STATISTICAL INFERENCE II

BY

TANUJIT CHAKRABORTY
Indian Statistical Institute
Mail : tanujitisi@gmail.com

statistical Inference I.
Point Estimation (Continuation): -

- Measure of Quality of Estimator or Properties of Good Estimator:-

It is clear that in any given problem of estimation, we may have a large, often infinitely many estimators to choose from. Here, we shall define certain properties or measures of quality of estimators to get a good estimator:
(I) Closeness : Minimum MSE
(II) Consistency
(III) Sufficiency
(IV) Completeness.
(I) Closeness:~ Clearly, coed like estimator $T\left(x_{\sim}^{x}\right)=T$ to be close to θ and since T is a statistic, the usual measure of closeness $|T-\theta|$ is a R.v.
Example of such measure of closeness are:
(i) $P_{\theta}[|T-\theta|<\epsilon]$, for some $\epsilon>0$
(ii) $E_{\theta}|T-\theta|^{r}$, for some $r>0$
obviously, we want (i) to be large and (ii) to be small.
Definition: More concentrated and Most concentrated Estimators:
Let Tand T^{*} be two estimators of θ. Then T^{*} is called more concentrated estimator of θ than T if

$$
P_{\theta}\left[\left|T^{*}-\theta\right|<\epsilon\right] \geqslant P_{\theta}[|T-\theta|<\epsilon]
$$

for all $\epsilon>0$, for each $\theta \in \Omega$.
An estimator T_{0} is called most concentrated estimator of θ iff it is more concentrated than any other estimator, that is if
for all T, for all $\in>0$, for each $\theta \in \Omega$.
Unfortunately, most concentrated estimators seldom exist.

Mean square Error (MSE): A useful, though perhaps, a crude measure of closeness of an estimator T of θ is $E(T-\theta)^{2}$ which is obtained from (ii) by putting $r=2$.
Notation: $M S E_{\theta}(T)=E\{T-\theta\}^{2}$
Naturally, we could prefer one with small or smallest MSE. Here, the requirement is to choose to such that $M S E_{\theta}\left(T_{0}\right) \leq M S E_{\theta}(T)$, for all T, for each $\theta \in \Omega$.
But such estimators rarely exist.
Note that, $\operatorname{MSE} \theta(T)=\operatorname{Var}(T)+\{E(T)-\theta\}^{2}$
Now, we shall concentrate on the class of all estimators of θ such that $\{E(T)-\theta\}^{2}=0 \Leftrightarrow E(T)=\theta \forall \theta \in \Omega$.
NoLo, in the class of unbiased estimators of θ, we shall find an estimator coth uniformly minimum raniance. This is the. concept of unbiasedness and minimum variance.
Definitions:-
(1) An estimator T is said to be unbiased estimator of a parametric function $\psi(\theta)$ if $E\{T\}=\psi(\theta) \forall \theta \in \Omega$.
(2) An estimator T_{0} is defined to be UMVUE of $\psi(\theta)$ if
i) $E\left(T_{0}\right)=\psi(\theta) \forall \theta \in \Omega$
ii) $\operatorname{Var}\left(T_{0}\right) \leq \operatorname{Var}(T)$, for any estimator T such that $E(T)=\psi(\theta) \quad \forall \theta \in \Omega$.
(3) A parametric function $\mathcal{U}^{\prime}(\theta)$ is said to be estimable C or, unbiasedly estimable) if there exists an estimator T such that $E(T)=\psi(\theta) \forall \theta \in \Omega$.
Unbiasedness alone does not make any sense:-
Justification: - There are situations cohere unbiasedness ensures poor estimation. Suppose T is an unbiased estimation of θ. Further assume that the sampling distribution of T is extremely positively skewed, i.e. θ lies om the right tail of the sampling distribution. If we regard an observed T. that is an estimate to be likely then the estimate
*. Should fall close to the mode of the distribution and hence it should not be close to θ. This situation is quite' natural since minimisation of MSE ensures the simultaneous minimisation of the bias and variance of the sampling distribution of the statistic.
(II) Consistency:-
Here we shall consider a large sample property of estimators. Define, $T_{n}=T\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where n indicates the sample size, OS an estimator of θ. Actually, we will be considering a sequence of estimators:
$T_{1}=T\left(x_{1}\right), T_{2}=T\left(x_{1}, x_{2}\right), \cdots \cdots \cdot$
egg. $T_{n}=\frac{1}{n} \sum_{i=1}^{n} T\left(x_{i}\right)$
As the sample size $n \rightarrow \infty$, the data $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are practically the cohole population and it is intuitively appealing to desire that a good sequence of estimators $\left\{T_{n}\right\}$ should be one for which
values of the estimator tend to concentrate near θ as the sample size increases. If $n \rightarrow \infty$, and the values of an estimator are not very close to θ, i.e. The performance of the estimatorsis not good, then the performance of the estimator will be bad in case the sample size is small. Hence, for $n \rightarrow \infty$, if $\left\{T_{n}\right\}$ tends to concentrate near θ, then in small sample the estimator Tn may perform well and we say that the sequence $\left\{T_{n}\right\}$ of estionatore is consistent or appropriate for θ.
Defer. : - The sequence $\left\{T_{n}\right\}$ of estimators is defined to be consistent sequence of estimators of Q, if, for every $\in>0$, $P[|\operatorname{Tn}-\theta|<\epsilon] \rightarrow 1$ as $n \rightarrow \infty$, for every $\theta \in \Omega$.
Remark:- $\left\{T_{n}\right\}$ is consistent for θ iff $P\left[\left|T_{n}-\theta\right|>E\right] \rightarrow 0$ as $n \rightarrow \infty$ $\Leftrightarrow \operatorname{Tn} \xrightarrow{P} \theta$, for every $\theta \in \Omega$.
Ex.(1) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a $r . s$. from a population with $E\left|X_{1}\right|^{k}<\infty$. Then show that m_{r}^{\prime} is consistent for $\mu_{r}^{\prime} ; r=1(1) k$
Solution:- - Khinchinte's WLLN:-
If $\left\{x_{n}\right\}$ is a sequence of lid RV's, then $\bar{x} \xrightarrow{p} \mu$, provided $\mu=E\left(x_{1}\right)$ exists.]
Here $x_{1}, x_{2}, \ldots, x_{n}$ are i.i.d. R.r.'s.
$\Rightarrow X_{i}^{r \prime s}$ are i.i.d. RY's with $E\left|X_{i}{ }^{r}\right|<\infty$
$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i}^{n}=m_{r}^{\prime} \xrightarrow{p} E\left(x_{i}^{r}\right) \quad \forall r=1(1) k$, by khinchinte's WLLN.

$$
\Rightarrow m_{r}^{\prime} \xrightarrow{P} \mu_{r}^{\prime} \quad, r=1(1) k
$$

$\therefore m_{n}^{\prime}$ is consistent for $\mu_{n}^{\prime}, r=1(1) k$.

Ex.(2). If $x_{1}, x_{2}, \ldots, x_{n}$ be a r. s. from $N\left(M, \sigma^{2}\right)$, ST.
$s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is consistent for σ^{2}.
Ans:-
Note that $\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$

$$
\Rightarrow E\left(\frac{(n-1) s^{2}}{\sigma^{2}}\right)=n-1
$$

and $\operatorname{Var}\left(\frac{(n-1) s^{2}}{\sigma^{2}}\right)=2(n-1)$

$$
\begin{aligned}
& \Rightarrow E\left(s^{2}\right)=\frac{\sigma^{2}(n-1)}{(n-1)}=\sigma^{2} \\
& \text { and } \operatorname{Van}\left(s^{2}\right)=\frac{2 \sigma^{4}}{n-1} .
\end{aligned}
$$

For every $\epsilon>0$,

$$
\begin{aligned}
& \text { very } \epsilon>0, \\
& 0 \leq P\left[\left|s^{2}-\sigma^{2}\right|>\epsilon\right]<\frac{V\left(s^{2}\right)}{\epsilon^{2}}=\frac{2 \sigma^{4}}{(n-1) \epsilon^{2}} \longrightarrow 0 \text { as } \\
& \Rightarrow \lim _{n \rightarrow \infty} P\left[\left|s^{2}-\sigma^{2}\right|>\epsilon\right]=0
\end{aligned}
$$

Hence, s^{2} is consistent for σ^{2}.
Remark: - If $\left\{T_{n}\right\}$ is consistent for θ, then
(i) $\left\{T_{n}+a_{n}\right\}$ is also consistent for θ, provided $a_{n} \rightarrow 0$ as $n \rightarrow \infty$
(ii) $\left\{b_{n} \cdot T_{n}\right\}$ is also consistent for θ, provided bn $_{n} \rightarrow 1$ as $n \rightarrow \infty$.
For e>0,

$$
\begin{aligned}
P\left[\left|T_{n}+a_{n}-\theta\right|<\epsilon\right] & \sim P\left[\left|T_{n}-\theta\right|<\epsilon\right], \begin{array}{c}
\text { for sufficiently } \\
\text { large } n .
\end{array} \\
& \longrightarrow 1 \text { as } n \rightarrow \infty[\because \operatorname{Tn} \xrightarrow{\sim} \theta]
\end{aligned}
$$

Therefore, it is possible to find several consistent estimators of θ, provided there exists a consistent estimator of θ.
(iii) Concept of Consistency of an estimator:-

Consistency is a longe property of an estimator. The estimator is said to be consistent if it estimates the population parameter or some other function of the parameter almost correctly even when the sample size is large.

Ex. (3):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $u(0, \theta), \theta>0$. Which of the following estimators are consistent for θ ?
(i) $T_{1}=\max _{i}\left\{\boldsymbol{x}_{i}\right\}$,
(ii) $T_{2}=\frac{n+1}{n} T_{1}$,
(iii) $T_{3}=2 \bar{x}$.

ANS:- (i)

$$
F_{T_{1}}\left(t_{1}\right)=\left\{\begin{array}{cl}
0, & t_{1} \leqslant 0 \\
\left(\frac{t_{1}}{\theta}\right)^{n}, & 0<t_{1}<\theta \\
1, & t_{1} \geqslant \theta
\end{array}\right.
$$

Now,

$$
\begin{aligned}
P\left[\left|T_{1}-\theta\right|<\epsilon\right] & =P\left[\theta-\epsilon<T_{1}<\theta+\epsilon\right] \\
& =F_{T_{1}}(\theta+\epsilon)-F_{T_{1}}(\theta-\epsilon) \\
& =\left\{\begin{array}{cc}
1-\left(\frac{\theta-\epsilon}{\theta}\right)^{n} ; & \text { if } 0<\epsilon<\theta \\
1 \quad ; & \text { if } \epsilon \geqslant \theta
\end{array}\right. \\
& \longrightarrow 1 \text { as } n \rightarrow \infty, \text { for every } \epsilon>0 .
\end{aligned}
$$

Hence T_{1} is consistent for θ.
(ii)

$$
\begin{aligned}
T_{2} & =\frac{n+1}{n} T_{1} \\
& =b_{n} T_{1} \text {, where bn }=\frac{n+1}{n} \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

clearly, T_{n} is consistent for θ, since for every $\in>0$,

$$
\begin{aligned}
& P\left[\left|T_{2}-\theta\right|<\epsilon\right] \\
= & P\left[\left|\frac{n+1}{n} T_{1}-\theta\right|<\epsilon\right] \\
\approx & P\left[\left|T_{1}-\theta\right|<\epsilon\right], \text { for large. } \\
\longrightarrow & 1 \text { as } n \rightarrow \infty .
\end{aligned}
$$

(iii) Note that, $E(\bar{X})=E\left(X_{1}\right)=\frac{\theta}{2}$

$$
\& r(\bar{x})=\frac{v\left(x_{1}\right)}{n}=\frac{\theta^{2}}{12 n}
$$

For every $\epsilon>0, \quad P\left[\left|T_{3}-\theta\right|>\epsilon\right]$

$$
\begin{aligned}
&=P[|2 \bar{x}-\theta|>\epsilon] \\
&<\frac{V(2 \bar{x})}{\epsilon^{2}}=\frac{4 V(\bar{x})}{\epsilon^{2}}=\frac{4 \times \theta^{2}}{12 n \epsilon^{2}} \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

So, T_{3} is consistent for θ.

A sufficient condition for consistency:-
The direct verification of consistency from the definition may not always be an easy task. The following theorem helps in determining the consistency of $\{T n\}$ for θ.
Theorem:- If $\left\{T_{n}\right\}$ is a sequence of estimators such that

$$
\begin{aligned}
& \text { If } T_{n} g \text { is a seaverce } V\left(T_{n}\right) \rightarrow \theta \text { as } n \rightarrow \infty \text {. } \\
& E\left(T_{n}\right) \rightarrow \text {. }
\end{aligned}
$$

Then $\left\{T_{n}\right\}$ is consistent for θ.
Proof:- For $\in>0$,

$$
\begin{aligned}
0 \leq P\left[\left|T_{n}-\theta\right|>\epsilon\right] & <\frac{E\left(T_{n}-\theta\right)^{2}}{\epsilon^{2}} \\
& =\frac{V\left(T_{n}\right)+\left\{E\left(T_{n}\right)-\theta\right\}^{2}}{\epsilon^{2}} \\
& \longrightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

provided $E\left(T_{n}\right) \rightarrow \theta$ and $V\left(T_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
[Markov's inequality: $\left.P[|X|>\epsilon]<\frac{E|X|^{r}}{\epsilon^{r}}, \epsilon>0, r>0\right]$
Remark:- The above theorem can also be stated as follocos:

- If $\left\{T_{n}\right\}$ is a sequence of estimators such that $E\left(T_{n}-\theta\right)^{2}$ $\longrightarrow 0$ as $n \rightarrow \infty$, then $\left\{T_{n}\right\}$ is consistent for θ :"
Ex.(4). Let $x_{1}, x_{2}, \ldots, x_{n}$ be gins. from a poplin with mean μ and variance p^{2}. Which of the following estimators are consistent for μ ?
(i) $T_{1}=\frac{2}{n(n+1)} \sum_{i=1}^{n} i . x_{i}$
,(ii) $T_{2}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{\frac{n}{2}}$
(ii) $T_{3}=\frac{6 \sum_{i=1}^{n} i^{2} \cdot x_{i}}{n(n+1)(2 n+1)}$

Son.:-
(i)

$$
\begin{array}{rlrl}
\therefore- & =E\left(T_{1}\right) & \left.=\frac{2 \sum_{i=1}^{n} i \cdot x_{i}}{n(n+1)}\right\} \quad \operatorname{Var}\left(T_{1}\right) & =\operatorname{xar}\left\{\frac{2}{n(n+1)} \sum_{i=1}^{n} i \cdot x_{i}\right\} \\
& \left.=\frac{2}{n(n+1)} \sum_{i=1}^{n} i \operatorname{b}^{n} i\right) & & =\frac{4}{\{n(n+1)\}^{2}} \sum_{i=1}^{n} i^{2} \cdot \sigma^{2} \\
& =\frac{2}{n(n+1)}\left(\sum_{i=1}^{n} i\right) \mu & & =\frac{4 \sigma^{2} n(n+1)(2 n+1)}{6 n^{2}(n+1)^{2}} \\
& =\mu & & =\frac{2 \sigma^{2}(2 n+1)}{3 n(n+1)} \\
& & \longrightarrow 0 \text { as } n \rightarrow \infty
\end{array}
$$

Hence, T_{1} is consistent for μ.
(ii)

$$
\begin{aligned}
& E\left(T_{2}\right)=\frac{n \mu}{n / 2}=2 \mu \\
\Rightarrow & E\left(T_{2}\right) \ngtr \mu
\end{aligned}
$$

but $E\left(\frac{T_{2}}{2}\right)=\mu$
$\therefore T_{2}$ is not consistent for μ.
(iii)

$$
\begin{aligned}
E\left(T_{3}\right) & =E\left\{\frac{6 \sum_{i=1}^{n} i^{2} \cdot x_{i}}{n(n+1)(2 n+1)}\right\}=\frac{6 \mu}{n(n+1)(2 n+1)} \sum_{i=1}^{n} i^{2} \\
& =\mu \\
\operatorname{var}\left(T_{3}\right) & =\frac{6 \sigma^{2}}{n(n+1)(2 n+1)} \sum_{i=1}^{n} i^{4} \\
& =\frac{36 \cdot 2^{5} \cdot \sigma^{2}}{52^{2 /(n+1)^{2}(2 n+1)^{2}}} \quad\left[\begin{array}{rl}
\frac{1}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4} & \simeq \int_{0}^{1} x^{4} d x=\frac{1}{5} \\
\Rightarrow \sum_{i=1}^{n} i^{4} & =\frac{n^{5}}{5} \\
& \text { (OR), } \sum_{i=1}^{n} i^{4}
\end{array}=\int_{0}^{4} x^{4} d x=\frac{n^{5}}{5}\right]
\end{aligned}
$$

$\therefore T_{3}$ is consistent for μ.
EX.(5). Let $X_{1}, x_{2}, \ldots, x_{n}$ be a res. from $U(\theta, \theta+1)$. S.T.
(i) $T_{1}=\bar{X}-\frac{1}{2}$, (ii) $T_{2}=X_{(n)}-\frac{n}{n+1}$ are both consistent for θ.

Ans:-

$$
\begin{aligned}
& E(\bar{x})=E\left(X_{1}\right)=\theta+\frac{1}{2} \\
& \Rightarrow E\left(T_{1}\right)=\theta, \\
& V(\bar{x})=\frac{\sigma^{2}}{n}=\frac{1}{12 n} \\
& \Rightarrow V\left(T_{1}\right)=\frac{1}{12 n} \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

$\therefore T_{1}$ is consistent for θ.

EX,(6). Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $U(0, \theta)$. SiT. $G=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}$ is consistent for θ / e.
ANS:-

$$
\begin{aligned}
E(G) & =E\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \\
& =E\left\{\prod_{i=1}^{n}\left(x_{i}\right)^{1 / n}\right\} \\
& =\prod_{i=1}^{n} E\left(x_{i}^{1 / n}\right) \\
& =\prod_{i=1}^{n}\left\{\int_{0}^{\theta} x_{i}^{1 / n} \cdot \frac{1}{\theta} d x_{i}\right\} \\
& =\prod_{i=1}^{n}\left[\frac{x_{i} 1 / n+1}{1 / n+1}\right]_{0}^{\theta} \cdot \frac{1}{\theta} \\
& =\prod_{i=1}^{n}\left\{\frac{n\left(\theta^{1 / n}\right)}{n+1}\right\}_{0} \\
& =\frac{\theta}{\left(1+\frac{1}{n}\right)^{n}}\left[\because x_{i}^{\prime} s \text { are } i \cdot i \cdot d \cdot R v^{\prime} s\right] \\
V(G) & =E\left(G^{2}\right)-E^{2}(G), a s n \rightarrow \infty, \\
& =\left\{\frac{1}{\theta} \cdot \frac{\theta^{2 / n}+1}{1+2 / n}\right\}^{n}-\left\{\frac{\theta}{\left(1+\frac{1}{n}\right)^{n}}\right\}^{2} \\
& =\frac{\theta^{2}}{\left(1+\frac{2}{n}\right)^{n}-\frac{\theta^{2}}{\left(1+\frac{1}{n}\right)^{2 n}}} \\
& \xrightarrow{\theta^{2}} \frac{e^{2}}{e^{2}}=0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence, G is consistent for $\frac{\theta}{l}$.
EX.(7). Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N\left(0, \sigma^{2}\right)$, S.T. some multiple of $\sum_{i=1}^{n}\left|x_{i}\right|$ is consistent for σ.
ANS:-

$$
\begin{aligned}
& E\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)=\sum_{i=1}^{n} E\left|x_{i}\right|=n \cdot \sigma \cdot \sqrt{\frac{2}{\pi}} \\
& \Rightarrow E\left(\frac{1}{n} \cdot \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|x_{i}\right|\right)=\sigma \\
& \Rightarrow E\left(T_{1}\right)=\sigma, \text { where } T_{1}=\frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|x_{i}\right|
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(T_{1}\right) & =\frac{\pi}{2 n^{2}} \sum_{i=1}^{n}\left\{E\left(x i^{2}\right)-n^{2} \cdot \sigma^{2} \cdot \frac{2}{\pi}\right\} \\
& =\frac{\pi}{2 n^{2}} \sum_{i=1}^{n}\left\{\sigma^{2}-n^{2} \cdot \sigma^{2} \cdot \frac{2}{\pi}\right\} \\
& =\frac{\pi}{2 n} \sigma^{2}\left(1-\frac{2 n^{2}}{\pi}\right) \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence $T_{1}=\frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|x_{i}\right|$ is consistent for D.
Remark:- We have the theorem:
"If $\left\{T_{n}\right\}$ is a sequence of estimators such that $E\left(T_{n}-\theta\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$, then $\left\{T_{n}\right\}$ is consistent for θ."
"The converse of the theorem is not necessarily true", ie. we have situations cohere $T_{n} \xrightarrow{P} \theta$ but $E\left(T_{n}-\theta\right)^{2} \ngtr 0$ as $n \rightarrow \infty$.

For example:-

$$
T_{n}= \begin{cases}\theta & \text { with probability }\left(1-\frac{1}{n}\right) \\ \theta+n & \text { with probability } \frac{1}{n}\end{cases}
$$

$$
\text { Now, } \begin{aligned}
& P\left[\left|T_{n}-\theta\right|>\epsilon\right] \\
& =P\left[T_{n}=\theta+n\right] \\
= & \frac{1}{n} \rightarrow 00.5 n \rightarrow \infty \\
\Rightarrow & T_{n} \xrightarrow{P} \theta
\end{aligned}
$$

But, $E\left(T_{n}-\theta\right)^{2}=(\theta-\theta)^{2} \cdot\left(1-\frac{1}{n}\right)+(\theta+n-\theta)^{2} \cdot \frac{1}{n}$

$$
=\frac{n^{2}}{n}=n \rightarrow 1 \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence, $\operatorname{Tn} \xrightarrow{P} \theta$ but $E\left(T_{n}-\theta\right)^{2} \rightarrow 0$ as $n \rightarrow \infty$.

Invariance Property:- If $\left\{T_{n}\right\}$ is consistent for θ and $\psi(\cdot)$ is a continuous function, then $\{\Psi(T n)\}$ is consistent for $\psi(Q)$.
Proof:- Here $\psi($.$) is continuous function. Hence for a given \in>0$. There exists a $\delta>0$, such that

$$
\left|\Psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon \text { whenever }\left|T_{n}-\theta\right|<\delta \text {. }
$$

clearly. $\left\{\left|T_{n}-\theta\right|<\delta\right\} \subseteq\left\{\left|\psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\right\}$

$$
\Rightarrow P\left\{\left|T_{n}-\theta\right|<\delta\right\} \leq P\left\{\left|\psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\right\}
$$

$A S\left\{T_{n}\right\}$ is consistent for θ,

$$
\begin{aligned}
& \text { As }\left\{T_{n}\right\} \text { is consistent } \\
\therefore & 1=\lim _{n \rightarrow \infty} P\left[\left|T_{n}-\theta\right|<\delta\right] \leq \lim _{n \rightarrow \infty} P\left[\left|\psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\right] \leq 1 \\
& \Rightarrow \lim _{n \rightarrow \infty} P\left[\left|\psi\left(T_{n}\right)-\psi(\theta)\right|<\epsilon\right]=1
\end{aligned}
$$

$\Rightarrow\left\{\psi\left(T_{n}\right)\right\}$ is consistent for $\psi(\theta)$.
Ex.(8). If $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from Bernoulli distr. with prob. of success p. Show that \rightarrow (i) \bar{x} is consistent for p,
(ii) $\bar{x}(1-\bar{x})$ is consistent for $p(1-p)$.

Solon.: i)

$$
\begin{aligned}
& \sum(\bar{x})=E\left(X_{i} \sim \operatorname{Bin}(n, p)\right. \\
& V(\bar{x})=\frac{V\left(x_{1}\right)}{n}=\frac{p(1-p)}{n} \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

$$
=v\left(x_{1}\right)
$$

Hence, \bar{x} is consistent for p.
ii) Here $\psi(p)=p(1-p)=V\left(x_{1}\right)$ is a continuous function as $p(1-p)$ is a polynomial in p.
By invariance property,
$\psi(\bar{x})=\bar{x}(1-\bar{x})$ is consistent for $\psi(p)=p(1-p)$.
Ex.(9). Let $x_{1}, x_{2}, \ldots, x_{n}$ is arms. from $\operatorname{Bin}(1, p)$. Suggest consistent estimators of (i) e^{-p}, (ii) p^{2}, (ii) $\sin p$, (ii) $-\ln p$.

Ex. (10), Let $x_{1}, x_{2}, \ldots, x_{n}$ be a ri. from $N(\mu, \mu), \mu>0$.
(a) Find a consistent estimator of μ^{2}. Is it unbiased?
(b) Find out an UE which is consistent?

Sols.:-

$$
\begin{aligned}
& \text { (a) } \bar{X} \sim N\left(\mu, \frac{\mu}{n}\right) \\
& \Rightarrow E(\bar{X})=\mu \\
& v(\bar{X})=\frac{\mu}{n_{n}} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence \bar{x} is consistent for μ.
By invariance property, \bar{x}^{2} is consistent for μ^{2}.
But, $E\left(\bar{x}^{2}\right)=v(\bar{x})+E^{2}(\bar{x})$

$$
=\frac{\mu}{n}+\mu^{2} \neq \mu^{2}\left[\because x_{i} \stackrel{i d}{\sim} N(\mu, \mu)\right]
$$

ie. \bar{x}^{2} is biased for μ^{2}.
(b) In a normal sample, \bar{x} and s^{2} are independently distributed.

Also, $E(\bar{x})=\mu$ and $E\left(s^{2}\right)=\mu$.
Hence, $E\left(\bar{X} \cdot S^{2}\right)=E(\bar{X}) \cdot E\left(S^{2}\right)$, due to independence.

$$
=\mu^{2}
$$

and $\quad \operatorname{tar}\left(\bar{x} \cdot s^{2}\right)=E\left(\bar{x} \cdot s^{2}\right)^{2}-E^{2}\left(\bar{x} \cdot s^{2}\right)$

$$
\begin{aligned}
& =E\left(\bar{x}^{2} \cdot s^{4}\right)-\mu^{4} \\
& =E\left(\bar{x}^{2}\right) \cdot E\left(s^{4}\right)-\mu^{4} \\
& =\left\{v(\bar{x})+E^{2}(\bar{x})\right\} \cdot\left\{V\left(s^{2}\right)+E^{2}\left(s^{2}\right)\right\} \\
& =\left\{\frac{\mu}{n}+\mu^{2}\right\}\left\{\frac{2 \mu^{2}}{n-1}+\mu^{2}\right\}-\mu^{4} \\
& \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence, $\bar{X} \cdot s^{2}$ is consistent as well as unbiased for μ^{2}.
Remark:- In Ex.(10) (the above example)
(a) is an example of a biased consistent estimator.
(b) is an example of an unbiased consistent estimator.

Ex. (II). Give an example of an estimator cohich is
(i) consistent but not unbiased,
(ii) unbiased but not consistent,
(iii) consistent as well as unbiased.

Ans:- (i) Lett $T_{1}=\bar{x}+\frac{1}{n}$
Clearly, $T_{1}=\bar{x}+\frac{1}{n}$ is consistent but

$$
E\left(T_{1}\right)=\mu+\frac{1}{n} \neq \mu
$$

So, it is not unbiased.
[If $\left\{T_{n}\right\}$ is consistent for θ, the $\left\{T_{n}+a_{n}\right\}$ is

$$
\left\{T_{n}\right\} \text { is consistent for } \theta \text { if } \lim _{n \rightarrow \infty} a_{n}=0 \text {. }
$$

(ii) Note that, $T=\frac{X_{1}+X_{n}}{2}$ is an unbiased estimator of
μ.

$$
T \sim N\left(\mu, \sigma^{2} / 2\right)
$$

Now, $P[|T-\mu|<\epsilon]=P\left[\left|\frac{T-\mu}{\sigma / \sqrt{2}}\right|<\frac{\epsilon \sqrt{2}}{\sigma}\right]$

$$
\begin{aligned}
& =2 \Phi\left[\frac{\epsilon \sqrt{2}}{\sigma^{\prime}}\right]-1 \\
& \longrightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence, T is unbiased but not consistent for μ,
(ii) Let $x_{1}, x_{2}, \ldots, x_{n}$ be arsis. from $N\left(\mu, \sigma^{2}\right)$
then $\bar{x} \sim N\left(\mu, \sigma^{2} / n\right)$.
$-E(\bar{X})=\mu, V(\bar{x})=\frac{\sigma^{2}}{n} \rightarrow 0$ as $n \rightarrow \infty$
$\Rightarrow \vec{x}$ is consistent as well as unbiased.
Ex.(12). Show that for a res. from cauchy distribution with location parameter μ, ire, $(C(\mu, 1)$, the sample mean is not consistent for μ but the sample median is consistent for μ.
Ans:- Let $x_{1}, x_{2}, \ldots, x_{n}$ be ar. from $C(\mu, 1)$.
Then $\bar{x} \sim c(\mu, 1)$
Now, $P[|\bar{x}-\mu|<\epsilon]=P[\mu-\epsilon<\bar{x}<\mu+\epsilon]$

$$
\begin{aligned}
& =\int_{\mu-\epsilon} \frac{d \bar{x}}{\pi\left\{1+(\bar{x}-\mu)^{2}\right\}} \\
& =\left[\frac{1}{\pi} \tan ^{-1}(\bar{x}-\mu)\right]_{\mu-\epsilon}^{\mu+\epsilon} \\
& =\frac{2}{\pi} \tan ^{-1} \epsilon \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence \bar{x} is not consistent for μ.

It can be shown that for large samples,

$$
\xi_{p}^{A} a N\left(\xi_{p}, \frac{p(1-p)}{n \cdot f^{2}\left(\xi_{p}\right)}\right)
$$

where, $f(\cdot)$ is the PDF of the distribution.

$$
\begin{array}{rl}
\text { For, } c(\mu, 1) \text { distribution, } & \xi_{1 / 2} \sim \\
& \sim\left(\xi\left(\xi_{1 / 2}, \frac{1}{4 n f^{2}(\mu)}\right)\right. \\
\Rightarrow \tilde{x} \sim a & N\left(\mu, \frac{\pi^{2}}{4 n}\right)\left[\because f(\mu)=\frac{1}{\pi}\right]
\end{array}
$$

Hence, for large $n, E(\tilde{x})=\mu$,

$$
V(\tilde{x})=\frac{\pi^{2}}{4 n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

$\Rightarrow \tilde{x}(\xi, / 2)$ is consistent for μ.
Remark:- By Khinchinte's WLLN: $\bar{x} \xrightarrow{P} \mu$, provided $E\left(X_{1}\right)=\mu$, the population mean eseists. In Cauchy population, the poplin mean does not exist and μ is not the poplin mean but it is the popln. median. Hence for μ, \bar{x} is not conséstent, but \tilde{x} is consistent?
Ex. (13). Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from the popin with PDF

$$
f(x ; \theta)= \begin{cases}e^{-(x-\theta)} & \text { if } x>\theta \\ 0 & , \text { ow }\end{cases}
$$

Show that $X_{(1)}$ is consistent for θ.
Ans:-

$$
\begin{aligned}
& f_{X_{(1)}}(x)=n\left[1-\int_{\theta}^{x} e^{-(x-\theta)} d x\right]^{n-1} \cdot e^{-(x-\theta)} ; x>\theta \\
& =n\left[1+e^{-(x-\theta)}-1\right]^{n-1} \cdot e^{-(x-\theta)} \\
& =n e^{-n(x-\theta) ; ~} x>\theta \\
& P\left[\left|X_{(1)}-\theta\right|<\epsilon\right]=P\left[\theta<x_{(1)}<\theta+\epsilon\right]=n \int_{\theta}^{\theta+\epsilon} e^{-n(x-\theta)} d x \\
& =n e^{n \theta}\left[\frac{e^{-n x}}{-n}\right]_{\theta}^{\theta+\epsilon} \\
& =1-e^{-n \epsilon} \\
& \longrightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

$\therefore X_{(1)}$ is consistent for θ.

Ex. (14). If x_{1}, \ldots, x_{n} be a res. from $f(x)=\frac{1}{2}(1+\theta x)$; $-1<x<1,-1<\theta<1$. Find a consistent estimator of θ.
(ISS)
Solution:- $f(x)=\frac{1}{2}(1+\theta x) I-1<x<1$

$$
\therefore E(X)=\frac{1}{2} \int_{-1}^{1}(1+\theta x) x d x=\frac{\theta}{3}
$$

Now, $E(\bar{x})=\frac{1}{n} \sum_{i=1}^{n} E\left(x_{i}\right)=0 / 3$

$$
\Rightarrow E(3 \bar{x})=\theta
$$

Noco, $E\left(x^{2}\right)=\frac{1}{2} \int_{-1}^{1} x^{2}(1+\theta x) d x=\frac{1}{2} \int_{-1}^{1}\left(x^{2}+\theta x^{3}\right) d x=\frac{1}{3}$

$$
\begin{aligned}
\therefore V(X) & =E\left(X^{2}\right)-E^{2}(X) \\
\Rightarrow V(X) & =\frac{1}{3}-\frac{\theta^{2}}{9} \\
V(\bar{X}) & =\frac{1}{n^{2}} \cdot n\left(\frac{1}{3}-\frac{\theta^{2}}{9}\right)=\frac{1}{n}\left(\frac{1}{3}-\frac{\theta^{2}}{9}\right) \\
\therefore \operatorname{lt}_{n \rightarrow \infty} V(3 \bar{x}) & =9 \operatorname{Lt}_{n \rightarrow \infty} V(\bar{x})=9 \operatorname{Lim}_{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{3}-\frac{\theta^{2}}{9}\right)=0
\end{aligned}
$$

$\therefore 3 \bar{x}$ is a consistent estimator of θ.
$E x_{1}(15)$.

Introduction:-In the problem of statistical inference, the raw data collected from the field of enquiry is too numerous and hence too difficult to deal with and too costly to stare. So, a statistician could like to condence the data by determining a function of the sample observation, i.e. by forming a statistic. Here, the condensation should be done in a manner so that there is 'no loss of information' regarding the poling feature of interest, The statistic cohich exhaust all the relevant information about the labelling parameter, that contained in the sample are called sufficient statistics and these notion is termed as sufficiency principle. Clearly, sufficiency is an essential criterion of an inferential problem.
Consider the following example :
Let $x_{1}, x_{2}, \ldots, x_{n}$ be an. s. from $N(\mu, 1), \mu$ is conknocon.
Apply the orthogonal transformation

$$
y=A \underset{\sim}{x} \text { with }\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right) \text { as the first row of } A \text {. }
$$

Then $Y_{1}=\sqrt{n} \bar{X} \sim N(\sqrt{n} \mu, 1)$ and $Y_{i} \sim N(0,1), i=2(1) n$, independently.
To estimate μ, we can use $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or $Y_{1}=\sqrt{n} \bar{X}$, since $Y_{2}, Y_{3}, \ldots, Y_{n}$ provide no information about μ.
Clearly, $Y_{1}=\sqrt{n} \bar{X}$ is preferable, since we need not to keep the record of all observations.

Any estimation of the parameter based on $Y_{1}=\sqrt{n} \bar{X}$ is just effective as any estimation that could be based on $x_{1}, x_{2}, \ldots, x_{n}$. If we use statistics to extract all the information in the sample about μ then it is sufficient on enough to observe only Y_{1}.

Let x_{1}, \ldots, x_{n} be a random sample from poplin, with PDF or PMF $f(x ; \theta)$. Following Fisher, we call T a sufficient (or an exhaustive) statistic if it contains all the information about θ that is contained in the sample.

Definition 1. Sufficient statistic
Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random sample drawn from F_{θ}. A statistic $S=S\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is said to be a sufficient statistic of θ iff $P_{\theta}[\underset{\sim}{x} \in A \mid S=8]$ is independent of θ $\forall \theta \in \Omega$ and for all A,,\ldots. the conditional distribution of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given $s=8$ does not depend on θ, for any values s of S.
Remark:- The definition says that a statistic S is sufficient if you know the values of the statistic s, then the sample values themselves are not needed and can tell you nothing more about θ.

1. Illustrative Example: - Let $\left(x_{1}, \ldots, x_{n}\right)$ be ar. s. from $\operatorname{Bin}(1, p)$, show that, using definition, $S=\sum_{i=1}^{n} x_{i}$ is sufficient for p. Soln \rightarrow [Suppose, we are given a loaded coin and asked to infer about p, the probability of head.

To canny out the inference, the coin is tossed n times and the S-F (success-failure) sun has been recorded. Let the records be $x_{1}, x_{2}, \ldots, x_{n}$; where x_{i} is a realisation on x_{i}. It is evident that x_{i} 's are independent of each other. To infer about p, it is not necessary to know which trial results in success cohere as it is sufficient to know the number of success, ie. $\sum_{i=1}^{n} x_{i}$. Now, woe show that this goes consistent with the $\sum_{i=1}$ definition.]
Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $\operatorname{Bin}(1, p)$, where p being the probability of success.
Let us define, $s=\sum_{i=1}^{n} x_{i}$
Now, we need to show's is sufficient.
Let us consider the conditional distribution of the ross given
that the distr of the statistic.
$\begin{aligned} & P\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n} \mid S=s\right] \\ = & \frac{P\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}, S=s\right]}{P[S=s]}\end{aligned}$

$$
= \begin{cases}\frac{1}{\binom{n}{s}} & \text { if } s=\sum_{i=1}^{n} x_{i} \\ 0 & \text { ow }\end{cases}
$$

Hence, the conditional distribution is independent of p.
\therefore By definition. $S=\sum_{i=1}^{n} x_{i}$ is sufficient for p.
Note:- The random sample itself $T=\left(x_{1}, \ldots, x_{n}\right)$ is trivially a sufficient statistic.
Remark:- Definition (1) is not a constructive definition, since it requires that we first guess a statistic. T and then check to see whether T is sufficient or not, it does not provide any clue to what the choice of T should be.
Definition 2. Wet $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from the PMF or PDF $f(x ; \theta)$. A statistic S is defined to be a sufficient statistic if the conditional distribution of T given $\delta=8$ does not depend on θ, for any statistic T, for any value of s.

This definition in particularly is useful to show that a statistic S is not sufficient.
Definition:- Joint sufficient statistic
Let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ be a random sample from the density for The statistics $T_{1}, T_{2}, \ldots, T_{r}$ are defined to be jointly sufficient if the conditional distribution of $x_{1}, x_{2}, \ldots, x_{n}$ given $s_{1}=s_{1}, s_{2}=s_{2}, \ldots$, $S_{r}=8 n$ is independent of the unknown parameter θ.
Remark: - If $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is ordered then the order statistics $\left.\overline{X_{(1)}, X_{(2)}}, \ldots, X_{(n)}\right)$ will also be sufficient, since $\left(X_{(1)}, X_{(2)}, \ldots, X_{(n)}\right)$ is nothing but n ! permutations of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Hence if we consider the conditional distribution of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given $\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$ will be $\frac{1}{n!}$, which is independent of θ. Another approach of showing $\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$ as a sufficient statistic is factorization theorem.

Ex.(2). Example of a statistic that is not sufficient:-
Let $\left(x_{1}, x_{2}, x_{3}\right)$ be a res. from $\operatorname{Bin}(1, p)$. Is $T=x_{1}+2 x_{2}+x_{3}$ sufficient for p ? Is $x_{1} x_{2}+x_{3}$ is sufficient for p ?
Ans:-
(i) Here T takes the values $0,1,2,3,4$,

$$
\begin{aligned}
& P\left[x_{1}=1, x_{2}=0, x_{3}=1 \mid T=2\right] \\
& =\frac{P\left[x_{1}=1, x_{2}=0, x_{3}=1 ; T=2\right]}{P[T=2]} \\
& =\frac{P\left[x_{1}=1, x_{2}=0, x_{3}=1\right]}{P\left[x_{1}=1, x_{2}=0, x_{3}=1\right]+P\left[x_{1}=0, x_{2}=1, x_{3}=0\right]} \\
& =\frac{p^{2}(1-p)}{p^{2}(1-p)+p(1-p)^{2}}=\frac{p}{p+1-p}=p, \text { cohich depends on } p .
\end{aligned}
$$

Hence T is not sufficient for p.
(ii) Here, $x_{1} x_{2}+x_{3}=T$

Let us consider a specific case, $x_{1}=1, x_{2}=1, x_{3}=0$ and $T=1$.
Here $x_{1} x_{2}+x_{3}=1$ for,

$$
\begin{aligned}
& \left\{\left(x_{1}=1, x_{2}=1, x_{3}=0\right),\left(x_{1}=1, x_{2}=0, x_{3}=1\right),\left(x_{1}=0, x_{2}=1, x_{3}=1\right. \text {, }\right. \\
& \left.\left(x_{1}=0, x_{2}=0, x_{3}=1\right)\right\} \\
& \therefore P\left[\left(x_{1}=1, x_{2}=1, x_{3}=0\right) \mid T=1\right] \\
& =\left\{\begin{array}{cl}
\frac{P\left[x_{1}=1, x_{2}=1, x_{3}=0\right]}{P[T=1]} & , \text { if } T=1 \\
0 & , \text { ow }
\end{array}\right. \\
& = \begin{cases}\frac{p^{2}(1-p)}{3 p^{2}(1-p)+(1-p)^{2} p} & \text { if } T=1 \\
0, & 0 W\end{cases} \\
& = \begin{cases}\frac{p}{2 p+1} & \text {, if } T=1 \\
0 & \text {,ow }\end{cases}
\end{aligned}
$$

ins. T is not sufficient for p.

Ex. (3), Let $x_{1}, x_{2} \ldots, x_{n}$ be a ri. from $P(\lambda) \cdot S . T, S=\sum_{i=1}^{n} x_{i}$ is sufficient for λ.
Ans:-

Ex.(4). Let $\left(x_{1}, x_{2}\right)$ be a res. from $P(\lambda)$, ST. $T=x_{1}+2 x_{2}$ is not sufficient for λ.
ANS:-

$$
\begin{aligned}
P\left[X_{1}=0, x_{2}=^{1} \mid T=2\right] & =\frac{p\left[x_{1}=0, x_{2}=1\right]}{p\left[x_{1}+2 x_{2}=2\right]} \\
& =\frac{e^{-\lambda}\left(\lambda e^{-\lambda}\right)}{p\left[x_{1}=0, x_{2}=1\right]+p\left[x_{1}=2, x_{2}=0\right]} \\
& =\frac{\lambda e^{-2 \lambda}}{\lambda e^{-2 \lambda}+\left(\frac{\lambda^{2}}{2}\right) e^{-2 \lambda}} \\
& =\frac{1}{\left(1+\frac{\lambda}{2}\right)},
\end{aligned}
$$

This depends on λ.
So, T is not sufficient.

Ex. (5). Let $\left(x_{1}, \ldots, x_{n}\right)$ be a res. from Geo (p). Find The conditional distribution of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given $\sum_{i=1}^{n} x_{i}=s$. Hence comment on $\sum X_{i}$ as an estimator of p.
Solution:- As $x_{i} \xrightarrow{i i d}$ Geometric (p), i=1(1)n.

$$
\sum_{i=1}^{n} x_{i} \sim N B(n, p)
$$

Now,

$$
\begin{aligned}
& P\left[X_{1}=x_{1}, \ldots, x_{n}=x_{n} \mid \sum_{i=1}^{n} x_{i}=\lambda\right] \\
& =\frac{P\left[x_{1}+x_{1}, \ldots, x_{n}=x_{n} ; \sum_{i=1}^{n} x_{i}=8\right]}{P\left[\sum_{i=1}^{n} x_{i}=s\right]} \\
& = \begin{cases}\frac{P\left[X_{1}=x_{1}, \ldots . ., X_{n}=x_{n}\right]}{P\left[\sum_{i=1}^{n} X_{i}=s\right]} & \text {; if } s=\sum_{i=1}^{n} x_{i} \\
0 & \text {;ow }\end{cases} \\
& = \begin{cases}\frac{\prod_{i=1}^{n}\left\{p(1-p)^{x_{i}}\right\}}{\binom{s+n-1}{s} p^{n} q^{s}} & \text {; if } s=\sum_{i=1}^{n} x_{i} \\
0 & \text {;ow }\end{cases} \\
& =\left\{\begin{array}{cc}
\frac{1}{\binom{s+n-1}{s}} & \text { if } s=\sum_{i=1}^{n} x_{i} \\
0 & \text { on }
\end{array}\right.
\end{aligned}
$$

, which is independent of p.
Hence, by definition, the statistic $\sum_{i=1}^{n} x_{i}$ is sufficient for p.
EX.(6). Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a pis, from the p.m.f.

$$
P(x ; N)= \begin{cases}\frac{1}{N}, & x=1(1) n \\ 0, & \text { ow }\end{cases}
$$

Find the conditional distribution of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given $X(n)=s$. Hence comment on $X(n)$ as an estimator of N.

Remark:- Let $f(x ; \theta)$ be the PMF of PDF of $x=\left(x_{1}, \ldots, x_{n}\right)$ and $\overline{g(t ; \theta)}$ be the PMF or PDF of the statistic $T\binom{x}{x}$.
For discrete case, $P[\underset{\sim}{x}=\underset{\sim}{x} \mid T(\underset{\sim}{x})=t]$

$$
\begin{aligned}
& =\frac{P[\underset{\sim}{x}=\underset{\sim}{x} ; T(\underset{\sim}{x})=t]}{P[T(\underset{\sim}{x})=t]} \\
& = \begin{cases}\frac{P[x=x]}{P[T(\underset{\sim}{x})=t]} & \text { if } t=T(\underset{\sim}{x}) \\
0 & \text { ow }\end{cases} \\
& = \begin{cases}\frac{f(x ; \theta)}{g(t ; \theta)} & \text { if } t=T(\underset{\sim}{x}) \\
0 & \text { ow }\end{cases}
\end{aligned}
$$

If $P[\underset{\sim}{x}=\underset{\sim}{x} \mid T(\underset{\sim}{x})=t]=\frac{f(x ; \theta)}{g(t ; \theta)}$ is independent of θ, then $T(x)$ is sufficient for θ.
In general, we have for continuous \& discrete distribution, if the ratio $\frac{f(x ; \theta)}{g(t ; \theta)}$ is independent of θ, then $T(\underset{\sim}{x})$ is sufficient for θ.
Ex. (7). Let $x_{1}, x_{2} \ldots x_{n}$ be arms. from $N(\mu, 1)$. siT. using def n.,
Ans: X is suffient for μ
ANS:- The PDF of $x_{\sim}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is

$$
f(x ; \mu)=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{1}{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} ; \quad x_{i} \in \mathbb{R}
$$

$$
\begin{aligned}
& \text { and the pDf of } \bar{x} \text { is } \\
& \qquad \begin{aligned}
& g(\bar{x} ; \mu)=\left(\frac{1}{\sqrt{\frac{2 \pi}{n}}}\right) \cdot e^{-\frac{n}{2}(\bar{x}-\mu)^{2}} ; \bar{x} \in \mathbb{R}\left[\text { Here } \bar{x} \sim N\left(\mu, \frac{1}{n}\right)\right] \\
& \therefore \text { The ratio } \frac{f(x ; \mu)}{g(\bar{x} ; \mu)}\left.=\frac{\sqrt{n}}{(2 \pi)^{\frac{n+1}{2}}} e^{-\frac{1}{2}\left\{\sum\left(x_{i}-\mu\right)^{2}-n(\bar{x}-\mu)^{2}\right\}}\right] \\
&=\frac{\sqrt{n}}{(2 \pi)^{\frac{n+1}{2}}} e^{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} ;\left[\because \sum\left(x_{i}-\mu\right)^{2}\right. \\
& \text { which is independent of } \mu .
\end{aligned}
\end{aligned}
$$

Hence, by definition, \bar{X} is sufficient for μ.

EX.(8). Let $\left(x_{1}, \ldots, x_{n}\right)$ be a rus. from $u(0, \theta), \theta>0$; ST. $X_{(n)}$ is sufficient for θ.
Soln:- $X_{(n)}$ is sufficient for θ if the conditional distribution of X given $X(n)=x(n)$ is independent of θ, i.e. if the ratio $\frac{f(x ; \theta)}{g(x(n) ; \theta)}$ is independent of θ.
for $0<x_{i}<\theta$, and $0<X(n)<\theta$;

$$
\begin{aligned}
\frac{f(x ; \theta)}{g\left(x_{(n)} ; \theta\right)} & =\frac{\left(\frac{1}{\theta}\right)^{n}}{\frac{n\left\{x_{(n)}\right\}^{n-1}}{\theta^{n}}}, \text { if } 0<x_{(n)}<\theta \\
& =\frac{1}{n\left\{x_{(n)}\right\}^{n-1}} ; \text { if } 0<x_{(n)}<\theta
\end{aligned}
$$

which is independent of θ.
Hence $X(m)$ is sufficient for θ.

Note:-
Definition (I) :- $P[\underset{\sim}{x}=\underset{\sim}{x} \mid s=s]$ is independent of θ.
Definition (II):-P[T=t|S=s] is independent of θ.
Defn. (II) is useful to show that a statistic s is not sufficient since from the idea of sampling distribution, it is known that $P[T=t \mid s=s]$ does not depend on θ.

Factorization Criterion (Due to Fisher): ~
The requirement for Factorization theorem: \sim for a given family of distribution if we are to find a sufficient statistic for the Labelling parameter, it will be difficult to adopt the definition of sufficiency as a criterion in choosing a sufficient statistic. Because according to the definition of sufficient statistic $P[X \in A \mid T=t]$ (where, A being a function of t), are not uniquely defined and the question arises cohether determinations exist or not for some fixed t. The answers is that is is possible cohen the sample space is euclidean.
Secondly, the determination of sufficient statistic by means of its definition is inconvenient since it requires, first guessing a statistic. T that might be sufficient and then checking whether the conditional distribution of x given $T=t$ is independent of θ or not.
Therefore, we need a simpler criterion which can be adopted as a tool to find a sufficient statistic. Such a criterion is given in terms of factorization theorem due to Fisher and Neyman.
Theorem: Factorization criterion: \sim We now give a criterion for determining sufficient statistics:
Statement:- Let $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=x$ be a res. from PMF or, PDF $f(x ; \theta) \forall \theta \in \Omega$. Then $T(x)$ is sufficient for θ iff we can factor the PMF or PDF of ${ }^{\sim} x$ as

$$
\begin{equation*}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=g(T(x) \cdot \theta) h(\underset{\sim}{x}) \tag{*}
\end{equation*}
$$

cohere, $h(x)$ depends on x but not on θ and $g(T(x), \theta)$ depends on θ and on $\underset{\sim}{x}$ only through $T(\underset{\sim}{x})$.
Proof:- [Discrete case only]
Only if (Necessary) Part: - Let, $T(\underset{\sim}{x})$ is sufficient for θ. Then, $P[x=x \mid T(x)=t]$ is independent of θ and

$$
\begin{aligned}
P_{\theta}[\underset{\sim}{x}=\underset{\sim}{x}] & =P_{\theta}[x=\underset{\sim}{x} ; T(\underset{\sim}{x})=t] \quad \text { if } t=T(\underset{\sim}{x}) \\
& =P_{\theta}[T(\underset{\sim}{x})=t] P[\underset{\sim}{x}=\underset{\sim}{x} \mid T(\underset{\sim}{x})=t] \text { if } T(\underset{\sim}{x})=t
\end{aligned}
$$

for values of $\underset{\sim}{x}$ for cohich $P_{\theta}[x=x]=0 \forall \theta \in \Omega$.
Let us define, $h(x)=0$ and for x for which $P_{\theta}[\underset{\sim}{x}=x]>0$, for some θ. We define, $h(\underset{\sim}{x})=P[x=x \mid T(\underset{\sim}{x})=t]$ and

$$
g(T(x) ; \theta)=P_{\theta}[T(\underset{\sim}{x})=t]
$$

Thus we see that (*) holds.

If sufficient) Part: - Let the factorization criterion (x) holds. Then, for fixed t, we have.

$$
\begin{aligned}
& P_{\theta}[T(x)=t] \\
&= \sum_{N} P_{\theta}[x=x] \\
&\{x: T(x)=t\} \\
&= \sum_{N} g(T(x) ; \theta) \cdot h(x) \\
&\{x: T(x)=t\} \\
&= g(t, \theta) \sum_{\{x: T(x)=t\}} h(x)
\end{aligned}
$$

suppose that $P_{\theta}[T(x)=t]>0$ for some θ.
Then,

$$
\begin{aligned}
& P_{\theta}[\underset{\sim}{x}=\underset{\sim}{x} \mid T(x)=t] \\
= & \frac{P_{\theta}[x=x ; T(x)=t]}{P_{\theta}[T(x)=t]} \\
= & \left\{\begin{array}{ll}
\frac{P_{\theta}[x=x]}{P_{\theta}[T(x)=t]} & \text { if } t=T(x) \\
0 & \text { if } t \neq T(x) \\
= & \begin{cases}\frac{g(T(x), \theta) h(x)}{g(t, \theta) \sum h(x)} & \text { if } t=T(x) \\
\{x: T(x)=t\} & \text { ow } \\
0 & \text { if } t=T(x) \\
= & \text { ow } \\
\{x: T(x)=t\} & h(x)\end{cases}
\end{array} \begin{array}{ll}
0 &
\end{array}\right.
\end{aligned}
$$

, cohich is independent of θ.
Hence $T\binom{x}{\sim}$ is sufficient statistic for θ.
Remark:- 1. The factorization criterion cant be used to show that a given statistic T is not sufficient. To do this one coould normally have to use the definition of sufficiency. is guffient for $\left\{F_{\theta}: \theta \in W\right.$, $T(X)$, where $\left\{F_{\theta}: \theta \in(A)\right\}$, then T trivially from the definition. where WC(4). This follows

Result:- 1 IT T is sufficient for θ, then any one-to -one function of Tis also sufficient for θ, ire. the bijection of T is also a sufficient statistic for θ.
Proof:- Let $U=\phi(T)$ is a one-to-one function, then $T=\phi^{-1}(U)$ exists.
Now,

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & =g(t ; \theta) h(x) \\
& =g\left(\phi^{-1}(u) ; \theta\right) h(\underline{x}) \\
& =g^{*}(u, \theta) \cdot h(x)
\end{aligned}
$$

By factorization criterion, it is sufficient for θ.
2) If T_{1}, T_{2} be two different sufficient statistics, then they are related.
Proof:-

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=g_{1}\left(t_{1}, \theta\right) h_{1}(\underline{x}) \\
&=g_{2}\left(t_{2}, \theta\right) h_{2}(\underline{x}) \\
& \Rightarrow \frac{g_{1}\left(t_{1}, \theta\right)}{g_{2}\left(t_{2}, \theta\right)}=\frac{h_{2}(\underset{\sim}{x})}{h_{1}(\underline{x})}, \text { which is independent of } \theta . \\
& \Rightarrow \psi\left(t_{1}, t_{2}\right)=h^{*}(\underset{\sim}{x})
\end{aligned}
$$

$\Rightarrow T_{1}$ and T_{2} are related.
It does not follow that every function of a sufficient statistic is sufficient:
If T_{1} is sufficient then $T_{2}=f\left(T_{1}\right)$ is sufficient if f is one-toone; otherwise, T_{2} may be on may not be sufficient.
3) For a r.s. $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from the PMF or PDF $f(x ; \theta)$, the entire sample $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is sufficient for θ. Also the order statistics $\left(X_{(1)}, X_{(2)}, \ldots, x_{(n)}\right)$ is sufficient for θ.
Proof:- The PMF or PDF of x is

$$
f x_{1}, x_{2}, \ldots, x_{n}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

Note that,

$$
\begin{aligned}
& f x_{(1)}, x_{(2)}, \ldots, x_{(n)}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=n!f_{x_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n} ; \theta\right) \\
& \Rightarrow f x_{1}, \ldots, x_{n}\left(x_{1}, \ldots, x_{n} ; \theta\right)=\frac{1}{\left.n!f x_{1}\right), x_{(2)}, \ldots, x_{(n)}\left(x_{1}, \ldots, x_{n} ; \theta\right)} \\
&=g(t(x), \theta) h\left(x_{n}\right)
\end{aligned}
$$

where $h(\underset{\sim}{x})=\frac{1}{n!}$ and $T(\underset{\sim}{x})=\left(X_{(1)}, x_{(2)}, \ldots, X_{(n)}\right)$
By factorization criterion, $\left(X_{(1)}, x_{(2)}, \ldots, X_{(n)}\right)$ is sufficient for θ.

Note:-
[Concept of sufficiency implies-
entire sample's sufficiency = sufficiency of order statistic;
Property of data summarization implies order statistic is more preferable than entire sample's sufficiency.]
According to the concept of sufficiency as space reduction both. $\left(X_{1}, x_{2}, \ldots . x_{n}\right)$ and $\left(X_{(1)}, X_{(2)}, \ldots, X_{(n)}\right)$ are in the same position and both the statistics are known as trivial sufficient statistics. According to the concept of data summarisation as a property of statistic, the ordered statistics are preferable than the original samples. for, in stead of collecting n ! original samples, we may. collect only the order statistics.
Remark :- Any statistic $T(x)$ defines a form of data reduction or data summary. An experimental coho uses only the observed value of the statistic T(X) rather than the entire. observed sample x, coll treat as x and y that satisfy $T(\underset{\sim}{x})=T(\underset{\sim}{y})$, even though the actual sample values may be different. Data reduction in terms of a particular statistic can be thought of as the partition of the samplespace x. Note that $T(\underset{y}{x}$) describes a mapping $T: x \rightarrow \tau$, cohere $\tau=\{t: t=T(\underset{\sim}{x}), \underset{\sim}{\underset{\sim}{x}} \in \mathcal{X}\}$, then $T(\underset{\sim}{x})$ partitions the sample space into sets $A_{t}: t \in \tau$ defined $A_{t}=\left\{\underset{\sim}{x}: T\left(x_{x}\right)=t\right\}$ the statistic summarises the data in that rather than reporting all the samples x, itpeports only $T(x)=t$. The sufficiency principle promotes a method of data. reduction that does not discard information about θ while achieving some summarization of data.

Ex. (1). Sufficient statistics for $P(\lambda)$ distribution:-
Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a r.s. fromm $P(\lambda)$.
Then $\prod_{i=1}^{n} f\left(x_{i} ; \lambda\right)=e^{-n \lambda} \cdot \frac{\sum_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}}$, if $x_{i}=0,1,2, \ldots$.

$$
=g(T(x), \lambda) \cdot h(x)
$$

where $h(x)=\frac{1}{\prod_{i=1}^{n} \underline{x_{i}}}$ and $T(x)=\sum_{i=1}^{n} x_{i}$
Hence, by factorization criterion, $T(x)=\sum_{i=1}^{n} x_{i}$ is sufficient for λ.
Also note that, -
(i) $T_{1}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is sufficient for λ, as

$$
\frac{1}{a}^{t} T_{\sim}=\sum_{i=1}^{n} x_{i}
$$

(ii) $T_{2}=\left(x_{1}, \ldots, x_{n-2}, x_{n-1}+x_{n}\right)$ is sufficient for λ, as

$$
\frac{1}{2}_{\sim}^{\prime} T_{2}=\sum_{i=1}^{n} x_{i}
$$

(ii) $T_{n-1}=\left(x_{1}, x_{2}+x_{3}+\cdots+x_{n}\right)$ is sufficient for λ. It is clear that $T(\underset{\sim}{x})=\sum_{i=1}^{n} x_{i}$ reduces the space most and is to be preferred.
We should always looking for a sufficient statistic that results in The greatest reduction of the space.
Ex.(2). If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a bis. from $\operatorname{Bin}(1, p)$ or Bernoulli (p) distr. then find a one-dimensional sufficient statistic for p.
Son.:-

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; p\right)=\left\{\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n-2 x_{i}}\right\} \times 1 \\
&=g\left\{T\left(\frac{x}{\sim}\right), \theta\right\}, h(\underset{\sim}{x}), \text { where } h(x)=1 \\
& \text { and } T(\underset{\sim}{x})=\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Hence $T=\sum_{i=1}^{n} x_{i}$ is sufficient estimators of θ.
$\therefore \quad \sum_{i=1}^{n} x_{i}$ is sufficient for θ, by factorization critemon.

Ex. (3), If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a res. from $N\left(\mu, \sigma^{2}\right)$. Then find a two-dimensional sufficient statistic for (μ, σ).

$$
\begin{aligned}
& \text { Solution: - The PDF of } x \text { is } \\
& \prod_{i=1}^{n} f\left(x_{i} ; \mu, \sigma\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} \\
&=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{\left(-\frac{\sum x_{i}^{2}}{2 \sigma^{2}}+\frac{\mu \Sigma x_{i}}{\sigma^{2}}-\frac{n \mu^{2}}{2 \sigma^{2}}\right)} \\
&=g(T(x) ; \mu, \sigma) \cdot h(x)
\end{aligned}
$$

cohere, $h(\underset{\sim}{x})=1$ and $T(\underset{\sim}{x})=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$
\therefore By factorization criterion, $T(x)=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$ is sufficient for (μ, σ).

Alternative: -

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \mu, \sigma\right) \\
= & \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} \\
= & \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}}\left\{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right\}} \\
= & \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}}\left\{(n-1) s^{2}+n(\bar{x}-\mu)^{2}\right\}} \\
= & g\left(\bar{x}, s^{2} ; \mu, \sigma\right) h(x), \text { cohere } h(x)=1 .
\end{aligned}
$$

Hence $T(\underset{\sim}{x})=\left(\bar{x}, s^{2}\right)$ is sufficient for (μ, σ).
Remark:- (1). If σ is unknown, then \bar{x} is not sufficient for μ. But if σ is known \bar{x} is sufficient for μ.
(2). If μ is unknown, then s^{2} is not sufficient for σ but if μ is known then $T=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=(n-1) s^{2}+n(x-\mu)^{2}$ or $\left(\bar{x}, s^{2}\right)$ is sufficient for σ.
Ex.(4). Let $x_{1}, x_{2}, \ldots, x_{n}$ be a bis. from Geometric (b). suggest $\frac{a}{x}$ one-dimensional sufficient statistic for p.
Is $e^{\bar{x}}$ sufficient for p.
Hints:- $e^{\bar{x}}$ is a one-torone function of \bar{x}.

Ex.(5). Uniform Distribution:-
Leet $x_{1}, x_{2}, \ldots . ., x_{n}$ be arms. From $\cup(0, \theta), \theta>0$. Find a one-dimensional sufficient statistic for θ. [ISS]
SolE.:- Here the domain of definition of $f(x ; \theta)$, i.e. the range of the RV depends on θ, great care is needed.
The pdf of $\underset{\sim}{x}$ is

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)= \begin{cases}\frac{1}{\theta^{n}}, \text { if } 0<x_{i}<\theta \quad \forall i=1(1) n \\
0 & , 0 w\end{cases} \\
&= \begin{cases}\frac{1}{\theta^{n}} \text { if } 0<x_{(1)} \leq x_{(n)}<\theta \\
0 & 0 w\end{cases} \\
&=\left\{\begin{array}{l}
\frac{1}{\theta^{n}} \cdot I\left(0, x_{(1)}\right) I\left(x_{(n)}, \theta\right) ; \text { where } I(a, b)=\left\{\begin{array}{l}
1 \text { if } a<b \\
0 i f a \geqslant b
\end{array}\right. \\
0
\end{array}\right. \\
&=\frac{1}{\theta^{n}} \cdot I\left(x_{(n)}, \theta\right) \cdot I\left(0, x_{(1)}\right) \\
&=g\left(T\left(x_{1}\right), \theta\right) \cdot h\left(x_{n}\right) ; \text { where } h\left(x_{N}\right)=I\left(0, x_{(1)}\right) \text { and } \\
& T\left(x_{1}\right)=x_{(n)}
\end{aligned}
$$

\therefore By factorization criterion, $T(x)=x_{(n)}$ is sufficient for θ.
Ex. (6): - Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $U\left(\theta_{1}, \theta_{2}\right) ; \theta_{1}<\theta_{2}$. Find a nontrivial sufficient statistic for $\left(\theta_{1}, \theta_{2}\right)$.
SolD:- Here the domain of definition of $f(x ; \theta)$ depends on θ_{1} and $\overline{\theta_{2}}$, so great care is needed.
The PDF of $\underset{\sim}{x}$ is $\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)= \begin{cases}\frac{1}{\left(\theta_{2}-\theta_{1}\right)^{n}} & \text { if } \theta_{1} \leq x_{i} \leq \theta_{2} \quad \forall i=1(1) n \\ 0 & \text { ow }\end{cases}$

$$
\begin{aligned}
& = \begin{cases}\frac{1}{\left(\theta_{2}-\theta_{1}\right)^{n}} & \text { if } \theta_{1} \leq x_{(1)} \leq x_{(n)} \leq \theta_{2} \\
0 & \text { ow }\end{cases} \\
& =\frac{1}{\left(\theta_{2}-\theta_{1}\right)^{n}} I\left(\theta_{1}, x_{(1)}\right) T\left(x_{(n)}, \theta_{2}\right) \text {, where } \\
& I(a, b)=\left\{\begin{array}{cc}
1 & \text { if } a \leq b \\
0 & \text { ow }
\end{array}\right. \\
& =g\left(T(x) ; \theta_{1}, \theta_{2}\right) h(x)
\end{aligned}
$$

where $h(\underset{\sim}{x})=1$ and $T(\underset{\sim}{x})=\left(x_{(1)}, x_{(n)}\right)$.
Hence, by fisher's factorization critemon, $T(x)=\left(x_{(1)}, x_{(n)}\right)$ is sufficient for $\left(\theta_{1}, \theta_{2}\right)$.

Remark:- The following examples are the particentar cases of $E x,(6)$; - $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from
(i) $U(\theta-1 / 2, \theta+1 / 2)$
(ii) $u(\theta, \theta+1)$
(iii) $\cup(-\theta, \theta)$

Find a nontrivial sufficient statistic in each case.
Note:- As algebra says, for solving two unknown, it is needed to have at least two equations.
For a single component parameter, it must contain at least one sufficient statistic.
Ex: (7) Let $\left(x_{1}, \ldots, x_{n}\right)$ be a res. from $u(-\theta, \theta), \theta>0$. Find a one-dimensional sufficient statistic for θ.
Sol: \rightarrow The PDF of x is

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & = \begin{cases}\left(\frac{1}{2 \theta}\right)^{n} & \text { if }-\theta \leq x_{i} \leq \theta \quad \forall i=1(1) n \\
0 & 0 w\end{cases} \\
& =\left\{\begin{array}{cc}
\left(\frac{1}{2 \theta}\right)^{n} i f 0 \leq\left|x_{i}\right| \leq \theta \quad \forall i=1(1)^{n} \\
0 & \text { ow } \\
& =\left\{\begin{array}{cc}
\left(\frac{1}{2 \theta}\right)^{n}, & 0 \leq \min _{i}\left\{\left|x_{i}\right|\right\} \leq \max _{i}\left\{\left|x_{i}\right|\right\} \leq \theta \\
0 & \text { ow }
\end{array}\right. \\
& =\left(\frac{1}{2 \theta}\right)^{n} I\left(0, \min _{i}\left\{\left|x_{i}\right|\right\}\right) I\left(\max _{i}\left\{\left|x_{i}\right|\right\}, \theta\right) ; \\
\text { cohere } I(a, b)=\left\{\begin{array}{cc}
1 & \text { if } a \geq b \\
0 & 0 w
\end{array}\right. \\
& =g(T(x), \theta) h(x), \text { where } h(x)=I\left(0, \min \left\{\left|x_{i}\right|\right\}\right.
\end{array}\right.
\end{aligned}
$$

Here, $T(\underset{\sim}{x})=\max _{i}\left\{\left|x_{i}\right|\right\}$ is sufficient for θ.
Alt: Note that, here $x_{i} \stackrel{\text { id }}{\sim} u(-\theta, \theta) \vee i=1(1) n$

$$
\Rightarrow Y_{i}=\left|x_{i}\right| \stackrel{i n d}{\sim} v(0, \theta) \forall i=1(1) n
$$

By Ex.(s); $Y_{n}=\max _{i}\left\{\left|x_{i}\right|\right\}$ is sufficient for θ.
Remark: - Let T be sufficient for a family of distribution $\left\{f_{i}(x) ; i=1,2, \ldots\right\}$.
Here $f_{i}(x)$ may have the different probability haves. If $f_{i}(x)$ have the same probability law with an unknown constant (parameter) θ [eg. $\left.f_{\theta}(x)=N(\theta, y), \theta \in \mathbb{R}\right]$ then we say that T is sufficient for θ.

Ex, (8), Let x be a single observation from a poplin, belong to the family $\left\{f_{0}(x), f_{1}(x)\right\}$, where,

$$
f_{0}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \text { and } f_{1}(x)=\frac{1}{\pi\left(1+x^{2}\right)} ; x \in \mathbb{R}
$$

Find a non-trivial sufficient statistic for the family of distribution.
Solution:- Writing the family as $\left\{f_{\theta}(x): \theta \in \Omega=\{0,1\}\right\}$
[Here the parameters θ is called labelling parameter]
Define, $I(\theta)= \begin{cases}0 & \text { if } \theta=0 \\ 1 & \text { if } \theta=1\end{cases}$
The PDF of x is

$$
\begin{aligned}
\text { PDF of } X \text { is } \\
\begin{aligned}
f_{\theta}(x) & =\left\{f_{0}(x)\right\}^{1-I(\theta)}\left\{f_{1}(x)\right\}^{I(\theta)} \\
& =\left\{\frac{f_{1}(x)}{f_{0}(x)}\right\}^{I(\theta)} \cdot f_{0}(x) \\
& =\left\{\frac{\frac{1}{\pi\left(1+x^{2}\right)}}{\frac{1}{\sqrt{2 \pi}} e^{-x^{h} / 2}}\right\}^{I(\theta)} \cdot \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
& =g(T(x) ; \theta) \cdot h(x)
\end{aligned}
\end{aligned}
$$

where $h(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$ and $T(x)=x^{2}$ or $|x|$
Hence x^{2} or $|x|$ is sufficient for the family of distr.
Ex.(9). Let $x_{1}, x_{2}, \ldots ., x_{n}$ be ar.s. from the PMF $\&$
(i) $P[X=0]=\theta, P[X=1]=2 \theta, P[X=2]=1-3 \theta ; 0<\theta<\frac{1}{3}$.
(ii) $P\left[X=k_{1}\right]=\frac{1-\theta}{2}, P\left[X=k_{2}\right]=\frac{1}{2}, P\left[X=k_{3}\right]=\frac{\theta}{2} ; 0<\theta<1$

Ans:- -1 Find a nontrivial sufficient statistic in each case.
(i) Let $T_{0}(x)=\left\{\begin{array}{ll}1 & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{array} ; T_{1}(x)=\left\{\begin{array}{ll}1 & \text { if } x=1 \\ 0 & \text { ow }\end{array} ; T_{2}(x)= \begin{cases}1 & \text { if } x=2 \\ 0 & \text { ow }\end{cases}\right.\right.$

Then the PMF of x is

$$
f(x ; \theta)=\theta T_{0}(x)(2 \theta)^{T_{1}(x)}(1-3 \theta)^{T_{2}(x)}
$$

$$
\begin{aligned}
& \text { Hence the PMF of } x_{i=1}^{n} \text { is } \\
& \begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\theta i=1 \\
&=\theta^{T_{0}}(2 \theta)^{T_{1}}\left(x_{i}\right)(2 \theta)^{i=1} T_{1}\left(x_{i}\right) \\
&(1-3 \theta)^{T_{2}} \quad \sum_{i=1}^{n} T_{2}\left(x_{i}\right) \\
& \text { frequere, } T_{k}=\sum_{i=1}^{n} T_{k}\left(x_{i}\right) \text { represents the }
\end{aligned}
\end{aligned}
$$

and $T_{0}+T_{1}+T_{2}=n$.

$$
\begin{aligned}
\therefore \prod_{i=1}^{n} f\left(x_{i}, \theta\right) & =\theta^{n-T_{2}}(1-3 \theta)^{T_{2}} \cdot 2^{T_{1}} \\
& =g\left(T_{2}, \theta\right) \cdot h(x)
\end{aligned}
$$

Cleanly, T_{2}, the frequency of value 2 in a rus., is sufficient for θ.

Ex.(10). Let $X_{1}, x_{2}, \ldots, x_{n}$ be a res. from the following PDFR. Find the nontrivial sufficient statistic in each case:
(i) $f(x ; \theta)= \begin{cases}\theta x^{\theta-1} & ; 0<x<1 \text { [ISI] } \\ 0 & ; 0 W\end{cases}$
(ii) $f(x ; \mu)=\frac{1}{|\mu| \sqrt{2 \pi}} \cdot e^{-\frac{(x-\mu)}{2 \mu^{2}}} ; x \in \mathbb{R}$
(iii) $f(x ; \alpha, \beta)= \begin{cases}\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\beta(\alpha, \beta)}, & 0<x<1 \\ 0 & , \\ 0 w\end{cases}$
(ii) $f(x ; \mu, \lambda)= \begin{cases}\frac{1}{\lambda} e^{-\frac{(x-\mu)}{\lambda}}, & \text { if } x>\mu \\ 0 & , \text { ow }\end{cases}$
(v) $f(x ; \mu, \sigma)=\left\{\begin{array}{cc}\frac{1}{x \sigma \sqrt{2 \pi}} e^{-\frac{1}{2 \sigma^{2}}(\ln x-\mu)^{2}}, & \text { if } x>0 \\ 0 & \text {, ow }\end{array}\right.$
(vi) $f(x ; \alpha, \theta)= \begin{cases}\frac{\theta \alpha^{\theta}}{x^{\theta+1}} & \text { if } x>\alpha \\ 0 & \text {; ow }\end{cases}$
(vii) $f(x ; \theta)= \begin{cases}\frac{2(\theta-x)}{\theta^{2}} ; & 0<x<\theta \\ 0 ; & 0 w\end{cases}$

Ans:- (i) The joint PDF of $x_{1}, x_{2}, \ldots, x_{n}$ is

$$
\begin{aligned}
f\left(x_{n}\right) & =o^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1} \\
& =g_{\theta}\left\{\prod_{i=1}^{n} x_{i}\right\} \cdot h(x), \text { where } h(x)=1
\end{aligned}
$$

and $T(\underset{\sim}{x})=\left(\prod_{i=1}^{n} x_{i}\right)$
\therefore By Neyman. Fisher. Factorization eristemion,
$T=\prod_{i=1}^{n} x_{i}$ is sufficient for θ.
(ii) $f(x ; \mu, \sigma)=\frac{1}{\omega / \sqrt{2 \sigma}} \cdot e^{-\frac{(x-\mu)}{2 \sigma^{2}}}$

So, $x \sim N\left(\mu, \mu^{2}\right)$, where $\mu \neq 0$.
Bg EX.(3). $T(X)=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}{ }^{2}\right)$ is sufficient for μ.

- Note:- If in the range of x_{i}, there is the parameter of the distribution present, then woe have to use the concept of Indicator function $(X(1)$ or $X(n))$ or $\min _{i}\left\{x_{i}\right\}$ or $\max _{i}\left\{x_{i}\right\}$.
(iii)

$$
f_{\theta}(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, \text { if } \begin{aligned}
0<x<1 \\
\alpha, \beta>0
\end{aligned}
$$

2 Joint poo of x_{1}, \ldots, x_{n} is

$$
\begin{aligned}
& \text { 2 Joint pDf of } \quad f(\underset{n}{x})=\left[\frac{1}{B(\alpha, \beta)}\right]^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha-1}\left(\prod_{i=1}^{n}\left(1-x_{i}\right)^{\beta-1}\right) \\
& =g(T(x) ; \alpha, \beta) h(\underline{x}), \text { cove } h(x)=1 \text { and } \\
& T(\underset{N}{x})=\left(\prod_{i=1}^{n} x_{i}, \prod_{i=1}^{n}\left(1-x_{i}\right)\right) \text { is jointly sufficient for }(\alpha, \beta) .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& f\left(x_{\sim}\right)=\frac{1}{\theta^{n}} \cdot e^{-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)}{\sigma}} \quad \text { if } x_{i}>\mu \\
& =\frac{1}{\sigma^{n}} \cdot \exp \left\{\frac{-\sum_{i=1}^{n} x_{i}-n \mu}{\sigma}\right\} \cdot I\left(x_{(1)}, \mu\right) \text {, where } \\
& I(a, b)=1 \text { if } a \geqslant b \\
& =g\left(\sum_{i=1}^{n} x_{i}, x_{(1)} ; \sigma, \mu\right), h(x) \text {, cover } h(x)=1 .
\end{aligned}
$$

Thus, $X_{(i)}$ and $\sum_{i=1}^{n} x_{i}$ are jointly sufficient statistic for μ and σ.
(v) $f(x ; \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e$

$$
-\frac{1}{2 \sigma^{2}}(\ln x-\mu)^{2} ; \text { if } x>0
$$

The joint PDF of $\underset{\sim}{x}$ is

$$
\begin{aligned}
& f\left(x_{n}\right)=\frac{1}{\left(\prod_{i=1} x_{i}\right) \sigma^{n}(\sqrt{2 \pi})^{n}} \cdot \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\ln x_{i}-\mu\right)^{2}\right\} \text { if } x_{i}>0 \\
& =\frac{1}{\sigma^{n}(\sqrt{2 \pi})^{n}} \cdot e^{-\left(\frac{\sum(\ln x i)^{2}}{2 \sigma^{2}}-\frac{\left.\mu \frac{\sum \ln x i}{\sigma^{2}}+\frac{n \mu^{2}}{\sigma^{2}}\right)}{\left(\prod_{i=1}^{1} x_{i}\right)}\right.} \\
& =T\left(\sum_{i=1}^{n} \ln x i, \sum_{i=1}^{n}\left(\ln x_{i}\right)^{2} ;(\mu, \sigma) \cdot h(\underset{\sim}{x}) ;\right. \text { concise, } \\
& h(x)=\frac{1}{\prod_{x_{i}}} ; T(\underset{x}{x})=\left(\sum_{i=1}^{n} \ln x_{i}, \sum_{i=1}^{n}\left(\ln x_{i}\right)^{2}\right)
\end{aligned}
$$

is sufficient for ${ }^{i=1} \mu$ and σ.
(Ni)

$$
\begin{aligned}
& f(x)=\theta^{n} \frac{\left(\alpha^{\theta}\right)^{n}}{\prod_{i=1}^{n}\left(x_{i} \theta+1\right)} \text { if } x_{i}>\alpha \\
&=\left(\theta \alpha^{\theta}\right)^{n} \cdot \frac{1}{\prod_{i=1}^{n}\left\{x_{i}\right\}^{\theta+1}} I\left(x_{(1)}, \alpha\right) \text { if } x_{(1)}>\alpha \\
& ; g\left(\prod_{i=1}^{n} x_{i}, x_{(1)} ; \theta ; \alpha\right) \cdot h(x) ; \text { where, } I(a, b)=1 \text { if } a>b \\
&=0 \text {, } \\
& h(x)=1 \text { and hence }
\end{aligned}
$$

$T=\left(\prod_{i=1}^{n} x_{i}, X_{(1)}\right)$ is sufficient for θ and α.
(vii)

$$
\begin{aligned}
f\left(x_{n}\right) & =\frac{2^{n}}{\theta^{2 n}} \prod_{i=1}^{n}\left(\theta-x_{i}\right) ; 0<x_{i}<\theta \\
& =\left(\frac{2}{\theta^{2}}\right)^{n} \cdot\left(\theta-x_{1}\right)\left(\theta-x_{2}\right) \ldots\left(\theta-x_{n}\right) ; 0<x_{i}>\theta
\end{aligned}
$$

These cannot be expressed in the form of factorization criterion.

So, $\left(X_{1}, x_{2}, \ldots, X_{n}\right)$ or $\left(X_{(1)}, X_{(2)}, \ldots x(n)\right)$ are trivially sufficient fuffidiont θ here, $\begin{aligned} & \text { static } \\ & \text { sher is no nontrivial }\end{aligned}$ sufficient statistic.
Ex.II. Let x_{1}, \ldots, x_{n} be a bis. from gamma distr. witt of

$$
\begin{aligned}
& f_{\theta}(x)=\frac{\alpha p}{\Gamma(P)} \exp [-\alpha x] x p-1 \text { if } 0<x<\infty \\
& \text { where, } \alpha>0, p>0
\end{aligned}
$$

show that $\sum_{i} x_{i}$ and $\prod_{i} x_{i}$ are jointly sufficient for (α, p).
Son: $;$

$$
f(\underset{\sim}{x})=\left\{\frac{\alpha^{p}}{\sqrt{p}}\right\}^{n} \cdot \exp \left[-\alpha \sum_{i} \times i^{2}\right\} \cdot\left(\prod_{i} x_{i}\right)^{p-1}
$$

$=g(T(X) ; \alpha, p) \cdot h(\underset{\sim}{x}) ;$ where $h(x)=1$.
$\therefore T(x)=\left(\sum_{i=1}^{n} x_{i}, \prod_{i=1}^{\prod_{1}} x_{i}\right)$ is jointly sufficient for (α, p).
Ex.12. If $f(x)=\frac{1}{\theta} e^{-x / \theta} ; 0<x<\theta$. Find a sufficient
estimator for θ.
Sorn \rightarrow

$$
\begin{aligned}
& f\left(x_{n}\right)=\frac{1}{\theta^{n}} \cdot \exp \left\{-\frac{1}{\theta} \cdot \sum_{i=1}^{n} x_{i}\right\} \\
& \\
& =g\left\{\sum_{i=1}^{n} x_{i}, \theta\right\} \cdot h(x) ; \text { when } h(x)=1 .
\end{aligned}
$$

$\therefore T=\sum_{i=1}^{n} X_{i}$ is sufficient statistic for θ.

Ex.(12). If $f_{\theta}(x)=\frac{1}{2} ; \theta-1<x<\theta+1$, then show that
$X_{(1)}$ and $X_{(n)}$ are jointly sufficient for θ. $\left(X_{i} \sim \cup(\theta-1, \theta+1)\right.$.
Son: \rightarrow

$$
\begin{aligned}
f(\underline{x}) & =\left(\frac{1}{2}\right)^{n} \\
& =\frac{1}{2^{n}} \cdot I\left(\theta-1, x_{(1)}\right) I\left(x_{(n)}, \theta+1\right) ; \theta-1<x(1)<x(n)<\theta+1
\end{aligned}
$$

$$
\text { where } I(a, b)= \begin{cases}1 & \text { if } a<b \\ 0 & \text { if } a \geqslant b\end{cases}
$$

$$
=g(T(x) ; \theta) h(x) \text {; where } h(x)=\frac{1}{2^{n}}
$$

$$
\therefore T(x)=\left(X(1), X_{(n)}\right) \text { is jointly sufficient for } 2^{2 n} \text {. }
$$

EX.(14), Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $C(\theta, 1)$, where θ is the location parameter, S.T. There is no sufficient statistic other than the trivial statistic $\left(X_{1}, x_{2}, \ldots, x_{n}\right)$ or $\left(X_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)$.
If a random sample of size $n \geqslant 2$ from a cauchy distr with p.d.f.

$$
f_{\theta}(x)=\frac{1}{\pi\left[1+(x-\theta)^{2}\right]} \text {, where }-\infty<\theta<\infty \text {, is considered. }
$$

then can you have a single stefficient statistic for θ ?
Sols. \rightarrow The PDF of $\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\frac{1}{\pi^{n}\left\{\prod_{i=1}^{n}\left[1+\left(x_{i}-\theta\right)^{2}\right]\right\}}
$$

Note that $\prod_{i=1}^{n}\left\{1+\left(x_{i}-\theta\right)^{2}\right\}$

$$
\begin{aligned}
& =\left\{1+\left(x_{1}-\theta\right)^{2}\right\}\left\{1+\left(x_{2}-\theta\right)\right\}^{2} \ldots \ldots . . \mid\left\{1+\left(x_{n}-\theta\right)^{2}\right\} \\
& \left.=1+\text { term 'involving one } x i+\text { term involving too } x i^{\prime}\right\}+\ldots . . .
\end{aligned}
$$

+ termirrolving all $x i^{\prime} s$.

$$
=1+\sum_{i}\left(x_{i}-\theta\right)^{2}+\sum_{i \neq j} \sum_{j}\left(x_{i}-\theta\right)^{2}\left(x_{j}-\theta\right)^{2}+\cdots \cdot+\prod_{i=1}^{n}\left(x_{i}-\theta\right)^{2}
$$

Clearly, $\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$ can not be comitten as $g(T(x), \theta) \cdot h(x)$ for a statistic other than the trivial choices

$$
\left(x_{1}, \ldots, x_{n}\right) \text { on }\left(X_{(1)}, \ldots, X_{(n)}\right) \text {. }
$$

Hence there is no nontrivial sufficient statistic
Therefore, in this ease, no reduction in the space is possible.
\Rightarrow The cohole set $\left(x_{1}, \ldots \ldots, x_{n}\right)$ is jointly sufficient for θ.

Ex.(15). Let X_{1} and X_{2} be rid V_{s} having the discrete uniform distribution on $\{1,2, \ldots, N\}$, colure N is unknown.
Obtain the conditional distribution of x_{1}, x_{2}, given $\left(T=\max \left(x_{1}, x_{2}\right)\right.$. Hence show that T is sufficient for N but $x_{1}+x_{2}$ is not.

$$
\text { Ans:- (i) } \begin{aligned}
P(T= & =t)=P\left[\operatorname{Max}\left(x_{1}, x_{2}\right)=t\right] \\
= & P\left[x_{1}<t, x_{2}=t\right]+P\left[x_{1}=t, x_{2}<t\right] \\
& +P\left[x_{1}=t, x_{2}=t\right] \\
= & P\left[x_{1}<t\right] P\left[x_{2}=t\right]+P\left[x_{1}=t\right] P\left[x_{2}<t\right] \\
& +P\left[x_{1}=t\right] P\left[x_{2}=t\right]
\end{aligned}
$$

$$
\begin{gathered}
+P\left[x_{1}=t\right] P\left[x_{2}=t\right] \\
\text { Now, } P\left[x_{1}<t\right]=P\left[x_{1}=1\right]+P\left[x_{1}=2\right]+\cdots+P\left[x_{1}=t-1\right]
\end{gathered}
$$

$$
=\frac{\frac{1}{N}+\frac{1}{N}+\cdots \cdots+\frac{1}{N}}{(t-1) \text { times }}
$$

$$
=\frac{t-1}{N} .
$$

$$
\& P\left[x_{1}=t\right]=P\left[x_{2}=t\right]=\frac{1}{N}
$$

$$
\therefore P[T=t]=\frac{1}{N} \cdot \frac{t-1}{N}+\frac{t-1}{N} \cdot \frac{1}{N}+\frac{1}{N} \cdot \frac{1}{N}
$$

$$
\therefore P\left[X_{1}=x_{1}, X_{2}=x_{2} \mid T=t\right]= \begin{cases}\frac{2(t-1)+1}{N^{2}} \\ \frac{P\left[X_{1}=x_{1}, x_{2}=x_{2}\right]}{P[T=t]} & \text { if } \operatorname{Max}\left(x_{1}, x_{2}\right) \\ =t & \text { ow }\end{cases}
$$

which is independent of N.

$$
\begin{aligned}
& =\frac{\frac{1}{N} \cdot \frac{1}{N}}{\frac{2(t-1)+1}{N^{2}}}=\frac{1}{2(t-1)+1}, \\
& + \text { of } N \text {. }
\end{aligned}
$$

(ii) $T=x_{1}+x_{2}$, Then,

$$
\begin{aligned}
& +\cdots+P\left[X_{1}=t-1, X_{2}=1\right] \\
& =\frac{t-1}{N^{2}} .
\end{aligned}
$$

for $N+2 \leq t \leq 2 N ; P[T=t]=P\left[X_{1}=t-N, X_{2}=N\right]+P\left[X_{1}=t-N+1, ~ X_{2}=N-1\right]$

$$
+\cdots \cdots+P\left[X_{1}=N, X_{2}=t-N\right]
$$

$$
\therefore P\left[X_{1}=x_{1} ; X_{2}=x_{2} \mid T=t\right]=\frac{\frac{2 N-t+1}{N^{2}}}{P\left[X_{1}=x_{1} ; X_{2}=x_{2}\right]} \frac{P\left[X_{1}+X_{2}=t\right]}{}
$$

$$
=\left\{\begin{array}{l}
\frac{1 / M^{2}}{N^{2}}=\frac{1}{t-1} \text { if } x_{1}+x_{2}=t \\
\frac{1 / N_{2}}{\frac{2 H-t+1}{N^{2}}}=\frac{1}{2 N-t+1} \text { if } x_{1}+x_{2}=t
\end{array}\right.
$$

which depends on M, so for the and case ($x_{1}+x_{2}$) is not sufficient.

Ex(16). [Theoretical Exercises]
(i) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a b.s. from a discrete distribution. Is the statistic $T=\left(x_{1}, \ldots, x_{n-1}\right)$ sufficient?
(ii) Let X_{1}, x_{2} be a RY from $P(\lambda)$. S.T. the statistic $X_{1}+\lambda X_{2}(\lambda>1)$, λ is an integer, is not sufficient for λ.
(iii) Let $x_{1}, \ldots \ldots, x_{n}$ be a bis. from $N(\theta, 1)$. SiT, \bar{x} is sufficient for θ but \bar{x}^{2} is not. Is \bar{x} sufficient for θ^{2} ?
(ii) Let x be a single observation from $N\left(0, \sigma^{2}\right)$. Is X sufficient for 0 ? Are $|x|, x^{2}, e^{|x|}$ sufficient for σ ?

Ex .(7).
Let $x_{1}, x_{2}, \ldots, x_{n}$ be a ri. from

$$
f(x ; \mu, \sigma)=\frac{1}{2 \sigma} e^{-\frac{|x-\mu|}{\sigma}} ; x \in \mathbb{R} ; \mu \in \mathbb{R}, \sigma>0 .
$$

Find a sufficient statistic for
(i) σ when μ is known; (ii) μ when σ is known,
(iii) (μ, σ).

Solution:-

$$
\begin{aligned}
& 4, \sigma)^{\prime} \cdot \\
& \vdots \prod_{i=1}^{n} f\left(x_{i} ; \mu, \sigma\right)=\left(\frac{1}{2 \sigma}\right)^{n} \cdot e^{-\frac{\sum_{i=1}^{n}\left|x_{i}-\mu\right|}{\sigma}} ; x_{i} \in \mathbb{R} .
\end{aligned}
$$

(i) μ-known:-

$$
\begin{aligned}
& \frac{\text {-known:- }}{\prod_{i=1}^{n} f\left(x_{i} ; \sigma\right)}=\left(\frac{1}{2 \sigma}\right)^{n} \cdot e^{-\frac{\sum\left|x_{i}-\mu\right|}{\sigma}} \\
& =g(T(x) ; \sigma) \cdot h(x) ; \text { when } h(x)=1
\end{aligned} \quad \begin{aligned}
& \therefore T(x)=\sum_{i=1}^{n}\left|x_{i}-\mu\right|
\end{aligned}
$$

$$
\& \sum_{i=1}^{n}\left|x_{i}-\mu\right| \text { is sufficient for } \sigma
$$

(ii) σ-known:-

$$
\frac{\text { known:- }}{\prod_{i=1}^{n} f\left(x_{i} ; \mu\right)=\left(\frac{1}{2 \sigma}\right)^{n} \cdot e^{-} \frac{\sum_{i=1}^{n}\left|x_{(i)}-\mu\right|}{\sigma}}
$$

Note that, $\sum_{i=1}^{n}\left|x_{i}-\mu\right|=\left|x_{1}-\mu\right|+\left|x_{2}-\mu\right|+\cdots+\left|x_{n}-\mu\right|$ can't be simplified as μ is not known.
So, $\left(x_{1}, \ldots, x_{n}\right)$ or $\left(X(1), \ldots, X_{(n)}\right)$ is sufficient but there is no other sufficient statistic.
(iii)

Ex. (18).
(a) Let x_{1}, \ldots, x_{n} be independently distributed RV's with densities

$$
f\left(x_{i} ; \theta\right)= \begin{cases}e^{i \theta-x_{i}}, & \text { if } x_{i} \geqslant i \theta \\
0 & \text { (Here } \begin{array}{c}
\text { res are not } \\
\text { random samples }
\end{array}\end{cases}
$$

Find a one-dimensional sufficient statistic for θ. [SI]
(b) Let X_{1}, \ldots, x_{n} be independently distributed $R V$'s with PDF

$$
f\left(x_{i} ; \theta\right)=\left\{\begin{array}{l}
\frac{1}{2 i \theta} ;-i(\theta-1) \leq x_{i} \leqslant i(\theta+1) \\
0 ; 0 w
\end{array}\right.
$$

Find a two-dimensional sufficient statistic for θ. Also, find a one - dimensional sufficient statistic, if exists.

Solution:-
(i) The joint PDF of $x_{1}, x_{2}, \ldots, x_{n}$ is
and $T(\underset{\sim}{x})=\min _{i}\left\{\frac{x_{i}}{i}\right\}$ is sufficient for θ, by factorization criterion.
(ii) Hints:-

$$
\begin{aligned}
& (\theta-1) \leq \frac{x_{i}}{i} \leq(\theta+1) \\
& \therefore Y_{i}=\frac{x_{i}}{i} \sim \cup(-\theta+1, \theta+1) \\
& Y_{i}-1 \sim \cup(-\theta, \theta) .
\end{aligned}
$$

$$
T_{1}=\left(\min _{i}\left\{\frac{x_{i}}{i}\right\}, \max _{i}\left\{\frac{x_{i}}{i}\right\}\right)
$$

$$
T_{2}=\max _{i}\left\{\left|\frac{x_{i}}{i}-1\right|\right\}
$$

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)= \begin{cases}e^{\theta \sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} x_{i}} & ; \text { if } x_{i} \geqslant i \theta \quad \forall i=1(1) n \\
0 & ; 0 w\end{cases} \\
& =\left\{\begin{array}{l}
e^{\frac{n(n+1) \theta}{2}-\sum_{i=1}^{n} x_{i}} ; \text { if } \frac{x_{i}}{i} \geqslant \theta \forall i=1(1) n \\
0 \quad ; \text { ow }
\end{array}\right. \\
& \begin{array}{l}
=\left\{\begin{array}{cc}
e^{\frac{n(n+1) \theta}{2}-\sum_{i=1}^{n} x_{i}} & , \text { if } \min _{i}\left\{\frac{x_{i}}{i}\right\} \geqslant \theta \\
0 & , \text { ow } \\
=e^{\frac{n(n+1) \theta}{2}-\sum_{i=1}^{n} x_{i}} \cdot I\left(\theta, \min \left\{\frac{x_{i}}{i}\right\}\right) ; \text { where }
\end{array}\right.
\end{array} \\
& =e^{\frac{n(n+1) \theta}{2}} I\left(\theta, \min \left\{\frac{x_{i}}{i}\right\}\right) \cdot e^{-\sum_{i=1}^{n} x_{i}} ; \quad I(a, b)=\left\{\begin{array}{l}
1, a \leq b \\
00 w \\
0
\end{array}\right. \\
& =g(T(\underline{x}) ; \theta) \cdot h(\underline{x}) ; \text { where } h(\underset{\sim}{x})=e^{-\sum_{i=1}^{n} x_{i}} ;
\end{aligned}
$$

Remark: - \qquad
Any statistic $T(x)$ defines a form of data reduction or data summary. An experimental who uses only the observed value of the statistic rather than the observed ample. We will treat as equal to too sample x and y that satisfy $T(\underset{\sim}{x})=T(\underset{\sim}{y})$, even though the actual samples may be different. The data reduction in terms of a particular statistic can be thought of as the partition of the sample space x. Note that $T(\underset{\sim}{x})$ describes a mapping $T: x \rightarrow \tau$, where $\tau=\{t: t=T(\underset{\sim}{x}), \underset{\sim}{x} \in \mathfrak{x}\}$ and $T(\underset{\sim}{x})$ partitions the sample space x into the set $A_{t}=\{\underset{\sim}{x}: T(x)=t\}$.

The statistic summarises the data, it reports only $T(x)=t$ rather than reporting all the samples $x i$'s for which $T\left(x_{i}\right)=t$.
The sufficiency principle promotes a method of data summarization that does not discard any information about θ (the parameter) while achiving some summarization of the data.
'Sufficiency' 'implies
$\left(\frac{\text { Sufficiency }}{\text { Data summarization }+100 \% \text { information carnies out }}\right.$, ie.
Wherever 'statistic' just summarises the data, there may be some loss of information.

Note that, $T_{1}=\left(x_{1}, \ldots, x_{n}\right)$ are $T_{2}=\left(X_{(1)}, \ldots, x_{(n)}\right)$ are both sufficient statistics. But in stead of collecting $n!$ original samples we can collect only order statistics. According to the concept of data summarization, the order statistics are more preferable than the original samples.

Minimal Sufficient Statistic: Since the objective for looking for a sufficient statistic is to condense the data corthout loosing any information. One should always be on the look out for that sufficient statistic which results in the greatest reduction of the data and such a statistic is called minimal sufficient statistic.
Definition:- A statistic T is called a minimal sufficient statistic for θ, provided
(i) T is sufficient for θ.
(ii) T is a function of every sufficient statistic.

Remark: - If T and U are two sufficient statistics and $U=f(T)$. Which one is better?
\Rightarrow If $f(\cdot)$ is one-to-one treen T and $U=f(T)$ are equivalent with, respect to data-summarization.

$f(\cdot)$ is one-to-one
If $f(\cdot)$ is not one-to-one, then U reduces the space most than T and so U is better than T.

$f()$ is not one-torone
Theorem:- For two points x and y in the sample space, the ratio $\frac{f(x ; \theta)}{f(y ; \theta)}$ is independent of θ if $T(\underset{\sim}{x})=T(y)$, then $T(X)$ is minimal sufficient for θ.
Proof:- Here $T(x)$ is sufficient statistic for θ.

$$
f(x ; \theta)=g(T(x) ; \theta) h(x) \text { [By factorization criterion] }
$$

To show $T(x)$ is minimal, let $T^{\prime}(x)$ be any other sufficient statistic By the factorization theorem, there exist fuction g^{\prime} and $h^{\prime} g$ $f(x ; \theta)=g^{\prime}(T(x) ; \theta) \cdot h^{\prime}(\underset{\sim}{x})$. Let, $T^{\prime}(\underset{x}{x})=T^{\prime}(\underset{\sim}{y})$, then,

$$
\frac{f(x ; \theta)}{f(y ; \theta)}=\frac{g^{\prime}\left(T^{\prime}(x) ; \theta\right) h^{\prime}(x)}{g^{\prime}\left(T^{\prime}(y) ; \theta\right) h^{\prime}(y)}=\frac{h^{\prime}(\underset{x}{x})}{h^{\prime}(y)}
$$

since the ratio does not depend on θ, so $T(x)$ is minimal sufficient for θ.

Ex.(1), Let $x_{1}, x_{2}, \ldots, x_{n}$ be aros.from $\operatorname{Bin}(1, p)$.S.T.
$\sum_{i=1}^{n} x_{i}$ is a minimal sufficient statistic for p.
Soln: \rightarrow

$$
\begin{aligned}
\frac{f(x ; p)}{f(y ; p)} & =\frac{p^{\sum_{i=1}^{n} x_{i}}(1-p)^{n-\sum_{i=1}^{n} x_{i}}}{p i=1} y_{i}^{n}(1-p)^{n-\sum_{i=1}^{n} y_{i}} \\
& =\left(\frac{p}{1-p}\right)^{\sum_{i=1}^{n} x_{i}-\sum_{i=1}^{n} y_{i}} ; \text { is independent of } p \\
\sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} y_{i} .
\end{aligned}
$$

Hence $T=\sum_{i=1}^{n} x_{i}$ is minimal sufficient for p.
Ex.(2) Let x_{1}, \ldots, x_{n} be ar.s.from $N\left(\mu, \sigma^{2}\right)$. Then siT. $\left(\bar{x}, s^{2}\right)$ is a minimal sufficient statistic for $\left(\mu, \sigma^{2}\right)$.
Soln. \rightarrow (Normal minimal sufficient statistic)

$$
\begin{aligned}
\frac{f\left(2 ; \mu, \sigma^{2}\right)}{f\left(y ; \mu, \sigma^{2}\right)} & =\frac{\left(2 \pi \sigma^{2}\right)-n / 2}{\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\left[n(\bar{x}-\mu)^{2}+(n-1) s_{x}^{2}\right] / 2 \sigma^{2}\right)} \\
& \left.\left.=\exp \left[\left\{-n(\bar{y}-\mu)^{2}+(n-1) s^{2} y\right] / 2 \sigma^{2}-\bar{y}^{2}\right)+2 n \mu(\bar{x}-\bar{y})-(n-1)\left(B x^{2}-s^{2} y\right)\right\} / 2 \sigma^{2}\right]
\end{aligned}
$$

This ratio soil be a constant as a function of μ and σ^{2} inf $\bar{x}=\bar{y}$ and $s_{x} x^{2}=s y^{2}$. Then by the taoorem, $\left(\bar{x}, s^{2}\right)$ is a minimal sufficient statistic for $\left(\mu, \sigma^{2}\right)$.
Ex. (3). Let $X_{1}, \ldots ., X_{n}$ be a random sample from $U(\theta, \theta+1)$,
$-\infty<\theta<\infty . \operatorname{S.T.}\left(X_{(1)}, X(n)\right)$ is a minimal sufficient statistic.
SolD. \rightarrow The PDF can be compton in the form:

$$
f(x ; \theta)= \begin{cases}1 & \text { if max } x_{i}-1<\theta<\min _{i} \\ 0 & \text { ow }\end{cases}
$$

Letting $X_{(1)}=\min _{i} x_{i}$ and $X(n)=\max _{i} x_{1}$, then we have $T(x)=\left(X(1)\right.$, $X\left(r_{n}\right)$ is a minimal sufficient ${ }^{i}$ statistic.
This is a case cohere the dimension of a minimal sufficient statistic does not match with the dimension of tai parameter.
Remark:- A minimal sufficient statistic is not unique. Any one to-one. function of a minimal sufficient statistic is also a minimal sufficient statistic. Example:-
i) $T^{\prime}(\underset{\sim}{x})=\left(x_{(n)}-x_{(1)},\left(\frac{\left.x_{(n)}+x_{(1)}\right) / 2}{}\right)\right.$ is also a minimal statistic in

EX.(2). (for uniform distr.)
ii) $T^{\prime}(x)=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$ is also a minimal sufficient statistic in Ex.(2). (for normal distr.).
(Iv) COMPLETENESS:-

Wet $\left(x_{1}, \ldots, x_{n}\right)$ be a bis. from the distr coith, DMF/PDF $f(x ; 0)$, $\theta \in \Omega$. Let $\{g(t ; \theta): \theta \in \Omega\}$ be the family of distr. of a statistic T.
Definition:- The family of distr. $\{g(t ; \theta) ; \theta \in \Omega\}$ of a statistic T defined to be complete iff $E\{h(T)\}=0 \forall \theta \in \Omega$ implies $P[h(T)=0]=1 \quad \forall \theta \in \Omega$.
Also, the statistic T is said to complete inf its family of distns $\{g(t ; \theta): \theta \in \Omega\}$ is complete.
Ex.(1). Let $x_{1}, \ldots ., x_{n}$ be a res. from $\operatorname{Bin}(1, p)$. SiT. $\left(x_{1}-x_{2}\right)$ is not complete but $T=\sum_{i=1}^{n} x_{i}$ is complete for the population distr..
Son: \rightarrow Note that, $E\left(x_{1}-x_{2}\right)=p-p=0 \quad \forall p \in(0,1)$
but $P\left[\left(x_{1}-x_{2}\right)=0\right]=P\left[x_{1}=0, x_{2}=0\right]+P\left[x_{1}=1, x_{2}=1\right]$

$$
=(1-p)^{2}+p^{2}
$$

$$
\neq 1
$$

Hence, $\left(x_{1}-x_{2}\right)$ is not complete.
$[T$ is not complete \Rightarrow there exists some $h(T) \neq 0 \Rightarrow E[h(T)]=0]$
Now, note that, $T=\sum_{i=1}^{n} x_{i} \sim \operatorname{Bin}(n, \beta)$

$$
\begin{aligned}
& \text { Now, } E(h(T))=0 \quad \forall p \in(0,1) \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{n}{t} p^{t}(1-p)^{n-t}=0 \quad \forall p \in(0,1) \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{n}{t}\left(\frac{p}{1-p}\right)^{t}=0 \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{n}{t} u^{t}=0 \quad \forall u=\frac{p}{1-p} ; u \in(0, \infty)
\end{aligned}
$$

Equating the coefficients of $u t$ on both sides, we get

$$
\begin{aligned}
& h(T)\binom{n}{t}=0 \quad \forall t=1(1)^{n} \\
& \Rightarrow h(T)=0, \quad t=0(1) n, \text { as }\binom{n}{t}>0 \\
& \text { i.e. } P[h(T)=0]=1 \quad \forall p \in(0,1) .
\end{aligned}
$$

Hence, $T=\sum_{i=1}^{\infty} X_{i}$ is completerand sufficient statistic.

Ex.(2) Let X be an observation from $P(\lambda)$ distr.. S.T. X is complete, ire. the family of distr. $\{P(\lambda): \lambda>0\}$ is complete.
$\xrightarrow{\text { Sol. } \rightarrow}$

$$
\sum h\left(\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}\right)=0
$$

Ex. (3), Let x_{1}, \ldots, x_{n} be avis. from $U(0, \theta) ; \theta>0$. S.T. $\bar{X}(n)$ is complete.
Solution:- The family of distr. of $T=X(n)$ is $\{g(t ; \theta): \theta>0\}$ where $g(t ; \theta)= \begin{cases}\frac{n t^{n-1}}{\theta^{n}} & \text { if } 0<t<\theta \\ 0 & \text { ow }\end{cases}$
Now, $E(h(t))=0 \quad \forall \theta>0$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{\theta} h(t) \cdot \frac{n t^{n-1}}{\theta^{n}} d t=0 \quad \forall \theta>0 \\
& \Rightarrow \int_{0}^{\theta} h(t) \cdot t^{n-1} d t=0 \quad \forall \theta>0
\end{aligned}
$$

Differentiating wort. θ, we get

$$
\begin{aligned}
& h(\theta) \cdot \theta^{n-1}=0 \quad \forall \theta>0 \\
& \Rightarrow h(\theta)=0 \quad \forall \theta>0 \\
& \Rightarrow h(T)=0 \quad \forall \quad t>0 \\
& \quad \therefore P[h(t)=0]=1 ; \theta>0
\end{aligned}
$$

Hence, $T=X(n)$ is complete for the poplin. distr, $U(0, \theta), \theta>0$.
$\left[\frac{\text { Leibnitz Rule:- }}{\text { bio) }}\right.$
(a) $\frac{d}{d \theta} \int_{a(\theta)}^{b(\theta)} f(x) d x=f(b(\theta)) \cdot b^{\prime}(\theta)-f(a(\theta)) \cdot a^{\prime}(\theta)$.
(b) $\frac{d}{d \theta} \int_{a(\theta)}^{a(\theta)} f(x ; \theta) d x=\int_{a(\theta)}^{b(\theta)} \frac{\partial}{\partial \theta} f(x ; \theta) d x+f\left(b(\theta) \cdot b^{\prime}(\theta)\right)-f\left(a(\theta) a^{\prime}(\theta)\right)$

Ex.(4). Example of sufficient statistic that is not complete:
Leet $x_{1}, x_{2}, \ldots, x_{n}$ be a rs. from $N\left(\theta, \theta^{2}\right)$. Then

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & =\frac{1}{\left(2 \pi \cdot \theta^{2}\right)^{n / 2}} \cdot \exp \left\{-\frac{1}{2 \theta_{i=1}^{2}} n^{n}\left(x_{i}-\theta\right)^{2}\right\} ; \theta \neq 0 \\
& =\frac{1}{\left(2 \pi \theta^{2}\right)^{n / 2}} \cdot \exp \left\{-\frac{1}{2}\left[\frac{\sum x_{i}^{2}}{\theta^{2}}-\frac{2 \sum x_{i}}{\theta}+1\right]\right\} \\
& =g\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2} ; \theta\right) \cdot h(\underline{x}), \text { when } h(z)=1
\end{aligned}
$$

$\Rightarrow T=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}{ }^{2}\right)$ is sufficient for θ. (This is minimal sufficient statistic)

Note that,

$$
\begin{aligned}
E\left(\sum_{i=1}^{n} x_{i}^{2}\right) & =\sum_{i=1}^{n}\left\{v\left(x_{i}\right)+E^{2}\left(x_{i}\right)\right\} \\
& =\sum_{i=1}^{n}\left(\theta^{2}+\theta^{2}\right)=2 n \theta^{2}
\end{aligned}
$$

and $E\left(\sum_{i=1}^{n} x_{i}\right)^{2}=E(n \bar{x})^{i=1}=n^{2} E(\bar{x})^{2}$

$$
\begin{aligned}
& =n^{2}\left\{v(\bar{x})+E^{2}(\bar{x})\right\} \\
& =n^{2}\left(\frac{\theta^{2}}{n}+\theta^{2}\right) \\
& =n(n+1) \theta^{2}
\end{aligned}
$$

Hence, $E\left\{\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 n}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n+1)}\right\}=0 \quad \forall \theta \neq 0$

$$
\begin{aligned}
& \Rightarrow E\left\{(n+1) \sum_{i=1}^{n} x_{i}{ }^{2}-2\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right\}=0 \forall \theta \neq 0 \\
& \Rightarrow E(h(T))=0 \text {, cohere } h(T)=(n+1) \sum_{i=1}^{n} x_{i}^{2}-2\left(\sum_{i=1}^{n} x_{i}\right)^{2}
\end{aligned}
$$

is not identically zero.
Hence $T=\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}{ }^{2}\right)$ is not complete but sufficient.
Ex.(5), Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N\left(\alpha \sigma, \sigma^{2}\right)$; α known. SIT. $\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$ is sufficient but not complete.

Ex.(6), Let x_{1}, \ldots, x_{n} be a ross. from $U(\theta, \theta+1) \cdot S . T$. $\left(X_{(1)}, X_{(n)}\right)$ is sufficient but not complete.
Solution: - Let $R=X(n)-X_{(1)}$ is independent of location parameter θ (as dispersion is index. of location).
The B.d.f. is $f_{R}(r)=n(n-1) r^{n-2}(1-r)$

$$
\begin{gathered}
E(R)=\frac{n-1}{n+1} \\
\Rightarrow E\left(X_{(n)}-X_{(1)}-\frac{n-1}{n+1}\right)=0 \neq 0 \\
\Rightarrow P\left[X_{(n)}-X_{(1)}-\frac{n-1}{n+1}=0\right] \neq 1
\end{gathered}
$$

Hence $T=(X(r), X(n))$ is sufficient but not complete.

Ex. (7), Let $X_{1}, \ldots . x_{n}$ be a bis, from the PMF

$$
P(x ; N)= \begin{cases}\frac{1}{N}, & x=1,1, \ldots, N \\ 0 & \text { ow }\end{cases}
$$

cohere, N is a positive integer.
show that the family of distr. $X_{(n)}$ is complete.
Sols: \rightarrow Let $T=X(n)$, the CDF of T is given by,

$$
\begin{aligned}
\therefore F_{T}(t) & =P[X(n) \leqslant t] \\
& =\prod_{x=1}^{n} P\left[x_{1} \leqslant t\right] \\
& =\left(\frac{t}{N}\right)^{n} ; x=1, \ldots, N \\
P[T=t] & =F_{T}(t)-F_{T}(t-1) \\
& = \begin{cases}\frac{t^{n}-(t-1)^{n}}{N^{n}} ; t=1(1) N \\
0 & ; 0 W\end{cases}
\end{aligned}
$$

The family of distr of $T=x(n)$ is $\{g(t ; N): N=1,2,3, \ldots\}$ sphere $g(t ; N)=\left\{\begin{array}{cl}\frac{t^{n}-(t-1)^{n}}{N^{n}}, & t=1,2, \ldots, N \\ 0, & 0 w\end{array}\right.$
Nome, let $E\{h(T)\}=0 \quad \forall N \geqslant 1$

$$
\begin{aligned}
& \Rightarrow \sum_{t=1}^{N} h(t) \cdot\left\{\frac{t^{n}-(t-1)^{n}}{N N^{n}}\right\}=0 \quad \forall N \geqslant 1 \\
& \Rightarrow \sum_{t=1}^{N} h(t) \cdot\left\{t^{n}-(t-1)^{n}\right\}=0 \quad \forall N \geqslant 1
\end{aligned}
$$

for $N=1, \quad h(1)\left\{1^{n}-0^{n}\right\}=0 \Rightarrow h(1)=0$
For $N=2, h(1)\left\{1^{n}-0^{n}\right\}+h(2)\left\{2^{n}-1^{n}\right\}=0$

$$
\begin{aligned}
& \Rightarrow h(2)\left\{2^{n}-1^{n}\right\}=0 \text { as } h(1)=0 \\
& \Rightarrow h(2)=0
\end{aligned}
$$

and so on.
Using an inductive argument, we have

$$
\begin{aligned}
& h(1)=h(2)=h(3)=\cdots=h(N)=0 \\
\Rightarrow & P[h(T)=0]=1 \forall N=1,2, \ldots .
\end{aligned}
$$

Hence, $T=X(n)$ is complete.
Remark on Completeness: \sim
(1) Another way of stating that a statistic T is complete is the following :- T is complete of the only unbiased estimator of zemo,i,e. a function of T is the statistic that is identically zero.
(2) If T is complete statistic, then an unbiased estimator on θ

Proof:- If possible, lit $h_{1}(T)$ and $h_{2}(T)$ be two UES of θ.
Then $E\left(h_{1}(T)\right)=\theta=E\left(h_{2}(T)\right) \quad \forall \theta$

$$
\begin{aligned}
& \Rightarrow E\left(h_{1}(T)-h_{2}(T)\right)=0 \forall \theta \\
& \Rightarrow h_{1}(T)-h_{2}(T)=0, \text { with prob. } 1, \forall \theta \\
& \Rightarrow h_{1}(T)=h_{2}(T) \text {, with prob } 1, \forall \theta
\end{aligned}
$$

Hence, an UE of θ based on T is unique.
(3) Concept of completeness: If T is complete, then by definition, $E\{h(T)\}=0 \quad \forall \theta \Rightarrow h(T)=0$ with prob. $1 \forall \theta$. In other coors, if $h(T) \neq 0$ then $E\{h(T)\} \neq 0$ and is afunction. of θ, that is, every non-null function of T possesses some information about θ.

If T is not complete, then there exists some non-null function of T, say $h(T)$, for which $E\{h(T)\}=0$, that is, there exists some non-nullfunction of $T(h(T))$, which don't contain any information about θ, or, some non-null functions of T which forget to carry any information about θ.
But if T is complete, then every non-null function of T carries some information about θ. This is the concept of completeness.

Ex, (8): Let $x_{1}, x_{2}, \ldots, x_{n}$ be a rus. from Geometric distr with parameter $p, S, T, \sum_{i=1}^{n} x_{i}$ is complete for the family.
Solution: \rightarrow Let $T=\sum_{i=1}^{n} X_{i}$ then $T \sim N B(n, p)$.

$$
\begin{aligned}
& E\{h(T)\}=0 \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{t+n-1}{t} p^{n} q^{t}=0 \quad \forall \quad P G(0,1) \text { and } p+q=1 \\
\Rightarrow & \sum_{t=0}^{n} h(T)\binom{-n}{t} a^{t}=0
\end{aligned}
$$

Equating the coefficient of a^{t} on both sides, we get,

$$
\begin{aligned}
& h(T)\binom{-n}{t}=0 \quad \text {, where } t=1,2, \ldots \\
& \Rightarrow h(T)=0 \\
& \text { i.e. } P[h(T)=0]=1 \forall p \in(0,1)
\end{aligned}
$$

Hence, T is complete.
© Exponential Family of Distributions:-
A. One parameter Exponential Family of Distributions: $\underbrace{(}$

A one-parameter family of distributions $\{f(x ; \theta): \theta \in \Omega\}$ that $f(x ; \theta)=\exp [u(\theta) \cdot T(x)+v(\theta)+\omega(x)]$, where the following
regularity conditions hold:
C1: The support $S=\{x ; f(x ; \theta)>0\}$ does not depend on $\theta \forall \theta \in \Omega$
C_{2} : The parameter space Ω is an open interval of \mathbb{R}, that is, $\theta<\theta<\bar{\theta}$.
$c_{3}:\{1, T(x)\}$ or $\{1, u(\theta)\}$ are Linearly independent, that is, $T(x)$ or, $u(\theta)$ are non-constant functions; is defined to be a oneparameter exponential family (OPEF) of distres.
Ex. (1) Let $X \sim P(\lambda), \lambda(>0)$ is unknown. Show that the family of disturbs $\{P(\lambda): \lambda>0\}$ of x is an OPER.
Solution:- The PMF of x is

$$
\begin{aligned}
f(x ; \lambda) & =e^{-\lambda} \cdot \frac{\lambda x}{x!}, x=0,1,2, \ldots . \\
& =\exp [-\lambda+x \ln \lambda-\ln (x] \\
& =\exp [u(\lambda) T(x)+v(\lambda)+\omega(x)]
\end{aligned}
$$

where, $u(\lambda)=\ln \lambda, T(x)=x, v(\lambda)=-\lambda, \omega(x)=-\ln x$.
C1: The support $S=\{x: f(x, x)>0\}=\{0,1,2,3, \ldots\}$ es indepandec: of λ.
C2: The parameter space $\Omega=\{\lambda: 0<\lambda<\infty\}$ is an open interval of R.
C_{3} : Here $T(x)=x$ or $u(\lambda)=\ln \lambda$ are non-constant functions. Hence, the family of distribution $\{P(\lambda): \lambda>0\}$ is an OPEF.
Ex. (2). Consider a family of distr, with PMF given by

$$
f(x ; \theta)= \begin{cases}\frac{a_{x} \theta^{x}}{g(\theta)} & , x=0,1,2, \ldots . \\ 0, & \text { ow }\end{cases}
$$

where, $0<\theta<\rho, a_{x} \geqslant 0$ and $g(\theta)=\sum_{x=0}^{\infty} a_{x} \theta^{x}$.
ST $\{f(x ; \theta): 0<\theta<\rho\}$ is an OPEF of ${ }^{x=0}$ distr.
Solution:- Here, $f(x ; \theta)=\exp \left[x \ln \theta-\ln g(\theta)+\ln a_{x}\right], x=0,1,2,3 \ldots$.
$=\exp [u(\theta) \cdot T(x)+v(\theta)+\omega(x)], x=0,1,2,3, \ldots$
cohere, $T(x)=x, u(\theta)=\ln \theta$, etc.
C:- The support $s=\{0,1,2, \ldots$,$\} is independent of \theta$. C2:- The parameter space $\Omega=\{\theta: 0<\theta<\rho\}$ is an openintenval of R. Cu:- $T(x)=x$ and $u(\theta)=\ln \theta$ are non-constant functions. Hence, the family of distr is OPEF.

Remark: \rightarrow
(1). As Pocoer series distr are in OPEF, the distributions: Binomial, Poisson, Negative Binomial, etc. are in OPEF.
(2). We should verify that the families $\{N(\mu, 1): \mu \in \mathbb{R}\}$, $\{\operatorname{Exp}(\lambda) ; \lambda>0\}$ are of OPEF's.
(3). As examples of families of PDF S, which are not of $O P E F$: 2
(i) are:
(i) $\{U(0, \theta): \theta>0\}$ as the support $S=(0, \theta)$ depends on θ.
(ii) $\{$ Hypergeometrine $(N, m, n): N \in\{1,2, \ldots\}, m \in\{0,1, \ldots, N\}$, (one parameter $)$ $n \in\{$, as the support $s \in\{\max (0, n+m-N) \ldots, \min (m, n)\}$ depend on the parameters. \longrightarrow (3 parameter case)
(iii) $\{f(x ; \theta): \theta \in R\}$ cohere, $f(x ; \theta)=\frac{1}{2} e^{-|x-\theta|} ; x \in R$, or, $f(x ; \theta)=\frac{1}{\pi\left\{1+(x-\theta)^{2}\right\}} ; x \in R$ as $f(x ; \theta)$ ean't be expressed in the form $\exp [u(\theta) \cdot T(x)+v(\theta)+\omega(x)]$ but here c_{1}, c_{2} holds but \bar{c}_{3} does not hold.
$: \rightarrow$ This is an another example of one-parameter families of distr. which are not of one parameter exponential family of distri.
(iv) $\{f(x ; \theta): \theta \in R\}$ cohere $f(x ; \theta)= \begin{cases}e^{-(x-\theta)}, & x>\theta \\ 0, & \text { ow }\end{cases}$ is not in OPEF as the support $s=(\theta, \infty)$ depends on θ.

- Theorem:- Let $\left(x_{1}, x_{2}, \ldots . x_{n}\right)$ be abs. from an OPEF $\{f(x ; \theta): \theta \in \Omega\}$, cohere,
$f(x ; \theta)=\exp [u(\theta) T(x)+v(\theta)+\omega(x)]$, then
(a) $\sum_{i=1}^{n} T\left(x_{i}\right)$ is sufficient for θ.
(b) $\sum_{i=1}^{n} T\left(x_{1}\right)$ is a complete sufficient statistic.

Solution :-1 (a) The PDF/PMF of $\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) & =\exp \left[u(\theta) \cdot \sum_{i=1}^{n} T\left(x_{i}\right)+n v(\theta)+\sum_{i=1}^{n} \operatorname{co}\left(x_{i}\right)\right] \\
& =\exp \left[u(\theta) \cdot\left(\sum_{i=1}^{n} T\left(x_{i}\right)\right)+n v(\theta)\right]^{\prime} \times \exp \left[\sum_{i=1}^{n} \cos \left(x_{i}\right)\right] \\
& =g\left(\sum_{i=1}^{n} T\left(x_{i}\right) ; \theta\right) \cdot h\left(x_{n}\right)
\end{aligned}
$$

By Nayman-fisher factorization criterion, $\sum_{i=1}^{n} T\left(x_{i}\right)$ is sufficient for θ.

Ex.(3):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a b, s. from An OPEF the PDF

$$
f(x ; \theta)=\left\{\begin{array}{ll}
\theta x^{\theta-1} & ; 0<x<1 \\
0 & ; \text { ow }
\end{array} \quad\right. \text { family of }
$$

Find a complete sufficient statistic for the distr.
Solution:- Note that,

$$
\begin{aligned}
f(x ; \theta)= & \exp [(\theta-1) \ln x+\ln \theta], 0<x<1 \\
& =\exp [\theta \ln x+\ln \theta-\ln x] \\
& =\exp [u(\theta) \cdot T(x)+v(\theta)+u(x)], \text { where, } \\
& T(x)=\ln x, \quad u(\theta)=\theta, \text { etc. }
\end{aligned}
$$

C1; The support $S=\{x: 0<x<1\}$ is independent of θ.
C2: The parameter space $\Omega=\{\theta: 0<\theta<\infty\}$ is an open intemeal of R.
Cs: $T(x)=\ln x$, or, $u(\theta)=\theta$ are non-constant function.
Hence, the family $\{f(x ; \theta): \theta \in \Omega\}$ of distr is an OPEF.
Hence, by the above theorem, $\sum_{i=1}^{n} T\left(x_{i}\right)=\sum_{i=1}^{n} \ln x_{i}$ is a complete sufficient statistic.

Ex.(4). Let $x_{1}, \ldots . x_{n}$ be arris. from $f(x ; \sigma)=\frac{1}{2 \sigma} e^{-\frac{|x|}{\sigma} ; x \in R}$
Find the complete sufficient statistic for the family, $\sigma>0$
Ex.(s). Let x_{1}, \ldots, x_{n} be a res. from $f(x ; \mu)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(x-\mu)^{2}} ;$ Find the complete sufficient statistic. $x \in R, \mu \in R$

Son: \rightarrow
[B]. K-parameten Exponential Family of Distribution:-
A k-parameter family of PDF s or PMF\& $\left\{f(x ; \theta): \theta \in \Omega \subseteq R^{k}\right\}$ that can be expressed as

$$
f(x ; \theta)=\exp \left[\sum_{i=1}^{k} u_{i}(Q) T_{i}(x)+v(\theta)+\omega(x)\right]
$$

eolith the regular conditions:
C1:- The support $S=\{x: f(x ; \underset{\sim}{\theta})>0\}$ does not depend on θ.
C_{2} :- The parameter space Ω is an open region of $R K$ that is, $\hat{\theta}_{i}<\theta_{i}<\bar{\theta}_{i}, i=1(1) K$, containing k-dimensional rectangle.
C $C_{3}:-\left\{1, T_{1}(x), T_{2}(x), \ldots ., T_{k}(x)\right\}$ or $\left\{1, u_{1}(\theta), \ldots, u_{k}(\theta)\right\}$ are linearly independent; is called a k-parameter exponential family.
Remark: -
(1) If $\left\{1, T_{1}(x), T_{2}(x), \ldots, T_{k}(x)\right\}$ or $\left\{1, U_{1}(\theta), \ldots ., u_{k}\left(\theta_{n}\right)\right\}$. is LDD. Then the no. of terms in the exponent can be reduced and K need not be the dimension of Ω. Hence, $W L G$, ce shall assume that the representation is minimal in the sense that neither T_{i} 's nor $H_{i}^{\prime \prime} s$ satisfy a linear constraint.

* 24 Let $x_{1}, x_{2}, \ldots, x_{n}$ be ans. from the family $\left\{f(x ; \theta): \theta \in \Omega \subseteq R^{k}\right\}$ of distributions, cohere,

$$
\begin{aligned}
& \left\{f\left(x_{;} \theta\right): \theta \in \sim \in K_{n}\right] \\
& f\left(x_{i} \theta\right)=\exp \left[\sum_{i=1}^{K} \mu_{i}(\theta) T_{i}(x)+v(\theta)+\omega\left(x_{n}\right)\right] \text {, then } \\
& T\left(x_{N}\right)=\left(\sum_{i=1}^{n} T_{1}\left(x_{i}\right), \sum_{i=1}^{n} T_{2}\left(x_{i}\right), \ldots, \sum_{i=1}^{n} T_{k}\left(x_{i}\right)\right)
\end{aligned}
$$

is a complete sufficient statistic for the family.
Ex. (1): - Consider the family $\left\{N\left(\mu, r^{2}\right): \mu \in R, \sigma^{2}>0\right\}$ of distr. s. Show that the family of distr is a two parameter exponential family. Hence, obtain a complete sufficient statistic based on a rus. $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Solution:- Her $\underset{\sim}{\theta}=(\mu, \sigma), \Omega=\{(\mu, \sigma): \mu \in \mathbb{R}, 0<\sigma<\infty\}$ The family of distr is

$$
\{f(x ; \underset{\sim}{\theta}): \theta \in \Omega\} \text {, covers, }
$$

$$
\begin{aligned}
f(\underset{\sim}{x} ; \theta) & =\exp \left[-\frac{x^{2}}{2 \sigma^{2}}+\frac{\mu x}{\sigma^{2}}-\frac{1}{2}\left\{\frac{\mu^{2}}{\sigma^{2}}+\ln \left(2 \pi \sigma^{2}\right)\right\}\right] \\
& =\exp \left[u_{1}(\theta) \cdot T_{1}(x)+u_{2}(\theta) \cdot T_{2}(x)+v(\theta)+\infty(x)\right]
\end{aligned}
$$

cohere, $u_{1}(\theta)=-\frac{1}{2 \sigma^{2}}, u_{2}(\theta)=\frac{\mu}{\sigma^{2}}, T_{1}(x)=x^{2}, T_{2}(x)=x$, etc.
C1:- The support $S=R$ is independent of θ.
C2:- The parameters space Ω is an open subset of R^{2}. C $C_{3}:\left\{1, T_{1}(x), T_{2}(x)\right\}=\left\{1, x, x^{2}\right\}$ or $\left\{1, u_{1}(\theta), u_{2}(\theta)\right\}$

$$
=\left\{1,-\frac{1}{2 \sigma^{2}}, \frac{\mu}{2 \sigma^{2}}\right\} \text { are LiN. }
$$

Hence the family of distributions is two-parameters exponential family.
By Remark (2):- $T(x)=\left(\sum_{i=1}^{n} T_{1}\left(x_{i}\right), \sum_{i=1}^{n} T_{2}\left(x_{i}\right)\right)=\left(\sum_{i=1}^{n} x_{i}{ }^{2}, \sum_{i=1}^{n} x_{i}\right)$
is a complete sufficient statistic for the family. Ex.(2):- Is the family $\left\{N\left(\theta, \theta^{2}\right): \theta \neq 0\right\}$ a two-parameter exponential family oi OPEF? - Justify your answer. Solution: - The family of distributions is given by $\{f(x ; \theta): \theta \neq 0\}$, cohere,

$$
\begin{aligned}
f(x ; \theta) & =\left\{\begin{array}{cl}
\frac{1}{\sqrt{2 \pi \theta}} e^{-\frac{(x-\theta)^{2}}{2 \theta^{2}}} ; x i>\theta \\
0 & ; \theta w \\
& =\exp \left[-\frac{x^{2}}{2 \theta^{2}}+\frac{x}{\theta}-\frac{1}{2}\left\{1+\ln \left(2 \pi \theta^{2}\right)\right\}\right] \\
& =\exp \left[u_{1}(\theta) \cdot T_{1}(x)+u_{2}(\theta) T_{2}(x)+v(\theta)+\omega(x)\right]
\end{array}\right.
\end{aligned}
$$

where $u_{1}(\theta)=-\frac{1}{2 \theta^{2}}, u_{2}(\theta)=\frac{1}{\theta}, T_{1}(x)=x^{2}, T_{2}(x)=x$, etc.
But the parameter space $\Omega=\left\{\left(\theta, \theta^{2}\right): \theta \neq 0\right\}$ is not an open rectangle in R^{2}, infect, it is a parabola. Hence, c_{2} does not hold that is, the family is not a two-parametero -exponential family. This type of family is known as two-parameter curved exponential family.

The PDF $f(x ; \theta)$ does not ensure the form of the OPEF and Ω is not an open interval in R. Hence, it is not an OPE.

Also note that $\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$ is not complete but sufficient.

Ex. (3):- Consider the families of distr .s
(i) $\{\operatorname{Gamma}(a, p): a>0, p>0\}$
(ii) $\{\operatorname{Beta}(\alpha, \beta): \alpha>0, \beta>0\}$

Show that the families are two-parameter exponential family. suggest a complete sufficient statistic for each case, based on a res. $\left(x_{1}, \ldots, x_{n}\right)$.
Ex.(4):- Consider the too parameter families of distant s :
(i) $\left\{U\left(\theta_{1}, \theta_{2}\right): \theta_{1}<\theta_{2}\right\}$,
(ii) $\left\{f(x: \alpha, \theta)=\frac{\theta x^{\theta-1}}{\alpha \theta} ; \alpha \in R, \theta>0, x>\alpha\right\}$.
(iii) $\left\{f(x ; \theta, \alpha)=\frac{1}{\theta} e^{-\left(\frac{x-\alpha}{\theta}\right)} ; x>\alpha, \alpha \in R, \theta>0\right\}$

Show that they are not two -parameter exponential families.
-: UMVUE and Method of finding UMVUE:
Uniformly Minimum Yoriance Unbiased Estimator (UMVUE): -
Let T_{1} and T_{2} be two different UEs of θ. Then 7 an infinitely many UES of θ of the form:

$$
T_{\alpha}=\alpha T_{1}+(1-\alpha) T_{2} ; 0 \leq \alpha \leq 1
$$

Which of these should cue choose?
Here comes the concept of UMVVE.
Definition: UMVUE
(a) An estimator $T *$ is defined to be UMVUE of θ iff
(i) $E\left(T^{*}\right)=\theta \quad \forall \theta \in \Omega$
(ii) $\operatorname{Var}_{\theta}\left(T^{*}\right) \leq \operatorname{Var} \theta(T) \forall \theta \in \Omega$
for any estimator T cohich. satisfies $E(T)=\theta \forall \theta \in \Omega$.
(b) An UE is said to be UMVUE of θ if it has minimum variance among all UPs of θ.
Ex. (1):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be arris. from $U(0, \theta)$. Find two UE, of

Solution:- $E(\bar{x})=E\left(X_{1}\right)=\frac{\theta}{2}$

$$
\Rightarrow E(2 \bar{x})=\theta
$$

Hence $T_{1}=2 \bar{x}$ is an UE of θ.

$$
\begin{aligned}
& E\left(X_{(n))}=\int_{0}^{\theta} x \cdot \frac{n x^{n-1}}{\theta^{n}} d x\left[\because f X_{(n)}(x)=\left\{\begin{array}{ll}
\frac{n x^{n-1}}{\theta^{n}} ; 0<x<\theta \\
0 & 0 W
\end{array}\right]\right.\right. \\
& \\
& =\frac{n}{\theta^{n}} \int_{0}^{\theta} x^{n} d x=\frac{n \theta}{n+1} . \\
& \Rightarrow E\left\{\frac{n+1}{n} X(n)\right\}=\theta
\end{aligned}
$$

Hence, $T_{2}=\frac{n+1}{n} X(n)$ is an UE of θ.
Now, $\operatorname{Var}\left(T_{1}\right)=4 . V(\bar{X})=4 \cdot \frac{V\left(X_{1}\right)}{n}=\frac{4 . \theta^{2}}{12 n}=\frac{\theta^{2}}{3 n}$.
and $\operatorname{Var}\left(T_{2}\right)=\left(\frac{n+1}{n}\right)^{2} E_{\theta}\left(X_{(n)}^{2}\right)-E^{2}\left(\frac{n+1}{n} X(n)\right)$

$$
\begin{aligned}
& =\left(\frac{n+1}{n}\right)^{2} \int_{0}^{\theta^{2}} \frac{x^{2} \cdot n x^{n-1}}{\theta^{n}} d x-\theta^{2} \\
& =\frac{\theta^{2}}{n(n+2)}
\end{aligned}
$$

Note that, $\frac{Y\left(T_{1}\right)}{Y\left(T_{2}\right)}=\frac{n+2}{3} \geqslant 1+n \in \mathbb{N}$
For $n>1, V\left(T_{1}\right)>v\left(T_{2}\right)$ and T_{2} has smaller variance than T_{1}. Hence, $T_{2}=\frac{(n+1)}{n} \times(n)$ is better estimator in finding θ.

Theorem:- The UMVUE of parameter, if exists, is unique
Proof:- If possible, let T_{1} and T_{2} be two UMvUe of of θ.
Then $V\left(T_{1}\right)=V\left(T_{2}\right)=\gamma$, say.
Clearly, $\operatorname{Var}(T) \geqslant r$ cohere $T=\frac{T_{1}+T_{2}}{2}$ is an UE of θ.

$$
\begin{aligned}
& \Rightarrow \operatorname{Var}\left(\frac{T_{1}+T_{2}}{2}\right) \geqslant \gamma \\
& \Rightarrow \frac{1}{4}\left[V\left(T_{1}\right)+\gamma\left(T_{2}\right)+2 \operatorname{cov}\left(T_{1}, T_{2}\right)\right] \geqslant \gamma \\
& \Rightarrow \frac{1}{4}[\gamma+\gamma+2 \rho \gamma] \geqslant \gamma\left[\because \operatorname{cov}\left(T_{1}, T_{2}\right)=\rho \sqrt{V\left(T_{1}\right) V\left(T_{2}\right)}\right. \\
&\Rightarrow \rho \geqslant 1 \text { bat we know }|\rho| \leqslant 1 \quad=\rho \gamma]
\end{aligned}
$$

Hence $p=1 \Rightarrow T_{1}=a+b T_{2}$ with prob. 1, where $b>0$
Noco, $E\left(T_{1}\right)=a+b E\left(T_{2}\right)$

$$
\Rightarrow \theta=a+b \theta \quad \forall \theta
$$

$\Rightarrow a=0, b=1$, equating the coefficient of constant term and θ,

$$
\left[\begin{array}{l}
V\left(T_{1}\right)=b^{2} V\left(T_{2}\right) \Rightarrow b^{2}=1, b>0, \Rightarrow b=1, \text { and } \\
\left.E\left(T_{1}\right)=a+b E\left(T_{2}\right) \Rightarrow \theta=a+1, \theta \Rightarrow a=0\right]
\end{array}\right.
$$

Hence $T_{1}=T_{2}$ with prob. 1 .
i.e. UMVUE, if exists, is unique.

Ex. (2). Wet T_{1} and T_{2} be two UEs with common variance $\alpha \sigma^{2}$, where σ^{2} is the variance of the UMVUE. Show that,

$$
\rho_{T_{1}, T_{2}} \geqslant \frac{2-\alpha}{\alpha}
$$

Solution:-
Note that, $T=\frac{T_{1}+T_{2}}{2}$ is an UE of the parameter.
Clearly, $V(T) \geqslant \sigma^{2}$

$$
\begin{aligned}
& \Rightarrow V\left(\frac{T_{1}+T_{2}}{2}\right) \geqslant \sigma^{2} \\
& \Rightarrow \frac{1}{4}\left[V\left(T_{1}\right)+V\left(T_{2}\right)+2 \operatorname{cov}\left(T_{1}, T_{2}\right)\right] \geqslant \sigma^{2} \\
& \Rightarrow \frac{1}{4}\left[2 \alpha \sigma^{2}+2 \int_{T_{1}, T_{2}} \cdot \alpha \sigma^{2}\right] \geqslant \sigma^{2} \\
& \Rightarrow \frac{\alpha}{2}\left\{1+\rho_{T_{1}, T_{2}}\right\} \geqslant 1 \\
& \Rightarrow \rho T_{1}, T_{2} \geqslant \frac{2}{\alpha}-1=\frac{2-\alpha}{\alpha} .
\end{aligned}
$$

UMVUE (Continued):

* Theorem (1): A necessary and sufficient condition for UMVUE:

Let x have distr. given by $\{f(x ; \theta): \theta \in \Omega\}$. Let us define

$$
\begin{align*}
& \text { Let } x \text { have distr given by } \\
& U_{\psi}=\{T(x): E(T(x))=\psi(\theta), Y(T(x))<\alpha \quad \forall \theta \in \Omega\} \text { and } \tag{*}\\
& U_{0}=\{u(x): E(u(x))=0, v(u(x))<\alpha \quad \forall \theta \in \Omega\}
\end{align*}
$$

Then $T^{*} \in U_{\psi}$ is umvUe of $\psi(\theta)$ if $\operatorname{cov}\left(u, T^{*}\right)=0 \forall u \in v_{0}$ and for all $\theta \in \Omega$.
Proof:- Necessary Part (only if): -
suppose that T^{*} is UMVUE of $\Psi(\theta)$.
If possible, let (*) does not hold. Then \exists a $u_{0} \in U_{0}$ and a $\theta_{0} \in \Omega$ such that

$$
\begin{aligned}
& \Omega \text { such that } \\
& \operatorname{Cov}\left(u_{0}, T^{*}\right) \neq 0 \text { at } \theta=\theta_{0}
\end{aligned}
$$

Now, for any real λ,

$$
\begin{aligned}
& E\left(T^{*}+\lambda u_{0}\right)=\psi(\theta)+\lambda \cdot 0=\psi(\theta) \\
& \Rightarrow T^{*}+\lambda u_{0} \in U_{\psi} \\
& \text { and } V\left(T^{*}+\lambda u_{0}\right)=V\left(T^{*}\right)+\lambda^{2} V\left(u_{0}\right)+2 \lambda \operatorname{cov}\left(u_{0} T^{*}\right) \\
&=V\left(u_{0}\right)\left\{\lambda^{2}+2 \lambda \frac{\operatorname{cov}\left(u_{0}, T^{*}\right)}{V\left(u_{0}\right)}\right\}+V\left(T^{*}\right) \\
&=V\left(u_{0}\right)\left\{\lambda+\frac{\operatorname{cov}\left(u_{0}, T^{*}\right)}{V\left(u_{0}\right)}\right\}^{2}+V\left(T^{*}\right)-\frac{\operatorname{cov}^{2}\left(u_{0} T^{*}\right)}{V\left(u_{0}\right)}
\end{aligned}
$$

Set, $\lambda=\frac{-\operatorname{cov}\left(u_{0}, T^{*}\right)}{v\left(u_{0}\right)}$, then at $\theta=\theta_{0}$,

$$
Y\left(T^{*}+\lambda u_{0}\right)=V\left(u_{0}\right)-\frac{\operatorname{Cov}^{2}\left(u_{0}, T^{*}\right)}{V\left(u_{0}\right)}<V\left(T^{*}\right)
$$

Since, $\operatorname{cov}\left(u_{0}, T^{*}\right) \neq 0$ at $\theta=\theta_{0}$, which contradicts the fact that T^{*} is UMVUE.
Hence, we must have $\operatorname{cov}\left(u, T^{*}\right)=0 \forall \theta \in \Omega \forall u \in U_{0}$.
Sufficient Part (If part): - suppose that $\operatorname{Cov}\left(u, T^{*}\right)=0 \forall \theta \in \Omega_{0}$
Consider any $T \in U_{\psi}$, then, as $T^{*} \in U_{\psi}$, $\forall u \in V_{0}$ we have $E\left(T-T^{*}\right)=\psi(\theta)-\psi(\theta)=0 \quad \forall \theta \in \Omega$

$$
\Rightarrow T-T^{*} \in U_{0}
$$

Hence, $\operatorname{cov}\left(T-T^{*}, T^{*}\right)=0 \forall \theta \in \Omega$

$$
\begin{equation*}
\Rightarrow \operatorname{cov}\left(T, T^{*}\right)=V\left(T^{*}\right) \forall \theta \in \Omega \tag{*}
\end{equation*}
$$

Now,

$$
\begin{aligned}
0 \leq V a r\left(T-T^{*}\right) & =V(T)+V\left(T^{*}\right)-2 \operatorname{cov}\left(T, T^{*}\right) \\
& \leq V(T)-Y\left(T^{*}\right)[B y(*)] \\
\Rightarrow V\left(T^{*}\right) & \leq V(T) \forall \theta \in \Omega
\end{aligned}
$$

Hence, T^{*} is umvue of $\psi(\theta)$.

Theorem (2): - Let $T_{1} \in U_{\psi}$ be UAVVUE of $\psi(\theta)$. Then T_{1} is necessarily unique.
Prof:- If possible, let T_{2} be also umvue of $\psi(\theta)$.
Then $E\left(T_{1}-T_{2}\right)=\psi(\theta)-\psi(\theta)=0 \forall \theta \in \Omega$

$$
\Rightarrow T_{1}-T_{2} \in U_{0}
$$

\therefore By theorem (1),

$$
\begin{aligned}
& \operatorname{cov}\left(T_{1}-T_{2}, T_{1}\right)=0=\operatorname{cov}\left(T_{1}-T_{2}, T_{2}\right) \\
& \Rightarrow V\left(T_{1}\right)=\operatorname{cov}\left(T_{1}, T_{2}\right)=X\left(T_{2}\right) \forall \theta \in \Omega \\
& \text { Now, } V\left(T_{1}-T_{2}\right)=V\left(T_{1}\right)+V\left(T_{2}\right)-2 \operatorname{Cov}\left(T_{1}, T_{2}\right)=0 \quad \forall \theta \in \Omega \\
& \Rightarrow E\left(T_{1}-T_{2}\right)^{2}=0 \quad \forall \theta \in \Omega \text { as } E\left(T_{1}-T_{2}\right)=0 .
\end{aligned}
$$

$\Rightarrow T_{1}-T_{2}=0$ with prob. 1. $\forall \theta \in \Omega$
Hence, UMVUE of a parametric function is unique, if it exists.
Theorem (3):- List T_{i} be UMVUE of $\psi i(\theta), i=1(1) k$, then $T=\sum_{i=1}^{k} a_{i} T_{i}$ is UMVUE for $\psi(\theta)=\sum_{i=1}^{k} a_{i} \psi_{i}(\theta)$.
Hints: - $\operatorname{cov}\left(U, T_{i}\right)=0 \quad \forall \theta \in \Omega \quad \forall u \in U_{0, \forall} i=1(1) k$

$$
\operatorname{cov}(u, T)=\sum_{i=1}^{k} a_{i} \operatorname{cov}\left(u, \pi_{i}\right)=0 \quad \forall \theta \in \Omega, u \in U_{0}
$$

* Theorem (4):- (Rao-Black well)
[Cu] 10
Let x have the distr from $\{f(x ; \theta): \theta \in \Omega\}$ and ' h ' be any statistic in $U_{\psi}=\{h(x): E(h(x))=\psi(\theta)$, $V(h(x))<\infty, \forall \theta \in \Omega\}$. Leet T be a sufficient statistic for θ. Then the conditional expectation $E[h / T]$ is an UE of $\psi(\theta)$.
Mow over, $\operatorname{var}\{E(h / T)\} \leq \operatorname{Var}\{h\} \forall \theta \in \Omega$
The equality in (*) holds iff $h=E[h / T]$, with prob. $1, \forall \theta \in \Omega$
Proof:- As T is sufficient for θ, the conditional distr of 'h' given T is independent of θ and $E\{h / T\}$ is independent of θ. Hence $E\{h / T\}$ is a function of T and is a statistic. Note that $E\{E(h / T)\}=E(h)=\psi(\theta) \forall \theta \in \Omega$ $\Rightarrow E(h / T)$ is an UE of $\psi(\theta)$.

Now,

$$
\begin{aligned}
\operatorname{var}(h) & =\operatorname{var}\{E(h / T)\}+E\{\operatorname{Var}(h / T)\} \\
& =\operatorname{var}\{E(h / T)\}+E\left\{E\left[(h-E(h / T))^{2} / T\right]\right\} \\
& =\operatorname{var}(E(h / T))+E\{h-E(h / T)\}^{2}
\end{aligned}
$$

clearly, $\operatorname{var}(h) \geqslant \operatorname{xar}\{E(h / T)\}$, since $E\{h-E(h / T)\}^{2} \geqslant 0$
' $=$ 'holds if $E\{h-E(h / T)\}^{2}=0$
if $h=E(h / T)$ with probability $1, \forall \theta \in \Omega$.
[C u/10] (2)
Implication of Ra0-Blackcoell Theorem:- If we start with an arbitrary unbiased estimator $h(x)$ of $\psi(\theta)$. Then we can include the estimator or we can get a better estimator than $h(x)$ by considering $E[h / T]$ cohere T is sufficient for θ, in the sense of having minimum MSE. Hence, Rao-Blackwell theorem says that to find UMVUE, we can concentrate only on those unbiased estimator, which are functions of $T, i . e$. The UMVUE in the estimator which has minimum variance among all unbiased estimators which are functions of T.
a sufficient statistic.

which are functions of $T \longrightarrow$ UMVUE is an UE with minimum variance

* Theorem (s). [Lehmann-scheffe]

Let x has distribution from $\{f(x ; \theta): \theta \in \Omega\}$ and let T be. a complete sufficient statistic. Again, if $E\{\hbar(T)\}=\Psi(0)$, Then the UMVUE of $\psi(\theta)$ is the unique UE $h(T)$ [which is given by $E\left[h^{*}(x) \mid T\right]$ cohere $h^{*}(x)$ is an wE of $\left.\psi(\theta)\right]$.
Proof:- Let $h_{1}(T)$ and $h_{2}(T)$ be two UES of $\psi(\theta)$.
Then $E h_{1}(T)=\psi(\theta)=E h_{2}(T), \forall \theta \in \Omega$

$$
\begin{aligned}
& \Rightarrow E\left\{h_{1}(T)-h_{2}(T)\right\}=0 \quad \forall \theta \in \Omega \\
& \Rightarrow h_{1}(T)-h_{2}(T)=0 \text {, with prob. } 1 \forall \theta \in \Omega
\end{aligned}
$$

Hence, $V E h(T)$, based on T, of $\psi(\theta)$ is unique.
By RaO-Blackwell theorem, finding UMVUE in the class of all UEs is equivalent to finding UMIVUE in the class of UES based on T. But there is only one UE based on complete sufficient statistic T, say $h(T)$. Hence, $h(T)$ is the UMVUE of $\psi(\bar{\theta})^{-}$.
[Again, from Rao-Blackwell theorem, $E\left\{h^{*}(x \mid T)\right\}$ is an UE of $\Psi(\theta)$ for any UE $h^{*}(x)$ and it is a function of T. AS UES based on T is unique, hence $h(T) \underset{\text { must be }}{\text { mince }} E\left\{h^{*}(x) \mid T\right\}$
variance of UE

Class of all UEs
$h^{*}(x)$
$\xrightarrow{\square} h(T)=E\left\{h^{*} / T\right\}$ is the UMVUE
Method of finding UMVUE:-
available for deriving UMVUE through the the methods are theorem.
(7) Method one:- Sometimes, woe happened to know an UE $h(T)$ of $\Psi(\theta)$, cohere T is a complete sufficient statistic, then the Lehmann - scheffe theorem states that $h(T)$ is UMVUE of $\psi(\theta)$.
(II) Method two:- Conditioning method: If his any UE of $\Psi(\theta)$. It follows from Lehmain-scheffe theorem that the UMVUE can be Obtained as $E(h / T)$. For this derivation, it does not matter cohich UE h is bring conditioned; one can choose h so that $E(h / T)$ is easily obtainable.

Ex.(1):- Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a rios. from $\operatorname{Bin}(1, p)$. Find that UMVUE of (i) $p=E\left(x_{1}\right)$ (ii) $\operatorname{Yar}\left(x_{1}\right)=p(1-p)$, (ii) $p^{8} ; s \leq n$
Solution:- The PMF of the family $\{B(1, p): 0<p<1\}$ is

$$
\begin{aligned}
f(x ; p) & =p x(1-p)^{1-x} ; x=0,1 \\
& =\left(\frac{p}{1-p}\right)^{x}(1-p) \\
& =\exp \left[\ln \left(\frac{p}{1-p}\right) x+\ln (1-p)\right] \\
& =\exp [u(p) \cdot T(x)+v(p)+\omega(x)] ;
\end{aligned}
$$

colure, $T(x)=x$
It can be shown that $\{B(1, p): 0<p<1\}$ is an OPEF.
Hence, $T=\sum_{i=1}^{n} T\left(x_{i}\right)=\sum_{i=1}^{n} X_{i}$ is a complete sufficient statistic.
Note that, $T=\sum_{i=1}^{n} x_{i} \sim \operatorname{Bin}(n, p)$
and $E\left[(T)_{s}\right]^{i=1}=(n) s p^{s}, s \leq n$
(i) $E(T)=n p$

$$
\Rightarrow E\left(\frac{T}{n}\right)=p
$$

By Lichmann-Scheffe theorem, $h_{1}(T)=\frac{T}{n}=\bar{x}$ is the UMVUE of p.
(ii) Here $E\left(\frac{T}{n}\right)=p, E\left\{\frac{T(T-1)}{n(n-1)}\right\}=p^{2}$

$$
\begin{aligned}
& \Rightarrow E\left\{\frac{T}{n}-\frac{T(T-1)}{n(n-1)}\right\}=p-p^{2} \\
& \Rightarrow E\left\{\frac{T(n-T)}{n(n-1)}\right\}=p(1-p)
\end{aligned}
$$

By Lehman-scheffe theorem, $h_{2}(T)=\frac{T(n-T)}{n(n-1)}$ is the UMVUE of $p(1-p)$.
(iii) $E\left\{\frac{(I)_{s}}{(n)_{s}}\right\}=p^{s} ; s \leq n$

By LTS theorem, $h_{3}(T)=\frac{(T) s}{(n) s}$ is the uMVUE of $p s$.

Ex, (2):- Let $\left(x_{1}, \ldots, x_{n}\right)$ be a ross. from $\{P(\lambda): \lambda>0\}$. Find the UMVUE of (i) λ (ii) λ^{8} (iii) $\sum_{s=0}^{\infty} a_{s} \lambda^{s}$, (iv) $P\left[x_{1}=k\right]$, (v) $P\left[X_{1}=0\right.$ or 1 $]$.

Hints:- It can be shown that $T=\sum_{i=1}^{n} X_{i}$ is complete sufficient. Then $T=\sum_{i=1}^{n} x_{i} \sim P(n \lambda)$ and $E\left[(T)_{s}\right]=(n \lambda)^{s} ;$ seN
(i) $\frac{T}{n}=\bar{x}$ is the UMVUE of λ.
(ii) $\frac{(T)^{n} s}{n^{s}}$ is the UMVUE of λ^{s}; $s \in \mathbb{N}$
(iii) By theorem (3),
\sum as $\frac{(T) s}{n s}$ is the UMVUE of $\sum_{s=0}^{\infty} a s^{s} \lambda^{s}$.
(iv) Here $\psi(\lambda)=P\left[X_{1}=k\right]=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}$

Define, $h(x)= \begin{cases}1, & x_{1}=k \\ 0 & , \text { ow }\end{cases}$

$$
\begin{aligned}
E(h(\underset{\sim}{x})) & =1, P\left[x_{1}=k\right]+0 \cdot P\left[x_{1} \neq k\right] \\
& =P\left[x_{1}=k\right]=P(\lambda) .
\end{aligned}
$$

Hence, $h(X)$ is an UE of $\psi(\lambda)$.
By $L-S$ Theorem $E[h(x) \mid T]$ is the UMVUE of

$$
\psi(\lambda)=P\left[x_{1}=k\right]
$$

Now,

$$
\begin{aligned}
& E[h(x) \mid T=t]=1 \cdot P\left[X_{1}=k / T=t\right]+0 \\
& =\frac{P\left[x_{1}=k ; T=t\right]}{P[T=t]} \\
& =\frac{P\left[x_{1}=k ; \sum_{i=1}^{n} x_{i}=t\right]}{P\left[\sum_{i=1}^{n} x_{i}=t\right]} \\
& =\frac{P\left[x_{1}=k\right] P\left[\sum_{i=2}^{n} x_{i}=t-k\right]}{P\left[\sum_{i=1}^{n} x_{i}=t\right]} \text {, due to index } \\
& =\frac{\left(e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}\right)\left(e^{-(n-1) \lambda} \cdot \frac{\{\overline{n-1} \lambda\}^{t-k}}{\underline{t-k}}\right)}{e^{-n \lambda} \cdot \frac{(n \lambda)^{t}}{t!}} \\
& =\frac{t!}{k!(t-k)!} \cdot \frac{(n-1)^{t-k}}{n t}, k=0(1) t \\
& =\binom{t}{k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{t-k}
\end{aligned}
$$

Hence $E\left[h_{n}(\underset{\sim}{x}) / T\right]=\binom{T}{k}\left(\frac{1}{n}\right)^{k}\left(1-\frac{1}{n}\right)^{T-k}$ with $T=\sum_{i=1}^{n} X_{i}$, is the UMVUE of $\Psi(\lambda)=P\left[X_{1}=k\right]$
(v) Here $\psi(x)=P\left[x_{1}=0\right.$ or 1$]$

$$
=P\left[X_{1}=0\right]+P\left[X_{1}=1\right]
$$

Note that $\binom{T}{0}\left(\frac{1}{n}\right)^{0}\left(1-\frac{1}{n}\right)^{T-0}=\frac{(n-1)^{T}}{n T}$ and
$\binom{T}{1}\left(\frac{1}{n}\right)^{1}\left(1-\frac{1}{n}\right)^{T-1}=\frac{T(n-1)^{T-1}}{n^{T}}$ are the
UMVUE of $P\left[X_{1}=0\right]$ and $P\left[X_{1}=1\right]$ respectively.
By Theorem (3), $\frac{(n-1)^{T}+T(n-1)^{T-1}}{n T}$ is the UMVUE of

$$
P\left[x_{1}=0 \text { or } 1\right]=\Psi(\lambda) .
$$

Direct Derivation:- Define, $h= \begin{cases}1, & \text { if } x_{1}=0 \text { or } 1 \\ 0, & \text { ow }\end{cases}$
as an UE of $P\left[X_{1}=0\right.$ or 1$]=\psi(\lambda)$
By L-S Theorem, $E\{h / T\}$ is the UMVUE of $P\left[X_{1}=0\right.$ or 1$]=\psi(\lambda)$ Now, $E[h / T=t]=1 . P\left[X_{1}=0\right.$ or $\left.1 / \sum_{i=1}^{n} X_{i}=t\right] \quad[\because(A \cup B) \cap C$

$$
\begin{aligned}
& =\frac{P\left[x_{1}=0011 ; \sum_{i=1}^{n} x_{i}=t\right]}{P\left[\sum_{i=1}^{n} x_{i}=t\right]}=(A \cap C) \cup(B \cdot \\
& =\frac{P\left[X_{1}=0 ; \sum_{i=1}^{n} x_{i}=t\right]+P\left[x_{1}=1 ; \sum_{i=1}^{n} x_{i}=t\right]}{P\left[\sum_{i=1}^{n} x_{i}=t\right]} \\
& =\frac{P\left[x_{1}=0 ; \sum_{i=2}^{n} x_{i}=t\right]+P\left[x_{1}=1 ; \sum_{i=2}^{n} x_{i}=t-1\right]}{P\left[\sum_{i=1}^{n} x_{i}=t\right]} \\
& =\frac{e^{-\lambda} \cdot \frac{\lambda^{0}}{10} \cdot e^{-(n-1) \lambda} \cdot \frac{(n-1 \lambda)^{t}}{L t}}{e^{-n \lambda} \cdot \frac{(n \lambda)^{t}}{L t}} \\
& =\frac{e^{-\lambda} \cdot \frac{\lambda 1}{1} \cdot e^{-(n-1) \lambda} \cdot \frac{(n-1 \lambda)^{t-1}}{L t-1}}{n+t(n-1)^{t-1}}
\end{aligned}
$$

Hence, $\frac{(n-1)^{T}+T(n-1)^{T-1}}{n T}$ is the UMVUE of $P\left[x_{1}=0\right.$ or 1$]$

$$
=\Psi(\lambda) .
$$

Ex.(3):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a bis. from $\operatorname{Bin}(1, p)$.
(a) s.T.TT $= \begin{cases}1 & \text { if } x_{1}=1, x_{2}=0 \\ 0 & \text { ow }\end{cases}$
is an $U E$ of variance $X_{1}=P(1-P)$
Hence find UMvue of $V\left(x_{1}\right)$.
(b) Find an UE of p^{r} based on $x_{1}, x_{2}, \ldots, x_{r}$ only. Hence find UMVVE of pr.
Solution:- (a)
(b) $\psi(p)=p^{n}=p\left[x_{1}=1, \ldots, x_{n}=1\right]$

Hence $h\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1, \text { if } x_{1}=1, \ldots, x_{r}=1 \\ 0 & \text {, ow }\end{cases}$ is an UE of $p^{r}=\psi(p)$ based on x_{1}, \ldots, x_{r}.
By $L-S$ theorem,
$E\left[h\left(x_{1}, \ldots, x_{r}\right) \mid T\right]$ is the UMVUE of $p r$.

$$
\begin{aligned}
& E\left[h\left(x_{1}, \ldots, x_{r}\right) \mid T=t\right] \\
& =1 \cdot \frac{p\left[X_{1}=1, \ldots, x_{n}=1 ; \sum_{i=n+1}^{n} X_{i}=t-r\right]}{p\left[\sum_{i=1}^{n} x_{i}=t\right]} \\
& =\frac{p^{r}\binom{n-r}{t-r} p^{t-r}(1-p)^{n-t}}{\binom{n}{t} p^{t}(1-p)^{n-t}}=\frac{\binom{n-r}{t-r}}{\binom{n}{t}}=\frac{(t)_{r}}{(n)_{r}}
\end{aligned}
$$

$\frac{\text { Ex. (4):- Let } x_{1}, x_{2}, \ldots \ldots x_{n} \text { be a ross. s. from } P(x) \text {. Find an UE of }}{e^{-2} \lambda}$ based

Ex.(s):- Let x_{1}, \ldots, x_{n} be a rise from $N(\theta, 1)$. Find the UMVUE of (i) θ, (ii) θ^{2}.

Solution:- (i) The family $\{N(\theta, 1): \theta \in \mathbb{R}\}$ of distr is anOPEF and $T=\sum_{i=1}^{n} x_{i}$ is a complete sufficient statistic.
Now, $\bar{X} \sim N\left(\theta, \frac{1}{n}\right)$

$$
\begin{aligned}
& \Rightarrow E(\bar{x})=\theta \\
& \Rightarrow h(T)=\bar{x}=\frac{T}{n} \text { is the UMVUE of } \theta .
\end{aligned}
$$

(ii) By $L-S$ Theorem, and $\operatorname{var}(\bar{x})=\frac{1}{n}$

$$
\begin{aligned}
& \Rightarrow E\left(\bar{X}^{2}\right)-E^{2}(\bar{X})=\frac{1}{n} \\
& \Rightarrow E\left(\bar{X}^{2}-\frac{1}{n}\right)=\theta^{2} \\
& \Rightarrow h_{1}(T)=\bar{X}^{2}-\frac{1}{n}=\left\{\left(\frac{T}{n}\right)^{2}-\frac{1}{n}\right\} \text { is the UMVUE of } \theta^{2}
\end{aligned}
$$

For a given sample, $\left(\bar{x}^{2}-\frac{1}{n}\right)$ may give negative value in estimating a positive parameter θ^{2}.
Hence, the UMVUE is not sensitive (or is absurd).
*EX.(6):- Let $X_{1}, \ldots . X_{n}$ be a rios. from $U(0, \theta), \theta>0$. Find the UMVUE of $E\left(X_{1}\right)$ and $\operatorname{Var}\left(x_{1}\right)$.
Solution:- $E\left(X_{1}\right)=\theta / 2$ and $\operatorname{Par}\left(X_{1}\right)=\frac{\theta^{2}}{12}$.
It has already been shown that $T=X(n)$ is complete sufficient.
Now, $E\left(T^{r}\right)=\int_{0}^{\theta} t^{r} \cdot \frac{n t^{n-1}}{\theta^{n}} d t$

$$
\begin{aligned}
&=\frac{n}{\theta^{n}} \int_{0}^{\theta} t^{r+n-1} d t \\
&=\frac{n}{\theta^{n}} \cdot \frac{\theta^{n+r}}{n+r} \\
&=\frac{n}{n+r} \cdot \theta^{r} \\
& \& E(T)=\frac{n}{n+1} \cdot \theta \\
& \Rightarrow E\left\{\frac{n+1}{2 n} \cdot T\right\}=\frac{\theta}{2}=E\left(x_{1}\right) \\
& \text { and } E\left(T^{2}\right)=\frac{n}{n+2} \cdot \theta^{2} \\
& \Rightarrow E\left\{\frac{n+2}{12 \cdot n} \cdot T^{2}\right\}=\frac{\theta^{2}}{12}=V\left(x_{1}\right)
\end{aligned}
$$

By L-S Theorem, $h_{1}(T)=\frac{n+1}{2 n} \cdot T$ and $h_{2}(T)=\frac{n+2}{12 n} \cdot T^{2}$ are the UMVUEs of $E\left(x_{1}\right)$ and $\operatorname{Var}\left(x_{1}\right)$.
Ex.(7):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a bis. from $U(-\theta, \theta), \theta>0$. Find UMVUE of θ.
Hints:-

$$
\begin{aligned}
& \text { Ants: - } X_{i} \stackrel{\text { ind }}{\sim} \cup(-\theta, \theta) \\
& \Rightarrow \quad Y_{i}=\left|X_{i}\right| \stackrel{\text { ind }}{\sim} \cup(0, \theta)
\end{aligned}
$$

Ex.(i):- Let $x_{1}, x_{2}, \ldots ., x_{n}$ be a rex. from $f(x ; \sigma)=\frac{1}{2 \sigma} e^{-\frac{|x|}{\sigma}}, x \in R$ where $\sigma>0$. Find UMVOE of σ^{r}.

Hints:-
$\{f(x ; \sigma): \sigma>0\}$ is an OPEF.
and $T=\sum_{i=1}^{n}\left|X_{i}\right|$ is completely sufficient.
Here

$$
\begin{aligned}
& \frac{2 T}{\sigma} \sim X_{2 n}^{2} \\
\therefore & E\left\{\frac{2 T}{\sigma}\right\}^{r}=E\left(X_{2 n}^{2}\right)^{r}=\frac{2^{n+r} \Gamma(n+r)}{2^{n} \Gamma(n)} \\
\Rightarrow & E\left\{\frac{\Gamma(n)}{\Gamma(n+r)} \cdot T^{r}\right\}=\sigma^{r} \quad \text { if } r>n
\end{aligned}
$$

Ex, (a):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a ross. from $f(x ; p)=\left\{\begin{array}{c}p(1-p)^{x}, x=0,1, \\ 0,0, \ldots\end{array}\right.$
S.T. UE of p based on $T=\sum_{i=1}^{n} x_{i}$ is unique. Hence or othercoise find the UMVUE of p.
Sol:- $T=\sum_{i=1}^{n} x_{i} \sim N B(n, p)$
To solve for $h(T)$ such that

$$
\begin{aligned}
& E\{h(T)\}=p \forall p \in(0,1) \\
\Rightarrow & \sum_{t=0}^{\infty} h(t)\binom{t+n-1}{n-1} p^{n} q^{t}=p \forall p \\
\Rightarrow & \sum_{t=0}^{\infty} h(t) \cdot\binom{t+n-1}{n-1} q^{t}=p^{-(n-1)}=(1-q)^{n-1} \\
\Rightarrow & \sum_{t=0}^{\infty} h(t)\binom{t+n-1}{n-1} q^{t}=\sum_{t=0}^{\infty}\left(\begin{array}{c}
n-1 \\
t \\
t
\end{array}\right) q^{t}, \text { as } 0<q<1
\end{aligned}
$$

By uniqueness property of Power series, ce get

$$
h(t)\binom{t+n-1}{n-1}=\binom{n+t-2}{t}, t=0,1,2, \ldots .
$$

Hence $h(T)=\frac{n-1}{t+n-1}$ is the only solution of " $E\{h(T)\}=p$, $\forall p \prime$.
$\Rightarrow h(T)$ is the only UE of p based on T. It can be shown that $T=\sum_{i=1}^{n} x_{i}$ is sufficient.
By RaO-Blackwell theorem, UMVVE is a function of T. A s there is only one UE of p based on T, then UE $h(T)$ is the UMVUE of p.

Alternative:- Define $h= \begin{cases}1, & \text { if } X_{1}=0 \\ 0, & \text { ow }\end{cases}$
is an UE of $p=P\left[X_{1}=0\right]$,
Here $T=\sum_{i=1}^{n} X_{i}$ is complete sufficient.
By L.S theorem, $E(h / T)$ is the umvue of p.
Now,

$$
\begin{aligned}
& E\{h / T=t\}=1 \cdot P\left[X_{1}=0 / \sum_{i=1}^{n} x_{i}=t\right] \\
&=\frac{P\left[X_{1}=0 ; \sum_{i=2}^{n} x_{i}=t\right]}{P\left[\sum_{i=1}^{n} X_{i}=t\right]} \\
&=\frac{P \cdot\binom{t+n-2}{n-2} p^{n-1} q^{t}}{\binom{t+n-1}{n-1} p^{n} q_{i}^{t}} \\
&=\frac{\binom{t+n-2}{n-2}}{\binom{t+n-1}{n-1}}=\frac{n-1}{t+n-1} \\
& h(T)=n-1
\end{aligned}
$$

Hence, $h(T)=\frac{n-1}{t+n-1}$ is the undue of p.
Ex. (10):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a rig. from

$$
f(x ; \theta)= \begin{cases}e^{-(x-\theta)}, & \text { if } x>\theta \\ 0 & , \text { ow } \\ T-x & \text { is a com }\end{cases}
$$

Show that $T=X_{(1)}$ is a complete sufficient statistic.. Hence find the UMVUE of θ.

Solution:-
The PDF of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is

$$
\begin{aligned}
& \prod_{i=1}^{n} f\left(x_{i} ; \theta\right)= \begin{cases}e^{-\sum_{i=1}^{n}\left(x_{i}-\theta\right)}, & \text { if } x_{i}>\theta,+i=1(1) n \\
0 & , \text { ow }\end{cases} \\
& = \begin{cases}e^{-\sum_{i=1}^{n}\left(x_{i-}-\theta\right)}, & \text { if } x_{(1)}>\theta \\
0, & \text { ow } \\
-\sum_{i=1}^{n}\left(x_{i}-\theta\right) & \end{cases} \\
& \begin{array}{l}
=e^{-\sum_{i=1}^{n}\left(x_{i}-\theta\right)} \cdot I\left(x_{(1)}, \theta\right) \text {, cohere } I(a, b)=\left\{\begin{array}{l}
\text { bit } a\rangle b \\
0 \text { if } \alpha_{i}
\end{array}\right. \\
=e^{\theta} \cdot I\left(x_{(1)}, \theta\right) \cdot e^{-\sum_{i=1}^{n} x_{i}}
\end{array} \\
& =g(T(\underset{\sim}{x}), 0) \cdot h(\underset{\sim}{x}) \text { with } T(\underset{\sim}{x})=x_{(1)} \text {. }
\end{aligned}
$$

By factorization criterion $T=X_{(1)}$ is sufficient.

$$
\begin{aligned}
& \text { Let } E\left\{h_{1}(T)\right\}=0 \quad \forall \theta \\
& \Rightarrow \int_{-\infty}^{\infty} h(t) \cdot f_{T}(t) d t=0 \quad \forall \theta \\
& \Rightarrow \int_{-\infty}^{\infty} h(t) \cdot n e^{-n(t-\theta)} d t=0 \forall \theta \\
& \Rightarrow \int_{\theta}^{\infty} h(t) \cdot e^{-n t} d t=0 \forall \theta
\end{aligned}
$$

Differentiating $0 . \pi \cdot t, \theta$,

$$
\begin{aligned}
& 0-h(\theta) \cdot e^{-n \theta}=0 \quad \forall \theta \\
& \Rightarrow h(\theta)=0 \quad \forall \theta \text { as } e^{-n \theta}>0 .
\end{aligned}
$$

$$
\begin{aligned}
F_{T}(t) & =1-P[T>t] \\
& =1-P\left[X_{(1)}>t\right] \\
& =1-\left\{P\left[X_{1}>t\right]\right\}^{n} \\
& =1-\left\{\int_{t}^{\infty} e^{-\left(x_{1}-\theta\right)} d x_{1}\right\}^{n} \\
& =1-e^{-n(t-\theta)} \text { if } t>\theta \\
\therefore f_{T}(t) & =n e^{-n(t-\theta)} \text {, if } t>\theta \\
& =0 \quad, \text { ow } 7
\end{aligned}
$$

Hence, $h(T)=0$, with prob. 1, $\forall \theta$.
$\Rightarrow T$ is complete.
Now, $E(T-\theta)=\int_{-\infty}^{\infty}(t-\theta) f_{T}(t) d t$

$$
\begin{aligned}
& =\int_{\theta}^{-\infty}(t-\theta) n e^{-n(t-\theta)} d t \\
& =\frac{1}{n} \int_{0}^{\infty} u e^{-u} d u, \text { cohere } u=n(t-\theta) \\
& =\frac{1}{n} \cdot \Gamma(2) \\
& =\frac{1}{n} \\
\Rightarrow E\left(T-\frac{1}{n}\right) & =\theta
\end{aligned}
$$

By LS Theorem, $h(T)=T-\frac{1}{n}=X_{(1)}-\frac{1}{n}$ is the umber of θ.
*
Ex.(14): - Let $x_{1}, x_{2} \ldots, x_{n}$ be a bis. from

$$
\begin{aligned}
& P(x ; N)=\left\{\begin{array}{cl}
\frac{1}{N}, & x=1,2, \ldots, N \\
0, O W
\end{array}\right. \\
& \text { NUE of } N .
\end{aligned}
$$

Find UMVUE of N.
Solution:- It has been shown that $T=X(n)$ is a complete. sufficient statistic for this distr.

Method I:- $P[T=t]= \begin{cases}\frac{t^{n}-(t-1)^{n}}{N^{n}}, t=1(1) N \\ 0, & 0 W\end{cases}$
Consider the function $h(T)=\frac{T^{n+1}-(T-1)^{n+1}}{T^{n}-(T-1)^{n}}$
Now,

$$
\begin{aligned}
E\{h(T)\} & =\sum_{t=1}^{N} h(t) \cdot P[T=t] \\
& =\sum_{t=1}^{N} \frac{t^{n+1}-(t-1)^{n+1}}{t^{n}-(t-1)^{n}} \times \frac{t^{n}-(t-1)^{n}}{N^{n}} \\
& =\frac{1}{N^{n}} \cdot \sum_{t=1}^{N}\left\{t^{n+1}-(t-1)^{n+1}\right\} \\
& =\frac{N^{n+1}-O^{n+1}}{N^{n}}=N
\end{aligned}
$$

By LS theorem, $h(T)$ is the UMVUE of N.
Method II:- Conditioning Method:-

$$
\begin{aligned}
& E\left(x_{1}\right)=\frac{N+1}{2} \\
\Rightarrow & E\left(2 x_{1}-1\right)=N
\end{aligned}
$$

Here $h=\left(2 x_{1}-1\right)$ is an UE of N.
Now, By LS theorem, $E(h / T)$ is the UMVUE of N.
Now, $E[h / T=t]$

$$
\begin{aligned}
& =\sum_{x_{1}=1}^{t}\left(2 x_{1}-1\right) \cdot P\left[x_{1}=x_{1} / T=t\right] \\
& =\sum_{x_{1}=1}^{t}\left(2 x_{1}-1\right) \cdot \frac{P\left[x_{1}=x_{1} ; x_{(n)}=t\right]}{P\left[x_{(n)}=t\right]}
\end{aligned}
$$

Γ
For $x_{1}=1(1) t-1$,

$$
\begin{aligned}
P\left[X_{1}=x_{1} ; X(n)=t\right] & =P\left[X_{1}=x_{1} ; \max _{i=2(1) n}\left\{X_{i}\right\}=t\right] \\
& =P\left[X_{1}=x_{1}\right] \cdot P\left[\max _{i=2(1)^{n}}\left\{x_{i}\right\}=t\right] \\
& =\frac{1}{N} \cdot \frac{t^{n-1}-(t-1)^{n-1}}{N^{n-1}}
\end{aligned}
$$

For $x_{1}=t, \quad P\left[X_{1}=x_{1} ; X_{(n)}=t\right]$

$$
\begin{aligned}
& =P\left[X_{1}=t ; \max _{i=2(1) n}\left\{x_{i}\right\} \leq t\right] \\
& =P\left[X_{1}=t\right] P\left[\max _{i=2(1) n}\{x i\} \leq t\right]
\end{aligned}
$$

$$
\left.=\frac{1}{N} \cdot\left(\frac{t}{N}\right)^{n-1}\right]
$$

Hence, $E(h / T=t)$

$$
\text { ne, } \begin{aligned}
& E(h / T=t) \\
= & \sum_{x_{1}=1}^{t-1}\left(2 x_{1}-1\right) \cdot \frac{t^{n-1}-(t-1)^{n-1}}{t^{n}-(t-1)^{n}}+(2 t-1) \frac{t^{n-1}}{t^{n}-(t-1)^{n}} \\
= & \frac{1}{t^{n}(t-1)^{n}}\left[\{(t-1) t-(t-1)\}\left\{t^{n-1}-(t-1)^{n-1}\right\}+(2 t-1) t^{n-1}\right] \\
= & \frac{1}{t^{n}(t-1)^{n}}\left[\left\{(t-1)^{2}+2 t-1\right\} t^{n-1}-(t-1)^{2}(t-1)^{n-1}\right] \\
= & \frac{t^{n+1}-(t-1)^{n+1}}{t^{n}-(t-1)^{n}}
\end{aligned}
$$

Hence, $E(h / T)=\frac{T^{n+1}-(T-1)^{n+1}}{T^{n}-(T-1)^{n}}$ is the UMVUE of N.

Ex, [12):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a wis. from the PDF

$$
f(x ; \theta)= \begin{cases}\theta_{e}-\theta x & , \text { if } x>0 \\ 0 & , \text { ow ; where } \theta>0,\end{cases}
$$

Find the UMVUE of (i) $\frac{1}{\theta}$, (ii) θ, (iii) $P\left[X_{1}>k\right]=1-F_{X_{1}}(k)$.
Solution:-
Note that the family $\{f(x ; \theta): \theta>0\}$ is an OAEF with

$$
\begin{aligned}
f(x ; \theta) & =\exp [-\theta x+\ln \theta] \\
& =\exp [u(\theta) \cdot T(x)+v(\theta)+w(x)] \text { coth } T(x)=x .
\end{aligned}
$$

$\therefore T=\sum_{i=1}^{n} T\left(x_{i}\right)=\sum_{i=1}^{n} X_{i}$ is complete sufficient.
(i)

$$
\begin{aligned}
& E(T)=E\left(\sum_{i=1}^{n} X_{i}\right)^{1=1}=\frac{n}{\theta} \\
\Rightarrow & E\left(\frac{T}{n}\right)=\frac{1}{\theta}
\end{aligned}
$$

\therefore By L-S Theorem, $h_{1}(T)=\frac{T}{n}=\vec{x}$ is the UMVUE of $\frac{1}{\theta}$.
(ii) To find an UE of θ, we should try with the statistic $\frac{1}{T}$.

$$
\begin{aligned}
E\left(\frac{1}{T}\right) & =\int_{0}^{\infty} \frac{1}{t} \cdot \frac{\theta^{n}}{\sqrt{n}} \cdot e^{-\theta t} \cdot t^{n-1} d t\left[\because T \Omega \sum_{i=1}^{n} x_{i} \sim \operatorname{Gamma}(\theta, n)\right] \\
& =\frac{\theta^{n}}{\sqrt{n}} \int_{0}^{\infty} e^{-\theta t} t^{(n-1)-1} d t \\
& =\frac{\theta^{n}}{\sqrt{n}} \cdot \frac{\Gamma(n-1)}{\theta^{n-1}} \text { if }(n-1)>0 \\
& =\frac{\theta}{n-1} \text { if } n>1 . \\
\Rightarrow E\left(\frac{n-1}{T}\right) & =\theta .
\end{aligned}
$$

\therefore By L-S Theorem, $h_{2}(T)=\frac{n-1}{T}=\frac{n-1}{n \bar{x}}$ is the UMVUE of θ.
(iii) Here $\psi(\theta)=P\left[X_{1}>k\right]=1-F_{X_{1}}(k)$

Define, $h=\left\{1\right.$, if $x_{1}>k=e^{-\theta k}, k>0$
Define, $h= \begin{cases}1, & \text { if } x_{1}>k \\ 0, & 0 w\end{cases}$
is an UE of $\psi(\theta)$.
By $L-S$ theorem, $E[h / T]$ is the UMVUE of $\psi(\theta)=P\left[X_{1}>k\right]$

Now,

$$
\begin{aligned}
E[h / T=t] & =1 \cdot P\left[X_{1}>k / T=t\right] \\
& =\int_{k}^{\infty} f_{X_{1} / T}\left(x_{1} / t\right) d x_{1} \\
\text { note that } f_{x_{1} / T}\left(x_{1} / t\right) & =\frac{f_{x_{1}, T}\left(x_{1}, t\right)}{f_{T}(t)} \\
& =\frac{f x_{1}, T-x_{1}\left(x_{1}, t-x_{1}\right)}{f_{T}(t)}
\end{aligned}
$$

Now, note that
[Using the transformation $\left(x_{1}, T\right) \rightarrow\left(x_{1}, T-x_{1}\right)$]

$$
\begin{gathered}
=\frac{f_{x_{1}}\left(x_{1}\right) f T-x_{1}\left(t-x_{1}\right)}{f T(t)} \\
=\frac{\theta e^{-\theta x_{1}} \cdot \frac{\theta^{n-1} \Gamma(n-1)}{f^{n}} \cdot e^{-\theta\left(t-x_{1}\right)} \cdot\left(t-x_{1}\right)^{n-2}}{\frac{\theta^{n}}{n} \cdot e^{-\theta t} \cdot t^{n-1} \text { if }} \\
=\frac{\left(t-x_{1}\right)>0}{t^{n-1}}\left(t-x_{1}\right)^{n-2}
\end{gathered} \text { if } x_{1}<t \quad \text { non }
$$

Now, $E[h / T=t]=\int_{k}^{\infty} \frac{(n-1)\left(t-x_{1}\right)^{n-2}}{t^{n-1}} d x_{1}$ if $t>k$

$$
\begin{aligned}
& =\frac{n-1}{t^{n-1}}\left[-\frac{\left(t-x_{1}\right)^{n-1}}{n-1}\right]_{k}^{t} \\
& =\frac{(t-k)^{n-1}}{t^{n-1}}, t>k \\
& =\left(1-\frac{k}{t}\right)^{n-1}, t>k
\end{aligned}
$$

Hence the UMVUE of $\psi(\theta)=P\left[x_{1}>k\right]$ is

$$
E[h / T]=\left\{\begin{array}{cl}
\left(1-\frac{k}{t}\right)^{n-1}, & \text { if } t>k \\
0, & \text { if } t \leq k
\end{array}\right.
$$

* Ex. (13):- Let $X_{1}, x_{2}, \ldots, X_{n}$ be a r.s. from $N(\theta, 1)$.

Let $p=\Phi(k-\theta)$. Find the UMVUE of p.
Solution:-
The family $\{N(\theta, 1): \theta \in \mathbb{R}\}$ is an OPEF with

$$
\begin{aligned}
f(x ; \theta) & =\exp \left[-\frac{x^{2}}{2}+\theta x-\frac{1}{2}\left\{\theta^{2}+\ln (2 \pi)\right\}\right] \\
& =\exp [u(\theta) \cdot T(x)+v(\theta)+\omega(x)] \operatorname{with} T(x)=x
\end{aligned}
$$

and $T=\sum_{i=1}^{n} X_{i}$ or \bar{X} is complete sufficient.

Here $p=\Phi(k-\theta)=p\left[X_{1} \leqslant k\right]$
Here $h= \begin{cases}1 & \text { if } x_{1} \leqslant k \\ 0 & \text {,ow }\end{cases}$

$$
\begin{aligned}
& P\left[x_{1}-\theta \leq k-\theta\right] \\
& =\Phi(k-\theta) \\
& \left.\operatorname{since}\left(x_{1}-\theta\right) \stackrel{a}{\sim} N(0,1)\right]
\end{aligned}
$$

is an UE of $p=P\left[X_{1} \leq k\right]$
By LS Theorem, $E(h / \bar{X})$ is the UMVUE of $p=\Phi(k-\theta)$.
Now, $E[h / \bar{x}=\bar{x}]$

$$
\begin{aligned}
& =1, p\left[X_{1} \leq k / \bar{X}=\bar{x}\right] \\
& =p\left[X_{1}-\bar{x} \leq k-\bar{x} / \bar{X}=\bar{x}\right] \\
& \quad X_{i} \sim N(\theta, 1) \Rightarrow \bar{X} \sim N\left(\theta, \frac{1}{n}\right)
\end{aligned}
$$

Now, $\left(X_{1}-\bar{x}, \bar{x}\right) \sim B N\left(0, \theta, 1-\frac{1}{n}, \frac{1}{n}, \rho=0\right)$
Here $\operatorname{var}\left(x_{1}-\bar{x}\right)=x\left(x_{1}\right)+x(\bar{x})-2 \operatorname{cov}\left(x_{1}, \bar{x}\right)$

$$
\begin{aligned}
& =1+\frac{1}{n}-2 \operatorname{cov}\left(x_{1}, \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right) \\
& =1+\frac{1}{n}-\frac{2}{n} v\left(x_{1}\right) \\
& =1+\frac{1}{n}-\frac{2}{n} \\
& =1-\frac{1}{n}
\end{aligned}
$$

and $\operatorname{cov}\left(x_{1}-\bar{x}, \bar{x}\right)=\operatorname{Cov}\left(x_{1}, \bar{x}\right)-x(\bar{x})$

$$
=\frac{1}{n}-\frac{1}{n}=0
$$

Here, $x_{1}-\bar{x}$ and \bar{x} are independently distributed, and $x_{1}-\bar{X} \sim N\left(0,1-\frac{1}{n}\right)$.]

$$
\begin{aligned}
\therefore E[h / \bar{x}=\bar{x}] & =p\left[x_{1}-\bar{x} \leq k-\bar{x}\right] \\
& =p\left[\frac{\left(x_{1}-\bar{x}\right)-0}{\sqrt{1-\frac{1}{n}}} \leq(k-\bar{x}) \sqrt{\frac{n}{n-1}}\right] \\
& =\Phi\left((k-\bar{x}) \sqrt{\frac{n}{n-1}}\right]
\end{aligned}
$$

Hence, $\Phi\left[\sqrt{\frac{n}{n-1}}(k-\bar{x})\right]$ is the UMVUE of $p=\Phi(k-\theta)$.
Ex.(14):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a ross. from $N\left(\mu, \sigma^{2}\right)$. Find UMVVE of (i) μ, σ (ii) σ^{r}, (iii) $\frac{\mu}{\sigma}$ (iv) the p th quantile of $X_{1}\left[\xi_{p}\right]$
Solution:- The family $\left\{N\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}, \sigma>0\right\}$ is a two-parametes exponential family of distnis and $T=\left(\bar{X}, S^{2}\right)$ is a complete sufficient.
(i) $E(\bar{X})=\mu$ and $E\left(S^{2}\right)=\sigma^{2}$
colure, $\quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
Hence \bar{x} and s^{2} are the UMVVE of μ and T^{2} respectively.
(ii) Note that $\frac{(n-1) s^{2}}{\sigma^{2}} \sim X_{n-1}^{2}$.

Now, $E\left\{\frac{(n-1) s^{2}}{\sigma^{2}}\right\}^{r / 2}=E\left(X_{n-1}^{2}\right)^{r / 2}$.

$$
=\frac{2^{r / 2} \Gamma\left(\frac{n-1}{2}+\frac{r}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} \text {, if } r>-(n-1)
$$

$$
\therefore E\left\{\frac{\Gamma\left(\frac{n-1}{2}\right)(n-1)^{r / 2}}{2^{r / 2} \cdot \Gamma\left(\frac{n-1+r}{2}\right)} \cdot s^{r}\right\}=\sigma^{r}
$$

$$
\Rightarrow E\left(k_{n-1, r} \cdot s^{r}\right)=\sigma^{r} \text { if } r>-(n-1) \text {. }
$$

Hence, $\left(K_{n-1}, r \cdot S^{r}\right)$ is the UMVUE of $\sigma^{r} ; r>-(n-1)$.
(iii) Note that $E(\bar{x})=\mu$ and

$$
E\left(k_{n-1,-1} \cdot s^{-1}\right)=\sigma^{-1}
$$

Hence, $E\left(\bar{X} \cdot k_{n-1,-1} \cdot s^{-1}\right)=E(\bar{X}) \cdot E\left(k_{n-1,-1} \cdot s^{-1}\right)$ due to independence of

$$
=\frac{\mu}{\sigma} .
$$ \bar{x} and s^{2}.

Hence, $K_{n-1,-1}\left(\frac{\bar{x}}{s}\right)$ is the UMVUE of $\frac{\mu}{\sigma}$.
(iv) By definition,

$$
\begin{aligned}
& p=P\left[x_{1} \leqslant \xi_{p}\right]=P\left[\frac{x_{1}-\mu}{\sigma} \leq \frac{\xi_{p}-\mu}{\sigma}\right] \\
&=\Phi\left(\frac{\xi_{p}-\mu}{\sigma}\right) \\
& \Rightarrow \Phi\left(\frac{\xi_{p}-\mu}{\sigma}\right)=p=\Phi\left(z_{p}\right), \text { where } z_{p} \text { is the } \\
& \Rightarrow \text { th quantile of } N(0,1) . \\
& \Rightarrow \frac{\xi_{p}-\mu}{\sigma}=z_{p} \\
& \Rightarrow \xi_{p}=\mu+\sigma z_{p} .
\end{aligned}
$$

Note that, $E\left(\bar{X}+z_{p} \cdot k_{n-1,1} \cdot s\right)$

$$
\begin{aligned}
& =E(\bar{x})+Z_{p} \cdot E\left(k_{n-1,1} \cdot s\right) \\
& =\mu+Z_{p} \cdot \sigma . \\
& =\xi_{p} .
\end{aligned}
$$

By L-S Theorem, $\quad\left\{\bar{x}+z_{p}\left(k_{n-1}, 1\right) \cdot s\right\}$ is the
UMVUE of ξ_{p}. UMVUE of ξ_{p}.
Ex. (15):- Let x_{1}, \ldots, x_{n} be a r.s.f from

$$
f(x ; \theta)= \begin{cases}\frac{\theta}{x^{\theta+1}}, & \text { if } x>1 \\ 0, & \text { on ; cohere } \theta>0\end{cases}
$$

Find the UMVUE of (i) θ, (ii) $\frac{1}{\theta^{r}}$.
(Do yourself)

* Ex. (16):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $U\left(\theta_{1}, \theta_{2}\right)$. Find the UMVUE of $\frac{\theta_{1}+\theta_{2}}{2}$ and $\frac{\theta_{1}-\theta_{2}}{2}$.
Solution:- Here $T=\left(X_{(1)}, X_{(n)}\right)$ is sufficient for the family,
Let, $E\{h(T)\}=0 \quad \forall \theta_{1}<\theta_{2}$

$$
\begin{aligned}
& E\left\{h\left(X_{(1)}, x_{(n)}\right)\right\}=0 \quad \forall \theta_{1}<\theta_{2} \\
& \Rightarrow \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h\left(y_{1}, y_{2}\right) f x_{(1)}, x_{(n)}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}=0 \quad \forall \theta_{1}<\theta_{2} \\
& \Rightarrow \int_{\theta_{1}}^{\theta_{2}}\left\{\int_{\theta_{1}}^{y_{2}} h\left(y_{1}, y_{2}\right) \cdot \frac{n(n-1)\left(y_{2}-y_{1}\right)^{n-2}}{\left(\theta_{2}-\theta_{1}\right)^{n}} d y_{1}\right\} d y_{2}=0 \\
& \Rightarrow \theta_{1}<\theta_{2} \\
& \Rightarrow \int_{\theta_{1}}^{\theta_{2}}\left\{\int_{\theta_{1}}^{y_{2}} h\left(y_{1}, y_{2}\right)\left(y_{2}-y_{1}\right)^{n-2} d y_{1}\right\} d y_{2}=0 \quad \forall \theta_{1}<\theta_{2}
\end{aligned}
$$

Differentiating a.r.t. θ_{2}, we get,

$$
\begin{aligned}
& \text { ferentiating a.r.t. } \theta_{2} \text {, we get, } \\
& \int_{\theta_{1}}^{\theta_{2}} h\left(y_{1}, \theta_{2}\right)\left(\theta_{2}-y_{1}\right)^{n-2 d y_{1}=0 \forall \theta_{1}}
\end{aligned}
$$

Differentiating w.r.t. θ_{1}, we get,

$$
\begin{aligned}
& 0-h\left(\theta_{1}, \theta_{2}\right) \cdot\left(\theta_{2}-\theta_{1}\right)^{n-2}=0 \quad \forall \theta_{1}<\theta_{2} \\
& \Rightarrow h\left(\theta_{1}, \theta_{2}\right)=0 \quad \forall \theta_{1}<\theta_{2} \\
& \text { ill, } h\left(y_{1}, y_{2}\right)=0 \quad \forall y_{1}<y_{2}
\end{aligned}
$$

Hence, $T=\left(X_{(1)}, X_{(2)}\right)$ is complete.
Now,

$$
\text { (1) } \begin{aligned}
& E(X(1))=\theta_{1}+\frac{\theta_{2}-\theta_{1}}{n+1} \\
& E(X(n))=\theta_{2}-\frac{\theta_{2}-\theta_{1}}{n+1} \\
\Rightarrow & E\left(\frac{X(1)+X(n)}{2}\right)=\frac{\theta_{1}+\theta_{2}}{2}
\end{aligned}
$$

and $E\left\{\frac{n+1}{2(n-1)}\left(X_{(1)}-X_{(n)}\right)\right\}=\frac{\theta_{2}-\theta_{1}}{2}$
Hence, $\frac{X(1)+X(n)}{2}$ and $\frac{n+1}{n-1} \cdot \frac{(X(1)-X(n))}{2}$ are UMVVE of $\frac{\theta_{1}+\theta_{2}}{2}$ and $\frac{\theta_{2}-\theta_{1}}{2}$, respectively.

Cramer-Rao Lower Bound for the variance of an Unbiased Estimator:
Let X be a RY with PDF or PMF belonging to the family $\{f(x ; \theta): \theta \in \Omega\}$ satisfies the following regularity conditions:
(i) The parameter space Ω is an open interval.
(ii) The support $S=\{x: f(x, \theta)>0\}$ does not depend on θ.
(iii) For $x \in S, \theta \in \Omega$, the derivative $\frac{\partial}{\partial \theta} f(x ; \theta)$ exists and is finite.
(iv) The identity $\int_{s} f(x, \theta) d x=1\left[\right.$ or,$\left.\sum_{x \in s} f(x, \theta)=1\right]$ can be differentiated under integral [or, summation] sign.
(v) $T(x) \in U_{\psi}=\{T(x): E(T(x))=\psi(\theta), \operatorname{var}(T(x))<\infty, v \theta \in \Omega\}$ is any statistic for conch the derivative cornet. θ of $\psi(\theta)=E\{T H$, exists and can be evaluated by differentiating under the integral (or. summation) sign in $E\{T(x)\}$.

Then $\operatorname{Var}(T(x)) \geqslant \frac{\left\{\Psi^{\prime}(\theta)\right\}^{2}}{I(\theta)}$; where,

$$
I(\theta)=E\left[\frac{\partial}{\partial \theta} \ln f(x, \theta)\right]^{2}>0
$$

Proof:- Let x be a continuous RY with PDF $f(x ; \theta), \theta \in \Omega$, Differentiating the identity $\int_{s} f(x, \theta) d x=1$, wir.t. θ, we get,

$$
\begin{align*}
& \frac{\partial}{\partial \theta} \int_{S} f(x, \theta) d x=\frac{d}{d \theta}(1)^{S} \\
\Rightarrow & \int_{S} \frac{\partial}{\partial \theta} f(x, \theta) d x=0, \text { by (ii) } \tag{ii}\\
\Rightarrow & \int_{S} \frac{d}{d \theta}\{\ln f(x, \theta)\} \cdot f(x, \theta) d x=0 \\
\Rightarrow & E\left(\frac{\partial}{\partial \theta} \ln f(x, \theta)\right)=0 .
\end{align*}
$$

Differentiating $\Psi(\theta)=E\{T(x)\}$ w.n.t. θ, we have, ——

$$
\begin{aligned}
\Psi^{\prime}(\theta) & =\frac{\partial}{\partial \theta} E\{T(x)\} \\
& =\frac{\partial}{\partial \theta} \cdot \int_{S} T(x) \cdot f(x, \theta) d x \\
& =\int_{S} T(x) \cdot \frac{\partial}{\partial \theta} f(x, \theta) d x, \text { by }(v) \cdot \\
& =\int_{S} T(x) \cdot \frac{\partial}{\partial \theta}\{\ln f(x, \theta)\} \cdot f(x, \theta) d x \\
& =E\left[T(x) \cdot \frac{\partial}{\partial \theta} \ln f(x, \theta)\right] \\
& =\operatorname{Cov}\left[T(x), \frac{\partial}{\partial \theta} \ln f(x, \theta)\right] \text { as } E\left[\frac{\partial}{\partial \theta} \ln f(x, \theta)\right]=0 .
\end{aligned}
$$

Now, $\left\{\psi^{\prime}(\theta)\right\}^{2}=\operatorname{cov}^{2}\left[T(x), \frac{2}{2 \theta} \ln f(x, \theta)\right]$

$$
\leq \operatorname{Var}(T(x)) \cdot \operatorname{Var}\left[\frac{2}{2 \theta} \ln f(x, \theta)\right], \text { by }
$$

$c-s$ inequality.

$$
\begin{aligned}
& \Rightarrow \operatorname{Var}(T(x)) \geqslant \frac{\left\{\Psi^{\prime}(\theta)\right\}^{2}}{I(\theta)} ; \text { where } \\
& I(\theta)=\operatorname{Var}\left[\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right] \\
&=E\left[\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right]^{2}
\end{aligned}
$$

Remarks:-
(1) The inequality "Var $(T) \geqslant \frac{\left\{\psi^{\prime}(\theta)\right\}^{2}}{I(\theta)}$ with the regularity conditions (i)-(v)" is called the cramer-Rao inequality, and then the RHS $=\frac{\left\{\Psi^{\prime}(\theta)\right\}^{2}}{T(\theta)}$ is called the
Cramer-RaO Lower Bound for the variance of an UE of $\psi(\theta)$
(2) Cramer-Rao inequality can also be expressed as $\operatorname{Var}(T(x)) \geqslant \frac{\left\{\frac{2}{\partial \theta} E[T(x)]\right\}^{2} \text {, where } T(x) \text { is any }}{T(\theta)}$
statistic with $\operatorname{Var}(T(x))<\infty$, which provides the lower bound of the variance of an UE of $E\{T(x)\}$.
Here $T(x)$ is not necessarily unbiased for $\psi(\theta)$. Lit $E T(x)=\psi(\theta)+b(\theta)$, then

$$
\operatorname{Var}(T(x)) \geqslant \frac{\left\{\Psi^{\prime}(\theta)+b^{\prime}(\theta)\right\}^{2}}{I(\theta)}
$$

(3) Let $x_{1}, \ldots ., x_{n}$ be a n.s. from $f(x ; \theta), \theta \in \Omega$. Then the PDF of $x_{\sim}=\left(x_{1}, \ldots, x_{n}\right)$ is

$$
L(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

Then $I_{\sim}^{x}(\theta)=n_{1} I_{X_{1}}(\theta)$
Proof:-
(4) If, in addition to the regularity condition (i) to (v). The $2^{\text {nd }}$ derivative co.r.t. θ of $\ln f(x ; \theta)$ exists and $2^{\text {nd derivative }}$ w.m.t. θ of $\int_{s} f(x ; \theta) d x=1\left(\frac{o r}{}, \sum_{x \in s} f(x ; \theta)=1\right)$ can be obtained by S differentiating $\frac{\text { twice under the integral or }}{2^{2}}$ summation sign, $I(\theta)=E\left[-\frac{\partial^{2}}{\partial \theta^{2}} \ln f(x ; \theta)\right]$.
Proof:- We have $E\left(\frac{\partial}{\partial \theta} \ln f(x, \theta)\right)=0$

$$
\Rightarrow \int_{S} \frac{\partial}{\partial \theta} \ln f(x, \theta) \cdot f(x, \theta) d x=0
$$

Differentiating w.r.t. θ, we get,

$$
\begin{aligned}
& \int_{S} \frac{\partial^{2}}{\partial \theta^{2}} \ln f(x, \theta) \cdot f(x, \theta) d x+\int_{S}\left\{\frac{\partial}{\partial \theta} \ln f(x, \theta)\right\}^{2} f(x, \theta) d x=0 \\
& \Rightarrow I(\theta)=E\left(\frac{\partial}{\partial \theta} \ln f(x, \theta)\right)^{2}=E\left(-\frac{\partial^{2}}{\partial \theta^{2}} \ln f(x, \theta)\right) \\
& {\left[\because \frac{\partial}{\partial \theta} f(x, \theta)=\frac{\partial}{\partial \theta} \ln f(x, \theta) \cdot f(x, \theta)\right]}
\end{aligned}
$$

(5) Fisher's Information:

The Fisher's Information about θ in a RV \times from a PDF or PM $f(x, \theta), \theta \in-$, is given by $I_{x}(\theta)=E\left(\frac{\partial}{2 \theta} \ln f(x, \theta)\right)^{2}$
Justification:-
Note that $\frac{\partial}{\partial \theta} \ln f(x ; \theta)$ is the rate of change of \log-likelihood of the values x w.r.t. θ. The function $\frac{\partial}{\partial \theta} \ln f(x ; \theta)$ viewed as a function of x for fixed θ, is called the score function and for each θ. $\frac{\partial}{\partial \theta} \ln f(x ; \theta)$ is a R.X, with PDF or PMF $f(x ; \theta)$.
we want a measure of average rate of change of the log-likelihood w.r.t. θ, but $E\left(\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right)=0$, canst be used as a measure. Then, ignoring the sign, $E\left(\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right)^{2}$ can be used as a measure of sensitivity of the log likelihood w.n.t. θ or the amount. of information about θ in X.
In this sense, $I(\theta)$ gives a measure of information about θ contains in X.
Exercise: - The Fisher information about θ in a statistic T is aways less than on earal to that in the original sample. Again, there is no loss of information iff T is sufficient.
Solution:-

Equality in CR inequality:
Suppose that the family of distress $\left\{\begin{array}{l}f(x ; \theta): \theta \in \Omega\} \text { satisfies } \\ \text { then } T \in U_{\Psi} \text { attains }\end{array}\right.$ all the regularity conditions $(i)-(v)$, then $T \in U_{\Psi}$ attains CRLB Bf

$$
\operatorname{Var}(T)=\frac{\left\{\psi^{\prime}(\theta)\right\}^{2}}{I(\theta)^{2}}
$$

iff $\operatorname{cov}\left(T, \frac{\partial}{\partial \theta} \ln f(x ; \theta)\right)^{2}=V(T) \cdot I(\theta)$

$$
\text { if }\left\{\frac{\operatorname{cov}\left[T, \frac{\partial}{\partial \theta} \ln f(x ; \theta)\right]}{\sqrt{V(T)} \sqrt{V\left(\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right)}}\right\}^{2}=1
$$

if the correlation coefficient between T and $\frac{\partial}{\partial \theta} \ln f(x ; \theta)$ is ± 1.

$$
\begin{aligned}
& \text { iff the correlation coefficient } \frac{\partial}{\partial \theta} \ln f(x ; \theta)-E\left(\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right) \\
& \sqrt{V\left(\frac{\partial}{\partial \theta} \ln f(x ; \theta)\right)}
\end{aligned}= \pm \frac{T-E(T)}{\sqrt{V(T)}} \text {. }
$$

$$
\text { if } \frac{\frac{\partial}{\partial \theta} \ln f(x ; \theta)-0}{\sqrt{I(\theta)}}= \pm \frac{T-E(T)}{\Psi^{\prime}(\theta) / \sqrt{I(\theta)}}
$$

$$
\begin{equation*}
\text { if } \frac{\partial \ln f(x ; \theta)= \pm \frac{I(\theta)}{\partial \theta}\{T-E(T)\} \text {. }\{T(\theta)}{\Psi^{\prime}} \text {. } \tag{*}
\end{equation*}
$$

This is the necessary and sufficient condition for attaining the $C R L B$ by the UE T of $\Psi(\theta)$.
Remark:- From (*),

$$
\begin{aligned}
& \text { From }(*), \\
& \frac{\partial}{\partial \theta} \ln f(x ; \theta)=k(\theta)\{T-\psi(\theta)\} \text {, say. } \\
& k(\theta), k(\theta) \psi(\theta) \text { are integrable with }
\end{aligned}
$$

Assuming $K(\theta), K(\theta) \Psi(\theta)$ are integrable with respect to θ, and integrating w.r.t. θ, we get

$$
\begin{aligned}
& \operatorname{lnf}(x ; \theta)=T \int k(\theta) d \theta-\int k(\theta) \psi(\theta) d \theta \\
\Rightarrow & \ln f(x ; \theta)=u(\theta) T+v(\theta)+\omega(x)
\end{aligned}
$$

as "the equality case" in the $C R$ inearality.
Under suitable regularity conditions, $C R L B$ is attained by T iff the family of distils $\{f(x ; \theta): \theta \in \Omega\}$ is an OPEF with

$$
f(x ; \theta)=\exp [u(\theta) \cdot T(x)+v(\theta)+\omega(x)]
$$

Definition:- MVBUE/OR/BRUE
Let the family $\{f(x ; \theta) ; \theta \in \Omega\}$ of distributions satisfies all the regularity conditions (i)-(v), then an UE $T \in U_{\psi}$, with $\operatorname{Var}(t)=\frac{\left\{\psi^{\prime}(\theta)\right\}^{2}}{I(\theta)}$
i.e., T is an UE of $\Psi(\theta)$ which attains CRLB is called. Minimum Variance Bound Unbiased Estimator (MVBUE) or Best Regular Unbiased Estimator (BRVE).
In this case, the MVBUE has the minimum variance among all UE\& of $\Psi(\theta)$, ie. T is UMVUE of $\psi(\theta)$.

Remark:- T is UMVUE of T attains CRLBB iff

$$
\ln f(x, \theta)=u(\theta) \cdot T(x)+v(\theta)+w(x) .
$$

Hence a MVBUE $T(x)$ is a complete sufficient statistic. and is the UMVUE of $E(T)=\psi(\theta)$, say.
It follows that even if OPEF the only parametric function which admits a UMVUE whose Y ariance attains the CRLB is the functions $\varphi(\theta)=E(T)$, where T is a complete sufficient statistic.
Ex. (1):- Leet X_{1}, \ldots, X_{n} be a r, s. from $B(1, p)$, then obtain. The CRLB for the variance of an UE of $\Psi(p)=p$. Hence obtain the UMVUE of p.
Solution:- The pDF of $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\begin{array}{ll}
f(x, p)=p^{\sum_{i=1}^{n} x_{i}}(1-p)^{n-\sum_{i=1}^{n} x_{i}} & \text { if } x_{i}=0,1, \ldots . \\
\text { where } b \in \Omega=\{p: 0<p<1\} & \forall i=1(1) n .
\end{array}
$$

$$
\text { where } p \in \Omega=\{p: 0<p<1\}
$$

Clearly, the family $\{f(x, p): p \in \Omega\}$ is an OPEF and it satisfies all the regularity conditions (i)-(v).
Then, for any UE of $\Psi(p)=p$

$$
V(T)=\frac{\left\{\Psi^{\prime}(P)\right\}^{2}}{I(p)}=\frac{1}{I(B)}=C R L B
$$

where, $I(p)=E\left(-\frac{\partial^{2}}{\partial p^{2}} \ln f(x, p)\right)$

Now, $\ln f(x, p)=\sum_{i=1}^{n} x_{i} \ln p+\left(n-\sum_{i=1}^{n} x_{i}\right) \ln (1-p)$

$$
\frac{\partial}{\partial p} \ln f(x, p)=\frac{\sum x_{i}}{p}+\frac{n-\sum x_{i}}{1-p}(-1)
$$

and $\frac{\partial^{2}}{\partial p^{2}} \ln f(x, p)=-\frac{n \bar{x}}{p^{2}}-\frac{n(1-\bar{x})}{(1-p)^{2}}$
Hence,

$$
\begin{aligned}
I(p) & =E\left\{-\frac{2^{2}}{2 p^{2}} \ln f(x, p)\right\} \\
& =\frac{n E(\bar{x})}{p^{2}}+\frac{n\{1-E(\bar{x})\}}{(1-p)^{2}} \\
& =\frac{n}{p}+\frac{n}{1-p} \\
& =\frac{n}{p(1-p)}
\end{aligned}
$$

Hence the $C R$ inequality reduces to

$$
\operatorname{var}(T) \geqslant \frac{p(1-p)}{n}=C R L B
$$

As $\operatorname{var}(\bar{x})=\frac{p(1-p)}{n}$, it follows that , ariance of \bar{x}, attains CRLB and \bar{x} has the minimum variance among all UE of $\psi(p)=P$.
Hence, \bar{x} is UMVUE of $\psi(p)=p$.
Ex. (2): - Let $X_{1}, \ldots x_{n}$ be a b. . from $P(\lambda)$. obtain the CRLB Ex.(2):- the variance of an UE of $\Psi(\lambda)=\lambda$. Hence find UMVUE of λ,
*
EX.(3):- An example cohere CRLB is not attained by the variance of an UE, or, an example of a UMVUE chose variance does not attain CRLB.
Solution:- Let $X \sim P(\lambda)$
Consider the problem of estimation of $\Psi(\lambda)=e^{-\lambda}$ based on a single observation X.
clearly, the family $\{P(\lambda): \lambda>0\}$ is an OPEF and it satisfies all the regularity conditions reavired for $C R$ inequality, then for any UR T of $\Psi(\lambda)=R^{-\lambda}$.

$$
\operatorname{Var}(T) \geqslant \frac{\left\{\Psi^{\prime}(\lambda)\right\}^{2}}{I(\lambda)}=C R L B
$$

Note that, $f(x, \lambda)=e^{-\lambda} \cdot \frac{\lambda^{x}}{x!}, x=0,1,2, \ldots$.

$$
\begin{gathered}
\ln f(x, \lambda)=-\lambda+x \ln \lambda-\ln x! \\
\frac{\partial}{\partial \lambda} \ln f(x, \lambda)=-1+\frac{x}{\lambda} \\
\frac{\partial^{2}}{\partial \lambda^{2}} \ln f(x, \lambda)=-\frac{x}{\lambda^{2}} \\
I(\lambda)=E\left(-\frac{\partial^{2}}{\partial \lambda^{2}} \ln f(x, \lambda)\right) \\
=\frac{E(x)}{\lambda^{2}}=\frac{1}{\lambda} .
\end{gathered}
$$

Then CR inequality reduces to $\begin{aligned} V(T)=\frac{e^{-2 \lambda}}{\frac{1}{\lambda}} & =\lambda e^{-2 \lambda} \\ & =C R L R\end{aligned}$
If an UE T attains CRLB, that is the MVBUE, if exists fan

$$
\begin{aligned}
\left.\Psi(\lambda)=e^{-\lambda}\right) \text { given by } T & =\psi(\lambda) \pm \frac{\psi^{\prime}(\lambda)}{I(\lambda)} \cdot \frac{\partial}{\partial \lambda} \ln f(x, \lambda) \\
& =e^{-\lambda} \pm \frac{-e^{-\lambda}}{1 / \lambda}\left(-1+\frac{x}{\lambda}\right) \\
& =e^{-\lambda} \mp e^{-\lambda}(x-\lambda) \\
& =e^{-\lambda}\{1 \mp(x-\lambda)\}
\end{aligned}
$$

whether we take tue or -be sign, T is a function of x and λ. Hence, it's not a statistic.
Thus there doss not exist a statistic which attains CRLB, that is in this case CRLB is not an attainable lower bound.

Note that $T=X$ is a complete sufficient statistic.
here $\psi(\lambda)=e^{-\lambda}=P[x=0]$
then $h(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & 0 w\end{cases}$
is an UE of $P[X=0]=e^{-\lambda}$.
By L-S theorem, $h(x)$ is the UMVVE of $\psi(\lambda)=e^{-\lambda}$.
Now, $V(h(x))=E\left\{h^{2}(x)\right\}-E^{2}\{h(x)\}$
$=1^{2} \cdot P[x=0]-[1 \cdot P[x=0]]^{2}$
$=e^{-\lambda}-e^{-2 \lambda}=e^{-2 \lambda}\left(e^{\lambda}-1\right)$
$=e^{-2 \lambda}\left\{\frac{\lambda}{1!}+\frac{\lambda^{2}}{2!}+\cdots \cdots\right\}$

$$
\begin{equation*}
>\lambda e^{-2 \lambda}=C R L B \tag{a}
\end{equation*}
$$

In general, CRL B is not attainable lower bound, that is, in a case, satisfying the regularity conditions (i)-(v), an UMVUE may not exist. Therefore the variance of UMVVE, chose variance is the least attainable variance in the class of unbiased estimators, exceeds the CRLB.

Part (a): -
Here $V(T)=C R L B$, therefore T is MVBUE as well as UMVUR.
Part (b): - Here, there is no T for which $V(T)$ is CRLB \Rightarrow there does not exist an MVBUE \Rightarrow variance UMVUE $>C R L B$.

Ex. (4):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a rus. from $\cup(0, \theta), \theta>0$.
Compute the quantity $\frac{1}{n E\left(\frac{\partial}{\partial \theta} \ln f\left(x_{1}, \theta\right)\right)^{2}}$.
Also, obtain the variance of the UES $\frac{n+1}{n} X(n)$ or $2 \bar{x}$. Compute their variance with the above quantity and comment.
Solution:- Here $f\left(x_{1}, \theta\right)=\left\{\begin{array}{l}\frac{1}{\theta}, 0<x<\theta \\ 0, \text { ow ; where } \theta>0\end{array}\right.$

$$
\ln f\left(x_{1}, \theta\right)=-\ln \theta, 0<x_{1}<\theta
$$

and $\frac{\partial}{\partial \theta} \ln f\left(x_{1}, \theta\right)=-\frac{1}{\theta}$
Hence,

$$
\text { e, } \begin{aligned}
E\left(\frac{\partial}{\partial \theta} \ln f\left(x_{1}, \theta\right)\right)^{2} & =E\left(-\frac{1}{\theta}\right)^{2} \\
& =\theta^{-2} \\
\therefore \frac{1}{n E\left(\frac{\partial}{\partial \theta} \ln f\left(x_{1}, \theta\right)\right)^{2}} & =\frac{\theta^{2}}{n}
\end{aligned}
$$

Note that $\operatorname{Var}\left(\frac{n+1}{n} X(n)\right)=\frac{\theta^{2}}{n(n+2)}$
and $\operatorname{Var}(2 \bar{x})=4 \operatorname{Var}(\bar{x})$

$$
\begin{aligned}
& =4 \cdot \frac{v\left(x_{1}\right)}{n} \\
& =\frac{4 \cdot}{n} \frac{\theta^{2}}{12}=\frac{\theta^{2}}{3 n}
\end{aligned}
$$

Here, $\operatorname{Var}\left(\frac{n+1}{n} X(n)\right)$ on $V(2 \bar{x})$ is less than the given areantity.
Comment:- The family $\{v(0, \theta): \theta>0\}$ does not satisfy
The regularity condition (ii) \& (iv), since the support the regularity condition (ii) \& (iv), since the support

$$
\begin{aligned}
& S=\{x ; f(x, \theta)>0\}=(0, \theta) \text { depends on } \theta \text { and } \\
& " \frac{\partial}{\partial \theta} \int_{S} f(x, \theta) d x=\int_{S} \frac{\partial}{\partial \theta} f(x, \theta) d x " \\
& \Rightarrow \frac{2}{\partial \theta}(1)=\int_{0}^{\theta} \frac{\partial}{\partial \theta}\left(\frac{1}{\theta}\right) d x \\
& \Rightarrow \quad 0=-\int_{0}^{1} \frac{1}{\theta^{2}} d x=-\frac{1}{\theta}, \text { not possible. }
\end{aligned}
$$

Hence, $C R$ inequality does not exist in the non-negular case, the variance of UMVUE On any other UE may be lower than the quantity $\frac{1}{n E\left(\frac{\partial}{\partial \theta} \ln f(x, \theta)\right)^{2}}$ in that non-regular case.
[which, when $C R$ inequality exists, is CRLB]

Ex.(S):- Let x_{1}, \ldots, x_{n} be a vo. . . from

$$
\begin{aligned}
& f(x, \theta)= \begin{cases}e^{-(x-\theta)} & , \text { if } x>\theta \\
0 & \text {, ow }\end{cases} \\
& \text { compute } \frac{1}{n E\left(\frac{\partial}{\partial \theta} \ln f(x, \theta)\right)^{2}}
\end{aligned}
$$

Also find the variance of an VE of θ based on $X_{(1) \text {. Which one is }}$ smaller? Give reasons.

Remark:- Regularity condition (ii) is unnecessarily restrictive. An examination of the proof shows that it is only necessary that (ii), (ii) to (v) holds for the CR inequality. condition (ii) excludes the distributions such as
(a) $f(x, \theta)= \begin{cases}\frac{1}{\theta} & , 0<x<\theta \\ 0 & , \text { ow }\end{cases}$
(b) $f(x, \theta)= \begin{cases}1, & \theta<x<\theta+1 \\ 0, & \text { ow }\end{cases}$
(c) $f(x, \theta)= \begin{cases}e^{-(x-\theta)}, & , x>\theta \\ 0, & \text { ow }\end{cases}$

Note that for (a) and (c), condition (iv) fails to hold.
For (b), condition (v) fails to hold.
Ex.(6):- Are the following families of distress regular in The sense of cramer \& RoO?
If so, find the lower bound for the variance of an UE of θ based on a sample of size n. Also, find the UMVUES Of θ.
(a) $f(x, \theta)=\frac{e^{-\frac{x^{2}}{2 \theta}}}{\sqrt{2 \pi \theta}} ;-\infty\langle x<\infty, \theta>0$
(b) $f(x, \theta)= \begin{cases}\frac{1}{\theta} e^{-(x-\theta)} & , x>0 \\ 0 & , \text { ow } ; \theta>0\end{cases}$

Solution:-
(a) As we know that ' $\overline{\bar{\prime}}$ ' holds in $C R$ inequality, whenever the family of distributions is OPEF.
The given PDF is OPEF and it satisfies the regularity conditions for $C R$ inequality that is, it is regular in the sense of Cramer-RaO.
By $C R$ inequality, for an $U E_{A}^{\top}$ of θ,

$$
\operatorname{Var}(T) \geqslant \frac{1}{\operatorname{In}(\theta)}=C R L B .
$$

Here, $f(x, \theta)=\frac{1}{\sqrt{2 \pi \theta}} e^{-\frac{x^{2}}{2 \theta}}, x \in R, \theta>0$

$$
\begin{gathered}
\Rightarrow \ln f(x, \theta)=-\frac{1}{2} \ln (2 \pi \theta)-\frac{x^{2}}{2 \theta} \\
\frac{\partial}{\partial \theta} \ln f\left(x_{1} \theta\right)=-\frac{1}{2 \theta}+\frac{x_{1}^{2}}{2 \theta^{2}} \\
\text { and } \frac{\partial^{2}}{\partial \theta^{2}} \ln f\left(x_{1}, \theta\right)=\frac{1}{2 \theta^{2}}-\frac{x_{1}{ }^{2}}{\theta^{3}}
\end{gathered}
$$

$$
\begin{aligned}
I_{n}(\theta) & =n \cdot I_{1}(\theta) \\
& =n \cdot E\left(-\frac{\partial^{2}}{\partial \theta^{2}} \ln f\left(x_{1}, \theta\right)\right) \\
& =n \cdot\left\{-\frac{1}{2 \theta^{2}}+\frac{E\left(x_{1}^{2}\right)}{\theta^{3}}\right\} \\
& =n\left\{-\frac{1}{2 \theta^{2}}+\frac{\theta}{\theta^{3}}\right\} \\
& =\frac{n}{2 \theta^{2}}
\end{aligned}
$$

Hence, $\operatorname{xar}(T) \geqslant \frac{2 \theta^{2}}{n}=C R L B$
The MVBUE, if exists, for θ, is given by

$$
\begin{aligned}
& T=\Psi(\theta) \pm \frac{\Psi^{\prime}(\theta)}{\operatorname{In}(\theta)} \cdot \frac{\partial}{\partial \theta} \ln L(x, \theta) \\
&=\theta \pm \frac{1}{\frac{n}{2 \theta^{2}}} \cdot \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ln f\left(x_{i}, \theta\right) \\
&=\theta \pm \frac{2 \theta^{2}}{n}\left\{-\frac{n}{2 \theta}+\frac{\sum x^{2}}{2 \theta^{2}}\right\} \\
&=\theta+\frac{2 \theta^{2}}{n}\left\{-\frac{n}{2 \theta}+\frac{\sum x_{i}^{2}}{2 \theta^{2}}\right\}, \text { taking tue sign only, } \\
&=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \\
& n
\end{aligned}
$$

Hence, $T=\frac{1}{n} \sum_{i=1}^{n} x_{i}{ }^{2}$ attains $C R L B$ and $\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}{ }^{2}\right)$ is the MVBUE as coil as UMVUE of θ.
EX. (7):- Based on a r.s. $X_{1}, X_{2}, \ldots, x_{n}$ from Gamma (α). Obtain an estimator of $\psi_{\alpha}=\frac{\partial}{\partial \alpha} \ln \Gamma(\alpha)$ which attains CRLB and its variance.
Solution:- The PDF of $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\begin{aligned}
& f\left(x_{\sim} ; \alpha\right)=\prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)} \cdot e^{-x_{i}} \cdot x_{i}^{\alpha-1} \\
&=\frac{1}{\{\Gamma(\alpha)\}^{n}} \cdot e^{-\sum_{i=1}^{n} x_{i}} \cdot\left(\prod_{i=1}^{n} x_{i}\right)^{\alpha-1}, \quad \text { if } x_{i}>0 \\
& \forall i=1(1) n .
\end{aligned} \quad \begin{aligned}
& \Rightarrow \ln f(x, \alpha)=-n \ln \Gamma(\alpha)-\sum_{i=1}^{n} x_{i}+(\alpha-1) \sum_{i=1}^{n} \ln x_{i} \text {, if } x_{i}>0 \\
& \frac{D}{\partial \alpha} \ln f(x, \alpha)=-n \frac{\partial}{\partial \alpha} \ln \Gamma(\alpha)+\sum_{i=1}^{n} \ln x_{i} \\
& \text { and } \frac{\partial^{2}}{\partial \alpha^{2}} \ln f(x, \alpha)=-n \cdot \frac{\partial^{2}}{\partial \alpha^{2}} \cdot \ln \Gamma(\alpha) \\
& \text { Here, I }(\alpha)=E\left(-\frac{\partial^{2}}{\partial \alpha^{2}} \ln f(x, \alpha)\right)=n_{1} \frac{\partial^{2}}{\partial \alpha^{2}} \ln \Gamma(\alpha) .
\end{aligned}
$$

An UE which attains CRLB, if exists, is given by,

$$
\begin{aligned}
& T= \psi(\alpha) \pm \frac{\psi^{\prime}(\alpha)}{I(\alpha)} \cdot \frac{\partial}{\partial \alpha} \ln f(x, \alpha) \\
&= \frac{\partial}{\partial \alpha} \ln \Gamma(\alpha) \pm \frac{\frac{\partial^{2}}{\partial \alpha^{2}} \ln \Gamma(\alpha)}{n \cdot \frac{\partial^{2}}{\partial \alpha^{2}} \ln \Gamma(\alpha)}\left\{\begin{array}{r}
-n \frac{\partial}{\partial \alpha} \ln \Gamma(\alpha) \\
+\sum \ln x_{i}
\end{array}\right\} \\
&= \frac{\partial}{\partial \alpha} \ln \Gamma(\alpha) \pm\left\{-\frac{\partial}{\partial \alpha} \ln \Gamma(\alpha)+\frac{1}{n} \ln x_{i}\right\} \\
&= \frac{1}{n} \sum_{i=1}^{n} \ln X_{i}, \text { taking +ve sign only. } \\
&= \ln G, \text { where } G=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \text { is the } G M \text { of } \\
& \quad X_{1}, X_{2}, \cdots, X_{n} .
\end{aligned}
$$

Clearly, $\operatorname{rar}(T)=$ CRLB $=\frac{\left\{\psi^{\prime}(\alpha)\right\}^{2}}{I(\alpha)}$

$$
\begin{aligned}
& =\frac{\left\{\frac{\partial^{2}}{\partial \alpha^{2}} \ln \Gamma(\alpha)\right\}^{2}}{n \cdot \frac{\partial^{2}}{\partial \alpha^{2}} \ln \Gamma(\alpha)} \\
& =\frac{\frac{\partial^{2}}{\partial \alpha^{2}} \ln \Gamma(\alpha)}{n}
\end{aligned}
$$

Use of CR inequality in finding UMVUE:-
If a MVBUE T exists, then it is given by,

$$
\begin{equation*}
T=\Psi(\theta) \pm \frac{\psi^{\prime}(\theta)}{I(\theta)} \cdot \frac{\partial}{\partial \theta} \ln f(x ; \theta) \tag{*}
\end{equation*}
$$

Note that, the RHS of (*) can be competed once the dist : $f(x, \theta), \theta \in \Omega$ and $\psi(\theta)$ are specified and we can immediately check whether or not \exists a statistic T satisfying (*).

If RHS of (*) determines a statistic T, then T is MVBUE as well as UMVUE of $\Psi(\theta)$.
The above theory presents a complete solution to the problem of finding UMVOE, in the case of family of distrop satisfying the regularity conditions and (*) for some statistic T, then T is the UMVUE of $\Psi(\theta)$.

EX.(8):- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a res. from the PMF

$$
P[X=0]=1-\frac{\theta}{2}, \quad P[X=1]=\frac{1}{2}, P[X=2]=\frac{\theta}{2} ; 0<0<1
$$

Find the CRLB for θ.
Ex. (9):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N(\mu, 1)$ and $\overline{\psi(m)}=\mu^{2}$.
(a) δ, T, the lower bound of the variance of an $U E$ of μ^{2} from $C R$ inequality is $\frac{4 \mu^{2}}{m}$.
(b) S.T. $T=\bar{x}^{2}-\frac{\hbar}{\hbar}$ is a UMVUE of $\psi(\mu)=\mu^{2}$ with variance $\left(\frac{4 \mu^{2}}{n}+\frac{2}{n^{2}}\right)$
compare (a) \& (b) and comment.
Ex.(10):- Let $X_{1}, x_{2}, \ldots, x_{n}$ be a r. s. from expdistr. . with mean $1 / \alpha$.
(a) S.T. $T=\frac{n-1}{n \bar{x}}$ is the UMVUE of α with variance $\frac{\alpha^{2}}{n-2}$.
(b) S.T. the CRLB is $\frac{\alpha^{2}}{n}$.

Compare (a) and (b) and comment.

Method of Finding Estimators: M
(A) Maximum Likelihood Estimators:

To introduce the method of maximum likelihood estimation, consider a simple estimation problem:
suppose an urn contains a number of black and cohite balls and it is known that the ratio of the number is $3: 1$ but it is unknown eohether black or white ball are move numerous. The probability of drawing a black is either $\frac{1}{4}$ or $\frac{3}{4}$. In 3 balls are draco WR, the distr of the number of black balls (x) is given by $f(x ; p)=\binom{3}{x} p^{x_{q}}{ }^{3-x}, x=0(1) 3$, where $p \in \Omega=\left\{\frac{1}{4}, \frac{3}{4}\right\}$.

To estimate p, based on an observed value x of x. The possible outcomes and their probabilities are given below:

outcome	0	1	2	3
$f\left(x ; \frac{1}{4}\right)$	$\frac{27}{64}$	$\frac{27}{64}$	$\frac{9}{64}$	$\frac{1}{64}$
$f\left(x ; \frac{3}{4}\right)$	$\frac{1}{64}$	$\frac{9}{64}$	$\frac{27}{64}$	$\frac{27}{64}$

If $x=0$ is observed, then a sample with $x=0$ is more likely (in the sense of having larger probability) to arise from a poon. with $p=\frac{1}{4}$ than from one with $p=\frac{3}{4}$ and conseaventi, $\hat{p}=\frac{1}{4}$ would be preferred over $\hat{p}=\frac{3}{4}$.
Hence, the estimate may be defined as:

$$
p^{\prime}(x)= \begin{cases}1 / 4 & , x=0,1 \\ 3 / 4, & x=2,3\end{cases}
$$

and then the estimator is $\hat{p}(x)$. The estimator $\hat{p}(x)$ selects the value of p, say $p^{\prime}(x)$ such that $f\left(x, p^{n}\right)>f\left(x, p^{\prime}\right)$, where, p^{\prime} is an alternative value of $p \forall x$.
Likelihood Function: - Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be an observed random sample from a poplin with PDF On PMF $f(x ; \theta), \theta \in \Omega$. Then, for given $\left(x_{1}, x_{2}, \ldots, x_{n}\right), L(x ; \theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$, as a function of θ, is called the Likelihood function $i=1$ or the Likelihood of the sample $\underset{\sim}{x}$.
[When X is discrete R.V.R, the larger the prob. $P[X=x ; \theta]$ ora $(x ; \theta)$, the more likely the value e x to occur. Hence, $f(x ; \theta)$, for given x, gives the likeliness of the value x, for different $\theta \in \Omega$.

When x is continuous RV with PDF $f(x ; \theta)$, then $P\left[x-h / 2<x<x+\frac{h}{2}\right] \simeq f(x ; \theta) \cdot h$ for small $h>0$. Therefore, $f(x ; \theta)$ for given x, represents the likeliness of the rale x. Note that, the Likelihood function $f(x ; \theta)$ is a point function, it canst be a probability function or set function.]

- Maximum Likelihood Estimators:-

If a sample $x=\left(x_{1}, \ldots, x_{n}\right)$ is observed from a poplin, cos believe that the sample is "most likely to occur". When a sample x is observed, we want to find the value of $\theta \in e$ which maximizes the likelihood function $L(x ; \theta)$ on $L(\theta / x)$.
The value of $\theta \in \Omega$, conch maximizes likelihood function to $(\theta) x)$, a function of x, say $\hat{\theta}(\underset{\sim}{x})$ if it exists. Then the random x variable $\hat{\theta}(\underset{\sim}{X})$ is called the Maximum Likelihood Estimation (MLE) of θ.
Ex.(1):- Let $X_{1}, x_{2} \ldots, x_{n}$ be arsis. from $\operatorname{Bin}(1, p) ; p \in(0,1)=\Omega$, Find MLE of p.
Solution:- The Likelihood function is

$$
L(p / x)= \begin{cases}p^{\sum_{i=1}^{n} x_{i}(1-p)^{n-\sum_{i=1}^{n} x_{i}}} ; & ; x i=0,1, \forall i=1(1) n . \\ 0 & ; \text { ow }\end{cases}
$$

cohere, $p \in \Omega=(0,1)$.
when $\sum_{i=1}^{n} x_{i} \neq 0$ or $\neq n$, then

$$
\ln L(p / x)=\left(\sum x_{i}\right) \ln p+\left(n-\sum x_{i}\right) \ln (1-p)
$$

and $\frac{\partial}{\partial p} \ln L=\frac{\sum x_{i}}{p}+\frac{n-\sum x_{i}}{(1-p)}(-1)$

$$
\begin{aligned}
& =\frac{n \bar{x}}{p}+\frac{n(1-\bar{x})}{(1-p)} \\
& =\frac{n(\bar{x}-p)}{p(1-p)}\{>0 \text { if } p<\bar{x} \\
& <0 \text { if } p>\bar{x}
\end{aligned}
$$

Hence, $L(p / x)$ first increases, then achives its maximum at $p=\bar{x}$ and finally decreases.
Hence $L(p / x)$ is maximum at $p=\bar{x}$.
When $\sum_{i=1}^{n} x_{i}=0$ ire. $x_{\sim}=0$, then
$L(p \mid \underset{\sim}{x}=0)=(1-p)^{n} \not t p$ and it is maximum at When $\sum_{i=1}^{n} x_{i}=n$, ire, $x=0 \notin \Omega=(0,1)$.
$L(p / x=1)=p^{n} \uparrow p$ and it is maximum at $p=1 \notin \Omega$.
Hence, when $\sum_{i=1}^{n} x_{i} \neq 0,0 r, \neq n$, the MLE of $p \in \Omega=(0, D)$ is ${ }_{n} \hat{p}=\bar{x}$; ow the MLE of $p \in(0,1)$ does not exist cohen $\sum_{i=1}^{n} x_{i}=0$ or n.

Remark: - Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a res. from Bernoulli $(p), 0<p<1$. If $\left(x_{1}, \ldots, x_{n}\right)=(0,0, \ldots, 0)$ or $(1,1, \ldots, 1)$ then MLE of p does not exist.
Ex.(2):- Let x_{1}, \ldots, x_{n} be. a bros. from $P(\lambda), \lambda>0$. Find the MLE of λ.
Solution: - Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $P(\lambda), \lambda>0$.

$$
\begin{aligned}
& \text { The Likelihood function is } \\
& L\left(\lambda / \frac{x}{n}\right)=e^{-n \lambda} \cdot \frac{\lambda \sum_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}} ; x_{i}=0,1,2, \ldots ; \lambda>0 \\
& \ln L=\ln L(\lambda / x)=-n \lambda+\sum_{i=1}^{n} x_{i}{ }_{i}, \ln \lambda-\sum_{i=1}^{n} \ln x_{i} \\
& \frac{\partial}{\partial \lambda} \ln L=-n+\frac{\sum x l}{\lambda}=-n+\frac{n}{\lambda} \cdot \bar{x}=\frac{-n \lambda+n \bar{x}}{\lambda}=\frac{n}{\lambda}(\bar{x}-\lambda) \\
& \left.=\frac{n}{\lambda}(\bar{x}-\lambda)\right\}>0 \text { if } \bar{x}>\lambda
\end{aligned}
$$

Hence, $L(\lambda(\underset{\sim}{x})$ first increases, then achives it maximum point at $\bar{x}=\lambda$ and then decreases.

Hence, $L(\lambda / x)$ is maximum at $\lambda=\bar{x}$.

Ex.(3):- [An example of an MLE cohich is not unbiased]
Let X_{1}, \ldots, x_{n} be a rios. from $V(0, \theta), \theta>0$. Find MLE of θ. show that it is not unbiased.
Solution:- The likelihood function is

$$
\begin{aligned}
L(\theta / \underset{\sim}{x}) & = \begin{cases}\frac{1}{\theta^{n}}, \text { if } 0 \leq x_{i} \leq \theta, i=1(1)^{n} \\
0, \text { ow }\end{cases} \\
& = \begin{cases}\frac{1}{\theta^{n}} \text { if } 0 \leq x_{(1)} \leq x_{(n)} \leq \theta \\
0, \text { ow }\end{cases}
\end{aligned}
$$

For $\theta \geqslant x(n), L(\theta / x)=\frac{1}{\theta^{n}}$ is a decreasing function of θ.
Hence, $L(\theta / \underset{\sim}{x})$ is maximum if $\theta\left(\geqslant x_{(n)}\right)$ is minimum if $\theta=x_{(n)}$. Hence, the MLE of θ is $\hat{\theta}=x_{(n)}$.
Note that, $\operatorname{MLE}(\hat{\theta})=x_{(n)}$ is consistent, complete sufficient but not unbiased.
Note that, for $X(n) ; f\left(x_{(n)}\right)=\frac{n x^{n-1}}{\theta^{n}}$ and $E\left[X_{(n)}\right]=\int_{0}^{\theta} \frac{n x^{n}}{\theta^{n}} d x=\frac{n \theta}{n+1}$, i.e. $E(X(n))=\frac{n \theta}{n+1} \Rightarrow E\left(\frac{n+1}{n} \hat{\theta}\right)=\theta$
\Rightarrow MLE $\hat{\theta}$ is not unbiased, but $\frac{n+1}{n} \hat{\theta}$ is unbiased for θ.

Ex,(4):- Leet x_{1}, \ldots, x_{n} be aris.from $U(\alpha, \beta)$. Find The MLE of (α, β).
Solution:- The Likelihood function is

$$
\begin{aligned}
L(\alpha, \beta \mid x) & = \begin{cases}\frac{1}{(\beta-\alpha)^{n}}, & \alpha \leq x_{i} \leq \beta . \\
0, & \text { w }\end{cases} \\
& = \begin{cases}\frac{1}{(\beta-\alpha)^{n}}, & \alpha \leq x_{(1)} \leq x(n) \leq \beta \\
0, & \text { ow }\end{cases}
\end{aligned}
$$

Now, $L(\alpha, \beta / \underset{\sim}{x})$ is maximumiff
$L(\alpha, \beta \mid x)=\frac{1}{(\beta-\alpha)^{n}}$ is maximum subject to the restriction
$\alpha \leq x_{(1)} \leq x_{(n)} \leq \beta$, i,e. if the length $(\beta-\alpha)$ is minimum subject to $\alpha \leq x_{(1)}$ and $\beta \geqslant x_{(n)}$.
$\left[\begin{array}{l}\text { Mote that, } \alpha \leq x_{(1)}, \beta \geqslant x_{(n)} \Rightarrow \beta-\alpha \geqslant x_{(n)}-x_{(1)} \\ \Rightarrow(\beta-\alpha) \text { attains its minimum when } \beta=x_{(n)} \& \alpha=x_{(1)} .\end{array}\right]$
ie. if $\beta=x_{(n)}, \alpha=x_{(1)}$.
Hence, the MLE of α, β is $(\hat{\alpha}, \hat{\beta})=\left(x_{(1)}, x_{(n)}\right)$.
Ex.(5):- [An example of MLE conch is not unique]
Let x_{1}, \ldots, x_{n} be arbs. from $U\left(\theta-\frac{1}{2}, \theta+\frac{1}{2}\right)$. Find the MLE of θ.
Solution:- The likelihood function of the sample $x_{a}=\left(x_{1}, \ldots, x_{n}\right)$ is $L(\theta / \underset{\sim}{x})= \begin{cases}1 & \text { if } \theta-1 / 2 \leq x_{(1)} \leq x_{(n)} \leq \theta+\frac{1}{2} \\ 0, & \text { ow }\end{cases}$
Clearly, $L(\theta / x)$ takes only two values 1 and 0 .
Hence, $L(\theta / \underset{\sim}{x})$ is maximum
if $L(\theta / \underset{\sim}{\alpha})=1$ iff $\theta-\frac{1}{2} \leq x_{(1)} \leq x(n) \leq \theta+\frac{1}{2}$
if $x_{(n)}-\frac{1}{2} \leq \theta \leq x_{(1)}+\frac{1}{2}$ \qquad
Hence, any statistic $T(X)$ such that
, $X_{(n)}-\frac{1}{2} \leq T(\underset{\sim}{X}) \leq X_{(1)}+\frac{1}{2}$, is an MLE of θ.
Clearly, for $0 \leq \alpha \leq 1$,

$$
T_{\alpha}(\underset{\sim}{x})=\alpha\left(X_{(n)}-\frac{1}{2}\right)+(1-\alpha) \cdot\left(X_{(1)+\frac{1}{2}}\right)
$$

lies in the interval $(\mathbb{*})$, hence, for each $\alpha \in[0,1]$ $T_{\alpha}(\underset{\sim}{x})$ is an MLE of θ.
Hence, MLE of θ is not unique.

Ex. (6):- Let x_{1}, \ldots, x_{n} be a wis. from $\cup(-\theta, \theta) ; \theta>0$. Find the MLE of θ. Is it unique?
Solution:- $x_{i} \stackrel{i i d}{\sim} u(-\theta, \theta), i=1(1)^{n}$

$$
\begin{aligned}
& \Rightarrow Y_{i}=\left|X_{i}\right| \stackrel{i i d}{\sim} \cup(0, \theta), i=1(1) n \\
& \Rightarrow Y_{1}, \ldots, Y_{n} \text { is a } r . s . \text { from } \cup(0, \theta) .
\end{aligned}
$$

Ex.(7):- One observation is taken on a discrete riv. with RVX with PMF $f(x ; \theta)$; where $\theta \in[1,2,3]$, Find the MLE of θ.

x	0	1	2	3	4
$f(x ; 1)$	$1 / 3$	$1 / 3$	0	$1 / 6$	$1 / 6$
$f(x ; 2)$	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$	0
$f(x ; 3)$	0	0	$1 / 4$	$1 / 2$	$1 / 4$

Solution:- For each value of x, the MLE $(\hat{\theta})$ in the value of θ that maximizes $f(x ; \theta)$. These values are given in the following table:

x	0	1	2	3	4
$\hat{\theta}$	1	1	$20 r 3$	3	3

When $x=2$ is observed, $f(x ; 2)=f(x ; 3)$ are both maxima, so both $\hat{\theta}=2$ or $\hat{\theta}=3$ are MEs of $\hat{\theta}$.

Ex, (8):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from one of the follocoing too PDFS

$$
\begin{aligned}
& \text { If } \theta=0, f(x / \theta)= \begin{cases}1, & 0<x<1 \\
0, & 0 w\end{cases} \\
& \text { If } \theta=1, f(x / \theta)= \begin{cases}\frac{1}{2 \sqrt{x}}, & 0<x<1 \\
0, & \text { ow }\end{cases}
\end{aligned}
$$

Find the MLE of θ.
Solution:- The Likelihood function is

$$
L(\theta / x)=\prod_{i=1}^{n} f\left(x_{i} / \theta\right), \theta \in \Omega=(0,1)
$$

When $\theta=0, L(\theta / x)= \begin{cases}1 & \text { if } 0<x_{i}<1 \\ 0 & \text { ow }\end{cases}$
When $\theta=1, L(\theta / x)=\left\{\begin{array}{l}\frac{1}{2^{n} \sqrt{\prod_{i=1}^{n} x_{i}}}, 0<x_{i}<1, i=1(1) n \\ 0,0 w\end{array}\right.$
Now, $\quad \frac{L(\theta=1 / \underset{\sim}{x})}{L(\theta=0 / \underset{\sim}{x})} \geqslant 1$
iff $\frac{1}{\sqrt{4^{n} G^{n}}} \geqslant 1$, where $G=\left(\prod_{i=1}^{n} x i\right)^{1 / n}$
if $\quad 4 G \leqslant 1$ iff $G \leqslant \frac{1}{4}$
Hence MLE of θ is $\hat{\theta}=\left\{\begin{array}{lll}1 & \text { if } & G<\frac{1}{4} \\ 0 & \text { if } G>\frac{1}{4} \\ 0,1 & \text { if } G=\frac{1}{4}\end{array}\right.$
Remark:- (1) When Ω is an open interval of R and $f(x ; \theta)$ or $L(\theta / \underset{\sim}{x})$ is differentiable $\operatorname{com} . t . \theta$, the MLE is a solution of $\frac{\delta}{\delta \theta} L(\theta / \underset{\sim}{x})=0 \Leftrightarrow \frac{\delta}{\delta \theta} \ln L(\theta / x)=0$
This is known as likelihood equation.
If Ω is an open interval of R, there may still be many problems. Often, the likelihood equation has more than one roots or $L(\theta / \underset{\sim}{x})$ is not differentiable everywhere in Ω, the MLE $(\hat{\theta})$ is a terminated point, then the differentiation method of maximization is not applicable.
(2) When more than one parameter are involved in $f\left(x ; \theta_{\sim}\right), \underset{\sim}{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right) \in \Omega \leqslant R^{k}$. If Ω is an open region of R^{K}, then the MLE's of θ_{i} 's are the solution of

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \theta_{i}}=0 \forall i=1(1) k . \text { and } \\
& \left(\left(\frac{\partial^{2} \operatorname{lnL}}{\partial \theta_{i} \partial \theta_{j}}\right)\right)_{\underset{\sim}{\theta}=\hat{\theta}} \text { is n.d. }
\end{aligned}
$$

Ex.(9):- Let X_{1}, \ldots, x_{n} be a res. from $N\left(\mu, \sigma^{2}\right), \mu \in \varepsilon, \sigma>0$ Find the MLE of $\left(\mu, \sigma^{2}\right)$.
Solution:- Likelihood function:

$$
\begin{aligned}
& \text { Solution:- Likelihood function: } \\
& L\left(\mu, \sigma^{2} / \underset{\sim}{x}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} ; x_{i \in \mathbb{R}} \\
& \Rightarrow \ln L\left(\mu, \sigma^{2} / x\right)=\text { constant }\left(-\frac{n}{2} \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2}\right) \\
& 0=\frac{\partial \ln L}{\partial \mu}=-\frac{1}{2 \sigma^{2}} \sum 2\left(x_{i}-\mu\right)(-1)=\frac{\sum x_{i}}{\sigma^{2}}-\frac{n \mu}{\sigma^{2}} \\
& 0=\frac{\delta \ln L}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\frac{\sum\left(x_{i}-\mu\right)^{2}}{2 \sigma^{4}} \\
& \Rightarrow\left\{\begin{array}{l}
\hat{\mu}=\bar{x} \\
\hat{\sigma}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}, \text { the likelihood function has a } \\
\text { unique solution. }
\end{array}\right.
\end{aligned}
$$

Note that, the matrix of second order partial derivatives at

$$
\begin{aligned}
& \text { Note that, the matrix of second order } \\
& \left(\begin{array}{ll}
\left.\hat{\mu}^{2} \hat{\sigma}^{2}\right) \text { is } & \left(\begin{array}{cc}
\frac{\delta^{2} \ln L}{\partial \mu^{2}} & \frac{\delta^{2} \ln L}{\delta \mu \delta \sigma^{2}} \\
\frac{\delta^{2} \ln L}{\delta \sigma^{2} \delta \mu} & \frac{\delta^{2} \ln L}{\delta\left(\sigma^{2}\right)^{2}}
\end{array}\right)\left(\mu, \sigma^{2}\right)=\left(\hat{\mu}, \hat{\sigma}^{2}\right) \\
& =\left(\begin{array}{cc}
-\frac{n}{\hat{\sigma}^{2}} & 0 \\
0 & -\frac{n}{2 \hat{\sigma}^{4}}
\end{array}\right) \text { is negative definite (nad.). }
\end{array}\right.
\end{aligned}
$$

Hence, $L\left(\mu, \sigma^{2} / \underset{\sim}{x}\right)_{0}$ is maximum at $\left(\mu, \sigma^{2}\right)=\left(\hat{\mu}, \hat{\sigma}^{2}\right)$.
Therefore, the MLE of $\left(\mu, \sigma^{2}\right)$ is

$$
\begin{aligned}
& \text { Therefore, the MLE of } \\
& \left(\hat{\mu}, \hat{\sigma}^{2}\right)=\left(\bar{x}, s^{2}\right) \text {, cohere } n s^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \text {. }
\end{aligned}
$$

Ex.(10):- Let x_{1}, \ldots, x_{n} be ar.s.from $f(x ; \mu, \sigma)=\frac{1}{2 \sigma} e^{-\frac{|x-\mu|}{\sigma} ; x \in R \text {, }}$ cohere $\mu \in R, \sigma>0$. Find the MLE of μ and σ.
Solution:-
The \log-likelihood function is

$$
\ln L(\mu, \sigma \mid x)=-n \ln 2-n \ln \sigma-\frac{1}{\sigma} \Sigma\left|x_{i}-\mu\right| ; \mu \in R, \sigma>0
$$

[As $\sum\left|x_{i}-\mu\right|$ is not differentiable writ. μ, hence the derivative technique is not applicable for maximizing $\ln L$ co.n.t. $\mu]$

We adopt too stage maximization :-
First fix σ, then maximize in L for variation in μ.
Forfixed $\sigma, \operatorname{|nL}$ is maximum, iff, $\sum\left|x_{i}-\mu\right|$ is minimum
if, $\mu=\tilde{x}_{2}$ = the sample median

$$
=\hat{\mu}, \text { say. }
$$

Now, we maximize $\ln L(\mu, \sigma / x)=-n \ln 2-n \ln \sigma-\frac{1}{\sigma} \bar{\sigma}\left|x_{i}-\hat{\mu}\right|$,
Note that $\frac{\delta}{\delta \sigma} \ln L(\hat{\mu}, \sigma / \underset{\sim}{x})$ w.r.t.f

$$
\begin{aligned}
& =-\frac{n}{\sigma}+\frac{1}{\sigma^{2}} \sum\left|x_{i}-\hat{\mu}\right| \\
& =-\frac{n}{\sigma^{2}}\left\{\sigma-\frac{1}{n} \sum\left|x_{i}-\hat{\mu}\right|\right\} \\
& >0 \text {, if } \sigma<\frac{1}{n} \sum\left|x_{i}-\hat{\mu}\right| \\
& <0, \text { if } \sigma>\frac{1}{n} \sum\left|x_{i}-\hat{\mu}\right|
\end{aligned}, ~ \$
$$

By 1 st derivative test, $\ln L(\hat{\mu}, \delta \mid x)$ is maximum at $\hat{\sigma}=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\hat{\mu}\right|$.
Hence, the MLE of μ and P are $\hat{\mu}=\tilde{x}, \hat{0}=\frac{1}{n} \sum\left|x_{i}-\tilde{x}\right|$.
Ex.(II):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be anir.s. from

$$
f(x ; \mu, \theta)= \begin{cases}\frac{1}{\sigma} e^{-(x-\mu) / \sigma} & ; \text { if } x>\mu \\ 0 & \text { ow }\end{cases}
$$

where, $\mu \in R, \sigma>0$. Find the MLE of (i) μ and σ
(ii) μ cohen $\sigma=\mu(>0)$.

Solution:[JAM 2005]
(i) The likelihood function is $\quad \sum\left(x_{i}-\mu\right)$

$$
\begin{aligned}
& L(\mu, \sigma \mid x)= \begin{cases}\frac{1}{\sigma^{n}} \cdot e^{-\frac{\sum\left(x_{i}-\mu\right)}{\sigma}} & ; \text { if } x_{(1)} \geqslant \mu \\
0 & ; \text { ow } \\
\mu \in R, \sigma>0 .\end{cases}
\end{aligned}
$$

We adopt two stage maximization.
First fix σ, then maximize $L(\mu, \nabla / \underset{\sim}{x})$ w.r.t. μ.
For fixed $\sigma, L\left(\sum^{-}, \sigma / x\right)$ is maximum
iff $\sum\left(x_{i}-\mu\right)$ is minimum subject to $\mu \leq x_{(1)}$
iff μ is as large as possible subject to the restriction $\mu \leq x_{(1)}$.
iff $\mu=x_{(1)}=\hat{\mu}$ (say)
Now we shall maximize $L(\mu, \sigma / \underset{\sim}{x})$ w.n.t. σ.
Now, $\ln L(\hat{\mu}, \sigma / \underset{\sim}{x})=-n \ln \sigma-\frac{\sum\left(x_{i}-\hat{\mu}\right)}{\sigma}$.

Note that, $\frac{\delta}{\delta \sigma} \ln L(\hat{\mu}, \sigma / \underset{\sim}{x})=-\frac{n}{\sigma}+\frac{1}{\sigma^{2}} \sum\left(x_{i}-\hat{\mu}\right)$

$$
\begin{aligned}
& =-\frac{n}{\sigma^{2}}\left\{\sigma-\left(\bar{x}-x_{(1)}\right)\right\} \\
& \begin{cases}>0 & \text { if } \sigma<\bar{x}-x_{(1)} \\
<0 & \text { if } \sigma>\bar{x}-x_{(1)}\end{cases}
\end{aligned}
$$

Hence, $L(\hat{\mu}, \sigma / \underset{\sim}{x})$ is maximum at $\sigma=\bar{x}-x_{(1)}=\hat{\sigma}_{n}$.
Therefore, the MLE\& of μ and σ are $\hat{\mu}=X_{(1)}$ and $\hat{\sigma}=\bar{x}-X_{(1)}$.
ii) When $\sigma=\mu>0$

$$
\begin{aligned}
& \text { When } \sigma=\mu>0 \\
& L(\mu / x)= \begin{cases}\frac{1}{\mu^{n}} e^{-\frac{\sum(x i-\mu)}{\mu}} ; x(1) \geqslant \mu \\
0 & ; 0 w\end{cases}
\end{aligned}
$$

$L(\mu / \underset{\sim}{x})$ is maximum if
For $\mu \leq x_{(1)}$

$$
\begin{aligned}
& \begin{aligned}
& \frac{\delta}{\delta u} \ln L=\frac{\delta}{\delta u}\left\{-n \ln \mu-\frac{1}{\mu} \sum\left(x_{i}-\mu\right)\right\} \\
&=-\frac{n}{\mu^{2}}(\mu-\bar{x}) \\
&>0 \text { if } \mu<\bar{x} \\
&\{0 \text { if } \mu>\bar{x}
\end{aligned} \\
& \Rightarrow L(\mu / x) \text { is maximum at } \mu=\bar{x} \\
& \Rightarrow \text { from the graph for } \mu \leq x_{(1)}, L(\mu / x) \\
& \text { is maximum at } \mu=x_{(1)}
\end{aligned}
$$

Therefore, $\hat{\mu}=x_{(1)}$ is the MLE of μ. [graph of $\left.\bar{x}(\mu / x)\right]$
Ex.(2):- Let $x_{1}, \ldots ., x_{n}$ be an res. from $U\left(\theta_{1}-\theta_{2}, \theta_{1}+\theta_{2}\right)$. Find the MLES of θ_{1} and θ_{2}.
Solution:-
Hints:-

$$
\begin{aligned}
& \theta_{1}+\theta_{2}=x_{(n)} \\
& \theta_{1}-\theta_{2}=x_{(1)} \\
& \Rightarrow \theta_{1}=\frac{x_{(1)}+x_{(n)}}{2} \\
& \theta_{2}=\frac{x_{(n)}-x_{(1)}}{2}
\end{aligned}
$$

Ex. (13):- (Q) Let $x \sim \operatorname{Bin}(1, p) ; p \in[1 / 4,3 / 4]$. Find the MLE of p. Explain the position of MLE w.r.t. the trivial estimation $\delta(x)=1 / 2$, in terms of MSE.
(b) Let x_{1}, \ldots, x_{n} be a r, f. from $B(1, p) ; p \in[1 / 4,3 / 4]$. Find the MLE of p.
Solution:- (a) $L(p \mid \underset{\sim}{x})=p^{x}(1-p)^{1-x}$, if $x=0,1$.

$$
\left.\begin{array}{rl}
\frac{\delta}{\delta p} \ln L(p \mid x) & =\frac{x}{p}+\frac{1-x}{1-p}(-1) \\
& \left.=\frac{x-p}{p(1-p)}\right\}>0
\end{array}\right) \text { if } p<x .8<0 \text { if } p>x .
$$

$\therefore L(p \mid \underset{\sim}{x})$ is maximum at $p=x$.
But $x=0,1$, a value that does not lies in $\Omega=\left[\frac{1}{4}, \frac{3}{4}\right]$.
Note that, $L(p \mid \underset{\sim}{x})= \begin{cases}1-p, & \text { if } x=0 \\ p, & \text { if } x=1\end{cases}$
When $x=0, L(p \mid x)$ is maximum,
iff $1-p$ is max, when $p \in\left[\frac{1}{4}, \frac{3}{4}\right]$
iff $p=1 / 4$.
When $x=1, L(p \mid \underset{\sim}{x})$ is maximum, iff p is max., $p \in\left[\frac{1}{4}, \frac{3}{4}\right]$

$$
\angle \text { MLE of } p \text { is } p^{1}= \begin{cases}\frac{1}{4}, & \text { if } x=0 \\ \frac{3}{4}, & \text { if } x=1\end{cases}
$$

Note that, $E(\hat{p}) \neq p$ and $\operatorname{MSE}(\hat{p})=E(\hat{p}-p)^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{4}-p\right)^{2} \cdot p[x=0]+\left(\frac{3}{4}-p\right)^{2} \cdot p[x=1] \\
& =\left(\frac{1}{4}-p\right)^{2}(1-p)+\left(\frac{3}{4}-p\right)^{2} \cdot p \\
& =1 / 16
\end{aligned}
$$

Now, MSE of $\delta(x)=E[\delta(x)-p\}^{2} \quad\left[\because \frac{1}{4} \leq p \leq \frac{3}{4}\right.$

$$
\begin{aligned}
& =E\left(\frac{1}{2}-p\right)^{2} \\
& \leq \frac{1}{16}
\end{aligned}
$$

Hence, $\operatorname{MSE}\{\delta(x)\} \leq \operatorname{MSE}(\hat{p})$.
In terms of MSE, the MSE is worse than the trivial estimator.
(b) The likelihood function:

$$
L(p \mid \underset{\sim}{x})=\left\{\begin{array}{cl}
p^{\sum x_{i}(1-p)^{n-\sum x_{i}}} & , \text { if } x_{i}=0,1, \\
0 & , \text { ow }
\end{array}\right.
$$

cohere, $p \in\left[\frac{1}{4}, \frac{3}{4}\right]$.
Note that, $\left.\frac{\delta}{\delta p} \ln L(p \mid \underset{\sim}{x})=\frac{n(\bar{x}-p)}{p(1-p)}\right\}>0$ if $p<\bar{x}$
Hence, $L(p \mid \underset{\sim}{x})$ first increases, then achives its maximum at $p=\bar{x}$ and finally decreases.
Case I:- Let, $\frac{1}{4} \leq \bar{x} \leq \frac{3}{4}$
For $p \in\left[\frac{1}{4}, \frac{3}{4}\right], L(p \mid \underset{\sim}{x})$ is max. at $p=\bar{x}$
Hence, the MLE of p is $\hat{p}=\bar{x}$.

Case II:-
Let, $\bar{x}<\frac{1}{4}$
Heme, the MLE of p is $p^{n}=\frac{1}{4}$

Case II:- Leet $\bar{x}>3 / 4$
Then the MLE of p is $p^{\hat{1}}=\frac{3}{4}$

- Hence, the MLE of p is

$$
\hat{p}= \begin{cases}\frac{1}{4} & \text { if } \bar{x}<\frac{1}{4} \\ \frac{1}{x} & \text { if } \frac{1}{4} \leqslant \bar{x} \leq \frac{3}{4} \\ \frac{3}{4} & \text { if } \bar{x}>\frac{3}{4}\end{cases}
$$

EX. (14):- Let X_{1}, \ldots, X_{n} be a r.s.from $N(\mu, 1), \mu \geqslant 0$. Find the MLE of μ.
Solution:-

$$
\begin{aligned}
& \therefore-L(\mu / \underset{\sim}{x})=\frac{1}{(2 \pi)^{n / 2}} e^{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} \text {; when } \\
& \left.\frac{\delta}{\delta \mu} \ln L(\mu / \underset{\sim}{x})=n(\bar{x}-\mu)\right\}>0 \text { if } \mu<\bar{x} \\
& <0 \text { if } \mu>\bar{x}
\end{aligned}
$$

Hence, $L(\mu / x)$ first increases, then achieve its maximum at $\mu=\bar{x}$ and finally decreases.

Case I:- $\bar{x} \geqslant 0$
Hence the MLE of μ is

$$
\hat{\mu}=\bar{x}
$$

Case II:- $\bar{x}<0$

Then the MLE of μ is ' 0 '.

- Hence the MLE of μ is

$$
\hat{\mu}= \begin{cases}\bar{x}, & \text { if } \bar{x} \geqslant 0 \\ 0, & \text { if } \bar{x}<0\end{cases}
$$

Ex. (15): -Leet X_{1}, \ldots, x_{n} be arms. from \bar{x} the $P M F$ $P[X=0]=(1-\theta) / 2, P[X=1]=1 / 2, P[X=2]=\theta / 2 ; 0<\theta<1$, with atleast one value with 0 and 2. Find the MLE of θ.

Properties of
MLE: \sim
We shall consider here some properties of MLE for samples of small size n and some asymptotic behavior of MLE for large n will be investigated. The importance of the method is clearly shown by the following properties:
(I) If a non-trivial sufficient statistic T of θ exists, any solution of the likelihood equation will be a function of T on the MLE, if exists, will be a function of T.
Proof:- For a nontrivial sufficient statistic T,
we have $L(x ; \theta)=g(T(x), \theta) \cdot h(x)$; where, $h(x)$ is independent of θ, by factorization criterion.
Then, $\ln L(x ; \theta)=\ln g(T(x), \theta)+\ln h(x)$
Now, the likelihood equation is

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \theta} \ln L(x ; \theta) \\
\Rightarrow 0 & =\frac{\partial}{\partial \theta} \ln g(T(\underset{\sim}{x}), \theta)+0
\end{aligned}
$$

and the function $g(T(x), \theta)$ depends only on $T(x)$ and θ.
Hence, any solution of the likelihood equation

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \theta} \ln L(\underset{\sim}{x}, \theta) \\
& =\frac{\partial}{\partial \theta} \ln g(T(\underset{\sim}{x}), \theta) \text { will be a function of } T .
\end{aligned}
$$

[Maximizing $\ln L(x ; \theta)$ wort, θ is equivalent to
maximizing $\ln g(T(x), \theta)$ w.r.t. . Here, $g(T(x), \theta)$
depends only on θ and $T(\underset{\sim}{x})$. The MLE of θ is the value of θ for which $\ln L(x ; \theta)$ or $\ln g(T(x), \theta)$ is maximum. clearly, the MLE of θ coill be a function of T.] (II) Under the regularity condition in $C R$ inequality, if Proof:- If MVBUE 1 of θ exists, then T athens CRLB.
$\Leftrightarrow \frac{\operatorname{\partial nL} L(\underset{\sim}{x} ; \theta)}{\partial \theta}=\Lambda(\theta)\{T-\theta\}$
The likelihood equation is

$$
\begin{aligned}
& \frac{\partial}{\partial \theta} \ln L(x ; \theta)=0 \\
\Rightarrow & \Lambda(\theta)\{T-\theta\}=0 \\
\Rightarrow & \theta=T \text { is the unique solution. }
\end{aligned}
$$

Note that, $\frac{\partial^{2}}{\partial \theta^{2}} \ln L(x ; \theta)$
$=\Lambda(\theta) \cdot(-1)+(T-\theta) \cdot \Lambda^{\prime}(\theta)$
and $\left.\frac{\partial^{2}}{\partial \theta^{2}} \ln L(X ; \theta)\right|_{\theta=T}=-\Lambda(T)<0$

$$
\begin{aligned}
{[\text { Now, } O<I(\theta)} & =E\left(-\frac{\partial^{2}}{\partial \theta^{2}} \ln L(x ; \theta)\right) \\
& =\Lambda(\theta)+\Lambda^{\prime}(\theta)\{E(T)-\theta\} \\
& =\Lambda(\theta)]
\end{aligned}
$$

Hence, $L(x ; \theta)$ is maximum at $\theta=T$.
$\Rightarrow T$ is the MLE of θ.
(III) Bias of MLE : - MLE's are not in general unbiased and when MLE's are biased, then it is possible to modify them slightly so that they will be unbiased. eng. The MLE of σ^{2} in $N\left(\mu, \hat{\sigma}^{2}\right)$ poplin., $\hat{\sigma}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}$, which is biased but $E\left(\frac{n}{n-1} \hat{\sigma}^{2}\right)=\sigma^{2}$, ice. $\frac{n}{n-1}, \hat{\sigma}^{2}$ is unbiased.
(IV) Invariance of MLF: - If $\hat{\theta}$ is the MLE of θ, the $h(\hat{\theta})$ is the MLE of $h(\theta)$; provided $h(\theta)$ is a function of θ.
Proof:- If $h(\theta)=\lambda$ is a one-to-one function of θ, the inverse function $h^{-1}(\lambda)=\theta$ is well defined and we can corrie the likelihood. function as a function of λ. We have

$$
L^{*}(\lambda ; x)=L\left(h^{-1}(\lambda) ; x\right)
$$

So that $\sup _{\lambda} L^{*}(\lambda ; \underset{\sim}{x})=\sup _{\lambda} L\left(h^{-1}(\lambda) ; \underset{\sim}{x}\right)=\sup _{\theta} L(\theta ; \underset{\sim}{x})$
It is followed that the supromum of L^{*} is achived at $\lambda=h(\hat{\theta})$. Thess $h(\hat{\theta})$ is the MLE of $h(\theta)$.
In many applications, $\lambda=h(\theta)$ is not one-to-one. It is still tempting to take $\hat{\lambda}=h(\hat{\theta})$ as the MLE of λ.
eeg. (i) Let $x \sim b(1, p) ; 0 \leq p \leq 1$, let $h(p)=\operatorname{var}(x)=p(1-p)$. We wish to find the MLE of $h(p)$. Note that $\boldsymbol{A}=\left[0, \frac{1}{4}\right]$. the function h is not one-to-one. The MLE of p based an a sample of size n is $\hat{p}\left(x_{1}, \ldots, x_{n}\right)=\bar{x}$. Hence, the MLE of parameter $h(p)$ is $h(\bar{x})=\bar{x}(1-\bar{x})$.
(ii) The MLE of σ^{2} based on a r.s.from x_{1}, \ldots, x_{n} from $N\left(\mu, \sigma^{2}\right)$ is $\hat{\sigma}^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}=s^{2}$, then by invariance property, the MLE of $\mu_{4}=3\left(\sigma^{2}\right)^{2}$ is $\hat{\mu}_{4}=3\left(\hat{\sigma}^{2}\right)^{2}=3\left(s^{2}\right)^{2}$.
(V) Asymptotic Properties of MLE:-
(a) Under certain regularity conditions, the likelihood equation has a solution cohich is consistent for θ.
Then the solution $\hat{\theta}$ is asymptotically normal and

$$
\begin{aligned}
& \sqrt{n}(\hat{\theta}-\theta) \stackrel{a}{\sim} N\left(0, \frac{1}{I_{X_{1}}(\theta)}\right) \\
& \Leftrightarrow \hat{\theta} a N\left(\theta, \frac{1}{I_{n}(\theta)}\right)
\end{aligned}
$$

where, $I_{n}(\theta)=n I_{x_{1}}(\theta)$

$$
=n \cdot E\left(\frac{\partial}{\partial \theta} \ln f\left(x_{1} ; \theta\right)\right)^{2}
$$

i.e. $\hat{\theta}$ is the Based Asymptotical Normal(BAN) estimator.
In particular, for OPEF, the MLE $\hat{\theta}$ is consistent for θ and $\sqrt{n}(\hat{\theta}-\theta) \stackrel{a}{\sim} N\left(0, \frac{1}{I_{x_{1}}(\theta)}\right)$.
(b) Asymptotic Invariance:-

In OPEF, if $\hat{\theta}$ is the MLE of θ, then

$$
\sqrt{n}(\hat{\theta}-\theta) \stackrel{a}{\sim} N\left(0, \frac{1}{I_{x_{1}}(\theta)}\right)
$$

implies $\sqrt{n}\{\psi(\hat{\theta})-\psi(\theta)\} \stackrel{a}{I_{x_{1}}(\theta)} N\left(0, \frac{\left\{\psi^{\prime}(\theta)\right\}^{2}}{I_{X_{1}}(\theta)}\right)$
EX. (1):- Leet X_{1}, \ldots, X_{n} be a $r . s$, from $B(i, p), p \in(0,1)$. Find the MLE of (i) $\psi(p)=e^{-p}$, (ii) $\psi(p)=\operatorname{Var}\left(X_{i}\right)$.
Solution:- The MLE of $p \in(0,1)$ is $\hat{p}=\bar{x}$, provided $\bar{x} \neq 0$ or 1 .
(i) Note that $\psi(p)=e^{-p}$ is a function from $\Omega=(0,1)$ onto

$$
\Lambda=\left(e^{-1}, 1\right)
$$

By invariance property, $\Psi(\hat{p})=e^{-\bar{x}}$ is the MLE of $\psi(p)=e^{-p}$.
(ii) $\psi(p)=\operatorname{Var}\left(x_{1}\right)=p(1-p)$ is a function from $\Omega=(0,1)$ onto

$$
\Lambda=\left(0, \frac{1}{4}\right)
$$

By invariance property, $\psi(\hat{p})=\hat{p}(1-\hat{p})=\bar{x}(1-\bar{x})$ is the
$M L E$ of $\psi(p)=p(1-p)$. MLE of $\psi(p)=p(1-p)$.

* Ex. (2):- Leet X_{1}, \ldots, x_{n} be ar.sifrom $p(\lambda)$. Find the MLE of (i) $\psi(\lambda)=e^{-\lambda}$, (ii) $\psi(\lambda)=P[x \geqslant 2]$.

Also find the SE of $\Psi(\lambda)=e^{-\lambda}$ and its MLE.
Solution:- The MLE of λ is $\hat{\lambda}=\bar{x}$, provided $\bar{x}>0$.
(i) Note that $\psi(\lambda)=e^{-\lambda}$ is a function from

$$
\Omega=\{\lambda: \lambda>0\} \text { onto } \Lambda=(0,1) \text {. }
$$

By invariance property, the MLR of $\Psi(P)=e^{-\lambda}$ is $\Psi(\hat{\lambda})=e^{-\hat{\lambda}}=e^{-\bar{x}}$
(ii)

$$
\begin{aligned}
\psi(\lambda) & =1-P[X=0]-P[X=1] \\
& =1-e^{-\lambda}(1+\lambda) \\
\therefore \Psi(\hat{\lambda}) & =1-e^{-\lambda}(1+\hat{\lambda}) \text { is the MLE of } \psi(\lambda)=1-e^{-\lambda}(1+\lambda) .
\end{aligned}
$$

Using asymptotic property,

$$
\begin{aligned}
& \sqrt{n}\left\{\psi\left(\lambda^{\prime}\right)-\psi(\lambda)\right\} \wedge{ }^{a} N\left(0, \frac{\left\{\psi^{\prime}(\lambda)\right\}^{2}}{\frac{I}{x_{1}}(\lambda)}\right) \\
& \Leftrightarrow \\
& \Leftrightarrow \psi\left(\lambda^{\hat{}}\right) \wedge \sim N\left(\psi(\lambda), \frac{\left\{\psi^{\prime}(\lambda)\right\}^{2}}{n I x_{1}(\lambda)}\right)
\end{aligned}
$$

Here, $\psi(\lambda)=e^{-\lambda}$ and $n I_{X_{1}}(\lambda)=\frac{n}{\lambda} \quad\left[V(\bar{x})=\frac{1}{n I X_{1}(\lambda)}\right]$ $\therefore e^{-\hat{\lambda}} \Omega^{a}, N\left(e^{-\lambda}, \frac{\lambda e^{-2 \lambda}}{n}\right)^{\lambda}$ is the asymptotic distr.
of the MLE of $e^{-\lambda}$.

For large n,

$$
\begin{aligned}
& V\left(e^{-\lambda}\right) \cong \frac{\lambda e^{-2 \lambda}}{n} \\
\Rightarrow & S E\left(e^{-\hat{\lambda}}\right) \cong e^{-\lambda} \cdot \sqrt{\frac{\lambda}{n}}
\end{aligned}
$$

By invariance property, MLE of S.E. $\left(e^{-\hat{\lambda}}\right)$ is

$$
\hat{S E}\left(e^{-\hat{\lambda}}\right)=e^{-\lambda^{n}} \sqrt{\frac{\lambda^{n}}{n}}=e^{-\bar{x}} \sqrt{\frac{\bar{x}}{n}} \text {, for large. }
$$

*Ex.(3):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from

$$
f(x ; \theta)=\left\{\begin{array}{cc}
\theta e^{-\theta x} & , x>0 \\
0 & , 0 w
\end{array}\right.
$$

Find the MLE of θ. S.T. The MLE is biased but consistent. state its asymptotic distribution. Also, find the MLE of $S(t)=P[x>t]$ and its asymptotic distr. Also find the $S E$ of $S(t) \&$ its MLE.
*
Ex,(4):- Let x_{1}, \ldots, x_{n} be an $r .$, from $u(0, \theta)$. Find the asymptotic distribution of MLE of θ and comment.
Solution:- The MLE of θ is $\hat{\theta}=X_{(n)}$. (prove it)
Define, $Y_{n}=n\left(\theta-X_{(n)}\right)$
The D.F. of Y_{n} is

$$
\begin{aligned}
G_{n}(y) & =P\left[Y_{n} \leq y\right]=P\left[X_{(n)} \geqslant \theta-\frac{y}{n}\right] \\
& =F_{X_{(n)}\left(\theta-\frac{y}{n}\right)} \\
& = \begin{cases}1-0, & \text { if } \theta-\frac{y}{n} \leq 0 \\
1-\left(\frac{\theta-\frac{y}{n}}{\theta}\right)^{n} & \text { if } 0<\theta-\frac{y}{n}<\theta \\
1-1 & \text { if } \theta-\frac{y}{n} \geqslant \theta\end{cases} \\
& =\left\{\begin{array}{cc}
0, & \text { if } y \leq 0 \\
1-\left(1+\frac{-\frac{y}{\theta}}{n}\right)^{n}, & \text { if } 0<y<n \theta \\
1 & \text { if } y \geqslant n \theta \\
0 & \text { if } y \leq 0 \\
1-e^{-y / \theta} & \text { if } 0<y<\infty \\
0,
\end{array}\right.
\end{aligned}
$$

cohich is the DF of the Exp. distr. with mean θ.
Hence, $Y_{n}=n(\theta-X(n)) \xrightarrow{L} Y \sim$ Exponential distribution (θ).
Therefore, the MLE $\hat{\theta}=X(n)$ is not an a symptotic normal.
Note that $U(0, \theta)$ distr. does not satisfy the regularity conditions required for CR inequality and the CRLB does not exist. consequently, the asymptotic property of MLE $\hat{\theta} \curvearrowleft N\left(\theta, \frac{1}{I_{n}(\theta)}\right)$ does not hold.

* Ex.(s):- Find the MLE of $g(\theta)=2 \theta+1$ based on a rus. x_{1}, \ldots, x_{n} from $f(x ; \theta)=\frac{1}{2} e^{-|x-\theta|} ; x \in \mathbb{R}$, where $\theta \in \mathbb{R}$. Find a consistent estimator of θ and $g(\theta)$.
Solution:- The MLE of θ is $\hat{\theta}=\tilde{x}=$ the sample median (prove it). By invariance property, the MLE of $g(\theta)=2 \theta+1$ is $g(\hat{\theta})=2 \tilde{x}+1$ we have $\hat{\xi}_{p} a N\left(\xi_{p}, \frac{p(1-p)}{n f^{2}\left(\xi_{p}\right)}\right)$

$$
\Rightarrow \hat{\xi}_{1 / 2} \stackrel{a}{ } N\left(\xi 1 / 2, \frac{1}{4 n f^{2}(\xi 1 / 2)}\right)
$$

Here, $\tilde{x} \bumpeq N\left(\theta, \frac{1}{4 n\left(\frac{1}{2}\right)^{2}}\right)$

$$
\Rightarrow \tilde{x} \leadsto N\left(\theta, \frac{1}{n}\right)
$$

For large $n, \quad E(\tilde{X}) \simeq \theta$ and $\operatorname{Var}(\tilde{X}) \simeq \frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence, \tilde{X} is consistent for θ and $g(\tilde{x})$ is consistent for $g(\theta)$,

* by invariance property.

Ex. (6):- Let X_{1}, \ldots, x_{n} be a res. from $N(\theta, \theta), \theta>0$. Find the MLE of θ. Is it unique? Also, suggest a sufficient statistic for θ.
Solution:- The likelihood function :-

$$
\begin{aligned}
& \text { Solution:- The likelihood function i- } \\
& L(\theta \mid x) \\
& \therefore \ln L\left(\theta \left\lvert\, \frac{1}{n}\right.\right)=\text { constant }-\frac{n}{2} \ln \theta-\frac{\sum x_{i}{ }^{2}-2 \theta \sum x_{i}+n \theta^{2}}{2 \theta} \cdot e^{n} \text { cohere } \theta>0 .
\end{aligned}
$$

Likelihood Equation: -

$$
\begin{aligned}
& \text { kelihood Earation: - } \\
& \begin{aligned}
& 0=\frac{\partial}{\partial \theta} \operatorname{lnL}=-\frac{n}{2 \theta}+\frac{1}{2 \theta^{2}} \sum x i^{2}-\frac{n}{2} \\
&=-\frac{n}{2 \theta^{2}}\left\{\theta^{2}+\theta-\frac{1}{n} \sum x i^{2}\right\} \\
& \Rightarrow \theta^{2}+\theta-\frac{1}{n} \sum x i^{2}=0 \\
& \Rightarrow \theta=\frac{-1 \pm \sqrt{1+\frac{4}{n} \sum x_{i}^{2}}}{2}=\alpha, \beta \\
& \Rightarrow \theta=\beta=\frac{-1+\sqrt{1+\frac{4}{n} \sum x_{i}^{2}}}{2} ; \text { neglecting negative sign as } \theta>0
\end{aligned}
\end{aligned}
$$

Note that,

$$
\begin{aligned}
\frac{\partial \ln L}{\partial \theta} & =-\frac{n}{2 \theta^{2}}(\theta-\alpha)(\theta-\beta) \\
& = \begin{cases}>0, & \theta<\beta \\
<0, & \theta>\beta\end{cases}
\end{aligned}
$$

$\Rightarrow L(\theta \mid X)$ is maximum at $\theta=\beta$.
$\Rightarrow \hat{\theta}=\frac{-1+\sqrt{1+\frac{4}{n} \sum x_{i}^{2}}}{2}$ is the unique MLE of θ.
AS MLE is a function of a sufficient statistic. hence $T=\sum_{i=1}^{n} x_{i}{ }^{2}$ is sufficient for θ.

Ex. (7):- Let x denotes the no. of cohite balls in a sample of n balls drawn coithocet replacement (WOR) from an urn containing N white and $M-N$ black balls cohere M is unknown and N is known. Find the MLE of M.
Solution:- The Likelihood function is:-

$$
P(M \mid x)= \begin{cases}\frac{\binom{N}{x}\binom{M-N}{n-x}}{\binom{M}{n}} & \text { if } x=o(1) n . \\ 0 ; & \text { ow } .\end{cases}
$$

Note that,

$$
\frac{p(M \mid x)}{p(M-1 \mid x)}=\frac{M-n}{M} \cdot \frac{M-n}{M-N-n+x}<1
$$

according as $M \geqslant \frac{n N}{x}$.
It follows that $p(M / x)$ reaches its maximum at $M \simeq \frac{n N}{x}$, i,e, at $M=\left[\frac{n N}{x}\right]$.
Hence, $\hat{M}=\left[\frac{n N}{x}\right]$ is the MLE of M.

A Practical Method of Solution of Likelihood Equation [Fisher's Method of Scoring] $]$
In case of a single parameter Cramer family such as Cauchy, the variables $x_{1}, x_{2}, \ldots, x_{n}$ and θ are not seperable and the likelihood equation is given by

$$
\frac{\partial}{\partial \theta} \ln L=\sum_{i=1}^{n} \frac{2\left(x_{i}-\theta\right)}{\left\{1+\left(x_{i}-\theta\right)^{2}\right\}}=0
$$

This is an algebric equation of degree $(2 n-1)$ in θ and explicit solution is not available. We then use classical iteration procedure to obtain a numerical solution for the observed values $x_{1}, x_{2}, \ldots, x_{n}$. In Newtom-Raphson method, we start the iterative procedure with T_{1} as a trial value and obtain successive iteration by

$$
T_{r+1}=T_{r}-\left(\frac{\frac{\partial \ln L}{\partial \theta}}{\frac{\partial^{2} \ln L}{\partial \theta^{2}}}\right)_{\theta=T_{r}}
$$

Fisher proposed a modification of the NR method

$$
\begin{equation*}
T_{r+1}=\operatorname{Tr}+\left\{\frac{\left(\frac{\partial \ln L}{\partial \theta}\right)}{n \cdot I_{X_{1}}(\theta)}\right\} \theta=T_{r} \tag{*}
\end{equation*}
$$

Note that, fisher modification consists in using $E\left(-\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right)=n_{1} I_{X_{1}}(\theta)$ and iterative procedure given by $(*)$ is known as Fisher's method of scoring:
Example:- Describe the method of finding the MLE of θ in the Cauchy (θ, i) distribution for a res. x_{1}, \ldots, x_{n}.
Solution:- Here, the sample median \tilde{X} is consistent for θ and

$$
I_{X_{1}}(\theta)=\frac{1}{2} \quad(\text { find it })
$$

Hence, considering $T_{1}=\tilde{x}$ as a trial moot, the fisher's method of scoring gives

$$
T_{2}=T_{1}+\left\{\frac{\frac{\partial}{\partial \theta} \ln L}{n_{1} I_{x_{1}}(\theta)}\right\} \theta=T_{1}=\tilde{x}-\frac{4}{n} \sum_{i=1}^{n} \frac{\left(x_{i}-\tilde{x}\right)}{\left\{1+\left(x_{i}-\tilde{x}\right)^{2}\right\}}
$$

as an improved estimate of θ over $T_{1}=\tilde{x}$ and the successive improved estimates are

$$
T_{r+1}=T_{r}+\frac{1}{n} \sum_{i=1}^{n} \frac{\left(x_{i}-T_{r}\right)}{\left\{1+\left(x_{i}-T_{r}\right)^{2}\right\}}
$$

(II) Method of Minimum Chi-Savare (MCS):-
suppose, we have a sample of size n from a poplin distr. which can be classified as a multinomial popln, worth k mutually exclusive, exhaustive classes with probabilities $p_{1}, p_{2} \ldots . . p_{k}$, and the observed frequency of the it class being $f_{i}, \quad i=1(1)^{k}$, where $\sum_{i=1}^{k} \beta_{i}=1$ and $\sum_{i=1}^{n} f_{i}=n$.
Then $p_{i}^{\prime \prime}$ s are functions of the parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{l}$ so that $p_{i}=p_{i}\left(\theta_{1}, \ldots, \theta_{l}\right), i=1(1) k$. The expected frequency of the th class is n. pi.

As a measure of goodness of fit between the observed frequency and the expected frequency, kari Pearson suggested the following statistic:
$\chi^{2}=\frac{\sum_{i=1}^{k}\left(f_{i}-n p i\right)^{2}}{n p i}$. One may ask the question in this connection: what procedure of estimation should be used? To answer the question, one will be inclined to estimate the unknown parameter so as the "measures of goodness of fit" or "measure of discripency between the observed and expected frequencies", ire. the X^{2} as small as possible. This procedure of estimation may be called the 'minimum X^{2} method'.

To minimize X^{2} by Calculas, we have to solve the equations:-

$$
\text { anions:- } \begin{align*}
& O=\frac{\partial x^{2}}{\partial \theta_{r}}=\frac{\partial}{\partial \theta_{r}}\left\{\sum_{i=1}^{k} \frac{\left(f_{i}-n p i\right)^{2}}{n p_{i}}\right\} \\
&=-2 \sum_{i=1}^{k}\left\{\frac{f_{i}-n p_{i}}{p_{i}}+\frac{\left(f_{i}-n p i\right)^{2}}{2 n p i^{2}}\right\} \frac{\partial p_{i}}{\partial \theta_{r}}- \\
& \text { for } r=1(1) l .
\end{align*}
$$

Even in simple cases, © the system of equations(*) are often very difficult to solve. It is, however, intuitively plausible that if the hypothesis is true e, the terms $\quad\left(f_{i}-n p i\right)^{2}$ will, for large n, have little effect on the value $2 n p i^{2}$ of the roots of (*). We shall omit these terms and then replace (*) by the simpler system of equations:

$$
\begin{aligned}
& \sum_{i=1}^{k} \frac{f_{i}-n p_{i}}{p_{i}} \cdot \frac{\partial p_{i}}{\partial \theta_{r}}=0 \Rightarrow \sum_{i=1}^{k} \frac{f_{i}}{p_{i}} \cdot \frac{\partial p_{i}}{\partial \theta_{r}}-n \cdot \frac{\partial}{\partial \theta_{r}}\left(\sum_{i=1}^{k} p_{i}\right)=0 \\
& \Rightarrow \cdot \sum_{i=1}^{k} \frac{f_{i}}{p_{i}} \cdot \frac{\partial p_{i}}{\partial \theta_{r}}=0 \text { as } \sum_{i=1}^{k} p_{i}=1, \text { for } r=1,2, \ldots, l
\end{aligned}
$$

The procedure of estimating $\theta_{1}, \ldots, \theta_{l}$ by solving ($* *$) will be called the "Modified Minimum χ^{2} method".

- EfFICIENCY AND AsYMPTOTIC EFFICIENCY
(A) Efficiency: - Let T_{1}, T_{2} be two UEs for $\psi(\theta)$ and $V\left(T_{1}\right)$, $V\left(T_{2}\right)$ are finite. We define the efficiency of T_{1} w.r.t. T_{2} by eff $\left(T_{1} / T_{2}\right)=\frac{V\left(T_{2}\right)}{V\left(T_{1}\right)}$.
The precession of an UE T is defined as $\frac{1}{\operatorname{var}(T)}$.
Most Efficient Estimator:- An UE T of $\Psi(\theta)$ is called most efficient among all UES of $\Psi(\theta)$, if T is UMVUE of $\Psi(\theta)$.
Efficiency:~Let T be the most efficient estimator, i.e. UMVUE of $\psi(\theta)$. Then the efficiency of any UE T_{1} of $\psi(\theta)$ is defined as

$$
\text { eff }\left(T_{1}\right)=\operatorname{eff}\left(T_{1} / T\right)=\frac{V(T)}{V\left(T_{i}\right)}
$$

Alternative concept:- If there exists MVBUE of $\psi(\theta)$ which is also UMVUE and most efficient, then

$$
\operatorname{eff}\left(T_{1}\right)=\frac{\left\{\Psi^{\prime}(\theta)\right\}^{2}}{I_{n}(\theta)} / \operatorname{Var}\left(T_{1}\right)
$$

Ex.(1):- If T_{1} and T_{2} are too UFA of $\psi(\theta)$ having the same variance and ρ is the correlation befticenten them. Show that, $\rho \geqslant 2 e-1$, cohere, e is the efficiency of, each estimators.
Solution:- Let T be the most efficient/UMVUE of $\Psi(\theta)$.
Here $V\left(T_{1}\right)=V\left(T_{2}\right)=v$, say.
Then $e=\frac{V(T)}{\gamma}$
Define, $T_{3}=\frac{T_{1}+T_{2}}{2}$ as an UE of $\psi(\theta)$.
Hence, $V\left(T_{3}\right) \geqslant V(T) \Rightarrow \frac{1}{4}\left\{V\left(T_{1}\right)+V\left(T_{2}\right)+2 \operatorname{Cov}\left(T_{1}, T_{2}\right)\right\} \geqslant V(T)$

$$
\begin{aligned}
& \Rightarrow \frac{1}{4}\{v+v+2 \rho v\} \geqslant e v \\
& \Rightarrow \rho \geqslant 2 e-1 .
\end{aligned}
$$

Ex. (2):- show that the correlation colfficient between a most efficient or UMVUE and any other UE with efficiency e is \sqrt{e}. Solution:- Let T, T be the UMVUE and any other UE of $\psi(\theta)$. respectively. Then, $e=\frac{V(T)}{V(T i)}$.
Note that, $E\left(T-T_{1}\right)=0 \forall \theta$

$$
\begin{aligned}
& \text { at, } E\left(T-T_{1}\right)=0 \forall \theta \\
& \Rightarrow U=T-T i \sin U E \text { of zero. } \\
& \Rightarrow \quad \operatorname{cov}(T, U)=0 \quad \forall \theta
\end{aligned}
$$

As, T is UMVUE, $\operatorname{cov}(T, u)=0 \quad \forall \theta$ and for any UE u of zero. Hence, $\operatorname{Cov}\left(T, T-T_{1}\right)=0 \forall \theta$

$$
\Rightarrow V(T)=\operatorname{cov}(T, T)
$$

Now,

$$
\rho=\frac{\operatorname{Cov}\left(T, T_{1}\right)}{\sqrt{V(T)} \sqrt{V\left(T_{1}\right)}}=\sqrt{\frac{V(T)}{V\left(T_{1}\right)}}=\sqrt{e}
$$

EX.(3): - Let T_{1}, T_{2} be too VEn of $\psi(\theta)$ with efficiencies e_{1} and e_{2}, respectively and $\rho=\rho\left(T_{1}, T_{2}\right)$. Then show that

$$
\sqrt{e_{1} e_{2}}-\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)} \leq \rho \leq \sqrt{e_{1} e_{2}}+\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)} .
$$

Solution:- Let The the undue of $\psi(\theta)$.
Then $e_{i}=\frac{V(T)}{V(T i)}, i=1,2$.
Define, $T_{3}=\alpha T_{1}+\beta T_{2},(\alpha+\beta=1)$, as an UE of $\varphi(\theta)$.
Hence, $V\left(T_{3}\right) \geqslant V(T), \forall(\alpha, \beta)$.

$$
\begin{aligned}
& \Rightarrow \alpha^{2} \cdot V\left(T_{1}\right)+\beta^{2} V\left(T_{2}\right)+2 \alpha \beta \operatorname{Cov}\left(T_{1}, T_{2}\right) \geqslant \operatorname{Var}(T) \\
& \Rightarrow \operatorname{Var}(T)\left\{\frac{\alpha^{2}}{e_{1}}+\frac{\beta^{2}}{e_{2}}+2 \alpha \beta \cdot \frac{\rho}{\sqrt{e_{1} e_{2}}}\right\} \geqslant V(T) \\
& \Rightarrow \frac{\alpha^{2}}{e_{1}}+\frac{\beta^{2}}{e_{2}}+2 \alpha \beta \cdot \frac{\rho}{\sqrt{e_{1} e_{2}}} \geqslant 1=(\alpha+\beta)^{2} \\
& \Rightarrow \alpha^{2}\left(\frac{1}{e_{1}}-1\right)+\beta^{2}\left(\frac{1}{e_{2}}-1\right)+2 \alpha \beta\left(\frac{\rho}{\sqrt{e_{1} e_{2}}}-1\right) \geqslant 0 \quad \forall(\alpha, \beta)
\end{aligned}
$$

The LHS is a quadratic in (α, β) and it is n.n.d.
Hence,

$$
\begin{aligned}
& \text { ne, }\left|\begin{array}{cc}
\frac{1}{e_{1}}-1 & \frac{\rho}{\sqrt{e_{1} e_{2}}}-1 \\
\frac{\rho}{\sqrt{e_{1} e_{2}}}-1 & \frac{1}{e_{2}}-1
\end{array}\right| \geq 0 \\
& \Rightarrow\left(\frac{\rho}{\sqrt{e_{1} e_{2}}}-1\right)^{2} \leq\left(\frac{1}{e_{1}}-1\right)\left(\frac{1}{e_{2}}-1\right) \\
& \Rightarrow-\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)} \leq \rho-\sqrt{e_{1} e_{2}} \leq \sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)} \\
& \Rightarrow \sqrt{e_{1} e_{2}}-\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)} \leq \rho \leq \sqrt{e_{1} e_{2}}+\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)}
\end{aligned}
$$

Remark:-
i) In ex.(1); $e_{1}=e_{2}=e$

$$
\begin{aligned}
& e-(1-e) \leq \rho \leq e+(1-e) \\
& \Rightarrow 2 e-1 \leq \rho \leq 1
\end{aligned}
$$

ii) In ex. (2); $e_{1}=e, e_{2}=1$.

$$
\begin{aligned}
& \sqrt{e} \leq \rho \leq \sqrt{e} \\
& \Rightarrow \rho=\sqrt{e} .
\end{aligned}
$$

Ex. (4):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be ans. from $N\left(0, \nabla^{2}\right)$. Find the most n efficient estimator of r^{2}. Also, obtain an UE of O based on $\sum_{i=1}^{n}\left|X_{i}\right|$ and its efficiency.
Hints:- The MVBUE of σ^{2} is $T=\frac{1}{n} \sum_{i=1}^{n} X_{i}{ }^{2}$
$T_{1}=\frac{1}{n} \sqrt{\frac{2}{\pi}}\left(\sum_{i=1}^{n}\left|X_{i}\right|\right)$ is an UE of σ.

$$
\text { Eff }\left(T_{1}\right)=\frac{C R L B \text { for } \psi(\sigma)=\sigma}{V\left(T_{1}\right)}
$$

(B) Asymptotic Efficiency: - There may be a large no. of consistent estimator $\Psi(\theta)$. To make a choice among the estimators which are earivalent so far as the criterion of consistency is concerned, we should have some further criterion. If we confined ourselves to those consistent estimators that are asymptotically normally distributed, then the concept of asymptotic efficiency is based on the asymptotic variance of an estimator.
Consistent Asymptotically Normal (CAM) Estimator: -
An estimator $\left\{T_{n}\right\}$ is said to be CAN of $\psi(\theta)$ if T_{n} is consistent and $\sqrt{n}\left\{T_{n}-\psi(\theta)\right\} \sim N\left(0, T_{T}^{2}(\theta)\right)$.
If $\left\{T_{m}\right\}$ and $\left\{T_{2 n}\right\}$ are two CAN estimators of $\Psi(\theta)$, then one coith smaller variance soil be preferable.
Asymptotic Relative Efficiency (ARE):-
If $\left\{T_{i n}\right\}$ and $\left\{T_{2 n}\right\}$ are two consistent estimators and $\sqrt{n}\left\{T_{\text {in }}-\Psi(\theta)\right\}$ a $N\left(0, \sigma_{T_{1}}^{2}(\theta)\right)$,

$$
\sqrt{n}\left\{T_{2 n}-\psi(\theta)\right\}{ }^{a} N\left(0, \sigma_{T_{2}}^{2}(\theta)\right)
$$

then ARE of T_{1} wir.t. T_{2} is defined as

$$
\operatorname{ARE}\left(T_{1} / T_{2}\right)=\frac{\sigma_{T_{2}}^{2}(\theta)}{\sigma_{T_{1}}^{2}(\theta)}
$$

Remark:- To estimate $\psi(\theta)$, by CAN estimated $\left\{T_{i n}\right\}$ and $\left\{T_{2 n}\right\}$ with precision $\frac{1}{v}$ ire. with variance v.
Let $\sqrt{n}\left\{\operatorname{Tin}_{1}-\psi(\theta)\right\} \stackrel{a}{\sim} N\left(0, \sigma_{T_{1}}^{2}(\theta)\right)$

$$
\begin{aligned}
& \sqrt{n}\left\{T_{2 n_{2}}-\psi(\theta)\right\} \stackrel{a}{\sim} N\left(0, \sigma_{T_{2}}^{2}(\theta)\right) \\
\Rightarrow & T_{1 n_{1}} \stackrel{a}{\sim} N\left(\psi(\theta), \frac{\sigma_{1}^{2}(\theta)}{n_{1}}\right) \\
& T_{2 n_{2}} \stackrel{a}{\sim} N\left(\psi(\theta), \frac{\sigma_{T_{2}}{ }^{2}(\theta)}{n_{2}}\right)
\end{aligned}
$$

Here $\frac{\sigma_{T_{1}}^{2}(\theta)}{n_{1}}=v=\frac{\Gamma_{T_{2}}^{2}(\theta)}{n_{2}}$

$$
\Rightarrow \frac{n_{2}}{n_{1}}=\frac{\sigma_{T_{2}^{2}}^{2}(\theta)}{\sigma_{T_{1}^{2}}^{2}(\theta)}
$$

The smaller the sample size required to achieve the same precesion, the better the estimator.
Hence, $\operatorname{eff}\left(T_{1} / T_{2}\right)=\frac{n_{2}}{n_{1}}=\frac{\sigma_{T_{2}}^{2}(\theta)}{\sigma_{T_{1}}{ }^{2}(\theta)}$.

Best Asymptotically Normal Estimator [BAN] :-
An estimator $\left\{T_{n}\right\}$ is said to be BAN estimator for $\Psi(\theta)$ if $\left\{T_{n}\right\}$ is consistent for $\psi(\theta)$ and the variance of the limiting distribution.
$\sqrt{n}\left\{T_{n}-\Psi(\theta)\right\}$ has the least possible value.
Asymptotic Efficiency:- Let $\left\{T_{n}\right\}$ be BAN estimator of $\psi(\theta)$ Then asymptotic efficiency of CAN estimator $\{\operatorname{Tin}\}$ of $\psi(\theta)$ is defined as $A E\left(T_{1} / T\right)=\frac{\sigma_{T}^{2}(\theta)}{\sigma_{T_{1}}{ }^{2}(\theta)}$
Alternative concept: - Let x_{1}, \ldots, x_{n} be a res. from a PDF Or PMF satisfying the regularity conditions in $C R$ inequality. suppose that

$$
\begin{equation*}
\sqrt{n}\left\{T_{n}-\psi(\theta)\right\} \sim \sim N\left(0, \sigma_{T}^{2}(\theta)\right) \tag{i}
\end{equation*}
$$

and under some additional conditions it can be shown that

$$
\sigma_{T}^{2}(\theta) \geqslant \frac{\left\{\Psi^{\prime}(\theta)\right\}^{2}}{I_{X_{1}}(\theta)}
$$

In any such regular cases, we define the asymptotic Deficiency $\left\{T_{n}\right\}$ satisfying (i) and (ii), as the limiting value of

$$
\left\{\frac{\frac{\psi^{\prime}(\theta)}{I x_{1}(\theta)}}{\sigma_{T}^{2}(\theta)}\right\}^{2}
$$

Ex.(1):- Let x_{1}, \ldots, x_{n} be a res. from $N\left(\mu, \sigma^{2}\right)$. Find the asymptotic efficiency of the sample median relative to sample mean and comment.
Solution:- Here $\bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \forall n$
and $\tilde{x} \stackrel{a}{\sim} N\left(\mu, \frac{1}{4 n f^{2}(\mu)}\right)$, for large n.

$$
\Rightarrow \tilde{x} \stackrel{a}{\sim} N\left(\mu, \frac{\pi r^{2}}{2 n}\right) \cdot \text { for large } n
$$

Clearly, \bar{x} and \tilde{X} are CAN estimators of μ.
Asymptotic Relative efficiency of \tilde{X} wir.t. \bar{x} is

$$
\begin{aligned}
& \operatorname{ARE}(\tilde{x} / \bar{x})=\frac{\sigma^{2} \frac{2}{x}(\mu)}{\sigma^{2} \tilde{x}(\mu)}=\frac{\sigma^{2}}{\frac{\pi^{2}}{2}}=\frac{2}{\pi} \simeq 0.64 \\
& {\left[\sqrt{n}(\bar{x}-\mu) \sim N\left(0, \sigma^{2}\right)\right.}
\end{aligned}
$$

$$
\text { and } \left.\sqrt{n}(\tilde{x}-\mu) \sim N\left(0, \frac{\pi \sigma^{2}}{2}\right)\right]
$$

Note that \bar{X} is the UMVUE of μ, hence it is most efficient for μ, NOW, $\operatorname{ARE}(\tilde{x} / \bar{x})=\frac{n_{2}}{n_{1}} \cong \frac{64}{100}$;
this means that an estimate of μ from a sample of $n_{2}=64$ observations using \bar{x} is just as reliable as an estimate from a sample of $n_{1}=100$ observations using \tilde{x}.
EX.(2): - Let X_{1}, \ldots, X_{n} be a rios. from

$$
f(x ; \theta)=\frac{1}{\pi\left\{1+(x-\theta)^{2}\right\}} \text {. Find the asymptotic }
$$

efficiency of the sample median to estimate θ.
Soln:- Here $\frac{\operatorname{ainf}\left(x_{1} ; \theta\right)}{2 \theta}=\frac{2\left(x_{1}-\theta\right)}{1+\left(x_{1}-\theta\right)^{2}}$
Now,

$$
\begin{aligned}
I_{X_{1}}(\theta) & =E\left(\frac{\partial}{\partial \theta} \ln f\left(x_{1} ; \theta\right)\right)^{2} \\
& =\int_{-\infty}^{\infty} \frac{4\left(x_{1}-\theta\right)^{2}}{\left\{1+\left(x_{1}-\theta\right)\right\}^{2}} \cdot \frac{1}{\pi\left\{1+\left(x_{1}-\theta\right)^{2}\right\}} d x_{1}
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} \frac{4 z^{2}}{\pi\left\{1+z^{2}\right\}^{3}} d z \text {; where } z=x_{1}-\theta
$$

$$
=8 \int_{0}^{\infty} \frac{z^{2}}{\pi\left(1+z^{2}\right)^{3}} d z
$$

$$
=\frac{4}{\pi} \int_{0}^{\infty} \frac{t^{3 / 2-1}}{(1+t)^{3 / 2+3 / 2}} d t \quad \text {; where } t=z^{2}
$$

$$
=\frac{4}{\pi}, B\left(\frac{3}{2}, \frac{3}{2}\right)
$$

$$
\begin{aligned}
& =\frac{4}{\pi} \cdot \frac{\Gamma(3 / 2) \Gamma(3 /}{2 \Gamma(3)} \\
& =\frac{4}{\pi} \frac{\left(\frac{1}{2} \sqrt{\pi}\right)^{2}}{2}=\frac{1}{2}
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{In}_{n}(\theta)=\frac{n}{2}
$$

Hence, $\tilde{x} \stackrel{a}{\sim} N\left(\theta, \frac{1}{4^{n f^{2}(\theta)}}\right)$

$$
\begin{aligned}
& \Rightarrow \tilde{x} \sim N\left(\theta, \frac{\pi^{2}}{4 n}\right) \\
& \Rightarrow \sqrt{n}(\tilde{x}-\theta) \stackrel{a}{\sim} N\left(0, \frac{\pi^{2}}{4}=\sigma_{\tilde{x}}^{2}(\theta)\right)
\end{aligned}
$$

Hence, $A E(\tilde{x})=\left\{\frac{1}{I x_{1}(\theta)}\right\} / \sigma_{x}^{2}(\theta)=\frac{2}{\frac{\pi^{2}}{4}}=\frac{8}{\pi^{2}}=0.8104$.
[CU] WORKED OUT PROBLEMS ON ESTIMATION
(1). Let X_{1}, \ldots, X_{n} be a random sample of size n from Poisson (λ) poplin. Show that the sample mean is UMVUE for λ.

110
Solution:- $X_{1} \ldots x_{n}$ be a res. from $P(\lambda)$ of size n, where λ being unknown.
Noco, poisson distribution belongs to the exponential family of distribution.
trues, $T^{\prime}(X)=\sum_{i=1}^{n} X_{i}$ is a complete statistic.
we prove it as follows:

$$
\begin{aligned}
& E\left(T^{\prime}\right)=0 \\
\Rightarrow & \sum_{x=0}^{\infty} T^{\prime}(x) \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}=0 \\
\Rightarrow & T^{\prime}(0) e^{-\lambda}+T^{\prime}(1) \cdot e^{-\lambda} \cdot \lambda+T^{\prime}(2) \cdot \frac{e^{-\lambda} \cdot \lambda^{2}}{2!}+\cdots \cdot=0
\end{aligned}
$$

Now, each coefficient of $T(\underset{\sim}{x})$ is non-zemo.
Here to satisfy the RHS of the equation

$$
T^{\prime}(x)=0 \quad \forall x
$$

$\therefore T^{\prime}(x)$ is a complete statistic.
Now, let $T=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

$$
E_{\lambda}(T)=\frac{1}{n} \sum_{i=1}^{n} E_{\lambda}\left(x_{i}\right)=\frac{1}{n}(n \lambda)=\lambda
$$

$\therefore T$ is an unbiased estimator for λ.
Again,, $T=\frac{T^{\prime}}{n}$, ie. T is a function of complete statistic T^{\prime}.
\therefore By Lehmann-scheffe theorem $T=$ sample mean is UMVUE for λ.
(2). Show that the correlation coefficient between an MV UE and any unbiased estimator is non-negative. Make your comments.
Solution:- Leet T be an unbiased estimator for a^{10} parametric function $\gamma(\theta)$ and To be the UMVUE of $\gamma(\theta)$. Now, $E \theta\left(T-T_{0}\right)=0$
$\therefore T-T_{0}$ is an unbiased estimator for ' 0 '.
Now, $\operatorname{Cov}\left(T_{0}, T-T_{0}\right)=0 \quad$ [The condition of MVUE]

$$
\Rightarrow \operatorname{cov}\left(T, T_{0}\right)=\operatorname{Var} \theta\left(T_{0}\right)
$$

Now, the correlation coefficient between T and T_{0} is given
by,

$$
\begin{aligned}
& \text { by, } \rho_{T, T_{0}}=\frac{\operatorname{Cov} \theta\left(T, T_{0}\right)}{\sqrt{V_{\theta}\left(T_{0}\right)} \sqrt{V_{\theta}(T)}}=\sqrt{\frac{V_{\theta}\left(T_{0}\right)}{V_{\theta}(T)} \geqslant 0\left[\begin{array}{c}
\because V_{\theta}\left(T_{0}\right) a_{n d} \\
V_{\theta}(T) \text { are } \\
\text { nonnegative }
\end{array}\right]} \\
& \text { Hence, the result is proved. }
\end{aligned}
$$

Since the correlation coefficient between MVUE and an unbiased estimator is always non-negative and we can comment that they have a positive correlation, i. e. the estimate of both the estimators will not differ much.
(3). State the important properties of a maximum likelihood. estimator.
Solution:- The important properties of maximum likelihood estimator is as follows:
i) Let us consider a one parameter exponential family labelled by parameter θ. Here if MVBUE exists, then it will be an MLE of or θ. The fact immediately follows from the condition of existence of an MVBE.

$$
\text { i.e. } \begin{aligned}
& \frac{\partial}{\partial \theta} \ln f \theta(\underset{\sim}{x})=k(\theta)(T(x)-\theta) \\
\therefore & \frac{\partial}{\partial \theta} \ln f(\theta)=0 \quad\left[\begin{array}{r}
\because(\theta) \text { is the likelihood } \\
\\
\Rightarrow \hat{\theta}=T(X)
\end{array} \quad . \quad \begin{array}{l}
\text { function of the estimator }
\end{array}\right]
\end{aligned}
$$

and as a consequence MLE is necessarily a sufficient statistic.
ii) Invariance property of MLE: - If the ross, is drawn from $f_{\theta}(\cdot)$ popin and if $T(x)$ be an MLE of θ, then $g(T(X))$ will be the MLE of $g(\theta)$.
iii) Maximum likelihood estimator of a parameter is not unique.
iv) MLE may be absurd even when exist:
(4). Write a short note on minimum χ^{2}-estimator. (3).

Solution:- suppose a sample of size n is drawn from a [109] poplin labelled by parameter θ. Further assume that the poplin. is classified into k mutually exclusive and exhaustive classes A_{1}, \ldots, A_{k}. Let, $\pi_{i}=P(A i), \pi_{i}>0, \sum_{i=1}^{K} \pi_{i}=1$. Clearly $\pi_{i}=\pi_{i}(\theta)$.
If n_{i} observations fall in $A_{i}\left(\sum_{i=1}^{k} n_{i}=n\right)$ then, $\left(n_{1}, n_{2}, \ldots, n_{k-1}\right) \sim$ multinomial $\left(n, \pi_{1}, \pi_{2}, \ldots, \pi k-1\right)$, cohich implies, $n_{i} \sim \operatorname{bin}(n, \pi i), i=1(1) k$.

$$
E\left(n_{i}\right)=n \pi_{i}
$$

A measure of discrepancy between the observed and expected frequency is given by,

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(n_{i}-n \pi_{i}\right)^{2}}{n \pi_{i}}
$$

As $\pi_{i}=\pi_{i}(\theta)$, then clearly, $\chi^{2}=\chi^{2}(\theta)$.
An estimate of θ can be obtained by minimizing $\chi^{2}(\theta)$. Clearly, the estimate of θ can be obtained by solving the following equation,

$$
\frac{\partial}{\partial \theta} X^{2}(\theta)=0 \quad \forall i=1(1) k
$$

is called the minimum X^{2} equation, provided $X^{2}(0)$ is completely differentiable and $\left(\left(\frac{\partial^{2} \chi^{2}(\theta)}{\partial \theta_{i} \partial \theta j}\right)\right)$ is positive definite.
This method is too much cumbersome since it is very difficult to deal with the minimum χ^{2} equation as θ occurs in the denominator of the terms under the sum trough Π_{i} 's.
(5). "A sufficient statistic provides a reduction of the data without loss of information" - Explain.
Solution:- An experimenter uses the information in a res. $x_{1}, x_{2}, \ldots, x_{n}$ to make inference about an unknown population. parameter θ. If the sample size n is large then the observed sample $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a long list of members that may be hard to interpret. An experimenter might wish to summenize the data in a sample determining a fee key features of the sample values. This is usually cone by computing a statistic, a function of the random sample. A statistic. is also a ross; it condenses the $n \mathrm{r} .9$. ; it condenses the $n_{\text {roves }} x_{1}, \ldots, x_{n}$ into a single riv.. We shall be.
interesting in coatching if we lost any "information" by this condensing process. Let x denotes the sample space, ie. the range of the rales that $\left(X_{1}, \ldots, X_{n}\right)$ may assume. Now a statistic defines a partition of X or induces partition.

A sufficient statistic is a particular kind of statistic. It is said that, "A sufficient statistic provides a reduction of the data coithout any loss of information". We justify this statement by the definition of sufficient statistic given as follows:
Let X_{1}, \ldots, x_{n} be a bis. from the density $f \theta(:)$, where θ is unknocon parameter. A statistic $T(X)$ is defined to be a sufficient statistic if and only if the conditional distribution of $X_{1} \ldots . . x_{n}$ given $T(X)=t$ does not depend on θ for any value t of T. the definition says, that a, statistic $T(\underset{\sim}{x})$ is sufficient if the conditional distribution of the sample given the statistic value does not depend on θ, The idea is that if the value of the sufficient statistic is known, then the sample values are not needed and it can not tell nothing more about θ and this istrue since the distribution of the sample given the sufficient statistic does not depend on θ.
Hence we can say that sufficient statistic condenses x is such a way that 'no information about θ is lost'.
(6). State and prove Lehmain-scheffe theorem in the theory of point estimation. Suppose \times has the Poisson distribution with unknown variance λ. Discuss how this theorem can be applied in finding the uniformly minimum variance unbiased estimator of $\lambda+\lambda^{2}$ on the basis of n independent observations on X. Prove that non-aydilabilty of an unbiased estimator of $\frac{1}{\lambda}$, suggest any possible estimator of $\frac{1}{\lambda}$ with reasons. $(5+5+3+2) \quad 108$
Solution:-
Lehmann Scheffe theorem:-
Statement:- Let h be an unbiased estimator for a real valued parametric function $\gamma(\theta)$. then of T be a complete sufficient statistic then $E[h / T]$ will be a UMVUE of $\gamma(\theta)$.
Proof: - Let x_{1}, \ldots, x_{n} be a bis, from a poplin, fo (i), θ is an unknocon parameter and $\theta \in(H)$. Now, if $h(x)$ be an unbiased estimator for the parametric function $8(\theta)$, then by RoO Blackwell theorem, we know that for any other sufficient statistic T, the conditional distribution of h given T is an improvement over T, i.. e.

$$
E(E[h \mid T])=\gamma(\theta)
$$

Now, here we are required to show that if T is a complete sufficient statistic then $E[h / T]$ is UMVUE for $\gamma^{\prime}(\theta)$, ie here it is enough to prove if T is complete.
sufficient, then $E[h / T]$ is unique.
For this we consider that h_{1} and h_{2} be two unbiased - stimator for $\nu(\theta)$.

$$
\therefore E\left[E\left(h_{1} / T\right)\right]=E\left[E\left(h_{2} / T\right)\right]=\gamma(\theta)
$$

Let $\psi(T)=E\left[h_{1} / T\right]-E\left[h_{2} / T\right]$
Now, since T is complete then $\Psi(T)$ is also a complete statistic.

Now, $E\left[E\left(h_{1} / T\right)\right]-E\left[E\left(h_{2} / T\right)\right]=0$

$$
\begin{aligned}
& \Rightarrow E\left\{E\left(h_{1} \mid T\right)-E\right. \\
& \Rightarrow E(\psi(T))=0 . \\
& \text { since } \psi(T) \text { is a complet } \\
& \psi(T)=0 \text { are. } \\
& \Rightarrow E(h, \mid T)=E\left(h_{2} \mid T\right)
\end{aligned}
$$

This completes the proof.
Here x_{1}, \ldots, x_{n} be a \quad. 8. from a $P(\lambda)$ distr..
Let $T(\hat{x})=\sum_{i=1}^{n} x_{i}$ be a statistic. Now, we will check whether the statistic is complete or not.

$$
\begin{aligned}
& E[T(x)]=0 \\
\Rightarrow & \sum_{x=0}^{\infty} T(x) \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}=0 \\
\Rightarrow & T(0)+T(1) \cdot \lambda+T(2) \cdot \frac{\lambda^{2}}{2!}+\cdots \cdots=0
\end{aligned}
$$

Since coefficient of $T(x)$ in 2 the LHS of $\langle i\rangle$ is non-zero, $T(x)=0 \forall X$, then $T(x)=\sum X_{i}$ is a complete statistic. Again $T(X)$ is also a sufficient statistic for λ.

Here $E(T)=n \lambda$

$$
\begin{aligned}
& \quad \Rightarrow E\left(\frac{T}{n}\right)=\lambda \\
& \therefore \operatorname{Var}(T)=n \lambda \\
& \therefore E\left(T^{2}\right)-E^{2}(T)=n \lambda \\
& \Rightarrow E\left(T^{2}\right)=n \lambda+n^{2} \lambda^{2}+n^{2} \lambda-n^{2} \lambda .
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow E\left(T^{2}\right)-E(T)+n E(T)=n^{2}\left(\lambda+\lambda^{2}\right) \\
& \Rightarrow E\left\{T^{2}-(n-1) T\right\}=n^{2}\left(\lambda+\lambda^{2}\right) \\
& \Rightarrow E\left\{\frac{T^{2}}{n^{2}}-\frac{n-1}{n^{2}} T\right\}=\lambda+\lambda^{2}
\end{aligned}
$$

Since T is complete sufficient and $\frac{1}{n^{2}}\left(T^{2}-(n-1) T\right)$ is a function of T, then by Lehmann. Scheffe theorem, we can conclude that,
$\frac{1}{n^{2}}\left\{T^{2}-(n-1) T\right\}$ is the UMVUE for $\lambda+\lambda^{2}$.
Let $h(x)$ be an unbiased estimator of $\frac{1}{\lambda}$.

$$
\begin{align*}
& \hat{} \quad \\
\Rightarrow & \sum_{x=0}^{\infty} h(x) \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}=\frac{1}{\lambda} \\
\Rightarrow & e^{-x} \cdot h(0)+\frac{e^{-\lambda} \cdot \lambda}{1} \cdot h(1)+\frac{e^{-\lambda} \cdot \lambda^{2}}{2} \ln (2)+\cdots=\frac{1}{\lambda}
\end{align*}
$$

In equation (1), the coefficient of λ^{-1} does not match in both the sides. Hence the above equation is inconsistent?. \therefore h cant be an unbiased estimator of $\frac{1}{\lambda}$.

If X_{1}, \ldots, x_{n} be a bis. from $P(\lambda)$, then $\bar{X}=\frac{1}{n} \sum X_{i}$ is the MLE of λ.
\therefore By invariance property of MLE, $\frac{1}{x}$ is the MLE of $\frac{1}{\lambda}$, provided $\bar{x}>0$.
(7). Let $x_{1}, \ldots, x y$ be a bis. from $R(-\theta, \theta), \theta>0$. Find an MILE for θ. Verify whether it is consistent or not. 110 (4).
Solution:- The Likelihood function of x_{1}, \ldots, x_{n} is given by $L(\theta \mid \underset{\sim}{x})=\left(\frac{1}{2 \theta}\right)^{n},-\theta<x_{i}<\theta \forall i=1(1) n$.
Now, note that $L(\theta \mid \underset{\sim}{x})$ is maximum cohenever θ is minimum.
Here $x_{i}<|\theta|$ if $\left|x_{i}\right|<\theta \forall i=1(1) n$

$$
\alpha \theta>\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

\therefore MLE of θ is $\left|X_{(n)}\right|$.
Now, woe have to check cohethen $\left|X_{(n)}\right|$ is consistent or not.

$$
\begin{aligned}
& P_{\theta}\left[\left|X_{(n)}-\theta\right|<\epsilon\right], t>0 \\
= & P_{\theta}\left[\theta-\epsilon<\left|X_{(n)}\right|<\theta+\epsilon\right] \\
= & P_{\theta}\left(\left|X_{(n)}\right|<\theta\right)-P_{\theta}\left(\left|X_{(n)}\right|<\theta-\epsilon\right) \\
= & 1-P_{\theta}\left(-\theta+\epsilon<X_{(n)}<\theta-\epsilon\right)
\end{aligned}
$$

Here note that,

$$
\begin{aligned}
& \quad P\left(X_{(n)}<x\right)=\left\{\int_{-\theta}^{x} \frac{d x}{2 \theta}\right\}^{n}=\frac{(x+\theta)^{n}}{(2 \theta)^{n}} \\
& \therefore f_{X_{(n)}}(x)=\frac{n(x+\theta)^{n-1}}{(2 \theta)^{n}} \cdot \\
& \therefore P_{\theta(-\theta+\epsilon<X(n)<\theta-\epsilon)} \\
& =n \int_{\theta} \frac{(x+\theta)^{n-1}}{(2 \theta)^{n}} d x=\left.\frac{n(x+\theta)^{n}}{n(2 \theta)^{n}}\right|_{-\theta+\epsilon} ^{\theta-\epsilon} \\
& -\theta+\epsilon \\
& =\frac{(2 \theta-\epsilon)^{n}-\epsilon^{n}}{(2 \theta)^{n}} \\
& \therefore P_{\theta}\left[\left|X_{(n)}-\theta\right|<\epsilon\right] \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

$\therefore X_{(n)}$ is consistent for $\theta_{\text {, }}$
(8). Find under cohat conditions the variance of an unblared estimator attains the cramer-Rac lower bound. (5)'08
Solution:- wet X_{1}, \ldots, x_{n} be a res. fracon from a poplin. aithp.d. f. $f\left(\frac{x}{n}, \theta\right)$, where θ is the unknocon parameter, $\theta \in \Theta$.
Let $T(\underset{L}{x}$) be an unbiased estimator for a real valued parametric function $\gamma(\theta)$.
We make assumptions and following regularity conditions:
i) $\frac{\partial}{\partial \theta} f_{\theta}(\underset{\sim}{x})$ exists for all $x \in x$ and $\theta \in(1)$.
ii) $\frac{\partial}{\partial \theta} \int_{x} f_{\theta}\left(\frac{x}{x}\right)=\int_{x} \frac{\partial}{\partial \theta} f_{\theta}\left(\frac{x}{a}\right)$
iii) $I_{\theta}=E_{\theta}\left[\frac{Q}{\partial \theta} \ln f_{\theta}(x)\right]^{2}<\infty$
iv) The support of x is independent of the parameter θ.

If the conditions hold then the cramen-Rao Locsers bound for the menace of the unbiased estimator is given by,

$$
V_{\theta}(T) \geq \frac{\left[\gamma^{\prime}(\theta)\right]^{2}}{I(\theta)}
$$

To prove the above result we proceed in the following way.
Since $f_{\theta}(x)$ is a $p d f$,

$$
\begin{aligned}
& \int_{x} f_{\theta}(x) d x=1 \\
\Rightarrow & \frac{\partial}{\partial \theta} \int_{x} f_{\theta}(\underset{\sim}{x}) d x=0 \\
\Rightarrow & \int_{x} \frac{\partial}{\partial \theta} f_{\theta}(\underset{\sim}{x}) d x=0 \\
\Rightarrow & \int_{x}\left\{\frac{\partial}{\partial \theta} \ln f_{\theta}(x)\right\} f_{\theta}(\underset{\sim}{x}) d x=0 \\
\Rightarrow & E \theta\left[\frac{\partial}{\partial \theta} \ln f_{\theta}(x)\right]=0
\end{aligned}
$$

Now, $T(\underset{\sim}{x})$ be the unbiased estimator of $\gamma(\theta)$,

$$
\begin{aligned}
& E \theta(T)=\gamma(\theta) \\
\Rightarrow & \int_{x} T(x) f_{\theta}(\underset{\sim}{x}) d x=\gamma^{\prime}(\theta) \\
\Rightarrow & \int_{x} T(x)\left\{\frac{\partial}{\partial \theta} \ln f_{\theta}(\underset{\sim}{x})\right\} f \theta(x) d x=\gamma^{\prime}(\theta) \\
\Rightarrow & E \theta\left[T(\underset{\sim}{x}) \frac{2}{\partial \theta} \ln f \theta(\underset{\sim}{x})\right]=\gamma^{\prime}(\theta)
\end{aligned}
$$

Now,

$$
\operatorname{cov}\left(T(x), \frac{\partial}{\partial \theta} \ln f_{\theta}(x)\right)=\gamma^{\prime}(\theta)
$$

Now, by $C-S$ inequality

$$
\begin{aligned}
& \operatorname{Var} \theta(T) V_{\theta}\left[\frac{\partial}{2 \theta} \ln f_{\theta}(x)\right] \geqslant\left[\gamma^{\prime}(\theta)\right]^{2} \\
& \Rightarrow V_{\theta}(T) \geqslant \frac{\left[\gamma^{\prime}(\theta)\right]^{2}}{E \theta\left[\frac{2}{2 \theta} \ln f_{\theta}(z)\right]^{2}}
\end{aligned}
$$

Now for c-s inequality, the equality arises if for the two variables x and $y, x=k y$
So, the equality vises in cromen. Rap inequality if

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \ln f \theta(\underset{\sim}{x}) & =k(\theta)[T(\underset{\sim}{x})-\gamma(\theta)] . \\
& x-x
\end{aligned}
$$

(9). Consider a rip. of size n from $N\left(\mu, \sigma^{2}\right) \cdot \mu, \sigma$ are unknown. Find the UMVUE of 8^{2}.
Solution:- The joint PDF is given by

$$
\begin{align*}
f_{\underset{\sim}{x}}(x) & =\frac{1}{(\sigma \sqrt{2 \pi})^{n}} \cdot \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right] ; x_{i} \in \mathbb{R} \forall i=1(1)^{n} . \tag{5}\\
& =\frac{1}{(\sqrt{2 \pi})^{n}} \cdot \frac{1}{\sigma^{n}} \cdot \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right] \\
& =g\left(T(x), \sigma^{2}\right) \cdot h(\underset{N}{x}) \quad\langle i\rangle
\end{align*}
$$

where, $h(x)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n}$,

$$
g\left(T(x), \sigma^{2}\right)=\exp \left[-\frac{1}{2 \gamma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right]
$$

and $T(\underset{\sim}{x})=\frac{1}{f^{2}} \sum\left(x_{i}-\mu\right)^{2}=s^{2}$, say
Now, $X_{i} \sim N\left(\mu, \sigma^{2}\right)$ and $\frac{x_{i}-\mu}{\sigma} \sim N(0,1)$

$$
\therefore z_{i}=\frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}} \stackrel{i i d}{\sim} \chi_{1}^{2}\left[\text { By the def of } \chi^{2}-\text { distr }\right]
$$

\therefore By the reproductive property of χ^{2}-distr.

$$
\begin{aligned}
& \sum_{i=1}^{n} Z_{i}^{2} \sim \chi_{n}^{2} \\
\therefore & E\left(\sum_{i=1}^{n} Z_{i}^{2}\right)=n \\
\Rightarrow & E\left(s^{2}\right)=\sigma^{2}
\end{aligned}
$$

$\therefore S^{2}$ is an unbiased estimatorfor σ^{2}. Again from (1) and by Neyman-fisher factorization theorem, we can say that s^{2} is a sufficient statistic for σ^{2}.
Now, since normal distribution belong to the complete family, s^{2} is also a complete sufficient statistic and as sell as an unbiased estimator of σ^{2}.
\therefore By Lehmann-scheffe theorem, we can soy that s^{2} is the UMVUE for σ^{2}.
\qquad

INTERVAL ESTIMATION

Introduction:- Estimation of parameter by a single value is reffered to as a point estimation. In a wide variety of inference problems one is rot interested in point estimation or testing of hypothesis of the parameter. Rather one winches to establish a level or an upper bound or both, for the parameter. As alternative procedure is to give an interval within cohich the parameter may be supposed to lie with curtain probability or confidence. This is called Interval Estimation.
Let $x_{1}, x_{2}, \ldots, x_{n}$ be a res. from $N\left(\mu, \sigma^{2}\right)$.
Then $\frac{\sqrt{n}(\bar{x}-\mu)}{s} \sim t_{n-1}$

$$
\begin{aligned}
& \quad \frac{S}{S}\left[-t_{\alpha / 2 ; n-1}<\frac{\sqrt{n}(\bar{x}-\mu)}{s}<t \alpha / 2 ; n-1\right]=1-\alpha \\
& \Leftrightarrow P\left[\bar{x}-\frac{s}{\sqrt{n}} t_{\alpha / 2 ; n-1}<\mu<\bar{x}+\frac{s}{\sqrt{n}} t_{\alpha / 2 ; n-1}\right]=1-\alpha .
\end{aligned}
$$

If a large no. of samples, each of size n, are thrown from a poplin. and if for each samples the above interval is determined, then in about $100(1-\alpha) \%$ of cases the interval will molude μ.
For an observed sample $x_{1}, x_{2}, \ldots, x_{n}$, one will therefore justify in for aging that the interval $\left(\bar{x}-\frac{8}{\sqrt{n}} t_{\alpha / 2 ; n-1} ; \bar{x}+\frac{8}{\sqrt{n}} t_{\alpha / 2, n-1}\right)$ provides a guess on estimation regarding μ. The no. of $(1-\alpha)$ is a measure of trust or confidence.
Definition:- 1. An interval $I(\underline{x})$ which is a subset of $\Omega \subseteq \mathbb{R}$ is said to constitute à confidence interval with confidence coefficient ($1-\alpha$), if $P[I(x) \ni \theta]=1-\alpha \quad \forall \theta \in \Omega$.
i.e. the random interval $I(\underset{\sim}{x})$ covers the true parameter with probability $=1-\alpha$.
2. A subset $S(\underset{\sim}{x})$ of $\Omega \subseteq \mathbb{R}^{k}$ is said to constitute a confidence set at confidence $(1-\alpha)$ if $P[S(x) \in \theta] \geqslant 1-\alpha \forall \theta \in \Omega$.

Let θ be a parameter \& T, be a statistic based on a r is. of size n from a popln. post, often it is possible to find a function $\Psi(T, \theta)$ chose distr. is independent of θ.
Then $P\left[\Psi_{1-\alpha / 2}<\Psi(T, \theta)<\psi \alpha / 2\right]=1-\alpha$,
cohere, Ψ_{α} is independent of θ, as distr. of $\Psi(T, \theta)$ is index. of θ. Now, $\Psi_{1-\alpha / 2}<\psi(T, \theta)<\psi \alpha / 2$ can often be put in the form

$$
\theta_{1}(T) \leq \theta \leq \theta_{2}(T)
$$

Then $P\left[\theta_{1}(T) \leq \theta \leq \theta_{2}(T)\right]=1-\alpha \&$
The observed value of the interval $\left[\theta_{1}(T), \theta_{2}(T)\right]$ will be the confidence interval for 8 with confidence coefficient $(r-\alpha)$.
Example 1:- Let X_{1}, \ldots, x_{n} be a res. from $N\left(\mu, \sigma^{2}\right) ; \mu$ and σ both are unknown. Find confidence interval for
(i) μ (ii) σ, with confidence coefficient $(1-\alpha)$,
(iii) $\left(\mu, \sigma^{2}\right)$.

Solution:- (i) for confidence interval of μ, we select the statistic $T=\bar{X}$.
Then $\psi(T, \mu)=\frac{\sqrt{n}(\bar{x}-\mu)}{s} \sim t_{n-1}$, which is index. of μ.
Now,

$$
\begin{aligned}
1-\alpha & =p\left[-t \alpha / 2, n-1<\frac{\sqrt{n}(\bar{x}-\mu)}{s}<t_{\alpha / 2}, n-1\right] \\
& =p\left[\bar{x}-\frac{s}{\sqrt{n}} t_{\alpha / 2, n-1} \leq \mu \leq \bar{x}+\frac{8}{\sqrt{n}} t_{\alpha / 2, n-1}\right]
\end{aligned}
$$

Hence $\left(\bar{x}-\frac{8}{\sqrt{n}} t_{\alpha / 2, n-1}, \bar{x}+\frac{8}{\sqrt{n}} t_{\alpha / 2, n-1}\right)$ is an observed confidence interval for μ with confidence coefficient $(1-\alpha)$.
(ii) For confidence interval of σ^{2}, we select the statistic

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Then, $\Psi\left(s^{2}, \sigma^{2}\right)=(n-1) \frac{s^{2}}{\sigma^{2}} \sim X_{n-1}^{2}$ the distr. is indep.of σ^{2}.
Now, $1-\alpha=p\left[\chi_{1-\alpha / 2, n-1}^{2} \leq(n-1) \frac{\rho^{2}}{\sigma^{2}} \leq \chi_{\alpha / 2}^{2}, n-1\right]$

$$
=P\left[\frac{(n-1) \cdot s^{2}}{x_{\alpha / 2, n-1}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{x_{1-\alpha / 2, n-1}^{2}}\right]
$$

Hence $\left(\frac{\sum_{i=1}^{n}\left(x_{1}-\bar{x}\right)^{2}}{X_{\alpha / 2, n-1}^{2}}, \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{X_{1-\alpha / 2, n-1}^{2}}\right)$ is an observed c.I for σ^{2} with confidence coefficient $(1-\alpha)$.
(iii)

$$
\begin{aligned}
& P\left[\bar{x}-\frac{s}{\sqrt{n}} t_{\alpha / 2, n-1} \leq \mu \leq \bar{x}+\frac{s}{\sqrt{n}} t_{\alpha / 2, n-1}\right]=1-\alpha_{1} \\
& \& P\left[\frac{(n-1) s^{2}}{X_{\alpha_{2} / 2, n-1}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{X_{1-\alpha / 2}^{2}, n-1}\right]=1-\alpha_{2} .
\end{aligned}
$$

Note that:- (Boolsen Prob.): $P(A \cap B) \geqslant P(A)+P(B)-1$.

$$
\begin{aligned}
\therefore P\left[\bar{x}-\frac{8}{\sqrt{n}} t_{\alpha_{1} / 2, n-1} \leq \mu \leq \bar{x}\right. & +\frac{8}{\sqrt{n}} t_{\alpha_{1} / 2}, n-1 ; \frac{(n-1) s^{2}}{x_{\alpha_{2} / 2}^{2}, n-1} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{x_{1-\alpha_{2} / 2, n-1}^{2}} \\
& \geqslant\left(1-\alpha_{1}\right)+\left(1-\alpha_{2}\right)-1 \\
& =1-\alpha, \text { where } \alpha=\alpha_{1}+\alpha_{2} .
\end{aligned}
$$

Hence, $\quad S(x)=\left(\bar{x}-\frac{8}{\sqrt{n}} t_{\alpha_{1 / 2} ; n-1}, \bar{x}+\frac{8}{\sqrt{n}} t_{\alpha_{k / 2}, n-1}\right) x$

$$
\left(\frac{(n-1) s^{2}}{X_{\frac{\alpha_{2}}{2}}^{2}, n-1}, \frac{(n-1) s^{2}}{X_{1-\frac{\alpha}{2}}^{2}, n-1}\right)
$$

Example 2:-
Let x_{1}, \ldots, x_{n} be a rus. from $v(0, \theta), \theta>0$. Find a confidence interval for θ with confidence coefficient $(1-\alpha)$, based on $X(n)$.
Sol. The p.d.f of $x_{(n)}$ is

$$
\begin{aligned}
& f \text { of } X_{(n)} \text { is } \\
& f_{x(n)}(x)=\left\{\begin{array}{cc}
\frac{n x^{n-1}}{\theta^{n}} & \text { if } 0<x<\theta \\
0 & \text { ow }
\end{array}\right.
\end{aligned}
$$

The pdf $\psi\left(X_{(n)}, \theta\right)=\frac{X(n)}{\theta}=T$ is

$$
g(t)= \begin{cases}n t^{n-1} & , 0<t<1 \\ 0 & , \text { ow }\end{cases}
$$

which is independent of θ.
Now,
$\begin{aligned} & p[c<\psi(X(n), \theta)<1]=1-\alpha . \\ \Rightarrow & \int_{c}^{1} n t^{n-1} d t=1-\alpha, \text { where } c \text { is the critical region. }\end{aligned}$

$$
\Rightarrow 1-c^{n}=1-\alpha \text {, ie. } c=\alpha^{1 / n} \text {. }
$$

Note that, $\alpha^{1 / n}<\psi(X(n), \theta)=\frac{X(n)}{\theta}<1$

$$
\begin{gathered}
\Rightarrow \alpha^{-1 / n}>\frac{\theta}{X(n)}>1 \\
\text { ie. } x(n)<\theta<\alpha^{-1 / n} \cdot X(n)
\end{gathered}
$$

Hence $\left[X_{(n)}, \alpha^{-1 / n} X_{(n)}\right]$ is a C.I. for θ worth confidence coefficient $(1-\alpha)$.
Example 3. Consider a res. of size n from the rectangular distribution $f(x, \theta)= \begin{cases}1 / \theta & \text { if } 0<x<\theta \\ 0 & \text { ow }\end{cases}$
If Y be the sample range then ξ is given by

$$
\left.\xi^{n-1}[n-(n-1)\}\right]=\alpha
$$

ST. Y and $\left\{\mid \xi_{\}}\right.$are confidence limit to θ with confidence coefficient $(1-\alpha)$.
Sol. Here, $Y=X_{(n)}-X_{(1)}$

The pdf of $\Psi(Y, \theta)=U$ is

$$
f u(u)=\left\{\begin{array}{cl}
n(n-1) u^{n-2}(1-u) & \text { if } 0<u<1 \\
0, & \text { ow }
\end{array}\right.
$$

cohich is independent of θ.
Now, $P[\xi \leq U \leq 1]=1-\alpha$.

$$
\begin{aligned}
& \Rightarrow \int_{\xi}^{1} n(n-1) u^{n-2}(1-v) d v=1-\alpha \\
& \Rightarrow n(n-1) \int_{\xi}^{1}\left[u^{n-2}-u^{n-1}\right] d u=1-\alpha, \\
& \Rightarrow \xi^{n-1}[n-(n-1) \xi]=\alpha
\end{aligned}
$$

Note that $\{\xi \leq U \leq 1\}=\left\{\xi \leq \frac{Y}{\theta} \leq 1\right\}=\left\{Y \leq \theta \leq \frac{Y}{\xi}\right\}$
Hence, $\left(Y, Y \xi^{-1}\right)$ is a random C.I. for θ with confidence coefficient $1-\alpha$, where ξ is 3

$$
\xi^{n-1}[n-(n-1) \xi]=\alpha
$$

Ex.4. Consider a res. of size n from an exponential distr, with piaf $f_{x}(x)=\left\{\begin{array}{cc}\exp [-(x-\theta)] & \text {, if } \theta<x<\infty \\ 0, & \text { ow }\end{array}\right.$

Show that $P_{\theta}\left[X_{(1)}+\frac{1}{n} \log \alpha \leq \theta \leq X_{(1)}\right] \leq 1-\alpha$. and hence suggest a $100(1-\alpha) \%$ confidence interval for θ.
Solution:- The di. of $X_{(1)}$ is

$$
\begin{aligned}
F_{X_{(1)}}(x) & =1-P\left[X_{(1)}>x\right]=P\left[X_{(1)} \leq x\right] \\
& =1-\left\{P\left[X_{(1)}>x\right]\right\}^{n} \\
& =1-\left\{e^{-\left(x_{(1)}-\theta\right)}\right\}^{n} \\
& =1-e^{-n\left(x_{(1)}-\theta\right)} \text { if } x_{(1)}>\theta .
\end{aligned}
$$

Hence $U=e^{-n\left(x_{(1)}-\theta\right)}=1-F\left(x_{(1)}\right) \sim U(0,1)$.

$$
\text { p.d.f. } \begin{aligned}
f(x) & =\frac{d}{d x} F_{X(1)}(x) \\
& =n e^{-n(x-\theta)} \quad \text { if } x>\theta
\end{aligned}
$$

Let $U=e^{-\left(x_{(1)}-\theta\right)}$

$$
\begin{aligned}
& \qquad u=e^{-(x-\theta)} \\
& \Rightarrow \log u=-(x-\theta)
\end{aligned} \quad \Rightarrow \frac{1}{v} \cdot d u=-d x \quad \begin{aligned}
& \Rightarrow J=\left|\frac{d x}{d u}\right|=\frac{1}{u} . \\
& \angle f u(u)=\left\{\begin{array}{cc}
n u^{n-1} & \text { if } 0<u<1 \\
0 & \text { ow }
\end{array}\right.
\end{aligned}
$$

Now,

$$
\begin{gathered}
1-\alpha=p[e \leq u \leq 1]=\int_{e}^{1} n u^{n-1} d u \\
\Rightarrow 1-\alpha=1-c^{n} \\
\Rightarrow c=\alpha^{1 / n}
\end{gathered}
$$

Note that $\alpha^{1 / n} \leq u \leq 1$

$$
\begin{aligned}
& \text { that } \alpha^{1 / n} \leq u \leq 1 \\
& \Rightarrow \alpha^{1 / n} \leq e^{-\left(x_{(1)}-\theta\right)} \leq 1 . \\
& \Rightarrow \frac{1}{n} \log \alpha \leq-\left(x_{(1)}-\theta\right) \leq 0 \\
& \Rightarrow x_{(1)}+\frac{1}{n} \log \alpha \leq \theta \leq x_{(1)} .
\end{aligned}
$$

Wilk Optimum Criterion Based on the Expected length:-
Let x_{1}, \ldots, x_{n} be a bis. from a pdf $f_{\theta}(x)$ and $T\left(x_{1}, \ldots, x_{n} ; \theta\right)=T_{\theta}$ be a riv. where distr is independent of θ.
Then $P\left[\lambda_{1}<T_{\theta}<\lambda_{2}\right]=1-\alpha \Rightarrow P[\underline{\theta}(\underset{\sim}{x})<\theta<\bar{\theta}(\underset{\sim}{x})]=1-\alpha$. We cooled interval is a $(1-\alpha)$ level shortest length confidence such interval based on T_{θ}. An alternative to minimize the length of C.I. is to minimize the expected length $E[\bar{\theta}(x)-\theta(x)]$.

Definition I:- A $(1-\alpha)$ level of CI $\left[\underline{\theta}\binom{x}{\alpha}, \bar{\theta}\binom{x}{)}\right]$ is said to be shorter that another $(1-\alpha)$ level of C.I. $\left[\theta^{*}(x), \bar{\theta}^{*}(x)\right]$ if

$$
E[\bar{\theta}(\underline{x}) \div \underline{\theta}(\underset{\sim}{x})]<E_{\theta}\left[\bar{\theta}^{*}(x)-\underline{\theta}^{*}(x)\right] \forall \theta \in \Omega .
$$

Example:- Let $\left(x_{1}, \ldots, x_{n}\right)$ be a res. from $N\left(\mu, \sigma^{2}\right)$. find the shortest length $C . I$. for (i) μ based on \bar{x}
(ii) rec based on s^{2}

Solution:-
(i) Pivotal Statistic:- $T_{\mu}=\frac{\sqrt{n(\bar{x}-\mu)}}{s} \sim t_{n-1}$, which is independent of μ.
Then $1-\alpha=P\left[a<\frac{\sqrt{n}(\bar{x}-\mu)}{s}<b\right]$

$$
=P\left[\bar{x}-b \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x}-a \cdot \frac{s}{\sqrt{n}}\right]
$$

\therefore Expected length, $E(\hat{L})=(b-a) \frac{E(s)}{\sqrt{n}}$.
To minimize the expected length subject to the bestriction

$$
\int_{a}^{b} f_{n-1}(t) d t=1-\alpha
$$

Now,

$$
\begin{aligned}
& \frac{\partial E(\hat{L})}{\partial a}=\left(\frac{\partial b}{\partial a}-1\right) \frac{E(s)}{\sqrt{n}} . \\
\& & f_{n-1}(b) \frac{\partial b}{\partial a}-f_{n-1}(a)=0 \Rightarrow \frac{\partial b}{\partial a}=\frac{f_{n-1}(a)}{f_{n-1}(b)} . \\
\therefore & \frac{\partial E(\dot{L})}{\partial a}=\left[\frac{f_{n-1}(a)}{f_{n-1}(b)}-1\right] \frac{E(s)}{\sqrt{n}}=0 \\
\Rightarrow & f_{n-1}(a)=f_{n-1}(b) \Rightarrow a=-b . \\
\Rightarrow & b=t \alpha / 2, n-1[: a=-b]
\end{aligned}
$$

Note that shortest expected length C.I. from μ with CI $(1-\alpha)$ based on \bar{x} is $\left(\bar{x}-t_{\alpha / 2}, n-1 \cdot \frac{8}{\sqrt{n}}, \bar{x}+t_{\alpha / 2, n-1} \cdot \frac{8}{\sqrt{n}}\right)$.
(ii) Pivotal statistic:-

$$
T_{p^{2}}=\frac{2\left(x_{i}-\bar{x}\right)^{2}}{\sigma^{2}}=(n-1) \frac{s^{2}}{\sigma^{2}} \sim x_{n-1}^{2}
$$

$$
\begin{aligned}
& \text { Since, } p\left[a<(n-1) \frac{s^{2}}{\sigma^{2}}<b\right]=1-\alpha . \\
& \quad \Rightarrow P\left[(n-1) \frac{s^{2}}{b}<\sigma^{2}<(n-1) \frac{s^{2}}{a}\right]=1-\alpha . \\
& \therefore \text { Expected length }, E\left(L^{1}\right)=\left(\frac{1}{a}-\frac{1}{b}\right) E\left[\overline{n-1} s^{2}\right]
\end{aligned}
$$

To minimize $E(\hat{L})$ subject to the condition.

$$
\begin{aligned}
& \int_{a}^{b} f_{n-1}(t) d t=1-\alpha \\
& \Rightarrow \frac{2 b}{\partial a}=\frac{f_{n-1}(a)}{f_{n-1}(b)}
\end{aligned}
$$

We have, $\frac{\partial E(\hat{L})}{\partial a}=\left[-\frac{1}{a^{2}}+\frac{1}{b^{2}} \cdot \frac{\partial b}{\partial a}\right]=E\left[\overline{n-1} S^{2}\right]$

$$
\begin{aligned}
& \quad=\left[-\frac{1}{a^{2}}+\frac{1}{b^{2}} \cdot \frac{f_{n-1}(a)}{f_{n-1}(b)}\right]-E\left[\overline{n-1} \delta^{2}\right]=0 \\
& i f, a^{2} f_{n-1}(a)=b^{2} f_{n-1}(b) . \\
& \Leftrightarrow e^{-a / 2} a^{\frac{n+1}{2}}=e^{-b / 2} b^{\frac{n+1}{2}} .
\end{aligned}
$$

Numerical solution may be used for finding a \& b. Let \hat{a}, \hat{b} be the solution, then $\left[\frac{(n-1) s^{2}}{b}, \frac{(n-1) s^{2}}{a}\right]$ is the shortest expected length C.I. of $\mathrm{\sigma}^{2}$.

Ex.(2):- Let x_{1}, \ldots, x_{n} be res. from $u(0, \theta)$. Find the shortest expected length C.I, of θ based on $X_{(n)}$.

Solution t
$T_{\theta}=\frac{X(n)}{\theta}$ has the d.f. $F(t)=t^{n}, 0<t<1$, which is independent of θ.

Now,

$$
\begin{aligned}
1-\alpha & =P\left[a<\frac{X(n)}{\theta}<b\right] \\
& =P\left[\frac{X(n)}{b}<\theta<\frac{X(n)}{a}\right] \\
E(\hat{L}) & =\left(\frac{1}{a}-\frac{1}{b}\right) E\left(X_{n} \Rightarrow\right)
\end{aligned}
$$

To minimize the expected length C.I. for θ based on $X(n)=$ g

$$
\begin{gather*}
E\left(L^{n}\right)=F(b)-F(a)=1-\alpha . \\
\Rightarrow b^{n}-a^{n}=1-\alpha \tag{1}
\end{gather*}
$$

For $(1-\alpha)^{1 / n} \leq b \leq 1$

$$
\begin{aligned}
& \frac{\partial E(L)}{\partial b}=\left(-\frac{1}{a^{2}} \cdot \frac{\partial a}{\partial b}+\frac{1}{b^{2}}\right) E\left(X_{(n)}\right) \\
& \& n b^{n-1}-n a^{n-1} \cdot \frac{\partial a}{\partial b}=0[f r o m(1)] \\
& \Rightarrow \frac{\partial a}{\partial b}=\frac{b^{n-1}}{a^{n-1}} \cdot \\
& \therefore \frac{\partial E(\hat{L})}{\partial b}=\left(-\frac{1}{a^{2}} \cdot \frac{b^{n-1}}{a^{n-1}}+\frac{1}{b^{2}}\right) E\left(X_{n}^{n}\right) \\
&=\left(\frac{1}{b^{2}}-\frac{b^{n-1}}{a^{n+1}}\right) E\left(x_{n}\right) \\
&=\frac{a^{n+1}-b^{n+1}}{b^{2} a^{n+1}} E\left(X_{n}\right)<0
\end{aligned}
$$

$$
\Rightarrow E\left(L^{n}\right) \downarrow \text { at } b .
$$

\Rightarrow min. of $E(\hat{L})$ occurs $a t b=1$.

$$
\begin{aligned}
& 41-a^{n}=1-\alpha \\
& \Rightarrow a=\alpha^{1 / n}
\end{aligned}
$$

Hence the shortest expected length e.r. of θ based on $X_{(n)}$ is $\left[X_{(n)}, X_{(n)}, \alpha^{-1 / \alpha}\right]$.

Confidence Estimations
Definition ($(1-\alpha)$ level confidence sets)
Let $\theta \in(H) \subseteq \mathbb{R}^{k}$ and $0<\alpha<1$. A family of random subsets $S(\underset{\sim}{x})$ of (H) is called a family of confidence sets at confidence level $(1-\alpha)$ if

$$
\begin{equation*}
P_{\theta}\{S(\underset{\sim}{x}) \exists \theta\} \geqslant 1-\alpha \forall \underset{\sim}{\forall} \in \Theta \text {. } \tag{1}
\end{equation*}
$$

The quantity $\inf _{\theta \in(\mathbb{Q})} P_{\theta}\{S(\underset{\sim}{x}) \ni \underset{\sim}{\theta}\}$
is called confidence coefficient associated with randomset $S(X)$.
Definition:- (Uniformly Most Accurate Family of Confidence Sets) A family of confidence sets $\{S(x)\}$ is said to be a UMA family of confidence sets if

$$
P_{\theta}\{S(x) \nexists \underset{\sim}{\theta}\} \geq 1-\alpha \forall \theta \in \in(H)
$$

and $P_{\theta^{\prime}}\{S(\underset{\sim}{x}) \ni \underset{\sim}{\underset{\sim}{\theta}}\} \leq P_{\theta^{\prime}}\left\{S^{\prime}(\underset{\sim}{x}) \ni \underset{\sim}{\theta}\right\} \quad \forall \underset{\sim}{\theta},{\underset{\sim}{\theta}}^{\prime} \in \oplus$.
for all $S^{\prime}(X)$ satisfying equation (1), ie. $S^{\prime}(X)$ is any other family of $(1-\alpha)$ level confidence sets.
UMAU Confidence Sets:- A family $\{S(x)\}$ of confidence sets for a parameter θ is said to be unbiased at level $(1-\alpha)$ if

$$
P_{\theta}\{s(\alpha) \ni \theta\} \geqslant 1-\alpha \forall \theta \in(H \text {. }
$$

and $P_{\theta^{\prime}}\{S(X) \ni \theta\} \leq 1-\alpha \forall \theta, \theta^{\prime} \in \Theta$.
If $S^{*}(X)$ is a family of $(1-\alpha)$ ever unbiased confidence rets that minimizes $P_{\theta}\left\{s(x) \neq \theta^{\prime}\right\} \forall \theta, \theta^{\prime} \in \Theta$.
Then $S^{*}(x)$ is called uniformly most accurate unbiased (UMAU) family of confidence sets at level $\alpha(1-\alpha)$.
Discuss by theorem the relationship between UMP unbiased $\frac{\text { size- } \alpha \text { acceptance region and UMAU family of confidence set at }}{\text { let } 1-\alpha \text {. }}$

Solution:- Theorem:- Comider the testing problem $H_{0}: \theta=\theta_{0} \underline{V_{s}}$. H : $: \theta \neq \theta_{0}$ for each $\theta_{0} \in$ (H). Let $A\left(\theta_{0}\right)$ be the $M P$ unbiased size α acceptance region for this problem. Then $S(x)=\{\theta \mid \approx \in A(\theta)\}$ is a UMP unbiased family of confidence sets at level $(1-\alpha)$.

Proof:-
Let the UMP unbiased size- α test be given by $\phi_{0}(x)$. unblasedness gives $E_{\theta^{\prime} \phi_{0}\binom{X}{\alpha} \geqslant \alpha \forall \theta^{\prime} \in H_{1}\left(\theta_{0}\right)}$

$$
\begin{aligned}
& \Rightarrow E_{\theta^{\prime}}\left(1-\phi_{0}(x)\right) \leq 1-\alpha \vee \theta^{\prime} \in H_{1}\left(\theta_{0}\right) \\
& \Rightarrow P_{\theta^{\prime}}(x \in A(\theta)) \leq 1-\alpha \\
& \Rightarrow P_{\theta^{\prime}}(S(x) \ni \theta) \leq 1-\alpha .
\end{aligned}
$$

shows that $S(X)$ is unbiased.
Next, consider any other unbiased size- α^{2} test $\phi^{*}(x)$, with acceptance region $A^{*}(\theta)$; we gat a corresponding ($1-\alpha$) level family of unbiased confidence sets $S^{*}(X)$,ie.

$$
P_{\theta^{\prime}}\left(S^{*}\left(\frac{x}{x}\right) \ni \theta\right) \leq 1-\alpha d \theta^{\prime} \in H_{1}\left(\theta_{0}\right)
$$

The test $\phi_{0}(x)$ has been given to be UMP, therefore

$$
\begin{aligned}
& E_{\theta^{\prime}}\left[\phi_{0}(\underset{\alpha}{x})\right] \geqslant E_{\theta^{\prime}}\left[\phi^{*}\binom{x}{\sim}\right] \forall \theta^{\prime} \in H_{1}\left(\theta_{0}\right) \\
& \text { or, } E_{\theta^{\prime}}\left[1-\phi_{0}(X)\right] \leq E_{\theta^{\prime}}\left[1-\phi^{*}\left(\frac{X}{n}\right)\right] \\
& \text { or, } P_{\theta^{\prime}}[x \in A(\theta)] \leq P_{\theta},\left[x \in A^{*}(\theta)\right] \\
& \text { or, } P_{\theta^{\prime}}[S(\underset{\sim}{x}) \exists \theta\} \leq P_{\theta^{\prime}}\left\{S_{0}^{*}(\underset{\sim}{x}) \ni \theta\right\} \forall \theta^{\prime} \in H_{1}\left(\theta_{0}\right)
\end{aligned}
$$

This follows $S(X)$ is UMA unbiased family of confidence sets at level $(1-\alpha)$.
Ex.(1):- Let x_{1}, \ldots, x_{n} be a sample from $N\left(\mu, \sigma^{2}\right)$, where σ^{2} is known for testing $H_{0}: \mu=\mu_{0}$ againit $H_{1}: \mu \neq \mu_{0}$. Find a UMA $(1-\alpha)$ level confidence sets for μ.
Solution:- For testing of Hypothesis $H_{0}: \mu_{=}=\mu_{0} \mathrm{Vs}$. Hi: $\mu \neq \mu_{0}$ The UNP unbiased size $-\alpha$ test is given by

$$
\phi(x)= \begin{cases}1 & \text { if } \frac{\sqrt{n}\left|\left(\bar{x}-\mu_{0}\right)\right|}{\sigma}>c \\ 0 & \text { ow } \\ \text { as } x \text {-test. The consto }\end{cases}
$$

This test is known as z-test. The constant c can be determined by the size condition

$$
\begin{gathered}
E \mu_{0}[\phi(x)]=\alpha \\
\text { or, } p_{\mu_{0}}\left\{\frac{\sqrt{n}\left|\bar{x}-\mu_{0}\right|}{\sigma}>c\right\}=\alpha / 2
\end{gathered}
$$

which gives $c=\chi_{\alpha / 2}$.
Thus, the acceptance region corresponding to this UMP unblased size- α-test is given by

$$
A\left(\mu_{0}\right)=\left\{x: \frac{\sqrt{n}\left|\bar{x}-\mu_{0}\right|}{\sigma} \leq x_{\alpha / 2}\right\}
$$

By the above theorem, the UMA unbiared family of confidence sets $S(X)$ at level $(1-\alpha)$ is finally given by

$$
\begin{aligned}
S(\underset{n}{ }) & =\left\{\mu_{i} x_{\sim} \in A(\mu)\right\} \\
& =\left\{-z \alpha / 2 \leq \frac{\sqrt{n}(\bar{x}-\mu)}{\sigma} \leq z_{\alpha / 2}\right\} \\
& =\left\{-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2} \leq(\mu-\bar{x}) \leq \frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right\} \\
& =\left\{\bar{x}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2} \leq \mu \leq \bar{x}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right) .
\end{aligned}
$$

Ex.(2):- Wet X be arrow. with the density

$$
f_{x}(x \mid \theta)=\left\{\begin{array}{cc}
\frac{1}{\theta} \cdot e^{-x / \theta} & \text { if } x>0 \\
0 & \text { on }
\end{array}\right.
$$

cohere $\theta>0$. Consider the testing problem to: $\theta=\theta_{0}$ Vs. $H_{1}: \theta<\theta$.
Find out a UMA $(1-\alpha)$ level efamily of confidence sets corresponding to size- α UMP test.
Sd. The given family belong to the OPEF.
The Kemp size- acceptance region is given by

$$
\begin{aligned}
A(\theta) & =\{x: T(x) \geqslant c(\theta)\} \\
& =\{x: x \geqslant c(\theta)\}
\end{aligned}
$$

cohere, we choose $c(\theta)$ by

$$
P_{\theta_{0}}\left(A\left(\theta_{0}\right)\right)=1-\alpha
$$

or,

$$
\int_{0}^{c\left(\theta_{0}\right)} \frac{1}{\theta_{0}} \cdot e^{-x / \theta_{0}} d x=\alpha
$$

on, $\frac{1}{\theta_{0}}\left[-\theta_{0} e^{-x / \theta_{0}}\right]_{0}^{c\left(\theta_{0}\right)}=\alpha$

$$
\begin{aligned}
& \Rightarrow e^{-c\left(\theta_{0}\right) / \theta_{0}}+1=\alpha \\
& \Rightarrow c\left(\theta_{0}\right)=\theta_{0} \cdot \log \frac{1}{1-\alpha}, 0<\alpha<1
\end{aligned}
$$

Therefore, the corresponding UMA family of $1-\alpha$ level of confidence sets is given by

$$
\begin{aligned}
S(x) & =\{\theta: x \in A(\theta)\}=\left\{\theta: x \geqslant \theta \log \frac{1}{1-\alpha}\right\} \\
& =\left\{\theta: \theta \leq \frac{x}{\log \frac{1}{1-\alpha}}\right\}=\left(0, \frac{x}{\log \left(\frac{1}{1-\alpha}\right)}\right](\text { since } \theta>0)
\end{aligned}
$$

TESTING OB HYPOTHESIS
Stating the Problem: - The problem of testing hypothesis is posed as follows:
The decision is to be based on the value of a certain RY X, the distribution of which is known to belong to a class $\{f(x, \theta): \theta \in \Omega\}$. Take a rus. $\quad, \quad\left(x_{1}, \ldots, x_{n}\right)=x$ of size n from $\{f(x ; \theta): \theta \in \Omega\}$. To test cohether the data x supports the hypothesis $H_{0}: \theta \in \Omega_{0}$ or $H_{1}: \theta \in \Omega_{1}$, where

$$
\Omega=\Omega_{0} \cup \Omega_{1}
$$

Randomised Test: - We can slightly generalise the idea of a
following structure:
For any given data x, a test chooses among the two decisions: rejection of H_{0} or acceptance of H_{0}, with certain probabilities that depends on x and are denoted by $\phi(x)$ and $\{1-\phi(\underset{\sim}{x})\}$ respectively.

If the value of x is x, a random experiment is constructed with two possible outcomes R and R^{C} with probabilities $\phi(\underset{\sim}{x})$ and $\{1-\phi(x)\}$. Then perform the random experiment and if in this trial R occurs, the hypothesis to is rejected.

A randomised test is therefore completely characterized by a function $\phi(\underset{\sim}{x})$ such that
(i) $0 \leq \phi(\underset{\sim}{x}) \leq 1, \forall x \in x$
(ii) $\phi(x)=P\left[H_{0}\right.$ is rejected $/ x$ is observed $]$ \& $x \in X$

The function $\phi(x)$ is called the critical function of the test.
Non-randomised test:- If a test given by a critical function $\phi(x)$, cohich takes only the values 1 and 0 , then the set of points for which $\phi(x)=1$ is just the region of rejection on critical region, say W. Then

$$
\phi(x)=\left\{\begin{array}{l}
1, x \in W \\
0, x \in x-W
\end{array}\right.
$$

Note that the test given by $\phi(x)$ is then a non-randomised test.'
A non-randomised test procedure assigns to each passible data x, one of the two decisions: rejection of H_{0} on acceptance of H_{0}, with certainty and there by divides the sample space x into two complementary tor ions W and $x-W$ such that if x falls in W, the hypothesis is rejected; Otherwise it is accepted. The set W is called the critical region.

Power function and Testing Problem: \sim
If the distribution of x is $L(\underset{\sim}{x}, \theta)$ and the critical function $\phi(x)$ is used, then the power function of the test given by $\phi(\underset{\sim}{x})$ is

$$
=\left\{\begin{array}{l}
\sum_{x \in x} \phi(\underset{\sim}{x}) L(\underset{\sim}{x}, \theta) \text {, if } x \text { is of discrete type. } \\
\int_{x} \phi(\underset{\sim}{x}) \cdot L(\underset{\sim}{x}, \theta) d x
\end{array}\right.
$$

$$
=E_{\theta}[\phi(x)]=\beta_{\phi}(\theta), \text { say }
$$

Let $\alpha \in(0,1)$ be a chosen level of significance. A test given by $\phi(\underset{\sim}{x})$ is called a level α test if $\beta_{\phi}(\theta) \leq \alpha, \forall \theta \in \Omega_{0}$

$$
\Leftrightarrow \sup _{\theta \in \Omega_{0}} \beta \phi(\theta) \leq \alpha .
$$

- If for a test given by $\phi(\underset{\sim}{x})$,
$\sup _{\theta \in \Omega_{0}} \beta_{\phi}(\theta)=\alpha^{*}$, then the size of the test is α^{*} or $\phi(\underline{x})$ is a size α^{*} test.

For a preassigned level α, consider those tests $\phi(\underset{\sim}{x})$ whose size is $\leq \alpha$ that is, consider the class of level α tests. Then in the class of level α tests, find a test $\phi(\underset{\sim}{x})$ whose power $\beta_{\phi(\theta)}$ is maximum, $\theta \in \Omega_{1}$.
Therefore, the problem is to select a critical function $\phi(\underset{\sim}{x})$ so as to maximize the power.
$\beta_{\phi}(\theta)=E_{\theta} \phi(\underset{\sim}{x}), \forall \theta \in \Omega_{1}$, subject to the condition,

$$
\begin{aligned}
E \phi(\theta) \leq \alpha, \forall \theta \in \Omega_{0} \\
\Leftrightarrow_{\theta \in \Omega_{0}} \sup _{\theta} \phi(x) \leq \alpha
\end{aligned}
$$

$$
\begin{aligned}
& P\left[\text { reject } H_{0}\right]=\left\{\begin{array}{r}
\sum_{x \in x} P_{\theta}\left[r \text { rect } H_{0} / \underset{\sim}{x} \text { is observed }\right] L(x, \theta), \text { if } \\
x \text { is of discrete type. }
\end{array}\right. \\
& \underset{\sim}{x} \text { is of discrete type. }
\end{aligned}
$$

$$
\begin{aligned}
& X \text { is of continuous type. }
\end{aligned}
$$

Testing a simple Null hypothesis against a simple alternative:
Let $\left(X_{1}, \ldots, x_{n}\right)$ be a nos. from one or other member of the parametric family $\left\{f_{0}(x), f_{1}(x)\right\}$. We coish to test
$H_{0}: X_{i} \sim f_{0}(x)$ against $H_{1}: x_{i} \sim f_{1}(x)$.
[If the members of the parametric family $\left\{f_{0}(x), f_{1}(x)\right\}$ have the same probability law and $f_{0}(x)=f\left(x, \theta_{0}\right)$, $f_{1}(x)=f\left(x, \theta_{1}\right)$. Then the testing problem becomes $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$. Here $\Omega=\left\{\theta_{0}, \theta_{1}\right\}$ is the parameter space.]
Most Pocoerful test: - Let $C_{\alpha}=\left\{\phi(x): E_{f_{0}}\{\phi(x) \leq \alpha\}\right.$ be the class of all level α tests for testing H_{0} against H_{1}. A test $\phi^{*}(\underset{\sim}{x}) \in C_{\alpha}$ is called most powerful test for testing H_{0} against H_{1} at level α if

$$
\begin{aligned}
& H_{1} \text { at level } \alpha \text { if } \\
& E_{f_{1}}\left[\phi^{*}(\underset{\sim}{x})\right]>E_{f_{1}}[\phi(x)], \forall \phi(\underset{\sim}{x}) \in C_{\alpha} \cdot
\end{aligned}
$$

Construction of MP test: - Let X be a rus. from one or other member of the parametric family $\left\{f_{0}(x), f_{1}(x)\right\}$.

To test $H_{0}: x \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$.
suppose this too distr are discrete. If at first, we restrict attention to non-randomised test, the optimum test is defined as a critical region W satisfying $\sum_{x \in W} f_{0}(x) \leq \alpha$ and $\sum_{x \in W} f_{1}(x)$ is maximum.

To each point $x \in x$, there are two attached value, its probabilities under $f_{0}(x) \& f_{1}(x)$.

The selected points in W are to have a total value not exceeding α under $f_{0}(x)$ and as large as possible under $f_{1}(x)$. The selected points in W should have $f(x)$ so that we can a ffort large no. of points under the restriction (*) and simultaneously should have large $f_{1}(x)$ so that $\sum_{x \in w} f_{1}(x)$ is as large as possible.
Here the most xalurable points are those with the highest value e of $r(x)=\frac{f_{1}(x)}{f_{0}(x)}$.

The points $x^{\prime} s$ are therefore rated according to the value of the ration $r(x)$ and select for W in this order, as many as one can afford under the restriction (*).
Formally, this means W is the set of all points x for cohich $r(x)>C$, where C is determined from $P_{H_{0}}[x \in W]=\sum f_{0}(x)=\alpha$.

Here a difficulty may arise, it may happen that a certain point is included, the value α has not yet being reached, but it would be exceeded if the next point coos also included. The next value α can be achieved by permitting randomisation.
Ex. (1):- Let X be a RV with PMF under H_{0} and under H_{1} are given by

x	1	2	3	4	5	6
$f_{0}(x)$	0.01	0.01	0.01	0.01	0.01	0.95
$f_{1}(x)$	0.05	0.01	0.03	0.04	0.02	0.85

Find a MP test for testing $H_{0}: X \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$ at level $\alpha=0.03$.
Solution:-

x	1	2	3	4	5	6
$r(x)=\frac{f_{1}(x)}{f_{0}(x)}$	5	1	3	4	2	0.89

Here $r(1)>r(4)>r(3)>r(5)>r(2)>r(6)$.
Here $\alpha=0.03$
Then $x=1$ is the first point to fall in the critical region W; $x=4$ is the second point, $x=3$ is the $3^{\text {rod }}$ to go, etc., such that $\sum_{x \in W} f_{0}(x)=\alpha=0.03$

Note that, $f_{0}(1)+f_{0}(4)+f_{0}(3)$

$$
\begin{aligned}
& =0.01+0.01+0.01 \\
& =0.03
\end{aligned}
$$

Hence, $W=\{1,4,3\}$ is a most powerful (MP) critical begion for testing to against H_{1} at level $\alpha=0.03$,
The MP critical region can be expressed as

$$
w=\{x: r(x)>2\}
$$

Neyman-Pearson MP Test:- The above consideration are formulated in the following lemma:
Fundamental Lemma of Neyman-Pearson: \sim
(I) Sufficiency Part: - For testing $H_{0}: x \sim f_{0}(x)$ against
$H_{1}: X \sim f_{1}(x)$, any test $\phi(x)$ satisfying $E\left[\phi(x) / H_{0}\right]=\alpha$.

$$
\text { and } \phi(x)=\left\{\begin{array}{cc}
1 & \text { if } f_{1}(x)>k \cdot f_{0}(x) \tag{*}\\
\nu(x) & \text { if } f_{1}(x)=k f_{0}(x) \\
0 & \text { if } f_{1}(x)<k \cdot f_{0}(x)
\end{array}\right.
$$

for some $k \geqslant 0,0 \leq \gamma(x) \leq 1$ is MP for testing H_{0} against H_{1}, at level α.
Proof:- suppose that $\phi(x)$ is a test satisfying (*) and (*) and $\phi^{*}(x)$ is any test with $E\left[\phi^{*}(x) \mid H_{0}\right] \leqslant \alpha$. Denote by

$$
x^{+}=\left\{\begin{array}{l}
\left.x: f_{1}(x)-k f_{0}(x)>0\right\} \text { and } x^{-}=\left\{x: f_{1}(x)-k f_{0}(x)<0\right\} \\
\text { subsets of the sample space } x
\end{array}\right.
$$

The two subsets of the sample space x !
Assume that x is a continuous R.V.
Note that

$$
\begin{align*}
& \int_{x}\left\{\phi(x)-\phi^{*}(x)\right\}\left\{f_{1}(x)-k f_{0}(x)\right\} d x \\
= & \int_{\cup}\left\{\phi(x)-\phi^{*}(x)\right\}\left\{f_{1}(x)-k f_{0}(x)\right\} d x \\
& x^{+} \\
\geqslant & 0 \tag{1}
\end{align*}
$$

[For $x \in x^{+}, f_{1}(x)-k f_{0}(x)>0$ and

$$
\phi(x)-\phi^{*}(x)=\left\{1-\phi^{*}(x)\right\} \geqslant 0
$$

for $x \in x^{-}, f_{1}(x)-k f_{0}(x)<0$ and

$$
\phi(x)-\phi^{*}(x)=-\phi^{*}(x) \leq 0 .
$$

The difference between the power of $\phi(x)$ and $\phi^{*}(x)$ is

$$
\begin{aligned}
& E\left[\phi(x) / H_{1}\right]-E\left[\phi^{*}(x) / H_{1}\right]=\int_{x}\left\{\phi(x)-\phi^{*}(x)\right\} f_{1}(x) d x \\
&>k \cdot \int_{x}\left\{\phi(x)-\phi^{*}(x)\right\} f_{0}(x) d x \text { from (1). } \\
&= k \cdot\left\{E\left[\phi(x) / H_{0}\right]-E\left[\phi^{*}(x) / H_{0}\right]\right\} \geqslant 0 \\
& {\left[\because E\left[\phi(x) / H_{0}\right]=\right.}\left.\alpha \text { and } E\left[\phi^{*}(x) / H_{0}\right] \leqslant \alpha\right]
\end{aligned}
$$

Hence, $E\left[\phi(x) \mid H_{1}\right] \geqslant E\left[\phi^{*}(x) \mid H_{1}\right]$, for any level α test $\phi^{*}(x)$.

Ex.(2):- Let $\left(x_{1}, \ldots, x_{n}\right)$ be a res. from

$$
f(x, \theta)= \begin{cases}\theta e^{-\theta x} & \text {, if } x>0 \\ 0 & , \text { ow }\end{cases}
$$

where, $\theta \in \Omega=\left\{\theta_{0}, \theta_{1}\right\}, \theta_{0}<\theta_{1}$ are unknowns. Find anMp test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ at level α,
Solution:- The PDF of $x=\left(x_{1}, \ldots, x_{n}\right)$ is

$$
\begin{aligned}
& \text { on:- The PDF of } x=\left(x_{1}, \ldots, x_{n}\right) \text { is } \\
& L(x, \theta)=\prod_{i=1}^{n} f\left(x_{i}, \theta\right)=\theta^{n} \cdot e^{-\theta_{i=1} x_{i}} \text {, if } x_{i}>0 \quad \forall i=1(1) n .
\end{aligned}
$$ cohere, $\theta \in \Omega=\left\{\theta_{0}, \theta_{1}\right\}$

[To test: $H_{0}: \underset{\sim}{x} \sim L\left(x, \theta_{0}\right)$ against $\left.H_{1}: \underset{\sim}{x} \sim L\left(\underset{\sim}{x}, \theta_{1}\right)\right]$
By $N-P$ lemma, $M P$ test for testing
$H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1},\left(\theta_{0}<\theta_{1}\right)$ is given by the critical function

$$
\phi(\underset{\sim}{x})= \begin{cases}1, & \frac{L\left(x, \theta_{1}\right)}{L\left(x, \theta_{0}\right)}=k^{*}>k \\ \gamma, & k^{*}=k \\ 0, & k^{*}<k\end{cases}
$$

such that $E\left[\phi(\underset{\sim}{x}) \mid H_{0}\right]=\alpha$.
Note that $\frac{L\left(\underset{\sim}{x}, \theta_{1}\right)}{L\left(\underset{\sim}{x}, \theta_{0}\right)}>k$

$$
\begin{aligned}
& \Rightarrow\left(\frac{\theta_{1}}{\theta_{0}}\right)^{n} \cdot e^{-\left(\theta_{1}-\theta_{0}\right) \cdot \sum_{i=1}^{n} x_{i}}>k \\
& \Rightarrow-\left(\theta_{1}-\theta_{0}\right) \sum_{i=1}^{n} x_{i}>k_{1}, \text { say } \\
& \Rightarrow \sum_{i=1}^{n} x_{i}<c, \text { say, as } \theta_{0}<\theta_{1}
\end{aligned}
$$

Here $\sum_{i=1}^{n} x_{i} \sim \operatorname{Gamma}(n, \theta)$ is a continuous R,V, and

$$
P_{\theta}\left[\frac{L\left(x, \theta_{1}\right)}{L\left(x, \theta_{0}\right)}=k\right]=P_{\theta}\left[\sum_{i=1}^{n} x_{i}=c\right]=0 \quad \forall \theta
$$

Hence, $\phi(\underset{\sim}{x})$ reduces to

$$
\phi(x)= \begin{cases}1, & \text { if } \sum_{i=1}^{n} x_{i}<c \\ 0, & 0 w\end{cases}
$$

where c is such that $\alpha=E\left[\phi\left(x_{n}\right) \mid H_{0}\right]$

$$
\begin{aligned}
& =1 . P_{H_{0}}\left[\sum_{i=1}^{n} x_{i}<c\right] \\
& =P \theta=\theta_{0}\left[2 \theta_{0} \sum_{i=1}^{n} x_{i}<2 \theta_{0} c\right] \\
& =P_{\theta}=\theta_{0}\left[x_{2 n}^{2}<2 \theta_{0} c\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 \theta_{0} c=\chi_{1-\alpha, 2 n}^{2} \\
& \Rightarrow c=\frac{1}{2 \theta_{0}} \cdot \chi_{1-\alpha, 2 n}^{2}
\end{aligned}
$$

[Here $x_{i} \sim$ Exp.coith mean $\frac{1}{\theta}, i=1(1) n$.

$$
\begin{aligned}
& \Rightarrow 2 \theta x_{i} \sim \chi_{2}^{2}, i=1(1) n \\
& \left.\Rightarrow 2 \theta \sum_{i=1}^{n} x_{i} \sim \chi_{2 n}^{2}\right]
\end{aligned}
$$

Hence, an MP test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}, \theta_{0}<\theta_{1}$ at level α is given by

$$
\phi(x)= \begin{cases}1, & \sum x_{i}<\frac{1}{2 \theta_{0}} x_{1-\alpha, 2 n}^{2} \\ 0, \text { ow }\end{cases}
$$

Remark:-
(1) Power function of the test is given by $\phi(\underline{x})$ is $\beta^{\beta}(\theta)=E_{\theta}\{\phi(x)\}$

$$
\begin{aligned}
& =P\left[\sum_{i=1}^{n} x_{i}<\frac{X_{1-\alpha, 2 n}^{2}}{2 \theta_{0}}\right] \\
& =P_{\theta}\left[2 \theta \sum_{i=1}^{n} x_{i}<\left(\frac{\theta}{\theta_{0}}\right) X_{1-\alpha, 2 n}^{2}\right] \\
& =P_{\theta}\left[X_{2 n}^{2}<\left(\frac{\theta}{\theta_{0}}\right) \cdot X_{1-\alpha, 2 n}^{2}\right] \\
& =F_{X_{2 n}^{2}}\left(\frac{\theta}{\theta_{0}} \cdot X_{1-\alpha, 2 n}^{2}\right)
\end{aligned}
$$

which is increasing in θ.
(2) It can be shown that an MP test of $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}, \theta_{1}<\theta_{0}$, at level α is given by

$$
\phi^{*}(x)= \begin{cases}1, & \sum_{i=1}^{n} x_{i}>\frac{x_{\alpha, 2 n}^{2}}{2 \theta_{0}} \\ 0,0 w\end{cases}
$$

The power function of the test $\phi^{*}(x)$ is $\beta_{\phi^{*}}(\theta)=1-F_{X_{2 n}^{2}}^{2}\left(\frac{\theta}{\theta_{0}} x_{\alpha, 2 n}^{2}\right)$ which decreases as θ increases.

(4) Note that the critical region point $\frac{1}{2 \theta_{0}} X_{1-\alpha, 2 n}^{2}$ and the corresponding test $\phi(x)$ depends only on θ_{0} and the relative position of θ_{1} w.r.t. θ_{0} but not on the exact value of θ_{1}. That is, The MP test $\phi(x)$ is independent of θ_{1} as long as $\theta_{1}>\theta_{0}$. for testing $H_{0}: \theta=\theta_{0}$ against any alternative $\theta_{1}\left(>\theta_{0}\right)$. That is, the test $\phi(x)$ remains MP for testing $H_{0}: \theta=\theta_{0}$ for testing $H_{0}: \theta=\theta_{0}$ against the composite alternative $H_{1}: \theta>\theta_{0}$.
Uniformly Most Powerful Test [UMP Test]:- We noco define an optimum test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$.
Definition:- Let $C_{\alpha}=\left\{\phi(x): E \theta_{0}[\phi(x)] \leq \alpha\right\}$ be the class of all level α tests form testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$. A test $\phi^{*}(x) \in C_{\alpha}$ is called UMP for testing $H_{0}: \theta=\theta_{0}$ against $H_{i}: \theta>\theta_{0}$ if
$E_{\theta}\left[\phi^{*}(x)\right] \geqslant E_{\theta}[\phi(x)], \forall \theta>\theta_{0}$ for all $\phi(x) \in C_{\alpha}$.
Use of $N-P$ lemma in finding UMP test for testing Simple null hypothesis against composite alternative: \sim Suppose to find a UMP test for testing $H_{0}: \theta=\theta_{0}$ against
$H_{1}: \theta>\theta_{0}$. By $N-P$ lemma. find an $M P$ test for testing $H_{1}: \theta>\theta_{0}$. By $N-P$ lemma. find an $M P$ test for testing
the simple null $H_{0}: \theta=\theta_{0}$ against the simple alternative the simple null $H_{0}: \theta=\theta_{0}$ against the simple alternative H: $\theta=\theta_{1}$ cohere $\theta 1>\theta_{0}$. If the $M P$ test, obtained is independent a mast powerful test for testing $H_{0}: \theta=\theta_{0}$ against any $\theta>\theta_{0}$ and is therefore a UMP test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$.
EX.(3):- Let x_{1}, \ldots, x_{n} be a rios, from $B(1, p), p \in \Omega=\left\{p_{0}, p_{1}\right\}$. Find an MP test for testing $H_{0}: p=p_{0}$ against $H_{1}: p=p_{1}$, $p_{1}>p_{0}$ at level α. Describe how randomization is applied to attain the exact size α.
Solution:- The PMF of $X=\left(x_{1}, \ldots, x_{n}\right)$ is

$$
L(x, p)=p i=1 x_{i}^{n}(1-p)^{n-i} \sum_{i=1}^{n} x_{i} ; x_{i}=0,1 .
$$

cohere, $p \in \Omega=\left\{p_{0}, p_{1}\right\}$.
By $N-P$ lemma, an MPtest for testing 1 to i $p=p_{0}$ against $H_{1}: p=p_{1}, p_{1}>p_{0}$, at level α is given by
$\phi(x)= \begin{cases}1 & \text { if } \frac{L\left(x, p_{1}\right)}{L\left(x, p_{0}\right)}=k^{*}>k \\ \gamma & \text { if } k^{*}=k \\ 0 & \text { if } k^{*}<k\end{cases}$
such that $E\left[\phi(\underset{\sim}{x}) / H_{0}\right]=\alpha$
Now, $\frac{L\left(\underset{\sim}{x}, p_{1}\right)}{L\left(\underset{\sim}{x}, p_{0}\right)}>k$

$$
\begin{aligned}
& \Rightarrow\left\{\frac{p_{1}\left(1-p_{0}\right)}{p_{0}\left(1-p_{1}\right)}\right\}^{\sum_{i=1}^{n} x_{i}}\left(\frac{1-p_{1}}{1-p_{0}}\right)^{n}>k \\
& \Rightarrow\left(\sum_{i=1}^{n} x_{i}\right) \cdot \ln \left\{\frac{p_{1}\left(1-p_{1}\right)}{p_{0}\left(1-p_{0}\right)}\right\}>k_{1}
\end{aligned}
$$

$\Rightarrow \sum_{i=1}^{n} x_{i}>c\left[\right.$ Here $p_{1}>p_{0}$ and $1-p_{0}>1-p_{1}$

$$
\text { Hence, } \phi(x)= \begin{cases}1, & \text { if } \sum_{i=1}^{n} x_{i}>c \\ \gamma, & \text { if } \Sigma x_{i}=c \\ 0, & \text { if } \Sigma x_{i}<c\end{cases}
$$

$$
\begin{aligned}
& \Rightarrow \frac{p_{p}\left(1-p_{0}\right)}{p_{0}\left(1-p_{1}\right)}>1 \\
& \left.\Rightarrow \ln \left\{\frac{p_{1}\left(1-p_{1}\right)}{p_{0}\left(1-p_{0}\right)}\right\}>0\right]
\end{aligned}
$$

cohere c and γ are determined from

$$
\alpha=E\left[\phi(\underline{\sim}) / H_{0}\right]=1 \cdot P_{H_{0}}\left[\sum_{i=1}^{n} x_{i}>c\right]+\gamma \cdot P_{H_{0}}\left[\sum_{i=1}^{n} x_{i}=c\right]
$$

Since, $\sum_{i=1}^{n} x_{i} \sim \operatorname{Bin}(n, p)$ is a discrete RV, there may not exist a " c ', $\ni P_{H_{0}}\left[\sum_{i=1}^{n} x_{i}>c\right]=\alpha$ is true. Then, randomization is required on the boundary set $\left\{x: \sum_{i=1}^{n} x_{i}=c\right\}$. Then there exists C_{1} such that $\left.P_{p_{0}}\left[\sum_{i=1}^{n} x_{i}\right\rangle C_{1}\right]=\alpha_{1}<\alpha<\alpha_{2}$, where, $\alpha_{2}=P_{p_{0}}\left[\sum_{i=1}^{n} x_{i}>c_{1}-1\right]$
In this case, we have $c=c_{1}$, and $\alpha=p_{p_{0}}\left[\sum_{i=1}^{n} x_{i}>c_{1}\right]+\gamma, p_{p_{0}}\left[\sum_{i=1}^{n} x_{i}=c_{1}\right]$

$$
\begin{aligned}
& \therefore \alpha=\alpha_{1}+\gamma\left(\alpha_{2}-\alpha_{1}\right) \\
& \Rightarrow \gamma=\frac{\alpha-\alpha_{1}}{\alpha_{2}-\alpha_{1}} .
\end{aligned}
$$

Hence, MP test for testing $H_{0}: p=p_{0}$ against $H_{1}: p=p_{1}$, $p_{1}>p_{0}$, at level α is given by

$$
\phi(x)=\left\{\begin{array}{c}
1 \quad \text { if } \sum_{i=1}^{n} x_{i}>c \\
\frac{\alpha-\alpha_{1}}{\alpha_{2}-\alpha_{1}}, \text { if } \sum_{i=1}^{n} x_{i}=c_{1} \\
0, \text { if } \sum_{i=1}^{n} x_{i}<c
\end{array}\right.
$$

where, $\left.P_{p_{0}}\left[\sum_{i=1}^{n} x_{i}\right\rangle C\right]=\alpha_{1}<\alpha\left\langle\alpha_{2}=P_{p_{0}}\left[\sum_{i=1}^{n} x_{i}\right\rangle C-1\right]$

Remark:-
(1). Power function of the test is given by $\phi(x)$ is

$$
\begin{aligned}
\beta_{\phi}(p) & =E_{p}[\phi(x)] \\
& =P_{p}\left[\sum_{i=1}^{n} x_{i}>c_{1}\right]+\frac{\alpha-\alpha_{1}}{\alpha_{2}-\alpha_{1}} P_{p}\left[\sum_{i=1}^{n} x_{i}=c_{1}\right] \\
& =\frac{\int_{0}^{p} u^{c_{1}-1}(1-u)^{n-c_{1}} d u}{B\left(c_{1}, n-c_{1}+1\right)}+\left(\frac{\alpha-\alpha_{1}}{\alpha_{2}-\alpha_{1}}\right) P_{p}\left[\sum_{i=1}^{n} x_{i}=c_{1}\right]
\end{aligned}
$$

cohich is increasing in p.
(2). Note that the MP test is given by $\phi(3)$ depends only on the relative position of p_{1} w,r,t. po but not on the exact value of p_{1}, that is $\phi(\underset{\sim}{x})$ is independent of p_{1} as long as $p_{1}>p_{0}$. Therefore it remains. MP at level α test for testing $H_{0}: p=p_{0}$ against any alternative $p_{1}>p_{0}$ and is therefore a UMP test for testing $H_{0}: p=p_{0}$ against

$$
H_{1}: p>p_{0}
$$

Ex.(4):- Let x_{1}, \ldots, x_{n} be r.s.from $N\left(0, Q^{2}\right)$. Find an $M P$ test for testing $H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma=\sigma_{1}, \sigma_{1}>\sigma_{0}$, at level α.
Also suggest a UMP test for testing $H_{0}: \sigma=\sigma_{0}$ against

$$
H_{1}: \sigma>\sigma_{0}
$$

Solution:- The PDF of $\underset{\sim}{x}$ is

$$
\begin{aligned}
& \text { cation:- The PDF of } x \text { is } \\
& L\left(x ; \sigma^{2}\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}{ }^{2}} ; x i \in \mathbb{R} \\
& N-P \text { lemma, an MP test at level } \alpha \text { of } H 0: \sigma=
\end{aligned}
$$

By $N-P$ lemma, an MP test at level α of $H_{0}: \sigma=\sigma_{0}$ against $H_{1}: \sigma=\sigma_{1}, \sigma_{1}>\sigma_{0}$ is given by

$$
\phi(x)= \begin{cases}1, & \text { if } \frac{L\left(x, \sigma_{1}^{2}\right)}{L\left(x, \sigma_{0}^{2}\right)}=k^{*}>k \\ \nu, & \text { if } k^{*}=k \\ 0, & \text { if } k^{*}<k\end{cases}
$$

such that $E\left[\phi(\underset{\sim}{x}) / H_{0}\right]=\alpha$
Now, $\frac{L\left(x, \sigma_{i}^{2}\right)}{L\left(x, \sigma_{0}^{2}\right)}>k$

$$
\begin{aligned}
& \left.\Rightarrow\left(\frac{\sigma_{0}}{\sigma_{1}}\right)^{n} \cdot e^{-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2} \cdot\left(\frac{1}{\sigma_{1}^{2}}-\frac{1}{\sigma_{0}^{2}}\right)>k} \begin{array}{l}
\Rightarrow-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\left(\frac{1}{\sigma_{1}^{2}}-\frac{1}{\sigma_{0}^{2}}\right)>k_{1} \quad\left[\begin{array}{l}
\text { Here } \sigma_{1}>\sigma_{0} \\
\Rightarrow \frac{1}{\sigma_{1}^{2}}<\frac{1}{\sigma_{0}^{2}} \\
\Rightarrow \sum_{i=1}^{n} x i^{2}>c .
\end{array} \quad \Rightarrow-\left(\frac{1}{\sigma_{1}^{2}}-\frac{1}{\sigma_{0}^{2}}\right)>0\right.
\end{array}\right]
\end{aligned}
$$

Also, $\quad P_{\rho}\left[\frac{L\left(\underset{\sim}{x}, \sigma_{1}^{2}\right)}{L\left(\underset{\sim}{x}, \sigma_{0}^{2}\right)}=k\right]$

$$
=\operatorname{Pr}\left[\sum_{i=1}^{n} x_{i}^{2}=c\right]=0
$$

Since, $\sum_{i=1}^{n} x_{i}^{2} \sim \sigma^{2} X_{n}^{2}$, a continuous distr..
Hence, $\phi(\underset{\sim}{x})= \begin{cases}1 & \text { if } \sum x_{i}{ }^{2}>c \\ 0 & \text { ow }\end{cases}$ cohere, c is determined from

$$
\begin{aligned}
\alpha=E\left[\phi(x) / H_{0}\right] & =P_{\sigma_{0}}\left[\sum_{i=1}^{n} x_{i}{ }^{2}>c\right] \\
& =P_{\sigma_{0}}\left[\sum_{\sum_{=1}^{n} x_{i}^{2}}^{\sigma^{2}}>\frac{c}{\sigma_{0}{ }^{2}}\right] \\
& =P\left[X_{n}^{2}>\frac{c}{\sigma_{0}{ }^{2}}\right]
\end{aligned}
$$

$$
\Rightarrow c=\sigma_{0}^{2} X_{\alpha, n}^{2}
$$

Hence, an MP test at level α of $H_{0}: \sigma=\sigma_{0}$ against $H_{i}: \sigma=\sigma_{1}$, $\sigma_{1}>\sigma_{0}$, is given by

$$
\begin{aligned}
& \text { is given by } \\
& \phi(x)= \begin{cases}1, & \text { if } \sum_{i=1}^{n} x_{i}^{2}>\sigma_{0}^{2}, x^{2} \alpha, n \\
0, & 0 w\end{cases} \\
& \text { or }(x) \text { depends on } T_{0} \text { and the relative }
\end{aligned}
$$

Hence, $\phi(\underset{\sim}{x})$ depends on T_{0} and the relative position σ_{1} w.r.t. σ_{0} but not on the exact value of σ_{1}. Hence, $\phi(x)$ remains MP for testing Ho such that $\sigma=\sigma_{0}$ against any alternative $\sigma_{1}\left(>\sigma_{0}\right)$. Hence, $\phi(x)$ is UMP test for testing $\sigma=\sigma_{0}$ against $H_{1}: \sigma>\sigma_{0}$ at level α,
Ex.(S): - Let $X_{1}, x_{2}, \ldots, x_{n}$ be nos. from $N\left(\mu, \sigma_{0}^{2}\right), \mu \in \Omega=\left\{\mu_{0}, \mu_{1}\right\}$ and 0_{0} is known. Find an $M P$ level α test of $H_{0}: \mu=\mu_{0}$ against $\mu=\mu_{1}\left(>\mu_{0}\right)$. Hence suggest an UMP test at level α for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0}$.

EX.(6):- Suppose the no. of system failure in each month has a $P(\lambda)$ distribution. The no. of such failure was observed for n months. Find an MP level α test for testing $H_{0}: \lambda=2$ again $H_{1}: \lambda=4$. Also suggest a UMP level α test for testing $H_{0}: \lambda=2$ against $H_{1}: \lambda>2$.

Ex 7. Let $\left(x_{1}, \ldots, x_{s}\right)$ be a pis. from the distr with PMF

$$
f_{0}(x)=\left\{\begin{array}{lll}
\theta^{x}(1-\theta)^{1-x} & ; x=0,1 & (0<\theta<1) \\
0 & ; \text { ow } &
\end{array}\right.
$$

Show that there does not exist an $M P$ CR of size $\alpha=0.10$ for testing $H_{0}: \theta=0.6 \mathrm{Vs}, H_{1}: \theta=\theta_{1}(>0.6)$.

Solution:-

$$
T=\sum_{i=1}^{5} x_{i}, \theta=0.6
$$

t	$P_{\theta_{0}}[T=t]$	$P_{\theta_{0}}[T \geqslant t]$
0	0.01024	1.00000
1	0.07680	0.98976
2	0.23040	0.91296
3	0.34560	0.68256
4	0.25920	0.38696
5	0.07776	0.07776

$$
\begin{aligned}
& \begin{array}{ll}
T_{H_{0}} \sim \operatorname{Bin}(s, 0.6) \quad \text { Ho: } \theta=\theta_{0}=0.6 \\
H_{1}: \theta=0.7(>0.6)
\end{array} \\
& f_{\theta}\left(x_{1}, \ldots, x_{5}\right)= \begin{cases}\theta^{2 x_{i}}(1-\theta)^{n-\sum x_{i}} & ; x_{i}=(0,1) ; i=1(1) 5 \\
0 & ; 0 W\end{cases} \\
& \therefore \quad f_{1}(x)>k f_{0}(x) \\
& \Rightarrow \frac{\theta_{1}^{\sum x_{i}}\left(1-\theta_{0}\right)^{2 x_{i}}}{\theta_{0}^{\sum x_{i}}\left(1-\theta_{1}\right)^{2 x_{i}}}>k^{\prime} \\
& \Rightarrow \sum_{i=1}^{5} x_{i}>k^{\prime \prime} \text {, say } \text {. }
\end{aligned}
$$

ie. $T \geqslant c$, where c is determined as $P_{H_{0}}[T \geqslant c]=0.10$ But $P_{H_{0}}[T \geqslant 5]=0.07776, P_{\text {Ho }_{0}}[T \geqslant 4]=0.33696$

$$
\therefore \nexists \text { any } c \ni P_{\text {Ho }}[T \geqslant c]=0.10 \text {. }
$$

To get an MP test of exact size $\alpha=0.10$, we randomize when $T=4$ is observed and the corresponding test is where γ is γ

$$
\begin{aligned}
& E H_{H_{0}}[\phi(x)]=0.10 \\
& \text { ie. } P_{H_{0}}[T>4]+\nu \cdot P_{H_{0}}[T=4]=0.10 \\
& \text { i.e. } 0.68256+8.0 .25920=0.10 \\
& \Rightarrow P=\quad \text { (Ans) }
\end{aligned}
$$

FX.(8): Leet x be a single observation from one or otter member of the family $\left\{p_{0}(x), p_{1}(x)\right\}$; where

$$
p_{0}(x)= \begin{cases}\left(\frac{1}{2}\right)^{x+1} & , x=0,1,2, \ldots \\ 0 & , \text { ow }\end{cases}
$$

and $\quad p_{1}(x)=\left\{\begin{array}{cl}\frac{1}{4}\left(\frac{3}{4}\right)^{x}, & x=0,1,2, \ldots \\ 0, & , W\end{array}\right.$
Find an MP test of $H_{0}: X \sim P_{0}(x)$ against $H_{1}: X \sim p_{1}(x)$ at level $\alpha=0.05$.
Solution:- Note that the testing problem reduces to
$H_{0}: p=\frac{1}{2}$ against $H_{1}: p=\frac{1}{4}$.
By N-P lemma, an MP test of $H_{0}: X \sim P_{0}(x)$ against $H_{1}: X \sim P_{1}(x)$ at level α is given by

$$
\phi(x)= \begin{cases}1 & \text { if } \frac{p_{1}(x)}{p_{0}(x)}=k^{*}>k \\ \gamma & \text { if } k^{*}=k \\ 0 & \text { if } k^{*}<k\end{cases}
$$

such that $E\left[\phi(x) / H_{0}\right]=\alpha$.
Note that $\frac{p_{1}(x)}{p_{0}(x)}>k$

$$
\begin{aligned}
& \Rightarrow \frac{3^{x}}{2^{x+1}}>k \\
& \Rightarrow\left(\frac{3}{2}\right)^{x}>2 k \\
& \Rightarrow x>c \text { as } \ln \left(\frac{3}{2}\right)>0
\end{aligned}
$$

Hence, $\phi(x)= \begin{cases}1 & \text { if } x>c \\ \nu & \text { if } x=c \\ 0 & \text { if } x<c\end{cases}$
where C and γ are such that

$$
\begin{aligned}
\alpha & =E\left[\phi(x) \mid H_{0}\right] \\
& =1 \cdot P_{p_{0}}[x>c]+\gamma P_{p_{0}}[x=c]
\end{aligned}
$$

Now,

$$
\begin{aligned}
& P_{p_{0}}[x>c]=\sum_{x>c} p_{0}(x) \\
& =\sum_{x=c+1}^{\infty}\left(\frac{1}{2}\right)^{x+1}=\frac{\left(\frac{1}{2}\right)^{c+2}}{1-\frac{1}{2}}=\left(\frac{1}{2}\right)^{c+1} \\
& \text { Note that, } P_{P_{0}}[x>4]=\frac{1}{2^{5}}<\alpha=\frac{1}{20}<\frac{1}{24}=P_{p}[x>3]
\end{aligned}
$$

Thees, select $c=4$, and then

$$
\begin{aligned}
& p_{p_{0}}[x>4]+\gamma \cdot p_{p_{0}}[x=4]=\alpha=\frac{1}{20} \\
\Rightarrow & \frac{1}{32}+\gamma \cdot \frac{1}{32}=\frac{1}{20} \\
\Rightarrow & \gamma=\frac{3}{5} .
\end{aligned}
$$

Hence an MP test of Ho against H_{1} at level $\alpha=0.05$ is

$$
\phi(x)=\left\{\begin{array}{cl}
1 & , x>4 \\
3 / 5 & , x=4 \\
0, & x<4
\end{array}=\left\{\begin{array}{cl}
1, & x=5,8, \ldots \\
0.6 & , x=4 \\
0, & x=0,1,2,3
\end{array}\right.\right.
$$

Remark:- Consider a test for testing
$H_{0}: x \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$, say

$$
\phi(x)= \begin{cases}1, & \frac{f_{1}(x)}{f_{0}(x)}>k \\ 0, & \text { ow } \\ k \text { and then } E>\phi(x\end{cases}
$$

for a given k and then $E\left[\phi(x) \mid H_{0}\right]=\alpha$; say.
By a sufficient part of NP lemma, $\phi(x)$ is anMPtest for testing Ho: $x \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$ at level

$$
E\left[\phi(x) / H_{0}\right]=\alpha, \text { say }
$$

Then $\phi_{1}(x)=\left\{\begin{array}{ll}1, & f_{1}(x) \\ 0, & f_{0}(x)\end{array}\right.$,
is an MP test for testing $H_{0}: x \sim f_{0}(x)$ against $H_{1}: X \sim f_{1}(x)$ at level $E\left[\phi_{1}(x) / H_{0}\right]=\alpha$, say and we say that $\phi_{1}(x)$ is an MP test of Ho against H_{1} of its size.

Ex.(9):-
(a) Find an MP test for testing $H_{0}: x \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$ based on a sample of size one from $\left\{f_{0}(x), f_{1}(x)\right\}$ cohere

$$
f_{0}(x)= \begin{cases}\frac{e^{-1}}{x!}, & , x=0,1,2, \ldots \\ 0, & \text { ow }\end{cases}
$$

and $f_{1}(x)=\left\{\begin{array}{cl}\frac{1}{2 x+1}, & x=0,1,2, \ldots \\ 0, \text { ow } \\ \text { ora lu a given va }\end{array}\right.$
Solution:- By N-P lemma, for a given value of K, the test $\phi(x)=\left\{\begin{array}{l}1, \text { if } \frac{f_{1}(x)}{f_{0}(x)}>k \\ 0, \text { ow }\end{array}\right.$
is an MP test for testing $H_{0}: x \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$ of its size.
Note that, $\gamma(x)=\frac{f_{1}(x)}{f_{0}(x)}=\frac{x}{2^{x}} \cdot \frac{e}{2}$.
and $\frac{\gamma(x)}{\gamma(x-1)}=\frac{x}{2} \geqslant 1$ according as $x \geqslant 2$.
clearly, $\gamma(0)>\gamma(1)=\gamma(2)<\gamma(3)<\gamma(4)<\ldots .$.
Then $x=1$ or 2 , are the last point to fall into the conical region, and $\gamma(0)>\gamma(3), x=3$ is the $3^{\text {rd }}$ last point to go; as $\gamma(0)<\gamma(4)$ $x=0$ is the $4^{\text {th }}$ last point, etc.
Hence, $\phi(x)=\left\{\begin{array}{l}1, x \neq 1,2,3,0 \text { or } x \in x-\{1,2,3,0\} \\ 0, \text { ow }\end{array}\right.$
is an MPtest of to against H_{1} of its size $=E\left[\phi(x) / H_{0}\right]$

$$
=1-\left(\sum_{x=0}^{3} \frac{e^{-1}}{x!}\right)=1-\frac{8}{3} e^{-1}
$$

Again, $\phi_{1}(x)= \begin{cases}1, & x \neq 1,2,3,0,4 \\ 0, & \text { w }\end{cases}$

$$
\begin{aligned}
\text { Again, } \phi_{1}(x)=\left\{\begin{array}{l}
1, x \neq 1,2,3,0,4 \\
0, \text { ow } \\
\text { is an MP Hest of Ho against } H \text { of its size }
\end{array}\right. & =E\left[\phi_{1}(x) / H_{0}\right] \\
& =1-\left(\sum_{x=0}^{4} \frac{e^{-1}}{x!}\right) \\
& =1-\frac{65}{24} e^{-1} .
\end{aligned}
$$

(b) [Continuation]

Show that $w=\left\{x: \frac{2^{x}}{x!}<\frac{e}{2}\right\}$
is an MP critical region for testing H_{0} against H_{1}. Also, show that the power of the test is greater' than the size.

Hints:-

$$
\begin{aligned}
W & =\{x: r(x)>1\} \\
& =\left\{x: \frac{x!}{2^{x}} \cdot \frac{e}{2}>1\right\} \\
& =\left\{x: \frac{2^{x}}{x!}<\frac{2}{e}\right\}
\end{aligned}
$$

Ex. (10):- Suppose our problem is to test $H_{0}: X \sim P_{0}(x)$ against $H_{1}: x \sim P_{1}(x)$, cohere

x	$P_{0}(x)$	$P_{1}(x)$
0	$1 / 40$	$4 / 5$
1	$15 / 40$	$1 / 10$
2	$1 / 5$	$1 / 20$
3	$2 / 5$	$1 / 40$
4	0	$1 / 40$

Find an MP test for testing Ho against H_{1} of its size.

Ex,(11):- Let x_{1}, \ldots, x_{n} be a r.s.f nom geometric distribution for with p.m.f.

$$
\begin{aligned}
& f_{x}(x)=\left\{\begin{array}{c}
p(1-p)^{x}, x=0,1,2, \ldots \\
0 \quad, 0 w \\
\Omega=\left\{p_{0}, p_{1}\right\}, p_{0}<p_{1} .
\end{array}\right.
\end{aligned}
$$

Find an MP test of $H_{0}: p=p_{0}$ against $H_{1}: p=p_{1}, p_{1}>p_{0}$ at level α. Also, show that the test can be carried out using binomial distribution.

Ex.(12):- Let X be a single observation from the $P D F$

$$
f(x ; \theta)=\left\{\frac{1}{\pi\left\{1+(x-\theta)^{2}\right\}}, \quad x \in \mathbb{R}\right.
$$

Show that the test $\phi(x)= \begin{cases}1, & \text { if } 1<x<3 \\ 0, & \text { ow }\end{cases}$
is an MP test for testing Ho: $\theta=0$ against $H: \theta=1$ of its size.
Solution:- For a particular palled k, the test

$$
\phi(x)= \begin{cases}1, & \frac{f(x, 1)}{f(x, 0)}>k \\ 0, & \text { ow }\end{cases}
$$

is an MPtest of Ho: $\theta=0$ against $H: \theta=1$ of its size, by NP lemma,
Now, $\frac{f(x, 1)}{f(x, 0)}>k \Rightarrow \frac{1+x^{2}}{1+(x-1)^{2}}>k$

$$
\begin{gathered}
f(x, 0) \\
\Rightarrow x^{2}(k-1)-2 k x+(2 k-1)<0 \\
\Rightarrow(x-1)>0, x^{2}-\frac{2 k}{(k-1)} x+\frac{2 k-1}{k-1}<0 \\
\Rightarrow(x-\beta)<0
\end{gathered}
$$

cohere, $\alpha+\beta=\frac{2 k}{k-1}$, and $\alpha \beta=\frac{2 k-1}{k-1}$

$$
\Rightarrow \quad \alpha<x<\beta
$$

In the given $M p$ test $\quad \alpha=1, \beta=3$.
Hence, $\left.1+3=\frac{2 k}{k-1} \Rightarrow k=2\right]$
Set, $k=2, \frac{f(x, 1)}{f(x, 0)}>2$

$$
\Rightarrow 1<x<3
$$

For $k=2$, the test $\phi(x)= \begin{cases}1, & 1<x<3 \\ 0,0 w \\ \text { is an } M P \text { test of to against } H_{1} \text { of its size }\end{cases}$

$$
\begin{aligned}
=E\left[\phi(x) / H_{0}\right] & =P[1<x<3 / \theta=0] \\
& =\int_{1}^{3} \frac{1}{\pi\left(1+x^{2}\right)} d x=\frac{1}{\pi}\left[\tan ^{-1} x\right]_{1}^{3} \\
& =\frac{1}{\pi}\left[\tan ^{-1} 3-\tan ^{-1} 1\right] \\
& =\frac{1}{\pi} \tan ^{-1}\left(\frac{S-1}{1+3.1}\right) \\
& =\frac{1}{\pi} \tan ^{-1}\left(\frac{1}{2}\right) .
\end{aligned}
$$

Ex. (13):- Find an Mutest of testing Ho such that $H_{0}: X \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$ of its size, where

$$
\begin{aligned}
& f_{0}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, x \in R \\
& f_{1}(x)=\frac{1}{2} e^{-|x|}, x \in R
\end{aligned}
$$

S.T. the powers of the test is greater than its size.

Solution:- By N-Plemma, for a particular value of k, the test $\phi(x)= \begin{cases}1, & \frac{f_{1}(x)}{f_{0}(x)}>k \\ 0, & \text { ow }\end{cases}$
is an MP test of H_{0} against H_{1} of its size.
Now, $\frac{f_{1}(x)}{f_{0}(x)}>k$

$$
\begin{aligned}
& \Rightarrow e^{\frac{1}{2}\left\{x^{2}-2|x|\right\}>k_{1}} \\
& \Rightarrow e^{\frac{1}{2}\left\{(|x|-1)^{2}-1\right\}}>k_{1} \\
& \Rightarrow(|x|-1)^{2}>k_{2}^{2}, k_{2}>0 \\
& \Rightarrow|x|-1<-k_{2} \frac{o r}{}|x|-1>k_{2} \\
& \Rightarrow|x|<c_{1} \text { or }|x|>c_{2}
\end{aligned}
$$

[Alternative:- Note that $f_{1}(x)$ has more probability in its tails and near 0 than $f_{0}^{\prime}(x)$ has. If either a very large on very small pale of x is observed, we suspect that ' H_{1} is trove rather than Ho. For some c_{1} and c_{2}, we shall reject H_{0} if $\frac{f_{1}(x)}{f_{0}(x)}>k$ equivalent. to $|x|<c_{1}$ or $|x|>c_{2}$.]
Hence, for some c_{1} and c_{2}, the test

$$
\phi(x)= \begin{cases}1,|x|<c_{1} & \text { or }|x|>c_{2} \\ 0, \text { ow } & \\ \text { against } H_{1} \text { of its size. }\end{cases}
$$

is an MP test of Ho against H_{1} of its size.
Note that, $\beta_{\phi}\left(f_{1}\right)=P_{f_{1}}\left[|x|<c_{1}\right.$ on $\left.|x|>c_{2}\right]$

$$
\begin{aligned}
& =\int_{W} f_{1}(x) d x, w=\left\{x:|x|<c_{1} \text { or }|x|>c_{2}\right\} \\
& >\int_{W} f_{0}(x) d x, \text { as } f_{1}(x)>f_{0}(x) \forall x \in w \\
& =P_{f_{0}}\left[|x|<c_{1} \text { or }|x|>c_{2}\right] \\
& =\beta_{\phi}\left(f_{0}\right) . \quad \text { Proved) }
\end{aligned}
$$

Ex.(11):- Find an $M P$ test of $H_{0}: X \sim N\left(0, \frac{1}{2}\right)$ against $H_{1}: X \sim C(0,1)$ of its size.
Solution:- For a given k, the test

$$
\phi(x)=\left\{\begin{array}{l}
1, \frac{f_{1}(x)}{f_{0}(x)}>k \\
0, \text { ow }
\end{array}\right.
$$

is an MP test of Ho against Ho of its size, By N-P lemma,
Note that, $\quad \frac{f_{1}(x)}{f_{0}(x)}>K$

$$
\Rightarrow \frac{e^{x^{2}}}{1+x^{2}}>k_{1, s a y}
$$

Leet $u(x)=\frac{e^{x^{2}}}{1+x^{2}}$

$$
\begin{aligned}
& \text { Now, } u^{\prime}(x)=\frac{\left(1+x^{2}\right) e^{x^{2}} \cdot 2 x-e^{x^{2}} \cdot 2 x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{2 x^{3} \cdot e^{x^{2}}}{\left(1+x^{2}\right)^{2}} \\
& {\left[u^{\prime}(0)=0 \Rightarrow 2 x^{3} \cdot R^{x^{2}}=0 \Rightarrow x=0 \text { or } e^{x^{2}}=0 \Rightarrow x^{2}=-\infty\right]} \\
& = \begin{cases}<0, & \text { if } x<0 \\
>0, & \text { if } x>0\end{cases} \\
& \text { From the graph, } u(x)>K_{1} \\
& \Leftrightarrow|x|>c_{1} \\
& \text { Hence, for a particular } \\
& \text { value of } c_{1} \text {, the test } \\
& \phi(x)= \begin{cases}1, & |x|>c_{1} \\
0, & o w\end{cases}
\end{aligned}
$$

is an MP test of to against H_{1} of its size.
Ex.(15):- Find an MP fest at level $\alpha=0.05$ fortesting Ho: $x \sim N(0,1)$ against $H: X \sim C(0,1)$.
Solcetion:- For a given k, the test $\phi(x)=\left\{\begin{array}{l}1, \frac{f_{1}(x)}{f_{0}(x)}>k \\ 0, \text { ow } \\ \text { is an MP test of Ho against th of its size, by NP lemma. } \\ \text { Note that }, r(x)=f_{1}(x)\end{array}\right.$

$$
\begin{aligned}
& r(x)=\frac{f_{1}(x)}{f_{0}(x)}>k \\
& \Rightarrow \frac{e^{x^{2} / 2}}{1+x^{2}}>k_{1} \text {, say }
\end{aligned}
$$

Let $U(x)=\frac{e^{x^{2} / 2}}{1+x^{2}}$
Note that, $u^{\prime}(x)=\frac{x\left(x^{2}-1\right) e^{x^{2} / 2}}{\left(1+x^{2}\right)^{2}}$

$$
\text { Now, } u^{\prime}(x)=\left\{\begin{array}{cc}
<0, & x<-1 \\
>0, & -1<x<0 \\
<0, & 0<x<1 \\
>0, & x>1
\end{array}\right.
$$

$\left[\begin{array}{l}\text { For } k>0.7979 \text {, then the } \\ \text { critical region: }\end{array}\right.$ critical region:
$|x|>c_{2}$ with size <0.1118.
For $0.6524 \leq k \leq 0.7979$, then critical region:

$$
|x|<c_{1} \text { or }|x|>c_{2} \text { with }
$$

size $\in(0.1118,0.3913)$

For, $k<0.6524$, the critical region: $x \in R$ with size $=1$.

For $\alpha=0.05$, a small quantity, then $u(x)>k_{1}$, where k, is such that $P\left[U(x)>k_{1} / H_{0}\right]=0.05$ and from the graph $u(x)>k_{1} \Leftrightarrow|x|>c_{2}$.
Hence, $\quad \phi(x)=\left\{\begin{array}{l}1,|x|>c_{2} \\ 0, \text { ow } \\ 0 \text { against }\end{array}\right.$
is an MP test of Ho against H_{1} at level $\alpha=0.05$, where

$$
\begin{aligned}
0.05 & =P\left[|X|>C_{2} / H_{0}\right] \\
& =P\left[|X|>c_{2} / X \sim N(0,1)\right] \\
& =2\left[1-\Phi\left(c_{2}\right)\right] \\
\Rightarrow 1-\Phi\left(c_{2}\right) & =0.025=1-\Phi\left(\tau_{0.025}\right) \\
\Rightarrow c_{2} & =\tau_{0.025}=1.96 .
\end{aligned}
$$

Hence, $\quad \phi(x)=\left\{\begin{array}{l}1,|x|>1.96 \\ 0, \text { ow }\end{array}\right.$
is an MPtest for testing Ho: $X \sim N(0,1)$ aycums $H: X \sim C($ 1) at lever $\alpha=0.05$.

Ex.(18):- Leet $f_{0}(x)=\left\{\begin{array}{cl}4 x & , 0<x<\frac{1}{2} \\ 4(1-x) & , \frac{1}{2} \leq x<1 \\ 0 & , 0 w\end{array}\right.$
and $f_{1}(x)=\left\{\begin{array}{l}1,0<x<1 \\ 0,0 w\end{array}\right.$
Find an Mutest of level α of Ho: $x \sim f_{0}(x)$ agdinst hi: $x \sim f(x)$. Find the power of this test.
Hints:- Note that

$$
r(x)=\left\{\begin{array}{r}
\frac{f_{1}(x)}{f_{0}(x)}=\left\{\begin{array}{ll}
\frac{1}{4 x}, & 0<x<\frac{1}{2} \\
\frac{1}{4(1-x)}, & \frac{1}{2} \leq x<1 \\
1 & r(x)
\end{array}\right. \text { that }
\end{array}\right.
$$

Now, $\quad \gamma(x)>k$

$$
\begin{aligned}
& \Rightarrow x<\frac{1}{2}-c \text { on } x>\frac{1}{2}+c \\
& \Rightarrow\left|x-\frac{1}{2}\right|>c \\
& {\left[\text { Note that, } r(x)=\frac{1}{4\left\{\frac{1}{2}-\left|x-\frac{1}{2}\right|\right\}}, 0<x<1\right]}
\end{aligned}
$$

Ex. (17):- Let $f(x, \theta)= \begin{cases}2 \theta \cdot x+2(1-\theta)(1-x), & 0<x<1 \\ 0 & \text { ow } \\ \text { where, } \theta \in \Omega=\left\{\theta_{0}, \theta_{1}\right\}, & \theta_{0}<\theta_{1} .\end{cases}$ Find an MP test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ of its size.

Ex. (18):- Let X_{1}, \ldots, X_{n} be a bis. from the PDF

$$
f(x ; \lambda)= \begin{cases}\frac{\lambda}{x^{\lambda+1}} & , x>1 \\ 0 & , \text { ow }\end{cases}
$$

Find an MP test for testing $H_{0}: \lambda=\lambda_{0}$ against $H_{i}: \lambda<\lambda_{0}$ at level α.

EX.(19):- Let $H_{0}: x \in f_{0}(x)$ against $H_{1}: x \in f_{1}(x)$; where

x	1	2	3	4	5
$f_{0}(x)$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$
$f_{1}(x)$	$1 / 6$	$1 / 4$	$1 / 6$	$1 / 4$	$1 / 6$

obtain an MP test of its size. For agiven size, is it unique?

Devising the best test :- In a non-sequential testing test is obtained by maximizing the probability of rejecting a false hypothesis (i.e. power) subject to the condition that the probability of rejecting a hypothesis when it is true (i.e. size) lies below a certain level. $\alpha \in(0,1)$, called level of significance or equal to some specified value.

If NP test \& LR test both exist then they will be identical.
Limitations of Neyman Pearson Lemma:-

1) Sample size is predetermined (i.e. non-sequential).
2) It gives optimum tests for testing simple ${ }^{2}$ alternative simple However, optimum testy for testing simple V_{s}. Composite alternative may be obtained by using this lemma,
Result:- If a sufficient statistic T exists, then the ND test coll be a function of the sufficient statistic.
Proof:- Since T is sufficient,
i.e, we can corite $f_{\theta}\left(x_{1}, \ldots, x_{n}\right)=g_{\theta}(t) h\left(x_{1}, \ldots, x_{n}\right)$ for $\theta \in \Theta=\left\{\theta_{0}, \theta_{1}\right\}$.
Consequently, we corrite.

$$
\begin{aligned}
& f_{1}\left(x_{1}, \ldots, x_{n}\right)>k, f_{0}\left(x_{1}, \ldots, x_{n}\right) \\
& \Leftrightarrow g_{\theta_{1}}(t) h(x)>k g_{\theta_{0}}(t) h(x) \\
& \Leftrightarrow \frac{g_{\theta_{1}}(t)}{g_{\theta_{0}}(t)}>k .
\end{aligned}
$$

For testing Ho: $\theta=\theta_{0} V_{s}, H_{1}: \theta=\theta_{1}$, the NP lemma has the BR

$$
\begin{aligned}
& W_{0}=\left\{x \mid f_{1}(x)>k f_{0}(x)\right\} \\
&=\left\{t \left\lvert\, \frac{g_{\theta_{1}}(t)}{g_{0_{0}}(t)}>k\right.\right\} \rightarrow \text { of function } \\
& \text { (sufficient) } T .
\end{aligned}
$$

Hence, the result is proved.
(ii) Necessary Part of NP lemma: -

If $\phi(x)$ is an $M P$ test at level α, for testing $H_{0}: X \sim f_{0}(x)$ against $H_{1}: X \sim f_{1}(x)$, then for some $k \geqslant 0$, it satisfies

$$
\phi(x)=\left\{\begin{array}{cc}
1, & f_{1}(x)>k \cdot f_{0}(x) \tag{*}\\
0 & , f_{1}(x)<k f_{0}(x)
\end{array}\right]
$$

It also satisfies $E\left[\phi(x) / H_{0}\right]=\alpha$ \qquad
unless there exists a test of size $<\alpha$ with power 1 .
In the process of contructing an MP test, it is possible to reach at a critical negion coith pocoer $=1$, before reaching at size $=\alpha$. Then a zest of size less than α, coll be an MP test. An MP level α test may not be unique but it is always possible to find an MP test with size $=\alpha$,

It is important to note that MP test is uniquely, determined by (*) and (**) except on the set $\left\{x_{i} f_{1}(x)=k f_{0}(x)^{0}\right\}$, on this set, $\phi(\cdot)$ can be defined arbitarily provided the resulting test has size α and consequently $\phi(x)$ may not be unique. Actually it is always possible to define ϕ to be constant over this boundary set $\left\{x: f_{1}(x)=k f_{0}(x)\right\}$.

It follows that the MP test is determined uniquely by (*) and (*) conenever the set $\left\{x: f_{1}(x)=k f_{0}(x)\right\}$ has measures ' $O^{\prime}($ in particular probability $O)$. This uniare test is then clearly non-randomized. [see Ex. (2)]. More generally, it is seen that randomization is not required except possible on the boundary set where it may be necessary to randomize in order to get the size $=\alpha$ [see Ex.(3)] .

Theorem:- NP lemma and sufficient statistic:
If a non-trivial sufficient statistic T exists for the family $\left\{f_{\theta_{0}}(x), f_{\theta_{1}}(x)\right\}, \theta \in \Omega=\left\{\theta_{0}, \theta_{1}\right\}$, then MP test for testing $H_{0}: x \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$ is a function of T.
Solution:- By factorization theorem,

$$
\begin{aligned}
& \text { sion:- By factorization theorem, } \\
& f_{0}(x)=g(t, \theta) \cdot h(x) ; \theta \in \frac{\rho}{}=\left\{\theta_{0}, \theta_{1}\right\} \\
& \text { necessary part of NP lemma, an MP test }
\end{aligned}
$$

By necessary part of NP lemma, an MP test of $H_{0}: x \sim f_{\theta_{0}}(x)$ against $H_{1}: X \sim f_{\theta_{1}}(x)$ must be in the form:

$$
\phi(x)=\left\{\begin{array}{l}
1, f \theta_{1}(x) / f \theta_{0}(x)>k \\
0, f \theta_{1}(x) / f \theta_{0}(x)<k
\end{array}\right.
$$

for some $k \geqslant 0$.

Hence, the form of MP test reduces to

$$
\phi(x)= \begin{cases}1, & \frac{g\left(t, \theta_{1}\right)}{g\left(t, \theta_{0}\right)}>k \\ 0, & \frac{g\left(t, \theta_{1}\right)}{g\left(t, \theta_{0}\right)}<k\end{cases}
$$

for some K.
that is, MPtest can be defined in terms of T only.
Alternative:- If $\phi(x)$ is any test of Ho against H_{1}, then we define $\psi(t)=E[\phi(x) / T=t]$ which is free from θ, as T is sufficient.
Note that, as $0 \leq \phi(x) \leq 1$,

$$
0 \leq \psi(t) \leq 1
$$

and $E_{\theta}[\phi(x)]=E_{\theta}\{E[\phi(x) / T]\}$

$$
=E_{\theta}\{\Psi(T)\}, \forall \theta
$$

Hence, for any test function $\phi(x)$, there is an equivalent test function $\varphi(t)$ which depends on x only through' t '.

If a family of distr admits a nontrivial
sufficient statistic, then to find MP test one can restrict attention to tests based on the sufficient statistic.

Hence an MP test is a function of a
sufficient statistic.
EX.(1):- Let $\phi(x)$ be anMP test of $H_{0}: x \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$ at level α. Let $\beta=E\left[\phi(x) / H_{1}\right]<1$. Show that $\{1-\phi(x)\}$ is an MP test for testing the null hypothe sis H_{1} against the alternative to at level ($1-\beta$).
Solution:- As $\phi(x)$ is an MP test of $H_{0}: x \sim f_{0}(x)$ against $H_{H}: X \sim f_{1}(x)$ at level α, be necesserity part of N-Plemma, we must have

$$
\begin{array}{ll}
\phi(x)= \begin{cases}1 & , \frac{f_{1}(x)}{f_{0}(x)}>k \\
0 & , \\
f_{1}(x) / f_{0}(x)<k\end{cases}
\end{array}
$$

with $E\left[\phi(x) / H_{0}\right]=\alpha$ and $\beta=E\left[\phi(x) / H_{1}\right]<1$
Note that

$$
\begin{aligned}
1-\phi(x) & = \begin{cases}0, & \frac{f_{1}(x)}{f_{0}(x)}>k \\
1, & \frac{f_{1}(x)}{f_{0}(x)}<k\end{cases} \\
& = \begin{cases}1, & \frac{f_{0}(x)}{f_{1}(x)}>\frac{1}{k}=k^{*} \\
0, & \frac{f_{0}(x)}{f_{1}(x)}<k^{*}\end{cases}
\end{aligned}
$$

By sufficient part of $N-P$ lemma, $\{1-\phi(x)\}$ is an Mptest of $H_{1}: X \sim f_{1}(x)$ against $H_{0}: X \sim f_{0}(x)$ of its size

$$
\begin{aligned}
& =E\left[(1-\phi(x)) / H_{1}\right] \\
& =1-\beta, \\
\text { with power } & =E\left[\{1-\phi(x)\} / H_{0}\right] \\
& =1-\alpha .
\end{aligned}
$$

Non-existance of UMP tests:
If NP MP test of $H_{0}: \theta=\theta_{0}$ against $H: \theta=\theta$ is independent of $\theta_{1}\left(>\theta_{0}\right)$, then MP +est becomes UMP test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$.

In general, $M P$ test of Ho $_{0} \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}, \theta_{1} \neq \theta_{0}$, depends on θ_{1}, them there is no UMP test for testing $H_{0}: \theta=\theta_{0}$ against $H: \theta \neq \theta_{0}$. This means that a UMP test of Ho: $\theta=\theta_{0}$ against $H: \theta \neq \theta_{0}$, usually does not exist.
Ex.(2):- Let X_{1}, \ldots, X_{n} be a res. from $N\left(\mu, \rho_{0}^{2}\right), P_{0}$ known. Find a UMP test at level α for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu>\mu_{0}$. Also find a UMP test at level α for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu<\mu_{0}$. Hence, show that there does not exist a UMP test for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$.
Solution:- By $N-P$ lemma, an MP level α test, for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu_{1}=\mu_{1}, \mu_{1}>\mu_{0}$ is

$$
\phi(x)= \begin{cases}1, & \frac{L\left(x, \mu_{1}^{\prime}\right)}{L\left(x, \mu_{0}\right)}=k^{*}>k \\ \gamma, & k^{*}=k \\ 0, & k^{*}<k\end{cases}
$$

with $E\left[\phi(\underset{\sim}{x}) / H_{0}\right]=\alpha$
$L(x, \mu)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma_{0}{ }^{2}} \cdot \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}$
Here $L(x, \mu)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n}$
Hence, $\frac{L\left(x, \mu_{1}\right)}{L\left(x, \mu_{0}\right)}>k$

$$
\begin{aligned}
& L\left(x, \mu_{0}\right. \\
\Rightarrow & -\frac{1}{2 \sigma_{0}^{2}}\left[\sum\left(x_{1}-\mu_{0}\right)^{2}-\sum\left(x_{i}-\mu_{1}\right)^{2}\right]
\end{aligned} k k
$$

Also, $P_{\mu}\left[\frac{L\left(\frac{x}{n}, \mu_{1}\right)}{L\left(\frac{x}{n}, \mu_{0}\right)}=k\right]=p_{\mu}[\bar{x}=c]=0$.
Then, $\phi(x)= \begin{cases}1, & \bar{x}>c \\ 0, & \text { ow }\end{cases}$
where c is such that

$$
\text { that } \begin{aligned}
\alpha & =E\left[\phi(x) / H_{0}\right] \\
& =1, P \mu_{=} \mu_{0}[\bar{x}>c] \\
& =P \mu_{=}=\mu_{0}\left[\frac{\bar{x}-\mu_{0}}{\sigma_{0} / \sqrt{n}}<\frac{c-\mu_{0}}{\sigma_{0} / \sqrt{n}}\right] \\
& =P\left[Z<\frac{\left(c-\mu_{0}\right) \sqrt{n}}{\sigma_{0}}\right], z \sim N(0,1) \\
& \frac{\left(c-\mu_{0}\right)}{\sigma_{0}} \sqrt{n}=\tau \alpha \\
\Rightarrow c & =\mu_{0}+\frac{\sigma_{0}}{\sqrt{n}} \tau \alpha .
\end{aligned}
$$

$$
\Rightarrow \frac{\left(c-\mu_{0}\right) \sqrt{n}}{\sigma_{0}}=\tau_{\alpha}
$$

Hence, an MP level α test, for testing $H_{0}: \mu=\mu$ against $H_{1}: \mu=\mu_{1}, \mu_{1}>\mu_{0}$ is

$$
\phi=\mu_{1}, \mu_{1}>\mu_{0} \text { in }=\left\{\begin{array}{l}
1, \quad \bar{x}>\mu_{0}+\frac{\sigma_{0}}{\sqrt{n}} \tau_{\alpha} \\
0, \text { ow at } \\
\text { Mp test } \alpha \text {-level fo }
\end{array}\right.
$$

Similarly, an $M P$ test α-level for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu=\mu_{1} ; \mu_{1}<\mu_{0}$ is

$$
\phi^{*}(x)=\left\{\begin{array}{l}
1, \bar{x}<\mu_{0}-\frac{\sigma_{0}}{\sqrt{n}} \tau_{\alpha} \\
0, \text { ow } \\
\end{array}\right.
$$

clearly, $\phi(x)\left[\right.$ or, $\left.\phi^{*}(x)\right]$ depends only on μ_{0} and on the relative position of μ_{1} wist. μ_{0} but not on the exact value of μ_{1}.
Hence, $\phi(x)\left[\frac{0}{x} \phi^{*}(x)\right]$ remains MP for testing $H_{0}: \mu=\mu_{0}$ against any alternative $\mu_{1}\left(>\mu_{0}\right)$ or $\mu_{1}\left(<\mu_{0}\right)$.
Therefore, $\phi(\underset{\sim}{x})\left[\right.$ on, $\left.\phi^{*}(\underset{\sim}{x})\right]$ is a UMP level α test of $H_{0}: \mu=\mu_{0}$ against $H_{i}: \mu=\mu_{1}$ [on, against $\left.H_{i}: \mu<\mu_{0}\right]$.
Note that, $\beta_{\phi}(\mu)=E_{\mu}[\phi(\underset{\sim}{x})]$

$$
\begin{aligned}
& =P_{\mu}\left[\bar{x}>\mu_{0}+\frac{\sigma_{0}}{\sqrt{n}} \tau_{\alpha}\right] \\
& =P_{\mu}\left[\frac{\bar{x}-\mu_{1}}{\sigma_{0} / \sqrt{n}}>\frac{\mu_{0}-\mu_{1}}{\sigma_{0} / \sqrt{n}}+\tau_{\alpha}\right] \\
& =1-\Phi\left(\tau_{\alpha}+\frac{\mu_{0}-\mu_{1}}{\sigma_{0} / \sqrt{n}}\right) \uparrow \mu_{\mu}
\end{aligned}
$$

and $\beta_{\phi^{*}}(\mu)=\Phi\left(\frac{\mu_{0}-\mu_{1}}{\sigma / \sqrt{n}}-\sigma_{\alpha}\right) \downarrow \mu^{\prime}$

For $\mu>\mu_{0}, \beta \phi(\mu)>\beta_{\phi^{*}}(\mu)$ and for $\mu_{\mu}<\mu_{0}, \beta_{\phi}(\mu)<\beta_{\phi^{*}}{ }^{(\mu)}$ for any other zest, for $\mu<\mu_{0}$, the power of ϕ^{*} is greater than that of the test. Therefore, there $(0, \alpha)$. is no UMP test for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$.

EX.(3):- Let X_{1}, \ldots, X_{n} be a res. from $N\left(0,0^{2}\right)$. Show that There does not exist a UMP test for testing $H_{0}: \sigma=\sigma_{0}$ against $H_{i} ; \sigma \neq \sigma_{0}$.

Unblasedness for hypothesis testing:-
A sample δ addition that one may wish to improve on tests of the hypothesis $H_{0}: \quad \theta \in \Omega_{0}$ against $H_{1}: \theta \in \Omega_{1}$ is that, a test reject y a false Ho more often than a trove Ho', that is, the probability of rejecting H_{0} when it is false is at least as large as the probability of rejecting H_{0} cohen it is true. This seems to be a reasonable requirement to place of a good test.
Definition:- A test $\phi(x)$ with the powerfenctions

$$
\begin{aligned}
& \beta_{\phi}(\theta)= E_{\theta}[\phi(x)] \text { satisfies } \\
& \sup _{0} \beta(\theta)=\alpha \text { and } \\
& \theta \in \Omega_{0} \\
& \beta_{\phi}(\theta) \geqslant \alpha, \theta \in \Omega_{1}
\end{aligned}
$$

is said to be an unbiased size α test for tasting $H_{0}: \theta \in \Omega_{0}$ against $H_{H}: \theta \in \Omega_{1}$.
If, for a test $\phi(x)$, there exists a $\theta \in \Omega_{1}$, such that $\beta \phi(\theta)<a$, then $\phi(x)$ is called a Biased test,
"Theorem:- An MP test is necessarily unbiased..
[If β is the power of the MP test, $0<\alpha<1$, for testing $H_{0}: x \sim f_{0}(x)$ against $H_{1}: x \sim f_{1}(x)$, then $\beta>\alpha$ unless $\left.f_{0}(x)=f_{1}(x) \forall x\right]$
Proof:- Consider a test given by $\phi(x)=\alpha, \forall x \in x$ Note that $E\left[\phi(x) / H_{0}\right]=\alpha=E\left[\phi(x) / H_{1}\right]$
Hence, $\phi(x)$ is a size α test with power α.
As β is the power of an MP test among all level α tests,

$$
\begin{aligned}
& \beta \geqslant E\left[\phi(x) / H_{0}\right]=\alpha \\
& \Rightarrow \text { power } \geqslant \text { size. }
\end{aligned}
$$

Hence, an MP test is unbiased.
[If $0<\alpha=\beta<1$, for $\alpha \in(0,1)$ then the power of an $M P$ level α test $\phi(x)$ for testing $H_{0}: x \sim f(x)$ against
$H_{6}: x \sim f_{1}(x)$ is α.

$$
\begin{aligned}
& H_{1}: X \sim f_{1}(x) \text { is } \alpha, \\
& \Rightarrow E\left[\phi(x) / H_{0}\right]=E\left[\phi(x) / H_{1}\right], \forall \phi(x) \\
& \Rightarrow \int_{X} \phi(x) \cdot f_{0}(x) d x=\int_{x} \phi(x) \cdot f_{1}(x) d x \quad \forall \phi(x) \\
& \left.\Rightarrow f_{0}(x)=f_{1}(x) \forall x \in x\right] .
\end{aligned}
$$

Corollary:- A UMP level α test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$ is unbiased.
Proof: - Leet $\phi(x)$ denotes a level α test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}, \theta_{1}>\theta_{0}$.

Then $\phi(x)$ is unbiased. If $\phi(x)$ does not depend on $\theta_{1}\left(>\theta_{0}\right)$, then $\phi(x)$ is a UMP level α test for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$ and continuous to be unbiased. Hence, a UMP level α test for testing Ho: $\theta=00$ against Hi: $\theta>\theta_{0}$ exists and it is unbiased.
Examples of Biased Tests: -
Let X_{1}, \ldots, X_{n} be a rus, from $N\left(\mu, \sigma_{0}^{2}\right), \sigma_{0}$ is unknown. show that the test $\phi(x)=\left\{\begin{array}{l}1, \bar{x}>\mu_{0}+\frac{\sigma}{\sqrt{n}} \tau_{\alpha} \\ 0, o w\end{array}\right.$
or

$$
\phi^{*}(x)=\left\{\begin{array}{l}
1, \bar{x}<\mu_{0}+\frac{\sigma_{0}}{\sqrt{n}} \tau_{\alpha} \\
0,0 W
\end{array}\right.
$$

are biased tests for testing $H_{0}: \mu=\mu_{0}$ against $H_{i}: \mu \neq \mu_{0}$.
Hints:-
For $\mu<\mu_{0}, \beta \phi(\mu)<\beta \phi\left(\mu_{0}\right)=\alpha$

$$
\Rightarrow \text { power }>\text { size }
$$

For $\mu>\mu_{0}, \beta \phi^{*}\left(\mu_{0}\right)<\beta_{\phi^{*}}\left(\mu_{0}\right)=\alpha$

$$
\Rightarrow \text { power }<\text { size }
$$

UMPU tests:- For a large class of problems, a UMP test does not exist, in this cases, it may be possible to restrict the class of all level α test to the class of all level α unbiased test and find a UMP test in the class of level α unbiased test.
Definition:- The U_{α} be the class of all unbiased level α test for testing Ho: $\theta \in \Omega_{0}$ against $H_{1}: \theta \in \Omega$, If there exists a test $\phi \in U_{\alpha}$ that has maximum power at each $\theta \in \Omega 1$, we call $\phi(\cdot)$ a UMPU level α test,

Definition:- (UMP Critical Region):- wet $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an $r . s$. on an riv. X having distr belonging to the family

$$
f=\left\{F_{\theta}: \theta \in \Theta\right\}
$$ (UMP) critical region of size α for testing $H_{0}: J \theta=\theta_{0} V_{s}$.

$H_{D}: \theta \neq \theta_{0}$ if $\quad P_{\theta_{0}}\left(W_{0}\right)=\alpha \cdots . .(1)$
and $P_{\theta}\left(W_{0}\right) \geqslant P_{\theta}(W) \quad \forall \quad \theta \neq \theta_{0}$
whatever the other region W, satisfying (1) may be.
Definition (MP critical Region): - The critical region Wo is called a Most Powerful (MP) critical region of size α for testing $H_{0}: \theta=\theta_{0} \quad V_{s}, H_{1}: \theta=\theta_{1}$ if

$$
\begin{equation*}
P_{\theta_{0}}(w)=\alpha \tag{1}
\end{equation*}
$$

$$
\text { and } \quad P_{\theta_{1}}\left(W_{0}\right) \geqslant P_{\theta_{1}}(W)
$$

whatever the other $C R \quad W$, satisfying (1), may be.
Definition (Unbiasedness of a test):- For testing $H_{0}: \theta \in(H)_{0}$ Vs $H_{1}: \theta \in(H)$, a size α test given by the critical region W (on, critical region \varnothing) is said to be unbaiased if

$$
P_{\theta}(W)>, \alpha \quad \forall \theta(H)
$$

$$
\left[0 n, E \theta[\phi(x)] \geqslant \alpha \forall \theta \in\left(H_{1}\right]\right.
$$

Definition (UMPUtest): - A test given by the $C R W_{0}$ [a critical function \varnothing is said to be uniformly most powerful unbiased (UMPU) of size α for testing $H_{0}: \sqrt{\theta} \in(H) V_{S} H_{1}: \theta \in(H)$ if
(i) Size condition: $\sup _{\theta \in(1)} P_{\theta}\left(W_{0}\right)=\alpha$
(ii) Unbiasedness condition:- $P_{\theta}\left(W_{0}\right) \geqslant \alpha \forall \theta \in$ (ti). .
(iii) Power Condition:- $P_{\theta}\left(W_{0}\right) \geqslant P_{\theta}(W) \forall W$ satisfying (i) f [uniformly for every $\theta \in$ (ii) $]$

Further DESIDERATA for a Pest of Hypothesis:

1) Monotonicity of Power flenction:-

$$
\beta_{w}(\theta)>\beta_{w}\left(\theta^{\prime}\right) \forall \theta \geqslant \theta^{\prime}
$$

i.e. When a null hypothesis is to be tested against a composite alternative one must like that the power of the test should increase with increase in the divergence of the true parameter point from the null hypothesis.
2) Consistency: - The sequence of testy corresponding to $\left\{W_{n}\right\}$ is consistent if for every value of θ lying in $\left(\oplus-\left(H_{0}\right)\right.$, the power, $P_{\theta}\left(W_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$.
3) Invariance Property: we shall say that the problem of testing Ho: $\theta \in(H)$ Vs. $H: \theta \in(\Theta)-\Theta 0)$ remains invariant under the transformation g of \mathcal{X} if the corresponding tramformation \bar{g} (one-th-one function) of leaves (H) (and hence (H)- (H) $)$ unchanged.

The likelihood Ratio Test:
Let $X_{N}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random vector coith PDF or MF $L(\underset{\sim}{x} ; \theta), \theta \in \Omega \leq R^{k}$.
Consider the problem of testing the nell hypothesis
$H_{0}: \theta \in \Omega_{0}$ against $H_{1} ; \theta \in \Omega_{1}$, cohere $\Omega_{0} \cup \Omega_{1}=\Omega$.
Note that $\sup L(\underset{\sim}{x} ; \theta)$ is the best possible explanation of the data x in the sense of maximum likelihood that the null hypothesis H_{0} can provide and $\sup L(x ; \theta)$ is the best possible explanation of x under Ω_{1}. The basic idea is to compare $\sup _{\theta \in \Omega_{0}} L(x ; \theta)$ and $\sup _{\theta \in \Omega_{1}} L(x ; \theta)$.
Note that the ratio $\frac{\sup _{\theta \in \Omega_{0}} L(x ; \theta)}{\operatorname{Sep}_{\operatorname{L}} L(x ; \theta)} \begin{aligned} & \theta \in \Omega \text { is bounded, we make the }\end{aligned}$
comparison in a slightly different way by defining the livelihood ratio

$$
\lambda(\underset{\sim}{x})=\frac{\sup _{\theta \in \Omega_{0}}^{\sup _{\theta \in \Omega} L(x ; \theta)},}{(x)}
$$

Here $\Omega_{0} \in \Omega, \operatorname{sub}_{\theta \in \Omega_{0}} L(x ; \theta) \leq \sup _{\theta \in \Omega} L(x ; \theta)$.
Also note that $\lambda(x)$ is a statistic and $0 \leq \lambda(x) \leq 1$.
Now, a small value of $\lambda(x)$ near zero indicates that there is a much better explanation of the data x under $\Omega=\Omega_{0} \cup \Omega_{1}$, than the best one provided by H_{0}.
Hence, if $\lambda(x)$ is small near zero, then the data supports H and. suspect Ho.
Definition:- (1). For testing Ho: $\theta \in \Omega_{0}$ against $H_{1}: \theta \in \Omega_{1}$, a test of the form: reject H_{0} if $\lambda(x)<c$, where c is a contant which is determined by from the size restriction $\alpha=\sup _{\theta \in \Omega_{0}} P[\lambda(\underset{\sim}{x})<c]$ is called a likelihood ratio test of size α.
(2.) The likelihood ratio test statistic for testing to: $\theta \in \Omega_{0}$ versus $H_{1} ; \theta \in \Omega_{1}$ is

$$
\lambda(\underset{\sim}{x})=\frac{\sup _{0} L(\theta \mid \underset{\sim}{x})}{\sup _{\Omega} L(\theta \mid \underset{\sim}{x})}
$$

A likelihood ratio test Ω (LRTT) is any test that has a rejection region of the form $\{\underset{\sim}{x}: \lambda(\underset{\sim}{x}) \leq c\}$, wo here e is any number satisfying $0 \leq c \leq 1$.

$$
\begin{aligned}
& \therefore \lambda=\lambda(\underset{\sim}{x})=\frac{\left.L(\hat{H})_{0}\right)}{L(\hat{H})}=\frac{\operatorname{Sup}_{\theta \in(\hat{H}} L(\underset{\sim}{x}, \theta)}{\sup _{\theta \in(\hat{H})} L(x, \theta)} ; \\
& 0 \leq \lambda \leq 1
\end{aligned}
$$

Ex, (1):- Leet X_{1}, \ldots, X_{n} be an res. from

$$
f(x ; \theta)=\left\{\begin{array}{cl}
\theta e^{-\theta x} & , \text { if } x>\theta \\
0 & , \text { ow } \\
\text { OT } & \text { Hin } \theta=\theta=\theta
\end{array}\right.
$$

Find the size α LRT of (i) $H_{0}: \theta=\theta_{0}$ again $H_{1}: \theta \neq \theta_{0}$
(ii) Ho: $\theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$
(iii) $H_{0}: \theta \geqslant \theta_{0}$ against $H_{1}: \theta<\theta_{0}$

Solution:-
The likelihood function is

$$
L\left(x_{\infty} ; \theta\right)= \begin{cases}\theta^{n} e^{-\theta} \sum_{i=1}^{n} x_{i} & , \text { if } x_{i}>\theta \\ 0 & \text { ow } \\ \text { cohere }, \theta>0, & \end{cases}
$$

(i). To test $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \neq \theta_{0}: \sim$

Here $\Omega_{0}=\left\{\theta_{0}\right\}$ and $\Omega=\{\theta, \theta>0\}$
The likelihood ratio is $\quad\left[\begin{array}{l}\because e^{-\theta_{0} n \bar{x}+\frac{1}{x} \cdot n \bar{x}} \\ =e^{-\theta_{0} n \bar{x}+n}\end{array}\right]$

$$
\lambda=\frac{\sup _{\theta \in \Omega_{0}} L(x ; \theta)}{\sup _{\theta \in \Omega} L(\underline{x} ; \theta)}=\frac{L\left(x ; \theta_{0}\right)}{(\hat{\theta})^{n} \cdot e^{-\hat{\theta}} \sum_{i=1}^{n} x_{i}}
$$

cohere, $\hat{\theta}=\frac{1}{\bar{x}}$ is the MLE of θ under Ω.
Here,

$$
\begin{aligned}
\lambda & =\left(\theta_{0} \bar{x}\right)^{n} \cdot e^{-n\left(\theta_{0} \bar{x}-1\right)} \\
& =y^{n} \cdot e^{-n(y-1)} \text {, where } y=\theta_{0} \bar{x}
\end{aligned}
$$

Now, $\frac{d \lambda}{d y}=y^{n} \cdot e^{-n(y-1)}(-n)+n y^{n-1} \cdot e^{-n(y-1)}$

$$
\begin{aligned}
& =n y^{n-1} \cdot e^{-n(y-1)}\{1-y\} \\
& = \begin{cases}>0 & \text { if } y<1 \\
<0 & \text { if } y>1\end{cases}
\end{aligned}
$$

From graph, $\lambda<c$

$$
\begin{gathered}
\Rightarrow y<k_{1} \text { or } y>k_{2} \\
\Rightarrow 2 \theta_{0} \sum_{i=1}^{n} x_{i}<a \text { or } 2 \theta \sum_{i=1}^{n} x_{i}>b
\end{gathered}
$$

where, $2 n k_{1}=a, 2 n k_{2}=b$.
Here, the size a LRT is given by:
Reject to if $\lambda>e$ off $2 \theta_{0} \sum_{i=1}^{n} x_{i} \notin[a, b]$
, cohere ' ' ' ' ' $^{\prime}$ ' are such that

$$
\begin{aligned}
& \alpha=P_{H O}\left[2 \theta_{0} \sum_{i=1}^{n} x_{i} \notin[\dot{a}, b]\right] \\
& =1-P_{H_{0}}\left[a \leqslant 2 \theta_{0} \sum X_{i} \leqslant b\right] \\
& =1-P\left[a \leqslant X_{2 n}^{2} \leqslant b\right] \\
& =1-F_{X_{2 n}^{2}}^{2}(b)+F_{X_{2 n}^{2}}^{2}(a) \text { and } \lambda\left(k_{1}\right)=\lambda\left(k_{2}\right) \Rightarrow k_{1}^{n} e^{-n\left(k_{1}-1\right)} \\
& \begin{array}{l}
\Rightarrow k_{1} e^{n} \cdot k_{1}-\left(k_{2}-1\right) \\
=k_{2}^{n} \cdot e^{-n}
\end{array}
\end{aligned}
$$

(ii) To test $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}:$ -

Here $\Omega_{0}=\left\{\theta_{0}\right\}$ and $\Omega=\left\{\theta \geqslant \theta_{0}\right\}$
the likelihood ratio is

$$
\lambda=\frac{\sup _{\theta \in e_{0}} L(x ; \theta)}{\sup _{\theta \in \Omega} L(x ; \theta)}=\frac{\theta_{0}^{n} \cdot e^{-\theta_{0} \sum_{i=1}^{n} x_{i}}}{\sup _{\theta \geqslant \theta_{0}}\{L(x, \theta\}\}}
$$

For $\theta>0, L(\underset{x}{x}, \theta)$ is maximum at $\theta=\frac{1}{\bar{x}}=\hat{\theta}$

$$
\begin{aligned}
& \therefore \text { Sup } L(x, \theta) \\
& =\left\{\begin{array}{l}
\left.\hat{\theta} \geqslant \theta_{0}, \hat{\theta}\right)^{n} e^{-\hat{\theta}} 2 x i \\
\theta_{0}^{n} \cdot e^{-\theta_{0} \sum x i}, \text { if } \theta_{0}<\hat{\theta} \\
\theta_{0}>\hat{\theta}
\end{array}\right. \\
& \text { loco } \lambda=\left\{\left(\theta_{0} \bar{x}\right)^{n} \cdot e^{-n\left(\theta_{0} \bar{x}\right.}\right.
\end{aligned}
$$

Now, $\lambda=\left\{\left(\theta_{0} \bar{x}\right)^{n} \cdot e^{-n\left(\theta_{0} \bar{x}-1\right)}\right.$,

The size α LRT is given
by: Reject to iff $\lambda<c$, iff $2 \theta_{0} \sum_{i=1}^{n} x_{i}^{1}<a$
where ' a ' is such that $\alpha=P_{H_{0}}^{i=1}\left[2 \theta_{0} \sum_{i=1}^{n} x_{i}<a\right]$

$$
\begin{aligned}
& \therefore \alpha=P\left[X_{2 n}^{2}<a\right] \\
& \Rightarrow a=\chi_{1-\alpha ; 2 n}^{2} .
\end{aligned}
$$

Therefore the size α LRT is given by:
Reject to iff $\sum_{i=1}^{n} x_{i}<\frac{\chi_{1}^{2}-\alpha, 2 n}{2 \theta_{0}}$.
(iii) Hint:-

$$
\lambda=\frac{\operatorname{sut}_{\theta \geqslant \theta_{0}} L(x, \theta)}{\sup _{\theta \in \Omega} L(x, \theta)}
$$

The size \propto LRT is given by : Reject tho if $\sum_{i=1}^{n} x_{i}>\frac{X_{\alpha, 2 n}^{2}}{2 \theta_{0}}$.
Remark: - In fact, the LRT defined above is UMP level α test of $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$. The situation in the example is not merely a coincidence for an OPEF, it can be shown that an LRT of $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$ is UMP of its size.

Ex.(2):- Let $x_{1}, x_{2}, \ldots, x_{n}$ be a r.s. from $N\left(\theta, \sigma^{2}\right), \sigma^{1}$ known. Derive size α LRT for testing
(i) $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \neq \theta_{0}$
(ii) $H_{0} ; \theta=\theta_{0}$ against $H_{1} ; \theta>\theta_{0}$.
show that the LRT's obtained are unbiased.
Solution:- The likelihood function is

$$
\begin{aligned}
& L(x ; \theta)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2} \text {; where } \theta \in \mathbb{R} \\
& \text { To test H0: } \theta=\theta_{0} \text { against Hi: } \theta \neq \theta_{0}:-
\end{aligned}
$$

(i) To test Ho: $\theta=\theta_{0}$ against $H_{i}: \theta \neq \theta_{0}:$ -

Here $\dot{\varepsilon}_{0}=\left\{\theta_{0}\right\}$ and $\Omega=\left\{\theta_{0}: \theta \in \mathbb{R}\right\}$
The Likelihood patio is

$$
\begin{aligned}
\lambda & =\frac{\sup _{\theta \in \Omega 0} L(x ; \theta)}{\operatorname{sep} L(x, \theta)} \\
& =\frac{L\left(x, x_{n}, \theta_{0}\right)}{\sup L(x, \theta)} \\
& =\frac{\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta_{0}\right)^{2}}}{\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} \\
& =e^{-\frac{1}{2 \sigma^{2}}\left\{\sum\left(x_{i}-\theta_{0}\right)^{2}-\sum\left(x_{i}-\bar{x}\right)^{2}\right\}} \\
& =e^{-\frac{1}{2 \sigma^{2}} \cdot n\left(\bar{x}-\theta_{0}\right)^{2}}
\end{aligned}
$$

Note that $\lambda<c$

$$
\begin{aligned}
& \text { Mote that }-\frac{n}{2 \sigma^{2}}\left(\bar{x}-\theta_{0}\right)^{2}<c \\
& \Rightarrow e^{2}>c_{1} \\
& \Rightarrow \frac{n\left(\bar{x}-\theta_{0}\right)^{2}}{\sigma^{2}}>\mid>k, \text { say } \\
& \Rightarrow\left|\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}\right|
\end{aligned}
$$

The size α LRT is given by:
Reject to iff $\lambda>C$ if $\left|\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}\right|>k$, where k is such that

$$
\begin{aligned}
& \alpha=P_{H_{0}}\left[\left|\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}\right|>k\right]=p[|z|>k], z \sim N(0,1) \\
& \quad \Rightarrow k=\tau_{\alpha / 2} .
\end{aligned}
$$

The size α LRT is given by: Reject to if

$$
\left|\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}\right|>\tau_{\alpha / 2}
$$

(ii). To test $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta>\theta 0:$ Here $\Omega_{0}=\left\{\theta_{0}\right\}$ and $\Omega=\left\{\theta_{0}: \theta \geqslant \theta_{0}\right\}$
The Likelihood ratio is

$$
\begin{aligned}
& =\frac{L\left(\underset{\sim}{x}, \theta_{0}\right)}{\sup _{\theta} \geqslant \theta_{0}(x, \theta)} \text {. }
\end{aligned}
$$

Here $L(x, \dot{\theta})$ is maximum at $\theta=\bar{x}=\hat{\theta}$.
Now, $\sup _{\theta \geqslant \theta_{0}} L(x, \theta)= \begin{cases}L(x, \hat{\theta}), & \text { if } \bar{x}>\theta_{0} \\ L\left(x, \theta_{0}\right) & \text { if } \theta_{0} \geqslant \bar{x}\end{cases}$
Here,

$$
\lambda= \begin{cases}e^{-\frac{1}{2 \sigma^{2}} \cdot n\left(\bar{x}-\theta_{0}\right)^{2}} & \text { if } \theta_{0}<\bar{x} \\ 1 & , \text { if } \theta_{0} \geqslant \bar{x}\end{cases}
$$

Note that, $\lambda<c(<1)$

$$
\begin{aligned}
& \text { ole that, } \lambda<c(<1) \\
& \Rightarrow e^{-\frac{1}{2 \sigma^{2}} \cdot n\left(\bar{x}-\theta_{0}\right)^{2}<c \text {, colure } \theta_{0}<\bar{x}} \\
& \Rightarrow \frac{n\left(\bar{x}-\theta_{0}\right)}{\sigma}>c_{1} \text {, cohere } \bar{x}>\theta_{0} \\
& \Rightarrow \frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}>k \text {, as } \bar{x}-\theta_{0}>0 \\
& \text { 暍 is given by : Reject Ho ff }
\end{aligned}
$$

The size α LRT is given by: Reject Ho if $\lambda<c$ iff $\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}>k$, where k is such that

$$
\begin{aligned}
\alpha & =\rho_{H_{0}}\left[\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}>k\right] \\
& =P[z \ni k], z \sim N(0,1) \\
\Rightarrow k & =\tau_{\alpha} .
\end{aligned}
$$

The size α LRT is given by : Reject Ho of $\bar{x}>\theta_{0}+\frac{\rho}{\sqrt{n}} \tau^{\prime} \alpha$, which is the UMP test for testing $H_{0} ; \theta=\theta_{0}$ against $H_{1}: \theta>\theta_{0}$ and is unbiased.
The power function of the LRT of HO: $\theta=\theta_{0}$ against

$$
\begin{aligned}
H_{i}: \theta \neq \theta_{0} & \text { is } \beta(\theta)
\end{aligned}=P_{H_{0}}\left[\left|\frac{\sqrt{n}\left(\bar{x}-\theta_{0}\right)}{\sigma}\right|>\tau_{\alpha / 2}\right] \quad\left(\frac{\sqrt{n}\left(\theta_{0}-\theta\right.}{\sigma}-\tau_{\alpha / 2}\right)
$$

$$
\begin{array}{r}
\text { Note that, } \left.\quad \begin{array}{r}
\beta^{\prime}(\theta)=\phi\left(\frac{\sqrt{n}\left(\theta_{0}-\theta\right)}{\sigma}+\tau_{\alpha / 2}\right)\left(\frac{\sqrt{n}}{\sigma}\right)-\phi\left(\frac{\sqrt{n}\left(\theta_{0}-\theta\right)}{\sigma}-\tau_{\alpha / 2}\right) \\
\\
\\
\text { if } \theta>\theta_{0}
\end{array}\right)
\end{array}
$$

Now,

$$
\begin{aligned}
\beta^{\prime}(\theta) & >0 \text { if } \theta>\theta_{0} \\
& <0 \text { if } \theta<\theta_{0}
\end{aligned}
$$

Clearly, $\beta(\theta)>\beta\left(\theta_{0}\right) \forall \theta \neq \theta_{0}$

$$
\Rightarrow \text { Pocoer > size }
$$

ill. the LRT is unbiased.

Ex.(3):- Let $X_{1}, \ldots . ., x_{n}$ be an $b \cdot s$. from $B(1, p)$ poplin.. Derive a LRT of its size of $H_{0}: p=p_{0}$ against $H_{1}: p \neq p_{0}$.
Solution:- Here $\Omega_{0}=\left\{p_{0}\right\}$ and $\Omega=\{p ; 0<p<1\}$
The Likelihood function is

The LR is

$$
\begin{aligned}
& \lambda=\frac{\sup _{p \in \Omega_{0}}^{\sup } L(x, p)}{p \in \Omega, p)}=\frac{L\left(x, p_{0}\right)}{L(x, p)} \text {, where } \\
& x \in p^{k}=\frac{2 x_{i}}{n}=\frac{t}{n} \text { is the MLE of punder } \Omega
\end{aligned}
$$

$\lambda=\frac{p_{0} t\left(1-p_{0}\right)^{n-t} p^{n}=\frac{\sum x_{i}}{n}=\frac{t}{n} \text { is the MLE of punder } \Omega \text {. }}{p^{n} t\left(1-p^{n}\right)^{n-t}}$,

$$
=\left(\frac{n p_{0}}{t}\right)^{t}\left(\frac{n\left(1-p_{0}\right)}{n-t}\right)^{n-t}
$$

Now, $\ln \lambda=t \ln \left(\frac{n p o}{t}\right)+(n-t) \ln \left\{\frac{n\left(1-p_{0}\right)}{n-t}\right\}$

$$
\text { and } \frac{d}{d t} \ln \lambda=\ln \left(\frac{n p_{0}}{t}\right)-\ln \left\{\frac{n\left(1-p_{0}\right)}{n-t}\right\}
$$

$$
=\ln \left(\frac{n p_{0}}{t} \cdot \frac{n-t}{n\left(1-p_{0}\right)}\right)
$$

$$
= \begin{cases}>0, & \text { if } t<n p_{0} \\ <0 \text {, if } t>n p_{0} \\ \rightarrow t>k_{2} \text { or } t<\end{cases}
$$

From graph, $\lambda<c \Rightarrow t>k_{2}$ or $t<k_{1}$ The LRT of its size is given by;
Reject to if $\lambda<c$ ff $\sum_{i=1}^{n} x_{i}<k_{1}$ on

$$
\sum_{i=1}^{n} x_{i}>k_{2} \ni \lambda\left(k_{1}\right)=\lambda\left(k_{2}\right)
$$

Remark:- The LR test is specifically careful cohen θ is multiparameter and wo wish to test hypertarosis concerning one of the parameters, the remaining parameter is as nuisance parameter.

Ex.(4):- Let $X_{1}, \ldots . x_{n}$ be a bis.ffrom $N\left(\mu, \sigma^{2}\right)$ when μ and σ are unknown. Derive the size \propto LRT of
(i) $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$
(ii) $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu_{1}>\mu_{0}$

Solution:- The likelihood function is

$$
\begin{aligned}
& L(x, \theta)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} \text {; } \\
& \text { there, } \mu \in \pi, \pi>0 \text { and } \theta=(\mu, \sigma) \text {. }
\end{aligned}
$$

cohere, $\mu \in \pi, \sigma>0$ and $\theta=(\mu, \sigma)$.
(i) To test $H_{0}: \mu_{1}=\mu_{0}$ against $H_{1}: \mu \neq \mu_{0}$.

Here $\Omega_{0}=\left\{\left(\mu_{0}, \sigma\right): \sigma>0\right\}$ and

$$
a=\{(\mu, \sigma): \mu \in \mathbb{R}, \sigma>0\}
$$

Note that $\sup _{\theta \in \Omega 0} L(\underset{\sim}{x}, \underset{\sim}{\theta})$

$$
\text { Gat } \begin{aligned}
& \sup _{\theta \in \Omega_{0}}(x, \theta) \\
&= \sup _{\sigma>0}\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i}\left(x_{i}-\mu_{0}\right)^{2}} \\
&=\left(\frac{1}{\hat{\sigma}_{0} \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma_{0}^{2}}} \sum_{i}\left(x_{i}-\mu_{0}\right)^{2}
\end{aligned}
$$

cohere, $\hat{\sigma}_{0}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$ is the MLE of σ^{2} cohen $\mu=\mu_{0}$.

$$
\text { and } \begin{aligned}
& \sup _{\underset{\sim}{l}} \in \Omega(\underset{\sim}{x}, \underset{\sim}{\theta}) \\
&= \frac{1}{(\hat{\sigma} \sqrt{2 \pi})^{n}} e \\
&\left.2 \hat{\sigma}^{2}-\hat{\mu}\right)^{2} \\
& n_{2}
\end{aligned}
$$

cohere, $\hat{\mu}=\bar{x}$ and $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ are the MLE of
μ and σ^{2} under Ω. μ and σ^{2} under Ω.
The L is $\lambda=\left(\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{0}^{2}}\right)^{n / 2}=\left\{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{z\left(x_{i}-\mu_{0}\right)^{2}}\right\}^{n / 2}$

$$
\begin{aligned}
& =\left\{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}+n\left(\bar{x}-\mu_{0}\right)^{2}}\right\}^{n / 2} \\
& =\left\{\frac{1}{\left.1+\frac{n\left(\bar{x} ;-\mu_{0}\right)^{2}}{(n-1) s^{2}}\right\}^{n / 2} \text {, where, } s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right.
\end{aligned}
$$

Now, $\lambda<c$

$$
\text { How, } \begin{aligned}
& \lambda<c \\
& \Rightarrow \frac{n\left(\bar{x}-\mu_{0}\right)^{2}}{s^{2}}>k^{2} \\
& \Rightarrow\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{s}\right|>k, \text { say } \\
& \Rightarrow \text { is given by: }
\end{aligned}
$$

The size α LRT is given by:
Reject to of $\left|\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{s}\right|>t \alpha / 2, n-1$, which is 'Student's t-test'.
(ii) Here $\Omega_{0}=\left\{\left(\mu_{0}, \sigma\right): \sigma>0\right\}$ and

$$
\begin{aligned}
& \Omega_{0}=\{(\mu 0, \sigma) \\
& \Omega=\left\{\left(\mu, \sigma^{2}\right): \mu \geqslant \mu_{0}, \sigma>0\right\} \\
& \text { is } \lambda=\sup _{\theta \in b_{0}} L(x, \theta)
\end{aligned}
$$

The LR is $\lambda=\frac{\sup _{\theta \in b_{0}} L(x, \theta)}{\sup _{\theta \in E} L(x, \theta)}$
where, $\hat{\sigma}_{0}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}$
and $\sup _{\theta \in \Omega} L(x, \theta)=\sup _{\mu \geqslant \mu_{0}, \sigma>0}\left\{\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}\right\}$. for fixed σ.

$$
= \begin{cases}\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2} \sum\left(x_{i}-\bar{x}\right)^{2}} & , \text { if } \mu_{0}<\bar{x} \\ \left(\frac{1}{\hat{\sigma}_{0} \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{\sum\left(x_{i}-\mu_{0}\right)^{2}}{2 \hat{\sigma}_{0}^{2}}}, \text { if } \mu_{0} \geqslant \bar{x}\end{cases}
$$

[Here we follow two stage maximization.
first we maximize $L(x, \underset{\sim}{ })$ for $\mu \geqslant \mu_{0}$ for fixed σ and then maximize writ. $\sigma]$
Here the LR is

$$
\begin{aligned}
\lambda & =\left\{\begin{array}{l}
\left(\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{0}^{2}}\right)^{n / 2}, \text { if } \mu_{0}<\bar{x} \\
1,
\end{array}\right. \\
& =\left\{\frac{1}{\left.1+\frac{n\left(\bar{x}-\mu_{0}\right)^{2}}{(n-1) s^{2}}\right\}^{n} \geqslant \bar{x}} \begin{array}{rl}
1, & \text { if } \mu_{0}<\bar{x} \\
1, & \text { if } \mu_{0} \geqslant \bar{x}
\end{array}\right.
\end{aligned}
$$

Now, $\lambda<c(<1)$

$$
\begin{aligned}
& \Rightarrow \frac{n\left(\bar{x}-\mu_{0}\right)}{8^{2}}>k^{2}, \text { with } \mu_{0}<\bar{x} \\
& \Rightarrow \frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{s}>k, \text { as } \bar{x}-\mu_{0}>0
\end{aligned}
$$

The size α LRT is given by:
Reject to if $\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\&}>t \alpha, n-1$.
i.e.iff $\bar{x}>\mu_{0}+\frac{s}{\sqrt{n}} z \alpha ; n-1$. (ANS)

Ex. (S):- Let X_{1}, \ldots, x_{n} be $\sqrt{\sqrt{n}}, \alpha, n_{\text {, from }} N\left(\mu, \sigma^{2}\right)$, colure μ and p both are cenknocon. Find the size α LRT of Ho: $\sigma=r_{0}$ against $H_{1}: \sigma \neq \sigma_{0}$. Also, obtain the power function of the LRT.
Solution:- The likelihood function is

$$
\begin{aligned}
& L(\underset{\sim}{x}, \theta)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2},} \text {, where } \mu \in R, \sigma>0, \\
& , \Omega_{0}=\left\{\left(\mu, \sigma_{0}\right): \mu \in \mathbb{R}\right\} \text { and } \Omega=(\mu, \sigma) .
\end{aligned}
$$

Here, $\Omega_{0}=\left\{\left(\mu, \sigma_{0}\right) ; \mu \in \mathbb{R}\right\}$ and $\Omega=\{(\mu, \sigma): \mu \in \mathbb{R}, \sigma>0\}$
Then the $L R$ is

$$
\begin{aligned}
& \lambda=\frac{\sup _{\mu \in R} L\left(x ; \mu, r_{0}\right)}{\operatorname{Sup}_{\mu \in R, \sigma>0} L(x ; \mu, \sigma)} \\
& =\frac{\left(\frac{1}{\sigma_{0} \sqrt{2 \pi}}\right)^{n} e^{-\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{2 \sigma_{0}^{2}}}}{\left(\frac{1}{n(\sqrt{2 \pi})}\right)^{n} \cdot e^{-\frac{2(x 1-\bar{x})^{2}}{2 \alpha^{2}}}} \\
& =\left(\frac{\hat{\sigma}^{2}}{\sigma_{0}^{2}}\right)^{n / 2} \cdot e-\frac{1}{2}\left\{\frac{\sum\left(x_{1}-\bar{x}\right)^{2}}{\sigma_{0}^{2}}-n\right\} \\
& =\text { constant. }\left(\frac{s^{2}}{\sigma_{0}^{2}}\right)^{n / 2} \cdot e^{-s^{2} / 2 \sigma_{0}^{2}} \text {, cohere } \\
& =\text { constant, } y^{n / 2} \cdot e^{-y / 2} \text {, cohere } s^{2}=\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}=\hat{\sigma}^{2}
\end{aligned}
$$

$$
\left[\begin{array}{rl}
\text { Let } \left.\begin{array}{rl}
f(y) & =y^{n / 2} \cdot e^{-y / 2} \\
f^{\prime}(y) & =y^{n / 2} \cdot\left(-\frac{1}{2} e^{-y / 2}\right)+e^{-y / 2} \cdot \frac{n}{2} \cdot y^{n / 2-1} \\
& =y^{n / 2-1} \cdot e^{-y / 2}\left(\frac{n-y}{2}\right) \\
& \{0, y<n \\
& <0, y>n
\end{array}\right]
\end{array}\right]
$$

Here $\lambda<C$

$$
\begin{aligned}
& \Rightarrow \lambda<k_{1} \text { or } \lambda>k_{2} \\
& \Rightarrow \frac{s^{2}}{\sigma_{0}^{2}}\left\langle k_{1} \text { or }>k_{2} \text { with } \lambda\left(k_{1}\right)=\lambda\left(k_{2}\right) .\right.
\end{aligned}
$$

The size α LRTis given by:
Reject to inf $\lambda<c$
iff $\frac{s^{2}}{\sigma_{0}^{2}}<k_{1}$ or $\frac{s^{2}}{\sigma_{0}^{2}}>k_{2}$, where k_{1}, k_{2} are such that $\lambda\left(k_{1}\right)=\lambda\left(k_{2}\right) \Rightarrow k_{1}^{n / 2} e^{-n / 2 k_{1}}=k_{2}^{n / 2} e^{-n k_{2} / 2}$ and $\alpha=1-P_{H_{0}}\left[k_{1}<\frac{s^{2}}{\sigma_{0}^{2}}<k_{2}\right]$

$$
\begin{aligned}
& =1-P\left[n k_{1}<X_{n-1}^{2}<n k_{2}\right] \\
& =1-F_{X_{n-1}^{2}}\left(k_{2}\right)+F_{X_{n-1}^{2}}\left(n k_{1}\right)
\end{aligned}
$$

\therefore The Power function is

$$
\begin{aligned}
\beta(\sigma) & =1-P_{\sigma}\left[k_{1}<\frac{s^{2}}{\sigma_{0}^{2}}<k_{2}\right] \\
& =1-P\left[\frac{\sigma_{0}^{2}}{\sigma^{2}} k_{1}<\frac{s^{2}}{\sigma^{2}}<\frac{\sigma_{0}^{2}}{\sigma^{2}} k_{2}\right]
\end{aligned}
$$

Theorem:- If for given $\propto \in(0,1)$, a non-randomized NPMP test and the LRT for a simple null $H_{0}: \theta=\theta_{0}$ against simple alternative Hi; $\theta=\theta_{1}$ exists, then they are equivalent.
Proof:- Here $\Omega_{0}=\left\{\theta_{0}\right\}$ and $\Omega=\left\{\theta_{0}, \theta_{1}\right\}$
Note that $\sup _{\theta \in \Omega_{0}} L(x, \theta)=L\left(\underline{x}, \theta_{0}\right)$

$$
\text { and } \sup _{\theta \in \Omega} L(x, \theta)=\max \left\{L\left(x, \theta_{0}\right), L\left(x, \theta_{1}\right)\right\}
$$

Now, the LR is

$$
\begin{aligned}
\lambda(x) & =\frac{\sup _{\theta \in \Omega_{0}} L(x, \theta)}{\sup _{\theta \in \Omega} L(x, \theta)}=\frac{L\left(x, \theta_{0}\right)}{\max \left\{L\left(x, \theta_{0}\right), L\left(x, \theta_{1}\right)\right\}} \\
& =\left\{\begin{array}{l}
\frac{L\left(x, \theta_{0}\right)}{L\left(x, \theta_{1}\right)}, \text { if } L\left(x, \theta_{0}\right)<L\left(x, \theta_{1}\right) \\
1
\end{array}, \text { if } L\left(x, \theta_{0}\right) \geq L\left(x, \theta_{1}\right)\right.
\end{aligned}
$$

The size α LRT rejects to of $\lambda(x)<c$ such that

$$
P_{H_{0}}[\lambda(x)<c]=\alpha
$$

Note that $\lambda(\underset{\sim}{x})<c(<1)$

$$
\begin{aligned}
& \Rightarrow \frac{L\left(x, \theta_{1}\right)}{L\left(x, \theta_{1}\right)}<c \\
& \Rightarrow L\left(x, \theta_{1}\right)>\frac{1}{c} \cdot L\left(x, \theta_{0}\right)
\end{aligned}
$$

Then the critical function of the LRT is given by the non-randomized test:

$$
\phi(x)= \begin{cases}1 & , \text { if } L\left(x, \theta_{1}\right)>k, L\left(x, \theta_{0}\right) \\ 0 & , \text { ow }\end{cases}
$$

where, $k\left(=\frac{1}{c}\right)$ is such that $E_{H_{0}}[\phi(x)]=\alpha$.
By (sufficient part of) NP lemma, the above
LRT is an MP level α test of $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$.
Asymptotic Distribution of Likelihood Ratio Test:-
Theorem:- Leet $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a r.s. from $f(x ; \theta)$ cohere $\underset{\sim}{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)$ that is assumed to satisfy quite general regularity conditions. Clearly, the particular space is $\Omega \subseteq R^{k}$.
In testing the hypothesis, $H_{0}: \theta_{1}=\theta_{1}^{\circ}, \ldots, \theta_{r}=\theta_{r}^{0}$,
$-2 \log _{e} \Lambda_{n} a^{a} \chi_{y}^{2}$ as $n \rightarrow \infty$, undento.
Here Λ_{n} is a R.Y. with an observed value

$$
\lambda_{n}=\frac{\sup _{\in \Omega} L(x ; \underset{\sim}{\theta})}{\sup _{\theta \in \Omega} L(x ; \underset{\sim}{\theta})} \text {, which is the LR. }
$$

The LRT rejects t_{0} iff $\lambda_{n}<c$.

$$
\Leftrightarrow-2 \log x_{n}>c^{\prime} \quad(x a y)
$$

The approximate sire ' α ' LRT is: Reject H_{0} iff

$$
-2 \log \lambda_{n}>X_{\alpha ; r}^{2}
$$

Note that, the d.f, r is the no. of parameters that are specified by to.

Worked OUt problems On Testing of
 HYPOTHESIS [C.U]

1) Distinguish between randomized and non-randomized test. (5) 10 , Solution:- The test of a statistical hypothesis H is a rule or procedure for deciding cokether to reject H or not. Leet $\left(x_{1}, \ldots, x_{n}\right)$ be a bis. from the poplin with pdf $/ 1 \mathrm{pm}$ f $f_{\theta}(\cdot)$ of size n, where θ being the unknown parameter. Consider the following problem of testing

$$
H_{0}: \theta \leq 17 \text { Vs. } H_{1}: \theta \geq 17 \text {. }
$$

A test can either be randomized or non-randomized, If for the above testing problem we reject Ho of
$\bar{x}>17+\frac{S}{\sqrt{n}}$, then the test can be considered $\bar{x}>17+\frac{\bar{s}}{\sqrt{n}}$, then the test can be considered as non-randomized. So, we can formalize the definition of a non-randomized test as follows:
A test H is said to be a non-bandomized test if the critical region is a subset of the sample space X. If the above example, the critical region is $c=\left\{x: \bar{x}>17+\frac{\bar{s}}{\sqrt{n}}\right\}$ which is a subset of the sample space x ? Now for the same testing problem, we define the rule to decide the notation of rejection in a random manner. We say that we loss a coin and if head turns up, we reject to, lie. the critical region for a randomized test becomes random. But in a non-randomized test the critical region is deterministic. Arp Randomized. test the critical The actual probabilistic $\hat{\text { prance }}$ of a non-randomized test is straight forward; one observes a random sample and checks whether the observed sample falls in the critical region or not, On the other hand, to perform a randomized test one first observes the random sample, then evaluates $\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the critical function and finally observes the result of some auxiliary Bernoulli trial has $\Psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as its probability of success, and if the Bernoulli trial besults in a success then the null is rejected. For this reason to andomized test is not often used in practice. To attain a preassigned level for a test we opt for randomization.

2 What is uniformly most powerful unbiased test? Why
is such test needed? (s) is such test needed? (5) 109
Solution:-
UMPUTESE:-
A test $\phi(\alpha)$ is said to be UMPU test for testing a simple null hypothesis against a composite alternative as followers:
$H_{0}: \theta=\theta_{0} \quad V . H_{1}: \theta \neq \theta_{0}$ at level α, if

$$
\begin{align*}
& E_{H_{0}}[\phi(x)]=\alpha \\
& E_{\theta}[\phi(\underset{\sim}{x})] \geqslant \alpha \quad \forall \theta \neq \theta_{0}
\end{align*}
$$

For any other test $\phi^{*}\left(x_{n}\right)$ satisfying $E \theta_{0}\left[\phi^{*}\left({\underset{\sim}{x}}^{x}\right)\right]=\alpha$,

$$
E_{\theta}[\phi(x)] \geq E_{\theta}\left[\phi^{*}(x)\right] \quad \forall \theta \neq \theta_{0}
$$

There three conditions are satisfied.
It is found that in many cases no UMP critical region exists. We then have to bring in some other criterion. in addition to level of significance and power to make a choice among available region. In other coonds, we may now confine our attention first to all regions that are of prescribed size α and have the desired additional property. Next we may require that among all regions of size α have that property, our region should have all the maximum power for all alternatives. A very desirable property is unbiasedness. When our problem is to test a simple hypothesis against a composite alternative. in a situation cohere no UMP region is available, we may take as most satisfactory uniformly most powerful unbiased test.
3) Define a most powerful test. Show that it is necessarily unbiased.
Solution:-
problem of
Most Powerful test:- Consider the following testing a simple null hypothesis against a simple alternative.

$$
H_{0}: x \sim p_{0}(x) \text { us. } H_{1} ; x \sim p_{1}(x)
$$

A test $\phi(x)$ is said to be the most pocoerful test of level α if
(i) $E_{H_{0}}[\phi(x)]=\alpha$
(ii) For any other test of $\phi^{*}(z)$ satisfying (i)

$$
E_{H_{1}}[\phi(x)] \geq E_{H_{1}}\left[\phi^{*}(\underset{\sim}{x})\right]
$$

ice. The power of the test $\phi(x) \geqslant$ power of the test $\phi^{*}(x)$ cohere, $\phi^{*}(\underset{\sim}{x})$ be any other test satisfying $E_{H_{1}}\left[\phi^{*}(x)\right]=\alpha$.

Let $\phi(x)$ be a most pocoerful test of level α for testing a simple null against simple alternative as follows:

$$
H_{0}: x \sim p_{0}(x) \text { vs. } H_{1}: x \sim p_{1}(x)
$$

$$
\therefore E_{H_{0}}[\phi(x)]=\alpha
$$

Let $\phi^{*}(x) \equiv \alpha$ be another test

$$
\begin{aligned}
& E_{H_{0}}\left[\phi^{*}(\underline{x})\right]=\alpha \\
& E_{H_{1}}\left[\phi^{*}(\underline{x})\right]=\alpha
\end{aligned}
$$

Since $\phi(\underset{\sim}{X})$ be a most powerful test,

$$
E_{H_{1}}(\phi(x)) \geqslant E_{H_{1}}[\phi(x)]=\alpha=E_{H_{0}}[\phi(x)]
$$

\therefore power of $\phi(x) \geqslant$ level of $\phi(\underset{\sim}{x})$
\therefore MP test is necessarily unbiased.
4) State the Neyman-Pearson lemma in connection with testing a simple null hypothesis against a simple alternative. Using this lemma obtain the most powerful test for testing Ho: $\theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}\left(>\theta_{0}\right)$ based on n independent observations from apopln. with density

$$
f(x \mid \theta)= \begin{cases}\theta x^{\theta-1}, & 0<x<1 \\ 0 & , 0 w\end{cases}
$$

Solution:-
Neyman Pearson Lemma:- Let us consider the problem of testing of a simple null against a simple alternative as follows: $H_{0}: \theta=\theta_{0}$ rs. $H_{1}: \theta=\theta_{1}\left(>\theta_{0}\right)$
where, $x_{1}, x_{2} \ldots, x_{n}$ be a res. draco n from a poplin with $p d f / \mathrm{pmf} f_{\theta}(1), \theta$ being the unknocon parameter. A test $\phi(\underset{\sim}{x})$ is said to be a most powerful test at level α if it has the following form:

$$
\phi(x)= \begin{cases}1 & \text { if } \frac{f_{\theta_{1}}(x)}{f_{\theta_{0}}(x)} \\ 0 & \text { ow }\end{cases}
$$

where, $\phi(\underset{\sim}{x})$ is such that $E_{H_{0}}[\phi(x)]=\alpha$.
Here a random sample of size n is draco from the poplin. having the following piaf

$$
\begin{aligned}
& f(x \mid \theta)=\left\{\begin{array}{ll}
\theta x^{\theta-1}, & 0<x<1 \\
0 & , 0 w
\end{array}, ~\right.
\end{aligned}
$$

Hence we are to test

$$
H_{0}: \theta=\theta_{0} \quad \text { Vs. } \quad H_{1}: \theta=\theta_{1}\left(>\theta_{0}\right)
$$

Here,

$$
\begin{aligned}
x\left(x_{n}\right) & =\frac{\prod_{i=1}^{n} f_{\theta_{1}(x)}}{\prod_{i=1}^{n} f_{\theta_{0}(x)}}>k \\
& \Rightarrow \frac{\theta_{1}^{n} \prod_{i=1}^{n} x_{i} \theta_{1}-1}{\theta_{0}^{n} \prod_{i=1}^{n} x_{i}^{\theta_{0}-1}}>k \\
& \Rightarrow\left(\frac{\theta_{1}}{\theta_{0}}\right)^{n} \prod_{i=1}^{n} x_{i}^{\left(\theta_{1}-\theta_{0}\right)}>k \\
& \Rightarrow \prod_{i=1}^{n} x_{i}^{\left(\theta_{1}-\theta_{0}\right)}>c \\
& \Rightarrow\left(\theta_{1}-\theta_{0}\right) \sum_{i=1}^{n} \ln x_{i}>\ln c \\
& \Rightarrow \sum \ln x_{i}>c^{\prime}\left[\because\left(\theta_{1}-\theta_{0}\right)>0\right]
\end{aligned}
$$

\therefore By Neyman-Pearson lemma, the MP size α test is given by

$$
\phi(\underset{\sim}{x})= \begin{cases}1 & \text { if } \sum_{i=1}^{n} \ln x_{i}>c^{\prime} \\ 0 & 0 w\end{cases}
$$

Here c^{\prime} is such that $E_{H_{0}}[\phi(\underset{\sim}{x})]=\alpha$

$$
\Rightarrow P_{\theta_{0}}\left[\sum_{i=1}^{n} \ln x_{i}>c^{\prime}\right]=\alpha
$$

Now, we know that $-2 \theta \ln X_{i} \sim X_{2}^{2} \forall i$ and $-28 \ln x_{i}$ is independent with each others $\forall i$.

$$
\therefore \sum_{i=1}^{n}-2 \theta \ln x_{i} \sim \chi_{2 n}^{2}
$$

Now,

$$
\begin{aligned}
& P_{\theta_{0}}\left[\sum_{i=1}^{n}-2 \theta_{0} \ln x_{i}<-2 \theta_{0} c\right]=\alpha \\
& \Rightarrow P\left[\chi_{2 n}^{2}<-2 \theta_{0} c\right]=\alpha \\
& \therefore-2 \theta_{0} c=\chi_{2 n, 1-\alpha}^{2} \\
& \Rightarrow c=\frac{\chi_{2 n, 1-\alpha}^{2}}{-2 \theta_{0}}
\end{aligned}
$$

\therefore MP test of size α is given by

$$
\therefore \text { MP test of size } \quad \phi(\underset{\sim}{x})= \begin{cases}1, & \text { if } \sum_{i=1}^{n} \ln x_{i}>\frac{X_{2 n, 1-\alpha}^{2}}{-2 \theta_{0}} \\ 0 & \text { ow }\end{cases}
$$

\therefore Hence The critical Region is $W=\left\{x \mid \Gamma x_{i}>\exp \left[-x_{1-\alpha, 2 n / 20\}}^{2}\right\}\right.$
5) Let X_{1}, \ldots, x_{n} be a random sample of size drawn from the normal distribution $N\left(\mu, 2^{2}\right)$. Snow that for the likelihood ratio test for testing $H_{0} ; \mu=0 \quad V_{\text {sillife }} \neq 0$, the critical region is $|\bar{x}|>c$, where \bar{x} is the sample mean. Find c such that the test is of size α. Find the power function of the test and hence verify eokether the test is biased. Compare the powers at $\mu=1, \mu=-1$ and $\mu=2$ and comment. Show that the test is not UMP for testing H_{0} against H_{1}.

$$
(4+2+4+2+3)=
$$

Solution:- Let x_{1}, \ldots, x_{n} be a ross. from $N\left(\mu, 2^{2}\right)$
$W e$ are to test

$$
H_{0}: \mu=0 \text { Vs. } H: \mu \neq 0
$$

We here adopt likelihood ratio test method to test the above hypothesis,

$$
\begin{align*}
& \text { above hypothe sis, } \\
& \text { We define, } \lambda(x)=\frac{\sup _{0} L(x \mid \mu)}{\sup L(x \mid \mu)}
\end{align*}
$$

Here $L\left(x_{N}\right)=$ Likelihood function of x_{1}, \ldots, x_{n}

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} / 4 ; x_{i} \in \mathbb{R}, ~} \\
& \text { MLE of } \mu \text { is }=\bar{x} \\
& \lambda(x)=\frac{L(0 \mid x)}{L(\bar{x} \mid x)}=\frac{\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{1}{8} \sum_{i=1}^{n} x_{i}^{2}}}{\frac{1}{2 \sqrt{2 \pi}} e^{-\frac{1}{8} \sum\left(x_{i}-\bar{x}\right)^{2}}} \text {, } \\
& =\exp \left[-\frac{1}{8}\left\{\Sigma x_{i}^{2}-\Sigma\left(x_{i}-\bar{x}\right)^{2}\right\}\right] \\
& =\exp \left[-\frac{1}{8}\left\{2 x i^{2}-5 / x i^{2}+n \bar{x}^{2}\right\}\right] \\
& =\exp \left[-\frac{\bar{x}^{2}}{8}\right]
\end{aligned}
$$

We reject to at level α if

$$
\begin{aligned}
& \lambda(x)<c^{\prime} \\
\Rightarrow & \bar{x}^{2}>8 c^{\prime} \\
\Rightarrow & |\bar{x}|>c
\end{aligned}
$$

Hence the critical region for the test is

$$
W=\{\underset{\sim}{x}:|\bar{x}|>c\}
$$

Here c is such that $\left.P_{H_{0}}[|x|\rangle e\right]=\alpha$
Under Ho, $\bar{X} \sim N\left(0, \frac{2^{2}}{n}\right)$

$$
\begin{aligned}
& \therefore P_{H_{0}}[|x|>c]=\alpha \\
& \left.\Rightarrow P_{H_{0}}[\bar{x}\rangle c\right]+P_{H_{0}}[\bar{x}<-c]=\alpha \\
& \quad \Rightarrow 2 P_{H_{0}}[\bar{x}>c]=\alpha \\
& \quad \Rightarrow P_{H_{0}}[\bar{x}>c]=\alpha / 2 \\
& \quad \Rightarrow P\left[\frac{\sqrt{n} \bar{x}}{2}>\frac{\sqrt{n} c}{2}\right]=\frac{\alpha}{2}
\end{aligned}
$$

$\therefore \frac{\sqrt{n} c}{2}=\tau_{\alpha / 2} ; \tau_{\alpha}$ bring the upper α point of $N(0,1)$.

$$
\Rightarrow c=\frac{2}{\sqrt{n}} \tau_{\alpha / 2} .
$$

Power function of the test is given by

$$
\begin{aligned}
& P_{\mu}[|\bar{x}|>c] \\
& =P_{\mu}[\bar{x}>c]+P_{\mu}[\bar{x}<-c] \\
& =2 P_{\mu}[\bar{x}>c] \\
& =2 P_{\mu}\left[\frac{\sqrt{n}(\bar{x}-\mu)}{2}>\frac{\sqrt{n}(c-\mu)}{2}\right]
\end{aligned}
$$

Now, $Z=\frac{\sqrt{n}(\bar{x}-\mu)}{2} \sim N(0,1)$
Noco, if the test is unbiased then power $>$ size

$$
\begin{aligned}
\therefore & 2 P_{\mu}[\bar{x}>c]>\alpha, \quad \mu \neq 0 \\
\Rightarrow & P \mu[\bar{X}>c]>\frac{\alpha}{2} \\
\Rightarrow & P\left[\frac{\sqrt{n}(\bar{x}-\mu)}{2}>\frac{\sqrt{n}(c-\mu)}{2}\right]>\frac{\alpha}{2} \\
\Rightarrow & P\left[z>\frac{\sqrt{n}(c-\mu)}{2}\right]>\frac{\alpha}{2} \\
\Rightarrow & \Phi\left(\frac{\sqrt{n}(c-\mu)}{2}\right)<1-\frac{\alpha}{2} \\
\Rightarrow & \frac{\sqrt{n}(c-\mu)}{2}<\Phi^{-1}\left(1-\frac{\alpha}{2}\right) \\
\Rightarrow & \sqrt{n}\left(\frac{2}{\sqrt{n}} \tau_{\alpha / 2}-\mu\right)<2 \Phi^{-1}(\alpha / 2) \\
\Rightarrow & 2 \tau_{\alpha / 2}-\sqrt{n} \mu<2 \tau_{\alpha / 2}
\end{aligned}
$$

$\Rightarrow \mu>0 \quad \therefore$ The test is unbiased if $\mu>0$.
Scanned by CamScanner

Again, $P_{\mu}[|\bar{X}|>c]=2 P_{\mu}[\bar{x}<-c]$
Proceeding in the same cony, we can show that the tart is unbiased if $\mu<0$
ie. the test is unbiased for $\mu \neq 0$
Thus the power of the test is greater than the size of the test as under the alternative $\mu \neq 0$. Thus $\forall \mu \neq 0$, the test is unbiased.

For $\mu=1$, the pocoer function is given by
Power function $($ at $\mu=1)=2\left[1-\Phi\left(\frac{\left.\sqrt{n}\left(\frac{\left.\frac{2}{\sqrt{n}} \tau_{\alpha / 2}-1\right)}{2}\right)\right]}{}\right.\right.$

$$
=2 \Phi\left(\frac{\sqrt{n}}{2}-\tau \alpha / 2\right)
$$

Pocoer function $($ at $\mu=-1)=2\left[1-\Phi\left(\frac{\sqrt{n}\left(\frac{2}{\sqrt{n}} \tau_{\alpha / 2}+1\right)}{2}\right)\right]$

$$
=2\left[1-\Phi\left(\tau_{\alpha / 2}+\frac{\sqrt{n}}{2}\right)\right]
$$

\therefore Power function at $\mu=2$ is $=2\left[1-\Phi\left(\tau_{\alpha / 2}-\sqrt{n}\right)\right]$

$$
=2 \Phi\left(\sqrt{n}-\tau_{\alpha / 2}\right)
$$

Comparing these there points we can say that the powers is maximum at $\mu=2$ and minimum at $\mu=-1$; ie. we call pay that the power function is a monotone function of μ.
For the given testing problem, we construct the following test function

$$
\phi(x)= \begin{cases}1, & \frac{f_{1}(x)}{f_{0}(x)}>k \\ 0, & 0 w \\ \end{cases}
$$

cohere, under to, $x \sim f_{0}(x) \equiv N\left(0,2^{2}\right)$
under $H_{1}, x \sim f_{1}(x) \equiv N\left(\mu, 2^{2}\right),(\mu>0)$

Now, $\frac{f_{1}(x)}{f_{0}(x)}>k$

$$
\begin{aligned}
& \Rightarrow \exp \left\{-\frac{1}{8}\left[\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-\sum x_{i}^{2}\right]\right\}>k \\
& \Rightarrow \mu \sum_{i=1}^{n} x_{i}>C[\because \mu>0] \\
& \Rightarrow 2 x_{i}>\frac{c}{\mu} .
\end{aligned}
$$

\therefore Critical region for testing $H_{0}: \mu=0 \quad \mathrm{Vs}$. Hi: $\mu>0$ is given by $\omega_{1}=\left\{\underset{\sim}{x}: \sum_{i=1}^{n} x_{i}>\frac{c}{\mu}, \mu>0\right\}$
similarly, the critical region for testing $H_{0}: \mu=0 \mathrm{~V} / \mathrm{s}$. $H: \mu<0$ is given by

$$
W_{2}=\left\{\underset{\sim}{x}: \sum_{i=1}^{n} x_{i}<-\frac{c}{\mu}, \mu>0\right\}
$$

\therefore For the testing of $H_{0} ; \mu=0$ Vs. Hipe三0, the critical region is given by

$$
W=\left\{x: \sum_{i=1}^{n} x_{i}>\frac{c}{\mu} \quad \text { or } \sum_{i=1}^{n} x_{i}<-\frac{c}{\mu}\right\}
$$

Since the critical region depends on the parameter value of the alternative hypothesis. Hence, we ear say that the test is not UMP.
6) Explain the concept of likelihood ratio test for testing a composite null hypothesis against a composite alternative. Discuss its merits and demerits. Derive the lekalinood ratio test for testing the equality of the variance of k univariate normal distribution each with mean 7 . 'OP Give an example where this test can be used. $(4+3+5+3)$.
Solution:- For a r.s. $\left(x_{1}, \ldots, x_{n}\right)$ from a poplin having $p m f / p d f$ $f_{\theta}(;), \theta \in \Theta$, the parameter space. We seek a test of $H_{0}: \theta \in(H)$ V. $H_{1}: \theta \in(H) \subseteq(H)-(H)_{0}$. Here (H) 0 and (H), both are not singleton sets, ie. here we test a composite null hypothesis against a composite alternative.

To illustrate the concept of likelihood ratio test we at first give the definition of likelihood ratio.
Let $L\left(\theta \mid x_{1}, \ldots, x_{n}\right)$ be the likelihood function of x_{1}, \ldots, x_{n}. The generalized likelihood ratio is denoted by $\lambda(x)$ and is

$$
\begin{aligned}
& \text { given by } \\
& \lambda(x)=\lambda\left(x_{1}, \ldots, x_{n}\right)=\frac{\operatorname{Sup}_{\theta \in \oplus 0} L\left(\theta \mid x_{1}, \ldots, x_{n}\right)}{\sup _{\theta \in(H)} L\left(\theta \mid x_{1} \ldots, x_{n}\right)}
\end{aligned}
$$

Note, here $\lambda(1)$ is a function of x_{1}, \ldots, x_{n} and it can be considered as a statistic as it does not depend on θ, the unknown parameter.
Since, λ is the ratio of two non-negative quantity, so $\lambda>0$, and since supremum taken in the denominator is over a larger set of parameter values than that in the numerator, thus the denominator can't be smaller than the numerator. Hence $\lambda \leq 1$, i, e. $0<\lambda \leq 1$.
If $\lambda=1$, then it means the parameter space ($1(1)$ a and (H), are identical, ire, the null parameter space coincides with the total parameter space and we accept Ho trivially,
With the departure from $H 0$, the null parameter space shrinkers, ie, the numerator decreases. Thees the likelihood ratio also decreases with the departure from to to H_{1}. Hence a leftetail test based on $\lambda(\underset{\sim}{x})$ will be appropriate cohere the cut off point depends on the stipulated size of the test, ire. we reject H_{0} at size α.
(TA Merits of LRT:-
(i) Likelihood ratio test is always consistent.
(ii) If for a testing problem, un N test exists, then it
(iii) coincides with the IRT for the same testing problem.
(iii) for large sample problem, for the likelihood ratio $(a(x)$) $-2 \ln \lambda(x)$ converges in distribution under H_{0} in X_{8}^{2}, cohere $\delta=\left(N_{0}\right.$ of components of the parameter)-(No. of components to be estimated under null) Hence it is easy to carry out the test for lange sample as the function of Likelihood ratio converges to a standard distribution. (Chirsquare).
(iv) LRT makes a good intuitive sense since $\lambda(x)$ will tend to be small when to is not true.

Demerits of LRT:-
(i) Likelihood may be biased.
(ii) Sometimes it is difficult to obtain sup $L(\theta \mid \underset{\sim}{x})$
(iii) In an LRT problem, it can be difficult to find the distr. of λ, which is required to find the power of the test.
Let $x_{11}, x_{12}, \ldots, x_{1 i}$ be a res. of size n_{i} from

$$
N\left(7, \sigma_{i}^{2}\right)
$$

We are to test: $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{n}^{2} V_{s}$.
H_{1} : at least one inequality in H_{0}.
The likelihood ratio is given by,

$$
\lambda(x)=\frac{\sup _{\theta \in \oplus} L(\theta \mid x)}{(\theta \in(H)} L(\theta \mid \underset{\sim}{n}) \quad, \theta=\left(\sigma_{1}, \ldots, \sigma_{k}\right)
$$

The likelihood function is given by

$$
\begin{aligned}
& \text { The likelihood function is given by } \\
& L(\theta \mid x)=\prod_{i=1}^{k} \frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} \cdot \exp \left[-\frac{1}{2 \sigma_{i}^{2}} \sum_{j=1}^{n_{i}}\left(x_{i j}-7\right)^{2}\right] \\
& \text { The MLE of } 02 \text { is given by }
\end{aligned}
$$

The MLE of $\sigma_{1}{ }^{2}$ is given by

$$
\hat{\sigma}_{\text {OLE }}^{2}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}}\left(x_{i j}-7\right)^{2}=8 i^{2}
$$

Under hull the Likelihood function reduces to

$$
L_{H_{0}}(v \mid x)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-7\right)^{2}\right] \text {, where }
$$

(T) being the common value of

$$
\begin{aligned}
& \therefore \ln L_{H_{0}}(\theta \mid \underline{x})=-\frac{n}{2} \ln 2 \pi_{\sigma^{2}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}^{\prime}}\left(x_{i}-7\right)^{2}=L \\
& \therefore \frac{\partial L}{\partial \sigma} \sum_{i=1}^{k} n_{i} \hat{\sigma}_{H 0}=0 \\
& \Rightarrow-\frac{2 n}{2 \hat{\sigma}_{H 0}}+\frac{2}{2 \hat{\sigma}_{H 0}^{3}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-7\right)^{2}=0 \\
& \quad \Rightarrow \hat{\sigma}_{H 0}^{2}=\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n i}\left(x_{i j}-7\right)^{2} \\
& \therefore \lambda(x)=\frac{\sigma_{i=1}^{k}\left(s i^{2}\right)^{n i / 2}}{\left(\sigma^{2}\right)^{n / 2}}=\frac{\prod_{i=1}^{k} s_{i}^{n i}}{\sigma^{n}}
\end{aligned}
$$

We reject tho at size α if $\lambda(x)<c$, where c is such th at

$$
P_{H_{0}}[\lambda(x)<c]=\alpha
$$

Here, $\lambda(x)$ does not follow any standard distribution.
So, here we adopt large sample procedure.
For a large sample size, $-2 \ln \lambda(x) \sim \chi_{k-1}^{2}$ under Ho.
We reject Ho at size α if
$-2 \ln \lambda(x)>c^{\prime}$, cohere c is such that

$$
P_{H_{0}}\left[-2 \ln \lambda(x)>C^{\prime}\right]=\alpha
$$

$\therefore c^{\prime}=X_{1-\alpha ; k}^{2}$, the $(1-\alpha)$ th quantity of a chisquare $(k-i)$ distribution.
In the analysis of variance technique we assume that the random errors are homoscedastic (ie, they have equal variance) normal variates. But to justify the assumption cos apply the above test procedure. If the hyp pothers of equal variance (sid.) is accepted, then we proceed with our conventional ANOVA technique. But if the proposed null hypothesis is rejected, then we adopt some other bray out.
7) Discuss the relationship between a UMP test and a uniformly most accurate confidence interval. (S) 109
Solution:- Let $A\left(\theta_{0}\right)$ be the acceptance region at level α UMP test for testing Ho: $\theta=\theta_{0}$ and let for a given x,

$$
S(\underset{\sim}{x})=\{\theta \in(H): A(\theta) \ni \underset{\sim}{x}\}_{\text {sh }}
$$

Here, we are reaveired to show that $S(X) \subseteq(A)$ and it is a UM accurate confidence set at confidence level $(1-\alpha)$. Leet, for testing $H_{0}: \theta=\theta_{0}, A^{*}\left(\theta_{0}\right)$ be the acceptance region for another level α test

$$
\therefore P_{\theta}\left(\underset{\sim}{x} \in A^{*}(\theta)\right) \geqslant 1-\alpha
$$

Leet $S^{*}(x)$ be the confidence set for the above stetted acceptance region.

$$
\begin{aligned}
& \therefore A^{*}(\theta)=\left\{{\underset{\sim}{x}}_{x}^{x}: s^{*}(x) ; \theta\right\} \\
& \text { en. } P\{x \in(\theta)\}=S_{0}\left\{s^{*}\right.
\end{aligned}
$$

Then, $P_{\theta}\left\{\underset{\sim}{x} \in A^{*}(\theta)\right\}=P_{\theta}\left\{\delta^{*}(\underset{x}{x}) \geqslant \theta\right\} \geqslant 1-\alpha$

Again $A\left(\theta_{0}\right)$ is UMP for H0: $\theta=\theta_{0}$ against H: $\theta \neq \theta_{0}$. Then
$P_{\theta}\left\{x \in A^{*}\left(\theta_{0}\right)\right\} \geq P_{\theta}\left\{x \in A\left(\theta_{0}\right)\right\} \quad \forall \theta \not \theta \theta_{0}$.
Hence,

$$
\begin{aligned}
P_{\theta}\left\{S^{*}(x) \neq \theta\right\} & \geqslant P_{\theta}\left\{\underset{\sim}{x} \in A\left(\theta_{0}\right)\right\} \forall \theta \neq \theta_{0} . \\
& =P_{\theta}\{S(\underset{\sim}{x}) \ni \theta\} \forall \theta \neq \theta_{0}
\end{aligned}
$$

Hence, from the definition we can say that $S(\underset{X}{ })$ is a uniformly most accurate confidence set,
8) Let x_{1} and x_{2} be a nisi of size 2 from $R(0, \theta)$ distr. Define $X_{(2)}=\operatorname{Max}\left(X_{1}, x_{2}\right)$. Find a $100(1-\alpha) \%$ CI for θ based on $X_{(2)}$.
(5) $\quad 10$

Solution:- X_{1} and X_{2} be a res. of size 2 from $R(0, \theta)$ poplin.

$$
X_{(2)}=\operatorname{Max}\left(X_{1}, X_{2}\right)
$$

The PDF of $X_{(2)}$ is given by,

$$
f_{x_{(2)}}(x)=\frac{n x^{n-1}}{\theta^{n}}, 0<x<\theta .
$$

Let us define, the following; $T=\frac{X_{(2)}}{\theta}$.
Jacobian of the transformation is $|J|=\theta$ and range of T is $0<T<1$.
\therefore PDF of T is given by $f_{T}(t)=n t^{n-1}, 0<t<1$
Now, $P\left[\lambda_{1}<T<\lambda_{2}\right]=1-\alpha$

$$
\begin{aligned}
& \Rightarrow P\left[\lambda_{1}<T<\lambda_{2}\right]=1-\alpha \\
& \Rightarrow \int_{1} n t^{n-1} d t=1-\alpha \\
& \Rightarrow \lambda_{1}^{n}-\lambda_{1}^{n}=1-\alpha
\end{aligned}
$$

Let $\lambda_{2}=1, \lambda_{1}=\alpha^{1 / n}$

$$
\text { et } \begin{aligned}
& \lambda_{2}=1 \\
& \therefore P\left[\alpha^{1 / n}<T<1\right]=1-\alpha \\
& \Rightarrow P\left[\alpha^{1 / n}<\frac{X_{(2)}}{\theta}<1\right]=1-\alpha \\
& \Rightarrow P\left[X_{(2)}<\theta<X_{(2)} \cdot \alpha^{-1 / n}\right]=1-\alpha \\
& \Rightarrow
\end{aligned}
$$

$\therefore 100(1-\alpha) \%$ cI for θ is given by $\left[X_{(2)}, X_{(2)} \cdot \alpha^{-\frac{1}{n}}\right]$.
9) Let $x_{\sim}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a res. of size n from a univariate normal distr with mean O and known standard deviation $O(>0)$. Consider the statistic S and T defined by

$$
n s^{2}=\sum_{i=1}^{n} x_{i}{ }^{2}, n T=\sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|x_{i}\right|
$$

ai) Snow that both sand T are consistent estimators of r, but one of them is not unbiased.
ai) show that $L(S) \geq L(T)$, where $L(\sigma)$ is the likelihood function.
〈iii) Let for testing $H_{0}: \sigma=1$ against $H_{1}: \sigma>1, W_{s}$ and W_{T} be respectively right tailed size α tests based on S and T. Prove that for any $\sigma \geq 1, P_{r}\left[x \in W_{S} \mid \sigma\right]=P_{r}\left[x \in W_{T} / \sigma\right]$
Solution:-

$$
[6+4+5] 00
$$

(i) Let x_{1}, \ldots, x_{n} be a res. from $N\left(0, \sigma^{2}\right)$ poplin. where $(\rho$ is known.
Let $\left|x_{i}\right|=Z$
\therefore Pdf of z is given by $f_{z}(z)=\frac{1}{\sigma} \sqrt{\frac{2}{\pi}} \cdot e$ $-\frac{1}{2} \cdot \frac{z^{2}}{\sigma^{2}}, z>0$

$$
\begin{aligned}
E(z) & =\frac{1}{\sigma} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} z \cdot e^{-\frac{1}{2} \cdot \frac{z^{2}}{\sigma^{2}} d z} \\
& =\frac{\sigma^{2}}{2 \sigma} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-u / 2} d u \quad \text { Let } u=\frac{z^{2}}{\sigma^{2}} \\
& =\sigma \sqrt{\frac{2}{\pi}} \\
\therefore E\left(\left|x_{i}\right|\right) & =\sigma \sqrt{\frac{2}{\pi}}
\end{aligned}
$$

Here we are given that, $n s^{2}=\sum_{i=1}^{n} x_{i}{ }^{2}$ and $n T=\sqrt{\frac{\pi}{2}} \sum_{i=1}^{n}\left|x_{i}\right|$
Now, $E(n T)=\sum_{i=1}^{n} \sqrt{\frac{\pi}{2}} E\left|X_{i}\right|=n \sigma \cdot \sqrt{\frac{\pi}{2}} \cdot \sqrt{\frac{2}{\pi}}$

$$
\Rightarrow E(F)=\sigma
$$

\therefore This an unblased estimator for σ.
Now, $E\left(n s^{2}\right)=\sum_{i=1}^{n} E\left(x_{i}{ }^{2}\right)=\sum_{i=1}^{n}\left\{\operatorname{Var}\left(X_{i}\right)+E^{2}\left(x_{i}\right)\right\}$ $=\sigma^{2} n$.
$\therefore S^{2}$ is an unbiased estimator for σ^{2}.

Nome,

$$
\begin{aligned}
& \operatorname{Var}(S)=E\left(s^{2}\right)-E^{2}(S) \\
& \Rightarrow E^{2}(S)=\operatorname{Var}(S)+\sigma^{2} \\
& \Rightarrow E(s)=\sqrt{\operatorname{Var}(S)+\sigma^{2}}
\end{aligned}
$$

Since, $\operatorname{Var}(S)>0, E(S) \neq \sigma$, Hence S is unbiased for T.
Now, for $n \rightarrow \infty, \lim _{n \rightarrow \infty} E(T)=\sigma$
Now, $\lim _{n \rightarrow \infty} \operatorname{Var}(T)=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n} \operatorname{Var}\left(\left|X_{i}\right|\right)$

$$
=0 .
$$

$\therefore T$ is consistent as well as unbiased for T.
Here, $S=\frac{1}{\sqrt{n}} \sqrt{\sum_{i=1}^{n} X_{i}{ }^{2}}$
Now, $\operatorname{Var}(s)=\frac{1}{n} \operatorname{Var} \sqrt{\sum_{i=1}^{n} X_{i}^{2}}$

$$
\therefore \lim _{n \rightarrow \infty} \operatorname{xar}(s)=0
$$

Again,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} x \operatorname{ar}(s) & =0 \\
\lim _{n \rightarrow \infty} E(s) & =\lim _{n \rightarrow \infty} \sqrt{\operatorname{Var}(s)+\sigma^{2}} \\
& =\sqrt{\sigma^{2}}=\sigma .
\end{aligned}
$$

\therefore From the condition of consistency ar can ser that S is consistent but biased for r.
(ii) The likelihood function of x_{1}, \ldots, x_{n} is given by

$$
\begin{aligned}
& \text { The likelihood function of } x_{1}, \ldots, x_{n} \text { is given of } \\
& L(\sigma)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} \cdot e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{x_{i}{ }^{2}}{\sigma^{2}} ;\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}} \\
& \operatorname{lnL}(\sigma) \text { w.n.t. } \sigma \text { and equating with }
\end{aligned}
$$

Differentiating $\ln L(\sigma)$ w.r.t. σ and equating with zero,
we get

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \sigma} \ln L(\sigma)\right|_{\sigma=\hat{\sigma}}-\frac{1}{2} \sum x i^{2}\left(-\frac{2}{\hat{\sigma}^{3}}\right)-\frac{n}{\hat{\sigma}^{2}}=0 \\
& \hat{\sigma}^{2}=\frac{1}{n} \sum x i^{2} \\
& \therefore \hat{\sigma}^{2}=s^{2} \text { is the MLE of } \sigma^{2} .
\end{aligned}
$$

Since MLE maximizes, the likelihood function, hence, $L\left(S^{2}\right) \geq L(T)$.
iii) Consider the following problems of testing

$$
H_{0}: r=1 \text { Vs. } H_{i}: \sigma>1
$$

Here we apply LRT method to find out critical region.
The generalised likelihood ratio is given by

$$
\begin{aligned}
\lambda(x)= & \frac{\sup _{\sigma \in(0)} L(\sigma)}{\operatorname{suf} L(\sigma)} \\
& =\frac{L(1)}{L(\hat{\sigma})}\left[\because \hat{\sigma} \text { be the MLE of } \sigma, \hat{\sigma}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right] \\
& =\frac{\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \sum x_{i}^{2}}}{\frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{1}{2} \cdot \frac{2 x i^{2}}{\frac{1}{n} \sum i^{2}}}=\frac{e^{-\frac{1}{2} \sum x_{i}^{2}}}{e^{-n / 2}} .} .
\end{aligned}
$$

We reject H_{0} at level α, if

$$
\begin{aligned}
& x(x)<k \\
\Rightarrow & e^{-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}}<k^{\prime} \\
\Rightarrow & \sum_{i=1}^{n} x_{i}^{2}>c^{\prime} \\
\Rightarrow & \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}>c \\
\Rightarrow & s^{2}>c
\end{aligned}
$$

\therefore level α critical region is given by $W=\left\{\underset{\sim}{x} ; s^{2}>c\right\}$
Now if W / s and W_{T} be too might tailed test based on S and T respectively, then the critical region W coincides with the critical region of the test W_{S}.
Again, we know that if for the given problem of testing of the UMP test exists for level α, it coincides worth the likelihood ratio test.
Hence, $W \equiv W_{s}$ is the UMP size a test for testing H_{0} against H_{1}.
\therefore Power of $W_{S} \geq$ Power of W_{T}.

$$
\begin{aligned}
& \text { Power of } W_{S} \geq \text { Power of } \\
& \Rightarrow \operatorname{Pr}\left[\underset{\sim}{x} \in W_{S} \mid \sigma\right] \geq \operatorname{Pr}\left[\underset{\sim}{x} \in W_{T} \mid \sigma\right] \text { for } \sigma \geqslant 1 \text {. }
\end{aligned}
$$

10) Explain the concept of shortest expected length confidence interval. Illustrate with an example. (s) 10
Solution:-
Shortest expected length C.I.: Uniformly shortest length interval usually do not exist among all $(1-\alpha)$ level confidence interval even for most commonly used distributions. This can't be taken as a measure of precision of a confidence: interval. In this light Pratt, 1961 suggested to take expected length of a confidence interval as a measure of its precision.

Now we formalize the definition of a shortest expected length C.I. If $(\underline{\theta}(x), \bar{\theta}(x))$ and $\left(\underline{\theta}^{*}(x), \bar{\theta}(x)\right)$ are too C.I. for a parameter θ with same confidence level $(1-\alpha)$, then one will prefers the former if

$$
E_{\theta}[\bar{\theta}(x)-\underline{\theta}(x)]<E_{\theta}\left[\bar{\theta}^{*}(\underset{\sim}{x})-\theta^{*}(x)\right]
$$

i.e. if the expected length of the former is smaller than the latter. A confidence interval with minimum expected length is called the shortest expected length C.I.
Illustration: - Let $X \sim N\left(\mu, \sigma^{2}\right) ; \sigma^{2}$ is unknocon. Let us
start from the pivotal function $T=\frac{\sqrt{n}(\bar{x}-\mu)}{s} \sim z_{n-1}$.
Here \& be the sample sid. with divisor $(n-1)$.

$$
\begin{aligned}
& N_{00}, \\
& P_{\mu}\left[\lambda_{1 \alpha}<\frac{\sqrt{n}(\bar{x}-\mu)}{s}<\lambda_{2 \alpha}\right]=1-\alpha i \\
\Rightarrow & P\left[\bar{x}-\frac{\lambda_{2 \alpha}}{\sqrt{n}} \cdot s<\mu<\bar{x}+\frac{\lambda_{1 q}}{\sqrt{n}} \cdot s\right]=1-\alpha
\end{aligned}
$$

So, $\left(\bar{x}-\frac{\lambda 2 \alpha}{\sqrt{n}} s, \bar{x}+\frac{\lambda 1 \alpha}{\sqrt{n}} s\right)$ is a C.I. of μ worth confidence coefficient $(1-\alpha)$.
The expected length of the C.I. is

$$
\left(\lambda_{2 \alpha}-\lambda_{1 \alpha}\right) \cdot \frac{E(s)}{\sqrt{n}}=E(L)
$$

Also, $\quad \int_{\lambda_{1 \alpha}}^{\lambda_{2 \alpha}} f_{t}(t) d t=1-\alpha$

$$
\int_{\lambda_{1 \alpha}}^{\lambda_{2 \alpha}} f_{t}(t) d t=1-\alpha
$$

\qquad
\qquad
How, $\quad \frac{d E(L)}{d \lambda_{2 \alpha}}=0$

$$
\begin{equation*}
\Rightarrow\left(1-\frac{d \lambda_{1 \alpha}}{d \lambda_{2 \alpha}}\right)=0 \tag{iii}
\end{equation*}
$$

Again from $\langle i\rangle$,

$$
\begin{align*}
& f_{t}\left(\lambda_{2 \alpha}\right)-f_{t}\left(\lambda_{1 \alpha}\right) \frac{d \lambda_{1 \alpha}}{d \lambda_{2 \alpha}}=0 \\
& \Rightarrow \frac{d \lambda_{1 \alpha}}{d \lambda_{2 \alpha}}=\frac{f_{t}\left(\lambda_{2 \alpha}\right)}{f_{t}\left(\lambda_{1 \alpha}\right)} \tag{iv}
\end{align*}
$$

\therefore From (iii) and (iv),

$$
f_{t}\left(\lambda_{2 \alpha}\right)=f_{t}\left(\lambda_{1} \alpha\right)
$$

$\therefore E$ either $\lambda_{1 \alpha}=\lambda_{2 \alpha}$ or $\lambda_{1 \alpha}=-\lambda_{2 \alpha}$
If $\lambda_{1 \alpha}=\lambda_{2 \alpha}$ then $E(L)=0$
Thus we take $\lambda_{1 \alpha}=-\lambda_{2 \alpha}$

$$
\begin{aligned}
& \therefore \int_{-\lambda_{2 \alpha}}^{\lambda_{1 \alpha}} f_{t}(t) d t=1-\alpha \\
& \Rightarrow 2 F\left(\lambda_{2 \alpha}\right)=2-\alpha \\
& \Rightarrow F\left(\lambda_{2 \alpha}\right)=1-\frac{\alpha}{2} \\
& \therefore \lambda_{2 \alpha}=t \frac{\alpha}{2} ; n-1 \\
& \therefore \lambda_{1 \alpha}=-t_{\alpha / 2} ; n-1
\end{aligned}
$$

\therefore The shortest C.I. for μ is given by,

$$
\left[\bar{x}-z_{\alpha / 2} ; n-1 \cdot \frac{8}{\sqrt{n}}, \bar{x}+t_{\alpha / 2} ; n-1 \cdot \frac{\ell}{\sqrt{n}}\right]
$$

11) Given a res. of size n from an exponential distribution with unknown mean λ. Find the likelihood function $L(\lambda)$. show that $L(\bar{x}) \geq L \quad(1)$, cohere \bar{x} is the sample mean. Hence derive the likelihood ratio test for $H_{0}: \lambda=1$ Vs. $H_{1}: \lambda \neq 1$. show that such a test can be performed using a chi-soreare statistic. Discuss how will you find the cut of point of the test. Also mention the nature of power function of the test.

$$
(2+2+3+3+3+2)^{\prime} 08
$$

Solution:- Let us consider that x_{1}, \ldots, x_{n} be $a r, s$, of size n from the exponential distribution with unknown mean λ. Noco, pdf of x_{i} is $f x_{i}(x)=\theta e^{-\theta x}, x>0$ and θ is such that $E\left(x_{i}\right)=\lambda \forall i$.

Now,

$$
\begin{aligned}
E\left(X_{i}\right) & =\int_{0}^{\infty} \theta x e^{-\theta x} d x \\
& =\theta \cdot \frac{\sqrt{2}}{\theta^{2}}=\frac{1}{\theta}=\lambda \\
\Rightarrow \lambda & =\frac{1}{\theta} .
\end{aligned}
$$

\therefore Likelihood function of x_{1}, \ldots, x_{n} is given by.

$$
L(\lambda)=\left(\frac{1}{\lambda}\right)^{n} \cdot e^{-\sum_{i=1}^{n} x_{i} / \lambda} ; x_{i}>0 \forall i
$$

Now, woe find out the maximum likelihood estimator of λ. Differentiating $\ln L(\lambda)$ w.r.t. λ and equating with zion we have

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \lambda} \ln L(\lambda)\right|_{\lambda=\hat{\lambda}}=0 \\
\Rightarrow & -\frac{n}{\lambda^{n}}+\frac{\sum_{i=1}^{n} x_{i}}{\hat{\lambda}^{2}}=0 \\
\Rightarrow & \hat{\lambda}=\frac{1}{n} \sum x_{i}=\bar{x}
\end{aligned}
$$

\angle MLE of λ is $\hat{\lambda}=\bar{x}=$ sample mean.
Since MLE maximized the likelihood function,

$$
L(\lambda) \geq L(1) .
$$

Here coe are to test,

$$
H_{0}: \lambda=1 \quad V_{s} . \quad H_{1}: \lambda \neq 1
$$

Here we opt for likelihood ratio test, the generalised likelihood ratio is given by,

$$
\begin{aligned}
\lambda(\bar{x}) & =\frac{\sup _{\lambda=1} L(\lambda)}{\sup _{\lambda \neq 1} L(\lambda)}=\frac{L(1)}{L(\bar{x})} \quad[\because \bar{x} \text { is the MLE of } \lambda] \\
& =\frac{e^{-\sum_{i} x_{i}}}{\frac{1}{\bar{x}} e^{-\sum_{i} \frac{x_{i}}{x}}}=\frac{\bar{x} \cdot e^{-\sum x_{i}}}{e^{-n}} .
\end{aligned}
$$

We reject to at level α if $\lambda(x)<k$

$$
\begin{align*}
& \Rightarrow \bar{x}_{i} e^{-\sum x_{i}}<k^{\prime} \\
& \Rightarrow \ln \bar{x}-\sum x_{i}<c \\
& \Rightarrow \sum x_{i}>c \tag{i}
\end{align*}
$$

Here c is such that $E_{H_{0}}\left[\sum X_{i}>e\right]=\alpha$
\therefore The size α critical region is given by

$$
W=\left\{\underset{\sim}{x}: \sum_{i=1}^{n} x_{i}>c\right\}
$$

From the LR criterion we have that we reject H_{0} if

$$
\sum_{i=1}^{n} x_{i}>c
$$

Now, $x_{i} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$

$$
Y=\sum_{i=1}^{n} x_{i} \text { id } \operatorname{gamma}\left(\frac{1}{\lambda}, n\right)
$$

The PDF of Y is given by

$$
\begin{aligned}
& \operatorname{fr}(y)=\frac{y^{n-1} \cdot e^{-y / \lambda}}{(\lambda)^{n} \sqrt{n}}, y>0 \\
& 2 \frac{y^{n-1} \cdot e^{-y / \lambda}}{(\lambda)^{n} \cdot \sqrt{n}}>c
\end{aligned}
$$

Let $z=\frac{2 y}{\lambda}$

$$
\begin{aligned}
& \therefore\left|\frac{d y}{d z}\right|=\frac{\lambda}{2} \\
& \text { F of } z \text { is given by:- } f_{z}(z)=\frac{\lambda^{n-1} \cdot z^{n-1} \cdot e^{-z / 2}}{2^{n} \cdot \lambda^{n} \cdot \sqrt{n}} \\
& =
\end{aligned}
$$

\therefore This is a critical region based on k.
Here k is such that, $P_{H_{0}}\left[X_{2 n}^{2}>k\right]=\alpha$
$\therefore k=\chi_{\alpha ; 2 n}^{2}$, the upper α point of a chisquare $2 n$ divots..
The power function is given by $P_{H_{1}}\left[X_{2 n}^{2}>X_{\alpha ; 2 n}^{2}\right]$

WORKED OUT PROBLEMS ON NON-PARAMETRIC INFERENCE [CU.]
(1). Describe Wilcoxon signed rank test. Whit is it a non-parametric test? Give an example where it can be. used. can you use sign test for the problem mentioned by you? Justify your answer. How is a signed rank test differ from sign test? 09
Solution:-
Wilcoxon signed rank test:- Let X_{1}, \ldots, X_{n} be a res. of $\operatorname{size} n$ drawn from a continuous poplin. $F($.$) , with unknown$ median Mit Here we assume that F is symmetric about M. Consider the problem of testing,
$H_{0}: M=M_{0}$ Vs, $H_{H}: M \underset{\neq M 0}{\ngtr}$ $<$
Leet us define, $D_{i}=X_{i}-M_{0}, i=1(1)^{n}$.
Under tho, the differences Di's are symmetrically distributed about 10 '.
Now, let us define, $Z_{i}=\left\{\begin{array}{ll}1, & \text { if } D_{i}>0 \\ 0, & \text { if } D_{i}<0\end{array} \quad=\right.$ holds with probability zeno.
Then $W^{+}=\sum_{i=1}^{n} z_{i} \operatorname{Rank}(|D i|)$ and $W^{-}=\sum_{i=1}^{n}\left(1-Z_{i}\right) \operatorname{Rank}\left(\left|D_{i}\right|\right)$
The Wilcoxon signed rank statistics defined by both w rand W^{-}. Now,

$$
\begin{aligned}
& \text { Now, } \\
& W^{+}=\text {sum of ranks of tue } D i ' s . \\
& W^{-}=" ~ " ~ " ~ " v e ~ " ~
\end{aligned}
$$

WLG, let $\left|D_{1}\right|<\left|D_{2}\right|<\cdots<\left|D_{n}\right|$
Then $\operatorname{Rank}\left(\left|D_{i}\right|\right)=i$.

$$
\text { So that } \begin{aligned}
w^{+}+w^{-} & =\sum_{i=1}^{n} \operatorname{Rank}(|D i|) \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

Because of this linear constraint the test statistic based on W^{+}and W^{-}only and ($W^{+}-W^{-}$) are linearly related and therefore equivalent eniterrion.

If the true poplin. median exceeds M_{0}. Therefore a might tail test is appropriate based on W^{+}as most of the larger ranks coil correspond to the the differences. Hence we reject Ho if
$W^{+}>W_{\alpha}$; where W_{α} is such that

$$
P_{H_{0}}\left[W^{+}>w_{\alpha}\right]=\alpha
$$

For the alternative H_{1} : $M<M_{0}$ a left tail test based on W^{-}is appropriate.
We reject H_{0} in favour of H if $W^{-}<W_{\alpha}^{\prime}$, where W_{α}^{\prime} is such that, $P_{H_{0}}\left[W^{-}<W_{\alpha}^{\prime}\right]=\alpha$.
Apart from these two cases a both tailed test is appropriate.
Non-parametric justification:-
Here under Ho, Z_{i}^{\prime} s are bernoulli ($\frac{1}{n}$) which is independent of the parent popin. Hence $w+$ being a linear function of $z_{i} i^{\prime}$ has its distribution independent of the parameter of the parent population under Ho. Hence the test provided by w^{+} is exactly distribution free under H_{0} and hence non-parametric.
Example of signed rank test:-
Let us draw a random sample of marks in statistics of
20 students of a certain class. Here we are interested about the standard of students in statistics. Here median is quite a good measure. So, here we have to infer about the median of marks in statistics in the class. But we have no prion knowledge about the probability distribution of the marks. so, here we opt for non-parametric method. Here we can apply wilcoxon signed ranktest procedure. First we set the null hypothesis by choosing a tentative value of poplin median and then we compute Dis by the null hypothesis value of the median from the sample value of the marks and we rank the fromsolute values of D_{i} and we check the no. of +ye \& - ve values. In this way we compute the $w+$ and $w-$ and compare these realized values with the tabulated critical on our desired level of significance and we draw the conclusion for the poplin median.

W We can use sign test for the above stated example as for signtest, we are just required to compute the no. of 't' signs and no. of '-' signs and procedure for getting these signs is same as signed rank test.

The ordinary single sample sign test utilizes only the signs of the differences between each observations and the hypothesized median θ_{0}, the magnitude of these observations relative to θ_{0} are ignored. But in signed rank test we consider the signs as well as the magnitude of these differences. This modified test statistic is expected to give better performance.
(2). Describe World-Wolfosoitz bun test specifying clearly the null and alternative hypothesis for which it is appropriate. Derive the exact distribution of the total number of buns in the sample under null hypothesis and hence compute its mean and variance. (is) 10
Solution:- World-Wolfowitz run test :
Definition of run:- A nun is a seaceence of similar objects or symbols proceded and followed by dissimilar one. Testing problem: - Let x_{1}, \ldots, x_{m} be arms. of size m from a poplin. with continuous distr. function $F(\cdot)$ and Y_{1}, \ldots, Y_{n} be a bis. of size n from popin with d.f. $G(I)$ such that

$$
G(x)=F(x-\delta), \delta \in \mathbb{R}
$$

The samples are drawn are of independent type. Here we are to test:

$$
H_{0}: \delta=0 \text { Vs. } \quad H_{1}:\left\{\begin{array}{l}
\delta>0 \\
\delta<0 \\
\delta \neq 0
\end{array}\right.
$$

Test procedure:- Let $Z=\left(X_{1}, \ldots ., X_{m} ; Y_{1}, \ldots, Y_{n}\right)$ be the combined sample.
(i) At first we arrange the combined sample observations in ascending order of magnitude.
(ii) Replace each observation by either X or Y according as the poplin it comes from.
(iii) Count the total number of runs in the sequence obtained. This is our 'runtest statistic' denoted by r.

Critical region:- Under each of three kind of a Hernative, the number of runs is expected to be smaller than that under the null hypothesis. So this test has alcogys a left tailed critical region.
At tevet α, we reject tho, if $r \leq \gamma_{\alpha}$, where γ_{α} is the largest integer satisfying $P_{H_{0}}\left[\gamma \leq r_{\alpha}\right] \leq \alpha$
or, if r_{0} is the observed value of r, then reject H_{0} if

$$
P_{H_{0}}^{-}\left[r \leq r_{0}\right] \leq \delta .
$$

(0) Exact distribution of total number of buns:

If H_{0} is true, then the no. of distinguishable arrangement's of $m \quad X^{\prime} s$ and $n Y^{\prime} s$ in a line is $\binom{m+n}{n}$ and they are equally likely.
To find $P_{H 0}\left[r=r_{0}\right]$, we need to find the total no. of distinguishable arrangement among these $\binom{m+n}{m}$ which will give us a total of γ_{0} runs.
Case I:- $\gamma_{0}=\operatorname{even}(=2 d)$, say
If $\gamma=2 d$, then if there are d runs of x and d runs of Y. The first run may be either an, X or an Y. Now to get d runs of X, we have to partition these $m X^{\prime} s$ in d groups, none of which are non-empty.
This can be done by placing $(d-1)$ bars between the m x's and there are $(m-1)$ places between X^{\prime} s. So this can be done in $\binom{m-1}{d-1}$ distinguishable ways, by a similar argument d runs of Y can be obtained in $\left(\begin{array}{cc}n & -1 \\ d-1\end{array}\right)$ crays.

$$
\therefore P[\gamma=2 d]=\frac{2\binom{m-1}{d-1}\binom{n-1}{d-1}}{\binom{m+n}{m}}
$$

Case II:- $\quad r=\operatorname{odd}(=2 d+1)$
If $r=2 d+1$, then we may have the following two mutually exclusive cays:
i) de reins of $x^{\prime} s$ and $(d+1)$ rums of $Y^{\prime} s$.
ii) $(d+1)$ runs of $x^{\prime} s$ and a runs of $Y^{\prime} s$.

Applying similar logic, we have

$$
P[\gamma=2 d+1]=\frac{\binom{m-1}{d}\binom{n-1}{d-1}+\binom{n-1}{d}}{\binom{m+n}{m}}
$$

-: IMPORTANT QUES:-
(Testing for independence of X and Y)
Let $X_{i}, Y_{i}, i=1(1) n$ be a res. from $B N\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)$.
Derive the LRT for testing $H_{0}: \rho=0$ VS. $H_{1}: \rho \neq 0$.
Solution:- Here $\Omega=\left\{\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right): \mu_{i} \in \mathbb{R}, i=1,2 ; \sigma_{i}>0\right.$, $|P|<1\}$,
and $\Omega_{0}=\left\{\left(\mu_{1}, \mu_{2}, \nabla_{1}, \sigma_{2}, \rho\right): \rho=0, \mu_{i} \in \mathbb{R}, \sigma_{i}>0, i=1,2\right\}$
The likelihood function is

$$
L=\left\{\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-p^{2}}}\right\}^{n / 2}: e^{\left.-\frac{1}{2\left(1-\rho_{2}\right.}\right)} \sum_{i=1}^{n}\left\{\left(\frac{x_{i}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 p\left(\frac{x_{i}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y_{j}-\mu_{2}}{\sigma_{2}}\right)\right.
$$

$\operatorname{Sup}_{\substack{\theta \in \Omega}}=\left(\frac{1}{2 \pi \hat{\sigma}_{1} \hat{\sigma}_{2} \sqrt{1-\hat{p}^{2}}}\right)^{n} e^{-n / 2}$; where,

$$
\hat{\sigma}_{1}^{2}=\frac{1}{n} \sum\left(x_{i}-\hat{\mu}_{1}\right)^{2}, \hat{\sigma}_{2}^{2}=\frac{1}{n} \sum\left(y_{j}-\hat{\mu}_{2}\right)^{2}, \hat{\rho}=r
$$

and $\sup _{\theta \in \Omega_{0}} L=\left(\frac{1}{2 \pi \hat{\sigma}_{1} \hat{\sigma}_{2}}\right)^{n}: e^{-n / 2}$.
The $L R$ is

$$
\lambda=\frac{\sup _{Q \in \Omega 0} L}{\sup _{\substack{\theta \\ \sim}} L}=\left(1-r^{2}\right)^{n / 2}
$$

Now, $\lambda<c \Rightarrow|r|>k$.

$$
\Rightarrow \frac{|r| \sqrt{n-2}}{\sqrt{1-r^{2}}}>\frac{k \sqrt{n-2}}{\sqrt{1-r^{2}}}=k^{\prime}
$$

The size \propto LRT: Reject Ho iff $\lambda<C$

$$
\text { if }\left|\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}}\right|>t_{\alpha / 2 ; n-2}
$$

Here, $t=\frac{r \sqrt{n-2}}{\sqrt{1-r^{2}}} \sim t_{n-2}$, under Ho: $p=0$.

