})$ be two statistics \ni
$P_{\theta}[\underline{\theta}(x)<\theta<\bar{\theta}(x)] \geqslant 1-\alpha$. then $(\underline{\theta}(\underline{x}), \bar{\theta}(\bar{x}))$ is called a confidence interval with confidence coefficient $(1-\alpha)$. Confidence interval means the region where thu e value of the parametric function lies.

- Example:-
$x \sim N\left(\theta, \sigma^{2}\right) ; \sigma^{2}$ is known.
Find a confidence interval of θ with confidence coefficient $(1-\alpha)$.

Ans:-

$$
\begin{aligned}
& P_{\theta}\left(\left|\frac{\sqrt{n}(\bar{x}-\theta)}{\sigma}\right|>\tau_{\alpha / 2}\right)=\alpha \\
\Rightarrow & P_{\theta}\left[-\tau_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\bar{x}-\theta<\tau_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]=1-\alpha \\
\Rightarrow & P_{\theta}\left[\bar{x}-\tau_{\alpha / 2} \frac{\sigma}{\sqrt{n}}<\theta\left\langle\bar{x}+\tau_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]=1-\alpha\right. \\
\therefore & \underline{\delta}(\underline{x})=\bar{x}-\tau_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \text { and } \bar{\theta}(\bar{x})=\bar{x}+\tau_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

Hence $100(1-\alpha) \%$ confidence interval of θ is given by

$$
\left[\bar{x}-\tau_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+\tau_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right]
$$

Step to find out confidence Interval:
i) Give the critical region of the both tailed test at level α.
ii) Reverse the inequality sign and hence the RHS will be $(1-\alpha)$.
iii) From the imearality under probability solve for θ,

Problems Relating Confidence Interval.
Ex. 1. Confidence Interval for the mean when the variance of normal distribution is knocon:
\rightarrow Let us assume that we have. a bis. from Normal poplin with mean μ and variance σ^{2}. As we know that the most effieientpoint estimator for the population mean μ is the sample mean \bar{x}, we can find a C.I. for μ by considering the sampling distribution of \bar{x}.

$$
\bar{x} \sim N\left(\mu, \sigma^{2} / n\right)
$$

and

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \sim N^{\prime}(0,1)
$$

so, that, $f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}}, z \in \mathbb{R}$
Now, let us assume that $z \alpha / 2$ be the value of z such that

$$
P\left(z \geqslant z_{\alpha / 2}\right)=\int_{z \alpha / 2}^{\infty} f(z) d z=\int_{z \alpha / 2}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z=\alpha / 2
$$

and
$z_{1}-\alpha / 2=-z_{\alpha / 2}$ the value of z such that

$$
P(z \leq-z \alpha / 2)=\int_{-\infty}^{-z \alpha / 2} f(z) d z=\int_{-\infty}^{-z \alpha / 2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z=\alpha / 2
$$

This, clearly

$$
p\left(-z_{\alpha / 2} \leq z \leq z_{\alpha / 2}\right)=1-\alpha
$$

or, $P\left(-z_{\alpha / 2} \leq \frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right)=1-\alpha$
or; $p\left(-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}<\bar{x}-\mu \leqslant z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha$
or, $p\left(\bar{X}-z \alpha / 2 \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right)=1-\alpha$
Thess, the $(1-\alpha) \%$ confidence interval for $\mu \mathrm{m} N\left(\mu, \sigma^{2}\right)$
is $\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$

Ex.2. Confidence interval for the mean when variance of the normal population is not known:
\rightarrow If variance is not knocon, then σ is replacedby.s, where $s^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}$
In this case, we use the t-statistic defined as.

$$
\begin{aligned}
& t=\frac{\bar{x}-\mu}{s / \sqrt{n}} \sim t_{n-1} \\
& P\left(-t_{\alpha / 2} \leq t \leq t \alpha / 2\right)=\int_{-\alpha / 2}^{\alpha / 2} f(t, n-1) d t=1-\alpha \\
\Rightarrow & P\left(-t_{\alpha / 2} \leq \frac{\bar{x}-\mu}{s / \sqrt{n}} \leq t \alpha / 2\right)=1-\alpha \\
& o r, P\left(\bar{x}-t \alpha / 2 \cdot \frac{s}{\sqrt{n}} \leq \alpha \leq \bar{x}+t \alpha / 2 \cdot \frac{\rho}{\sqrt{n}}\right)=1-\alpha
\end{aligned}
$$

Now,

This, $(1-\alpha) 100 \%$ confidence interval for μ is

$$
\bar{x}-t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x}+t_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}
$$

Example:of a normal distr with known variance σ^{2}.
Ans:-

$$
\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)
$$

Thus $z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$
Also, $P\left(-z_{\alpha / 2} \leq z \leq z_{\alpha / 2}\right)=P\left(\bar{x}-z_{\alpha / 2} \frac{\sigma}{n} \leq \mu\right.$

$$
\begin{aligned}
& \left.\leq \bar{x}+z_{\alpha / 2} \frac{\sigma}{\sqrt{h}}\right) \\
& =1-\alpha(\text { say })
\end{aligned}
$$

Then we have,

$$
P\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}} \leqslant \mu \leqslant \mu+1.96 \frac{\pi}{\sqrt{n}}\right)=0195
$$

and thess,
$\left(\bar{x}-1.96 \frac{\pi}{\sqrt{n}}, \bar{x}+1.96 \frac{\pi}{\sqrt{n}}\right)$ is a confidence interval
for μ, with a confidence coefficient 0.95 .

Ex.2. Find 95% confidence interval for exponential distribution with p.df. $f(x)=\theta e^{-\theta x}, \quad 0 \leq x \leq \infty, \theta>0$,

Ans:-

$$
E(x)=\frac{1}{\theta}, v(x)=\frac{1}{\theta^{2}}
$$

Then, $E(\bar{X})=\frac{1}{\theta}$,

$$
\begin{aligned}
x(\bar{x}) & =\frac{1}{n^{2}} v\left(x_{1}+x_{2}+\cdots+x_{n}\right) \\
& =\frac{1}{n^{2}} \cdot n v(x) \\
& =\frac{1}{n \theta^{2}}
\end{aligned}
$$

U sing CLT for large n, we have

$$
\begin{aligned}
Z & =\frac{\hat{\theta}-E(\hat{\theta})}{\sqrt{V(\hat{\theta})}} \sim N(0,1) \\
\text { ie. } Z & =n\left(\frac{1}{\theta}-\bar{x}\right) \sim N(0,1) \\
& \Rightarrow \sqrt{n}(1-\theta \bar{x}) \sim N(0,1)
\end{aligned}
$$

Hence, 95% confidence limits for θ are given by

$$
P[-1.96 \leqslant \sqrt{n}(1-\theta \bar{x}) \leqslant 1.96]=0.95
$$

Now, $\sqrt{n}(1-\theta \bar{x}) \leq 1.96$

$$
\begin{equation*}
\Rightarrow\left(1-\frac{1.96}{\sqrt{n}}\right) \frac{1}{\bar{x}} \leq \theta \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
& -1.96 \leq \sqrt{n}(1-\theta \bar{x}) \\
& \Rightarrow \quad \theta \leq\left(1+\frac{1.96}{\sqrt{n}}\right) \frac{1}{\bar{x}} \tag{2}
\end{align*}
$$

Hence from (1) \& (2), the $95 \%, C, I$ is given by

$$
\theta=\left(1 \pm \frac{1.96}{\sqrt{n}}\right) \cdot \frac{1}{\bar{x}}
$$

STATISTICAL HYPOTHESIS TESTING

Introduction:- Now we begin the study of statistical problem that forms the problem of hypothesis testing. As the term suggests, one wishes to decide cohethen or not some hypothesis that has been formulated is correct. The choice here lies betweenonly too decission: accepting on rejecting the hypothesis. A decision procedure for such a problem is called a test of hypothesis.
In experimental research, our object is sometimes merely to estimate parameters. Then one may wish to estimate the yield of a new hybrid line of corn. But move of ten the ultimate purpose will involve some use of the estimate. One may wish, for example, to compare the yield of the new line with that of the standard line and perhaps recommend that the necoline replace the standard line if it appears superior. This is a common situation in research. The notion of hypothesis testing has been, developed from these phenomenons.
The testing of hypotheses is seen to be: closely related to the problem of estimation. It will be instructive, however to develop the theory of testing independently of the theory of estimation, at least in the begining.

DEFINITION: Statistical hypothesis

A statistical hypothesis is an assertion on conjecture about the distribution of one or move random variables. Accepting or bejecting the hypthesis,' are the two decisions 'in our hand, so here we define a procedure to be termed as test of a statistical hypothesis.
Statistical hypothesis are classified as follows:
if (H). is a single point in (4), then the hypothesis is said to be simple hypothesis, othercoise it is called composite.

- Testing of Hypothesis:- In parametric testing of hypothesis, wo start with a family of distribution.

$$
y=\left\{f_{\theta}(x): \theta \in(H)\right\}
$$

which is known except the parameter O and hove our objoot is to verify whether the value of O lies in a specified subset (H) o of $(H$. Here (H) is called the parannotor space, to perform the test we are guided by a randomiample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of some fixed size n. Here $\underset{\sim}{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called a sample point and the all possible sample points together constitute a set, called sample space, denoted by X. To test for o a hypotacsis $H_{0}: \theta \in(H)$ again $H: \theta \&(H)_{0}, \infty$ divide the sample space x into two disjoint pants:One is called the critical begion (or, rejection region), denoted by W and the other is called the acceptance region, denoted by $A\left(o n, W^{C}\right)$.
If the observed sample point
$\underset{\sim}{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in W$ then we reject the hypothesis $H_{0} \leqslant \theta \in(H)$ against $H: \theta \notin H_{0}$
Now, in the process of developing the test rule, we can commit two types of errors:
(1) Rejection of a true hypothesis, called the type-I error.
(ii) Acceptance of a corrong hypothesis, called the type-II error.

While constructing a critical region, care should be taken, so that both the types of errors stated above reanains undercontrol. But unfortunately it is not possible to minimize both the kinds of error simultaneously. So, the usual practice is to minimize the and kind of error for a fixed lever of the first kind.

Now, in order to tad about the testing of hypothesis, we need to introduce some notations and definitions.

Some notations: \& definitions:-
Definition of
Null hypothesis:-
Let $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a random observable sample drawn from same members of the family of distribution.

$$
f f=\left\{f_{0}(x): \theta \in(H)\right\}
$$

A null hypothesis is a statement about the unknown parameter θ, which is framed from our existing belief, or, past experience. A null hypothesis is usually denoted by, $H_{0}: \theta \in \Theta \Theta_{0} \subset(\Theta)$

Any, hypothesis neglects (deny) the null hypothesis is called alternative -hypothesis, such hypothesis is denoted by,

$$
H_{A}: \theta \in(H)\left[\neq\left(H_{0}\right]\right.
$$

Probability of
Type-I and
TYPE - II error:- For a family of distribution
$\mathcal{I}_{1}=\left\{f_{\theta}(x): \theta \in(H)\right\}$, while testing the null hypothesis,
$\left.H_{0}: \theta \in \mathbb{(}\right)_{0}$ against the alternative $H_{A}: \theta \in(A)$.
We can" commit the following too errors: \qquad
i) We can wrongly reject a true null hypothesis which is called error of type $-I$, denoted by E_{I} :
ii) We can corrongly accept a false null hypothesis. which is called error of type-II, denoted by E III.
Now, $P\left[E_{I}\right]=$ Probability of error I is denoted by α, and
$P\left[E_{I I}\right]=$ Probability of erroriII is denoted by β.
Note:-

$$
\begin{aligned}
& P\left(E_{I}\right)=P\left(\underset{\sim}{X} \in W / O \in \mathbb{H}_{\gamma}\right)=\alpha \quad \text { and } \\
& P(E \text { II })=\beta
\end{aligned}
$$

So, cohile constructing a critical region W, we shall try to minimize β or, maximize $(1-\beta)=p[\underset{\sim}{x} \in W / \theta$ e. (4) $]$, called the power of critical region for a preassigned value of α. Level of significance and size of a critical region:- Let us consider the family of distribution,

$$
\mathcal{I}_{\mathscr{P}}=\left\{F_{\theta}(x): \theta \in(H)\right\}
$$

and let $\underset{\sim}{x}=\left(x_{1} \ldots . x_{n}\right)$ be a random sample draw o from a member of this family. For testing the null hypothesis

$$
H_{0}: \theta \in(H) \quad \text { Vs } H: \theta \in(H)
$$

a critical region W_{0} is said to be of level α if,

$$
P_{\theta}\left(\underset{\sim}{x} \in W_{0}\right) \leq \alpha \quad \forall \theta \in(H)_{0}
$$

In this case, $\sup _{\theta \in(H)} P\left(x \in W_{0}\right)$ is called the size of the test.

Power of a critical region: -
Let us consider $\underset{\sim}{x}=\left(x_{1}, \cdots, x_{n}\right)$ be a random sample on a random variable having a distribution belonging to the family

$$
\mathcal{H}=\left\{F_{\theta}: \theta \in\left(H_{0}\right\}\right.
$$

Then for testing $H_{0}: \theta \in\left(H_{0}\right.$ Vs $H: \theta \in \oplus$,
$P_{\theta}(W 0)=P_{\theta}\left(\underset{\sim}{x} \in W_{0}\right)$ for $\theta \in \oplus$, is called the critical region of The test at the point θ.

While constructing a critical region, care should be taken so, that $P_{\theta}\left(W_{0}\right)$ attains its maximum possible value for all $\theta \in(H$ and suction critical region if exists is called uniformly most powerful (UMP) critical region.
Uniformly most powerful critical region: Let $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a random sample on an random variable x having a distribution belonging to the family

$$
\mathcal{H}^{\prime}=\left\{F_{\theta}: \theta \in(H\}\right.
$$

then for testing $H_{0}: \theta \in \mathbb{H}$ 涊 $H: \theta \in(\oplus$ a critical region Wo is said to be UMP among the class of level α critical region if

$$
\begin{equation*}
P_{\theta}\left(W_{0}\right) \leqslant \alpha \forall \theta \in\left(H_{0}\right. \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\theta}(W / 0) \geqslant P_{\theta}(W) \nLeftarrow \theta \in \tag{14}
\end{equation*}
$$

where, W is any, other critical region satisfying (1).

Most Powerful (MP) critical region:- Let $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a random sample on a random variable X having distribution belonging to the family,

$$
H_{P}=\left\{F_{\theta}: \theta \in(H)\right\}
$$

Then for testing a simple null hypothesis,
$H_{0}: \theta=\theta_{0}$ against a simple alternative hypothesis

$$
H_{1}: \theta=\theta_{1}
$$

A critical region W_{0} is said to be most powerful (MP) level α critical region if,

$$
\begin{align*}
& P_{\theta_{0}}\left(W_{0}\right)=\alpha \text { and } \tag{1}\\
& P_{\theta_{1}}\left(w_{0}\right) \geqslant P_{\theta_{1}}(W)
\end{align*}
$$

for any other critical region w satisfying (1).
Construction of Most Powerful critical region:- Let $X_{1}, x_{2}, \ldots, x_{n}$ be
\therefore jointly distributed random variables with joint P.DF or PMF $f(\underset{\sim}{x})$ for testing, $H_{0}: \theta=\theta_{0}$ Vs

$$
\begin{aligned}
& \text { testing, } \quad H_{1}: \theta=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): \frac{\theta_{1}}{f_{\theta_{1}}\left(x_{0}\right)} \geqslant \geqslant k\right\} \text { is most powerful of its size. }
\end{aligned}
$$

Proof: (For continuous caseonily)

$$
\begin{align*}
P_{\theta_{1}}\left(W_{0}\right)= & P_{\theta_{1}}\left[x \in W_{0}\right]= \\
\therefore & =\int_{W_{0}} f_{\theta_{1}}(\underset{\sim}{x}) d x \quad[\text { its a multiple integral] } \tag{1}\\
& f_{\theta_{1}}(x) d x+\int_{W_{0}} f_{\theta_{1}}(\underset{\sim}{x}) d x \cdots(1) \\
P_{\theta_{1}}(W) & =P_{\theta_{1}}\left[x \in W_{1}\right] \\
& =\int_{W} f_{\theta_{1}}(\underset{\sim}{x}) d x
\end{align*}
$$

and,

From (1) and (2), (1)-(2) gives -

$$
\begin{aligned}
& P_{\theta_{1}}\left(w_{0}\right)-P_{\theta_{1}}(w)=\int_{w_{0} \cap w_{1}} f_{\dot{\theta_{1}}}(\underset{\sim}{x}) d x-\int_{w_{N w_{0}}} f_{\theta_{1}}(x) d x \\
& \geqslant k \int_{W_{0} A W C .} f_{\theta_{0}}(x) d x-k \int_{n w_{0} c} f \dot{\theta}_{0}(\underset{\sim}{x}) d \vec{\sim} \\
& =k\left[\int_{W_{0} \cap w_{0}} f_{\theta_{0}}(x) d \underset{\sim}{x}+\cdot \int_{W_{0} \cap W} f_{\theta_{0}}(\underset{\sim}{x}) d \underset{\sim}{x}-\int_{\text {WNW }} f_{\theta_{0}}(x) d x-\iint_{W \cap W_{0}} f_{\theta_{0}}(x) d x\right. \\
& =k\left[\int_{W_{0}} f_{\theta_{0}}(\underset{\sim}{x}) d \underset{\sim}{x}-\int_{W} f_{\theta_{0}}(\underset{\sim}{x}) d \underset{\sim}{x}\right] \\
& =k\left[P_{\theta_{0}}\left(w_{0}\right)-P_{\theta_{0}}(w)\right] \\
& =0 \quad\left[\because w \text { and } W_{0} \text { are of same size }\right]
\end{aligned}
$$

Example:-1. Let, $x \sim N\left(\theta, \sigma^{2}\right), \sigma^{2}$ is known ont the basis of a random sample $X=\left(x_{1}, \ldots, x_{n}\right)$, from the distribution of x. Find the most powerful critical legion for testing, $H_{0}: \theta=\theta_{0}$ vs $H: \theta=\theta_{i}\left(>\theta_{0}\right)$
Solution:- The joint PDF of $\left(x_{1}, \ldots, x_{n}\right)$ is

$$
f_{\theta}(x)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right], \begin{aligned}
& , x_{i \in R} \\
& \forall i=1(1) n
\end{aligned}
$$

By Neyman-Pearson lemma; the most powerful (MP) critical begion is given by,

So, the MP critical region is given by,

$$
W_{0}=\{\underset{\sim}{x}: \bar{x}>c\}
$$

cohere, constant c is such that,.

$$
\begin{array}{ll}
\text { i.e. } \quad P_{\theta_{0}}(\bar{x}>c)=\alpha \\
\text { i.e. } \quad P_{\theta_{0}}\left\{\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}>\frac{\sqrt{n}\left(c-\theta_{0}\right)}{\sigma}\right\}=\alpha
\end{array}
$$

cohen, Ho is true, ie. cohen $x \sim N\left(\theta_{0}, \sigma^{2}\right)$

$$
\begin{aligned}
& \bar{X} \sim N\left(\theta_{0}, \frac{\sigma^{2}}{n}\right) \\
\text { i.e. } & \mathcal{} \quad \\
\Rightarrow & \frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma} \sim N(0,1) \\
\Rightarrow & P_{\theta}\left(\tau>\frac{\sqrt{n}\left(c-\theta_{0}\right)}{\sigma}\right)=\alpha \\
\Rightarrow & \frac{\sqrt{n}\left(c-\theta_{0}\right)}{\sigma}=\tau_{\alpha}, \overrightarrow{s t a n d} \\
\Rightarrow & c=\theta_{0}+\frac{\sigma}{\sqrt{n}} \tau_{\alpha}
\end{aligned}
$$

 standard normal distribution.

$$
\begin{aligned}
& \Rightarrow \quad \frac{\sqrt{n}\left(c-\theta_{0}\right)}{\sigma}=\tau_{\alpha} \xrightarrow[\text { standard normal distribution. }]{\text { in }} \text { - the } \quad \text { point of } \\
& \Rightarrow c-\theta+\sigma . \tau_{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& w_{0}=\left\{\underset{\sim}{x} \because \frac{f_{\theta_{1}}(x)}{f_{\theta_{0}}(x)} \geqslant k\right\} \\
& \frac{f_{\theta_{1}}(\underset{\sim}{x})}{f_{\theta_{0}}(x)}=\exp \left[-\frac{1}{2 \sigma^{2}}\left\{\sum_{i=1}^{n}\left(x_{i}-\theta_{i}\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\theta_{0}\right)^{2}\right\}\right]>k \\
& \Leftrightarrow-\frac{n}{2 \sigma^{2}}\left[\left(\bar{x}-\dot{\theta}_{1}\right)^{2}+\left(\bar{x}-\theta_{0}\right)^{2}\right] \rightarrow \ln k \\
& \Leftrightarrow-\frac{n}{2 \sigma^{2}}\left[\left(\theta_{1}^{2}-\theta_{0}^{2}\right)-2 \bar{x}\left(\theta_{1}-\theta_{0}\right)\right]>\ln k \\
& \Leftrightarrow \quad\left(\theta_{1}-\theta_{0}\right) \frac{n \bar{x}}{2 \sigma^{2}}>1 n k+\frac{n\left(\theta_{1}^{2}-\theta_{0}^{2}\right)}{2 \sigma^{2}} \\
& \Leftrightarrow \bar{x}>c\left[\therefore \theta_{1}>\theta_{0}\right]
\end{aligned}
$$

So, the most powerful region for testing
$H_{0}: \theta=\theta_{0}$ Vs $H: \theta=\theta_{1}\left(>\theta_{0}\right)$ is given by,

$$
W_{0}=\left\{x: \bar{x}>\theta_{0}+\frac{\sigma}{\sqrt{n}} \tau_{\alpha}\right\}
$$

Note that, this critical region does not depend in any way on the value of θ_{1}, except for the fact that $\theta_{1}>\theta_{0}$, so this critical region is actually uniformly most powerful (UMP) for testing $H_{0}: \theta=\theta_{0} \mathrm{Vs} H: \theta>\theta_{0}$,
2. Let $\operatorname{xrN}(\mu, \theta) ; \mu$ is known on the basis of random sample $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ from the distribution of $\underset{\sim}{x}$. Find the MP critical region for testing

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \quad V s \\
& H: \theta=\theta_{1}\left(>\theta_{0}\right) .
\end{aligned}
$$

Solution:- The joint PDF of $\left(x_{1}, \ldots, x_{n}\right)$ is

$$
f_{\theta}(\underset{\sim}{x})=\left(\frac{1}{2 \pi \theta}\right)^{n / 2} \exp \left[-\frac{1}{2 \theta} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right], \begin{aligned}
& x_{i} \in \mathbb{R} \\
& \forall i=1(1) n
\end{aligned}
$$

By. Neyman-Pearson, lemma the MP critical region is given by

$$
\begin{aligned}
& \quad w_{0}=\left\{\underset{\sim}{x}: \frac{f \theta_{1}(x)}{f_{\theta_{0}}(x)} \geqslant k\right\} \\
& \therefore \frac{f_{\theta_{1}}(\underset{\sim}{x})}{\left.f_{\theta_{0}(x)}^{x}\right)}=\exp \left[-\frac{1}{2}\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{0}}\right) \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right] \cdot\left(\frac{\theta_{0}}{\theta_{1}}\right)^{n / 2}>k \\
& \Leftrightarrow \frac{n}{2} \ln \left(\frac{\theta_{0}}{\theta_{1}}\right)=\frac{1}{2}\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{0}}\right) \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}>\ln k \\
&
\end{aligned} \quad \Leftrightarrow\left(\frac{1}{\theta_{0}}-\frac{1}{\theta_{1}}\right) \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}>k^{\prime} \quad\left[\begin{array}{ll}
1 & \theta_{1}>\theta_{0} \\
\Leftrightarrow & \left.\frac{1}{\theta_{0}}-\frac{1}{\theta_{1}}>0\right]
\end{array}\right.
$$

so, the MP critical region is given by,

$$
W_{0}=\left\{x: \sum_{i=1}^{K}\left(x_{i}-\mu\right)^{2}>c\right\} \text {, where, } c \text { is determined } \ni
$$

so from *), $\quad P_{\theta_{0}}\left(\chi_{n}^{2}>\frac{c}{\theta_{0}}\right)=\alpha$
$\therefore \frac{c}{\theta_{0}}=\chi^{2} \alpha ; n \longrightarrow \begin{aligned} & \text { the upper } \alpha \text { point of } x^{2} \text { distr. } . \\ & \text { with } n \text { degree of freedom } .\end{aligned}$
So, $W_{0}=\left\{x_{i}: \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}>\theta_{0} \chi_{\alpha}^{2} ; n\right\}$

$$
\begin{align*}
& P_{\theta_{0}}\left(W_{0}\right)=\alpha \\
& \text { ide. } P_{\theta_{0}}\left\{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}>c\right\}=\alpha \\
& \text { ide, } \quad P_{\theta_{0}}\left\{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{\theta_{0}}>\frac{c}{\theta_{0}}\right\}=\alpha \tag{*}\\
& \frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{\theta_{0}} \sim \chi_{n}^{2}
\end{align*}
$$

GEST OF SIGNIFICANCE FOR NORMAL DISTN
Problem:- Let $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a random sample on a random variable x having distribution $N\left(\theta, \sigma^{2}\right)$; θ and σ^{2} unknown then for there testing problems:
i) $H_{0}: \theta=\theta_{0} \mathrm{vs}$

$$
H: \theta>\theta_{0}
$$

(ii) $H_{0}: \theta=\theta_{0} \mathrm{Vs}$

$$
H: \theta<\theta_{0}
$$

iii) $H_{0}: \theta=\theta_{0} \quad \mathrm{~V}$

$$
H: \theta \neq \theta_{0}
$$

Find the critical region.
Solution:- θ-test :- σ^{2} unknown :
i) At level of significance α, we reject to against H if $\bar{x}>c$, ie. if cohere c is such that $P_{\theta_{0}}(\bar{x}>c)=\alpha$

$$
\text { or, } P_{\theta_{0}}\left(\frac{\sqrt{n}\left(\bar{x}-\dot{\theta}_{0}\right)}{s}>\frac{\sqrt{n}\left(c-\theta_{0}\right)}{s}\right)=\alpha
$$

cohere, $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\vec{x}\right)^{2}$
Under Ho $: \theta=\theta^{\circ}$.

$$
\begin{aligned}
T=\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{s} & =\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma^{\prime}} / \sqrt{\frac{(n-1)^{2}}{\sigma^{2}} /(n-1)} \\
& =\frac{\tau^{2}}{\sqrt{x^{2} /(n-1)}}, \text { cohere } \tau=\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma} \sim N(0,1) \\
& \left.\quad \therefore \text { Under } H_{0}\right]
\end{aligned}
$$

and $\frac{(n-1) s^{2}}{\sigma^{2}} \sim X_{n-1}^{2}$.
Also, τ is independent of X^{2} as \bar{X} is independent of s^{2}. So, under $H_{0}: \theta=\theta_{0}$

$$
T \sim t_{n-1}
$$

Thees, $P_{\theta_{0}}(T>C)=\cdot \alpha$.

$$
\begin{aligned}
& \Rightarrow P_{\theta_{0}}\left\{\cdot t_{n-1}>\frac{\sqrt{n}\left(c-\theta_{0}\right)}{s}\right\}=\alpha \\
& \Rightarrow \sqrt{n}\left(c-\theta_{0}\right)
\end{aligned}
$$

$$
\Rightarrow \frac{\sqrt{n}\left(c-\theta_{0}\right)}{8}=t_{\alpha ; n-1 \rightarrow} \rightarrow \text { the copper part of }{ }^{\alpha} \text { distr coith }(n-1) d
$$

So, $c=\theta_{0}+\frac{8}{\sqrt{n}} t_{\alpha ; n-1}$ t distr worth (n-1) d:
i.e. at $100 \alpha \%$ level ese reject H_{0} if.

$$
\bar{x}>\theta_{0}+\frac{8}{\sqrt{n}} t_{\alpha ; n-1}
$$

(ii) We reject to against H if $x<C^{\prime}$ cohere C^{\prime} is such that

$$
P_{\theta_{0}}\left(\bar{x}<c^{\prime}\right)=\alpha
$$

or. $P_{\theta_{0}}\left(t_{n-1}<\frac{\sqrt{n}\left(c^{\prime}-\theta_{0}\right)}{s}\right)=\alpha$

$$
\text { i.e. } \frac{\sqrt{n}\left(c^{\prime}-\theta_{0}\right)}{s}=t_{1-\alpha, n-1}=-t_{\alpha, n-1}[\text { By symmetry y } \quad \text { of } t \text { distribution }]
$$

$$
\text { i.e. } c^{\prime}=\theta_{0}-\frac{8}{\sqrt{n}} t_{\alpha ; n-1} \text {. }
$$

We reject H_{0} if $\bar{x}<c^{\prime}=\theta_{0}-\frac{8}{\sqrt{n}} t \alpha ; n-1$.
(iii) We reject H_{0} if $\bar{x}>c$ or $\bar{x}<c^{\prime}$ cohere c \& c^{\prime} are determined \ni

$$
\begin{aligned}
& P_{\theta_{0}}\left(\bar{x}<c^{\prime} \text { or } \bar{x}>c\right)=\alpha \\
& \text { i.e. } P_{\theta_{0}}\left(c^{\prime}<\bar{x}<c\right)=1-\alpha \\
& \text { ie. } P_{\theta_{0}}\left(\frac{\sqrt{n}\left(c^{\prime}-\theta_{0}\right)}{8}<t_{n-1}<\frac{\sqrt{n}\left(c-\theta_{0}\right)}{8}\right)=1-\alpha
\end{aligned}
$$

Solving the above equation for e and c^{\prime} we can get infinitely many solution. However for convenience we choose. $c \& c^{\prime} \ni$

$$
P_{\theta_{0}}\left(t_{n-1} \frac{\sqrt{n}\left(c^{\prime}-\theta_{0}\right)}{\&}\right)=\frac{\alpha}{2}
$$

\&

$$
P_{\theta_{0}}\left(t_{n-1} \frac{\sqrt{n}\left(c-\theta_{0}\right)}{s}\right)=\frac{\alpha}{2}
$$

$$
\text { i.e. } \quad \frac{\sqrt{n}\left(c^{\prime}-\theta_{0}\right)}{8}=-z_{\alpha / 2}, n-1 \Rightarrow c^{\prime}=\theta_{0}-t_{\alpha / 2}, n-\frac{8}{\sqrt{n}}
$$

and $\quad \frac{\sqrt{n}\left(c-\theta_{0}\right)}{s}=t_{\alpha / 2}, n-1 \Rightarrow c=\theta_{0}+t_{\alpha / 2}, n-1 \frac{8}{\sqrt{n}}$
We reject H_{0} if $\left|\bar{x}-\theta_{0}\right|>t \alpha / 2 ; n-1 \frac{8}{\sqrt{n}}$.

$$
\text { i.e. }|\bar{x}|>\theta_{0}+t_{\alpha / 2 ; n-1} \cdot \frac{8}{\sqrt{n}} \text {. }
$$

Note:- For the above test the test statistic is called student's 't' statistic and this test is called student's 't'test.

Problem:- Let $X=\left(x_{1}, \ldots, x_{n}\right)$ be ans. on a RV x having $\operatorname{distn}^{N}(\mu, \mu)$ and $\tilde{\theta}$ unknown. Then for these testing problems:-
i) $H_{0}: \theta=\theta_{0}$

Vs. $H: \theta>\theta_{0}$
ii) Ho: $\theta=\theta_{0}$
$v_{s .} H: \theta<\theta_{0}$
iii) $H_{0}: \theta=\theta_{0}$

$$
\gamma_{\text {S. H: }}: \theta \neq \theta_{0}
$$

Find the critical begion for each cases.
ANS:- variance test :- μ unknown:
i) At level of significance α, we reject H_{0} against H if

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}>c
$$

i.e. if cohere c is $\ni \quad P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}>c\right]=\alpha$
or, $P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c\right]=\alpha$
where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \bar{x}$ is an unbiased estimator of μ.

$$
\therefore P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c\right]=\alpha
$$

or, $P_{\theta_{0}}\left[(n-1) s^{2}>e\right]=\alpha$
or, $P_{\theta_{0}}\left[\frac{(n-1) s^{2}}{\theta_{0}}>\frac{c}{\theta_{0}}\right]=\alpha$
or, $P_{\theta_{0}}\left[\chi_{n-1}^{2}>\frac{c}{\theta_{0}}\right]=\alpha$

$$
\begin{aligned}
& \therefore \frac{c}{\theta_{0}}=\chi_{\alpha ; n-1}^{2} \longrightarrow \text { upper a point of } \chi_{n-1}^{2} . \\
& \therefore c=\theta_{0} X_{\alpha, n-1}^{2} \quad n
\end{aligned}
$$

\therefore We reject H_{0} if $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)_{\text {against }}^{2}>\theta_{H} X_{\alpha ; n-1}^{2}$.
ii) at level of significance α, we reject H_{0} if,

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}<c
$$

ie. if where c is such that,

$$
\begin{aligned}
P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}<c\right]=\alpha \\
\text { or, } P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}<c\right]=\alpha \\
\text { or, } P_{\theta_{0}}\left[\frac{(n-1) s^{2}}{\theta_{n}}<\frac{c}{\theta_{\theta}}\right]=\alpha \text { or, } P_{\theta_{0}}\left[x_{n-1}^{2}<\frac{c}{\theta_{0}}\right]=\alpha
\end{aligned}
$$

Scanned by CamScanner

$$
\begin{aligned}
\therefore \frac{c}{\theta_{0}} & =\chi_{1-\alpha ; n-1}^{2} \\
\text { or, } c & =\theta_{0} \chi_{1-\alpha ; n-1}^{2}
\end{aligned}
$$

\therefore We reject H_{0} if $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}<\theta_{0} X_{1-\alpha ; n-1}^{2}$.
iii) At Level of significance α, we reject H_{0} against H if,

$$
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}<c_{1} \text { or, } \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}>c_{2}
$$

i.e. where, c_{1} and c_{2} are such that,

$$
\begin{aligned}
& P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}<c_{1} \text { or }, \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}>c_{2}\right]=\alpha \\
& \text { or, } P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}<c_{1} \text { or, } \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c_{2}\right]=\alpha
\end{aligned}
$$

There are infinitely many choice of c_{1} and c_{2} but we choose c_{1} and c_{2} such that,

$$
\left.P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}<c_{1}\right]=\alpha / 2\right] \quad P_{\theta_{0}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c_{2}\right]=\alpha / 2
$$

or, $C_{1}=\theta_{0} \chi_{1-\alpha / 2 ; n-1}^{2}$ or, $C_{2}=\theta_{0} \chi^{2} \alpha / 2 ; n-1$.
\therefore We reject Ho if

$$
\begin{aligned}
& \therefore \text { we reject Ho if } \\
& \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}<\theta_{0} \chi_{1-\alpha / 2 ; n-1}^{2} \text { or, } \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>\theta_{0} \chi_{\alpha / 2 ; n-1}^{2} .
\end{aligned}
$$

Two Sample Problem: \sim
Ex:- Let X and Y be two independent normal variables such that $x \sim N\left(\mu_{1}, \sigma^{2}\right), Y \sim N\left(\mu_{2}, \sigma^{2}\right)$ on the basis of 2 independent random sample,
$\left(x_{1}, x_{2}, \ldots, x_{n_{1}}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n_{2}}\right)$ of size n_{1} and n_{2} drawn from the distr of X and Y respectively.
Test $H_{0}: \mu_{1}=\mu_{2}$ against different alternatives.
Solution:-
Let $\bar{x}=\frac{1}{n} \sum_{i=1}^{n_{1}} x_{i}$, and $\bar{y}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} y_{i}$
Now, $\bar{X} \sim N\left(\mu_{1}, \sigma^{2} / n_{1}\right)$

$$
\bar{Y} \sim N\left(\mu_{2}, \sigma 2 / n_{2}\right)
$$

Also, \bar{x} is independent of $\bar{y}(\therefore x$ and y are independent $)$.
So, $\bar{x}-\bar{y} \sim N\left(\mu_{1}-\mu_{2}, \sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right)$
To test for $H_{0}: \mu_{1}-\mu_{2}=0$ against

$$
H_{1}: \mu_{1}-\mu_{2}>0
$$

we reject H_{0} if $\bar{x}-\bar{y}>c$

$$
\text { Vs. } H_{2}: \mu_{1}-\mu_{2}<0 \text {. }
$$

we reject H_{0} if $\bar{X}-\bar{Y}<c^{\prime}$
Vs $H_{3}: \mu_{1}-\mu_{2} \neq 0$ we reject H_{0} if $\bar{X}-\bar{Y}<k_{1}$ ar, $\bar{X}-\bar{X}>k_{2}$.
The constants $c, c^{\prime}, k_{1} f k_{2}$ are to be determined from the size condition of the test.
The critical region for $H_{0}: \mu_{1}-\mu_{2}=0$ Vs.

$$
H_{1}: \mu_{1}-\mu_{2}>0
$$

is $\quad W_{01}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n_{1}}, y_{1}, x_{2}, \ldots, y_{n_{2}}\right): \bar{x}-\bar{y}>c\right\}$

$$
P_{H_{0}}\left(W_{0}\right)=\alpha \Rightarrow P_{H_{0}}(\dot{X}-\bar{Y}>c)=\alpha
$$

$$
\Rightarrow P_{H_{0}}\left[\frac{\bar{X}-\bar{Y}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}>\frac{c}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}\right]=\alpha
$$

$$
\Rightarrow P_{H_{0}}\left[\tau>\frac{c}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}\right]=\alpha
$$

$$
\begin{aligned}
& \therefore \tau=\frac{\bar{x}-\bar{Y}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}} \sim N(0,1) \text {, under to, }
\end{aligned}
$$

so, $\frac{c}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}=\tau_{\alpha} \rightarrow$ the upper α point of $N(0,1)$

$$
\therefore c=\tau_{\alpha} \sigma\left(\frac{1}{n_{1}}+\frac{1}{h_{2}}\right)^{1 / 2}
$$

so, $W_{01}=\left\{(\underset{\sim}{X}, \underset{\sim}{Y}): \bar{X}-\bar{Y}>\tau_{\alpha}^{\prime} \sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}\right\}$

Similarly,
The ortical region for, $H_{0}: \mu_{1}-\mu_{2}=0 \mathrm{Vs}$.
$H_{2}: \mu_{1}-\mu_{2}<0$ is

$$
\begin{aligned}
w_{02} & =\left\{(\underset{\sim}{x}, \underset{\sim}{y}): \bar{x}-\bar{Y}<\tau_{1-\alpha} \sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}\right\} \\
& =\left\{(\underset{\sim}{x}, \underset{\sim}{y}): \bar{x}-\bar{\gamma}<\tau_{\alpha} \sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}\right\}
\end{aligned}
$$

and
the critical region for,

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \quad V S . \\
& H_{3}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

$$
\begin{align*}
& W_{03}=\left\{(\underset{\sim}{x}, \underset{\sim}{y}): \bar{x}-\bar{y}<k_{1} \text { or }>k_{2}\right\} \\
& P_{H_{0}}\left(W_{0}\right)=\alpha \\
\Rightarrow & P_{H_{0}}\left(\bar{x}-\bar{\gamma}<k_{1} \text { or, } \bar{x}-\bar{y}>k_{2}\right)=\alpha \tag{*}
\end{align*}
$$

How, under Ho: $\mu_{1}-\mu_{2}=0$

$$
\tau=\frac{\bar{x}-\bar{y}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}} \sim N(0,1)
$$

So, (*) coll be $P_{H_{0}}\left[\tau<\frac{k_{1}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}\right.$ or, $\left.\tau>\frac{k_{2}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}\right]=\alpha$
So, satisfying (*) we can choose

$$
\frac{k_{1}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}=-\tau_{q_{2}}^{\prime}
$$

$$
\text { and } \frac{k_{2}}{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}=\tau_{\alpha / 2}
$$

ie. $\quad k_{1}=-\tau_{\alpha / 2} r\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}$

$$
k_{2}=\tau_{\alpha / 2} \cdot \sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}
$$

So, the critical region is given by.

$$
w_{03}=\left\{(x, y):|\bar{x}-\bar{y}|>\tau_{\alpha / 2} \sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}\right\}
$$

Find W_{01}, W_{02}, W_{03} cohen σ is unknocon

$$
W_{01}=\{(\underset{\sim}{x}, \underset{\sim}{y}): \bar{x}-\bar{y}>c\}
$$

Now, $\quad P_{H_{0}}[\bar{x}-\bar{y}>c]=\alpha$
or, $P_{H_{0}}\left[\frac{\bar{x}-\bar{y}}{s\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}>\frac{c}{s\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}\right]=\alpha$
Nolo,

$$
\begin{aligned}
& t=\frac{\bar{x}-\bar{y}}{s\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}=\frac{\frac{\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}{\sqrt{\frac{\left(n_{1}+n_{2}-2\right) s^{2}}{\sigma^{2}} /\left(n_{1}+n_{2}-2\right)}}}{} \begin{array}{l}
\bar{x}-\bar{y} \\
\sigma\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}
\end{array} N(0,1)\left[s^{2}=\frac{\left(n_{1}-1\right) s^{2}+\left(n_{2}-1\right) s^{2}}{n_{1}+n_{2}-2}\right]
\end{aligned}
$$

$$
\frac{\left(n_{1}+n_{2}-2\right) s^{2}}{\sigma^{2}} \sim X_{n_{1}+n_{2}-2}^{2}
$$

so, t may be expressed - in the form, τ
$\sqrt{x^{2} / n_{1}+n_{2}-2}$, cohere τ is independent of χ_{2}^{2}
so, $t \sim \dot{t}_{n_{1}}+n_{2}-2$ under H_{0}

$$
\begin{aligned}
& \therefore P_{H_{0}}[\bar{x}-\bar{\gamma}>c]=\alpha \\
& \Rightarrow P_{H_{0}}\left[t>\frac{C}{s\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}\right]=\alpha \\
& \therefore \frac{c}{8\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2}}=t_{\alpha ; n_{1}+n_{2}-2}^{\rightarrow \text { point of upken }} \\
& \alpha \text { point of } t \text {-dist. } \\
& \text { with } n_{1}+n_{2}-2 \\
& \text { degree of freedom. } \\
& \Rightarrow c=s\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{1 / 2} t_{\alpha ; n_{1}+n_{2}-2}^{\text {deg }}
\end{aligned}
$$

Eq. Let X and Y be two independent normal variables \ni $x \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ on the basis of two independent samples

$$
\begin{aligned}
& x=\left(x_{1}, \ldots, x_{n_{1}}\right) \\
& \underset{\sim}{y}=\left(y_{1}, \ldots, y_{n_{2}}\right)
\end{aligned}
$$

drawn from the distr of x and y respectively.
Test for $H_{0:} \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=1$ against different alternatives.
Solution:-

$$
S_{1}^{2}=\frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}}\left(x_{i}-\bar{x}\right)^{2}, s_{2}^{2}=\frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}}\left(y_{i}-\bar{y}\right)^{2}
$$

Now, testing . Ho: $\sigma_{1}^{2} / \sigma_{2}^{2}=1 \mathrm{Vs}$

$$
H_{1}: \pi_{1}^{2} / \sigma_{2}^{2}>1
$$

We reject to if $\frac{\delta_{1}{ }^{2}}{\delta_{2}{ }^{2}}>c$, where c is determined such That, $\quad P_{H_{O}}\left(\frac{s_{1}^{2}}{s_{2}^{2}}>c\right)=\alpha$

Now, under Ho,

$$
\frac{\frac{\left(n_{1}-1\right) s_{1}^{2}}{\sigma^{2}\left(n_{1}-1\right)}}{\frac{\left(n_{2}-1\right) s_{2}^{2}}{\sigma^{2}\left(n_{2}-1\right)}}=\frac{\chi_{1}^{2} /\left(n_{1}-1\right)}{\chi_{2}^{2} /\left(n_{2}-1\right)} \cdot \text {, say }
$$

σ_{1}^{2} and σ_{2}^{2} are same under to.

$$
\therefore \chi_{1}^{2} \sim x_{n}^{2}+\& \chi_{2}^{2} \sim \chi_{n_{2-1}}^{2}
$$

and χ_{1}^{2} is independent of χ_{12}^{2}.
Thus under Ho: $\sigma_{1}^{2} / \sigma_{2}^{2}=1$.

$$
\therefore \frac{\delta_{1}^{2}}{\delta_{2}^{2}} \sim F_{\left(n_{1}-1\right)\left(n_{2}-1\right)} \text {. }
$$

$\therefore c=F \propto ; \overline{n_{1}-1}, \overline{n_{2}-1} \quad \begin{aligned} & \text { the upper } \alpha \text { point of } F \text { dit } \\ & \left.\quad n_{1}-1\right) \&\left(n_{2}-1\right) \text { d. of. }\end{aligned}$

Paired sample Test: \sim
Ex:- Let $(X, Y) \sim N_{2}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ on the basis of a paired sample,

$$
\left\{\left(x_{i}, y_{i}\right): i=1(1) n\right\}
$$

Find a test for $H_{0}: \mu_{1}=\mu_{2}$ against different alternatives.
Solution:- Let $Z_{i}=x_{i}-y_{i} \quad \forall i=1(1)^{n}$

$$
\text { Then } \begin{aligned}
\mu_{z} & =E\left(z_{i}\right) \\
& =E\left(x_{i}-y_{i}\right)= \\
\sigma_{z}^{2}=v\left(\mu_{i}-\mu_{2}\right) & =v\left(x_{i}-y_{i}\right)
\end{aligned}=v\left(x_{i}\right)+v\left(y_{i}\right)-2 \operatorname{cov}\left(x_{i}, y_{i}\right) .
$$

Also, $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ may be looked upon as independent observations from a normal popln $N\left(\mu_{z}, \sigma_{2}^{2}\right)$.
Testing of $H_{0}: \mu_{1}=\mu_{2}$ is equivalent to test $H_{0}: \mu_{z}=0$ when a sample is draco from a normal population. $N\left(\mu_{z}, \sigma_{z}{ }^{2}\right) ; \sigma_{z}{ }^{2}$ is being unknown. Thees as in the one sample situation, we reject $H_{0}^{\prime}: \mu_{z}=0$ against $H_{1}: \mu_{z}>0$ if $\bar{z}>c$.
where c is $\Rightarrow \quad P_{\text {Ho }_{0}}(\bar{z}>c)=\alpha$

$$
\begin{equation*}
\Rightarrow P_{H_{0}}\left[\frac{\sqrt{n} \bar{s}}{s z}>\frac{\sqrt{n c}}{s z}\right]=\alpha \tag{i}
\end{equation*}
$$

Now, $\frac{\sqrt{n} \bar{z}}{8 z} \sim t n-1$ under to
Hence from (1), $\frac{\sqrt{n} e}{8 z} \propto t \alpha ; n-1 \longrightarrow$ the upper α point of t-distr. with $(n-1) d \cdot f$.
So, $c=\frac{8 z}{\sqrt{n}} t_{\alpha ; n-1}$
ie. at the $100 \alpha \%$ level the critical region is given by,

$$
w_{0}=\left\{\bar{z}>\frac{8 z}{\sqrt{n}} t \alpha ; n-1\right\}
$$

Ex.
$(X, Y) \sim N_{2}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ on the basis of a paired sample $\left\{\left(x_{i}, y_{i}\right): i=1(1) n\right\}$.
Find a test for to: $\rho=0$ against $H: \rho \neq 0$.
Solution: - From the paired sample, we calculate the sample correlation coefficient

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

If this sample correlation coefficient which is a sample analogue of ρ is either too small or too large, then we can predict that $P \neq 0$ s 0 at $100 \alpha \%$ level, we reject $H_{0}: P=0$ against $H_{i} \rho \neq 0$ if $|r|>c$, here c is determined such that,

$$
P_{H_{0}}(|r|>c)=\alpha
$$

let us consider the function

$$
\Psi(|r|)=\frac{|r| \sqrt{n-2}}{\sqrt{1-|r|^{2}}}
$$

This is an increasing function of $|r|>c \Leftrightarrow \psi(|r|)>k$.
So, $P_{H_{0}}(|r|>c)=\alpha$

$$
\Leftrightarrow P_{H_{0}}\left(\frac{|r| \sqrt{n-2}}{\sqrt{1-r 2}}>k\right)=\alpha
$$

but we know that under i

$$
H_{0}: P=0, \frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \sim t_{n-2} \text {. }
$$

80, given

$$
\begin{array}{ll}
& \text { 80. given } \\
& P_{H_{0}}\left(\left|\frac{r \sqrt{n-2}}{\sqrt{1-r 2}}\right|>k\right)=\alpha \\
\Rightarrow & P_{H_{0}}\left(\left|t_{n-2}\right|>k\right)=\alpha \\
\Rightarrow & P_{H_{0}}\left(t_{n-2}<-k \text { or, } t n-2>k\right)=\alpha
\end{array}
$$

i.e. $k=t \alpha / 2 ; n-2 \rightarrow$ the upper $\alpha / 2$ point of t-distribution with ($n-2$) d.f.
\therefore The critical region of the testing problem is 1

$$
W=\left\{r ;\left|\frac{r \sqrt{n-2}}{\sqrt{1-r 2}}\right|>t \alpha / 2 ; n-2\right\}
$$

Remark:- The above testing is alsovaling if the diotro. of Y given $X=x$ is normal with mean as a linear function at $x, \cdots, e, y \mid x=x \sim$ $N\left(\alpha+\beta x, \sigma^{2}\right) ;(s a y)$.

Ex. $(x, x) \sim B N\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$
Test Ho: $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$ against different alternatives.
Solution:- T_{0} test H_{0} let us define,

$$
U=X-Y \text { and } V=X+Y
$$

then $\operatorname{Cov}(u, v)=\sigma_{1}^{2}-\sigma_{2}^{2}$
Hence, under to, $\operatorname{Cov}(u, v)=0$
Hence, resting of $H_{0}: \sigma_{1}^{2}=\sigma_{2}{ }^{2}$ is equivalent to testing.

$$
H_{0}{ }^{\prime}: P_{U V}=0
$$

So, in the case, we compute the sample correlation

$$
r_{u v}=\frac{\sum_{i=1}^{n}\left(u_{i}-\bar{u}\right)\left(v_{i}-\bar{\nabla}\right)}{\sqrt{\sum_{i=1}^{n}\left(v_{i}-\bar{u}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(v_{i}-\bar{v}\right)^{2}}}
$$

and at $150 \alpha \%$ level of significance, we reject H_{0} or equivalently H_{0}^{\prime} against $H: \sigma_{1}^{2} \neq \sigma_{2}^{2}\left(o r\right.$, equivalently $\left.H^{\prime}: \rho_{u v} \neq 0\right)$

$$
\text { if }\left|\frac{r_{u v} \sqrt{n-2}}{\sqrt{1-r_{u v}^{2}}}\right|>t_{\alpha / 2 ; n-2}
$$

Test for Regression Coefficient:-
$x_{1}, x_{2}, \ldots, x_{n}$ be a set of n fixed values assumed by a non-stachastic variable X and let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independently distributed normal variables such that

$$
y_{i} / x \sim N\left(\alpha+\beta x_{i}, \sigma^{2}\right) \text {, where } \sigma \text { is not known. }
$$

Test for $H_{0}: \beta=\beta_{0}$ against different alternatives.
\Rightarrow Consider the statistic,

$$
b=\frac{2\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{2\left(x_{i}-\bar{x}\right)^{2}}}
$$

then $b \sim N\left(\beta, \sigma^{2} / s_{x x}\right)$

To test for $H_{0}: \beta=\beta_{0}$ against $\beta>\beta_{0}$
we reject tho if
$b) C$, where c is such that

$$
P_{H_{0}}(b>c)=\alpha
$$

or, $P_{H_{0}}\left\{\frac{\left(b-\beta_{0}\right) \sqrt{S x x}}{\delta y \cdot x}>\frac{(c-\beta 0) \sqrt{S x x}}{\delta y \cdot x}\right\}=\alpha \cdots(x)$
cohere,

$$
s_{y \cdot x}^{2}=\sum_{i=1}^{n} \frac{1}{n-2}\left[y_{i}-\bar{y}-b\left(x_{i}-\bar{x}\right)\right]^{2}
$$

Under Ho: $\beta=\beta_{0}$

$$
\frac{(b-\beta) \sqrt{S_{x x}}}{\sigma} \sim N(0,1)
$$

and it is knocon that, $\frac{(n-2) s^{2} y \cdot x}{\sigma^{2}} \sim \chi_{n-2}^{2}$.
also, $\& y \cdot x$ is independent of b.
So, $\frac{(b-\beta) \sqrt{S x x}}{s^{2} y \cdot x}=\frac{\frac{(b-\beta 0) \sqrt{S x x}}{\sigma}}{\sqrt{\frac{\left.(n-2) s^{2} y \cdot x / \sigma\right)^{2}}{(n-2)}}} \sim t_{n-2}^{\text {under } H_{0}}$.
Thees for (*),
$\frac{\left(c-\beta_{0}\right) \sqrt{S x x}}{S_{y . x}}=t \alpha ; n-2 \rightarrow \begin{aligned} & \text { upper } \alpha \text { point } \\ & \text { with }(n-2) \text { of } t \text {-d.distn }\end{aligned}$ with $(n-2) d . f$.

$$
\therefore c=\beta+\frac{8 y \cdot x}{\sqrt{S x x}}, t \alpha ; n-2
$$

so at $100 \alpha \%$ level we reject H_{0} if

$$
b>\beta+\frac{8 y \cdot x}{\sqrt{S x x}} t \alpha ; n-2
$$

(Fisher's t-test) Test for difference of Two population mean:-
Two sample problem: Leet X and Y be two independent normal variables such that $X_{1} \sim N\left(\mu_{p} \sigma^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma^{2}\right)$ on the basis of two independent random sample of size $n_{1} \& n_{2}$. Test $H_{0} i \delta=\mu_{1}-\mu_{2}=d_{0}$ (say) against different alternatives.
solution:-
Here, $\overline{x_{1}} \sim N\left(\mu_{1}, \sigma^{2} / n_{1}\right)$ and $\bar{x}_{2} \sim N\left(\mu_{2}, \sigma^{2} / n_{2}\right)$

$$
x_{1}-x_{2} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma^{2}}{n_{1}}+\frac{\sigma^{2}}{n_{2}}\right)
$$

Now, under Ho, define

$$
z=\frac{\overline{x_{1}}-\overline{x_{2}}-\delta_{0}}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim N(0,1) \quad\left[\because \delta_{0}=\mu_{1}-\mu_{2}\right]
$$

Also, it should be noted that

$$
\begin{aligned}
& \frac{\left(n_{1}-1\right) s_{1}^{2}}{\sigma^{2}} \sim \chi_{n_{1}-1}^{2} \text {, and } \\
& \frac{\left(n_{2}-1\right) s_{2}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
\end{aligned}
$$

Hence by additive property of x^{2}-variates

$$
\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\sigma^{2}} \sim \chi^{2} n_{1}+n_{2}-2,
$$

here $s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$.
Under Ho, $t=\frac{z}{\sqrt{x_{n}^{2}+n_{2}-2 / n_{1}+n_{2}-2}}=\frac{\bar{x}_{1}+\bar{x}_{2}-\delta_{0}}{\sigma \sqrt{\frac{1}{n_{1}+\frac{1}{n_{2}}}} \cdot \frac{1}{\sqrt{s^{2} / \sigma^{2}}}}$
Thin: $t=\frac{\bar{x}_{1}-\bar{x}_{2}-d_{0}}{8 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim+n_{1}+n_{2}-2$
The test criteria for xabious alternative hypothesis is as follows,

H_{1}	Name of Test	Reject H_{0} at level if
$\delta>\delta_{0}$	Right tail test	$t>t_{n_{1}+n_{2}-2}(\alpha)$
$\delta \neq \delta_{0}$	Two tail test	$\|t\|>t_{n_{1}+n_{2}-2}(\alpha / 2)$

If our H_{1} is $\delta<\delta_{0}$, the roles of two populations are interchanged i.e., the suffixes 1 and 2 are interchanged and the right tail test given above is used.
Also in case $\delta_{0}=0$, the above test reduces to testing the equality of two population means.

It is pertinent to note that before applying the above test, weshould test the assumption of equality of population variances using. 'F'test. If the population variances are not eave, the above test is not valid.

Test of significance of an Observed sample correlation Ratio \quad My:

Here, Ho is given by H_{0} : Population correlation Ratio is zem. The test statistic is

$$
F=\frac{\eta^{2}}{1-\eta^{2}} \cdot \frac{N-h}{h-1.0} \sim F(h-1, N-h)
$$

cohere, N is the sample size from a bivariate normal population arranged in h-arrays.

Test of Significance for Linearity of Regression in For testing the hypothesis of linearity of regression, our test statistic. is

$$
F=\frac{\eta^{2}-r^{2}}{1-\eta^{2}} \cdot \frac{N-h}{h-2} \sim F(h-2, N-h)
$$

Note:- For all the above tests the decisions can be made by comparing the tabulated values of F with calculated valuers with the given degrees of freedom.

Test of significance of Difference of Means:-
Let us assume that \bar{X}_{1} and \bar{X}_{2} are respectively the means of to random sample of size n_{1} and n_{2}. Leet us also assume. that $\mu_{i}(i=1,2)$ and $\sigma_{i}^{2}(i=1,2)$ be two means and x ariances of two populations. Then for large sample size,

$$
\text { and } \quad \begin{aligned}
& \bar{x}_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2} / n_{1}\right) \\
& \bar{x}_{,} \sim N\left(\mu_{2}, \sigma_{2}^{\sim} n_{2}\right.
\end{aligned}
$$

$$
\bar{x}_{2} \sim N\left(\mu_{2}, \sigma_{2}^{\sim}, n_{2}\right)
$$

Since the difference of two independent normal variables is also a normal variate.
Thus, $z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-E\left(\bar{x}_{1}-\bar{x}_{2}\right)}{S . E \cdot\left(\bar{x}_{1}-\bar{x}_{2}\right)} \sim N(0,1)$
Here, $H_{0}: \mu_{1}=\mu_{2}$
Then,

$$
\begin{aligned}
E\left(\overline{x_{1}}-\overline{x_{2}}\right) & =\mu_{1}-\mu_{2}=0 \\
V\left(\overline{x_{1}}-\bar{x}_{2}\right) & =\gamma\left(x_{1}\right)+\gamma\left(x_{2}\right) \\
& =\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}}{n_{2}} \quad[\because \text { covariance term is zero }
\end{aligned}
$$

Hence, under Ho,

$$
\left.Z=\frac{\frac{\bar{x}}{1}-\bar{x}_{2}}{\sqrt{\sigma_{1}^{2} / n_{1}}+\sigma_{2}^{2} / n_{2}}\right) ~ N N(0,1)
$$

In case, $\sigma_{1}^{\mu}=\sigma_{2}^{2}=\sigma^{2}$, then

$$
z=\frac{\overline{x_{1}}-\bar{x}_{2}}{\sigma\left[\frac{1}{n_{1}}+\frac{1}{n_{2}}\right]} \sim N(0,1)
$$

When the population variances σ_{1}^{2} and σ_{2}^{2} are unknown, we estimate them by their corresponding sample variances, as $\hat{\sigma}_{1}^{2}=s_{1}^{2}$ and $\hat{\sigma}_{2}^{2}=s_{2}{ }^{u}$
In case $\sigma_{1}^{2}=\sigma_{2}^{2}$, then we use the pooled estimate as

$$
\hat{\sigma}^{n}=\hat{\sigma}_{L}^{2}=\hat{\sigma}^{2}=\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{n}}{n_{1}+n_{2}}
$$

Test of significance related to Two Univariate Normal
Populations [Uncorrelated case]
Suppose that the distribution of the study variable x if each of the too populations be normal and uncorrelated. Suppose that the distr. of two population be $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, respectively. Suppose, further that, $X_{11}, X_{12}, \ldots, X_{1 n_{1}}$ be an res. from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and that $x_{21}, x_{22}, \cdots, x_{2 n_{2}}$ be an another $r_{1} \delta$. from $N\left(\mu_{2}, \sigma_{2}^{2}\right)$. The fir st set of observation is also supposed to be drawn independently of the second set. Then $\bar{x}_{1}=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}} x_{1 j}$ and $\left(n_{1}-1\right) s_{1}^{2}=\sum_{j=1}^{n_{1}}\left(x_{1} j-\bar{x}_{1}\right)^{2}$;

$$
\bar{x}_{2}=\frac{1}{n_{2}} \sum_{j=1}^{n_{2}} x_{2 j} \text { and }\left(n_{2}-1\right) \bar{s}_{2}{ }^{2}=\sum_{j=1}^{n_{2}}\left(x_{2 j}-\bar{x}_{2}\right)^{2}
$$

(a) To test Hos $\mu_{1}-\mu_{2}=\xi_{0}$ (known) against HT: $^{\prime} \mu_{1}-\mu_{2} \neq \xi_{0}$

Case-I $\left[\sigma_{1}, \sigma_{2}\right.$ known $]$
Under $H_{0}: \mu_{1}-\mu_{2}=\xi_{0}$, we can expect that the observed value ($\left.\bar{x}_{1}-\bar{x}_{2}-\xi_{0}\right)$ is small. If if the observed value $\left(\bar{x}_{1}-\bar{x}_{2}-\xi_{0}\right)$ is quite large in magnitude, we shall suspect H_{0} and give support to H_{1}.
Here, $\bar{x}_{1} \sim N\left(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}}\right)$
$\frac{\left(n_{1}-1\right) s_{1}^{2}}{\sigma_{1}^{2}} \sim \chi_{n_{1-1}}^{2}$.
and $\left.\bar{x}_{2} \sim N\left(\mu_{2}, \frac{\sigma_{2}^{2}}{n_{2}}\right)\right\rangle$ independently.

$$
\frac{\left(n_{2}-1\right) s_{2}^{2}}{\sigma_{2}^{2}} \sim \chi^{2} n_{n_{2}-1}
$$

Both are independent.
Then $\bar{x}_{1}-\bar{x}_{2} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)$
$\Rightarrow \bar{x}_{1}-\bar{x}_{2} \sim N\left(\xi_{0}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)$, under Ho.

$$
\Rightarrow\left(\bar{x}_{1}-\bar{x}_{2}-\xi_{0}\right) \sim N\left(0, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) \text {, under too. }
$$

The distribution of $\left(\bar{x}_{1}-\bar{x}_{2}-\xi_{0}\right)$ is symmetric about zero with

$$
\text { SSE. }=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

Comparing the deviation $\left(\bar{x}_{1}-\bar{x}_{2}-\xi_{0}\right)$ w.r.t, its $\delta_{1} E_{1}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$; if $\left|\frac{\bar{x}_{1}-\bar{x}_{2}-\xi_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\right|>C$, we reject H_{0} in favour of H_{1}, where C is so chosen that $P_{H_{0}}\left[\left|\frac{\bar{x}_{1}-\bar{x}_{2}-\xi_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\right|>c\right]=\alpha$.

$$
\Rightarrow c=\tau_{\alpha / 2} \text {, as } \frac{\bar{x}_{1}-\bar{x}_{2}-\xi_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{q_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1) \text {, under Ho. }
$$

Hence: we reject $H_{0}: \mu_{1}-\mu_{2}=\xi_{0}$ against $H_{1}: \mu_{1}-\mu_{2} \neq \xi_{0}$, at level α iff the observed values $\left|\frac{\bar{x}_{1}-\bar{x}_{2}-e_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}}{n_{2}}}}\right|>\tau_{\alpha / 2}$.
Remark:-
p-value of the above testing problem:-
Here; $T=\frac{\bar{X}_{1}-\bar{X}_{2}-\text { eco }_{0}}{\sqrt{Q^{2} Q_{2}^{2}}}$ is the test statistic and let ' t_{0} ' be the observed value of T.
For the alternative $H_{1}: \mu_{1}-\mu_{2} \neq \xi_{0}$, the p-value is

$$
\begin{aligned}
p & =P_{H_{0}}\left[|T| \geqslant\left|t_{0}\right|\right] \\
& =2 P_{H_{0}}\left[T \geqslant\left|t_{0}\right|\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2 P_{H_{0}}\left[T \geqslant\left|t_{0}\right|\right] \\
& =2\left\{1-\Phi\left(\left|t_{0}\right|\right)\right\} \text {, as } T \sim N(0,1) \text {, under } H_{0} .
\end{aligned}
$$

Case-II $\left[\sigma_{1}, \sigma_{2}\right.$ unknown but equal $]$
[Fisher's t-test]
For the sake of simplicity we assume that unknown S.D.'s are equal. Assume that $\sigma_{1}=\sigma_{2}=\sigma$ (unknown).
Under $H_{0}: \mu_{1}-\mu_{2}=\varepsilon_{0}$, we can expect that ($\bar{x}_{1}-\bar{x}_{2}-\bar{z}_{0}$) is small. If the observed value of $\left(\bar{x}_{1}-\bar{x}_{2}-\xi_{0}\right)$ is quite large in magnitude, se shall suspect H_{0} and give support to H_{1}.
Here, $\bar{x}_{1}-\bar{x}_{2}-e_{0} \sim N\left(0, \sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right)$, under the assumption $\sigma_{1}=\sigma_{2}=\sigma$.
$\Rightarrow\left(\bar{x}_{1}-\bar{x}_{2}-\xi_{0}\right)$ is symmetrically distributed about zero with S.E. $=\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$ which is known.

Define, $s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$ as the pooled sample variance. Here, s^{2} is an U.E. of σ^{2}.
Clearly, s is an estimate of θ.
S.E. $\left(\bar{x}_{1}-\bar{x}_{2}-e_{0}\right)=8 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$; comparing the deviation $\left(\bar{x}_{1}-\bar{x}_{2}-\xi_{0}\right)$ w.r.t. an estimate of its $S, E,=8 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}$; if

$$
\left|\frac{\bar{x}_{1}-\bar{x}_{2}-e_{0}}{8 \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right|>c \text {, we reject } H_{0} \text { in favour of } H_{1} \text {, where }
$$

c is so chosen that

$$
\begin{equation*}
P_{H_{0}}\left[\left|\frac{\bar{x}_{1}-\bar{x}_{2}-\xi_{0}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right|>c\right]=\alpha \tag{i}
\end{equation*}
$$

Distribution of Test Statistic: \sim
Here $T=\frac{\bar{x}_{1}-\bar{x}_{2}-\varepsilon \rho_{0}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$ is the test statistic.
Note that,

$$
\begin{aligned}
& \bar{x}_{1} \sim N\left(\mu_{1}, \frac{\sigma^{2}}{n_{1}}\right) \\
& \text { and } \frac{\left(n_{1}-1\right) s_{1}^{2}}{\sigma^{2}} \sim X_{n_{1}-1}^{2}
\end{aligned}>\text { independently }
$$

$$
\begin{aligned}
& \bar{x}_{2} \sim N\left(\mu_{2}, \frac{\sigma^{2}}{n_{2}}\right) \\
& \left(n_{2}-1\right) s_{2}^{2}
\end{aligned}>\text { independently }
$$

and $\frac{\left(n_{2}-1\right) s_{2}^{2}}{\sigma^{2}} \sim X_{n_{2}-1}^{2}$
Since they are independent.
Now, $\bar{x}_{1}-\bar{x}_{2} \sim N\left(\mu_{1}-\mu_{2}, \sigma^{2}\left(\frac{1}{n_{1}}+\frac{\hbar_{2}}{n_{2}}\right)\right)>$ independently. and $\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\sigma^{2}} \sim \chi_{n_{1}+n_{2}-2}^{2}$.
By definition of t-distribution:

$$
\begin{gathered}
\frac{\bar{x}_{1}-\bar{x}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sigma \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} / \sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\sigma^{2}} /\left(n_{1}+n_{2}-2\right)} \\
\sim t_{n_{1}+n_{2}-2}
\end{gathered}
$$

\Rightarrow Under Ho, $T=\frac{\bar{x}_{1}-\bar{x}_{2}-\xi_{0}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2-2}}$.
From () $, \quad c=t \alpha / 2, n_{1}+n_{2}-2$
Hence, we reject $H_{0}: \mu_{1}-\mu_{2}=\xi_{0}$ against $H_{1}: \mu_{1}-\mu_{2} \neq \xi_{0}$ at level α if the observed value

$$
\left|\frac{\bar{x}_{1}-\bar{x}_{2}-\xi_{0}}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\right|>t_{\alpha / 2, n_{1}+n_{2}-2} .
$$

Remark:- Consider the testing problem of $H_{0}: \frac{\mu_{1}}{\mu_{2}}=\xi_{0}$ against

$$
H_{1}: \frac{\mu_{1}}{\mu_{2}} \neq \xi_{0}
$$

- Define, $T=\bar{x}_{1}-\xi_{0} \bar{x}_{2} \sim N\left(\mu_{1}-\xi_{0} \mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\xi_{0}^{2} \cdot \frac{\sigma_{2}^{2}}{n_{2}}\right)$

$$
\Rightarrow T \sim N\left(0, \frac{\sigma_{1}^{2}}{n_{1}}+e_{0}{ }_{0}^{2} \cdot \frac{\sigma_{2}^{2}}{n_{2}}\right) \text {, under } H_{0} \text {. }
$$

Case :-I: $\rightarrow\left[\sigma_{1}, \sigma_{2}\right.$ known $]$
Test statistic:- $\frac{\bar{x}_{1}-\bar{x}_{2} \xi_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} \xi_{0}^{2}}} \sim N(0,1)$, under to.
Case:-II: $\rightarrow\left[\sigma_{1}=\sigma_{2}=\sigma\right.$ (unknown) $]$
Test Statistic:-

$$
\frac{\bar{x}_{1}-\bar{x}_{2} \xi_{0}}{s \sqrt{\frac{1}{n_{1}}+\xi_{0}^{2} \frac{1}{n_{2}}}} \sim t_{n_{1}+n_{2}-2} \text {, under } H_{0}
$$

(b) To test Ho: $\sigma_{1} / \sigma_{2}=\xi_{0}$ against $H_{1}: \sigma_{1} / \sigma_{2} \neq \xi_{0}:-$
Case-I:- $\left[\mu_{1}, \mu_{2} \underset{n i}{ }\right.$ known $]$
Here, $\operatorname{sio}^{2}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}}\left(x_{i j}-\mu_{i}\right)^{2}$ is a measure of population variance $\sigma_{i}{ }^{2}, i=1,2$.
Under $H_{0}: \frac{\sigma_{1}}{\sigma_{2}}=e_{0}$, we can expect that

$$
\frac{s_{10}^{2}}{s_{20}^{2}} \simeq \xi_{0}^{2} \Leftrightarrow \frac{s_{10}^{2}}{s_{20}^{2}} \cdot \frac{1}{\varepsilon_{j 0}^{2}} \simeq 1
$$

If the observed $\frac{S_{10}^{2}}{s_{20}^{2}} \cdot \frac{1}{\mathcal{G}_{0}^{2}}>c_{1}(>1)$ or $<c_{2}(<1)$, we shall reject H_{0} in favour of H_{1}, where c_{1} and c_{2} are so chosen that, $P_{H_{0}}\left[\frac{s_{10}^{2}}{s_{20}^{2}} \cdot \frac{1}{\xi_{0}^{2}}>C_{1}\right.$ or $\left.<c_{2}\right]=\alpha$, the level of significance.
Note that,

$$
\begin{aligned}
\text { that, } & \frac{n_{1} s_{10}^{2}}{\sigma_{1}^{2}} \sim \chi_{n_{1}}^{2} \\
& \frac{n_{2} s_{20}^{2}}{\sigma_{2}^{2}} \sim \chi_{n_{2}}^{2} \\
\Rightarrow & \frac{\frac{n_{1} s_{10}^{2}}{\sigma_{1}^{2}} / n_{1}}{\frac{n_{2} s_{20}^{2}}{\sigma_{2}^{2}} / n_{2}} \sim F_{n_{1}, n_{2}} \\
\Rightarrow & \frac{s_{10}^{2}}{s_{20}^{2}} \cdot \frac{1}{\xi_{0}^{2}} \sim F_{n_{1}, n_{2}}, \text { under } H_{0}: \frac{\sigma_{1}}{\sigma_{2}}=\xi_{0} .
\end{aligned}
$$

Now, cone assign equal error probability to both the tails,

$$
\begin{aligned}
P_{H_{0}}\left[\frac{s_{10}^{2}}{s_{20}^{2}} \cdot \frac{1}{\xi_{j_{0}^{2}}^{2}}>C_{1}\right]=\frac{\alpha}{2} & =P_{H_{0}}\left[\frac{s_{10}^{2}}{s_{20}^{2}} \cdot \frac{1}{\varepsilon_{0}^{2}}<C_{2}\right] \\
\Rightarrow C_{1}=F_{\alpha / 2} ; n_{1}, n_{2} \text { and } C_{2} & =F_{1-\alpha / 2 ; n_{1}, n_{2}} \\
& =F_{\alpha / 2} ; n_{1}, n_{2} .
\end{aligned}
$$

The level α test of Ho: $\frac{\sigma_{1}}{\sigma_{2}}=e_{y_{0}}$ against $H_{1}: \frac{\sigma_{1}}{\sigma_{2}} \neq \xi_{0}$ is given by:
Reject H_{0} iff $\frac{8_{10}^{2}}{8_{20}^{2}} \cdot \frac{1}{e_{\delta_{0}^{2}}} \in\left[F_{\alpha / 2} ; n_{1}, n_{2}, F_{\alpha / 2} ; n_{1}, n_{2}\right]$
Case-II : \rightarrow [$\left.\mu_{1}, \mu_{2} \underset{n_{i}}{\text { unknown }}\right]$
Here, $s i^{2}=\frac{1}{n_{i}-1} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}$ is a measure of the population variance $\sigma_{i}^{2}, i=1,2$.

Under $H_{0}: \frac{\sigma_{1}}{\sigma_{2}}=\varepsilon_{y_{0}}$, we can expect that $\frac{l_{1}{ }^{2}}{s_{2}{ }^{2}} \cdot \frac{1}{\varepsilon_{0}{ }^{2}} \simeq 1$.
If $\frac{s_{1}^{2}}{s_{2}^{2}} \cdot \frac{1}{\varepsilon_{y_{0}^{2}}}>c_{1}(>1)$ on $<c_{2}(<1)$, we reject to in favour of H_{1}, where ${ }^{0} c_{1}$ and c_{2} are so chosen that,

$$
P_{H_{0}}\left[\frac{s_{1}^{2}}{s_{2}^{2}}, \frac{1}{\xi_{0}^{2}}>c_{1} \text { or }<c_{2}\right]=\alpha \text {. }
$$

Note that, $\quad \begin{aligned} & \frac{\left(n_{1}-1\right) s_{1}^{2}}{\sigma_{1}^{2}} \sim \chi_{n_{1-1}}^{2} \\ & \left(n_{2}-1\right) s_{2}^{2}\end{aligned} \chi_{n_{2-1}}^{2}$ independently.

Assuming;

$$
\begin{aligned}
& P_{H_{0}}\left[\frac{s_{1}^{2}}{s_{2}^{2}} \cdot \frac{1}{\xi_{0}^{2}}>c_{1}\right]=\frac{\alpha}{2}=P_{H_{0}}\left[\frac{s_{1}^{2}}{s_{2}^{2}} \cdot \frac{1}{\xi_{0}^{2}}<c_{2}\right] \\
\Rightarrow & c_{1}=F \alpha / 2 ; n_{1}-1, n_{2-1} \\
& c_{2}=F_{1-\alpha / 2} ; n_{1}-1, n_{2-1}=F_{\alpha / 2} ; n_{1}-1, n_{2}-1
\end{aligned}
$$

The critical region at level α

$$
\frac{s_{1}^{2}}{s_{2}^{2}} \cdot \frac{1}{\varepsilon_{0}^{2}} \in\left[F_{\alpha / 2 ; n_{2}-1, n_{1}-1}, F_{\alpha / 2 ; n_{1}-1, n_{2}-1}\right]
$$

Ex.1. Let $x_{i_{1}}, x_{i_{2}}, \ldots ., x_{\text {in }}$ be a res. from a poplin. following
$N\left(\mu_{i}, r^{2}\right) v_{i=1}(1) 3$. Find the test procedure from testing $H_{0}: \mu_{1}-2 \mu_{2}+\mu_{3}=0$.
Solution:- To test $H_{0}: \mu_{1}-2 \mu_{2}+\mu_{3}=0$ against $H_{1}: \mu_{1}-2 \mu_{2}+\mu_{3} \neq 0$
F-known:- Under $H_{0}: \mu_{1}-2 \mu_{2}+\mu_{z}=0$; we can expect $\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}$ is arete large then we reject the in fargourid H_{H}. Now, $\bar{x}_{i} \sim N\left(\mu_{i}, \frac{\sigma^{2}}{n}\right)$ independently $\forall i=1(1) \cdot 3$.

$$
\begin{aligned}
& \bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3} \sim N\left(\mu_{1}-2 \mu_{2}+\mu_{3}, \frac{6 \sigma^{2}}{n}\right) \\
& \bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3} \sim N\left(0, \frac{6 \sigma^{2}}{n}\right), \text { under } \text { Ho }_{0} .
\end{aligned}
$$ Ho inf

$$
\left|\frac{\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}}{\frac{\sqrt{6} \sigma}{\sqrt{n}}}\right|>c \text {; where, } c \text { is so chosen that }
$$

$$
P_{H_{0}}\left[\frac{\left|\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}\right|}{\sqrt{6} \sigma / \sqrt{n}}>c\right]=\alpha
$$

$$
\therefore c=\tau_{\alpha / 2} .
$$

[Here, $T=\frac{\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}}{\sqrt{6} \sigma / \sqrt{n}}$, is the test statistic $\sim N(0,1)$]
We reject H_{0} against H_{1}, at the ' α 'level of significance if

$$
\frac{\left|\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}\right|}{\frac{\sqrt{6} \sigma}{\sqrt{n}}} \sim \tau_{\alpha / 2} .
$$

unknown :-] Under H_{0}, we can expect that the observed value $\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3} \simeq 0$. If the observed value
$\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}$ is arete large in magnitude then we reject H_{0}. Now, $\bar{x}_{i} \sim N\left(\mu_{i}, \frac{\sigma^{2}}{n}\right)$
Under Ho: $\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3} \sim N(0,6 \sigma 2 / n)$
and SE. $\left(\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}\right)=\sqrt{\frac{6}{n}} \cdot \sigma$
Define, $s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{1}-1\right) s_{2}^{2}+\left(n_{1}-1\right) s_{3}^{2}}{(3 n-3)}$, as a pooled sample variance of the 3 samples.
clearly, S is an estimate of r and

$$
\hat{S . E}\left(\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}\right)=\sqrt{\frac{6}{n}} \cdot S
$$

Now, comparing the deviation $\left(\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}\right)$ writ. an estimate of its S.E., ie. S.E. $\left(\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}\right)=\sqrt{\frac{6}{n}}$. S If the observed value $\left|\frac{\bar{x}_{1}-2 \bar{x}_{2}+\bar{x}_{3}}{\sqrt{\frac{6}{n}} \cdot s}\right|>C$, then we reject H_{0} against
H_{1}, where, $C=t \alpha / 2 ; 3 n-3$. (Do yourself).
Ex.(2): \rightarrow Let x_{1}, \ldots, x_{n} be a r, 8 , from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $\gamma_{1}, \ldots, r_{n}$ be a n.s. from $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, where μ_{1} is known and the others are unkriown. Find the test procedure of $H_{0}: Q_{1}=\sigma_{2}$.
Solution:- T_{0} test the hypothesis $H_{0}: \sigma_{1}=\sigma_{2}=\sigma$ (say)
μ_{1} is known:- Here $s_{10}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{1}\right)^{2}$ is a measure of σ_{1}^{2} and

$$
\begin{aligned}
& s_{10}=\frac{1}{n} \sum_{i=1} x_{20}^{2}=\frac{1}{m-1} \sum_{i=1}^{m}\left(Y_{i}-\bar{y}\right)^{2}, \text { where } \bar{y} \text { is the measure of } \mu_{2} \\
& s_{10}^{2}
\end{aligned}
$$

Under Ho: $\sigma_{1} / \sigma_{2}=1$, we can expect that $\frac{s_{10}^{2}}{s_{20}^{2}} \simeq 1$. If the observed value $\frac{\delta_{10}^{2}}{s_{20}{ }^{2}}>C_{1}(>1)$ or $\left\langle C_{2}\left(\langle 1)\right.\right.$, we reject H_{0} in favour of H_{1}, where c_{1} and C_{2} are so chosen such that

$$
\begin{aligned}
& d c_{2} \text { are so chosen such that } \\
& P_{\text {Ho }}\left[\frac{8_{10}^{2}}{8_{20}^{2}}>c_{1} \text { or }<c_{2}\right]=\alpha \text {, the level of significance. }
\end{aligned}
$$

Note that, $\frac{n s_{10}^{2}}{\sigma_{1}^{2}} \sim X_{\text {in }}^{2}$

$$
\frac{(m-1) s_{20}^{2}}{r_{2}^{2}} \sim \chi^{2}{ }_{m-1}
$$

$$
\therefore \frac{\frac{n s_{10}^{2}}{\sigma_{1}^{2}} / n}{\frac{(m-1) s_{20}^{2}}{\sigma_{2}^{2}} /(m-1)} \sim F_{n ;} ; m
$$

$$
\Rightarrow \frac{s_{10}^{2}}{s_{20}^{2}} \sim F_{n ; m-1} \text {, under } H_{0}: \sigma_{1}=\sigma_{2}=\sigma \text { (say). }
$$

Now, we assigns equal error probability to both the tail,
\therefore The level α test of $H_{0}: \sigma_{1}=\sigma_{2}$ is given by:
Reject H_{0} iff $\frac{s_{10}^{2}}{s_{20}^{2}} \in\left[F_{\alpha / 2} ; n, m-1, F_{\alpha / 2 ; m-1, n}\right]$

$$
\begin{aligned}
& \therefore P_{H_{0}}\left[\frac{s_{10}^{2}}{s_{20}^{2}}>c_{1}\right]=\frac{\alpha}{2}=P_{H_{0}}\left[\frac{s_{10}^{2}}{s_{20}^{2}}<c_{2}\right] \\
& \Rightarrow c_{1}=F_{\alpha / 2} ; n, m-1 \text { and } c_{2}=F_{1}-\alpha / 2 ; n, m-1 \\
& =F_{\alpha / 2 ; m-1, n} \text {. }
\end{aligned}
$$

Testing Relating to a Bivariate normal Distribution
Suppose in a given population, the variables x and Y are distributed according to a BN $\left(\mu_{x}, \mu_{y}, \sigma_{x}^{2}, \sigma_{y}^{2}, \rho\right)$ law. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$. $\ldots . .,\left(x_{n}, y_{n}\right)$ be a given rios. from this population. Here, $X \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $Y \sim N\left(\mu_{y}, \sigma_{y}^{2}\right)$ with correlation coefficient ρ. (correlated case).
(a) To test: Hor $\mu x-\mu y=\xi_{0}\left(\right.$ correlated case) $:{ }^{\circ}$ (Paired t -test)
When too variables X and Y are measured in the same unit, then we may be interested in testing $H_{0}: \mu_{x}-\mu_{y}=\xi_{0}$.
Define, $\Delta=X-Y$
Blearily, $D \sim N\left(\mu_{D}, \sigma_{D}^{2}\right)$; where $\mu_{D}=\mu_{x}-\mu_{y}$ and $\sigma_{D}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}-2 p \sigma_{x} \sigma_{y}$ Then $d_{i}=x_{i}-y_{i} \quad V_{i=1}(1) n$ can be considered as an observed sample from the univariate normal, i.e. $N\left(\mu_{D}, \sigma_{D}^{2}\right)$ population.
Therefore, the H_{0} reduces to $H_{0}: \mu_{D}=\xi_{0}$
Under $H_{0}: \mu_{D}=\xi_{0}$; we can expect that $\left(\bar{d}-\xi_{0}\right)$ is es mall.
If $\left(\bar{d}-\xi_{0}\right)$ is quite large in magnitude. We suspect tho and give support to $H_{i}: \mu_{D} \neq \xi_{0}$.
Note that, $\bar{\Delta} \sim N\left(\bar{\sigma}_{0}, \frac{\sigma^{2}}{n}\right) ;$ under $H_{0}: \mu_{D}=\xi_{0} O^{2}$
$\Rightarrow\left(\bar{D}-\xi_{0}\right) \sim N\left(0, \frac{\sigma_{D}^{2}}{n}\right)$ which is symmetric about ' O ', Under Ho, with $S_{1} E_{.}=\frac{\sigma_{D}}{\sqrt{n}}$ (unknown)
Now, $\quad \hat{S . E .}=\frac{\hat{\sigma}_{D}}{\sqrt{n}}=\frac{S_{D}}{\sqrt{n}}$, where. $S_{D}=\frac{1}{n-1} \sum_{i=1}^{n}(d i-\bar{d})^{2}$
Comparing the deviation $\left(\bar{d}-\xi_{0}\right)$ co.rit. an estimate of the 8.E. , ie. coir.t. $\frac{S_{D}}{\sqrt{n}}$, if the observed $\left|\frac{\left(\frac{d}{d}-\xi_{0}\right)}{\delta_{D} / / \sqrt{n}}\right|>C$; we reject tho in favour of $H_{1}: \mu_{D} \neq \xi_{0}$, at level α, where c is so chosen that

$$
\begin{aligned}
& P_{H_{0}}\left[\frac{\sqrt{n}\left(\bar{D}-\xi_{0}\right)}{s_{0}}>c\right]=\alpha \\
\Rightarrow & c=t_{\alpha / 2} ; n-1
\end{aligned}
$$

[Here, $\left.\begin{array}{rl} & \frac{\sqrt{n}\left(\overline{-} e_{0}\right)}{\sigma_{D}} \\ \sim N(0,1) \\ & \frac{(n-1) S_{D}^{2}}{\sigma_{D}^{2}} \sim X_{n-1}^{2}\end{array}\right\rangle$ independently, under H_{0}.
Here, $\sqrt{n}\left(\bar{D}-\xi_{0}\right)$

$$
\begin{aligned}
& \therefore \frac{\sigma_{D}}{\sqrt{\frac{(n-1) \cdot S_{D}^{2}}{D_{D}^{2}} /(n-1)}} \sim t_{n-1} \text {, undentio. } \\
& \Rightarrow \frac{\sqrt{n}\left(\bar{D}-E_{j_{0}}\right)}{S_{D}{ }^{2}} \sim t_{n-1} \text {;under Ho.] }
\end{aligned}
$$

Hence, we reject Ho: $\mu_{x}-\mu_{y}=\xi_{0}$ against $H_{1}: \mu_{x}-\mu_{y} \neq \xi_{0}$ at level α, if the observed value $\left|\frac{\sqrt{n}\left(\bar{d}-\xi_{0}\right)}{\Omega_{D}}\right|>t a / 2 ; n-1$.
Remark:- Sometimes, ce may be interested in testing $H_{0}: \eta=\frac{\mu_{x}}{\mu_{y}}=\eta_{0}$.

$$
\Leftrightarrow H_{0}: \mu_{x}-\eta_{0} \mu y=0
$$

Define, $z=x-\eta_{0} \cdot x$
Then, $z \sim N\left(\mu_{z}, \sigma_{z}^{2}\right)$
where, $\mu_{z}=\mu_{x}-\eta_{0}, \mu_{y}$

$$
\sigma_{z}^{2}=\sigma_{x}^{2}+n_{0}^{2} \sigma_{y}^{2}-2 \eta_{0} \cdot P \sigma_{x} \sigma_{y}
$$

Then $z_{i}=x_{i}-\eta_{0} \cdot y_{i} \quad \forall i=1(1)^{n}$ is a r.s. from $N\left(\mu_{z}, \sigma_{z}^{2}\right)$.
Here, $\begin{aligned} & \bar{Z}\left.\sim N\left(\mu_{z}, \frac{\sigma_{z}^{2}}{n}\right)\right\rangle \text { independently, } \\ & \frac{(n-1) s_{z}^{2}}{} \sim X_{n-1}^{2}\end{aligned}$
$\Rightarrow \quad \frac{\sqrt{n}(\bar{z}-0)}{s_{z}} \sim t_{n-1}$; under $H_{0}: \mu z=0$.
The test statistic is, $T=\frac{\sqrt{n} \bar{z}}{S_{z}} \sim t_{n-1}$, under H_{0},
Hence, ese reject $H_{0}: \frac{\mu_{x}}{\mu_{y}}=n_{0}$ against $H_{1}: \frac{\mu_{x}}{\mu_{y}} \neq \eta_{0}$ at level α, if the observed value $\left|\frac{\sqrt{n} \bar{z}}{s_{z}}\right|>t_{\alpha / 2 ; n-1}$.
(b) To test $H_{0}: P=0$ (uncorrelated case):-

Here, $r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sqrt{\sum\left(y_{i}-\bar{y}\right)^{2}}}}$ is an estimate of ρ.
If $|r|$ is quite larger than zero, then we suspect $H_{0}: \rho=0$ and give support to $H_{i}: \rho \neq 0$.

Under, $H_{0}: \rho=0$

$$
\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \sim t_{n-2}
$$

If $|r|>C$, we suspect H_{0} in favour of $H_{r}: P \neq 0$, where c is such that $P_{H_{0}}[|r|>c]=\alpha$

Now, $|r|>c$

$$
\begin{aligned}
& \Leftrightarrow \frac{|r|}{\sqrt{1-r^{2}}}>\frac{c}{\sqrt{1-c^{2}}} \\
& \Leftrightarrow \frac{|r| \sqrt{n-2}}{\sqrt{1-r 2}}>\frac{c \sqrt{n-2}}{\sqrt{1-c^{2}}}=c^{\prime}
\end{aligned}
$$

Hence if $\left|\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}\right|>C^{\prime}$; we reject H_{0} in favour of $H_{i}, \rho \neq 0$, where c^{\prime} is such that $P\left[\left|\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}\right|>c^{\prime}\right]=\alpha$

$$
\Rightarrow c^{\prime}=t \alpha / 2 ; n-2
$$

The critical region of the testing problemis;

$$
W=\left\{\pi:\left|\frac{r \sqrt{n-2}}{\sqrt{1-r 2}}\right|>t_{\alpha / 2 ; n-2}\right\}
$$

Remark:- The above testing is also valid if the distr o of Y giver $x=x$ is normal coth mean asa linear function of x, ie.

$$
Y \mid X=x \sim N\left(\alpha+\beta x, \sigma^{2}\right) ;(\text { say })
$$

(c) To test $H_{0}: \xi=\frac{\sigma_{x}}{\sigma_{y}}=\xi_{0}($ correlated case)]: 一

When two variables are measured in the same units, then we may be interested in testing $H_{0}: \xi=\frac{\nabla_{x}}{\sigma_{y}}=\xi_{0}$
Define, $U=X+e_{0} \cdot Y$

$$
V=x-e_{0} \cdot Y
$$

Then (u,v) follows $B N$ with $\operatorname{cov}(u, v)=\sigma_{x}^{2}-\xi_{u}^{2} \sigma_{y}^{2}$.
Hence, $H_{0}: \frac{\sigma_{x}}{\sigma_{y}}=\xi_{0} \Leftrightarrow H_{0} ; \rho_{U, N}=0$.
Hence, based on the bivaniate data $\left(U_{i}, v_{i}\right), i=1(1) n$; the test of $H_{0}: \rho_{u, v}=0$.
Here, $r_{u, v}=\frac{\sum\left(U_{i}-\bar{u}\right)\left(v_{i}-\bar{v}\right)}{\sqrt{\sum\left(U_{i}-\bar{U}\right)^{2}} \sqrt{\sum\left(V_{i}-\bar{V}\right)^{2}}}$ is an estimate of $\rho_{u, v}$.
Under Ho: $\rho_{U, V}=0$

$$
\begin{gathered}
\quad \frac{r_{u, v} \sqrt{n-2}}{\sqrt{1-r_{v, v}^{2}}} \sim t_{n-2} . \\
\text { If }\left|r_{u, v}\right|>c \Leftrightarrow \frac{\left|r_{u, v}\right|}{\sqrt{1-r^{2} u, v}}>\frac{c}{\sqrt{1-c^{2}}} \\
\quad \Leftrightarrow \frac{\left|r_{u v}\right| \sqrt{n-2}}{\sqrt{1-r_{u, v}^{2}}}>\frac{c \sqrt{n-2}}{\sqrt{1-c^{2}}}=c^{\prime}
\end{gathered}
$$

Hence, if $\left|\frac{r_{u, v} \sqrt{n-2}}{\sqrt{1-r^{2}, v}}\right|>c^{\prime}$, we reject to in favour of $H_{i} i \rho_{v V} \neq 0$, where, c is such that

$$
p\left[\left|\frac{r_{u, v} \sqrt{n-2}}{\sqrt{1-r^{2} u, v}}\right|>c^{\prime}\right]=\alpha \Rightarrow c^{\prime}=t_{\alpha / 2, n-2} .
$$

The critical region of the testing problem is:

$$
W=\left\{r_{u, v}:\left|\frac{r u, v \sqrt{n-2}}{\sqrt{1-r^{2} u, v}}\right|>t \alpha / 2 ; n-2\right\}
$$

Therefore, we reject Ho: $\frac{\sigma_{x x}}{\sigma_{y}}=e_{y}$, against $H_{1}: \frac{\sigma_{x}}{\sigma_{y}} \neq \xi_{0}$
$\Leftrightarrow H_{0}: \rho_{U, V}=0$ against $H_{1}: \rho_{U, v} \neq 0$ at level α, \& the observed value $\left|\frac{\pi u, v \sqrt{n-2}}{\sqrt{1-r^{2} u, v}}\right|>t \alpha / 2 ; n-2$.

TESTING OF HYPOTHESIS
INTRODUCTION:- A statistical hypothesis moil be a hypothesis about the distr of the poplin. As the term suggests, onewishes to decide whether or not some hypothesis that has been formulated is correct. The choice here lies between two decisions: accepting on rejecting the hypothesis'.

A decision procedure for such a problem is called a test of the hypothesis. A problem of testing hypothesis is posed as follows: the decision is to be based on the value of a certain r.v.X, the distr. of which is known to being to a class of distr. Given a riv. x_{1}, \ldots, x_{n} from $f(x, \theta)$, to test cohether the data support $\theta \in \Omega$, where $\Omega_{0} \cup \Omega_{1}=\Omega$.
Definition:- simple \& composite hypothesis
A statistical hypothesis is an assentain or conjecture about the distribution of the population. If the statistical hypothesis specifies the distr of the population completely, then it is called simple hypothesis. If the statistical hypothesis does not specify the distr. of the poplin completely, it is called composite hypothesis.
Examples: - Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $N\left(\theta, 5^{2}\right)$. Now The assumption that " the mean of the distr. is $\leq 17^{\prime \prime}$, is denoted by $H: \theta \leq 17$ and is a statistical hypothesis.
The hypothesis $H: \theta=17$ is a simple hypothesis, since it completely specifies the distr. On the other hand, the hypothesis $H: \theta \leq 17$ is a composite hypothesis, since it does not specify the distr. completely.
Test of statistical Hypothesis:-
Definition: - A test of statistical hypothesis H is a rule on procedure for deciding whether to reject or to accept H on the basis of the given random sample from the population.
Example: - Let $x_{1}, x_{2}, \ldots, x_{n}$ be an observed bis. from $N\left(\theta, 5^{2}\right)$. Consider a hypothesis $H: \theta=17$, one possible test is as follows:

$$
\text { Reject } H \text { iff } \bar{x}<17-\frac{5}{\sqrt{n}} \text { or } \bar{x}>17+\frac{5}{\sqrt{n}}
$$

Critical Region and Test:- Let x denotes the collection of all possible samples of size n i,,$x=\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$: $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a possible value of $\left.\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}$. Here x is called the sample space or potential dataset. A test procedure assigns to each
possible value of the data $\underset{\sim}{x}$ of x. One of the two decision: accept H or reject H, and thereby divides the sample space x into two complementary regions x_{0} and x_{1} such that if x falls in x_{0}, the hypothesis H is accepted, otherwise it is rejected.
acceptance and x_{1} is called the region of rejection or critical region of H.
The choice of Null Hypothesis: - In any testing problem, to test whether the data supports the hypothesis $H_{1}: \theta \in \Omega_{0}$ on the hypothesis $H_{2}: \theta \in \Omega_{1}$.

In the formulation of testing problem, the poles of H_{1} and H_{2} are not symmetric. In order to decide which one of the two hypothesis should be taken as null hypothesis H_{0}, the difference between the roles and the implications of this two term should be clearly understood. In testing hypothesis, a statistician should be completely impartial and should have no brief for any party or company, nor should he allows his personal views to influence the decission. Let us suppose that, the bulbs manufactured on the standord process have an averages life μ hours and μ_{0} is the mean life of bulb manfartures by the new process, and three hypothesis may be setup in this approach-

$$
\text { i) } \left.\mu_{0}>\mu, \quad i i\right\rangle \mu_{0}\langle\mu, \quad i i\rangle \mu_{0}=\mu_{1} \text {. }
$$

The first two statements appeared to be biased since toy reflect a preferential attitude to one or the other of the two processes. Hence the best course is to addopt the hypothesis of no difference asstated in (iii). This suggests that the statistician should take up the nutral or null attitude regarding the outcome of the test.

This neutral on non-committal attitude of the statistician before the sample values are taken as key of the choice of the null hypothesis. Keeping in mind the potential losses due to the coring decision, the decision make, of some cohat conservative in holding the null-hypothesis as true unless their is the strong evidence that is false and to him the consequences of corongly rejecting a null hypothesis since to be more serious than those of corongly accepting it. Hence, we denote by H_{0} that hypothesis among H_{1} and H_{2}, the false rejection of cohich is regarded as more remous and call it the null hypothesis. The otter hypothesis will be denoted by H_{A} or H_{1} and call it the alternative hypothesis.
Performance of a Test: - While performing a test one may arrive at the correct decision on may commit one of the two errors:
(i) Rejecting the null hypothesis H_{0} cohen it is true,
(ii) Accepting H_{0} when it is false.

True state	Decission from sample	
	Reject H_{0}	Accept Ho.
H_{0} is true	Wrong [Type I error]	Correct
H_{0} is false Cor, H_{A} is true)	Correct	Wrong
[Type II error]		

Definition: - Rejection of null hypothesis: Ho when it is true, is
called Type-I error.
and, Acceptance of to when it is false is called Type-II error The probability of rejecting H_{0} when it is true $=P[\underset{\sim}{x} \in W \mid \theta], \theta \in \Omega_{0}$, cohere W is the critical region of the test of $H_{0}: \theta \in \Omega_{0}$ against $H_{1}: \theta \in \Omega_{1}$, is called the probability of Type-Ierror. The probability of accepting H_{0} cohen it is false $=P\left[X \in W^{c} / \theta\right], \theta \in \Omega$

$$
=1-p[\underset{\sim}{x} \in W \mid \theta], \vec{\theta} \in \Omega_{1},
$$ is called the Probability of type-II propr.

It is desirable to carry out the test in a manner
which keeps the probabilities of two types of error to a minimum level. Unfortunately, for a given sample size n, both the error probabilities can't be controlled simultaneously..
[Let C and D be two critical regions such that $C C D$.
Then $P_{\theta}[C] \leq P_{\theta}[D], \theta \in \Omega_{0}$
and $1-P_{\theta}[C]>1-P_{\theta}[D], \theta \in \Omega_{1}$.
Thus by shrinking or enlarging a given critical region, ce can decrease one type of error probability of the cost of increase is the ensor probability of other type.]

Level of Significance, Size and Power of a test:

 probability of type-I error and then to minimize the probability of type-II error. Note that here woe control that error which is more serious or important that 'is type-I error thus, one selects a number $\alpha \in(0,1)$ and impose the condition that $P[x \in W / \theta] \leq \alpha, \forall \theta \in \Omega_{0}$, then the quantity α is called the level of significance of the testing problem.The choice of level of significance, of course, depends on the experimental himself. If he thinks that, the rejection of null hypothesis, when actually it is true, will be a serious error, he will choose a rather small value of α, say $0.01,0.001$. On the other hand, if he thinks that this error is not 80 serious, he will not mind taking a value as high as $05,-10$.
The number $\sup _{\theta \in \Omega 0} P[\underset{\sim}{x} \in W / \theta]$ is called the size of the test is given by the critical region W. The size of a test gives the maximum possible probability of committing the type-I error and it provides the quality of the test. Now, subject to the condition, " $P[\underset{\sim}{x} \in W / \theta] \leqslant \alpha, \forall \theta \in \Omega_{0}$ " $\Leftrightarrow \sup _{\theta \in \Omega_{0}}[\underset{\sim}{x} \in W / \theta] \leqslant \infty$
$\Leftrightarrow\{$ sizes of the enritical region $W\} \leq \alpha$, it is desired to minimize $P[x \in W C / \theta], \theta \in \Omega_{1}$. \Leftrightarrow to maximize $P[\underset{\sim}{x} \in W / \theta], \theta \in \Omega_{1}$, to get the best test.

The probability of rejection of the null hypothesis H_{0}, cohen it is false, i.e., $P[x \in W \mid \theta]$ evaluated for a given $\theta=\theta, \in \Omega_{1}$; is called the Power of the test given by the critical region W of H_{0} against H_{1} at $\theta=\theta_{1}$.

Considering as a function of $\theta_{1}, \theta \in \Omega$, the paramet. space, $P[X \in W / \theta]$ is called the power function of the test given by the critical region W and it is denoted by $\beta_{W}(\theta)$. Note that, for $\theta \in \Omega_{0}$,

$$
\begin{aligned}
& \text { te that, for } \theta \in \Omega_{0}, \\
& \beta_{W}(\theta)=P[x \in W / \theta]=\text { Probability of type-I error. }
\end{aligned}
$$ and for $\theta \in \Omega_{1}$,

$$
\begin{aligned}
\beta_{w}(\theta) & =P[x \in W / \theta] \\
& =1-P\left[x \in W^{c} / \theta\right] \\
& =1-\text { [Probability of type II error }]
\end{aligned}
$$

Remark: - Size α and level α tests:

$$
\begin{aligned}
& \text { If } P[x \in W / \theta] \leq \alpha, \forall \theta \in \Omega_{0} \\
& \Leftrightarrow \sup _{\theta \in \Omega_{0}}[x \in W / \theta] \leq \infty
\end{aligned}
$$

$\Leftrightarrow\{$ size of the test $w\} \leq \alpha$, the test given by the critical region W is called a level α test.

If $\operatorname{Sup}_{\theta \in \Omega 0} P[\underset{\sim}{x} \in W / \theta]=\alpha_{1}$, say,
the test given by the critical region W is a size α_{1} test.
Hence all the test whose sizes are less that on equal to α, the level of significance of the testing problem, are known as level α tests.

- Why $\{1-P$ (TypeII error) $\}$ is called the power of a test?

Ans:- 1-P (Typ eII error) = Prob [Rejecting a false hypothesis] which is disenable and the more the probability the more powerful will be the test for testing $H_{0} V_{S} H_{1}$. That is why $\{1-P($ Type II error $)\}$ is said to be the Power of a test.

Ex.1. A sample of size one is taken from $\operatorname{Exp}\left(\operatorname{mean} \frac{1}{\theta}\right)$. To test $H_{0}: \theta=2$ against $H_{1}: \theta=1$. Consider the critical region W : reject H_{0} iff $x \geq 1$. Find the probability of type I errors type -II errors.
Solution:-
The critical region, $W=\{x: x \geqslant 1\}$
The power function of W is $\beta(\theta)=P[x \in W / \theta]$

$$
\text { or, } \begin{aligned}
& P[x \geqslant 1 / \theta] \\
&=1-P[x<1 / \theta]=P[x \geqslant 1 \mid \theta] \\
&=1-\int_{0}^{1} \theta e^{-\theta x} d x \\
&=\int_{1}^{\infty} \theta e^{-\theta x} d x \\
&=\lim _{t \rightarrow \infty} \int_{1}^{-\theta} \theta e^{-\theta x} d x \\
&=\lim _{t \rightarrow \infty}\left[-e^{-\theta x}\right]_{1}^{t} \\
&=\lim _{t \rightarrow \infty}\left[e^{-\theta}-e^{-\theta t}\right] \\
&=e^{-\theta} .
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-\theta} \\
\text { Probability of type-I enron: } & =P\left[x \in W / H_{0}\right] \\
& =P[x \in W / \theta=2] \\
& =\beta(\theta=2) . \\
& =e^{-2} \\
\text { Probability of type-II error: } & =P\left[x \in W C / H_{1}\right] \\
& =1-P[x \in W / \theta=1] \\
& =1-\beta(1) \\
& =1-e^{-1} .
\end{aligned}
$$

Ex.2. Leet $\dot{X}_{1}, \ldots, x_{n}$ be a res. from $N\left(\theta, 5^{2}\right)$. To test $H_{0}: \theta \leq 17$ against $H_{1}: \theta>17$. Find the size and the power function of the test: reject H_{0} iff $\bar{x}>17+\frac{s}{\sqrt{n}}$.
Solution:- Critical region: $W=\left\{x: \bar{x}>17+\frac{5}{\sqrt{n}}\right\}$
The power function of the test is

$$
\begin{aligned}
\beta(\theta)=P[x \in W \mid \theta] & =P_{\theta}\left[\bar{X}>17+\frac{S}{\sqrt{n}}\right] \\
& =P_{\theta}\left[\frac{\bar{x}-\theta}{5 / \sqrt{n}}>\frac{17-\theta}{5 / \sqrt{n}}+1\right] \\
& =1-\Phi\left(\frac{17-\theta}{5 / \sqrt{n}}+1\right)\left[\because \text { as } \bar{x} \sim N\left(\theta, \frac{5^{2}}{n}\right)\right. \\
& =\Phi\left(-1+\frac{\theta-17}{5 / \sqrt{n}}\right)[\because \Phi(\alpha)+\Phi(1-\alpha)=1]
\end{aligned}
$$

$$
\begin{aligned}
\text { Size of the test } & =\sup ^{\theta \in \Omega_{0}} P[x \in W / \theta] \\
& =\sup _{\theta \in \Omega_{0}} \beta(\theta) \\
& =\sup \Phi\left(-1+\frac{\theta-17}{5 / \sqrt{n}}\right) \\
& =\Phi\left(-1+\frac{17-17}{5 / \sqrt{n})}\right) \\
& =\Phi(-1)
\end{aligned}
$$

\& $\Phi\left(-1+\frac{\theta-17}{5 / \sqrt{n}}\right)$ is an increasing function of θ.]

Ex.3. Let X_{1}, x_{2} be a random sample from $R(0, \theta)$. To test $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \neq \theta_{0}$. Find the probabilities of type I and type II error of the test: reject H_{0} if $\max \left(x_{1} x_{2}\right)>\theta_{0} \stackrel{n}{=}<\theta_{0} \sqrt{\alpha}$ [c.0. 2005]
Solution:- Let $M=\max \left\{x_{1}, x_{2}\right\}$
critical region: $W=\left\{\left(x_{1}, x_{2}\right): \max \left(x_{1}, x_{2}\right)>\theta_{0}\right.$ or $\left.<\theta_{0} \sqrt{\alpha}\right\}$
The power function of the test:

$$
\begin{aligned}
\beta(\theta) & =P\left[\left(x_{1}, x_{2}\right) \in W / \theta\right] \\
& =P_{\theta}\left[M>\theta_{0} \text { or }<\theta_{0} \sqrt{\alpha}\right] \\
& =1-P_{\theta}\left[\theta_{0} \sqrt{\alpha} \leq M \leq \theta_{0}\right] \\
& =1-\left\{F_{M}\left(\theta_{0}\right)-F_{M}\left(\theta_{0} \sqrt{\alpha}\right)\right\} \\
& =1-\left\{\left(\frac{\theta_{0}}{\theta}\right)^{2}-\left(\frac{\theta_{0} \sqrt{\alpha}}{\theta}\right)^{2}\right\}, \text { where } \\
\text { Prob. of type } I \text { error } & =P\left[\left(x_{1}, x_{2}\right) \in W / \theta=\theta_{0}\right] \\
& =\beta\left(\theta_{0}\right) \\
& =1-(1-\alpha)=\alpha
\end{aligned}
$$

$$
\begin{aligned}
F_{M}(m) & =\left(\frac{m}{\theta}\right)^{2}, 0<m<\theta \\
& =1-\left(\frac{\theta_{0}}{\theta}\right)^{2}(1-\alpha)
\end{aligned}
$$

$$
\begin{aligned}
\text { Prob. of type II error } & =P\left[\left(x_{1}, x_{2}\right) \in W c / \theta\right], \theta \neq \theta_{0} \\
& =1-\beta(\theta), \theta \neq \theta_{0} \\
& =\left(\frac{\theta_{0}}{\theta}\right)^{2}(1-\alpha), \theta \neq \theta_{0} .
\end{aligned}
$$

Ex.4. Let X_{1}, x_{2} be a bis. from an exponential distribution with mean θ. To test $H_{0}: \theta=2$ against $H_{1}: \theta=4$. consider the critical region
$C=\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \geq 9.5\right\}$. Find the size and power of the test provided by the critical region C.
Hints: -

$$
\begin{aligned}
\beta(\theta) & =P_{\theta}\left[x_{1}+x_{2} \geqslant 9 \cdot 5\right] \\
& =P_{\theta}[y \geqslant 9 \cdot 5], \text { where } y=x_{1}+x_{2} \sim \operatorname{Gamm} \cdot(\theta, n=2) \\
& =\int_{9 \cdot 5}^{\infty} \frac{1}{\Gamma(2) \theta^{2}} e^{-x / \theta} \cdot x^{2-1} d x \\
& =\int_{9 \cdot 5 / \theta}^{\infty} e^{-z} z d z, \text { where } x / \theta=z \\
& =\left[-z e^{-z}-\int\left(-e^{-z}\right) d z\right]_{9.5 / \theta}^{\infty} \\
& =\left[(z+1) e^{-z}\right]_{9.5 / \theta}^{\infty} \\
& =\left\{1+\frac{19}{2 \theta}\right) e^{-19 / 2 \theta}
\end{aligned}
$$

Ex.5. An urn contains 10 marbles of which M are white and $10-M$ are black. To test $H_{0}: M=S$ against $H_{1}: M=6$, one draws 3 marbles from the urn WOR. The null hypothesis is rejected if the sample contains 2 or 3 white marbles: $0 . W$. it is accepted. Find the size and The power of the test.
Hints:- Let X be the no. of cohite marbles in a sample of
Therefore, $P_{M}[X=x]=\left\{\begin{array}{c}\binom{M}{x}\binom{10-M}{3-x} \\ \binom{10}{3}, x=0,1,2,3 . \\ 0,\end{array}\right.$

$$
W=\{x: \quad x=2,3\}
$$

Power function, $\beta(M)=P_{M}(X \in W)=P_{M}(X=2,3)$

$$
=\frac{\binom{M}{2}\binom{10-M}{1}}{\binom{10}{3}}+\frac{\binom{M}{3}}{\binom{10}{3}}
$$

Scanned by CamScanner

Ex.6. A man has 6 dice out of which an unknown no. m, is known to be bias, so that when tossed these alcoays, show 6 , the rest are all conbiased. To test $H_{0}: m=2$ against alternative. $H_{1}: m=1$. The following rule is suggested : toss all the dice and reject H_{0} if the no. of sixes is 30 less. Find the probability of type-I and type II error. [C.U.]
Solution:-
Define, $\quad x_{i}=\left\{\begin{array}{l}1 \text { if the eth die results in 'six'. } \\ 0 \\ 6\end{array}\right.$ ow, $i=1(1) 6$

$$
w=\left\{\left(x_{1}, \ldots, x_{6}\right): \sum_{i=1}^{x_{i}} \leq 3\right\}
$$

Power function:

$$
\begin{aligned}
\beta(m) & =P(\underset{\sim}{x} \in W / m) \\
& =P_{m}\left[\sum_{i=1}^{6} x_{i} \leq 3\right] \\
& =P\left[\sum_{i=1}^{6-m} x_{i} \leq 3-m\right]
\end{aligned}
$$

[WLG; let the last m dice are so biased that they always show six, i.e. $x_{6-m+1}=\cdots \cdots=x_{6}=1$.

$$
\begin{aligned}
\text { Probability of type II error } & =1-\beta(1) \\
& =1-)^{2} 1
\end{aligned}
$$

$$
=1-\sum_{x=0}^{2}\binom{5}{x} \frac{5^{5-x}}{6^{5}}
$$

Test Problem:- For testing $H_{0}: \theta \in(H)_{0}$ Vs. $H_{1}: \theta \in(H)-(H)$ at $100 \times \alpha \%$ level of significance the triplet $(\alpha,(H), \leftrightarrow)$) is called the test problem.

$$
\begin{aligned}
& \left.\sum_{i=1}^{6} x_{i} \leq 3 \Leftrightarrow \sum_{i=1}^{6-m} x_{i} \leq 3-m\right] \quad \therefore(m)=\sum\binom{6-m}{x}\left(\frac{1}{6}\right)^{x} \\
& \left(\frac{5}{6}\right)^{6-m-x} \\
& \text { probability of type } I \text { error }=\beta(m=2) \text {. } \\
& =\sum_{x=0}^{1}\binom{4}{x} \frac{5^{4-x}}{6^{4}}
\end{aligned}
$$

Test of Significance: - Suppose that $x \sim N\left(\mu, \sigma^{2}\right)$, where σ is known but μ is unknown.

We wish to test $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$. In order to test H_{0}, let us assume, to begin with, that Ho is true. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a given bis. from $N\left(\mu, \sigma^{2}\right)$.

$$
\left[N . T_{1} \bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \Rightarrow \bar{x} \sim N\left(\mu_{0}, \frac{\sigma^{2}}{n}\right) \text {, under } H_{0}: \mu=\mu_{0}\right.
$$

$$
\left.\Rightarrow \frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \sim N(0,1) \text {, under } H_{0}\right]
$$

For the given ri, $x_{1}, x_{2}, \ldots, x_{n}$ if $t_{0}: \mu=\mu_{0}$ is true, that we can except that $\bar{x} \simeq \mu_{0}$,i.e. $\left(\bar{x}-\mu_{0}\right)$ is small. If $\left|\bar{x}-\mu_{0}\right|$ is quite large (positive.) quantity, then eve suspect H_{0}. Comparing the deviation $\left(\bar{x}-\mu_{0}\right)$ coir. $t_{\text {. ' }}$ its.

$$
\text { suspect Ho. Comparing the i.e. S.E. }\left(\bar{X}-\mu_{0}\right)=\sqrt{V\left(\bar{x}-\mu_{0}\right)}=\sqrt{V(\bar{x})}=\frac{\sigma}{\sqrt{n}} \text {, }
$$

if $\left|\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}\right|>c$, where c is the quantity eohich is sufficiently large, then we reject $H_{0}: \mu=\mu_{0}$ in favour of $H_{1}: \mu \neq \mu_{0}$.
If we assign the probability of false rejection of t_{0} as a small quantity α, then ' c ' is so chosen that

$$
P_{H_{0}}\left[\left|\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}\right|>c\right]=\alpha
$$

[In particular, $P_{H_{0}}\left[\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}\right|>2.576\right]=0.01$,
ie. in repeated sampling from the population under $H_{0}: \mu=\mu_{0}$ in only one out of hundred samples, the value $\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}\right|$ is expected to exceeds 2.576 . If in an observed sample $\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}\right|$ exceeds 2.576 , then it means that the value has been obtained which is very improbable under H_{0} and as the sample is regarded as most likely samples, we shall suspect H_{0}. Hence, the fact " $P_{H_{0}}\left[\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}\right|>2.576\right]=0.01$ " provides a test for H_{0} against H_{1}]

Therefore, we reject $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$
at level of significance α iff the observed value
$\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0} 0^{\circ}\right)}{\sigma}\right|>c$, where c is so chosen that

$$
P_{H_{0}}\left[\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}\right|>c\right]=\alpha .
$$

Hence, a test of this kind is called a test of significance.

Test of Significance related to a Univariate Normal Distribution:-
Let $X_{1}, X_{2}, \ldots, X_{n}$ be an observed random sample from $N\left(\mu, \sigma^{2}\right)$ distr.
Define, $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
(a) To test $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$ [WBSO'1]

Case I : σ known
Under $H_{0}: \mu=\mu_{0}$, we can except that $\left(\bar{x}-\mu_{0}\right)$ is small. If the observed value of $\left|\bar{x}-\mu_{0}\right|$ is quite large in magnitude, then we shall suspect $H_{0}: \mu=\mu_{0}$ and support $H_{1}: \mu \neq \mu_{0}$. Now comparing the deviation $\left(\bar{x}-\mu_{0}\right)$ w.r.t. its S.E., i.e. S.E. $\left(\bar{x}-\mu_{0}\right)=\frac{\sigma}{\sqrt{n}}$, if the observed value $\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}\right|>c$, where c is sufficiently large, then wererect H_{0} infavour of $H_{1}: \mu \neq \mu_{0}$.
Let, the level of significance be α.
Here, ' c ' is so chosen that
$P_{H_{0}}\left[\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}\right|>c\right]=\alpha$, Note that, under H_{0},

$$
\bar{x} \sim N\left(\mu_{0}, \frac{\sigma^{2}}{n}\right) \Rightarrow \frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma} \sim N(0,1)
$$

[If $Z \sim N(0,1)$, then $P\left[z>T^{\prime} \alpha\right]=\alpha$ and $P\left[z>T_{1-\alpha}\right]=1-\alpha$, Clearly, $\tau_{1}-\alpha=-\tau_{\alpha}$, τ_{α} is known as the upper $-\alpha$ point of standard normal deviate.

$$
\text { Hence, } \begin{aligned}
& \alpha=P_{H_{0}}[|z|>c] \\
&=2 P[z>c] \\
& \Rightarrow P[z>c]=\alpha / 2 \\
& \Rightarrow c=\tau \alpha / 2^{\circ}
\end{aligned}
$$

$=-\tau_{\alpha}$

Hence, we reject $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$ at level of significance α iff the observed value

$$
\left|\frac{\sqrt{n}\left(\dot{\bar{x}}-\mu_{0}\right)}{\sigma}\right|>\tau_{\alpha / 2}
$$

Remark:-
(1)

Null Hypothesis
$H_{0}: \mu=\mu_{0}$

Case

- known
i) $H_{1}: \mu>\mu_{0}$
ii) $H_{1}: \mu<\mu_{0}$

Critical region
i) $\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}>\tau \alpha$
ii) $\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}<\tau_{\alpha}$.
(2)

By acceptance of a hypothesis, woe don't mean that it is proved to be true. All that is implied is that so far as the given sample is concern, we find no reason to question the validity of the hypothesis. Nor does rejection of Ho mean a disprove of H_{0}. It means simple that, in the light of the given sample, to does not seem to be a plausible hypothesis.

Case II: σ unknown
[Student's t-test]
Under Ho: $\mu=\mu_{0}$ Cool have, $\left.E(\bar{X})=\mu_{0}\right)$, we can expect that $\left(\bar{x}-\mu_{0}\right)$ is small. If the observed value $\left(\bar{x}-\mu_{0}\right)$ is large in magnitude, we suspect H_{0} and indicates support to $H_{1}: \mu \neq \mu_{0}$. Now, comparing the deviation $\left(\bar{x}-\mu_{0}\right)$ win .t. an estimate of its S.E., i.e. $\hat{S . E}\left(\bar{x}-\mu_{0}\right)=\frac{\hat{\sigma}}{\sqrt{n}}=\frac{s}{\sqrt{n}}$, if the observed value $\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{S}\right|>C, C$ is sufficiently large, we reject
H_{0} in favour of $H_{1}: \mu \neq \mu_{0}$, where c is so chosen that

$$
\begin{equation*}
P_{H_{0}}\left[\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{S}\right|>c\right]=\alpha \text {, the level of significance. } \tag{*}
\end{equation*}
$$

Now, under $H_{0}: \mu=\mu_{0}$,

$$
\left.\begin{array}{rl}
& \bar{X} \sim N\left(\mu_{0}, \frac{\sigma^{2}}{n}\right)>\text { independently. } \\
& \frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
\end{array}\right)=\left\{\begin{array}{l}
\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma} \sim N(0,1) \\
\Rightarrow \\
\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
\end{array}>\right.\text { independently. }
$$

By definition of t-distribution,

$$
\frac{\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}}{\sqrt{\frac{(n-1) s^{2}}{\sigma^{2}} /(n-1)}} \sim z_{n-1} \text {, under } H_{0}
$$

$\Rightarrow \frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{s} \sim t_{n-1}$, under Ho.
[If $t \sim z_{n}$-distr, then $p[t>t \alpha, n]=\alpha$ and

$$
P\left[t>t_{1-\alpha, n}\right]=1-\alpha
$$

Clearly, $t_{1-\alpha, n}=-t_{\alpha, n}$.
Here t, α, n is known as the upper $-\alpha$ point of the t-distr with n degree of freedom.
If $Z \sim N(0,1)$, then
$P[|z|>C]<P[|t|>C]$, for large C.

$$
c
$$

From (*), $\alpha=P_{H_{0}}[(t)>c]$, where $t \sim t n-1$, under H_{0}.

$$
\begin{aligned}
& =2 P_{H_{O}}[t>c] \\
& \Rightarrow P_{H_{O}}[t>c]=\alpha / 2 \\
& \Rightarrow C=t \alpha / 2, \overline{n-1} .
\end{aligned}
$$

Hence, we reject $H_{0}: \mu=\mu_{0}$ againort $H_{1}: \mu \neq \mu_{0}$ at α level of significance iff the observed value

$$
\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{s}\right|>t_{\alpha / 2}, \overline{n-1}
$$

Remark:-

$$
\begin{array}{lll}
\hline \text { Null hypothesis } \\
H_{0}: \mu=\mu_{0} & \text { Cause } & \begin{array}{l}
\text { Alternative } \\
\text { Hypothesis }
\end{array} \\
\begin{array}{ll}
\text { i) } H_{1}: \mu>\mu_{0} & \text { i) } \frac{\text { Critical region }}{\sqrt{n}\left(\bar{x}-\mu_{0}\right)} \sim t_{\alpha, n-1} \\
\text { ii) } H_{1}: \mu<\mu_{0} & \text { ii) } \frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{s} \sim t_{\alpha, n-1}
\end{array}
\end{array}
$$

(b) T_{0} test $H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma \neq \sigma_{0}$

Case I: μ known
Note that $s_{0}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$ is a meas ere of population variability σ^{2}. Under $H_{0}: \sigma=\sigma_{0}$, we can except that $s_{0}{ }^{2} \simeq \sigma_{0}{ }^{2}$ i. ie. $\frac{s_{0}{ }^{2}}{\sigma_{0}{ }^{2}} \simeq 1$. If the observed value $\frac{8_{0}^{2}}{\sigma_{0}^{2}}$ is esther quite smaller on quite larges than unity, then we shall suspect $H_{0}: \sigma=\sigma_{0}$ and give support to $H_{1}: \sigma \neq \sigma_{0}$. If the observed value $\frac{s_{0}{ }^{2}}{\sigma_{0}{ }^{2}}<C_{1}(<1)$ or $\frac{s_{0}{ }^{2}}{\sigma_{0}{ }^{2}}>c_{2}(>1), c_{1}$ is sufficiently smaller and c_{2} is sufficiently larger than ' 1 ', then we reject $H_{0}: \sigma=\sigma_{0}$ in favour of $H_{1}: \sigma \neq \sigma_{0}$. If we assign the level of significance a, then C_{1} and C_{2} are so chosen that $P_{H_{0}}\left[\frac{S_{0}{ }^{2}}{\sigma_{0}{ }^{2}}\left\langle C_{1}\right.\right.$ or $\left.\rangle C_{2}\right]=\alpha$, Note that, under H_{0},

$$
\frac{s_{0}{ }^{2}}{\sigma_{0}^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n \sigma_{0}^{2}} \text {, where } \frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{\sigma_{0}{ }^{2}} \sim \chi_{n}^{2} \text {. }
$$

[Here, $P\left[\chi_{n}^{2}>\chi_{\alpha, n}^{2}\right]=\alpha$ and $P\left[X_{n}^{2}>X_{1-\alpha, n}^{2}\right]=1-\alpha$ $X_{\alpha, n}^{2}$ is known as the upper. α point of χ^{2}-distr with n d.f.

We assign equal probability to tails of the sampling dints of $\frac{\sum\left(x_{i}-\mu\right)^{2}}{\sigma_{0}^{2}}$.
Hence, $P_{H_{0}}\left[\frac{s_{0}{ }^{2}}{\sigma_{0}{ }^{2}}<C_{1}\right]=\frac{\alpha}{2}=P_{H_{0}}\left[\frac{s_{0}{ }^{2}}{\sigma_{0}{ }^{2}}>C_{2}\right]$

$$
\begin{aligned}
& \Rightarrow P_{H_{0}}\left[\frac{n s_{0}^{2}}{\sigma_{0}^{2}}<n C_{1}\right]^{-1}=\frac{\alpha}{2}=P_{H_{0}}\left[\frac{n s_{0}^{2}}{\sigma_{0}^{2}}>n C_{2}\right] \\
& \Rightarrow P_{H_{0}}\left[X_{n}^{2}<n C_{1}\right]=\frac{\alpha}{2}=P_{H_{0}}\left[X_{n}^{2}>n C_{2}\right] \\
& \Rightarrow n C_{1}=X_{1-\alpha / 2, n}^{2} ; n C_{2}=X_{\alpha / 2, n}^{2} .
\end{aligned}
$$

Hence, we reject $H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma \neq \sigma_{0}$ at α level of significance if the observed value

$$
\begin{aligned}
& \frac{\sum\left(x_{i}-\mu\right)^{2}}{\sigma_{0}^{2}}<\chi_{1-\frac{\alpha}{2}, n}^{2}, \text { or, } \\
& \frac{\sum\left(x_{i}-\mu\right)^{2}}{\sigma_{0}^{2}}>\chi_{\frac{\alpha}{2}, n .}^{2}\left[\frac{s_{0}^{2}}{\sigma_{0}^{2}}<c_{1} \Rightarrow \frac{\sum\left(x_{i}-\mu\right)^{2}}{\sigma_{0}^{2}} \leqslant n c_{1}\right. \\
& \text { problem, depending on the nature of the alternative } \left.x_{1-\frac{\alpha}{2}, n}^{2}\right]
\end{aligned}
$$

In a testing problem, depending on the nature of the alternative hypothesis, if the left tail/right tail/both the tails of the curve the critical region, then the test is called the left tailed right tailed/two-tailed test.
In testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0}$ for a $N\left(\mu, \sigma^{2}\right)$ poplin. critical region: $\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{8}>t_{\alpha, n-1}$. The value $t_{\alpha, n-1}$ is known as the critical s value.

The critical value for a given level of significance (α) in the boundary of the acceptance region of a test of a testing problem.

Case II: μ unknown
Here $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$ is a measure of a population variance $\left(\sigma^{2}\right)$, Under $H_{0}: \sigma=\sigma_{0}$, we can expect that $\frac{s^{2}}{\sigma_{0}^{2}} \simeq 1$. If the observed $\frac{s^{2}}{\sigma_{0}^{2}}$ is quite large on small relative to, 1, we suspect H_{0} and give support to

$$
H_{1}: \sigma_{0} \neq \sigma_{0}
$$

If the observed value of $\frac{s^{2}}{\sigma_{0}{ }^{2}}>c_{1}(>i)$ or $\frac{s^{2}}{\sigma_{0}{ }^{2}}<c_{2}(<1)$, Then we reject H_{0} in favour of $H_{1}: \sigma \neq \sigma_{0}$, where C_{1} and C_{2} are so chosen that

$$
P_{H_{0}}\left[\frac{i^{2}}{\sigma_{0}^{2}}>C_{1} \text { or }<c_{2}\right]=\alpha
$$

Now, $\frac{(n-1) s^{2}}{\sigma_{0}^{2}} \sim \chi_{n-1}^{2}$, under H_{0}.
We assign equal error probabilities to both the tails of the distribution:

$$
P_{H_{0}}\left[\frac{s^{2}}{\sigma_{0}^{2}}>C_{1}\right]=\frac{\alpha}{2}=P_{H_{0}}\left[\frac{s^{2}}{\sigma_{0}^{2}}<C_{2}\right]
$$

Now,

$$
\begin{aligned}
\frac{\alpha}{2} & =P_{H_{0}}\left[\frac{(n-1) \cdot s^{2}}{\sigma_{0}^{2}}>(n-1) c_{1}\right]=P_{H 0}\left[\chi_{n-1}^{2}>(n-1) c_{1}\right] \\
& \Rightarrow(n-1) c_{1}=\chi^{2} \alpha / 2 ; \overline{n-1}
\end{aligned}
$$

Similarly; $\quad(n-2) c_{2}=\chi_{1-\alpha / 2 ;}^{2} \frac{1}{n-1}$
Hence we reject $H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma \neq \sigma_{0}$ at α-level of significance if the observerved

$$
\frac{(n-1) s^{2}}{\sigma_{0}^{2}}>X_{\alpha / 2 ; n-1}^{2} \text { or }<X_{1-\alpha / 2 ; n-1}^{2}
$$

Remark:-

Test Statistic: In a testing problem, a test procedure or thin the statistic is is called the test statistic of the then is defined in terms of a the testing problem.
$N\left(\mu, \sigma^{2}\right)$ population, In the testing problem of testing $H_{0}: \mu=\mu_{0}$ in

$$
T=\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{S}
$$

Cintical value on point: -
In a testing problem, the boundary point (value) of the acceptance region of a test is called the critical point - (value) of the test.

- In a test : reject H_{0} iff $\frac{\sqrt{n}\left(\bar{x}_{-}-\mu_{0}\right)}{8}>t \alpha, n-1$ of
$H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0}$, the point/value $t_{\alpha, n-i}$ is the critical value of the test.
Left tailed, Right tailed, both tailed tests: n In a testing problem, it is a test procedure or critical region uses the left/might/both tails of the curve of the sampling distribution of the test statistic is defining values that lead to the rejection of null hypothesis .:
p-ralues/prabability values:~The choice of a specific α is completely orbitary and is determined by
non-statistical considerations such as the possible consequences of rejecting tho falsely, and the economic and practical implications of the decision to reject Ho. There is another value associated with a statistical test, it is called the probability ralice or the p-value.
Definition: - The value associated with atest, is a probability that we obtains the observed value of the test statistic or a value that in more extreme in the direction given by the alternative hypothesis when Ho is true.
[For example, let $x \sim N\left(\mu, \sigma^{2}\right)$. To test $H_{0}: \mu=4$ against $H_{1}: \mu>4$. If we take a r.s. of size $n=9$ and we are given $\bar{x}=4.3, s=1.2$, then the observed value of the test statistic T is to $=\frac{\sqrt{n}(\bar{x}-4)}{8}=\frac{\sqrt{9}(4.3-4)}{1.2}=0.75$.
Then the p-value is $p=P_{H_{0}}\left[T \geqslant t_{0}\right]$

$$
=P_{H_{0}}\left[t_{8} \geqslant 0.75\right]
$$

$$
=0.24 .]
$$

The smaller the p-value, the more extreme the outcome The stronger the evidence against H_{0}.

If α is the given level of significance, we reject H_{0} if $p \leqslant q$ and we don't reject to if $p>\alpha$.

Rather than selecting the critical region is advance with a particular level α and giving the conclusion, the p-ralue of a test can be reported and reader ultimately makes a decision for any level α..

For both sided alternative, the p-value $=P_{H_{0}}\left[|T| \geqslant\left|t_{0}\right|\right]$
cohere, the distribution of T, $=2 P_{H_{0}}\left[T \geqslant\left|t_{0}\right|\right]$, If the distribution of T is symmetric about zero. is not well defined for both symmetric, then the p-ralue define the p-value as

$$
\begin{aligned}
p & =2\{\text { smaller of the two one-sidedp-valiees }\} \\
& =2 \text { minimum }\{p .
\end{aligned}
$$

Test related to Population Proportion: - (For Binomial Distr))
(1) Single Proportion: \sim Let ' p ' be the proportion of individuals possessing a character ' A ', and pis unknown, in an infinite poplin.

Consider a bis. of size n draion from the poplin. Let X be the no, of members in the sample possessing the character A.
To test $H_{0}: p=p_{0}$.
Here $x \sim \operatorname{Bin}(n, p)$, under $H_{0}, x \sim \operatorname{Bin}\left(n, p_{0}\right)$.
Let x_{0} be the observed value of x, in a given sample.
(a) $H_{1}: p>p o$

If $p>p_{0}$, we can expect that $x>x_{0}$, as the success probability increases we can expect larger number of successes in a sample.
Here, the p-value $=P\left[x \geqslant x_{0} / H_{0}\right]$

$$
=\sum_{x>x_{0}}\binom{n}{x} p_{0}^{x}\left(1-p_{0}\right)^{n-x}
$$

If the p-value $\leq \alpha$, the level of significance, we shall consider x_{0} to be an unlikely value under H_{0} and reject H_{0}, If p value $>\alpha$, tho is accepted at α level of significance.
(b) $H_{1}: p<p_{0}$

$$
\begin{aligned}
\text { The } p \text {-value } & =P\left[X \leqslant x_{0} / H 0\right] \\
& =\sum_{x=0}^{x_{0}}\binom{n}{x} p_{0} x\left(1-p_{0}\right)^{n-x}
\end{aligned}
$$

If p-value $\leq \alpha$, reject H_{0} and p-value $>\alpha$, accept to at ' α '-level.
(c) $H_{1}: p \neq p_{0}$

Then p-value $=2 \cdot \min \left\{P_{H_{0}}\left[x \geqslant x_{0}\right], P_{H_{0}}\left[x \leqslant x_{0}\right]\right\}$
If p-value $\leq \alpha$, reject H_{0} and p-value $>\alpha$, accept Ho at ' α ' level.
(2) Two proportions: Let p_{1} and p_{2} be the proportions of individuals having a characteristics A in two infinite poplin. Let X_{1} and X_{2} denote the nos, of members having the characteristics A in the random s amples of size n_{1} and n_{2} drawn independently from the two populations. To test $H_{0}: p_{1}=p_{2}$, let $x=x_{1}+x_{2}$. Under $H_{0}: p_{1}=p_{2}=p$, say, $x=x_{1}+x_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$, where $x_{1} \sim \operatorname{Bin}\left(n_{1}, p\right), x_{2} \sim \operatorname{Bin}\left(n_{2}, p\right)$, independently.
Under to, the conditional distr. of x_{1} given that $x_{1}+x_{2}=x$ is given by the PMF:

$$
\begin{aligned}
& \text { e PMF: } \\
& \qquad\left[X_{1}=x_{1} / X_{1}+X_{2}=x\right]=\frac{\binom{n_{1}}{x_{1}}\binom{n_{2}}{n-x_{1}}}{\binom{n_{1}+n_{2}}{x}}, \quad \begin{array}{l}
x_{1}=0,1, \ldots, n_{1}, \text { which is } \\
\text { independent of } p^{\prime} .
\end{array}
\end{aligned}
$$

If for given rios's, the observed rake e of x_{1} is x_{10} and that of x is x_{0}, then we have $P_{H_{0}}\left[X_{1}=x_{1} / x_{1}+x_{2}=x_{0}\right]$

$$
=\frac{\binom{n_{1}}{x_{1}}\binom{n_{2}}{x_{0}-x_{1}}}{\binom{n_{1}+n_{2}}{x_{0}}}, x_{0}=0(1) n_{1}
$$

(a) $H_{1}: p_{1}>p_{2}$ The p-value $=P_{H_{0}}\left[x_{1} \geqslant x_{10} \mid x_{1}+x_{2}=x_{0}\right]$

$$
=\sum_{x_{1} \geq x_{0}} \frac{\binom{n_{1}}{x_{1}}\binom{n_{2}}{x_{0}-x_{1}}}{\binom{n_{1}+n_{2}}{x_{0}}}
$$

[N.T. if $p_{1}>p_{2}$, we can expect large value of x_{1} given the total $x_{1}+x_{2}=x_{0}$]
If the p-value $\leq \alpha$, reject H_{0} and if the p-value $>\alpha$, accept H_{0} of ' α ' level of significance.
(b) $H_{1}: p_{1}<p_{2}$ The $p_{\text {-value }}=P_{H_{0}}\left[X_{1} \leqslant x_{10} \mid X_{1}+X_{2}=x_{0}\right]$

$$
=\sum_{x_{1} \leq x_{10}} \frac{\binom{n_{1}}{x_{1}}\binom{x_{2}}{x_{0}-x_{1}}}{\binom{n_{1}+n_{2}}{x_{0}}}
$$

$\left.\begin{array}{r}\text { N.T. if } p_{1}<p_{2} \text {, we can except large value of } X_{1} \text { given the total } \\ \qquad X_{1}+x_{2}=x_{0}\end{array}\right]$

$$
\left.x_{1}+x_{2}=x_{0}\right]
$$

If the p-value $\leq \alpha$, reject H_{0} and if the $p-v a k e e>\alpha$, accept t_{0}^{-} at ' α ' level of significance.
(c) $H_{1}: p_{1} \neq p_{2}$

$$
\text { The } p \text {-value }=2 \min \left\{\begin{aligned}
P_{H_{0}}\left[X_{1} \geqslant x_{0} / X_{1}+x_{2}=x_{0}\right], \\
\left.P_{H_{0}}\left[X_{1} \leqslant x_{0} / X_{1}+X_{2}=x_{0}\right]\right\}
\end{aligned}\right.
$$

If p-value $\leq \alpha$, we reject H_{0} and if the p-value $>\alpha$, accept H_{0}, at α-velvel of significance.

Tests Related to Poisson Distribution:-
(1) Single populations: - Let $x_{1}, x_{2}, \ldots, x_{n}$ be a ri. from $P(\lambda)$ poplin, λ unknown. To test $H_{0}: \lambda=\lambda_{0}$.
Note that, $Y=\sum_{i=1}^{n} X_{i} \sim P\left(n \lambda_{0}\right)$.
For a given res. $x_{1}, x_{2}, \ldots, x_{n}$, let y_{0} be the observed value of Y.
(a) $H_{1}: \lambda>\lambda_{0}$

If $\lambda>\lambda_{0}$, we can expect $y>y_{0}$
The p-value $=P_{H_{0}}\left[y \geqslant y_{0}\right]$

$$
=\sum_{y=y_{0}}^{\infty} e^{-n \lambda_{0}} \cdot \frac{\left(n \lambda_{0}\right)^{y}}{y!}=p \text {, say. }
$$

If $p \leq \alpha$, we reject H_{0} and if $p>\alpha$, accept H_{0} at' α 'level.
(b) $H_{1}: \lambda<\lambda_{0}$

If $\lambda<\lambda_{0}$, we can expect $y<y_{0}$
the p-value $=P_{H_{0}}\left[y \leqslant y_{0}\right]$

$$
=\sum_{y=0}^{y_{0}} e^{-n \lambda_{0}} \frac{\left(n \lambda_{0}\right)^{y}}{y!}=p, s a y
$$

If $p \leq \alpha$, reject H_{0} and if $p>\alpha$, accept Ho at ' α 'level.
(c) $H_{1}: \lambda \neq \lambda_{0}$

$$
p \text {-value }=2 \min \left\{P_{H_{0}}\left[y \geqslant y_{0}\right], P_{H_{0}}\left[y \leqslant y_{0}\right]\right\}
$$

If $p \leq \alpha$, reject H_{0} and of $p>\alpha$, accept H_{0} at α-level of significance.
(2) Two populations:-

Let $x_{11}, x_{12}, \ldots . x_{1 n_{1}}$ be a r.s. from $P\left(\lambda_{1}\right)$
drawn independently.
$x_{21}, x_{22}, \ldots, x_{2 n_{2}}$ " " " $P\left(\lambda_{2}\right)$
Here, $y_{1}=\sum_{i=1}^{n_{1}} X_{1 i} \sim P\left(\begin{array}{ll}n_{1} & \lambda_{1}\end{array}\right)$.

$$
y_{2}=\sum_{i=1}^{n_{2}} x_{2 i} \sim P\left(n_{2} \lambda_{2}\right)
$$

independently.
and, Condition distr, of
Then $y=x_{1}+y_{2} \sim P\left(n_{1} \lambda_{1}+n_{2} \lambda_{2}\right)$ under t_{0}. y, given $y=y$ is $\operatorname{Bin}\left(y, \frac{n_{1}}{n_{1}+n_{2}}\right)$.
To test $H_{0}: \lambda_{1}=\lambda_{2}:-$
Under Ho, $P\left[y_{1}=y_{1} / y_{1}+y_{2}=y\right]$

$$
=\binom{y}{y_{1}}\left(\frac{n_{1}}{n_{1}+n_{2}}\right)^{y_{1}}\left(\frac{n_{2}}{n_{1}+n_{2}}\right)^{y-y_{1}} \text {, where } \lambda_{1}=\lambda_{2}=\lambda \text { (say) }
$$

Let, for given r s.'s, the observed value of y and y_{1} are y_{0} and y_{10} ' respectively.
Here, test will be based on the statistic y_{1} given $Y=y_{0}$, whose distr. is froe from λ, under $H_{0}: \lambda_{1}=\lambda_{2}=\lambda$.
(a) $H_{1}: \lambda_{1}>\lambda_{2}$

$$
\begin{aligned}
\text { The p-ralue } & =P_{H_{0}}\left[y_{1} \geqslant y_{10} / y=y_{0}\right] \\
& =\sum_{y_{1} \geqslant y_{10}}\binom{y_{0}}{y_{1}}\left(\frac{n_{1}}{n_{1}+n_{2}}\right)^{y_{1}}\left(\frac{n_{2}}{n_{1}+n_{2}}\right)^{y_{0}-y_{1}}=p, \text { say. }
\end{aligned}
$$

If $p \leq \alpha$, reject H_{0} and if $p>\alpha$, accept H_{0} at ' α '-level.
(b) $H_{1}: \lambda_{1}<\lambda_{2}$ The p-value,

$$
\begin{aligned}
p & =P_{H 0}\left[y_{1} \leqslant y_{10} / y=y_{0}\right] \\
& =\sum_{y_{1} \leqslant y_{10}}\binom{y_{0}}{y_{1}}\left(\frac{n_{1}}{n_{1}+n_{2}}\right)^{y_{1}}\left(\frac{n_{2}}{n_{1}+n_{2}}\right)^{y_{0}-y_{1}}
\end{aligned}
$$

(c) $H_{1}: \lambda_{1} \neq \lambda_{2}$

The p-value,

$$
p=2 \min \left\{P_{H_{0}}\left[y_{1} \leqslant y_{10} \mid Y=y_{0}\right], P_{H_{0}}\left[Y \geqslant y_{10} / Y=y_{0}\right]\right\}
$$

If $p \leq \alpha$, reject H_{0} and if $p>\alpha$, accept H_{0} at α level of significance.

Ex. Let $X_{1} \sim \operatorname{Bin}\left(n_{1}, p_{1}\right)$ and $X_{2} \sim \operatorname{Bin}\left(n_{2}, p_{2}\right)$ independently. Too test are to be performed
(i) $H_{01}: p_{1}=\frac{1}{2}$ against $H_{11}: p_{1} \neq \frac{1}{2}$,
(ii) $H_{02}: p_{1}=p_{2}$ against $H_{12}: p_{1} \neq p_{2}$.
(b) Describe the test procedure in (l).
(c) Like the test in (i), cony cannot a test based on binomial distr be constructed for (ii). Describe how this can be performed.
(d) Suppose H_{22} is accepted and we can assume $p_{1}=p_{2}$. How coll you test $H_{03}: p_{1}=p_{2}=\frac{1}{2}$ against $H_{13}: p_{1}=p_{2} \neq \frac{1}{2}$.
Hints:-
(a)
(i) \rightarrow simple hypothesis as the value of p_{1} is known.
(ii) \rightarrow composite hypothesis, as "" " $p_{1}=p_{2}$ is not known / unknown.
(b) To test $H_{01}: p_{1}=\frac{1}{2}$ against $H_{11}: p_{1} \neq \frac{1}{2}$

Here $x_{1} \sim \operatorname{Bin}\left(n_{1}, p_{1}\right)$ and $x_{2} \sim \operatorname{Bin}\left(n_{2}, p_{2}\right)$,
Under Hor.
Let the observed value of x_{1} is x_{10},
Note that, under How, the distr of x_{1}, ire. $\operatorname{Bin}\left(n, \frac{1}{2}\right)$ is symmetric.
Under H_{0}, , we can expect. $x_{10} \simeq \frac{n_{1}}{2}$.
i.e. $\left(x_{10}-\frac{n_{11}}{2}\right)$ is. small, infect $E\left(x_{1}\right)=\frac{n_{1}}{2}$.

If $p_{1} \neq \frac{1}{2}$, then we can expect $\left|x_{10}-\frac{n_{1}}{2}\right|$ is a large quantity.
Here, $\left|x_{1}-\frac{m_{1}}{2}\right|$ is the test-statistic.
Now, the p-value $=P_{H_{0}}\left[\left|x_{1}-\frac{n_{1}}{2}\right| \geqslant\left|x_{10}-\frac{n_{1}}{2}\right|=d_{0}\right]$. as the distr. X_{1} is symmetric, under HoV:

$$
\begin{aligned}
& =\sum_{\left|x_{1}-\frac{n_{1}}{2}\right| \geqslant d_{0}}\binom{n_{1}}{x} \cdot \frac{1}{2^{n_{1}}} \\
& =\frac{1}{2^{n_{1}}}\left\{\sum_{x_{1} \leq \frac{n_{1}}{2}-d_{0}}\binom{n_{1}}{x_{1}}+\sum_{x_{1} \geqslant \frac{n_{1}}{2}+d_{0}}\binom{n_{1}}{x_{1}}\right\}
\end{aligned}
$$

Scanned by CamScanner
(c) To test $H_{11}: p_{1}=p_{2}$ against $H_{12}: p_{1} \neq p_{2}$: N.T. $x_{1}+x_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$, under $H_{11}: p_{1}=p_{2}=p$ (unknown) Here, HII is composite, the distort of $X_{1}+X_{2}$ is not completely known. Hence, a test, like the test (i), an't be performed based, on $x_{1}+x_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$, as the p-value cannot be obtainable, as they depend on unknown b. Therefore, the test of (ii) based on $\left(x_{1}+x_{2}\right)$ can't be performed as the test of (i) based on X_{1}.;
(d). To test $H_{0} 3: p=1 / 2$ against $H_{13}: p \neq 1 / 2$

If H_{2} is.accepted, then $p_{1}=p_{2}=p(s a y)$
Here, $x=x_{1}+x_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$.
[The testing procedure is same as part (b)]

$$
\text { c.U. } 2008
$$

Ex. suppose X_{1} and X_{2} are two independently poisson r.v.s with $E(X k)=\mu_{k}, k=1,2$. Find the regression coefficient (β) of X_{1} on $x_{1}+x_{2}$, carry out a suitable exact test for $H_{0}: \beta=\frac{1}{2}$ against $H_{1}: \beta \neq \frac{1}{2}$.
Hints:-

$$
x_{i} / x_{1}+x_{2}=x \sim \operatorname{Bin}\left(x, \frac{\mu_{1}}{\mu_{1}+\mu_{2}}\right)
$$

The regression of x_{1} on $\left(x_{1}+x_{2}\right)$ is: $E\left(X_{1} / X_{1}+x_{2}=x\right)=x \cdot \frac{\mu_{1}}{\mu_{1}+\mu_{2}}$, which is linear in x.
clearing, $\beta=\frac{\mu_{1}}{\mu_{1}+\mu_{2}}$. Hence Ho $; \beta=\frac{1}{2} \Leftrightarrow H_{0}: \mu_{i}=\mu_{2}$
To test $H_{0}: \mu_{1}=\mu_{2}$ against $H_{1}: \mu_{1} \neq \mu_{2}$
\& Ex.1. Distinguish between i) simple hypothesis and composite hypothesis,
ii) confidence interval and acceptance region.

ANS:- i) A simple hypothesis is defined as the hypothesis cohich completely specifies the random vector together with the basic assumption. On the other hand a composite hypothesis is defined as the hypothesis cohich does not specify completely the distribution of the random vector together with the basic assumption.

Let H be a hypothesis, $H:\left\{F_{\theta}: \theta \in(H)_{0}\right\},(H)_{0} C(H)$
NOCO, if (H) is a singleton set then H is a simple hypothesis. On the other hand, if (H) consists more than one point then the hypothesis H is composite.
For egg., for $N(\mu, 1)$ poplin.

$$
H: \mu=1 \text { Vs } H_{1}: \mu<1 \text {. }
$$

Here H is a simple hypothesis and H_{1} is a composite hypothesis.
ii) When we define a test i.e. we either accept on reject The null. hypothesis, we consequently partition the sample space w.r.t, a critical value of the statistic obtained from the sample The partition of the sample space for conich the value of the statistic is such that we accept the null hypothesis, is called the acceptance region.

On the other hand, confidence interval means a region in which the true value of the parametric function lies, ie. the formation of confidence, interval is far from the concept of point estimation of the parametric function.

So, it is necessary for a hypothesis testing problem that if the given parametric function lies on its confidence interval on $100(1-\alpha) \%$ confidence interval, then the null hypothesis is acecpted , ie. the realized value of the statistic lies on the acceptance region at $100 \alpha \%$ level of significance.
\& Ex.2. Explain the concept of test of significance. Discuss the notions of two types of errors and their relations with the level of significance and power of a test is testing statistical hypothesis. Ans:-
Test of significance: The test of significance is a rule observations by which we accept or reject a null hypothesis. Note that to define a test is equivalent to partition the sample space into two disjoint sets. Leet us consider the problem of testing, the mean of a normal distribution vanishes against it is unity based on a sample of size 4 given that the population sid. is unity.

Here we reject the null hypothesis if
the sample mean \bar{x} exceeds: 823 , on we accept it. Clearly, this decision rule is the test and we can always define set $W, W=\{\underset{\sim}{x}: \bar{x}>.823\}$, So, the sample space x is partitioned into W and $x-W$. clearly we reject the null hypothesis if $x \in W$ and accept it if $x \in x-W$. The region W is reffered to as the enitical region on rejection region and the $x-W$ is termed as acceptance region.

Type-I and Type-II error

Since the decision pule regarding the rejection or acceptance of null hypothesis, solely depends on the realised value of the random vector, one may commit too types of errors. The first kind of error is rejecting the null hypothesis, even when the hypothesis is true. This error is termed astype-I error. The second kind of error is accepting the null hypothesis, even cohen the hypothesis is false. This kind of error is called type-II error.

Decision True sitacention	Accept null	Reject null
Null is true	Type error	
Null is		
false	Type II error	

Relationship with level of significance: Leet us consider the following test procedure,

$$
H_{0}: \theta=\theta_{0} \quad \mathrm{Vs} . \quad H_{1}: \theta=\theta_{1}
$$

We reject on accept the null hypothesis at $100 \alpha \%$ level of significance, i.e. if we repeat the 100 times then atmost α times the true mull hypothesis coll be rejected.

$$
\begin{align*}
& \therefore P[\text { Type I enron }] \leq \alpha \\
& \leq \text { ot to the condition }\langle i\rangle \text { we }
\end{align*}
$$

\qquad
subject to the condition $\langle i\rangle$ we choose that test for which. probability of Type IT error is least.
We introduce the concept of level of significance for the reason that we can't minimize the probability of type I error and type II error simultaneously. That is why we set an upper bound to the probability of type I errors cohich is termed as the level of significance.
Relationship with power of test: ~ Let us consider the following test procedure, $H_{0}: \theta=\theta_{0}$ Vs $H_{1}: \theta=\theta_{1}$
Here x is the sample space of the statistic and we partition x into W and $x-W$, where W is the critical region and $x-W$ is the acceptance region.

$$
\begin{aligned}
& \therefore P[\text { Type I error }]=P_{\theta_{0}}[x \in W] \\
& \therefore P[\text { Type II error }]=1-P_{\theta_{1}}[x \in W]
\end{aligned}
$$

Let we acct on roget the null hypothesis at $100 \times \%$ level of significance

$$
P_{\theta_{0}}\left[x_{\sim} \in w\right] \leqslant \alpha
$$

subject to the condition 〈ii〉 we have to find that test for which P[Type II error] is least, ie. 1- $P_{Q_{1}}[\underset{\sim}{x} \in W]$ is least, i.e. $P_{\theta_{1}}[\underset{\sim}{x} \in W]$ is greatest.

The probability $P_{\theta_{1}}[\underset{\sim}{x} \in W]$ is termed as the power of the test; ;ie. the greater the power of test the less the P[Type II error $]$,ie. The test is more powerful under equal level of significance.
\therefore Power of a test $=1-P[$ Type II error $]$.
This is the required relation.

EX.3. To test whether a coin is perfect is tossed five times and the number ' (x) of heads is noted. If x is 2,3 on 4 , the coin is taken to be perfect. Find the probability of type I error and the power function. Compute the power of the test woken probability of getting a head from a single toss of the coin 0.6 . Suggest a critical function with higher power.
Ans:- Here X be the RV representing the number of head. We are to test
$H_{0}: p=1 / 2$ Vs. $H_{1}: p \neq 1 / 2$, where, p is the probability for getting a head.
The coin is tossed 5 times.
\therefore under $H_{0}, X \sim \operatorname{bin}(s, 1 / 2)$
The critical region is given by, $W=\{x: x=0,1,5\}$

$$
\begin{aligned}
\therefore P[\text { Type I error }] & =P_{H_{0}}(x \in W) \\
& =\binom{5}{0}\left(\frac{1}{2}\right)^{5}+\binom{5}{1}\left(\frac{1}{2}\right)^{5}+\binom{5}{5}\left(\frac{1}{2}\right)^{5} \\
& =\frac{7}{2^{5}},
\end{aligned}
$$

For a general $P(\neq 1 / 2)$, we get the power function of the test,

$$
\begin{aligned}
\beta \theta & =p_{p}(\alpha \in W) \\
& =\binom{5}{0}(1-p)^{5}+\binom{5}{1} p(1-p)^{4}+\binom{s}{5} p^{5} \\
& =(1-p)^{5}+5 p(1-p)^{4}+p^{5} .
\end{aligned}
$$

Now, let us reset the testing problem as follows,

$$
\begin{aligned}
& H_{0}: p=1 / 2 \text { Vs. } H_{1}: p=3 / 5 \\
& x \sim \operatorname{bin}(s, 3 / 5) \text {, under } H_{1}: \\
& \text { Power of the test }=P_{H_{1}}(\alpha \in W) \\
&=\binom{5}{0}\left(\frac{2}{5}\right)^{5}+\binom{5}{1}\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)^{4}+\binom{5}{5}\left(\frac{3}{5}\right)^{5} \\
&=\left(\frac{2}{5}\right)^{5}+3\left(\frac{2}{5}\right)^{4}+\left(\frac{3}{5}\right)^{5}
\end{aligned}
$$

