PRACTICALS ON STATISTICS

BY

TANUJIT CHAKRABORTY

Indian Statistical Institute

Mail : tanujitisi@gmail.com

PROBLEMS ON LINEAR ALGEBRA

1/0) Determine k so that the set sis linearly independent in (i) $S = \{(1,2,1), (k,3,1), (2,k,0)\}$ $E_{\mathcal{B}}$ (i) SI = § (K,1,1), (1, K,1), (1, 1, K)] (b) For what values of a will the vectors (1, 5, 7), (4,0, R), (1,0,0) form a basis for E³? [C.U.2009] ANS:- (i) Construct a matrix with the given vectors: $A = \begin{pmatrix} 1 & 2 & 1 \\ K & 3 & 1 \\ 2 & K & 0 \end{pmatrix}$ As this vectors are linearly independent, so, nank(A)=3. -: \A] = 0 $\Rightarrow \begin{vmatrix} 1 & 2 \\ k & 3 \\ 2 & k \\ 0 \end{vmatrix} \neq 0$ $\Rightarrow (k^{\nu}-G) - (k-A) \neq 0$ $\Rightarrow (k^{-} - k - 2) \neq 0$ $\Rightarrow (k - 2) (k + 1) \neq 0 \Rightarrow k \neq 2, -1.$ (ii) Construct a mortinize with the given vectors: A= (k 1 1) I k 1 As this vectors are Linearly independent, so, nank(A)=3 :. |A|=0 $\Rightarrow (k-1)^{(k+2)} \neq 0$ $\Rightarrow k \neq -2, 1$ As the vectors (1,5,7), (4,0,0), (1,0,0) are linearly (b) independent, so we construct a matrix A with nank (A) = 3 $A = \begin{pmatrix} 1 & 5 & 7 \\ 4 & 0 & \alpha \\ 1 & 0 & 0 \end{pmatrix}$ ≥ 1A1 =0 ⇒ 5×≠0 $\Rightarrow \alpha \neq 0$

2) Find the dimension of the vector space generated by the vectors:
$$\chi_1' = (0 \ 1 \ 2 \ 3)$$

 $\chi_2' = (2 \ -1 \ 5 \ 4)$
 $\chi_3' = (0 \ -2 \ 4 \ 7)$
Find a vector in the space outforgonal to the vector space spanned by $\chi_1', \chi_2', \chi_3', \chi_4'$. $E \ 2.001$
Noco, to find from (A), we call beduee this matrix into its $(-2.4.7)$
Noco, to find from (A), we call beduee this matrix into its echelon from 2 and the solution of $E \ x = 2$ is a vector solid.
 $A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 4 & 0 & 6 & 1 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
Noco, to find from (A), we call beduee this matrix into its is outforgonal to the vector space apamed by $\chi_1', \chi_2', \chi_3', \chi_4'$.
 $A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 2 & -1 & 5 & 4 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
 $R_2' = R_3 - 2R_1$ $\begin{pmatrix} 2 & -1 & 5 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
 $R_2' = R_3 - 2R_1$ $\begin{pmatrix} 2 & -1 & 5 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
 $R_3' = R_3 - 2R_1$ $\begin{pmatrix} 2 & -1 & 5 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
 $R_3' = R_3 - 2R_1$ $\begin{pmatrix} 2 & -1 & 5 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
 $R_3' = R_3 - 2R_1$ $\begin{pmatrix} 2 & -1 & 5 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
 $R_3' = R_3 - 2R_1$ $\begin{pmatrix} 2 & 0 & 7 & 7 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
 $R_3' = R_3 - 2R_1$ $\begin{pmatrix} 2 & 0 & 7 & 7 \\ 0 & 1 & 2 & 3 \\ 0 & -2 & 4 & 7 \end{pmatrix}$
 $R_3' = R_3' - R_3' = R_3' = 0$
 $R_3' = R_3' - R_3' = R_3' = R_3' = 0$
 $R_3' = R_3' - R_3' = R_3' = 0$
 $R_3' = R_3' = R_3' = 0$
 $R_3' = R_3' = R_3' = 0$
 $R_3 + \frac{13}{2} R_4 = 0$
Liet, $R_4 = t_{A} R_3 = -\frac{13}{2} t_{A} R_2 = \frac{1}{4} t_{A} R_1 = \frac{35}{18} t_{A}$
 $\therefore R_3 = t \left(\frac{35}{15} \cdot \frac{1}{4} - \frac{13}{8} \times 1\right)$, $t \in \mathbb{R}$,

,

,

1

Ì

11) The basis of B is
$$\{(1,000 \ 0.3|8 \ 0.260 \ 0.156),$$

(0 1000 0.4124 $(5.2176), (0 \ 0 \ 1000 \ 0.0413)\}$
11)
E $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = 0$
 $\Rightarrow 1.000 \alpha_1 + 0.313 \alpha_2 + 0.280 \alpha_{34} + 0.216 \alpha_4 = 0$
 $1.000 \alpha_2 + 0.4124 \alpha_3 + 0.216 \alpha_4 = 0$
 $1.000 \alpha_2 + 0.4124 \alpha_3 + 0.216 \alpha_4 = 0$
Liet, $\alpha_4 = t, t \in \mathbb{R}$.
 $\therefore \alpha_3 = -0.013 \ t$
 $\therefore \alpha_2 = -0.1372 \ t$
 $\therefore \alpha_1 = -0.0749 \ t$
 $\therefore \alpha_1 = -0.0749 \ t$
 $\therefore \alpha_1 = -0.0749 \ t$
 $\Rightarrow S and T are subspaces of N4 given by
 $g = S(\alpha_1, \alpha_2, \alpha_3, \alpha_4) : 2\alpha_1 + \alpha_2 + 3\alpha_3 + \alpha_4 = 0\}$
 $T = S(\alpha_1, \alpha_4, \alpha_5, \alpha_4) : \alpha_1 + 2\alpha_2 + \alpha_3 + 3\alpha_4 = 0$
Find a basis and the dimension of (0 S ort, (i) S+T.
Hene, $SOT = S(\alpha_1, \alpha_2, \alpha_3, \alpha_4) : \frac{2\alpha_1 + \alpha_2 + 3\alpha_3 + \alpha_4 = 0}{\alpha_1 + 2\alpha_2 + \alpha_3 + 3\alpha_4 = 0} \Rightarrow 2\alpha_1 + \alpha_2 = -3\alpha_3 - \alpha_4 - 0$
 $2_1 + \alpha_2 + 3\alpha_3 + \alpha_4 = 0 \Rightarrow 2\alpha_1 + \alpha_2 = -3\alpha_3 - \alpha_4 - 0$
 $2_1 + 2\alpha_2 + \alpha_3 + 3\alpha_4 = 0 \Rightarrow \alpha_1 + 2\alpha_2 = -\alpha_3 - 3\alpha_4 - 0$
Solving (0 f C), we get, $\alpha_1 = -\frac{6\alpha_3 + \alpha_4}{3}$
 $\alpha_2 = \frac{\alpha_3 - 5\alpha_4}{3}$
Hene, $\alpha = (-\frac{5\alpha_3 + \alpha_4}{3}, \frac{\alpha_3 - 5\alpha_4}{3}, \alpha_3, \alpha_4)$
 $= \alpha_3(-\frac{5}{3}, \frac{1}{3}, 1, 0) + \alpha_4(\frac{1}{3}, -\frac{5}{3}, 0, 1)$
Hene, $\{(-\frac{5}{3}, \frac{1}{2}, 1, 0), (\frac{1}{3}, -\frac{5}{3}, 0, 1)\}$ forms a basis.
 $\therefore \dim (3 \ AT) = 2$.$

 $\therefore \mathcal{R} = (\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{R}_{3}, \mathcal{R}_{4}), 2\mathcal{R}_{1} + \mathcal{R}_{2} + \mathcal{B}\mathcal{R}_{3} + \mathcal{R}_{4} = 0$ NOW, XES $= (\alpha_1, \alpha_2, \alpha_3, -2\alpha_1 - \alpha_2 - 3\alpha_3)$ $= \alpha_1(1,0,0,-2) + \alpha_2(0,1,0,-1) + \alpha_3(0,0,1,-3)$ Cleanly, S(1,0,0,-2), (0,1,0,-1), (0,0,1,-3) forms a basis for S, $: \dim(3) = 3$, NOW, & ET : x= (x1,x2,x3,x4); x1+2x2+x3+3x4=0 = (-222-23-324, 22,23,24) $= \Re_2(-2, +, 0, 0) + \Re_3(-1, 0, 1, 0) + \Re_4(-3, 0, 0, 1)$ Cleanly, & (-2,1,0,0), (-1,0,1,0), (-3,0,0,1)} forms a basis for T. \therefore dim $(\tau) = 3$, $\dim(S+T) = \dim(S) + \dim(T) - \dim(S \cap T)$ = 3+3-2=4 Cleanly, S+T SYA And dim(S+T)=dim(Y4). => S+T=Y4 ⇒ {RI ~ RZ · RB · Rd} is a basis of (S+T).

6) If U = Span
$$i(1, 2, 1) / (2, 1, 3)$$
, $W = Span i(1, 0, 0) / (0, 1, 0)$
Show that U and W are subspaces of R3. Determine
a basis and dimension of UNW and U+W.
ANET Let $g \in UNW$
 $g = l_1(1, 2, 1) + l_2(2, 1, 3)$
 $= l_1(1, 0, 0) + l_2(0, 1, 0)$
 $\vdots l_1 + 2l = l_2$
 $l_1 + 3l_2 = 0$
 $\vdots l_1 = -3l_2$
 $\vdots g = l_2 \left\{ (-3)(1, 2, 1) + (2, 1, 3) \right\} = l_2(-1, -5, 0)$
 $= t(1, 5, 0)$, $t \in \mathbb{R}$
 $\vdots ONW = \left\{ t(1, 5, 0) : t \in \mathbb{R} \right\}$
 $\vdots ONW = \left\{ t(1, 5, 0) : t \in \mathbb{R} \right\}$
 $\vdots ONW = \left\{ t(1, 5, 0) : t \in \mathbb{R} \right\}$
 $\vdots ONW = \left\{ t(1, 5, 0) \right\}$
 $\vdots dim(UnW) = 1.$
 $(1, 2, 1), (2, 1, 3) \in U$ and they are linearly independent,
so therefore they form a basis of U.
 $\vdots dim(U) = 2$
Similarly, dim(W) = 2
Similarly, dim(W) = 2
 $i dim(U+W) = dim(W) + dim(W) - dim(U+W)$
 $= 2+2-1 = 3$.
 $(leonly, U+W \subseteq R^3$
 $j dim(U+W) = dim(R^3)$
 $j U+W = R^3$
 $j Given S_1 = \left\{ (1, 2, 3), (-1, 1, -1), (1, -3, 4) \right\}$, Determine the
dimension and a basis form
 $j [S_1] \cap [S_2]$, $ji [S_1] + [S_2]$,
cohere [S] denotes the span of S, [C.U.2004]

$$S_{1} \cap S_{2} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \\ 1 & -2 & 3 \\ -1 & 4 & -2 \\ 1 & -3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \\ 0 & -5 & 1 \end{bmatrix} \begin{pmatrix} g_{2} : g_{3} + g_{4} + g_{5} \\ g_{6} : g_{3} + g_{7} \\ g_{7} : g_{7} + g_{7} \\ g_{7} : g_{7} : g_{7} : g_{7} \\ g_{7} : g_{7} : g_{7} : g_{7} \\ g_{7} : g_{7} : g_{7} : g_{7} : g_{7} \\ g_{7} : g_{7}$$

8) Construct an orthogonal matrix
$$A^{4\times4}$$
 solves first nervo
15 $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, find $|A^{-1}|$. The matrix E is obtained by
suphacing the tained column of A by $(2\times 8\pi d \operatorname{column of } A)$.
Using A^{-1} , find B^{-1} , $[\underline{0}, 0, 2002]$
Aus: Note that $\{2, 1, 2, 2, 3, 2, 4\}$ form a basis for E^{4} .
Now, $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), \frac{1}{2}, \frac{1}{2$

Hence,
$$\frac{1}{2} \underbrace{y_1, y_2, y_3, y_4}_{13} is a set of 1 onthonormal vectors,
Hence, $A_{\pm} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$ is an onthonormal matrix with fine
 $A_{\pm} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$,
 $A = \begin{bmatrix} -\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}$$$

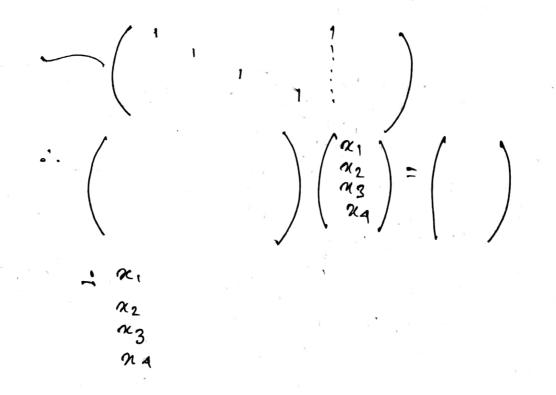
9 Let A and B be defined by

$$A = \begin{pmatrix} 1 & 2 & 2 & 2 \\ -1 & 1 & -3 \end{pmatrix}, B = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 4 & 2 \\ 0 & -2 & -1 \end{pmatrix}$$
(i) Show-that the column space of B is a subspace of A.
(ii) Find a matrix C such that $A = B$. [C.U.2000]
Ans:- (i) Column space of $A = C(A) = \begin{cases} \lambda_1 \begin{pmatrix} 1 & 2 \\ -1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 & 2 \\ -1 \end{pmatrix} \end{pmatrix};$
Column space of $B = C(B) = \begin{cases} l \begin{pmatrix} 1 & 2 \\ -1 \end{pmatrix} \\ (1 & -1) + l_2 \begin{pmatrix} 1 & 2 \\ -3 \end{pmatrix} \end{pmatrix};$
Column space of $B = C(B) = \begin{cases} l \begin{pmatrix} 1 & 2 \\ -1 \end{pmatrix} \\ (1 & -1) + l_2 \begin{pmatrix} 1 & 2 \\ -3 \end{pmatrix} \end{pmatrix};$
Now, for any vector $z \in C(B)$
we have, $x = l \begin{pmatrix} 2 \\ -1 \end{pmatrix}$
 $= l_1 \begin{pmatrix} 2 \\ -1 \end{pmatrix} + l_2 \begin{pmatrix} 1 & 2 \\ -1 \end{pmatrix} + l_3 \begin{pmatrix} -2 \\ -3 \end{pmatrix}$, where $l = l_1 l$
 $l_2 = l_3 = 0$,
wohigh belongs to $C(A)$.
 $\therefore C(B) \subseteq C(A)$
(i) Hene, note that, $P(A) = 2$, i.e. $P(A) < 3$,
Since $1 \leq l \leq 2$ and rows are LD.
 $\Rightarrow A is singular.$
 $\Rightarrow A^{-1}$ does not exist.
[$Tf A^{-1}$ exists, then $A c = B \Rightarrow C = A^{-1}B$ and H is unique
Hence, choice of C is not unique.
Note that, $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 4 & 2 \\ 0 & -2 & -1 \end{pmatrix}$
(B) Allebratice choice of $C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,

10) Let
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 3 & 5 & 7 \\ 4 & 16 & 23 \end{pmatrix}$$
. Suppose $P(A) = P^{2}$.
i) Find P. ii) Write A as the sum of n matrices each of rank unity. iii) Find an orthononimal basis of the nous for of A .
Ans:-Note that, $(q, 16, 23) = (2, 0, 008]$
 $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 5 & 7 \\ 3xi+2xi & 5xi+2xs & 3xi+2y \end{pmatrix}$
 $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 5 & 7 \\ 3xi+2xi & 5xi+2xs & 3xi+2y \end{pmatrix}$
 $Clearly, Rank (A)=2, as there have two LIN nows, and $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 6 & q \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & 7 \\ 8xi & 3x2 & 3x3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & 7 \\ 8xi & 3x2 & 3x3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & 7 \\ 8xi & 3x2 & 3x3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & 7 \\ 8xi & 3x2 & 3x3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & 7 \\ 8xi & 3x2 & 3x3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & 7 \\ 8xi & 3x2 & 3x3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & 7 \\ 8xi & 3x2 & 5x2 & 7x2 \end{pmatrix} = A_1 + A_2, where Rank (Ai)=1, Yi=1, 2.$
iii) $\{(1,2,3), (8,5,7)\}$ form a basis of the now space of A ,
 $\therefore y_1 \in (1,2/3)$
 $r, y_1 \in (1,2/3)$
 $r, y_1 \in (1,2/3)$
 $r, y_1 \in (1,2/3)$
 $r, y_2 = (3,5,7) - \{(3,5,7)\}\frac{1}{117}(1,2,3)\frac{1}{117}(1,2,3)\frac{1}{117}(1,2,3)$
 $= (\frac{4}{7}, \frac{1}{7}, -\frac{2}{7})$
 $A = \frac{1}{\sqrt{21}}(4,1,-2)$$

1) Suppose
$$A = \begin{pmatrix} 7 & -12 & 4 \\ 3 & -2 & 5 \\ -6 & 11 & 8 \end{pmatrix}$$

(a) Find A⁻¹.
(b) Find a matrix D such that $AB = \begin{pmatrix} 8 & -12 & 4 \\ 3 & -1 & 5 \\ -6 & 11 & 9 \end{pmatrix}$
(c) Write A as a sum of symmetric 1 and a skew-reprimetrie, matrices.
(d) Liet V be a vector space generated by the first two
(e) Liet V be a vector space generated by the first two
(f) Liet V be a vector of A as the sum of the two non-zero vectors
such that one is a members of Y and the other is
ovtragonal to Y.
(f) $V = \int l_1 \begin{pmatrix} 7 \\ -6 \end{pmatrix} + l_2 \begin{pmatrix} -12 \\ -11 \end{pmatrix} + l_2 (R)$
Liet, $\begin{pmatrix} 4 \\ 5 \end{pmatrix} = 2 + j$ where $x \in Y$ and y is \bot to V.
Liet, $y = t$, now, $y_1 = \frac{21t}{22}$, $y_2 = -\frac{5t}{22}$; $y = t \begin{pmatrix} 21/2t \\ -5/22 \\ 1 \end{pmatrix}$
 $i = l_1 \begin{pmatrix} 7 \\ -6 \end{pmatrix} + l_2 \begin{pmatrix} -12 \\ -2 \\ 1 \end{pmatrix}$; $l_1 + l_2 \in R = 22t \begin{pmatrix} -2 \\ -2 \\ -2 \\ 1 \end{pmatrix}$
 $i = l_1 \begin{pmatrix} 7 \\ -6 \end{pmatrix} + l_2 \begin{pmatrix} -12 \\ -2 \\ -1 \end{pmatrix}$; $l_1 + l_2 \in R = 22t \begin{pmatrix} -2 \\ -2 \\ -2 \\ 1 \end{pmatrix}$
 $i = l_1 \begin{pmatrix} 7 \\ -6 \end{pmatrix} + l_2 \begin{pmatrix} -12 \\ -2 \\ -2 \\ 11 \end{pmatrix}$; $l_1 + l_2 \in R = 22t \begin{pmatrix} -2 \\ -2 \\ -2 \\ -2 \\ 11 \end{pmatrix}$; $l_1 + l_2 \in R = 22t \begin{pmatrix} -2 \\ -2 \\ -2 \\ -2 \\ 11 \end{pmatrix}$
 $i = l_1 \begin{pmatrix} 7 \\ -6 \\ -5 \end{pmatrix} + l_2 \begin{pmatrix} -12 \\ -2 \\ -2 \\ 11 \end{pmatrix} + l_3 \begin{pmatrix} 21/2 \\ -5 \\ -2 \\ -2 \\ 11 \end{pmatrix}$; $l_1 + l_2 \begin{pmatrix} -12 \\ -5 \\ -2 \\ -2 \\ 11 \end{pmatrix}$


12) (a) Suppose
$$A = \begin{pmatrix} 4 & 3 & 6 \\ 2 & 7 & 8 \\ 2 & 7 & 8 \end{pmatrix}$$
; Find two non-singular
matrices Pand Q such that $PAQ \in I_{3}$, $\begin{bmatrix} C & 0.1004 \\ C & 0.1004 \end{bmatrix}$
(b) Find inverse $d A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \end{pmatrix}$, by Fivolal Condensation
(c) Obtain the fully weduced normal form of $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$
(d) Express $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ as the product of elementary matrices
(d) Express $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ as the product of elementary matrices
(e) Ansi-
(f) By problem, $PAQ = I_{3}$
(g) Ansi (PAQ) = Rank (I_{3})
(g) A (I_{3}) = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 2 & 8 & -1 & 0 & 1 & 0 \\ -1 & 2 & 0 & 0 & 1 \end{pmatrix}
(i) $(A | I_{3}) = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 0 & 0 & 1 \end{pmatrix}$
(i) $(A | I_{3}) = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 1 \\ -1 & 2 & 0 & 0 & 1 \end{pmatrix}$
(i) $(A | I_{3}) = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 1 \end{pmatrix}$
(Fow openations)
 $A^{-1} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & 5 \end{pmatrix}$

$$\begin{array}{c} \textcircled{()} & \left[T_{3} \mid A^{\beta \times 8} \mid T_{3} \right] \\ = \left[\begin{array}{c} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 1 & 2 \\ \end{array} \right] \\ \begin{array}{c} T_{3} \swarrow P_{2} \rightarrow P_{2} \rightarrow P_{1} \\ \hline P_{1} \rightarrow P_{2} \rightarrow P_{2} \rightarrow P_{1} \\ \hline P_{1} \rightarrow P_{1} \rightarrow P_{1} \rightarrow P_{1} \\ \hline P_{1} \rightarrow P_{1} \rightarrow$$

-

12
(a) Solve the following system of linear equations
using a numerical Internet of linear equations

$$\alpha_1 - 2\alpha_2 + 3\alpha_3 + 4\alpha_4 = 4.5$$

 $3\alpha_1 - \alpha_2 + 2\alpha_3 + 3\alpha_4 = 9.5$
 $2\alpha_1 + 4\alpha_2 + 5\alpha_3 + \alpha_4 = 15$
 $4\alpha_1 + 2\alpha_2 - \alpha_3 + 3\alpha_4 = 12$
(1 -2 3 4 1 4.5)
 $2 + 4 + 5 + 1 + 15$
 $2 + 4 + 5 + 1 + 15$
 $4 + 2 - 1 + 8 + 12$
 $R_2' = R_2 - 3R_1$
 $R_3' = R_3 - 2R_1$
 $R_4' = R_4 - 4R_1$
(1 -2 3 4 1 4.5)
 $0 + 12$
 $R_4' = R_4 - 4R_1$
(1 -2 3 4 1 4.5)
 $0 + 12$
 $R_4' = R_4 - 4R_1$
(1 -2 3 4 1 4.5)
 $0 + 12$
 $R_4' = R_4 - 4R_1$
(1 -2 3 4 1 4.5)
 $R_4' = R_4 - 4R_1$

(b) For each value of k the planes

$$x - 4y + 52 = k$$

 $x - 4y + 52 = k$
 $x - 4y + 52 = k$
 $x - 4y + 52 = 3$ (b) intensect in a line?
 $2x + y + 2 = 0$, (i) intensect in a point?
Aus:-
Augmented matrix = $\begin{bmatrix} A : b \end{bmatrix}$
 $= \begin{bmatrix} 1 & -4 & 5 & | & k \\ 1 & -1 & 2 & | & 3 \\ 2 & 1 & | & 0 \end{bmatrix}$
 $R_{2} \rightarrow R_{2} - R_{1}$
 $R_{3}' \rightarrow R_{3} - 2R_{1}$
 $R_{3}' \rightarrow R_{3} - 3R_{2}$
 $R_{3}' \rightarrow R_{3} - 3R_{2}$
 $R_{3}' \rightarrow R_{3} - 3R_{2}$
 $R_{2}' = R_{2}/3$
 $R_{3}' - R_{3} - 3R_{2}$
 $R_{2}' = R_{2}/3$
 $R_{3}' - R_{3} - 3R_{2}$
 $R_{3}' - R_{3} - 3R_{3}$
 $R_{3}' - R_{3} - R_{3} + 2R_{3} + 2R_{3}$

B such that A = BBT. $q_{11}=1$, 0, $\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 1$, 0, $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 11 \end{vmatrix} = 1$, 0ANS:-All the principal minors of A is positive. .: Ais p.d. matrix. $R_2 \rightarrow R_2 - 2R_1$ $\begin{array}{c|c} R_{3} \rightarrow R_{3} - R_{2} \\ \hline \\ C_{3} \rightarrow e_{3} - e_{2} \end{array} \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 & | & 1 & -2 & -1 \\ \hline \\ -2 & 1 & 0 & | & 0 & | & 0 & 0 & | & -1 \\ \hline \\ -1 & -1 & 1 & | & 0 & 0 & 1 & | & 0 & 0 & 1 \end{array}$ $L CAC' = I_3 \Rightarrow A = C^{-1} I_3 (c^{-1})'$ =(c-1)(c-1)1 ao here $B = C^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$ $2 \left(\begin{array}{cc} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{array} \right)$

(ii) Solve the equations:

$$S\alpha_1 - 2\alpha_2 - \alpha_3 = 42$$

 $S\alpha_2 - 2\alpha_3 - \alpha_1 + 32 = 0$
 $5\alpha_3 - 2\alpha_1 - \alpha_2 = 32$
to express xi's in terms of g. for what valued 2,
do $\alpha_1, \alpha_2, \alpha_3$ further ratio $\alpha_1 + \alpha_2 + \alpha_3 = 17$
 $Ans:-Augmentized matrix is $[A | b]$
 $= \begin{pmatrix} -1 & 5 & -2 & -1 & 42 \\ -2 & -1 & 5 & 32 \\ -2 & -1 & 5 & 1 & 32 \end{pmatrix}$
 $R_2' \leftrightarrow R_2 + SR_1 \begin{pmatrix} -1 & 5 & -2 & 1 & -32 \\ -2 & -1 & 5 & 1 & 32 \end{pmatrix}$
 $R_2' \leftrightarrow R_2 + SR_1 \begin{pmatrix} -1 & 5 & -2 & 1 & -32 \\ -2 & -1 & 5 & 1 & 32 \end{pmatrix}$
 $R_2' \leftrightarrow R_2 + SR_1 \begin{pmatrix} -1 & 5 & -2 & 1 & -32 \\ 0 & 23 & -11 & -112 \\ 0 & -11 & -9 & 1 & -92 \end{pmatrix}$
 $R_1' \to R_1/23 \qquad \begin{pmatrix} 1 & -5 & 2 & 1 & 32 \\ 0 & 1 & -9/11 & -92 \\ 0 & 1 & -9/11 & -92 \end{pmatrix}$
 $R_3' \to R_3/11 \qquad \begin{pmatrix} 1 & -5 & 2 & 1 & 32 \\ 0 & 1 & -9/11 & -92 \\ 0 & 0 & -86/253 & -\frac{52}{253}g \end{pmatrix}$
 $R_3' = R_3/-\frac{56}{253} \begin{pmatrix} 1 & -5 & 2 & 1 & 32 \\ 0 & 1 & -11/23 & -11/232 \\ 0 & 0 & -86/253 & -\frac{52}{253}g \end{pmatrix}$
 $r & \alpha_3 = t, & \alpha_2 = -\frac{11}{23}t$,
 $\Rightarrow & \alpha_2 = 0$
 $\Rightarrow \alpha_1 = t$
 $r & (\alpha_1, \alpha_2/\alpha_3) = t (1, 0, 1)$ is a solution,
Again $\alpha_1 + \alpha_2 + \alpha_3 = 1 \Rightarrow t + 0 + t = 1 \Rightarrow t = 1/2$$

Ť

è

ł.

15) i) Determine the null space of
$$A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & -3 & 1 \\ -1 & -1 & 0 & +5 \end{bmatrix}$$

Also find dim (N(A)) and pank (A).
Ans:- To find dim (N(A)), we use,
dim (N(A)) = 4 - pank (A).
viz. Know, $a_{a}: A_{a} = 0^{2} = [N(A)]$
Hene, $\begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & 2 & -3 & 1 \\ -1 & -1 & 0 & +5 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & -1 & -3 \end{pmatrix}$
(1 & 1 & -1 & 2
(1 & 1 & -1 & 2 \\ 0 & 0 & -1 & -3 \end{pmatrix} = (1 & 1 & -1 & 2)
Has = 0.
Rank (A) = 2 :
Has = 0.
 $Aar = t, Aar = 0 = 2Aar = -3Aa$
 $Aar = t, Aar = -3t, Aar = -3t, Aar = -3t$
(N(A)] = $t \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$
A dim (N(A)) = 4-2=2.

(i) Find an outflogonal matrix colvicts diagonalizes

$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ -2 & 3 & -1 \\ -2 & 3 & -1 \\ 2 & -1 & -1 \\ 2 & -1 & -1$$

$$\begin{split} \chi_{1} = Q_{1} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \\ \chi_{1} = \frac{Q_{1}}{11 \otimes 11} = \frac{\begin{pmatrix} 1 \\ 2 \\ 1 \end{bmatrix}}{\sqrt{5}} = 2 \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \\ \chi_{2} = \frac{Q_{2}^{-} - \begin{pmatrix} \chi_{1}, \chi_{2} \end{pmatrix} \chi_{1}^{-1}}{= \begin{pmatrix} -2 \\ -2 \\ 5 \end{pmatrix}} \\ \chi_{2} = \frac{\chi_{2}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 5 \\ 2 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 5 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 5 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{\chi_{3}}{1} \\ \chi_{3} = \frac{\chi_{3}}{1} \\ \chi_{3} = \frac{\chi_{3}}{1} = \frac{\chi_{3}}{1} \\ \chi_{3} = \frac{\chi_{3$$

Q.No.1. [CU'03] The sound intensity levels measured in decibels at 50 construction sites are 68,63,59,77,60,57,63,62,69,73,63,70,71,65,68,67, 67,62,56,61,69,64,58,73,68,66,65,69,68,67,69,68 67,70,69,61,65,62,68,62,69,64,82,86,65,69,68,70,66 (i) Brepare a frequency table for considering 6 classes of equal width, (ii) Calculate, the exact mean and variance of sample from the now data. (iii) Estimate the mean and variance from the grouped frequency distribution by assuming each value is equal to the mid-point of the class to which it belongs. (i) Compare the answords in (ii) and in this connection mention about the hole of Sheppand's correction.

Q.NO.2. [CU'96] A Chemical compound contains 12.5% of inon was given to the two techinicians A and B for chemical analysis, 15 determinations, and B 10 determinations, of the percentage of inon, Thein results are given in the following table Determinations by Determinations by A 12.11 12:47 12.23 12.11 12.46 12.45 11.91 12.44 12.11 11.80 12.39 12.56 12.45 11.85 12.40 12.37

12.22

12.05

12.65

(i) Find seperately for A and B various measures of Central tendency and dispersion. Also, find their respective coefficients of variation. (ii) Based on the above measures prepare a report comparing the accuracy and consistency of the two technicians.

12.65

12.72

12.12

12.43

11.95

12.77

>7

Q.NO.3. The follocoing tables relate to the overgitter of new born babies recoved at the different clinics. One of the clinics is located in a locality where the average family income is also homogeneous throughout the bocality where as the other clinic caters to the same category but (also has a considerable number of citizens from a significant lower income group. Examine the locations disputsions and the shapes of the two distributions and interpret your findings. ClinicI ClinicI Weights in (kgs.) 0 - 10 0 [CU'1995] 43 1 2 - 3230 60 3-4 372 304 4 - S 320 318 5-6 57 56 6-7 2 3 Ø

٥

Q. No.4. [CU'2001] appearing in an Exam	The scores	s in Englist	of 250	candidates	
appearing in an exam	39.7213	2 - 9, 889	4		
$m_1 =$	34.1215				
<u>m3</u>	39.7213	$, b_2 = 2.9$	717.	-	
It is later found recorded as 51.	onscruting obtain	that score the correct	t values of	s been cononstruction of bill and by	
	1	11 T	i statist s		
		10 2141		ما با المحط ال	D
Q. No. S. Particular two manufacturing	firms a	the month	ty wage	CASIMIPANDIS &	Ĵ
Measures	FinmA	Fin	mB		
Mannalla	Rs. 1477	14	95		
Mean wage	Rs. 1389		354	· · · · · · ·	
Median cooge	RS, 1350	1. V 3. 1	312	2.0	
Modal wage.	Rs. 1278,		62,1435	2 2 2	
Quantiles	Da 27		28,99	*	
S.D. Compare the two	is half all all and	on n.7. +A	, character	nistic central	
Compare the two tendency, dispersion	in and sk	cioness, Kur	tosis,	!	
tendency; disperian			11 16.11		
U	· · · · · · · · · · · · · · · · · · ·		· · ·		
		· • • • • • • •			
) of or)			
gauges are as	s (in gram follows:	is) 09 25 i	indicators th	ousing used o	n
102.0	106.3	106.6	108.8	107.7	÷
10G · 1	105.9	106.7	106.8	110.2	
101.7	106.6	106.3	110.2	109.9	
102.0	105.8	196.1	106.7	1007.3	
102.0	106.8	110.0	107.9	109.3	
(a) Construct an of the stems and te	ndured stem	leaves.	ry using ini	tegers as	
(b) Find the five-	Jamper sam	many of the	- data and	draw a	
(c) Abe there any	suspected	outliens?	•		
· · · · · ·			,		

-

Π

. اسر

Q.NO.7. following table gives the yearly corn fyield (X) in bushels per acre, in size Conn Belt states (Iowa, Illinois, Nebraska, Missouri, Indiana, Ohio) and noin fall measurements in inches (Y) in states from 1915 to 1927, SIX 1919 1920 1921 1922 1923 1924 125 1926 1927 1918 1916 1917 1915 Yeon: 35.2 38.3 35.2 35.5 367 268 380 31.7 326 29.9 32.0 29.7 33.3 11.6 12.1 8.0 10.7 13.9 11.3 11.6 10.4 X : 9.5 9.0 9.4 9.3 16.5 γ: Fit a linear regression model: X = x + BY + C to the data by the method of least squares, making the usual assumptions.U Q.No.8. In an experiment on centain fertilizers were applied at various levels (in appropriate units) with resulting gields (in appropriate unit) as follows: 5 10 15 20 25 30 Ferotilizen level (20): 0 Yield (y): 27.1 32.1 35.0 36.2 36.9 36.1 35.2 (i) Firt an appropriate polynomial to the given data. ii) Obtain a suitable measure of association between x and y and comment (iii) Obtain the optimum fortilizer Level which maximizes yield. The following data relate to the height (x) and coeight (y) of 15 students Q. NO.9. [CU'2001] Æ x | 5'E" 5'3" 5'3" 5'9" 5'9" 5'E" 5'E" 5'9" 5'3" 5'E" 5'E" 5'9" 5'E" 5'3" 5'9" 5'3" 44 65 47 52 60 61 57 51 60 02 59 22 51 58 55 Compute myz and eyz, Is the regression linear? If not, compute a measure of deviation from linearity.

Q.No.10, Two supervisons nanked 12 coonkers coonking under them in order of efficiency as follows, Compute Spearman's to ank corrulation coefficient between the two nankings, Also compute kendall's 2.

I 7 KL Worker EF A B C D 4 7 11 4 8 10 8 7 16 12 8 3 SupervisonI: 1 2 5 େ 10 12 10 9 1 1 1 5 S supervisor II:

Q. No.11. [CU'2008]

The following table gives data on income in thousand dollars(2), the number of families (N) at income (x and the number of families owing a house (n).

α :	10	13	15	20	25	30	32	40
Ń.	60	80	100	7.0	65	50	10	25
··· · •	18	28	45	36	39	33	30	20

Suggest an appropriate regression equation to explain the effect of income on aroning a house. Also estimate the parameters of this equation using the above data and predict there from the proportion of families of income 32 thousands dollars abo own a mouse. Solutions:> PROBLEMS ON DESCRIPTIVE STATS,

1. Minimum	value = 56,	Maximum v	alue = BB	
(i) Considering 6 classes of width \$5:				
Class-MinitClass		Froequency (fi)	Tally moriks	Cls.mank (xi')
56=600988//288 52-58 888	5215-58.5	2	11	5515
61-65 BAX + 18 59-64	58.5-64.5	16	MA 1441 1441 1	61.5
GG-TO BURY HITAD GS-70	69.5-70.5	25	the the the the the the	67.2
71-75 MX/1/7/8 71-76	70.5-96.5	4	<i>nı</i>)	43·S
	76.5-82.5	2	//	79.5
76-50 77 482 77-82 83-88	82.5-88.5	1	1	85.5
TOTAL		50		-

(i) From the naw data,
mean
$$(\overline{z}) = \frac{1}{50} \sum_{i=1}^{27} 2i$$

Variance $x = \frac{1}{50} \sum_{i=1}^{50} 2i - \overline{z}^{2}$

* *fi*

1

(ii) from the grouped data,
mean
$$(\overline{z}') = \frac{1}{2} \sum_{i=1}^{G} z_i' f_i$$

Vaniance $(\lambda'^2) = \frac{1}{50} \sum_{i=1}^{G} z_i' f_i - \overline{z}'$

(iv) The mean and variance computed from the naw data and from grouped data are different. In general, frequency distribution, we assume that all the values, in a class are equal to the mid-point which is values in a class and equal to the interpoint control is true if values are uniformly distributed over the class. So mean and variance computed from the raw data and grouped data are different due to the error due to grouping. The correction for the error due to grouping is given by Sheppand's connection. m_i' (connected) = m_1' m_2° (corrected) = $m_2 - \frac{c^{\vee}}{12}$, c = class width

2. (i) Exact mean of
$$A = \frac{1}{15} \sum_{i=1}^{15} \alpha_{iA} =$$

Exact mean of $B = \frac{1}{10} \sum_{i=1}^{10} \alpha_{iB} =$
Measure of Dispension, $SD(A) = \sqrt{\frac{1}{15} \sum_{i=1}^{15} \alpha_{iA}^{*} - \overline{\alpha_{A}}^{*}}$
 $SD(B) = \sqrt{\frac{1}{10} \sum_{i=1}^{10} \alpha_{iB}^{*} - \overline{\alpha_{B}}^{*}} =$
RMSD A (12.5) = $\sqrt{\frac{1}{15} \sum_{i=1}^{15} (\alpha_{iA} - 12.5)^{*}}$
RMSD $B(2.5) = \sqrt{\frac{1}{10} \sum_{i=1}^{10} (\alpha_{iB} - 12.5)^{*}}$
Co-efficient of variation A CV(A) = $\frac{SD(A)}{\overline{\alpha_{A}}} \times 100\% =$

(ii) As a measure of accuracy, we use RMSD about 12.5, The smaller the RMSD, is more accuracy.

As a measure of consistency, we use C.Y. The smaller C.V. is more consistency in Data set.

3) The frequency distribution of elinic-I is highly positively 3) The frequency distribution of elinic-I is highly positively skewed and that of elinic-II is near about symmetric. (To get the measure of distribution we may draw distogram [To get the frequency distribution]. (I) As a measure of location, we may use median. (I) As a measure of location, we may use median. · Median of Clinic I is : Median of Clinic II is (ii) Fon Dispension, we use Q.D. = Q3-Q1. . Q.D. of Clinic I is & Q.D. of clinic II is ... (iii) For shape, we use SK = Q3+Q1-2Q2 Q2-Q1 . Skewness of clinic I is . Skewness of clinic I 18 iv) For beackedness, we use, kp = $\frac{O_3 - Q_1}{2(P_{Q0} - P_{10})}$ 2. kuntosis of ClinicI is ... kurtosis of Clinic II is

the smallers the value of kp, the higher the kultosis.

IIIC U	•		V	
Weights in (Kgs)	ClinicI	ClinicII <u>< I</u>	≤ II	$P_{90}^{T} = 4 + \frac{667 \cdot 8 - 365}{318} \times 1$
0-1 1-2 2-3 3-4 4-5 5-6 6-7	0 1 309 318 56 3	0 0 43 1 230 GI 372 365 320 683 54 739 2 742	0 43 279 645 465 1019 1021	$P_{10}^{T} = 3 + \frac{74 \cdot 2 - 61}{304}$ $= 3 \cdot 04$ $Q_{1}^{T} = 3 + \frac{185 \cdot 5 - 61}{304} \times 1$ $= 3 \cdot 41$ $Q_{2}^{T} = 4 + \frac{371 - 365}{318} \times 1$ $= 4 \cdot 02$ $Q_{3}^{T} = 4 + \frac{5566 \cdot 5 - 365}{318} \times 1$
				F 4.60

$$n = 250$$

$$m_{1}^{\prime}((inconvected) = 39.7213$$

$$\Rightarrow \frac{1}{250} \sum_{i=1}^{50} \mathcal{X}_{i}((inconnected) = 39.7213$$

$$\Rightarrow \sum_{i=1}^{50} \mathcal{X}_{i}((inconnected) = 9930.825$$

$$\therefore \sum_{i=1}^{50} \mathcal{X}_{i}((connected) = (9930.325 - 51+61))$$

$$= 9940.325$$

$$\therefore m_{i}((connected) = 39.7613.$$

$$g((inconnected) = \sqrt{\frac{1}{250}} \sum_{i=1}^{7} \mathcal{X}_{i}((inconnect) - \overline{\mathcal{X}}((inconnect)))$$

$$= 9.8894$$

$$\therefore \sum_{i=1}^{7} \mathcal{X}_{i}((connected) = 418895.4765)$$

$$\therefore \sum_{i=1}^{7} \mathcal{X}_{i}((connected) = -30.1765)$$

$$\therefore \sum_{i=1}^{7} \mathcal{X}_{i}(connected) = \sqrt{\frac{1}{250}} \sum_{i=1}^{7} \mathcal{X}_{i}(connected) - \overline{\mathcal{X}}(connected)$$

$$= 9.9549$$

$$b_{i}((inconnected)) = \frac{m_{g}((inconnected))}{m_{2}^{3/2}((inconnected))} = -0.1182$$

$$\Rightarrow m_{g}(inconnected) = -114.32134$$

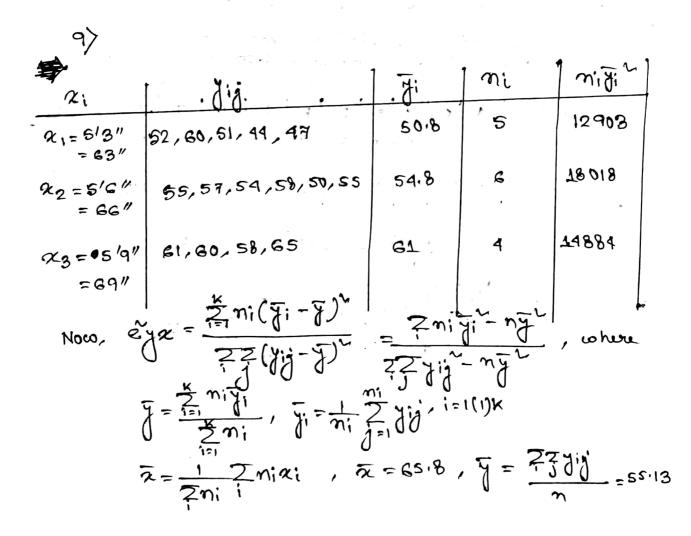
.

э 8

.

Mean> Median> Mode and the distribution is 6> For Firm A: +vely skewed. Mean >> Median> Mode & the distr. is Fon Finm B: tuely skewed. (For side wed distr. measures should be based on quantiles) Measures: -(i) Location: Median (Q2) (a) Median of the Firm A is 1389 - - B is 1354 (ii) Dispension: Q.D. = Q3-Q1 2 1422-1278 = 72 (a) Q. D. of Firm A is (b) Q. D of Firm Bis 1435-1262 = 86.5 Skewness: $S_{k} = \frac{Q_{3} + Q_{1} - 2Q_{2}}{Q_{3} - Q_{1}}$ (iiii) skewness: (a) Sk of firm A 18 (1422+1278 - \$2×1350)/144 = 0 (6) Sk of firm B is (1262+1435-2×1312)/173=0.42 (iv) kuntosis: Kp = Q3-Q1 (a) * kp of firm A is (1422-1278)/2×87=0.8276 (b) kp of firm B is (1435-1262)/2×99=0.8739 [(Q3-Q1) represents the length within which we have central 507. value. The smallers the length (Q3-Q1)/2 the higher the kurtosis. To set a unit free measure, we dévide 93-91 by 5.0.7 6> (a) considers the integer as stems and decimals as leafnes. Stem 7000 101 102 89 33667788 105 106 3 79 107 108 ୫ 39 109 2 2 110 comment: The frequency distribution is located at TOS (median on mode) & is thely skewed.

(*) Minimum value = 101:7, maximum value = 110:2


$$Q_1 = \frac{25}{2} + R$$
 ordered value = 6 + value + $\frac{1}{4}(7+R-6+R)$
 $= 105.9 + \frac{1}{4}(.2) = 105.95 gram
 $Q_2 = \frac{25}{2} + R$ ordered value = 12% ordered value
 $+ \frac{1}{2}(13^{12} + -12^{12})$ ordered value
 $= 108.7 + \frac{1}{2} \times 0 = 106.7 gm.$
 $Q_3 = \frac{25\times3}{4} + R$ ordered value = 18% ordered value
 $= 108.7 + \frac{1}{2} \times 0 = 106.7 gm.$
 $Q_3 = \frac{25\times3}{4} + R$ ordered value = 18% ordered value
 $= 107.9 + \frac{9}{4}(9) = 108.575 gm.$
Note: hinge medion
 $= 107.9 + \frac{9}{4}(9) = 108.575 gm.$
Note: hinge medion
 $= 107.9 + \frac{9}{4}(9) = 108.575 gm.$
Note: $\frac{1}{102}$ is 104 is since is leasted at (near about)
 $107. The H - staped observed is semall. Hence the dispersion of
the data is not high. The distance between upper hinge and
median is graater than that of lower hinge and median.
The distantion is the upper that of lower hinge and
median is graater than the length of H - Spread is
small ewart. The songe? the kurtosis is high.
(*) The data values that are smaller than $1 + \frac{9}{2} + 108$
 $= 102.0125$
 $I_{10} + \frac{9}{2} + 108.575 + \frac{9}{2}(108.575 - 105.95)$
 $= 102.0125$
 $I_{10} + \frac{9}{2} + 108.575 + \frac{9}{2}(108.575 - 105.95)$
 $= 102.5125$.
In the data, 101.7 , 102.0 , 102.0 , and the outliers
of the data 221.$$

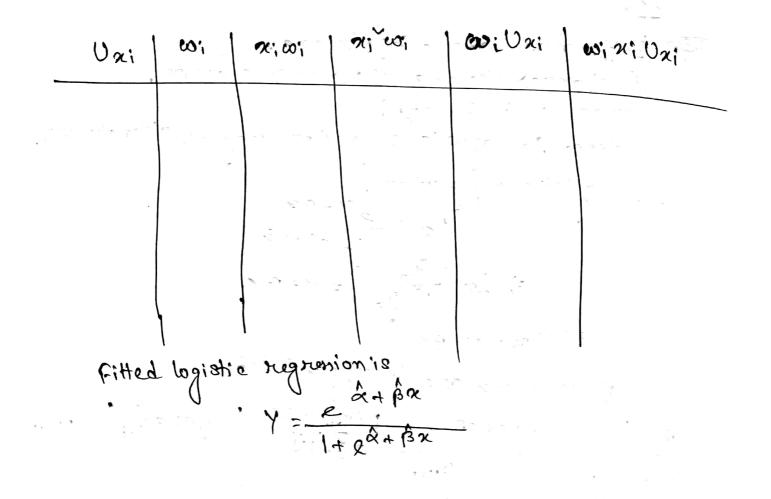
-

(i) A measure of association between α and γ is the measure of usefulness of the 2nd degree polynomial (least square) sugression as a predicting formula, i.e.
χ χ $u_i = \frac{\chi_i - 15}{5}$ u_i u_i^3 u_i u_i u_i u_i u_i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Liet, $\gamma = a_0 + a_1 u + a_2 u^2$ The constants a_0, a_1, a_2 are detarmined by minimizing $\sum_{i=1}^{n} (\gamma_i - a_0 - a_1 u_i - a_2 u_i^2)$
$\frac{2}{2} = n a_0 + a_1 2 u_1 + a_2 2 u_1^{1/2}$
Quizi = 90Zui + 91Zui + 92Zui3
Zuiyi = 90 Zui + 91 Zui + 42Zui9
Hope, m=7. Jui=0, Zui=28, Rtc.
Now, the total variability = Zyi-ny & unexplained variability on Residual sum of squares (RSS)
Qunexplained vanighility on Residual Sum of Squares (RSS)
$= \sum_{i=1}^{n} (J_i - Y_{Pi})^{T}$
= Z(Ji-Ypi)ei
$= Z_{1}^{2}$
$= \frac{2}{2} y_{i} \left(y_{i} - \hat{a}_{0} - \hat{a}_{1} u_{i} - \hat{a}_{2} u_{i} \right)$ $= \frac{2}{2} y_{i} - \hat{a}_{0} \frac{2}{2} y_{i} - \hat{a}_{1} \frac{2}{2} u_{i} y_{i} - d_{2} \frac{2}{2} y_{i} u_{i} \right)$

.

(iii)
$$y = \hat{a}_0 + \hat{a}_1 u + \hat{a}_2 u^n$$
, $u = \frac{\alpha - 15}{5}$
 $\frac{dy}{du} = \hat{a}_1 + 2\hat{a}_2 u$
 $= \frac{\alpha_1}{2\hat{a}_2}$, since $\frac{dy}{dx} = 0$
 $\frac{d^2u}{du^2} = 2\hat{a}_2 < 0$
Hence, y is maximum obten $u_0 = -\frac{\hat{a}_1}{2\hat{a}_2}$
 $\Rightarrow \alpha = 15 + 5 u_0$

$$\frac{1}{12} = \frac{45805 - 45590}{46039 - 45590} = 6.14786$$


$$\frac{1}{2} = \frac{2}{46039} = 0.692$$

$$\frac{1}{2} = \frac{1}{12} =$$

$$JR = \frac{12}{\sqrt{\frac{n^2-1}{12} - Tu}} - \frac{n^2-1}{12} - Tu}{\sqrt{\frac{12}{12} - Tu}}$$

3

11)
Explanationy variable (2): income...
Response Variable (2): occing a house.
Response Variable (2): occing a house.
Hence , a logistic regression may be appropriate.
In logistic regression.
In logistic regression.
In
$$\left(\frac{1}{1-\sqrt{n}}\right) = \alpha + \beta \alpha$$

 $\Rightarrow \ln\left(\frac{1}{1-\sqrt{n}}\right) = \alpha + \beta \alpha$
 $\Rightarrow 2 4 u_2 are linearly related.
 $\frac{\alpha}{1+2^{\alpha+\beta\alpha}} = \frac{\gamma}{1+2^{\alpha+\beta\alpha}} = \frac{\pi}{1+2^{\alpha+\beta\alpha}} = \frac{\pi}{1+2^{\alpha+\beta\alpha}}$
 $\frac{\alpha}{1+2^{\alpha+\beta\alpha}} = \frac{\gamma}{1+2^{\alpha+\beta\alpha}} = \frac{\pi}{1+2^{\alpha+\beta\alpha}} = \frac{\pi}{1+2^$$

PROBLEMS ON CATEGORICAL DATA ANALYSIS

1. In one phase of a study scegarding the effectiveness of several drugs on Post-operating nausea IG7 patients were assigned at bandom, 30 to Droug-P, G7 to Drug-C and the bemaining 70 to Placebo. The no. of patients suffering from severe, moderate, slight on no nausea is shown below:

Ŭ,	SEVERE	MODERATE	şlight	NO NAUSEA	TOTAL
PLACEBO	8	8	19	35	70
	2	3	S	20	30
DRUG-P		4	15	45	67
DRUG-C	3		39	100	167
TOTAL	13	15			

calculate a suitable measure of association.

2. A drug, supposed to have some effect in curing diabetis coas theated on 100 patients in a curtain hospital and their neconds course compared with 100 other patients not theated with drug. Study the efficacy of the drug in curing diabetis.

Cured	Not cured
Curea	278 C

46

Theate	d	54	, 19	
Untreg	ted	24	76	*******
P an aireo a	terple	aires	the data on the	results

3. The following table gives the and on 413 male college test and a Balance test performed on 413 male college students.

	helt eyed	Ambiocular	Right-eyed	TOTAL
left handed	• () 48	25	52	125
•	0.0	13	25	70
Ambidestrous	32		91	218
Right handed	94	33		413
U TOTAL	174	71	168	,
		magning of ass	aciption and	comment.

Compute at least two measures of association and comment

of a visual

A study coas conducted to find out cohat people of different ducational level feel about the nole of the caste in life.

Role Edu, level	No Role	Little Role	Lange Role	Complete Role	
upto cls-8	2	8	25	36	-
(Grn-I) CIS-9-H.S.	10	12	14	12	
(GIB-II) GIBQQUQTE	29	24	2	1	
(G110-III)		4.5	0	1.0	

(a) Compute a suitable measure to find if there is any association between educational level and the individual's perception towards the role of region or caste in social life. Intorpret your finding.

(b) Marge the columns 'No pole' and 'little pole' and pename it as 'minon pole, similarly marge, the last two columns 'Large pole' and 'complete Role' and pename it as 'Mayon Role'. Find the odds patio of

i) GINOUPI with GINOUPII

4.

ii) Ginoup III cont GinoupI, winit, the Minon and Mayon voles and interpret your findings.

ROBLEMS ON CATEGORICAL DATA ANALYSIS
Solutions:
1. We now calculate
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(n_{ij})^2}{n_i n_j}$$

 $= \frac{8^2}{13 \times 70} + \frac{2^2}{13 \times 30} + \frac{3^2}{13 \times 67} + \frac{8^2}{70 \times 15} + \frac{3^2}{15 \times 30}$
 $+ \frac{4^2}{15 \times 67} + \frac{10^2}{31 \times 30} + \frac{5^2}{31 \times 30} + \frac{15^2}{31 \times 67}$
 $+ \frac{25^2}{100 \times 70} + \frac{20^2}{100 \times 30} + \frac{45^2}{100 \times 67}$
Mean-source contingency:
 $\chi^2 = N \left\{ \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{(n_{ij})^2}{n_i n_j} - 1 \right\}$
 $= 167 (10381-1)$
 $= 6.3827$.
Kanl Pearson's coefficient of mean-source contingency :-
 $C = \left\{ -\frac{\chi^2}{N + \chi^2} = 0.1916 - \frac{1}{N + \chi^2} \right\}$
 $T^2 = \frac{\chi^2}{N \sqrt{(3-1)(1-1)}}$, $S = 4, t = 3$
 $= 0.1247$.

2.

Theorted (A) $(AB) = 54$ $(AB) = 46$ 100		Cured (B)	Not curred (B)	Total
Untreated (a) $(\alpha B) = 24$ $(\alpha B) = 76$ 100	Treated (A) Untreated (~)	(AB) = 54 (CB) = 24	(AB) = 46 (aB) = 76	100

A measure of association between A and B in a 2X2 table is: (i) Yule's coefficient of association:- $Q = \frac{(AB)(AB)(AB) - (AB)(AB)}{(AB)(AB)(AB)}$ = 0.5760

(ii) Yule's coefficient of colligations

$$Y = \frac{\sqrt{(AB)(aB)} - \sqrt{(AB)(aB)}}{\sqrt{(AB)(aB)} + \sqrt{(AB)(aB)}}$$

= 0.3169 .

Hence, A and B have moderate positive association. i.e. Drug Age moderate effect on Diabetis. 3. Here both the characteris 'Balance Test'(A) and 'Visual test'(B) are in normal scale.

A	BI	B2	B3	TOTAL
Aı	f11 = 48	12 = 25	J13 = 52	f10 = 125
A ₂	f 21 = 32	J22 = 13	f23 = 25	f20 =70
A3	131 = 94	132 = 33	$f_{33} = 91$	130=218
TOTAL	foi = 174	foz = 71	fo3 = 168	413
	=2.373	<u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u><u>J</u></u>		
() Kani		oefficient:- CA	$= \frac{2 \cdot 3736}{413 + 2 \cdot 37}$	38
('h) Tschuf		ffieixnt :- TAB	$= \sqrt{\frac{\chi^2}{N\sqrt{(n-1)(s)}}}$	-1)
			- 0.05261	

= 0.05361.

4. (2) Here both the chanacturs - educational terri (X) and
Role of xeligion (Y) are in ondinal scale.
We shall use measures based on the no, of comeondant
bains (c) and no of discondant pains(b).
A pain (i,j) of individuals with scares (Xi,Yi) and (Xj,Yj)
is in concondence if

$$\begin{cases} X_i > X_j, Y_i > Y_j \end{cases}$$
 on $\begin{cases} X_i < X_j, Y_i < Y_j \end{cases}$
and discondent if
 $\begin{cases} X_i > X_j, Y_i < Y_j \end{cases}$ on $\begin{cases} X_i < X_j, Y_i < Y_j \end{cases}$.
a pain (i,j) is on the comit. Xif $X_i = X_j$.
Here, C= No. of concendent pains
 $= 2(15+14+12+24+2+1) + 8(14+12+2+1) + 25(2+1) + 36(0) + 10(24+12+1) + 15(2+1) + 18(11) + 1022.$
 $D = No. of discondent pains$
 $= 8(10+29) + 25(10+18+29+24) + 36(10+15+14+129+24+2) + 15 X = 1022 + 12(29+24+2) + 15 X = 14(29+24) + 12(29+24+2) + 15 X = 14(29+24) + 12(29+24+2) + 15 X = 14(29+24) + 12(29+24+2) + 12(29+24+2) + 15 X = 14(29+24) + 12(29+24+2) + 12(29+28+2) + 12(29+28+2) + 12(29+28+2) + 12(29+28+2) + 12(29+28+2) + 12(29+28+2) + 12(29+28+2) + 12(29+28+2) + 12(29+28$

Groodman-knuskal (?) measures of association: _ $\mathcal{S} = \frac{C \cdot D}{C + D} = - \cdot 7597$,

So, we can say educational level and the individual's penception tougards the role of religion is negatively associated.

Scanned by CamScanner

(b)
$$\frac{\text{Minon Role}}{\text{Gw T}} \quad \frac{\text{Minon Role}}{\text{Gw T}} \quad \frac{\text{Minon Role}}{\text{Gu = Gl}}$$

$$\frac{\text{Gw T}}{\text{Gu II}} \quad \frac{\text{Ju = 10}}{\text{Ju = 25}} \quad \frac{\text{Ju = Gl}}{\text{Ju = 226}}$$

$$\frac{\text{Gw II}}{\text{Gw II}} \quad \frac{\text{Ju = 53}}{\text{Ju = 53}} \quad \frac{\text{Ju = 22}}{\text{Ju = 22}}$$
(i) Sample odds natio of Gm · T cotth Gm · II = $\frac{\text{Ju = Ju = 22}}{\text{Ju = 12}}$

$$\frac{\text{Hence the success in 'minon pole' in Gm T is less likely}}{\text{Hence the success in 'minon pole' in Gm II} is less likely}$$

$$\frac{\text{Hence the success in 'minon pole' in Gm II}}{\text{Gm II}} \quad \frac{\text{Other II}}{\text{Ju = 53}} \quad \frac{\text{Ju = 22}}{\text{Ju = 10}} = 107.76$$

$$\frac{\text{Minon Majon}}{\text{Gm II}} \quad \frac{\text{Ju = 53}}{\text{Ju = 23}} \quad \frac{\text{Ju = 53}}{\text{Ju = 10}} \quad \frac{\text{Ju = 22}}{\text{Ju = 2}} = 107.76$$

$$\frac{\text{The success 'minon role' in Gm III}}{\text{The success 'minon role' in Gm II}} \quad \text{is mone filledy}$$

than GINI.

PRACTICAL PROBLEMS FROM STATISTICS VITAL

Q.1. Consider the	1] following date	a set for two	countries	3
	CountryI	-		
Age Ginoup	Population size. (in'000) P~	No. of Males (in 1000) mPx	No.of Deaths Dx	Number of death in males mDx
< 1	100	50	750	400
1-4	400	200	3000	1600
	1500	7 SO	12000	6200
5-20	4000	1200	31000	12000
21-100	Country II	•		

Age Ginoup	Population size (in '000)	No.of Males (in 1000)	No. of Deaths	Number of deaths in males
< 1	15	7.5	12	6
1-4	60	30	45	24
5 - 20	200	נסס	160	85
21-100	440	170	350	200

(i) Compute the CDR for both the countries,

(ii) Compute the ASDR for both the countries separately for male, female

(iii) In order to compare the montality situation of the two countries propose a good measure and calculate its value for both the countries.

Q.2; [CU'05]

Fill in the blanks of the following table which are manked with stion marks: question marks;

Age(x)	lx	dx	१२	pz	La	Ta e	² x
	6,93,435	?	ູ	2	?	350 81126	?
21	6,90,673	· · ·	<u></u>	-		-	?

Q.3. The number of persons dying at age 75 is 476 and the complete expectation of life at 75 and 76 years are 3.92 and 3.66 years. Find the numbers living at ages 75 and 76,

Q.4. [CU'08,95] From, the following data relating to a positicular community compute the GIRR and the UNRR. Interpret your results,

Interpret your ses	aris, O	0	
Age of mother	No. of Women	NO, of Binths	Survival factor
15-19	9000	140	0'920
20-24	9200	1312	0.914
25-29	8900	1067	0,908
30-34	8600	771	0.891
35-39	8400	468	0.879
40-44	8 200	160	0.869
Assume that a	18.7 % of the total	Lare female bin Birsth to the	MRS, Survival factors mid boint of the
conversionding a	ge-group.	,	
ECU'07]		land formale	bobulation and

Q.S. The following table provides	date of female population and
the number of live binths in	different age groups in the
USA in 2004,	

Ăş	Je Group (years)	Female Population ('000)	Live Births ('000)
	14-19	20,724	422
	20-24	20,973	1034
	25-29	19,555	1104
• 1 50	30-34	20,467	966
	35-39	21,050	476
*.	40 - 44	23,055	104
	45-49	22,121	G

Given that in 2004, the total population of the USA was 293,657,00 and the sevenation at birth was 105 volale births per 100 female births. Compare, for the year 2004. (a) the CBR. (b) the GIFR (c) the ASFRS (d) the TFR

(e) the GIRR.

(a) The GIRK. Q.G. In 1951, the total number of live births in W.B. was estimated [CU'06] as 399680. The table below records the number of [CU'06] as 399680. The child bearing age intervals and the females in the child bearing age intervals and the

survival roates for WB and and the rentioned can you gather any idea in India during the year mentioned can you gather any idea about the GIRR and NRR for WB from the given data?	í
A C and NKK Jon The more the area date ?	
about the GIRR and Bulghon Suprimple de Relation of	

Age	female topulation in WB (100)	Subvivalbate (100000)	Total Number of frmale live-births
15-19	12652	59753	in India (100) 4632
20-24	(1403	56924	14443
25-29	10001	59032	14058
30-34	83AG	57 352	8329
35-39	6847	45921	4036
40 - 44	5695	40 356	2158
45-49	4728	36205	6 89

Q.7. ECUIA a sample Age-grocup	Number of Women	lowing infor Proportion Manniage	a 0	Obtained from Proportion surviving from birth to mid point of agegroous among manufield coomen
	16592	0.82	2692	0.902
15-19	19137	0.83	4272	0.891
20 - 24	108-0	0.84	2179	0,878
25-29	4990	0.85	790	0.865
30-34	2463	0.74	203	0,849
35-39 40-44	928	0.61	47	0.830
in favo (b) Detorm	e birth and ub of male. ine the proba uniage at llocaing table life(I table 0, A	bility of a f 32 Jage.		for 1993 Cohort Fe-table
	20	, * e)		J.I.
15-19)69¢	4180	
20-2	4 0.2	346	4123	а,
25-2	9 0.1	1897	4063	• • •
30-3	4 0.1	143	4001	
	0.1	0611	3934	· · · ·
35-3 40-4	A.0	285	3840	
45-	49 0.0	101	3763	

Compute TFR, GIRR and NRR for India assuming sex water at Lirst Is 1.05:1.

Q.10. Consider a population on July 1, 1985 eaual to 10,00,000 and growing at 2% per () year as a continuous instantaneous roate, the crude note of natural increase for 1995 was 3% and the crude rate coos 1%. Determine the number of live binths in 1995.

2.11. [CU'07] For a stationary population with readix. lo = 1,00,000, out of the children bown in 1980, number of deceased was 20,000 and the number of deceased in 1981 was 5000. Oriven the ASDRS of this population for the following ages (l.b.d) (a) compute complete expectation of life at age 4, given the same at binth 18 65,89 years, (b) What is the chance that two new bown babies will survive 9 years after their birth? Q.9. [CU'03] The following table gives the ten decennial Census poplin of two countries, say, A and B Yeon: 1901 1911 1921 1931 1941 1951 1961 1971 Popla of 283.3 252.0 251.2 278.9 318.5 361.0 439.1 547.0 CountryA (in million) Poply, of 7.2 9.6 12.9 17.1 23.2 31.4 38.5 5.3 Country B (in million) Yean: 1981 1991 Poply .cf 653.8 823.8 C-A (in million) Pop In. of 62.9 50.2 C-B (in million) some graphical procedure which of these population growth follows approximately Justita by Logistic model and comment on it. Fit a logistic model of to the population that this as well.

PROBLEMS ON VITAL STATS,

 $\frac{1}{1} (111) To compare the montality situation of counting I and$ counting II, we consider STDR based on age, specificdeath reates, $STDR_I = <math>\frac{2mm_x mp_x^3 + 2mm_x mp_x^3}{2mm_x mp_x^3 + 2mm_x mp_x^3}$ Hene, we select $mp_x^3 = \frac{mp_x^1 + mp_x^{11}}{2}$, $mp_x^2 = \frac{mp_x^1 + mp_x^{11}}{2}$

Q__

2) dx = lx - lx + 1 dx = 6,93,435 - 6,90,673 = 2762 $dx = \frac{dx}{lx} \Rightarrow 920 = \frac{d20}{l_{20}} = 3.98 \times 10^{-3}$ $2 + 9x = 1 - 9x \Rightarrow 120 = 1 - 920 = 0.996$ $L_{12} = \frac{lx + lx + 1}{2}$, assuming that deaths are uniformly diotributed. $L_{120} = \frac{1}{2}(l_{20} + l_{21}) = 692054$. $e_{x}^{2} = \frac{Tx}{lx} = \frac{T_{20}}{l_{20}} = 2^{\circ}_{20} = 50.59$ $Tx = L_{12} + 6Tx + 1$ $\Rightarrow Tx + 1 = Tx - L_{12}$ $\Rightarrow T_{21} = T_{20} - L_{20} = 34389072$,

$$e_{75} = 9.42, e_{76} = 3.66$$

$$d_{75} = 476$$

$$\Rightarrow l_{75} = -l_{76} = 476$$

$$\therefore e_{75}^{5} = e_{75}^{5} - \frac{1}{2} = 3.92 = 5 = 3.42$$

$$\therefore e_{75} = e_{75}^{5} - \frac{1}{2} = 3.92 = 5 = 3.42$$

$$\therefore e_{75} = \frac{(\frac{2}{2} l_{76+1})/l_{76}}{(\frac{2}{2} l_{75+1})/l_{75}}$$

$$= \frac{l_{75}}{l_{76}} \times \frac{2}{l_{76+1}}$$

$$= \frac{l_{75}}{l_{76}} \times \frac{1}{l_{76+1}}$$

$$= \frac{l_{75}}{l_{76}} \times \frac{1}{l_{76+1}}$$

$$= \frac{l_{75}}{l_{76}} \times \frac{1}{l_{76+1}}$$

$$= \frac{l_{75}}{l_{76}} \times \frac{1}{l_{76+1}}$$

$$\Rightarrow l_{76} = l_{75} \times (\frac{e_{75}}{l_{1+}e_{76}})$$

$$= (476 + l_{76}) \times \frac{e_{75}}{l_{1+}e_{76}}$$

$$\Rightarrow l_{76} (1 - \frac{e_{75}}{l_{1+}e_{76}}) = 476 \times \frac{l_{e_{75}}}{l_{1+}e_{76}}$$

$$\Rightarrow l_{76} = \frac{476 \times e_{71}}{l_{1+}e_{76}} = 2200$$

$$\Rightarrow l_{76} = 476 + 2200 = 2676$$

Den a digentitation and

3>

Scanned by CamScanner

4 -

.

 Age. specific fentility rate of age group [2, a+s) is 4) fix = fBz fix = fBz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fPz fix fPz fix fPz fix fPz fix fPz fix fPz fix fPz fix fPz fix fPz fix						
	[x, x+5)).			2 3	
fl ero	^	= 48.7%	$=\frac{48.7}{100}$ ¥		,	
Age. Group	No. of women fPz	NO. of binths 5 Bz	$\frac{1}{5}Bz = \frac{48\cdot7}{100} \times \frac{1}{5}Bz$	25x= 5B2 5PZ	Surivival Rate SR2	fizxskz
PI - 21	9000	140			0.920	
a				.2153679		0-19414

GIRR = 5X Z Siz = 5X · 2153679 = 1.0768 ...NRR= 5X Z Siz X Rz = 5X · 10419 = 0.9707 "GIRR = 1.0768" indicates the no. 1.0768 of daughters Would be born on the average, to each of a group of females beginning life together, supposing none of them died before sucching the end of the seproductive period and all of them experience, throughout the period.

Scanned by CamScanner

2

"MRR
$$\cdot 9707$$
" implies a group of 10000 females is expected
to be suplaced by 9707 femilify and monstality and the
under the given rates of femilify and monstality and the
bopulation will whow a tendency to decrease. Hence the
bopulation will ultimotely decrease and coll ultimately die
out, unless the femility and montality change.

P = 298,857,000
$$\frac{m_B}{IB} = \frac{105}{100}$$

(a) CBR = $\frac{B}{P} \times 1000$
$$= \frac{4112.000}{293.657,000} \simeq 14$$

(b) GIFR = $\frac{B}{I} \times 1000$ =
$$\frac{Z}{R} \frac{F}{R}$$

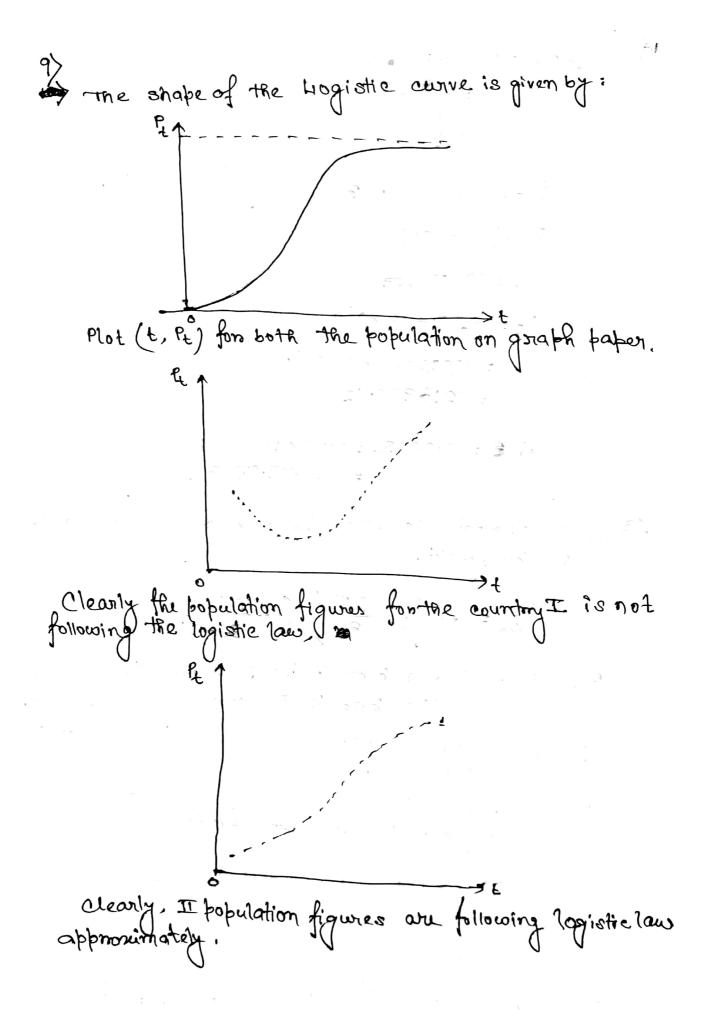
(c) ASFR = $\frac{5BZ}{I} \times 1000 = 5iZ$
(d) TFR = $5X \sum 5iZ = 5X$ sum of ASFR's.
(e) GIRR = $6(TFRX \frac{IB}{B})$; GIRR = $\frac{100}{205} \times \frac{TFR}{1000}$.

Я£,

.

•

$\begin{array}{c} 6 \\ B = 399680 \\ T5 \ compute \ GIRR 4 \ NRR \\ Jugarding \ JBz \\ Assuming \\ \frac{5}{5}Bz \\ \frac{5}{5}$	$\frac{B_{z}^{T}}{B_{z}^{T}} \forall z$	we should have	mformation
Assume, $\frac{18}{18} = 100 \Rightarrow$	$fB = \frac{100}{205}$	R B	
B 205 F			
	$=\frac{100}{205}$	X 399680	
	= 194		-
	Total no. of		0 9
Age Female Popla Survival f. Pz Rate (* Ra)	femalelive	for fix	fizx 5 RA
<u> </u>	BB2		
15-19 1265200 .59753	463200	18680 .01976	·00882
25-29 1000100 ,54082	1444300	58248 .05108	·02908
30-84 886600 , 50352	832900	83.20 · 080.20	·03063 ·02022
35-39 684700 45921	403600	16276 02377	,01091
56965 :40256	215800	8703 .01529	· 00617
40-44		2779 .00588	.00213
			.10797
TOTAL 5969800	1	194966 .20761	
$\frac{1}{5}\theta_2 = \frac{\frac{1}{5}\theta_2}{\frac{1}{5}\theta^T} \times$		fiz: \$B2 Siz: \$P 2	
:. GRR = 5 × Z f			
•	761=1038	,65	
= NRR = 5 x 2 5	ix x s Rz		
= S × 0.107	97		
= 0·5398	c		


ः •

Ginoup	coomen	of manigo	5 2	JUL		0 ,902	0117516
15-19	16592	0.82	13615	2642	0.14411	0.891	0.28963
20-24	19137	0.83	15889	4272	0.26872	0.878	0,20973
25-29	10860 4990	0.84 8.85	9122 4241	2179	0.23887	0.865	0, (6113
30-34 35-3 4 9	2463	0.94	1823	790 203	010 920	0.849	0,09456
40-44	925	0.64	592	47	0.11138	0,830	0.06589
					1.07906	· · · · · · · · · · · · · · · · · · ·	0.57328
TOTAL					2000	c	

$$= GRR = 5 \times \frac{942}{1942} \times 1.07906 = 2.61708$$

= NRR = 5 \times 942 × 0.57328 = 1.3909

= (1-0.865) × 0.85

		-0.1147	5	
•. 87	NRR = Zasia	× Ss Lix	, cohere \$ 42= \$4	2+ \$ L2+1++ \$ L2+9 Sizx \$ Ro
Age Giboup	ASFR(six)	z Lx	Ro > 5 UR FLO[=1000]	sizx fRo
15-19	0.0696	4180	4.180	.29023
20-24	0.2346	4123	4.123	• 96726
25-29	0.1897	4063	4.063	· 77075
80-34	B · 1143	4001	4.001	· 45931
35-39	0.0011	8934	3,934	• 24039
A0-44	0.0289	3860	02818	11001
45-49	0.0101	3963	3.763	. 03801
TOTAL	0,7079	27924	27.924	
L, TER	= 5 2 5 12 =	5 x 0 . 7 07 9	r B. 5395	2.87394
. GRE	F IB XTER	= 100 X	3.5395 = 1.7266	
" NRF	= x Z	sizx BR.	3·5395 = 1·7266 0 = <u>100</u> x 2·87399 =	1.40192

16)
$$(BR - CDR = (Brude i note of natural increase
$$= \left(\frac{B}{P} - \frac{D}{P}\right)^{1} 100^{7}, = 3^{7}, =$$$$

$$m_{x} = \frac{dx}{Lx}$$

$$\Rightarrow m_{x} = \frac{dx}{lx - (1 - \alpha_{x})dx}$$
, $a_{1} = 0.43$
 $a_{2} = 0.45$
 $a_{3} = 0.45$
 $a_{3} = 0.47$
 $a_{4} = 0.49$

(b) Required probability =
$$\left(\frac{l_4}{l_0}\right)^{\gamma}$$
.

ROBLEMS ON INDEX NUMBER

FOR PRAC. EXAM-

]

D The follocoing table shoces the quantities consumed and the values (price X quantity) of 5 commodities for 3
the values (price x amantity) of 5 commodities for 3
successive years.
annadities quantity value Quantity value Quantity value
III 120 GOD 140 700 160 800 III 30 330 20 200 15 225
IV 20 360 15 300 10 220
Calculate the price index numbers for 1992 taking 1990 as the base period adopting chain base formula and using
The base period adopting chain base to mula and a stig
Prosches formula ut each start, 1100 verily
cincular test is satisfied by the taasches formula on
on the basis of the above data. [C.U.1996]
on the basis of the above data. [c.u.1996] Soln. > The chain index number for 1992 co.n.t. base 1990 is
P90,92 = P90,91 × P91,92
= Ztaitai x Ztaz 292, by paasches formule. Ztaitai x Ztai 292 +
Note that, Price (b) = Value Quantity
Quantity
For circular test,
Fon cincular test, Pao, 91 · Pai, 92 . Paz, 90=1.
Pq0,91 . P91,92 = P90,92
\$ Pao,92 = Pao,92
i.e. Chain index = Fixed base index.
Hence, p. Zkgz. argz
Hence, 190,92 = Z /92.992 = Z /90 992
Hence, P'90,92 ≠ P90,92
> The simular test is not calle find in the Broad
> The cincular test is not satisfied by the Phasches formula.
Journald.
•

2. The following table shows the average per capita consumption of cencals and prices of cencals in burg India for four different periods Ti, T2, T3, T4. Phice (Rz. penkg) Commodifies Consumptions (in kg) per Ti T2 T3 T4 $T_1 T_2 T_3 T_4$ 5.37 5.75 6.15 6.30 4.69 3.94 3.58 4.28 4.94 5:15 5:02 S'10 Rice 6.93 6.43 6.78 5.51 wheat 3.32 2.94 3.25 3.52 7.66 8.19 7.75 7.71 Othens Calculate the price index numbers of cencals for poriod Ta taking Ti as the base adopting chain-base formula and using any uniformly suitable formula at each stage. If after calculations it is found that consumption figures in Tq are in ennon by 5%, do you think that your index is going to be affected by this? Give beason for your answer. Soln > If we use Laspeyne's formula, then $P_{14} = P_{12} \cdot P_{23} \cdot P_{34}$ $= \frac{ZP_2 q_1}{ZP_1 q_1} \times \frac{ZP_3 q_2}{ZP_2 q_2} \times \frac{ZP q q_3}{ZP_3 q_3} =$ is independent of 9.4 (the consumption & figure for T4). Hence, it will not the affect the calculation of chain index. If we use Paasche's formula, then P14 = P12 . P23. P34 = ZP292 × ZB93 × ZP494 = ZP192 × ZP293 × ZP494 = which depends on 9.4, Hence, all the consumption figures in Ty are in Ronor by 5%. then the connected figures are 9/41 = 9/41 × 105 on 9/41 × 95 and hence, Zpaiquai Ultimately, it will not affect the calculation of the index.

9. The data below shows the tercentage incourses in price
of a few tabulated food index items and coordites attached
to each of them. Calculate the index number for the food.
growth.
Food items: Rice wheat Dal Ginee Oil Spices Milk Fish Othens
weights: 30 II 8 5 5 3 7 9 19
Bonentage
income in : 180 202 115 212 175 517 260 426 932
price
price in : 180 202 115 212 175 517 260 426 932
price
Ilising the above. Food Index and information. given below.
(Calculate CLT.
Growth: Food Clothing Fuel and light Renk and Rates Miscellanew
Weight: 60 5 8 9 43
EC.U. 2000]
Solar: > The percentage of increase in price for the 1th item
(*) =
$$\frac{Pii - Poi}{Poi} \times 100$$

 $\Rightarrow \frac{Pii}{Poi} \times 100 = (100 + T)$
The food index is computed by
 $Tree food item Weights (wi)$ $\frac{Pi}{Poi} \times 100 = \frac{Z(\frac{Pii}{Poi} \times 100) wi$
food item Weights (wi) $\frac{Pi}{Poi} \times 100 = \frac{Z(\frac{Pii}{Poi} \times 100) wi$
 $= \frac{Zwi}{Zwi}$
Hence, $T_F = \frac{Column 4 total}{Column 2 total} F$

+

Scanned by CamScanner

ł

4. The following table shows the group indices and the corresponding weights for the year 1995 with 1981 as the base year of a given community.
asthe base year of a given community.
Ginoup Ginoup indez Weight
Food 212:45 65.3
Clothing 328.06 4.8
Fueland light 345.89 8.5
House ment 173. 141 7.6
Miscellaneous 201.35 13.8
(a) Find the CLII for the year 1995.
(b) what is the buichasing power in 1995 as compared to 1981
(If Mr. Dasgupta's I salary increased from 2400 there in 1981 to Rs. 4950 in 1995, how has his
economic status change?
(d) the weights are proportional to the consumption
expenditure of each group. Suppose Mr. Dasgupta has to maintain the same solatus for each of the
1st four groups and can only adjust this spending on
Miscellaneous items to come to terms with hist
income changes.
Find his spendings for each of the groups in 1995.
(e) What would be Mr. Dasgupta's weights for ' each of the
groups in 1995? [C.U. 2001, 2009]
Solm.:>
(a) C.L.T = $\frac{2 \pm i W_1}{Z W_2} = 224.842$
(b) the punchasing power of money at in 1995 co.n.t. 1981 is $\frac{1}{(C.L.T/100)} = \frac{100}{CL1} = 0.44756$
$\frac{1401}{(C.L.J/100)} = \frac{100}{CL1} = 0.44756$
C CLI for 1995 co.n.t. 1981 as base year is 229.842 means that if some individual spends RS.100 in 1981,
means that if some individual spends RS, 100 in 1981,
in 1995 he/nhe has to spend Rs. 224.892 to maintain the same standard of living as she/he has in 1981.
IN 1975 THE THESTO OPEND NO DA
to maintain the same standard of living on the Ros
in 19%1. Dut this concert in 1910 concert down the
has to adjust RS. (5396.2 - 40m) - 100.2 PC
i.e. his economic status falls in 1995 as composed
to 1981.

-

212:45 65:3 328:06 4:8 345:89 8:5 178:41 7:6	2400×65,3/100 = 1567,8 115,2 204 182,4	705, 615
178.41 7.6	204	
	12:4	
13.8	10-1	316,299
201+35 13.8	326.4	666.206
100	2400	5396 2
the ofeending 20.59 Rs. in The occignt Expending 20.59 Rs. in Expending 3329.5 37.7.92	he first four 7 will be a on Miscellan 1795. Jagzoup: Netwie 1 5	groups signal same and djusted on Miscelleneous eous is Rs. (666.86-496.2
4950	с.,	001
	, expenditure nhandings on the of Rs. 146:22 the ofeending 20.59 Rs. in 5, the coeight <u>Expend</u> 3329.5 37.7.92 10 220.5	, expenditure on a group = nhandings on the first four t of Rs. 446:27 will be a the offending on Miscellan 20.59 Rs. in 1995. 5, the coeight of a group = <u>Expenditure</u> 3329.51 37.7.925 20.59 2

,

Scanned by CamScanner

17 ,57

•		in middle	- class
6.5. The follow people of a	wing data relate to 2 Opanticular re	the urban middle gion in the years	
Ginoup	% of total expenditure	Ginoup Index 2003	(Base:2000) 2005
	35	118	122
Food	15	112	118
Clothing	20	113	115
Housing	10	2	117
Transport	0	105	110
Dunable Groods	8	120	125
othens	12	110 0	an in a con a man
(b) If a famil	change in its	and 2005 coith Ba its monthly income avenage savings or maintained the sam	en the years ie standard
of living a	as in (12003,	(C.U.	- 2008)
<u></u> (a)	Z Ii wi	11470 114.70	2
CLI 20	03: Zwi -	100 - 114/10	
CLI 20	$\omega \beta = \frac{Z I_{2i} \omega_{i}}{Z \omega_{i}} = \frac{Z I_{2i} \omega_{i}}{Z \omega_{i}}$	11890 = 118,90	
°	along is constant	1, 1,2, RS. 100	,
	()	the maybe Exp	inditure ed
	30, Waldarts of	the group = Exp	the group.
(b) Let Rs	100 be the salar ne = Rs.805	y in 2003. Savin	γ · R8, = 15.
		05	
CL.I.	2003 20	• 90	
•			
If some	individual spent	$\frac{1}{R_{s}} = \frac{1}{14} + \frac{1}{70} + \frac{1}{70} + \frac{1}{8} = \frac{1}{88} + \frac{1}{70} + \frac{1}{70} + \frac{1}{70} = \frac{1}{88} + \frac{1}{100} + $	03 in 2005
he has	opent KS. TT	4.70 × 850 .	Colores .
In 2003	this salony is	= 88. Saving $% = \frac{11.8}{100}$	11 K3,
Exp. Exp.	= 88.11 RS		2
Saving =	11.89 Rs. 20	saving % = -11.8	$\frac{1}{2} \times 100$
U			
	X	= 11.8	7/•

6. the following table gives (with two missing values) the overall and group wise CLI (with 2000 as the base year) with six different expenditure groups and their respective weights, for the wiban middle class people of a particular city, in 2009 and 2005.

		Gnoup	Indez
Giboup	Weight	2004	2005
food	350	117	120
	120	113	118
Clothing Housing	187	118	-
Thansport	108	112	117
Downable Goods	76	102	(171
otciens	123	121	125
CLI,	TOTAL = 1000	= 115.4 7	= 119.5
K			

(9) If Mrs. X Baved 20% of this galary in 2004, Determine the scelative change in this average (Bavings, scelative to 2004, in 2005 if this salary increased by 10% and the maintained the same soland of living as in 2004. [C.U.2007] Sola. (a) Let Rs. 100 be the salary in 2004. Saving = RS. 20

$$Exp. = RS.80$$

Saving
$$7_{a} = \frac{29.16}{110} \times 100 = 24.89\%$$

- X *

PRACTICALS ON PROBABILITY DISTRIBUTION			
1. (a) Given that $\frac{10}{7}f(x) = 500420$, $\frac{10}{7}f(x) = 32/1240$, $\frac{10}{7}f(x) = 145212$, f(10) = 40365. Find $f(1)$.			
(6)			
1. (a) The no. of females in each of 100 queues of length 10 at a metro pailway station in kolkata. The data are shown			
below:			
Count 0 1 2 3 4 5 6 7 8 9 10			
Freq 1 3 4 23 25 19 18 5 1 1 0			
Freq 1 3 4 23 25 19.18 5 1 1 0 Froopose an appropriate treated distrand fit it to the above data. Also comment on the fitting. <u>Soluction</u> :- Liet X: No'of females in a que we of length 10 Consider "getting a female in quewe "as a success Assuming probability of successes in each quewe is p (constant). Then, Binomial model is appropriate to the given RY X. Then PMF of X is $P(X) = \begin{cases} \binom{10}{2} P^{2.}(1-p)^{10-2} ; x=0(i)10 \\ 0 ; 0W \end{cases}$ By method of moments, $u_1' = m_1'$. $\Rightarrow 10p = \overline{x} = \sum_{i=1}^{10} x_i f_i / \sum_{i=1}^{10} f_i = 435/100 = 4.35$. Hence the fitted distrais given by .			
$p(x) = S \left(\frac{10}{x} \right) \left(\frac{1}{p} \right)^2 \left(1 - \frac{1}{p} \right)^{10-x}; x = 0(1) 10$			
$p(x) = \int_{0}^{\infty} {\binom{10}{x}}^{2} {\binom{1-\hat{p}}{1-\hat{p}}}^{10-x} ; x=0(1)10$ jow			

Comment on Fitting: - Expected frequency of the value
$$X'$$
 is
 $N \times P[X = \infty]$
= 100 × $p(x)$.

[Consider getting a value 'x' as a success. Then fx = the frequency of 'x' in N observation = the no. of successes in N Dennoulli trials ~ Bin (N, P[X=x]) : E(fx) = NX P[X=x]]

> 2 | p(x) | Exp. freq = N. p(x) | Observed freq.

(b) When the first proof of 200 pages of an encuclo badia of
500 pages were need the distri of printing mistakes
(b) When the first proof of 200 pages of an encyclopaedia of 500 pages were nead. the distri of printing mistakes were found to be as shown in the table:
No, of misprints on Page: 0 1 2 3 9 5
Frequency: 112 63 20 3 1 1
Fit a suitable probability distribution to the data.
Estabish the total cost of connecting the first proof of the cohole encyclopaedia by using the information given below:
Establish incuclobardia by using the information of the
convie Englister () formation given below:
No. of misprimte on page; 0 1 2 3 4 sommone
cost of ditation and
No. of misprints on page; 0 1 2 3 7 Sommone Cost of direction and connection (dollars) per page; 0.10 0.16 0.23 0.29 0.39 0.39

Solution:- Led X denotes the number of michinits on a page.
Gretting a mistmint on a page is a xone event. Hence X is
expected to follow Poisson
Assume that
$$X \sim P(\lambda)$$
.
The PMF of X is
 $p(\alpha) = \int_{\alpha} e^{-\lambda} \cdot \frac{\lambda^{\alpha}}{2^{\alpha}}, \alpha = 0.1.2.3...$
 $0, ow$
cohere $\lambda > 0$.
By method of moments, $\mu_1' = m_1'$
 $\Rightarrow \lambda = \overline{\alpha} = \int_{1-0}^{\infty} \alpha \cdot \frac{1}{2} \int_{1-0}^{1-2} \frac{1}{2} \int_{$

Scanned by CamScanner

•

* 4 * * *****

2. (a) A farmer seeks been seeks in packets of 100 and advers to
surfund the price 'if the number of seeks gammating from a
packet is lags than 75. He knows from that expendence than
hackets and it costs him
on an average 80% of the seeks germinate and it costs him
on an average 80% of the seeks germinate and it costs him
on an average 80% of the seeks germinate in packet.
Rs. 200 from a packet of seeks germinated in packet.
Rs. 200 from a packet of seeks germinated in packet.
Rs. 200 from a packet of seeks germinated in packet.
Beline, X ~ Bim (100, F=0'B).
Let
$$\mathcal{R}$$
 be the self (100, F=0'B).
Let \mathcal{R} be the self (100, F=0'B).
 $f = (\alpha - 2) [1 - P[X < 75]] - 2P[X < 75]]$
 $= (\alpha - 2) [1 - P[X < 75]] - 2P[X < 75]$
Solution: $I = (2 + 3) \mathcal{R} \sim Pois (2 + 3)$ and X and Y are independently
distributed: It is known that $P[Y > X] = 1 - P[Y \le \alpha, X = \alpha]$
 $= 1 - \sum_{x=0}^{2} P[Y \le \alpha, X = \alpha]$
 $= 1 - \sum_{x=0}^{2} P[Y \le \alpha, X = \alpha]$
 $= 1 - [e^{-1}(\frac{2}{6}) h^0(1-b)^0 + [e^{-1} + \frac{e^{-1}}{11}][1]$
 $h^0(1-b)^2 + [e^{-1} + \frac{e^{-1}}{11}][2]$
 $h^0 = \frac{4\pm \sqrt{4^2 - 41/2}}{2}$
 $h^0 = 2 \pm \sqrt{2}$, $P[Y \le 1] = P[Y = 0] + P[Y \le 1] = P[Y = 0] + P[Y \le 1] + P[Y \le 1] = P[Y = 0] + P[Y = 1].$

Note, snaphirad probability is =
$$P[X>0]$$

= $1 - P[X=0]$
= $1 - (-1P)^2$
= $[1 - (-1E - 1)^2]$
= $2(-1E - 1)^2$]
= $2(-1E$

.

L

1

Biometrica, From $\Phi(\alpha)$ 0.67 0.74857 0.72172 0.68 $\frac{-Q_1-\theta}{\sqrt{\theta}} = 0.6745$ $\frac{2.65-0}{\sqrt{0}} = 0.6745$ $\Rightarrow \sqrt{0} = \frac{0.6745 + \sqrt{(0.6745)^2 + 4X2.65}}{0}$ as 10 >0. ·: 10 = 1.99 2. $\theta = 4$. Hence, $X \sim N(4, 2^2)$. The probability that first four observations are negative, (') P[X1<0, X2<0, X3<0, X4<0] zp[X, <0]}, as Xi's are inid. $= \int_{0}^{0} \overline{\Phi} \left[\frac{0-0}{10} \right]$ $= \{ \overline{\Phi}(-10) \}^4$ $= \overline{\Phi}^{4}(-2) = -$ (ii) Let Y denotes the no. of negative values in X1, X2, ..., X10 Then Y ~ Bin (10, b), where, $p = P[X_1 < 0] = \overline{\Phi}(-2)$... Required Probability = P[Y=4] $= \begin{pmatrix} 10 \\ 4 \end{pmatrix} \flat^{4} (1-\flat)^{6} = _$

3. (i) Twenty five leaves were selected at nandom from each of s'ix similar lapple trèces. The number of adult female European red mites of each leaf was counted, the resulting information is summarized in the table below: 3 4 5 C 7 10 9 3 2 1 No. of Mites per leaf: 0 2 1 17 38 TO Frequency (a) Fit a negative binomial distribution to the data. (b) Plot the Observed and fitted values on the same graph paper, and comment on the goodness of fit after visual inspection. Solution: - (i) Let X denotes the no. of adult female European red mittes on a leaf. Assume that X ~ NB (n, p) The PMF of X is $f(x) = \int \begin{pmatrix} x+n-1 \\ x \end{pmatrix} p^n q^n ; x = 0, 1, 2, \dots$ (a) cohere ocpel and p+q=1 and n>0. By method of moments, $\mu_1' = \bar{\alpha}, \mu_2 = S^2$ = $\frac{nq}{p} = \bar{\alpha}, \frac{nq}{p^2} = S^2$ $\vec{p} \vec{p} = \frac{\vec{x}}{\vec{x}^2}$ and $\vec{p} = \vec{x} \cdot \frac{\vec{p}}{1 - \vec{p}}$ From data, $\overline{\alpha} = \frac{1}{1=0}$ $S^{2} = \left(\frac{7}{1=0} \frac{1}{2} \frac{1}{2}$ The Atted NB distribution is $\dot{p}(\alpha) = \int_{1}^{\infty} (\alpha + \hat{n} - 1) (\dot{p})^{n} (\hat{q})^{\alpha}, \ \alpha = 0, 1, 2, \dots$

.

(ii) The following table gives the form dividing of the number of abbino children (in families of five children including at least one albino child (fransities data)
No. of albino in family 1 2 3 4 5 [TOTAL
No. of families 2 25 23 10 1 1 60
Fit an appropriate probability distribution to the data. Also.
Compose the obscinited and expected frequencies.
Solution:- Let X denotes the no. of albino children in families of five
children. Thus, considering "getting an albino children in families of five
Note that Y denotes the no. of albino children in a family of
fire having at least one albino. The data is given on the R.V.Y.
Note that Y is the RV "X is truncated at
$$\alpha = 0^{"}$$
.
The PDF of Y is $f(y) = \int_{1-(1-b)^{5-1}} (\frac{5}{1-(1-b)^{5-1}}, y = 10)^{5-1}$
 $f = \int_{1-(1-b)^{5-1}} \frac{5}{1-(1-b)^{5-1}} = \frac{5}{1-(1-b)^{5-1}} = \frac{5}{1-(1-b)^{5-1}} = \frac{5}{5-(b)} = \frac{5}{5-($

Successive approximation,
$$p_1 = \phi(p_0)$$

 $p_2 = \phi(p_1)$
 $p_1 = \frac{1}{2}$ The fitted distribution is $p'(y) = \int_{1}^{\infty} \frac{(5)}{1-(1-p_1)^5} p_1(1-p_1)^{5-y_1} \frac{(1-p_1)^5}{1-(1-p_1)^5} p_1(1-p_1)^5 \frac{(1-p_1)^5}{1-(1-p_1)^5} p_1(1-p_1)^5 \frac{(1-p_1)^5}{1-(1-p_1)^5} \frac{(1-p_1)^5}{1$

Successive improvements are:

$$\begin{array}{l} \lambda_1 = \phi(\lambda_0) \\ \lambda_2 = \phi(\lambda_1) \\ \vdots \\ \lambda = - , \text{ connect to two decimal places.} \\ \\ \lambda = - , \text{ connect to two decimal places.} \\ \\ \lambda = - , \text{ connect to two decimal places.} \\ \\ \lambda = - , \text{ connect to two decimal places.} \\ \\ \lambda_2 = \phi(\lambda_1) \\ \\ \lambda_3 = - , \text{ connect to two decimal places.} \\ \\ \lambda = - , \text{ connect to two deci$$

Scanned by CamScanner

•••.

4. The hife time (T) in hows of an electron tube manufactured
in a company is a n.w. with the d.f.

$$F(t) = 1 - e^{-t/\theta}, t>0.$$
A sample of 327 electron tubes give the following frequency
distribution of T.
Life (in hows): 0.50 50-100 100-100 150-200 200-300 200-10 to to g
Frequency: 100 68 48 31 12 21 27
Frequency: 100 68 48 31 12 21 27
(i) Estimate 0 from the data and compare the observed and
expected frequencies.
(ii) Estimate the probability that a subply of 20 tubes will not
last more than 1900 hours, if they und one at a time
successively.
(iii) Find the number of electronic tubes likely to buon accoust within
80 hours of their sife and also the avorage sife of the tubes.
Solution:-
The DF of T is

$$f(t) = \frac{1}{2} e^{-t/\theta}, if t>0$$
(i) By method of moments.

$$\frac{\mu_1'(\tau) = \overline{t}}{f(t)} = \frac{1}{2} e^{-t/\theta}, if t>0$$
Full distribution is given by,

$$F(t) = 1 - e^{-t/\theta}, t>0.$$
(i) By method of meants.

$$f(t) = \frac{1}{2} e^{-t/\theta}, if t>0.$$
(i) By method of the mid fount and frequency of the its class.

$$F(t) = 1 - e^{-t/\theta}, t>0.$$
(i) By method for moments.

$$F(t) = 1 - e^{-t/\theta}, t>0.$$
(i) By method of moments.

$$F(t) = 1 - e^{-t/\theta}, t>0.$$
(i) By method of meants is given by,

$$F(t) = 1 - e^{-t/\theta}, t>0.$$
(i) Expected frequency of the alows interval (a,b) is

$$N.P[a < T < b] = N \ \end{tabular} = e^{-t/\theta}]$$

Computation of Expected Frequencies :-			
Class interval (a,b)	P[a < T < b]	Exb. Fneq. N. P[a <t<b]< td=""><td>Observed Frear</td></t<b]<>	Observed Frear
20-100 0-20			
100-120			
	3		
l		1 1	

(ii) Let Ti denotes the life-time of the its table,
$$i=1(1)20$$
.
Here, Ti $\stackrel{iid}{\longrightarrow} Exp(0)$, $i=1(1)20$.
Required Probability = $P\left[\begin{array}{c} 20\\ j=1 \end{array}\right]$ Ti < 1900

[Use Peanson Table for Incomplete Gramma]

Solution: - (\mathbf{i}) max min Upper Median (Q1). Lower Hinge (Q3) (Q_2) Hinge (ii) Here the frequencies is more on less symmetric and the variable given continuous. Let X denotes the length of the left middle finger of a criminal. Assume that $X \sim N(\mu, \sigma^2)$. $-\frac{1}{2} \left(\frac{\chi - \mu}{\sigma}\right)^2$. The PDF of X is $f(\chi) = \frac{1}{D\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\chi - \mu}{\sigma}\right)^2}$; $\chi e t R$. By method of moments, $\mu_1' = m_1', \mu_2 = m_2.$ $F_{p} = x = \frac{Z x_{i} f_{i}}{Z f_{i}} = f_{p}^{2} = \lambda^{2} = \frac{Z x_{i}^{2} f_{i}}{Z f_{i}} = f_{tence}, f_{ten} = f_{tted} PDF of X is$ $f(\alpha) = \frac{1}{\hat{r} \cdot \Gamma_{2TT}} e^{-\frac{1}{2} \left(\frac{\alpha - \hat{\mu}}{\hat{r}}\right)^{2}}; \alpha \in \mathbb{R}.$ CIS MOTIK Class Boundaries Exp. freq. of the class (q,b) is $\frac{q\cdot s}{q\cdot s}$ $\frac{q\cdot 3s - q\cdot 6s}{q\cdot 6s - q\cdot 9s}$ = N. P[a<X<b] = N $\sum_{i=1}^{n} \frac{b-\mu}{c} - \frac{1}{2} \frac{a}{c}$ (111) $\Phi\left(\frac{\alpha-\hat{\mu}}{\hat{\sigma}}\right)$ $(\hat{r}) = (\hat{r}) = (\hat$ (2) Class boundaries Observed Freq. - 00 9.35 9.65 13.65 00 If the graph of observed and expected frequencies are very close to each other then the fitting is good. Comment :-

(b) The following table gives the frequency distribution of annual salaries of individuals in nupees obtained from Indian Income Tax Rotumns (1995)
Tax Returns (1995) Statistics of Individual salaries Assessed, 1955
Annual Salary Frequency (rupees)
below 5000 27,000 5001-10000 60,000
10001 - 25000 25001 - 40000 26,032
40001 - 80000 13,000
100001 - 200000 11.78 200001 and above 312
Plot the data, using a suitable scale, and find out cohether Parato's law will give an adequate fit over the entine mange of the observed distry, if not, try to fit the data in a suitable mange. <u>Solution:</u> —Let X denotes the salary of an individual. Assume that the distribution of X is given. Then the DF of X is
$F(x) = 1 - \left(\frac{x_0}{x}\right)^2 \text{if } x_7 x_0$
$F = \frac{1 - F(\alpha)}{1 - F(\alpha)} = \left(\frac{\alpha_0}{\alpha}\right)^{\gamma}$ $F = \frac{P[X \leq \alpha]}{1 - F(\alpha)} = \left(\frac{\alpha_0}{\alpha}\right)^{\gamma}$
F> Inp = Inxo ² - 21nx F> Inp = x - 21nx, where, p is the proportion of individuals whose income is above x.
Note that, $-\ln\beta = -\alpha + 3\ln \alpha$.

.*

.

•

ı

PRACTICALS ON STATISTICAL INFERENCE I
LESTIMATION
1. The length of life vacondad in houss for 10 electron tubes evene:
980,1020,995,1015,990,1080,975,950,1050,870
Assume that life-times are distributed in the form:

$$f(0) = \frac{1}{2}e^{-\frac{1}{2}0}$$
, $f(z)$, othere $0>0$
(i) which is do show a functional of the solution of the solution of the instants of 2 othere $0>0$
(ii) Estimate of 0 and the cambridges of the solution 0.95 to
 0 and to the probability of subvive of function 0.95 to
 0 and to the probability of subvive of 0 house 100 house 100

.

2. Let X_1, X_2, \dots, X_{10} be ten independent and identically distributed nandom variables where each X_i is normally distributed with mean 2.08. Furthur suppose 9.68% of its Uvalue is negative. If $X_{(1)} \langle X_{(2)} \langle \dots \langle X_{(10)} \rangle$ be the ondured analysement of $X_i V_s$, then calculate $P[X_{(3)} \rangle 5.28]$. <u>Solution:</u>-The pdf of $X_{(10)}$ is $\int_{X_{(10)}} (x) = \frac{12}{12-1} \sum_{n=1}^{\infty} \sum_{$

$$5 \cdot 28 = \int \frac{1}{\beta(3,8)} \{F(x)\}^{2} \{I - F(x)\}^{7}$$

$$5 \cdot 28$$

$$= \int \frac{1}{\beta(3,8)} \mathbb{E}^{2} (I - 2)^{7} d2$$

$$F(5 \cdot 28)^{7}$$

Now
$$X_i \xrightarrow{\sim} N(2:08,0^{-1})$$

and $P[X_i < 0] = \frac{9 \cdot 68}{150}$
 $\Rightarrow P\left[\frac{X_i - 2 \cdot 08}{C} < \frac{0 - 2 \cdot 08}{C}\right] = 0.0968$
 $\Rightarrow \overline{P}\left(-\frac{2 \cdot 08}{C}\right) = 0.0968$; $X_i \sim N(2:08, C^2)$
 $\Rightarrow \overline{P}\left(\frac{2 \cdot 08}{C}\right) = 0.9152$
 $\Rightarrow C = \frac{1}{C}$
Then $F(5:28) = P[X_i < 5:28] = P\left[\frac{X_i - 2 \cdot 08}{C} < \frac{5 \cdot 28 - 2 \cdot 08}{C}\right]$
 $= \overline{P}\left(\frac{5 \cdot 28 - 2 \cdot 68}{C}\right) = \frac{2 \times 2 \cdot 5 \cdot 28}{C}$
Hence, $P[X_{(3)} \gg 5:28] = 1 - P[X_{(3)} \le 5 \cdot 28]$
 $= 1 - \int_{X_0}^{X_0} \frac{2^{3-1}(1-2)^{3-1}}{\beta(3,8)} d2$
 $= 1 - I_{X_0}(3.8)$ [Use Pearson fielde
for incomplete beta

1. Liet X be equal to the thickness of spearment gum manufactured for bending machine. Assume that the distr. of X is normal. The target thickness is 7:5 hundred of an age. The following 10 thickness of hundred of an age for pieces of gum that coerce selected nandomly from the production line are 7.65, 7.60, 7.65, 7.70, 7.55, 7.40, 7.40, 7.50, 7.50, 7.50, 7.55. i) At x=0.05 significance level, coas the company successful to meet the tanget thickness? is what is the appropriate b- value of your test? iii) Is $\mu = 7.50$ contained in a 95% confidence interval for μ ? Let XNIN (M, 02) From the sample, $\overline{x} = \frac{1}{10} \sum_{i=1}^{10} x_i = 7.55$ Solution:and $8^2 = \frac{1}{12} \sum_{i=1}^{10} \alpha_i^2 - \overline{\alpha}^2 = 0.097$ To test Ho: ~ 7.5 Vs. HI: ~ 7.5 (\mathbf{i}) Test statistic is $T = (\overline{X} - \mu_0) \sqrt{n} \sim t_{n-1}$, under Ho. Here $T = (\overline{X} - \overline{7} \cdot 5) \sqrt{10} \sim t_q^S$, under Ho. Critical region: - If the observed value of ITI>tay2,9; we shall reject the at a level of significance. from table, to:025,9=2.262. Observed value, (-2-7.5) (10 = (-7.55-7.5) (10 = 1.63 < to.025,7 = 2.262 Hence, there is no reason to reject the at q=0.05 level of significance, "i.e., the company was successful to meet the tanget value.

(i) p-value =
$$P_{H0}[[T1 > 1+0]]$$

= $2P_{H0}[T > 1+0]$, to is the observed value of T.
= 2. $P_{H0}[T > 1+0]$ (From Biometrica table]
= 2 × 0.1
= 0.2.
As p-value is quite large . the observed value is a likely
value under the
(ii) 95% confidence interval for /* 15
 $(\overline{x} - to 1025, q, \frac{8}{10}, \frac{1}{x^2} + to 1025, q, \frac{8}{10})$
= $(7.55 - 2.62 \times \frac{0.071}{110}, \frac{1}{10}) = (7.48, 7.62)$ cohen /*= 7.5
= $(7.55 - 2.62 \times \frac{0.071}{110}, \frac{1}{10}) = (7.48, 7.62)$ cohen /*= 7.5
= $(7.55 - 2.62 \times \frac{0.071}{110}, \frac{1}{10}) = (7.48, 7.62)$ cohen /*= 7.5
Male: 12.7, 15, 6, 9.1, 12.1, 8:3, 11.2, 9.4, 8:0, 14.9, 10.7, 13.6, 9:6, 10.7, 9.3, 7.6
Teimale: 7.4, 7.3, 7.1, 9:0, 7:6; 9:5, 10:1, 10:2, 10:1, 9:5, 8.7, 7:2
Doze the Reart of a male eat on an avecage earlight for male
that of a fignale cat. State clearly angusumption you use.
Solutions:- Let X and Y denote the frant unights of a male and
a figmale. $X \sim N(A^4, 6_1^2)$ independently
We assume that $X \sim N(A^4, 6_1^2)$ independently
We assume that $(7.6) = 0$ (unknown)
Let $\alpha_{11}, \alpha_{12}, \dots, \alpha_{1n}$ be a $n.s$ from $N(M_10^{-2})$.
Have $n_{12} : 5, N_2 = 12.$
 $\overline{\alpha}_1 = \frac{1}{15} \frac{1}{15} \alpha_1 : = \frac{1}{12}$
 $\overline{\alpha}_2 = \frac{1}{12} \frac{1}{12} \alpha_2 i : = \frac{1}{12} \frac{2}{12} \alpha_1 : = \frac{1}{12} \frac{2}{12} \alpha_2 : = \frac{1}{12} \frac{2}{12} \alpha_1 : 2 - n_1 \overline{\alpha}_2^2] = \frac{1}{n_2-1} \frac{2}{7} 2 \frac{1}{2} \frac{2}{1} = \frac{1}{n_2-1} \frac{2}{7} 2 \frac{1}{2} = \frac{1}{12} \frac{2}{12} \frac{2}{12} = \frac{1}{12} \frac{2}{12} \frac{2}{12} \frac{2}{12} = \frac{1}{12} \frac{2}{12} \frac{2}{12} \frac{2}{12} = \frac{1}{12} \frac{2}{12} \frac{2$

We know,
$$g^2 = \frac{(n_1-1)g_1^{n_1} + (n_2-1)\lambda_2^2}{n_1+n_2-2} = \frac{1}{c_1^2} \int_{0}^{2} \int_{0}^{2}$$

Test statistic:
 $T = \frac{\overline{X}_1 - \overline{X}_2}{s_1 + \frac{1}{n_1}} \sim t_{n_1+n_2-2}$, under the
Childred Region:
 $\frac{(\overline{X}_1 - \overline{X}_2)}{s_1 + \frac{1}{n_2}} > t_{\alpha_1 n_1 + n_2-2}$
So, observed Value $c_1^{\alpha} T$ is $\frac{\overline{X}_1 + \overline{X}_2}{s_1 + \frac{1}{15} + \frac{1}{12}} =$
from table, $t_{0.05}$, $|\Gamma+|_{2-2} = t_{0.05,25} = 1.708$.
Conclusion:
Conclusion:

and the second second

The an experiment to investigate, the effect of light on
noot groups in mustors. Solvings, to growth a sibilitys, there
grows in identical condition, except that one coas hapt
in this dark, find the other was explodes in sumlight during the
day. After a contain period of time, the noot lengths in the odd
all the sidlings are measured. The following tride gives the data
all the sidlings are measured. The following tride gives the data
obtained performed appropriate statistical list of significance to
assist cohether
if the fleats, noot growth, lottle variances of the noot lengths
if and the fleats in both growths in root lengths is the arme.
if the fleats in both growths in root lengths is the arme.
if and effects or nows first for light and second for dorkness.
The table makes two nows first for light and second for dorkness.
If each the is a specific effect the xoot growth.
If the is accepted, then light effects the xoot growth.
If the is accepted, then light effects the xoot growth.
If the is accepted, then light effects the xoot growth.
If he is accepted, then light effects the xoot growth.
Come as phenoismus problem
if the test the is
$$G = G_2$$
 vs. this $G \neq G_2$
Rest statistic: $F = \frac{S_1^2}{S_2^2} \sim F_{m_1-1,m_2-1}$
Critical Region:-
 $\frac{g_1^2}{S_2^2} > F g/_2; n_1-1, n_2-1$
Observed value of F is $\frac{g_1^2}{S_2^2} = \frac{1}{F_0 \cdot g_2, q_1} = \frac{1}{S_1, 8}$

Conclusion:-

٣

[<u>CU'2006</u>]

A

The following table contains obsenvations on the subline systolic and diastolic blood phessures (in mm of Hg) for 15 patients with moderate hypertension, immediately before and two hours after taking a drag, captopril.

- (i) Periform an appropriate test for the hypothesis that the drug is successful in reducing the dia stolic blood pressure.
- (ii) Obtain a 95% confidence interval for the mean difference in the systolic blood pressure before and after theatment.

() P	tient No.	Systolic	BP	Diastolic	
		before	Aften	Before 1	After .
	1 : . ;	210	201	130	125
	2	: 169	165	122	121
	3	187	166	124	121 .
ŕ	4	160	157	10.4	106
	5	167	147	112	101
	6	176	145	101	82
	7	185	168	121	98
	8. 11 :-	206	. 180	124 ; ;	105
	9	173	147	115	103
· · · · · · · · ·	10	146	136	102	98
	11 1	74	121	98	.90 , ·
2 ° 1		201	168	119	98
	13	198	179	106	110
		148	129	107	103
	• • • •	154	181	100	82
6 • • • • • • • • • • • • • • • • • • •	1 .	denate A	e diastolic	BPal	a batient

Solution: - (i) Liet X and Y denote the diastolic BP of a patient before and after taking the drug.

Assume that, (X,Y) ~ BN (M2, My, T2, N2, N2, J). To test whether the drug is successful in reducing the diastolic BP, i.e. to test: Ho: Mx =/44 VS. HI: MX>/44.

Let (X_i, y_i) , i=1(1)15, be 15 palped samples on (X, Y). Define, $D_i = X_i - Y_i$, i=1(1)N. $iid = X_i - Y_i$, $onene M_D = M_X - M_Y$.

Test statistic:
$$\frac{\operatorname{In}(\overline{D}-0)}{R_{D}} \sim \operatorname{tn} -1$$

Crnitical suggion: $\frac{\operatorname{In} \cdot \overline{d}}{R_{d}} > \operatorname{tar;n-1}^{n}$
from the data: for n=15,
 $\frac{\operatorname{Patient} \operatorname{No}}{d} = \frac{1}{2} \qquad 15$
 $\overline{d} = \frac{1}{15} \sum di = \frac{1}{14} \left[\frac{1}{2} \operatorname{di}^{2} - 15\overline{d}^{2} \right]^{2} = \frac{1}{14} \left[\frac{1}{2} \operatorname{di}^{2} - 15\overline{d}^{2} \right]^{2} = \frac{1}{R_{d}} = \frac{1}{R_{d}} \qquad 0$
Desenved value of the test statistic is $\frac{\operatorname{In} \cdot \overline{d}}{R_{d}} = \frac{1}{R_{d}} = \frac{1}{R_{d}}$

(ii) Liet U and Y denote the systolic BD of a patient before and after taking drug. Assume that, $(U,V) \sim BN (/uu/uu, Ou², Ou², f)$ Liet (Ui,Vi), i=1(U15 be the 15 given pained sample on (U,V). Liet (Ui,Vi), i=1(U15 be the 15 given pained sample on (U,V). Define, $Di = Ui-Vi \sim N (/ub², Ob²)$, /ub = /uu / uv. $\Rightarrow \frac{Ji}{II} (\overline{D} - \mu u)$ $\propto tn - 1$. Now, 95% C.I. for $/ub^{13}$ $(\overline{d} - to.os, 14, \frac{84}{115}, \overline{d} + to.os, 14, \frac{84}{115})$ Hence, Retient No. 1 2 15 $\overline{d} = \frac{1}{2}$ Hence the observed 95% G.I. for $/ub^{13}$

5) [<u>CU'2005</u>] The members of a team of nine men corre asked to load and fire naval guns by one of two methods M1 and M2. Attempting to get off as I many I rounds. per minute as possible. Two sets of such fining coure made per method. The following table gives the outcome of this experiment. 0

	Number of nounds fixed per minute in				
Participate	finst set		Se	second set	
,	by MI	by M2	by Mi	by M2	
1	20:2	14.2	24.1	16.2	
2	22.0	14.)	23.5	16.1	
3	23.1	14.1	22.9	16.1	
4	26.2	18.0	26.9	19.1	
S	22.6	14.0	24.6	18.1	
G	22.9	12.2	23.7	13.8	
	23.8	12.5	24.9	15.4	
7 8	9، 22	13.7	25.0	16.0	
â	21.8	12.7	23.5	15.1	

In the light of this data, are we justified in inferning that method M1 is significantly better than M2? Obtain a 95%. C.I. for the difference in the mean performance by the two methods.

Let (Xi, Yi) be the paired samples in the 1st set by MI and Solution:-M2, i=1(1)9.

(Xi'.Yi') be the paired samples in the 2nd set by MI and M2 Let for i=1(1)9.

We assume that, $(X_i, Y_i) \stackrel{iid}{\sim} BN$, i = 1(1)9 independent, $(X_i', Y_i') \stackrel{iid}{\sim} BN$, i = 1(1)9, (Xi', Yi') are observed on the its gun man.

$$\stackrel{\text{Xi+Xi'}}{=} \stackrel{\text{iid}}{\to} N\left(\stackrel{\text{M}_{1}}{\sim}, \stackrel{\text{O}_{M_{1}}}{=} \right)$$

Similarly, $\frac{\text{Yi+Yi'}}{=} \stackrel{\text{iid}}{\to} N\left(\stackrel{\text{M}_{2}}{\sim}, \stackrel{\text{O}_{M_{2}}}{=} \right)$

But
$$Xi + Xi'$$
, $Yi + Yi'$ our observed on the same it gun man
 $i = i(1)9$.
So, $\left(\frac{Xi + Xi'}{2}, \frac{Yi + Yi'}{2}\right)$ iid BN $\left(\bigwedge^{u} M_{1}, \bigwedge^{u} M_{2}, \bigcap^{L} M_{1}, \bigcap^{2} f\right)$
Ro test Ho: $\bigwedge^{u} M_{1} = \bigwedge^{u} M_{2}$ Vs. Hi: $\bigwedge^{u} M_{1} > \bigwedge^{u} M_{2}$.
Define, $Di = \frac{(Xi + Xi') - (Yi + Yi')}{2}$ iid $N(\bigwedge^{u} D_{1}, \bigcap^{2})$, $i = i(1)9$.
Now, To test, Ho: $\bigwedge^{u} D = 0$ Vs. Hi: $\bigwedge^{u} D > 0$

(Use Rained t-test).

14

. .

and the second

the set of the set of

а С ,

с, I

· · · · · ·

•

.

. 1 ¹¹ 19. pr

.

ing in the second second

6. (a) The connelation coefficient between head-length and stature for a sample of 36 members of an Indian tribe has been found to be 0.4339. Is it reasonable to assume that in the population of the characters are uncorrulated?

(b) Examine on the basis of the data given in the table below whether the variances of muscle coeignts of might and left legs of pabbits are equal.

we -va	
Sample no. of	Weight (gms) of anterion muscle of
pabit	left lag Right leg
1	5.0 4.9
2	4.8 5.0
3	4.3 4.3
4	S.1 S.3
5	4.1 4.1
6	4.0 4.0
7	7.1 6.9
8	5.9 6.3
9	5.2
10	5.3 5.5
н. Ц	2.3 2.2
12	5.9
13	6.2 6.8
. 14	6.3
15	6.6
ic	5.2 6.3

;

(c) Griven in the table are the means, the s.d.s and the convelation coefficient of scones x, y on two halves of a psychological test

on 20 days. (i) Examine cohether the scores on the two halves are early variable. (ii) Examine cohether the scores on the two halves are early variable.

Mean	S.d.	Convelation
45.5	9.51	0.76
60.2	5.25	2.10
	45.5	45.5 9.51

· · · · ·

(a) Liet
$$(Xi,Yi)$$
, $i=10()36$, be the paired values on flead-larger
and statume for 36 indian tribe. Assume that
 $(Xi,Yi) \sim BN coith consulation coefficient f .
To test the: $f=0$ Ys. th: $f\neq 0$
Test statistic:
 $\frac{p(Tn-2)}{\sqrt{1-n^2}} \sim tn-2$, under the
 $\frac{p(Tn-2)}{\sqrt{1-n^2}} > t q_2, n-2$
Hence $n=36$, $p=0.4339$
Observed value of the test statistic is $\frac{p(Tn-2)}{\sqrt{1-n^2}} = \frac{0.4339 \times 134}{\sqrt{1-(0.4359)^2}}$
from Biometrica, Vol-T, for $q=0.05$ = 2.808.
 $t 0.025, 80 = 2.042$
 $t 0.025, 80 = 2.042$
 $t 0.025, 40 = 2.021$
Hence, $\frac{p(Tn-2)}{\sqrt{1-n^2}} = 2.806 > t 0.025, 84$
 \Rightarrow the is sujected at 5% level based on the given information,
characters, and not uncosulated.
 \Rightarrow The population A
(b) List (Xi,Yi) denote the weights of night and left legs of the
it mabit, $i=1(1)G$
ind Assume that $(Xi,Yi) \approx BN (A^{\alpha},Ay,B^{\alpha},By^2,f)$, $i=1(i)n, n=16$.
To test the $Dx = G$ Vs. thi $Dx \neq Gy$
Define, $Ui = Xi + Yi$
 $Yi = Xi - Yi$, $i=1(1) 16$.
Note that $f_{UV} = 0$, under the .$

To test Ho: Jun = 0, based on the paired sample (U: Ni). i=1(1)16 : compute + Juivi - uu PUV = 1 IV:2-02 15th ZU12- 422 Serial no 1 2 Ui V: Test statistic: PUV 11-2 , t.n-2, under Ho'. (i) flere we are to test cohether g=0 on not. (c) To test G= 62 (11) If f=0, then it becomes a testing of eaudity of variances in unconsulated test. If $f \neq 0$, it becomes a testing of eaudity of vaniances in covulated test. To test Mi= 1=2 If J=0, & GI=G2 are accepted then it becomes a Fisher's t-test, If 170 then it becomes a paired to test.

and the second

1.5

7. (a) In an excavation 10 fossils coure discovered, of ce definitely classified as male and 3 as a female. The last fossil could not be precisely determined. An compatible coith a sex natio? <u>Solution</u> :- Let X denotes the no, of male fossils out	which & could be sex of the e these findings of 9
fossils obtained. Assuming probability of getting a male fossils = p.	
Of task the ball against this PF 12.	
11 the absorbure of the	e e
The p-value = 2 min { Pito [X > xo]; Pito [X < xo] }	
$= 2 \times \min \left\{ \sum_{\alpha=6}^{q} \binom{q}{\alpha} \binom{1}{2}^{q}, \sum_{\alpha=0}^{6} \binom{q}{\alpha} \binom{1}{2}^{q} \right\}$	₹ `
$= 2 \times \frac{\binom{9}{6}}{\binom{9}{6}} + \binom{9}{7} + \binom{9}{8} + 1$	
$= 2 \wedge \frac{1}{2} \sqrt{1} \sqrt{1}$	
4 · · · · ·	
= 0.50	
Let x=0.05 be the chosen level of significance.	r , ¹⁰ 7
Cleanity provide ,	,
Li la Association	rta.
> The sex-batio is 1:1 is supported by the do	
(c) The following table gives the result of an experim the effect of necely discovered medicine on a with that of the prevailing theatment (control) confirm the superiority of the neco drug?	centain disease Do the data
Treatment cured Not cured	Total
Control 3 5	8
New medicine 5 3	8
Total 8 8	8
Solution:- Let X, denotes the no. of cubed out of 8: under control.	- 32
Liet X2 "	1
under new medicine.	

Let
$$X_{1} \sim Bin (B, B_{1}) > independently; m_{1}=B, n_{2}=8$$

 $X_{2} \sim Bin (B, P_{2}) > independently; m_{1}=B, n_{2}=8$
To test addition ness medicine is subprise.
 \Rightarrow To test Holp:= p_{2} Vs. H: $P_{1} < p_{2}$.
From data, the observed value of X1 and X2 are $x_{10} = 3$, $x_{20} = 5$
This X1 + $X_{2} = X$ frag the observed value $x_{0} = 8$.
Th the testing problem,
 p -value is = $P_{H_{0}} [X_{1} \le x_{10} | X = x_{1}]$
 $= \sum_{x_{1}=0}^{2} \frac{\binom{n_{1}}{x_{1}}\binom{n_{2}}{x_{0}-x_{1}}}{\binom{n_{1}+n_{2}}{x_{0}}} = \frac{3}{2_{1}=0} \frac{\binom{8}{x_{1}}\binom{8}{(\frac{8}{x}-x_{1})}}{\binom{15}{8}}$
Conclusion:-

8) (a) The number of deaths from draconing in a certain viven in two consecutive months were 8 and 5. Abe these fluctuation due to chance? (b) A necospaper in a certain city observed that driving condition, have much improved because the number of fatal automobile accidents in last year was 9 where as the average number year over the past sevenal year was 15. Is the statement per justified? If further, the number of fatal automobile accidents in the first six month of the current year is given to be 3. coould you modify your earlier conclusion? (c) A sem specimen of a new type of fibre is found to have 13 defects while the manufacturist claims that there are no more than 150 defects per 100 cm. Do the above data support this claim? Solution:- (a) Let X1 and X2 denote the number of deaths of drawning ina contain reiver in two consecutive months. $X_1 \sim P(\lambda_1) > independently$ $X_2 \sim P(\lambda_2)$ Let To test cohether the observed values are the values of the same population on not. \Leftrightarrow To test the: $\lambda_1 = \lambda_2 YS$. HI: $\lambda_1 \neq \lambda_2$. and the second Define, X=X1+X2~P(A), under Ho: A1= 2=2. The observed values of XI and X are X10=8, X0=8+5=13, - p-value = 2 x min & PHO[X1 > 210 X = 20], PHO[X1 < 210 X=20]} $= 2 \times \min \left\{ \sum_{\substack{n \in \mathbb{Z} \\ n \neq n}}^{\infty} \binom{n}{n} \frac{1}{2^{n}}, \sum_{\substack{n \neq n \neq n \neq n}}^{\infty} \binom{n}{n} \frac{1}{2^{n}} \right\}$ = 2 × min $\int_{-\infty}^{13} {\binom{13}{\alpha} \frac{1}{2^{13}}} , \frac{1}{2^{13}} , \frac{1}{2^{13}} , \frac{1}{2^{13}}$

-

Conclusion:-

(b) Let X denotes the number of accidents for year,
We assume that
$$X \sim P(3)$$

To test the $\lambda = 15 \, Vs. \text{ th}: \lambda < 15$
Observed value of X is $\alpha_{5} = 9$
 $p = Value = P_{HP} [X \le \alpha_{5}]$
 $= \int_{X=0}^{7} e^{-15} \frac{15}{21} = 1 - e^{-15} \int_{X=0}^{15} \frac{15}{21} \frac{52^{2}}{21} = -\frac{1}{21} \frac{1}{21} \frac{52^{2}}{210} \frac{1}{21} = -\frac{1}{21} \frac{1}{210} \frac$

9. For 20 pairs of fatheriz and soms, the regression equation of height of son (y) on height of father (20), both measured in cm, was found to be For 20 pains, $\overline{\alpha} = 168.17$, $\Sigma(xi-\overline{x})^2 = 777.80$ and $\sum (y_i - y_i)^2 = 939.42$. Test cohether the regression coefficient differs significantly from unity. Find the 95% confidence limits to the conditional mean of y given x = 1.77. Also, the prediction limits of the height of a son cohen the height of the father is known to be 177 cm. tion: - Let $\eta_{x} = \alpha + \beta x$ be the regression equation of y on x. The least square linear requession equation of y on x is Solution:y= a+bx : i.e. y= 9:29+0:9322. To test Ho: B=1 Vs. HI: B=1 statistic: -From data; b=0.932; n=20Test $S_{22} = \sum (\alpha_i - \overline{\alpha})^2 =$ $s_{y,x}^{2} = \frac{1}{n-2} \sum_{i=1}^{n-2} s_{y_{i}}^{2} - \frac{1}{y_{i}} - \frac{$ $= \frac{\sum (\forall i - \frac{1}{2})^2 - b^2 \sum (\forall i - \frac{1}{2})^2}{n-2}$ = $\frac{\sum \forall y - b^2 \sum \forall x}{n-2}$ = $\frac{1}{n-2}$ If the observed (b-1) JSaz >t a/2, n-2. We shall suject the at or-level.

Now, observed
and from table, for
$$x = 0.05$$
, $t = 0.05$, $t = 0$

Froblems on Large Sample [Only cupmoblems]

1. In a sample of size 100 from a bivariate poply, the convelation coefficient is found to be 0.25. Test cohether it is (i) significant (ii) significantly less than 0.5.

- Solution:- Here n= 100 r=0.26
- (i) To test Ho: $\beta=0$ Vs Hi: $\beta>0$, $\left[exact test: \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim tn-2 \right]$

Using Fisher's Z-tramformation,

$$\frac{\sqrt{n-3}(Z-z_{f})^{2}N(0,1)}{1+r} = \frac{1}{2}\log\left(\frac{1+r}{1-r}\right) = \frac{1}{2}\log\left(\frac{1+r}{1-r}\right) = 0.$$

: Under Ho,

Critical region: - Observed Y > V.g.

(ii) To test Hoig=0.5 Vs Hightons Here $\mathcal{E}_0 = \frac{1}{2}\log\left(\frac{1+0.5}{1-0.5}\right) =$

Under Ho,

$$\gamma = \sqrt{n-3} (T - \varphi_{1}) \sim N(0,1).$$

critical negion: - Observed T< - Tq.

2. To examine a manufacturer claim that not more than 1.9% of the products our defectives, then 630 items are put to impection and 25 found defected can be consider the claimtobe judified.

To the: b= 0.019 VS. H1: b> 0.019 Sol.

Hove n= 830

 $b' = \frac{25}{830}$, sin⁻¹ transformation

Using

observed T> Ca. Critical begion:

A proponent of inovative teaching methods winnes to compare the effectiveness of teaching english by the traditional classroom 3. The effectiveness of the extensive use of audio-visual aid. lecture system and by the extensive use of audio-visual aid. To do so, 100 students are selected at pandom from a class of 250 and assign to audio-visual instruction. The remaining 150 and assign to audio-visual instruction. The remaining 150 students are taught english in classroom lecture. At the end of the students are taught english are given a test; the no. of students from term, all 250 students are given a test; the no. of students from each group to pass the test is recored in the following table.

Medium	Pass	Fail
Audio-Visual instruction	63	37
classmoor lecture	FOI	43

- (a) Find the 95%. C.I. for the difference between success rate for the two methods of instructions,
- (b) Do the data strongly support that a better passing rate achieved using the classroom lecture that is achieved using A.Y. method.
- Explain whether your a informatial procedury councial dependson (\bigcirc) the term 'handom'.
- Liet by and be be the passing rates in Audio-visual and Sol. classmoorn lecture.

(a) Here
$$P\left[\sin^{2}\left(\sin^{-1}\int_{a_{1}}^{a_{1}}-\frac{\gamma_{a_{1}}}{\sqrt{4n_{i}}}\right)\leq\beta i\leq \sin^{2}\left(\sin^{-1}\int_{a_{1}}^{a_{1}}+\frac{\gamma_{a_{1}}}{\sqrt{4n_{i}}}\right)\right]$$

=1- α , i=1,2.

$$\Rightarrow P[L_{i} \leq p_{i} \leq U_{i}] = 1-\alpha \ /(\equiv U_{2}, \\ Then P[L_{i} \leq p_{i} \leq U_{1}, L_{2} \leq p_{2} \leq U_{2}] \\ = P[A_{1} \cap A_{2}] > P[A_{i}] + P[A_{2}] - 1 = 1 - \alpha/2 + 1 - \alpha/2 - 1 \\ = 1 - \alpha. \\ \Rightarrow P[L_{i} - U_{2} \leq p_{1} - p_{2} \leq U_{i} - L_{2}] > 1 - \alpha,$$

Here
$$L_{1} =$$

 $L_{2} =$
 $U_{1} =$
 $U_{2} =$
and $q = 0.05$.
Hence $(L_{1} - U_{2}, U_{1} - L_{2}) = ($
is an observed C.I for $(p_{1} - p_{2})$ with confidence leve 0.95.
(b) To test Ho: $p_{1} = p_{2}$ against H: $1 + 1 < p_{2}$
[Here $\sqrt{4\pi i} (\sin^{-1}\sqrt{p_{1}} - \sin^{-1}\sqrt{p_{1}}) \xrightarrow{\sim} N(0,1)$, $i = 1, 2$, independently
 C Here $\sqrt{4\pi i} (\sin^{-1}\sqrt{p_{1}} - \sin^{-1}\sqrt{p_{1}}) \xrightarrow{\sim} N(0,1)$, $i = 1, 2$, independently
 L as the groups are selected reardomly.]
Here, $\sin^{-1}\sqrt{p_{1}} \xrightarrow{\sim} N(\sin^{-1}\sqrt{p_{1}}, \frac{4\pi i}{4\pi i})$, $i = 1, 2$ independent by.
Noto, $\sin^{-1}\sqrt{p_{1}} - \sin^{-1}\sqrt{p_{2}} \xrightarrow{\sim} N(\sin^{-1}\sqrt{p_{1}} - \sin^{-1}\sqrt{p_{2}}, \frac{4\pi i}{4\pi 2})$
Under the, $\gamma = \frac{\sin^{-1}\sqrt{p_{1}} - \sin^{-1}\sqrt{p_{2}}}{\sqrt{4\pi i} + \frac{4\pi i}{4\pi 2}}$

Critical region: - Observed C < - Ca.

(c) As the groups are selected randomly, the data obtained from the two groups then constitute two lindependent random samples. Therefore the estimates by and be are independently distributed and accordingly we obtain the test statistic.

Scanned by CamScanner

the second s

For 600 beans of particular variety, the frequency distri 4, of breath (in m.m) has 31=0.093, 22=-0.125, where 31 and 22 are sample measures of skewness and kentos, Examine if the popln. can be supposed to be nonmal. Hore to test the: the data is a n.s. from normal poplin. Sol As the measures skewness q, and kewtosis g2 are given, then As the measures skewness q, and thoz: 2=0 as far as given Ho reduces to Ho1: 21=0 information is concerned. If both they and the accepted, then we accept the. Under the, g1 ~ N(0, =), g2 ~ N(0, 24). Test statistic: TI = JEgI ~ N(01) $T_2 = \int \frac{n}{24} g_2 \stackrel{a}{\sim} N(0,1).$ If obsenved (71)> Ca/2, we reject Hor. If obsenved (72)> Ca/2, we reject Hoz' [Prob. of accepting to = P[|T1 | < Ta/2, 172 | < Ta/2] $7(1-\alpha)+(1-\alpha)+1=1-2\alpha$ => prob. of rejecting Ho < 29. [Calculation & conclusion: suggession; use d=1%] 5. The convi. coeff. between streature (cm) and nasal feight (cm) of a group of 106 males its 0.672 and that for a female group of 117 females is 0.725. Can you treat the corr. coefficients to differ significantly. Let J1, J2 be the correlation coefficient between stature and <u>301</u>. nasal Reight of male and female, respectively. Assuming the pople, s are bivarilate. test Ho: $f_1 = f_2$ Ys. Hi: $f_1 \neq f_2$. To test Have Zi = 1/09 (1+12) $g_{i} = \frac{1}{2} \log \left(\frac{1+j_{i}}{1-j_{i}} \right)$ How, $Z_{i} \sim N \left(\frac{g_{i}}{2} + \frac{j_{i}}{2(n-1)} , \frac{1}{n_{i}-3} \right)$, i=1,2, independently. under Ho : fi=f2=f $z_{1} - z_{2} \stackrel{a}{\longrightarrow} N\left(\stackrel{o}{\longrightarrow} \frac{1}{n_{1} - 3} + \frac{1}{n_{2} - 3} \right),$ cohere $E(z_{1} - z_{2}) = \frac{f}{2} \left\{ \frac{1}{n_{1} - 1} - \frac{1}{n_{2} - 1} \right\} = \frac{f}{2} \cdot \frac{n_{1} - n_{2}}{(n_{1} - 1)(n_{2} - 1)} \simeq 0.$ Test statiste:- $\mathcal{T} = \frac{\left(Z_{1} - Z_{2}\right)}{\left(\frac{1}{p_{1} - 3} + \frac{1}{p_{2} - 3}\right)} \xrightarrow{\mathcal{A}} N\left(o, 1\right), undow Ho.$

6. Consider the following set A1=
$$\sum \alpha : -\infty < \alpha \le 0$$
}
A1 = $\sum \alpha : 1-2 \le \alpha \le 1-1$, $1-2(1)7$.
A8 = $\frac{1}{\alpha} : 6 \le \alpha < \frac{1}{2}$
A cartain typothesis to an in probabilities $\frac{1}{2}$ to this sets
A1 is accondence with $\frac{1}{2(\frac{\alpha}{2})^2} \frac{(\frac{\alpha}{2})^2}{2}$
 $\frac{1}{2} \log = \int \frac{1}{2\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{\alpha}{2})^2} d\alpha$.
The hypothesis a can be tested on the basis of the observed
frequencies of the sets A1, $i = 2(1)8$, which are suspectively
 $30, 92, 140, 210, 192, 160, 88, 74$.
Would the is accepted at the 5% level of significance?
 $\frac{1}{2\sqrt{2\pi}} e^{-\frac{1}{8}(\alpha-3)^2} d\alpha$, $i = 1(1)6$.
A1
 $4 = 10 = P[X \le 0] = \frac{1}{2\sqrt{2\pi}} e^{-\frac{1}{8}(\alpha-3)^2} d\alpha$, $i = 1(1)6$.
A1
 $4 = 10 = P[X \le 0] = \frac{1}{9}(-\frac{3}{2})$
 $P_{20} = P[G < X \le 1] = \frac{1}{9}(-1) - \frac{9}{2}(-\frac{3}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = P[G < X \le \frac{3}{2}] = 1 - \frac{9}{2}(\frac{5}{2})$
 $P_{30} = \frac{9}{2}(\frac{1}{2}) - \frac{9}{2}(\frac{1}{2}) - \frac{9}{2}(\frac{1}{2})$
 $P_{30} = \frac{9}{2}(\frac{1}{2})$
 $P_{30} = \frac{9}{2}(\frac{1}{2})$
 $P_{30} = \frac{9}{2}(\frac{1}{2})$
 $P_{30} = \frac{9}{2}$

•

Scanned by CamScanner

.

7. A survey of drivers was taken to see if they have been is an accident during the previous year, and if so was it the minor and major accident. The results are tabulated by
age group Accedent type
major
Under 18 57
18-25 42 8 4
26-40
40-65 56 4 1 40-65 57 15 1
over GS
oven GS 57 Is Use an appropriate test to check if the data suggest thet the nature of the accidents depends on age.
N ANA INCERCIOCITY
To test A and we may $\sum_{k=1}^{n} \frac{1}{j} = \int_{1}^{\infty} \frac{1}{j} \frac{1}{j}$
te=i j=i fiofoj
Crittical region:-
observed X2 > X2x, (n-1)(x-1).
sosure of college 1 and 2 the following data
8. To compare the results of coblege 1 and 2 the following data on the final examination results have been obtained.
College Excellent Resultal Mediocare Bad
College Excertain Grood 28 8
1 62 173 20 17
2 51 126
State the null hypothesis and test it to determine if the results
State the null hypothesis and vary between the colleges.
Sol.
$\sum_{i=1}^{k} \frac{(f_{ii} - n_i p_{ii})^2}{n_i p_{ii}} + \sum_{i} \frac{(f_{i2} - n_2 p_{i2})^2}{n_2 p_{i2}} + \cdots$
$\sum_{n=1}^{\infty} \frac{(4n+1)^n}{n} + \sum_{n=1}^{\infty} $
$= \sum_{j=1}^{k} \frac{(\beta_{ij} - n_i \beta_{ij})^2}{n_i \beta_{ij}} \sim \chi^2_{\ell(k-1)}$
iei nitig
Under the: $ZZ = \left(\frac{f_{ij} - n_j}{n} \frac{f_{io}}{n}\right)^2$; $\hat{p_{io}} = \frac{f_{io}}{n}$.
Under the: 22 (18 (n); pio = 110.
nj tio
f_{ii}^2 $\int - f_{ii}^2 + \lambda c_i \chi^2$
$\chi^{2} = n \int \Sigma \Sigma \frac{fij^{2}}{nj fio} - 1 \int \sim \chi^{2}(l-1)(k-1)$

.

Let A denotes the result of a college. A A4 A2 5. \$31 · 1 41. 121 CollegeI = 173 = 28 = 8 = 62 (sample I) 142 f 32 f12 f 22 CollegeI 引 1=1(1)4, sampleII f90 f30 f20 f 10 To test the: the homogeneity of the nesult in the colleges. Test statistic, under the $\chi^2 = n \sum_{j=1}^{2} \sum_{i=1}^{4} \frac{f_{ij}^2}{n_j f_{i0}} - 1 \int \mathcal{X}^2_{(2-1)(4-1)}$ critical region: - observed x2 > x2,3. The no. of occurrences of a world in 48 essays per thousand essays examined, written by Hamilton and 50 essays written by Maddisson. The following table is obtained. 9. No. of essays according to wate of occurrence of the words Author above 45 Upto 45 37 Hamilton Test whether the data occurrence of 'to' vary significantly between the two authorses by applying the X2 test, and also by applying the formulae for exact probability. Let A denotes the nate of occurrence of #'to' Let B1, B2 denote the Authors : Hamilton and Madison. <u>Sol.</u>1> N=98 Yates continuity connection to Pearsonian χ^2 , we get $\chi^2 = \frac{\int |ad-bc| - \frac{N}{2} \int^2}{(a+d)(c+d)(a+c)(b+d)} \sim \chi^2_1$. To test tto: A and B are independent. Appying Critical region: - Observed X2 > X2 an.

Exact Frab. Test: - Under the, given manyingle, the probled abtaining
the cell frequency
$$\begin{bmatrix} a & c \\ c & c \end{bmatrix}$$
 is
 $p_d = \frac{a + c}{a + b}$ is
 $p_d = \frac{a + c}{a + b}$ is
 $p_d = \frac{a + c}{a + b}$ is $\frac{a + c}{b}$ is $\frac{a + c}{b}$ is $\frac{b + d}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ is $\frac{a + c}{b}$ if $\frac{a + c}{b}$ is $\frac{a + c}{b}$ is $\frac{a + c}{b}$ is $\frac{a + c}{b}$ is $\frac{a + c}{b}$

11. The convolution between height and unight cass formed to be
0:7,0:8,0:85 for samples of thousands object each for
thus different effecting proups of children aged between 1 to 3
years, Test whethen there is significant evidence for the
1 dipendings of the consolution on lethenety. If not, find the
bool estimate of the consolution couldidon.
1.12 difficult group, 1=1,2,3.
Assume, the population coefficient between height and unight of the
the difficult group, 1=1,2,3.
Assume, the population coefficient between height and unight of the
the difficult group, 1=1,2,3.
Assume, the population coefficient between height and unight of the
the other is
$$T_1 = f_2 = f_3$$
 of the net the.
Here, $T_1 = 3(Z_1 - G_1) \approx 1(0,01)$, $1 = 0,2,3$, independently.
cohere, $Z_1 = \frac{1}{2} \log\left(\frac{1+p_1}{1-p_1}\right) =$
 $G_1 = \frac{1}{2} \log\left(\frac{1+p_1}{1-p_1}\right) =$
Under the $f_1 = f_2 = f_3 = f$,
 $\frac{7}{2} = (n_1 - 3)(Z_1 - G_2)^2 \approx N_{3-1}$, where $\xi = \frac{Z(n_1 - 3)Z_1}{Z_1(n_1 - 3)} = \overline{Z}$.
Critical region: Observed $N^2 > N^2 = 1/2$
 $\Rightarrow \int \frac{1}{2} \log\left(\frac{1+p_1}{1-p_1}\right) = \overline{Z}$
 $\Rightarrow \int \frac{1}{2} \log\left(\frac{1+p_1}{1-p_2}\right) = \overline{Z}$
 $\Rightarrow \int \frac{1}{2} \log\left(\frac{1+p_$

Problems on Statistical Inference

1. The following observations (Y) are drawn from
$$N(0,0k)$$
. Obtain
the MIE of 0 in each case $k=0,1$, and 2. And they unive?
 $20 \cdot 2, 22 \cdot 9, 23 \cdot 3, 20 \cdot 0, 19 \cdot 4, 22 \cdot 0, 22 \cdot 1, 22 \cdot 0, 21 \cdot 9, 21 \cdot 7,$
 $19 \cdot 7, 21 \cdot 5, 20 \cdot 9,$
Hint: Let Y_1, Y_2, \dots, Y_n be a to s. from $N(0,0k), K=0,1/2$.
 $K=0$ The MIE of 0 is $\hat{0}=\overline{J}=$
 $K=1$ $N(0,0)$
 $\hat{0}=-1+\frac{4N(\frac{4}{n}ZY^{12})}{2} =$
 $K=2$ $N(0,0^2), 0\neq 0$
 $L(0|Y_1,\dots,Y_n) = (\frac{1}{202\pi})^n - \frac{1}{202}\sum_{i=1}^n (Y_i-\overline{0})^2, 0\neq 0$
 $0=\frac{2\ln L}{20}$
 $0=-\frac{n}{0}+\frac{2Y_1i^2}{9^3}-\frac{ZY_1i}{9^2}$.
 $\Rightarrow 0^2+0, \overline{y}-\frac{1}{n}ZY_1^2=0$
 $\Rightarrow 0=-\frac{N}{2}\pm\sqrt{\frac{y^2+\frac{4}{n}ZY_1^2}}{2}$
 I MIE is not unique.
2. The general experiment on linsead, the doscoved frequencies for
petal and starma colour are given in the following table glong
with probabilities of the cell in terms of a parameter 0.

Stigma Colour Lilae
$$\frac{1}{4}$$
 $\frac{1}{4}$ $\frac{1}$

Estimate 0 by the method of MLE, [() -> Probability] Also estimate the variance of this estimate of 0, Sol.

Likelihood function,
L
$$(0 | n_1, n_2, n_3, n_4) = \frac{1}{\frac{1}{4} \ln i} \left(\frac{2+\theta}{4}\right)^{n_1} \left(\frac{1-\theta}{4}\right)^{n_2} \left(\frac{1-\theta}{4}\right)^{n_3} \left(\frac{\theta}{4}\right)^{n_4}$$

 $\hat{\theta} \sim N\left(\theta, \frac{1}{\ln(\theta)}\right)$, cohore $I_n(\theta) = E\left(-\frac{D^2}{2\theta^2}\ln L\right)$ For lange n, $h T_{n}(\theta) = E \left\{ \frac{m_{1}}{(2+\theta)^{2}} + \frac{m_{2}+m_{3}}{(1-\theta)^{2}} + \frac{m_{4}}{\theta^{2}} \right\}$ $= n \left\{ \frac{\frac{2+\theta}{4}}{(2+\theta)^2} + \frac{2\left(\frac{1-\theta}{4}\right)}{(1-\theta)^2} + \frac{\theta/4}{\theta^2} \right\}$ $= \frac{n}{4} \left\{ \frac{1}{2+0} + \frac{2}{1-0} + \frac{1}{0} \right\}$ Asymptotic vaniance is $Van(\hat{\Theta}) = \frac{1}{\mathrm{In}(\Theta)}$ $\operatorname{Ver}(\hat{\Theta}) \simeq \frac{1}{\operatorname{Tr}(\hat{\Theta})} = \frac{n}{4} \left\{ \frac{1}{2+\hat{\Theta}} + \frac{2}{1-\hat{\Theta}} + \frac{1}{\hat{\Theta}} \right\}$ 3) The rength of life neconded in hours for 10 electron tubes were 980, 1020, 995, 1015, 990, 1030, 975, 950, 1050, 870, Assume that sife times are distributed in the form: $f(t,0) = \frac{1}{\theta} e^{-(t-\theta)}, \theta > 0, 0 < t < \omega,$ Obtain the MLE of O and the estimated standard ennors of this estimate. Estimate also the probability that an electron tube will survive at least 100 hours. Griven estimate of the large sample standard ennon of this estimated probability. Determine the lower confidence limit. Confidence coefficient = 0.05, to the true prob. of survivor for 100 hours on more. (i) By using the exact distri of MLE of 0, (ii) Assuming some approximate distry for the estimated prob. of survivor, The likelihood function is <u>Sol</u>. $L(0|t_1,t_2,...,t_n) = \frac{1}{p_n} e^{-\frac{1}{2}t_1/0}, 0>0.$ Here n=10. Likelihood equation is $0 = \frac{2}{20} \ln L = -\frac{n}{20} + \frac{2ti}{22}$ ⇒ ô = t = ____ is the MLE of 0. Now, S.E. $(\hat{\theta}) = \int Y(\bar{t}) = \int \frac{\theta^2}{n} = \frac{\theta}{\sqrt{n}}$. and s.E. $(\hat{\theta}) = \frac{\theta}{\sqrt{n}} = \frac{1}{\sqrt{n}}$ To estimate == P[T>100] = e 100/0 MLE of pis \$= 2-100/8 =

1

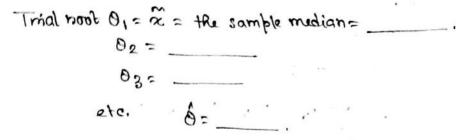
.

•

t=0, 20 identical components are put on test. 4> The life distr. of each is exponential with mean 0, after 24 At time hours. We coose found that 15 of the 20 components and still coording. Derive the MLE of O. Also give Din estimate of the SE. of the estimator. Home To Exp with mean O Hint:-Let Y= the no. of bulbs subvived upto 24 hours out of 20 bulbs. clearly, Y~Bin (n=20, p); where p= P[T>24] == 21/0 MLE of pis $\dot{p} = \frac{4}{n} = \frac{15}{20} = 0.75$ $\Rightarrow e^{-24/\hat{\theta}} = \hat{p}$ $\Rightarrow \hat{0} = \frac{-24}{\ln(.75)} = ---$ In a life testing experiment, 10 electric lamp are put to test, the lamps are burnt at a strech for 20 hours, 2 of this survive to termination (in hours) of life. For the rumaining lamps, time are observed and given below 9-8, 15-8, 17-2, 11-2, 13-8, 18-9, 14-8, 19-6 find an estimate of the mean life & assuming the life distr. to be exponential. If all the bulbs subvive, what could have been your estimate of 0. T ~ Exp. with mean ∂. Sof. þ=P[T>20] = e -20/8 X1, -...., x8 be the lifetime of 8 lamps. Let Likelihood function is L(0)= 1 = + = -2402. 12 $= \frac{1}{\theta^8} \cdot e^{-\sum_{i=1}^{2} \frac{2}{i} i/\theta} - \frac{40}{\theta}$ $= \frac{1}{\rho_8} \cdot e = \frac{-8(\bar{z}+5)}{\theta}$ Likelihood equation is : - $0 = \frac{2}{2\theta} \ln L(\theta) = -\frac{8}{\theta} + \frac{8(\overline{x}+5)}{\theta^2}$ $\Rightarrow \theta = \overline{x} + 5 = _$ If all 10 bulbs survived, the situation is $L(0) = \int e^{-20/0^{2}} = e^{-200/0}$ L(0) is max. iff $\frac{200}{0}$ is minimum. if O is max.

Hence, MLE does not exist."

67 The following in the foreq distr. of 154 obs. n. drawn at nandom from a multihamial popler with 6 classes Class no 1 2 3 4 5 G No. of obsenvation 79 32 5 6 17 15 in the sample denoting the probabilities of 6 classes by TTI, TT2, ..., TT6, respectively, Find the MLE of TTI-2TT2+GTT5. Let fi, i=1(1)6 be the frequency of the ith class in a n.s. <u>Sol.</u>→ of size n=154. Likelihood function:- $L(\pi_i|f_i) = \frac{12}{\Pi |f_i|} = \frac{12}{\Pi |f_i|}$, where $\Pi_i = 1$. and $0 < \Pi_1 < 1$, i = 1(1) G. To maximime InL subject to $\sum_{i=1}^{G} \Pi_i = 1$ Let , $F = \ln L + \lambda \left(\sum_{i=1}^{n} \Pi_{i} - 1 \right)$ = constant + $\sum_{i=1}^{n} f_i \cdot \ln \pi i + \lambda \left(\sum_{i=1}^{n} \pi i - 1 \right)$ $\frac{\text{Solve}}{2\pi} = \frac{3\pi}{2\pi} = \frac{3\pi}{2\pi} + \lambda$ $\Rightarrow \pi = -\frac{\pi}{2}$. and $1 = \Sigma \Pi i = -\frac{\Sigma f i}{2} = -\frac{\pi}{2}$. ⇒ - 1 = th ⇒ TTi = fi, are the MLE'S. $\Rightarrow \hat{\Pi} = \left(\frac{f_1}{f_1}, \frac{f_2}{f_2}, \dots, \frac{f_n}{f_n} \right).$ The MLE of $(\Pi_1 - 2\Pi_2 + 6\Pi_5)$ $= (1, -2, 0, 0, 6, 0) \begin{pmatrix} \pi_{1} \\ \pi_{2} \\ \pi_{3} \\ \pi_{4} \\ \pi_{5} \end{pmatrix}$ $= \pounds' \underbrace{1}_{1}$ is $\pounds' \underbrace{1}_{1} = \underbrace{1}_{1} - 2 \underbrace{1}_{2} + \widehat{1}_{5}$


normal (poplin, with the	common mean re, common s.d. o
and the	contin coeff. ?	, find the MLE of M. G. P.
	1st form	and form
	41	47
	52	54
	49	20
	44	48
	32	40
	62	65
	40	38
	45	42
	39	45
	48	45

Sole liek (Xi, Yi) , i=10(16, be a no. from GN (A, A, C, C, C, f)
liek Ui = Xi + Yi (id) N (2/4, 2C²(1+j)) = N(A (A, C)
Vi = Xi - Yi (id) N (2, 2C²(1+j)) = N(A (A, C)
Vi = Xi - Yi (id) N (2, 2C²(1+j)) = N(A (A, C)
ME 2:- (i) f Au = ū

$$2/\mu = \overline{u} = \overline{X} + \overline{Y}$$

 $\Rightarrow A = \frac{\overline{X} + \overline{Y}}{2}$
(ii) $f_{12}^{2} = 8u^{2} = \frac{1}{\overline{X}} \sum (Ui - \overline{U})^{2} = \frac{1}{\overline{X}} \sum (Xi - \overline{X} + Yi - \overline{Y})^{2}$
 $= \frac{1}{\overline{T}} \sum [(Xi - \overline{X})^{2} + (Yi - \overline{Y})^{2}]$
 $\Rightarrow 2\hat{O}^{2} (1+\hat{f}) = \lambda_{2}^{2} + 2\hat{\lambda}^{2} + 2\lambda\omega_{4}$
(iii) $f_{13} = 8\hat{u}^{2} = \frac{1}{\overline{X}} \sum (Yi - \overline{Y})^{2} - \frac{1}{\overline{T}} \sum (Xi - \overline{X})^{2} + (Yi - \overline{Y})^{2}$
 $\Rightarrow 2\hat{O}^{2} (1 - f) = \lambda_{2}^{2} + \lambda_{3}^{2} - 2\lambda\omega_{4}$
(iii) $f_{13} = 8\hat{u}^{2} = \frac{1}{\overline{X}} \sum (Y_{1} - \overline{Y})^{2} - \frac{1}{\overline{T}} \sum (Xi - \overline{X})^{2} + [Yi - \overline{Y})^{2}$
 $\Rightarrow 2\hat{O}^{2} (1 - f) = \lambda_{2}^{2} + \lambda_{3}^{2} - 2\lambda\omega_{4}$
(iii) $f_{13} = \frac{1}{2} \sum (Xi - \overline{X}) + (Yi - \overline{Y})^{2}$
 $\Rightarrow \hat{O}^{2} = 2(\lambda_{2}^{2} + \lambda_{3}^{2})$
 $\Rightarrow \hat{O}^{2} = \frac{2\lambda\omega_{4}}{2} - 2\lambda\omega_{4}$
 $= \frac{1}{2}$
(ii) $-(iii)$ gives
 $4\hat{O}^{2} = 2(\lambda_{2}^{2} + \lambda_{3}^{2})$
 $\Rightarrow \hat{O}^{2} = \frac{2\lambda\omega_{4}}{2} = \frac{1}{2}$
(ii) $-(iii)$ gives
 $4\hat{O}^{2} f = 42\omega_{4}$
 $\Rightarrow \hat{f} = \frac{2\lambda\omega_{4}}{2} + \lambda_{3}^{2}$
7. Subpose haights of G baixs of identical adult male bengali films,
there absenvel that
 $S'(a'') : S'(a'') : S'(a'')$

.

Likelihood function is
$$\frac{1}{2\pi\sqrt{1-f^2}}$$
, $n = \frac{1}{2(1-f^2)} \left\{ \frac{2\pi i^2 + 2\pi i^2 - 2f 2\pi i \pi i^2}{1-f^2} \right\}^{-2}$
Likelihood construction:
 $0 = \frac{2}{2f} \ln L = -\frac{2\pi (-2f)}{2(1-f^2)} = -\frac{1}{2(1-f^2)} \left\{ -2 \sum i \pi i \right\}^{-2}$
 $+ \frac{2\pi i^2 + 2\pi i^2 - 2f \sum \pi i \pi i}{2(1-f^2)^2} \left\{ -2f \sum i \frac{2\pi i}{2(1-f^2)^2} \right\}^{-2}$
 $\Rightarrow \frac{f}{(1-f^2)} \left\{ n + \frac{1}{f} \sum \pi i \pi i - \frac{1}{1-f^2} \left(2\pi i^2 + \sum \pi i^2 - 2f \sum \pi i \pi i \right) \right\}^{-2}$
 $\Rightarrow nf^3 - f^2 \sum \pi i \pi i + f \sum \pi i \pi i + \frac{1}{1-f^2} \left(2\pi i^2 + 2\pi i^2 - 2f \sum \pi i \pi i \right) \right\}^{-2}$
 $\Rightarrow nf^3 - g^2 \sum \pi i \pi i + f \sum \pi i \pi i + \frac{1}{1-f^2} \left(2\pi i^2 + 2\pi i^2 - 2f \sum \pi i \pi i \right) \right\}^{-2}$
 $\Rightarrow nf^3 + af^2 + bf + c = 0$, Aag,
Use some numerical method of solution.
10. Estimate, the value of 0 by the ML method and find out
 q_{57} . c.f. on the basis of 1 this sample
 $3:58, 2\cdot66, 3\cdot16, 2\cdot46, c\cdot33, 8\cdot3i, 15\cdot17, 9\cdot59$
diation from the coucley bolation -
 $bF(\alpha) = \frac{1}{\pi i} \frac{1}{1+(\alpha i - \theta)^2}$, $\theta \in \mathbb{R}$, $-\alpha < \alpha < \alpha < \infty$.
 $\sum h(\theta | \alpha_1, \dots, \alpha_n) = \pi^n, \frac{1}{\pi i} \frac{1}{1+(\alpha i - \theta)^2}$, $\theta \in \mathbb{R}$, $\pi^n, \frac{1}{\pi i} \frac{1}{1+(\alpha i - \theta)^2}$
Likelihood countion:
 $0 = \frac{2}{2\theta} \ln L = \frac{\pi}{2i} \frac{2(\alpha i - \theta)}{1+(\alpha i - \theta)^2} = \frac{1}{3}(\theta), \sin \alpha$,
 $\sum h(n + \pi i - \theta n - \frac{1}{2\theta}) = \frac{2\pi i h}{2\theta - \theta}$, $\sin h(n - \theta)$
 $\sum h(n + 1) = \theta n + \frac{1}{2\theta} = \frac{2\pi i h}{2\theta} = \frac{\pi}{1}$, $\pi i + (\alpha i - \theta)n^2$.

For large somple.

$$\hat{\mathbf{O}} \stackrel{\sim}{\sim} \mathbb{N}\left(\mathbf{0}, \frac{1}{\ln(\mathbf{0})}\right)$$

$$\Rightarrow \hat{\mathbf{O}} \stackrel{\sim}{\sim} \mathbb{N}\left(\mathbf{0}, \frac{\mathbf{P}}{\mathbf{n}}\right)$$

$$\Rightarrow 1 - \mathbf{q} = P\left[\left|\frac{\hat{\mathbf{O}} - \mathbf{0}}{\sqrt{\frac{2}{n}}}\right| < \mathcal{T}_{\mathbf{q}/2}\right]$$

$$= P\left[\hat{\mathbf{O}} - \int_{\mathbf{n}}^{\mathbf{Z}} \mathcal{T}_{\mathbf{q}/2} < \mathbf{0} < \hat{\mathbf{O}} + \int_{\mathbf{n}}^{\mathbf{Z}} \mathcal{T}_{\mathbf{q}/2}\right]$$

11. To test a null hypothesis Ho: b=0.6 of a bobb, ~ B (m=s, b) Vs. Hi: b>0.6. Suggest an UMP test with exact size of the choice of or is left to you. If the observed ino. of success is 4, construct a bandomized test of exact size 0.1 and conclude.

Sol:
To test the
$$p = 0.6$$
 $\frac{\sqrt{5}}{5}$ thispoint
Let χ be an observation from $B(m=5, p)$
MP test of its size of testing the $p = p_0$ Vs. this $p = p_1 \land p_1 \land p_0 = 0$
is
 $\varphi(\chi) = \begin{cases} 1 & \text{if } \frac{f(\chi, p_1)}{f(\chi, p_0)} & > c \\ 0 & 0W \\ 0$

If \$(x) = \$ 1 1 x>3 0,0W then size = PHO [X>3] $= \begin{pmatrix} S \\ 4 \end{pmatrix} (0.6)^{4} (0.4)^{4} + (0.6)^{5}$ To get the exact size oil, it is required to standomize at 2 = q. Let $\phi(\alpha) = \int 1, \alpha > 4$ $\gamma, \alpha = 4$ $\sigma, \sigma > 0$ = 0.2592+0.077767 where I is such that OII = EHO (P(X)) = 1.PHO[X>4]+3. PHO[X=4] = 0.07776+3(0.2592) > 2=0.086 $\Rightarrow \phi(\alpha) = \int \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ is the UMP test at level or = 0.1. Here z= 4 is the observed value. Hence, we reject the with probability 2=0.08.6 and accept Ho with prob. 1-2. Draco a 3-digited wondom number, then the prob. of R = Stre selected no. ≤ 0.85 is $P(R) = \frac{8C}{.1000}$. Let the selected no. be 126. Then we accept the: p=0.6 at level 0.1. Suppose the coarting time denoted by x in minutes for a bus is uniformly distributed over U[0,0], To test the hypothesis Ho: 0=18 Ys. H: 0>10 on the basis of a sample of Size 6 to decision roules are proposed. Reject the if is max farm, xefter (ii) (no. of fair x c]>8) > c2 Find the values of cland c2 taking level of significance is 0.05. Also, draw power curve for both there procedure and comment the relative performance.

12.

on

Sel. Lit X,..., Xe
$$A_{1,2}^{i,ij} R(\theta, \theta)$$

(b test Ho; $\theta = 10$ VS. H: $\theta \neq 10$
(c) $\varphi_{2}(x) = \int 1 \quad \text{if } x_{(c)} > c_{1}$
(d) $\varphi_{2}(x) = \int 1 \quad \text{if } x_{(c)} > c_{2}$
(e) $\varphi_{2}(x) = \int 1 \quad \text{if } y > c_{2}$
(f) $\varphi_{2}(x) = \int 1 \quad \text{if } y > c_{2}$
(o) $\varphi_{1}(x) = \int 1 \quad \frac{1}{2} \quad \frac{1}{2} > 0$
(c) $\varphi_{1}(0) = R_{0} \left[X_{(c)} > c_{1} \right]$
 $= 1 - R_{0} \left[X_{(c)} > c_{1} \right]$
 $= 1 - \left[\frac{c_{1}}{2} \right]^{6}$
(f) $\beta_{2}(0) = R_{0} \left[Y > c_{2} \right]$
 $= 1 - \left[\frac{c_{1}}{2} \right]^{6}$
(g) $\beta_{2}(0) = R_{0} \left[Y > c_{2} \right]$
 $= 1 - \left[\frac{c_{1}}{2} \right]^{6}$
(g) $\beta_{2}(0) = \frac{1}{2} \left[\frac{c_{1}}{2} \right]^{6} \left[\frac{c_{1}}{2} \right]^{6} \left[\frac{c_{1}}{2} \right]^{6}$
 $\varphi_{1}(x) = \frac{c_{1}}{2} \left[\frac{c_{1}}{2} \right]^{6} \left[\frac{c_{1}}{2} \right]^{6} \left[\frac{c_{1}}{2} \right]^{6}$
 $\varphi_{2}(x) = 10, (6 \cdot 4x)^{1/6}$
and $6 \cdot 0s = \beta_{2}(0) \right]_{0} = 10$
 $= \sum_{i} \sum_{j} \left[\frac{c_{j}}{2} \right] \left(\frac{c_{j}}{3} \right)^{i} \left(\frac{c_{j$

•

÷

Scanned by CamScanner

.

13. The following are 15 measurements of the octare bothy of a contain kind of Gazoline.
97.6, 97.2, 97.3, 96.0, 96.8, 150.3, 97.4, 135.3, 93.2, 97.1, 96.1,
97.6, 78.2, 98.5, 94.9,
Use an exact non-barantimic test and also an approximate test
to examine usedown on not the average votance matery of the
given kind of Gazoline is 98.5.
101. X: The measurement of the octare of gazoline.
102. X: The measurement of the octare of gazoline.
103. X: The measurement of the octare of gazoline.
104. X: The measurement of the octare of gazoline.
105. X: The measurement of the octare of gazoline.
105. X: The measurement of the octare of gazoline.
106. X: The measurement of the octare of gazoline.
107. The measurement of the octare of gazoline.
108. X: The measurement of the octare of gazoline.
108. X: The measurement of the octare of gazoline.
109. Exact Non-Fornanetric Test: count the no. of the signs among
104. X:
$$\pi_{2}$$
, ..., π_{7} for
109. We have two the sign and 12 - the sign and one observation
104. We fiave two the sign and 12 - the sign and one observation
104. We have two the sign and 12 - the sign and one observation
104. We fiave two of the sign among (Xi-Go) 3, i=1014.
104. Under the Y ~ 6in (n=14, p=1).
104. The observed value of Y is $y_0 = 2$.
104. The observed value of Y is $y_0 = 2$.
105. The observed value of Y is $y_0 = 2$.
105. The observed value of Y is $y_0 = 2$.
106. The produe = 2. min of Prive [Y's y_0], Prive [Y's y_0]
107. The observed value of X is N(A/G2), whethen the actual
108. Assume that the diots of X is N(A/G2), whethen the actual
108. Assume that the diots of X is N(A/G2), whethen the actual
109. Assume that the diots of X is N(A/G2), whethen the actual
109. These they readis Ys; this 104 70.5
10. test they readis Ys; this 104 70.5
10. The observed (they shows)

The test procedure described is an approximate test procedure, as the actual distr. of x may not be normal.

14. The following table shows Hamilton depression scale factors
measurements in 9 patients sufficient from depression, telem
before (X) and after (Y) a visit to themapilit:
X 1.83 0.50 1.62 2.48 1.68 1.88 1.15 3.06 1.3
Y 1.878 .647 .598 2.05 1.06 1.29 1.06 8.14 1.29
Perform a suitable (2) Perametric (2) non forametric test tojudge
extRup the temapy can be considered to be effective.
Assume that (X,Y) ~ CEN (Mx, My, CZ, NZ, N)
To judge colother the testing problem.
This A is a point to the indired to be effective, i.e.
to (MZZ-MY, M, CZ, MY, CZ, NZ, N)
To judge colother the testing problem.
This A is a point to (MA, TZ) /
cohase
$$\mu_{d} = M - MY$$
.
Test sintific IF ($d=0$) ~ An-1 runder the.
2.1 $M = M - MY$.
Test sintific IF ($d=0$) ~ An-1 runder the.
2.2 $M = M - MY$.
Test sintific IF ($d=0$) ~ An-1 runder the.
And we are interved t > tays.
Mon-Parametric:-
Here $di = \pi (-Y_1) i=100$?.
And we are interved in testing the median(4)=0 Vs. H1: median(4)>0
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
univariate disto.
Univariate disto.
Univariate disto.
Univariate disto.
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous
 $d_1 d_2 \cdots d_q q_2 = m s$. from an absolutely continuous

.

.

1

n.

15. Conduct the barametric and non-barametric test for differences of loadson for the data given below:
loadson for the data given here and Y, ..., Yn, n=5 be the given here.
from gril, gril, suchectively.
Possimutric test: (linkeright - test)
Assumption: a, ..., 2m (id) N(Mar, 62) indipendently didnikula
distantic that
$$D_{2} \leq U$$

To test: the prove for N(Mar, 62) indipendently didnikula
for test: the prove for N(Mar, 62) indipendently didnikula
Assume that $D_{2} \leq U$
To test: the prove for N(Mar, 62)
Assume that the dists of the two groups are absolutely
continuous and independent.
To test the $Q_{2}(x) = \frac{C}{V_{2}}(y)$ Vs. the $Q_{2}(z) \neq Q_{2}(z)$
Let $\sum be the median in the combined, set.
Define, $V = the no, of a(As eachich are $\leq \sum$
Under the, $P[V = v] = \frac{m (m (m v))}{(m v)}$, $U = 0$ (UN
men = 10 = 2P
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 1$
 $(m + n)$ $(m + n) = 10 = 1$
 $(m + n)$ $(m + n) = 10 = 1$
 $(m + n)$ $(m + n) = 10 = 1$
 $(m + n)$ $(m + n)$ $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n)$ $(m + n)$ $(m + n) = 10 = 2P$
 $(m + n)$ $(m + n) = 10 = 1$
 $(m + n)$ $(m + n$$$

ANOVA

AVONA
1. The following measurements refer to the no. of hours in which g patients are free from pain after taking placebo, a new drug and aspining:
Ginoup Observations
Dianha 0'0
a land drug 2.8
New any 3.1 2.7 3.8
Aspining the new drug is more effective than the operation
(i) lest whether the of the new drug is the same as the
(ii) lest if we allost of the other two.
Aspinite (i) Test whether the new drag is more effective than the others (ii) Test if the effects of the new drag is the same as the (ii) Test if the effects of the new drag is the same as the average effect of the other two.
Sol. The factor comidered here is drug (A) with levels Placebo (A1), New drug (A2) and Aspirin (A3). The data given is one-way classified data. Let Y is denotes the jth observations in (the
New dreig (A2) and Aspirin (A3). The data from in (the
classified data. Let fil directes the je beschulans.
Madel Fixed Etheory -
His= ut qi + lij, with I not sur
Hore ri= let ai is mean-effect (fizeed) of the ite level.
How ALE ATTIC IS IS
To test Ho: $\alpha_1 = \alpha_2 = \alpha_3 = 0$
computation:- GI = Z Z Yij =
2=1 j=1
$C.F. = \frac{G^2}{n} = \frac{G^2}{n}$
ss (Total) = ZZ yij 2- CF =
ss(between) = 2 Tio2 - CF =
$= \frac{T_{10}^{2}}{21} + \frac{T_{20}^{2}}{n_{0}} + \frac{T_{30}^{2}}{n_{2}} - CF =$
cohere Tio = Z yij
ANOVA Table - 0
Source of 1 d.f. SS MS F
Variation
Between groups. 3-1=2 SS = MSB F= MSB
Between groups. (Setween) F= MSB MSE F
Within operates 9-3=6
[ENDON] SSE = MSE 3,6
Total = 9-1=8 ss(total)

(1) observed F> Fords; 2.6, subject the.
(1) To test that
$$h^{2} = h^{2} \cdot y^{2}$$
, the $(-h^{2} > h^{2})^{1/2}$
and the: $h^{2} = h^{2} \cdot y^{2}$. the $(-h^{2} > h^{2})^{1/2}$
To test that, the test statistic
 $\overline{\int 2a^{-\frac{1}{2}}} \sim t_{0}$ and then
 $\overline{\int rest} = \frac{1}{2a^{-\frac{1}{2}}} \sim t_{0}^{-\frac{1}{2}}$ and then
the test statistic is $t_{1} = \frac{1}{2} \frac{2a^{-\frac{1}{2}}}{2}$
(ii) To test the $2^{-\frac{1}{2}} + h^{2} = \frac{h^{1}(+h^{2})}{2}$
 $e^{-\frac{1}{2}} + \frac{1}{2a^{-\frac{1}{2}}} + \frac{1}{2a^{-\frac{1}{2}}} = \frac{1}{2a^{-\frac{1}{2$

Model: [Two way classified data with mined effects] $\begin{aligned} \text{Jijk} &= \mu + \alpha i + b j &+ c i j + c i j k \\ & (\text{fixed}) (\text{handom}) \\ \text{cohere } \sum_{i=1}^{p} \alpha i = 0 , \sum_{i=1}^{p} c i j = 0 , j = 1(1) 2 \end{aligned}$ and fijz, feijz and feijks are jointly normal. eijk id N(0, Se2). Define, $\Omega_A^2 = \frac{1}{p-1} \sum_{i=1}^{p-1} di^2$ OB= Var(bj) OAB= 1 ZY(cij) To lest the: On = 0 and to estimate the parameters Te2, TB2, TAB. Computation:- $G = \sum_{i=1}^{n} \sum_{k} \sum_{k} j j k = -----$ C.F. G1/n = _____ n = prm = 32. $SS(Total) = \sum_{k=1}^{2} \sum_{k=1}^{2} y_{ijk}^{2} - C.F.$ Defined, Tion = ZZ Jijk Tojo = Z Z Jijk Tijo = Z Jijk .
 B_1 B_2 B_3 B_4 Total

 $T_{110} = T_{120} = T_{130} = T_{140} = T_{100} = T_{210} = T_{220} = T_{200} = T_{200} = -$ A2 43 AA T010 = T020= G=

ANOVA TAble

d.f.	\$3	MS	E(MS)
Þ-1=3	A22	$MSA = \frac{SSA}{3}$	$\mathcal{D}_{2}^{2} + m \mathcal{D}_{AB}^{2} + 2m \mathcal{D}_{2}^{2}$
2-1 =3	82B	$MSB = \frac{SSB}{3}$	$Pe^2 + \beta m R_B^2$
(P-1)(97-1) =9	85(AB)	$MS(AB) = \frac{SS(AB)}{9}$	$f_2^2 + m f_{AB}^2$
Pq (m-1) = 16	88E	$MSE = \frac{SSE}{16}$	Q2 ≈
pqm-1 = 31	587		
	$\begin{array}{c} p_{-1} = 3 \\ q_{-1} \\ = 3 \\ (p_{-1})(q_{-1}) \\ = q \\ p_{2}(m_{-1}) \\ = 16 \\ p_{2}m_{-1} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P-1=3$ SSA $MSA = \frac{SSA}{3}$ $q-1$ SSB $MSB = \frac{SSR}{3}$ $=3$ SSB $MSB = \frac{SSR}{3}$ $(P-1)(q-1)$ $SS(AB)$ $MS(AB) = \frac{SS(AB)}{9}$ $=q$ $SS(AB)$ $MS(AB) = \frac{SS(AB)}{9}$ $PA(m-1)$ SSE $MSE = \frac{SSE}{16}$ $Pqm-1$ SST

FA = MSA MS(AXB) .

If observed
$$F > F = 2; 3, 9 , reject HA: \Gamma_A^2 = 0$$
.
[If HA is sujected, give $\hat{\alpha}_i = \overline{y}_{100} = \overline{y}_{000} = \underline{-}$]
The estimates of the parameters $\hat{\Gamma}_B^2 = MSE = \underline{-}$
 $\hat{\Gamma}_{AB}^2 = \frac{MS(AB) - MSE}{m} = \underline{-}$
 $\hat{\Gamma}_B^2 = \frac{MSB - MSE}{pm} = \underline{-}$

Scanned by CamScanner

1

...

9. In an experiment on yield of sugar bests (tors/acc) thus case.
two levels of inmightion treatment and these of lostilizes
the levels of inmightion of treatment and these of lostilizes
the levels of inmightion of treatment and these of lostilizes
statisticated is the following value of the structure and these of lostilizes
obtained is a (Inmightion) = 120.0 ; sa (Fartilizen) = 221.7;
sa(Intiadation) = 33.0 ; sa (Fartilizen) = 221.7;
sa(Intiadation) = 33.0 ; sa (Fartilizen) = 221.7;
Assuming that the immightion of function the one structure of the
true component of values of the constructure the value effect
immightion dominant is 2010.
101. Hunc two effects one : Irmightion (A) i Ai A2
Fartilizen (G) i Bi B2 B3
Both the effects one vanhom.
(A is two case classified date with m=5 obtin the call.

$$p_{=}e, q = 3, m=5$$
.
Model:- $y_{ijk} = helitbj + Cijt Cijk , when
 $a_{ii} = h(0, 0h^2)$
 $b_{ii} = h(0h^2) = h(0h^2)$
 $b_{ii} = h(0h^2) = h(0h^2)$
 $b_{ii} = h(0h^2) = h(0h^2)$
 $b_{ii} = h(0h^2) = h(0h^2) = h(0h^2) = h(0h^2)$
 $b_{ii} = h(0h^2) = h(0h^2) = h(0h^2) = h(0h^2) = h(0h^2)$
 $b_{ii} = h(0h^2) = h(0h^2) = h(0h^2) = h(0h^2) = h(0h^2) = h(0h^2) = h(0$$

DESIGN

DESIGN
1. In the experiment described below 4 materials were tested in each of 4 rouns on a machine with 4 different position. The letters
Below. How the figures activit the soxs in major ince soil of
standard lingth.
Position in machine
Que 4 2 1 3
A(251) B(241) D(227) C(229)
2 $b(234)$ $c(237)$ $A(274)$ $B(226)$
$P(0 0) \rightarrow P(0 0)$
4 B(195) A(270) c(230) D(225)
(a) Analyse the data and comment (b) If the variation due to the different position of the machine is (b) If ignored, will you modify your conclusion?
I ignored, will you modify your conclusion?
and and and
Sol. Factor A (Row): Factors suns are the four levels A
Factor B (column) : Four positions of the machine are the four levels of
В.
Theatment: A, B, C, D.
(a) Experiment is conducted according to the LSD coith four treatments A,B,C,D.
Let yijk be the obstr. of the kth treatment in the (i, j) the cell.
Model: - Vijk = / + xi + Bj+ CK. + Rijk
with $2 \ll i = 2/3j = 27 \approx 0$
eijk ~id N(0, €2)
To test: Ho: $T_1 = T_2 = T_3 = T_4 = 0$,
Computation:- GI = ZZZ Jijk = Tiro > now totals i j k Jijk = Tojo > column totals
ij k () Tojo → column totals
C.F. = Gi2/n, m=4. Took -> theatment totals
m =
$SS(row) = \sum_{i=1}^{\infty} \frac{T_{i}\sigma}{m} - CF$
$m T A i^2$
$SS(column) = \sum_{n=1}^{\infty} \frac{T_{ojo}^2}{m} - cF$
S= (-treatment) = Z Took - CF

ANOYA Table

ANOTH TABLE MS
Source of d.f. SS 1013
Variation
$r = \frac{1}{100}$
sse
column = 3 MS(tro)
53(17)
Theatment = 3 MSE
Ennon
$Total = m^2 = 1 = 15 \qquad $
If observed F>Fai; 3,6, we reject the. If observed F>Fai; 3,6, we reject the. If the is rejected then, the different threatment has different effect in general. (b) If the variation due to different position of the machine is ignored that is columns are ignored, then corresponding 4 mouse ignored that is columns are ignored, then corresponding 4 mouse as a blocks, the design of experiment reduced to RBD. Lef You be the observation on the kth treatment in the ith
(b) The variation due to different position of them corresponding 4 mouse
ionaned that is columns are ignored, I reduced to RBD.
as a blocks, the design of experiment states in its
l as a blocks, the design of experiment in the its
block (Inow).
Model: - yik =/u+ di + Ck + 2ik where, eik id N(0, σ_e^2).
$\sum_{i} \alpha_{i} = 0 = \sum_{K} T_{K}$
To lest Ho: PK=0, K=1(1)4.
Computation:- SS(Block) = SS(now)
ss (treatment) in RBD. is same as the ss(tr) in LSD.
But SS (column) is added to SSE of LSD to get the SSE * in RBD.
ANOVA table
Derive of
source of d.f. ss.
Yanjation
Row m-1=3 SSR F= MSE*
Theatment 3 SS(tro)
$3+6=9$ $3SE^{+}=SSE+SS(column)$
Enmors
Total $m^2 - 1 = 15$ se(tota)
If observed F* > Foios; 3,9, ruject Ho.

2) In order to compare the hardness of alloy three furnayces (F) and three lives of moulds (M) coure tried. The lay out as well as the hardness (in suitable unit) are shown below:

Rep-I	Rep 1		RepI	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M2 M1 104 89 M3 M1 112 89 M1 M2 103 132	M3 117 M2 81 M3	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	M2 129
Analyse the data,				
Sol. Split Plot Design:-				
factors A: (A1, A2,, Ab)			
Ly they exclude use a	of small pl	τa		
i.e. I they are app	ilied on larg	fe folotr.		
-> their effects are known	to be diffe	ount / effect of	Ai's a	reto be
tested with less pracision.				
Another factor: - B1, B2,	,B9'			1 - A
-> - they are applicable		· • · ·		
small plots and wer want t	est B an	d AXB more	r occurate	by than A
Blockt			t.	V
A1 81 82 6. A2 1 1 . Ab 1 1 .	RR			
F denoted by FI, F2, F3, M	denoted by	M11 M21 M	3,	
Here b= 3 V levels of F arra	ulsa 10	~ 11.010.0	result w= 3	blocky
an publicable and the tac	ton M qt	V= 3 levels.	me all	
to the plots of a block a	fter subdiv	riding each b	plot into 9	L= 3
subjences. This is a split plot	design.			
Model: - Yijk = S ut bit?	$j + e_{ij}$ +	Skt Sjkt	eijk'	
model for treatment i=1(yr=3, j=1(y)=3)	whole plot F by RBD	model for in whole	tubblot to	eatment
(=1()== 5 , J=1()== 3,	k=1(1)%	53.	. •	
$\sum T_j = \sum 2k = \sum_{k} \delta j$			•	

7

ANOVA Table	2			
Source of Variation Replicator Whole Plot theat (F) Emmon (I)	df M=2 b=1=2 (n-1)(p-1)=9	22	MS MS(F) MS(Et) MS(M)	$\frac{f}{F_{1} = \frac{MSF}{MSE_{1}}}$ $F_{2} = \frac{MSM}{MSE_{1}}$
Subplot tweat (M) Interaction (FXM) Enmon (II)	9-1=2 (p-1)(2-1)=4 P(2-1)(2-1)=12		MS(FXM) NS(F <u>M</u>)	E3 = WS (EXM) WSEII
1-60-1	df = hpy-1= :	26		
$F_1 \leftrightarrow F$	~;214			
F2 (F	2,12			
$F_3 \leftrightarrow$	Fx; 9,12 ,			

	Price 7 from on exp. bobin with
(a) braw a standom sampl	e of size 7 from an exp. popin with
mean 2.345,	from a Cauchy pople. with median O
(b) Draw a night of other	Lehin with
(c) prawa m.s. of size G	from a univariate roomal popla with 23.
(1) NOW A B.S. of Size 5	from the choir!
P[X=0]=5, P[X=1]	= = , P[x=2]==;
solution: (a) Let X ~ Exp (0==	2.345)
$\int x(x) = \frac{1}{2}e^{-\frac{x}{2}}$	
	-1
$F_{X}(x) = \int_{-\infty}^{\infty} f_{X}(t) dt$	
D.F. of Xis	
E(a)= 1-e-70, 2>0	b
By probability integral tramf	enmetion.
If u is an observed semple	from R(0,1), then U=F(x)
	$u = 1 - e^{-2/0}$
	-In (1-4)
=	-2.345 In (1-4) is an observed sample
	from Exp. with mean 0=2.345.
We take seven 3-digited na	ndom number from Finner-Vates table.
Page No: 125, 1000=5, colum	ມ <u>ນ</u> ≃
260, 573, 375, 204, 05	6,930,001.
We place decimal points before "	Re selectednos,
Then 0.260, 0.573, 0.375, 0.20	4, 0.056, 0.930, 0.001 are 7 n.2.
from R (0,1).	
Semial No. Vi	$x_i = -2.345 \ln(1-u_i)$
2	
3	
4	
5	
6	
7	

÷

$$\int \int \frac{1}{2} f_{X}(x) = \frac{\Gamma}{\pi \sqrt[3]{9}} \int \frac{1}{\pi \sqrt[3]{9}} \int \frac{1}{\pi \sqrt[3]{9}} \int \frac{1}{\pi \sqrt[3]{9}} \int \frac{1}{\pi \sqrt{9}} \int \frac{1}{\pi \sqrt{9}}$$

$$F(z) = \frac{1}{2} + \frac{1}{11} \operatorname{tm}^{-1}\left(\frac{z}{2}\right)$$

eshure $\chi \sim R(0,1)$
Here $u = F(z) = \frac{1}{2} + \frac{1}{11} \operatorname{tm}^{-1}\left(\frac{z}{2}\right)$.
 $\Rightarrow \chi = 2 \operatorname{tm} \int \pi \left(u - \frac{1}{2}\right) \int \frac{1}{12} = 2 \operatorname{tm} \chi \int \pi \left(u - \frac{1}{2}\right) \int \frac{1}{12} = -20 \operatorname{tm} \chi$

(c)
$$X \sim N(17.95, (6.23)^2)$$

 $\Rightarrow Z = \frac{X-17.95}{6.23} \sim N(0.1)$
Hence, $U = \frac{1}{2} \left(\frac{X-17.95}{6.23} \right) \sim R(0.1)$
 $\Rightarrow u = \frac{1}{2} \left(\frac{X-17.95}{6.23} \right)$
 $\Rightarrow \overline{D}^{-1}(u) = \frac{9 - 17.95}{6.23} \rightarrow From Biometrica.$

Draw a n.g. of size 5 from the distri

$$P[X=0] = \frac{1}{5}$$
, $P[X=1] = \frac{2}{5}$, $P[X=2] = \frac{2}{5}$

(4)

Let us define the n.v.
$$Y \sim U(0,1)$$
.
So, $P[0
 $P[\cdot 2 \le Y < 6] = 4 = P[X=1]$
 $P[\cdot 6 \le Y < 1] = 4 = P[X=2]$
 $P[\cdot 6 \le Y < 1] = 4 = P[X=2]$$

So, we take 5 3-digited xandom no. If the no. selected is in between (000-199) then we consider is eareivedent to choosing X=0, if the no. is in between (200-599), we eareivedently choose X=1, and finally, if the selected no. is in between (600-979), then we choose X=2.

9. For the cost function a)
$$C = C_0 + Z C_0 \pi R$$

b) $C = C_0 + Z C_0 \pi T_0 \pi$.
others Cound Ci and Known constants. Find the optimum values
of $\pi_1 / 3$ by minimizing Van (G_1) for fixed total cost cottle
ital sample size being (G_0 gives, the following data)
Sinctum 1 2 3 4
 M_0 26 40 Ge 70
 S_0 15 2.6 25 40
 C_0 1 2 3 4
Also, compute the optimum allocation due to Neyman & compare
the efficiency of the optimum allocations with that of
proportional allocation to extinct the probability R_1
 R_1 S_1 Z_1 Z_2 S_1 A_1
 R_2 S_1 Z_1 M_1 S_1 Z_2 $M_1^2 (T_{0,1} - M_0) S_1^2$
 $+3 (C_0 + \frac{1}{2}C_0\pi) n^{-2}$)
Now, $\frac{2F}{2\pi n} = 0$
 $\Rightarrow \frac{1}{N_2} N_0^2 S_1^2 (-\frac{1}{\pi n_0^2}) + 3 \cdot C_1 = 0$
 $\Rightarrow \frac{1}{N_2} N_0^2 S_1^2 (-\frac{1}{\pi n_0^2}) + 3 \cdot C_1 = 0$
 $\Rightarrow M_1 = \frac{G_0}{\frac{1}{\sqrt{C_1}}}$
 R_1 $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$
 R_1 $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt{C_1}}$
 R_1 R_2 $\frac{1}{\sqrt{C_1}}$ $\frac{1}{\sqrt$

r

Neymon's optimum and proportional discotions:
How
$$n_h \approx \frac{NnSn}{\sqrt{C_h}}$$

() If $C_h = constant, then $n_h = \lambda_2 Nh Sn Cod. Co = 2n_h$.
 $\Rightarrow \lambda_2 = \frac{60}{2 Nh Sn}$.
 $\Rightarrow n_h = \left(\frac{60}{2 Nh}S_n\right)$. NinSn
 $\Rightarrow n_h = \left(\frac{60}{2 Nh}S_n\right)$. NinSn
 $\Rightarrow optimum allocation.$
(2) How $C_h = constant$
 $Sn = constant$
 $sn = constant$
 $sn = constant$
 $sn = \lambda_3 Nh$
 $and \lambda_3 = \frac{60}{2 Nh} = \frac{60}{N}$.
 $\therefore n_h = \left(\frac{60}{N}Nh \Rightarrow proportional allocation.$
(3) Quantities of the information given belows find the salative
Atandond entry the information given belows find the salative
 $Standond$ entry the information first the steps be saleted by
 $SREWOR$ for estimating the total population Y of the U
 $Service Vallages group of district the steps be saleted by
 $Service Vallages (Nh) = \frac{10}{2} Nh$ $Sh = \frac{10}{2} Nh$
 $\frac{1}{10} rass 2811 1083 1167
 $\frac{1}{10} rass 281 281 381 3168
 $\frac{1996}{232} 382 291
 $\frac{1996}{232} 382 291
 $\frac{1996}{3369} 382 291$
 $\frac{1996}{3369} 382 291
 $\frac{1996}{3369} 382 291
 $\frac{1996}{3369} 382 291
 $\frac{1996}{3369} 382 291$
 $\frac{1996}{399} 392$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

÷

-

•

.

Scanned by CamScanner

N

$\frac{\left[\text{Hore } \frac{N_{\text{N}}}{N_{\text{N}}} = \frac{1}{100}\right]}{\sqrt{2} N_{\text{N}} \left(\frac{N_{\text{N}} - \frac{N_{\text{N}}}{160}\right) \cdot \frac{Sn^{2}}{\frac{N_{\text{N}}}{160}}}{\frac{1}{100}}}$ $= \frac{\sqrt{992 N_{\text{N}} Sn^{2}}}{\sqrt{992 N_{\text{N}} Sn^{2}}}$
District Nn Yn Sn Nn Yn Nn Sn
 All the farms of a country have been stratified according to size and the following data have been obtained. <u>Form Size No. of Farm (Nh)</u> Mean (Yh) <u>S.D. (Sh)</u> <u>6 - 40</u> 394 5.4. 8.3 <u>81 - 80</u> 464 16.3 13.3 <u>81 - 120</u> 391 24.9 15.1 121 - 160 334 84.5 19.8 161 - 200 169 42.1 24.5 201 - 240 113 50.1 26.0 201 - 240 148 63.8 35.2 241 - 280 148 63.8 35.2 241 - 280 148 combine Into a 1 stration and last 4 The first 3 stration in estimating the poplo near by that first stratified Random sampling (2) Propositional allocation. 8 that first have stratified poplin. 24 of the according that the stratified poplin. 25 that allocation that the total no. of farms are stread 100. (b) optimum allocation that first poplin. 26.0 5.6 5.7 2
Farm Size No. of 1 $0 - 120$ $N_1' = 2$ hn $121 - 280$ $N_2' = \frac{7}{2}$ h
I Scanned by CamSca

eshere $\overline{Y_1} = \frac{2}{2} \frac{Y_h \cdot \overline{Y_h}}{N_h}$, $\overline{Y_2}' = \frac{1}{h_{ad}}$ and $S_{1}^{\prime 2} = \frac{1}{\sum_{h=1}^{3} N_{h} - 1} S_{h=1}^{3} (N_{h} - 1) S_{h}^{h} + \sum_{h=1}^{3} N_{h} (\overline{Y}_{h} - \overline{Y}_{1}^{\prime})^{2}$ and, $S_2^{\prime 2} = \frac{1}{2} \frac{1}{Nn-1} \int_{n=4}^{7} (Nn-1) S_n^2 + \frac{7}{2} Nn (Nn - \overline{Y}_2)^2 \int_{n=4}^{7} \frac{1}{2} Nn (Nn-1) S_n^2 + \frac{7}{2} Nn (Nn - \overline{Y}_2)^2 \int_{n=4}^{7} \frac{1}{2} Nn (Nn - 1) S_n^2 + \frac{7}{2} Nn (Nn - 1) S_n^2 + \frac$ $V_{\text{prop}} = \frac{1-F}{n} \sum_{n=1}^{7} \frac{Nh}{N} \cdot Sh^2$ (Criven stratification) 6 and Vprop = 1-f Z Nn' sn2 (New stratification) Loss in eff = $\frac{V_{prop} - V_{prop}}{V_{prop}} = \frac{1}{N_{h}} \frac{N_{h}}{N} \frac{1}{N_{h}} \frac{1$ (6) Loss in eff = Vopt - Yopt = ____ (Ratio - Regression Estimator 4 An experimentor makes an former's eye-estimate of the weight of beaches on each there in a orichard of 200 theos. He finds a total everythe of 11600 lbs and weight forma He finds a total everythe of 11600 lbs and weight forma SRS of 10 thees which yield the following result; Semial No. of thee: 1 2 3 678910 45 Actual weight: 61 42 50 58 67 45 39 57 71 53 Estimated is: 59 47 52 60 67 48 44 58 76 58 Compute the natio and regression estimates of the total actual weight of Peaches of all the 200 threes in the orichard and compare the precisions of 2 estimates.

. .

Scanned by CamScanner

· . . .

(5). Two - stage-cluster: > In an experimental investigation, 100 fields each consisting of 16 plots of equal size, course soun with wheat: Out of 100 fields, 10 fields are selected by SRSWOR and out of each field so selected selected by SRSWOR and out of each field so selected A plots and selected by WOR to observe the yield. From the given observation following values are estimated. Sample mean (in kg) for the beleeted fields are: 4.290, 4.255, 3.795, 4.220, 4.070, 3.636, 4.550, 4.285 4.375 3.790. Sample avonage with variance = .018215(kg)? Extimate the total yield of wheat in the experimental station along with its standard enrorn. estation the efficiency of this estimate with on that compare the efficiency of this estimate with on that would have been obtained by selecting an SRSWOR of 40 plots out of 1600 plots in the Instation. [First we select n p.s.u from N. p.s.u. from selected in p.s.u., with in each p.s.u. → popi Sol. > þ, s.u have 14 units, we select munits, -N=100 fields (p.s.u.) , each consisting of M=16 plots (S.S.u.). Out of N p.s.u., n=10 fields and out of each selected (p.s.u.) fields m=4 plots (s. s.v.) one relected under sesword. Liet. Yij be the value obtained for the jth selected 8.8.4. in the Jj its selected p.8.4., i=1(1)10=n; j=1(1)4=101. An unbiased estimate of Y (total yield) is $\hat{\gamma} = N \cdot \overline{y} = N \left(\frac{1}{2} \sum_{i=1}^{n} \overline{y_i} \right) \cdot \overline{y_i} = \frac{1}{2} \sum_{i=1}^{n} \overline{y_i}$ $V(\dot{Y}) = (MN)^2 \left\{ \frac{1-f_1}{n}, S_n^2 + \frac{1-f_2}{mn}, S_w^2 \right\}$ and $\hat{Y}(\hat{g}) = (MN)^2 \tilde{S} \frac{1-f_1}{n} \cdot S_b^2 + f_1(1-f_2) \cdot S_w^2$ eohere $8b = \frac{1}{n-1} \sum_{i=1}^{n} (\overline{3}i - \overline{3})^2 =$ and $side = \frac{1}{n(m-i)} \sum_{i=1}^{n} \sum_{j=1}^{m} (ij - ij)^2 = \frac{1}{n(m-i)} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$ $\hat{\mathbf{v}}(\hat{\mathbf{Y}}) =$

In case of srswor, with sample of size

$$mn = 40 = n' \cdot 4mom \quad MN = 1600 = N' plots.$$

 $V_{SRS}(\hat{Y}) = N'^{2} \cdot \frac{N'-n'}{N'n'} \cdot Sy^{2}$.
 $S_{g}^{2} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (y_{ij} - \bar{y})^{2}}{nm - 1}$.
 $= \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (y_{ij} - \bar{y})^{2} + m \sum_{i=1}^{n} (\bar{y}_{i} - \bar{y})^{2}}{nm - 1}$.
 $= \frac{n(m-1) \cdot S\tilde{\omega} + m(n-1) \cdot Sb^{2}}{mn - 1}$.

0

D

. .

Scanned by CamScanner

0