STATISTICS FOR DECISION MAKING

BY

TANUJIT CHAKRABORTY

Indian Statistical Institute

Mail: tanujitisi@gmail.com

$$Z = \frac{\bar{X} - / u}{0 / \sqrt{n}} \sim N(0,1)$$

$$\chi^{2} = \frac{(n-1) \dot{\lambda}^{2}}{0^{2}} \sim \chi^{2}_{n-1}$$

$$t = \frac{\bar{X} - / u}{s / \sqrt{n}} \sim t_{n-1}$$

$$F = \frac{\delta_{1}^{2}}{\delta_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1}.$$

$$\frac{Ex}{(0,1)} = \frac{\sqrt{2}}{\sqrt{2}},$$

$$M_{x}(0) = M(U_{1})M(U_{2})$$

$$(1-2t)^{-1/2} = (1-2t)^{-1/2}$$

$$X M(U_{2})$$

$$M(U_{2}) = (1-2t)^{-(v-v)/2}$$

$$M(U_{2}) = (1-2t)^{-(v-v)/2}$$

Note: Z = X-/4 ~ N(0,1)

Let
$$Y = Z^2$$
, $G(Y) = P(Y \le y)$

$$= P(Z^2 \le y)$$

$$= P(-1y \le Z \le 1y)$$

$$= 2 P(0 \le Z \le 1y)$$

$$= 2 \int_{\overline{2\pi}}^{1} e^{-\frac{2^2}{2}} dz$$

$$= \int_{\overline{2\pi}}^{1} u^{\frac{1}{2}-1} e^{-\frac{u^2}{2}} du$$

$$= \int_{\overline{2\pi}}^{1} u^{\frac{1}{2}-1} e^{-\frac{u^2}{2}} du$$

$$= \int_{\overline{2\pi}}^{1} u^{\frac{1}{2}-1} e^{-\frac{u^2}{2}} du$$

= 1/2 //2 u 1/2-1 e - 4/2

So, Y, ~ X, 2, ~ X, 2,, Yn~ X, 2.

Let U= Y+ --+ Yn .

MGF(U) =
$$E(e^{tU}) = E(e^{tY_1 + tY_2 + \dots + tY_n})$$

= $E(e^{tY_1}) E(e^{tY_2}) \dots E(e^{tY_n})$
= $(1-2t)^{-1/2} \dots (1-2t)^{-1/2}$
= $(1-2t)^{-n/2}$
= $(1-2t)^{-n/2}$

So, MGF =
$$\int_{0}^{\infty} e^{\pm i x}$$
, $\frac{1}{\sqrt{2\pi}} e^{-\frac{\pi}{2}} \frac{1}{2\pi} e^{-\frac{\pi}{2}} \frac{1}{2\pi} e^{-\frac{\pi}{2}} \frac{1}{2\pi} e^{-\frac{\pi}{2}} \frac{1}{2\pi} e^{-\frac{\pi}{2}} \frac{1}{2\pi} e^{-\frac{\pi}{2}} \frac{1}{2\pi} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} \frac{1}{2\pi} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}}$

Theory & Method of Point Estimation
D. I take lion: of allies to all estimation involves the use of
sample data to calculate a single value content is a "best estimate" of an unknown population parameter.
Statistic: Statistic is a function of sample values which is itself an observable random variable does not contain any parameter. X , S^2 , $X(1)$, $X(n)$ are examples of statistic. Sampling Distribution: The probability distribution of any statistic is termed as sampling distribution.
Standard Ennon: SE(T) = [Var(T) = [E(T-E(T))2]/2 The smaller the SE the better the guess.
to Fisher an estimator is said to be the BEST
According to Fisher, an estimator is said to be the BEST ESTIMATOR if it is
_ Unbiased
_ consistent
- Efficient SD-(53)3
Sufficient
Mean Square Ennon: - MSE = E(T-0)2
$= E \left[T - E(T) + E(T) - \theta \right]^{2}$ $= E \left(T - E(T) \right)^{2} + \left\{ E(T) - \theta \right\}^{2}$ $= Von(T) + Bias(\theta, T)$
Inbiasedness:
Inbiasedness: An estimator $\hat{\theta}$ is said to be unbiased for θ if $E(\hat{\theta}) = 0$.

1. Unbiasedness: An estimator $\hat{\theta}$ is said to be unbiased for θ if $E(\hat{\theta}) = 0$.

Ex. 1. \overline{X} is an unbiased estimator for θ where $Xi \sim D(\mu, \sigma^2)$, Yi = I(I) = I(I)

 $\underbrace{(x_n)}_{n} = \underbrace{(x_n)}_{n} = \underbrace{(x$

$$E(\overline{X}) = /^{u}, \quad V(\overline{X}) = \frac{\sigma^{2}}{n}.$$

$$E(\frac{1}{n}, \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}) = \frac{1}{n}E\{\sum_{i=1}^{n} (X_{i} - /u)^{2} + \sum_{i=1}^{n} (\overline{X}_{i} - /u)^{2} - 2\sum_{i=1}^{n} (X_{i} - /u)^{2} + \sum_{i=1}^{n} (\overline{X}_{i} - /u)^{2} - n(\overline{X}_{i} - /u)^{2}\}$$

$$= \frac{1}{n}E\{\sum_{i=1}^{n} (X_{i} - /u)^{2} - n(\overline{X}_{i} - /u)^{2}\}$$

$$= \frac{1}{n}\sum_{i=1}^{n} V(X_{i}) - nV(\overline{X})$$

$$= \frac{1}{n}\sum_{i=1}^{n} V(X_{i}) - nV(\overline{X})$$

$$= \frac{1}{n}\sum_{i=1}^{n} \nabla^{2}$$

$$= \frac{n-1}{n}\sigma^{2}$$

$$= \frac{n-1}{n}\sigma^{2}$$

$$E(3^{2}) = \sigma^{2}.$$

3. For Binomial distr. fraction defective is an unbiased estimator of p.

2. Consistency: An estimator $\hat{\theta}_n$ is consistent for θ iff $\lim_{n\to\infty} P[|\hat{\theta}_n - \theta| < \epsilon] = 1$.

$$\underbrace{\mathbb{E} \times .1}_{X_n} \cdot V(\overline{X}_n) = \frac{\sigma^2}{n} \longrightarrow 0 \quad \text{as } n \to \infty .$$
So, \overline{X} is consistent for θ .

3. Efficiency: Consider two unbiased estimator
$$\hat{\theta}_1$$
 and $\hat{\theta}_2$ for θ .

Then $\hat{\theta}_1$ is said to be more efficient than $\hat{\theta}_2$ if $\frac{V(\hat{\theta}_1)}{V(\hat{\theta}_2)} < 1$.

Ensider three following estimators of M.

$$0 = \frac{1}{3}(x_1+x_2+x_3)$$

(ii)
$$\hat{\theta}_2 = \frac{1}{8} X_1 + \frac{3}{4(n-2)} (X_2 + X_3 + \dots + X_{n-1}) + \frac{1}{8} X_n$$

(iii)
$$\hat{0}_3 = \overline{x}$$

(a) S.T. each of the Other is biased.

(b) find $e(\hat{\theta}_2, \hat{\theta}_1)$, $e(\hat{\theta}_3, \hat{\theta}_1)$, $e(\hat{\theta}_3, \hat{\theta}_2)$. Which of the three estimators is more efficient?

Solution: (a)
$$E(\hat{0}_1) = \frac{1}{3}$$
, $3\mu = \mu$
 $E(\hat{0}_2) = \frac{1}{8}\mu + \frac{3}{4(n-2)}$. $(n-2)\mu + \frac{1}{8}\mu = \mu$
 $E(\hat{0}_3) = E(\overline{x}) = \mu$.

(b)
$$V(\hat{\theta}_1) = \frac{3\sigma^2}{q} = \frac{\sigma^2}{3}$$

 $V(\hat{\theta}_2) = \frac{\sigma^2}{64} + \frac{q}{16(n-2)^2}, (n-2)\sigma^2 + \frac{1}{64}\sigma^2$
 $= \frac{\sigma^2(n+16)}{32(n-2)}$

$$Y(\hat{\theta}_3) = \frac{1}{n^2} \cdot ne^2 = \frac{e^2}{n}$$

$$e(\hat{\theta}_2, \hat{\theta}_1) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)} = \frac{3(n+16)}{32(n-2)} < 1 \text{ when } n > 3$$

$$e(\hat{\theta}_3, \hat{\theta}_1) = \frac{\gamma(\hat{\theta}_3)}{\gamma(\hat{\theta}_1)} = \frac{3}{n} < 1$$
 when $n > 3$

$$e(\hat{\theta}_3, \hat{\theta}_2) = \frac{V(\hat{\theta}_3)}{V(\hat{\theta}_2)} = \frac{32(n-2)}{n(n+16)}$$
 <1 when $n > 15$
So, for $3 < n \le 15$, $\hat{\theta}_2$ is more efficient estimator.

So, for
$$3 < n \le 15$$
, $\hat{\theta}_2$ is more efficient estimator. $n > 15$, $\hat{\theta}_3$ is more efficient estimator.

0. Sufficiency: A statistic of is called sufficient estimator for of the conditional distr. of (X1/2000, Xn) given 0 = 00 is independent of 0.

Example: 1. (x,xn) be a rows. from Bin (1, p).

Show that Ixi is sufficient for p.

$$\rightarrow P\left[\begin{array}{c} X_{1}=x_{1},...,X_{n}=x_{n} \\ \end{array}\right] = \frac{P\left[\begin{array}{c} X_{1}=x_{1},...,X_{n}=x_{n} \\ \end{array}\right]}{P\left[\begin{array}{c} S=S \end{array}\right]} \text{ if } S=\sum_{i=1}^{n}X_{i}$$

=
$$\frac{p^{2\times i}(i-p)^{n-2\times i}}{\binom{n}{b}} p^{3}(i-p)^{n-3}$$
 if $s=\sum xi$, where $x_{i=0}$ on $1 \forall i=1 (jn)$

=
$$\frac{1}{\binom{n}{s}}$$
 if $s = \sum xi$, independent of p .

So, S= = xi is sufficient for p.

Ex. 2. Let (1, X2) be n.s. from Poisson (2). Show that X1+2X2 is not sufficient for 2.

$$P[X_{1}=0, X_{2}=1 \mid T=2] = \frac{P[X_{0}=0, X_{2}=1]}{P[X_{1}+2X_{2}=2]}$$

$$= \frac{e^{-\lambda}(\lambda e^{-\lambda})}{P[X_{1}=0, X_{2}=1] + P[X_{1}=2, X_{2}=0]}$$

$$= \frac{\lambda e^{-2\lambda}}{\lambda e^{-2\lambda} + (\frac{\lambda^{2}}{2})e^{-2\lambda}}$$

$$= \frac{1}{(1+\frac{\lambda}{2})}, \text{ depend on } \lambda,$$

$$S_{0}, X_{1}+2X_{2} \text{ is not sufficient for } \lambda.$$

Let X = (X1,..., Xn) be a n.s. from PMF/PDF Factorization Theorem: f(x;0) + O E - D. Then T(x) is sufficient for 0 iff coheres h(x) depends only on x and g(T(x), 0) depends on θ and on x only through T(x). $\prod_{i=1}^{n} f(x_i, b) = 0^{\sum x_i} (1-0)^{n-\sum x_i}$ for example 1. = g(T(x), 0]. h(x), where h(x)=1

= g(T(x), 0]. h(x) where h(x)=1

and T(x)= Ixi

So, T= Ixi is sufficient for 0 by Factorization theorem. If (X1,..., Xn) be a ros from N(/4, 02). Then find a two-dimensional sufficient statistic for (x1,02). $\prod_{i=1}^{n} f(\alpha_i, \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (\alpha_i - \mu)^2}$ <u>Sol</u>. $= \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\left(-\frac{2\pi i^2}{2\sigma^2} + \frac{\pi Z\pi i}{\sigma^2} - \frac{\eta \mu^2}{2\sigma^2}\right)}$ = g(T(x), p, r), h(x); h(x)=1 T(x)= (Zxi, Zxi2) is sufficient for (M,0). $\frac{\Delta H}{\prod_{i=1}^{n}} f(x_i; \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2}$ = $\left(\frac{1}{\sqrt{2\pi}}\right)^n = \frac{1}{20^2} \left(\frac{\pi}{12}\left(x_1 - \frac{\pi}{12}\right)^2 + n(x - \mu)^2\right)$ = (1 211), e - 1 202 of (n-1) 32+ n (x-m) = g (~, 82; /4,0). h(x), h(x)=1 so, (x, 82) is sufficient for (M, r).

Ex.3.
$$f(x; \theta) = \theta x^{\theta-1}, 0 < x < 1$$

$$f(x; \theta) = \theta^{\eta}(\pi x)^{\theta-1}$$

$$= \int_{\mathbb{R}^{2}} \theta \int_{\mathbb{R}^{2}} \pi x \int_{\mathbb{R}^{2}} h(x) \int_{\mathbb{R}^{2}} h(x$$

- g (2,8°; p.o), k(0), k(2)=1

(O.4) and bosseller.

Scanned by CamScanner

2. Method of Likidihood Estimation:

$$L(\mathcal{Z};\theta) \text{ is called likidihood function of } \theta; \ L(\mathcal{Z},\theta) = \prod_{i=1}^{n} f(x_i,\theta).$$

$$\frac{Ex.1}{x} : x_i \sim Gned(x), \text{ find MLF for } p.$$

$$\frac{Ex.1}{sol} : x_i \sim Gned(x), \text{ find MLF for } p.$$

$$L = \prod_{i=1}^{n} p(1-p)^{x_i-1} = \prod_{i=1}^{n} (\ln p + x_i \ln (i-p) - \ln (1-p))$$

$$\ln L = \min p + m \overline{x} \ln (1-p) - \min (1-p)$$

$$\ln L = \min p + m \overline{x} \ln (1-p) - \min (1-p)$$

$$\frac{2p}{2p} \ln L = \frac{p}{p} - \frac{n \overline{x}}{1-p} + \frac{n}{1-p} = 0 \Rightarrow \hat{p} = \frac{1}{x}$$

$$\frac{2^2}{2p^2} \ln L = -\frac{p}{p^2} + \frac{n}{(1-p)^2} - \frac{n \overline{x}}{(1-p)^2}$$

$$< 0, \quad \text{since } \overline{x} > 1 \text{ for } 0 \leq p \leq 1.$$

$$So, \quad \text{MLE of } \hat{p} \text{ is } \frac{1}{x}.$$

$$\frac{Ex.2}{3} \cdot \int_{(2)} (x_i) = \frac{1}{2\theta^3} \sum_{i=1}^{n} \left(x_i^2 e^{-x_i/\theta}\right) = \frac{1}{2\theta^3} \sum_{i=1}^{n} \left(x_i^2 e^{-x_i/\theta}\right)$$

$$= \frac{1}{2\theta^3} \ln L = -\frac{3n \times 2}{2\theta} + \frac{2\pi i}{\theta^2} = 0 \Rightarrow 0 = \frac{\overline{x}}{3}.$$

$$\frac{2^2}{3\theta^2} \ln L = \frac{3n}{\theta^2} - \frac{2\pi i}{\theta^3} = -\frac{3n}{\theta^2} < 0$$

$$\text{MLE for } \theta \text{ is } \frac{x}{3}.$$

$$\frac{2^2}{3\theta^2} \ln L = \frac{3n}{\theta^2} - \frac{2\pi i}{\theta^3} = -\frac{3n}{\theta^2} < 0$$

$$\text{MLE for } \theta \text{ is } \frac{x}{3}.$$

$$\frac{2^3}{3\theta^2} \ln L = \frac{n}{\theta} + 2 \ln x_i = 0 \Rightarrow \hat{\theta} = -\frac{n}{2 \ln x_i}.$$

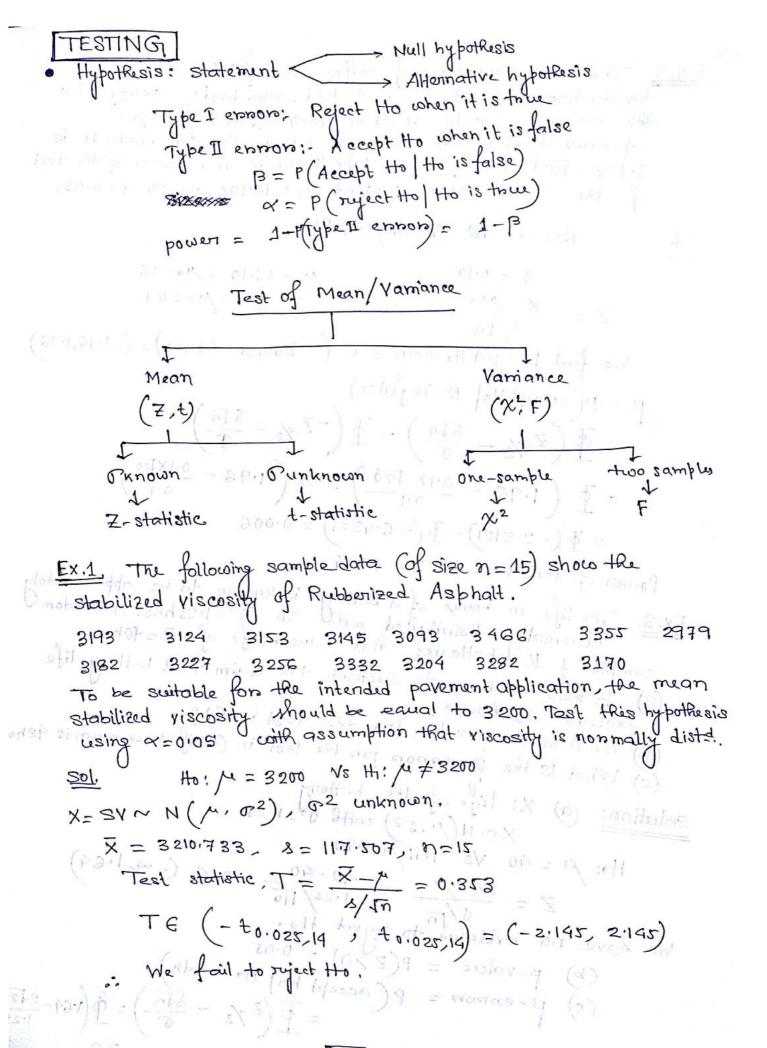
$$\frac{2^3}{3\theta^2} \ln L = \frac{n}{\theta} + 2 \ln x_i = 0 \Rightarrow \hat{\theta} = -\frac{n}{2 \ln x_i}.$$

$$\frac{2^3}{3\theta^2} \ln L = -\frac{n}{\theta^2} < 0. \quad \text{So, MLE of } \theta \text{ is } -\frac{n}{2 \ln x_i}.$$

$$\frac{2^3}{3\theta^2} \ln L = -\frac{n}{\theta^2} < 0. \quad \text{So, MLE of } \theta \text{ is } -\frac{n}{2 \ln x_i}.$$

```
Confidence Interval for M
      Xi~ N(M,02) (Hore 62 is known)
    X ~ N(~, 52/n)
      Z = \frac{\overline{X} - / 1}{C / \sqrt{2}} \sim N(0,1)
   P - Z/2 = Z = Z/2 = 1- x
 $ P - 54/2. \frac{12}{22} = x-\rac{1}{2} = \frac{1}{2} \frac{12}{2} = 1-\alpha
     P[X-Z/2. F = X = X + Z/2. F ] = 1-9
Two sided 100 (1-x) /. C.I. for ye , when or is known is
       \left(\overline{X} \pm \overline{Z}_{4/2}, \frac{\sqrt{12}}{6}\right)
  Sampling enmon = X-/4, when 1 increases, C.I. neduces.
Ex. 1. A random sample of size 50 from a particular brand of
    tea packets produced a mean weight of 15.65 ounces.

Weights of brands of tea packets are normally distributed
       with Normal (s.d. = 0:59 ounce). Find 95%. C.I. for /.
           ME (X- Zx/2. Tm, X+Zx/2. Tm)
                                                              Z 2/2 = 1.96
at a =0.975.
                E ( 12.62 - 1.06 × 0.24) 12.62 + 1.06× 0.21)
                                                              X= 15.65
                      = (15,3295,15,9705)
                                                              O= 0.59
```


n = 50

Ex. 2. Mobile phones coming off an assembly line are automatically checked to make sume they are not defective. The manufacturer wants an interval estimate of the percentage of Mobile phones that fail the testing procedure. Compute 90% C.I. based on a ro.s. of size 105 in which 17 mobiles failed the testing procedure. n = 105, d = 17. $p^2 = \frac{17}{105}$ X=0.1 XN Bin (n, P), XN N(np, Inp(1-1)) for large $Z = \frac{\beta - \beta}{\sqrt{1-\beta}} \sim N(0,1)$ P(-20/2 < Z = Z = 2 = 0.9 $p \in (\hat{p} - \frac{2}{\sqrt{2}}, \frac{\hat{p}(1-\hat{p})}{n}, \hat{p} + \frac{2}{\sqrt{2}}, \frac{\hat{p}(1-\hat{p})}{n})$ = (0.16 - 1.64x \ \frac{0.16 \times 0.89}{105}, 0.16 + 1.64 \ \frac{0.16 \times 0.84}{105} Case II: - s (Gris un known) 1 + 1 / 18. t = X-1 ~ tn-1 P[- ta/2, n-1 \le t \le t \alpha/2, n-1] = 1- \alpha \frac{1}{2} \alpha \frac{1}{2} \frac{1}{2} => P[x-ta/2, m-1. 8 =/ 5x+ta/2, m-1. 5n =1-a. C.I. for 0:- (/4 is known) - m12 ~ xn. $P[\chi^{2}_{1-\alpha/2}, \eta \leq \chi^{2} \leq \chi^{2}_{\alpha/2}, \eta] = 1-\alpha$ $P\left[\frac{ns^2}{\chi^2_{\alpha/2},n} \leq \sigma^2 \leq \frac{ns^2}{\chi^2_{1-\alpha/2},n}\right] = 1-\alpha,$ (u is unknown): - (n-1)82 ~ X2n-1 $P \left[\frac{(n-1)8^{2}}{\chi^{2}_{\alpha (2)} n-1} \leq \sigma^{2} \leq \frac{(n-1)8^{2}}{\chi^{2}_{1-\alpha (2)} n-1} \right] = 1-\alpha.$

Scanned by CamScanner

C.T. for man difference:

$$X_{11}, X_{12}, ..., X_{1m_1} \sim N(M_1, \sigma_1^2)$$
 $X_{21}, X_{22}, ..., X_{2m_2} \sim N(M_2, \sigma_2^2)$
 $X_1 - X_2 \sim N(M_1 - M_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$
 $P(-Z = 1/2 \le Z \le Z = 1/2) = 1 - \alpha$
 $P(\overline{X}_1 - X_2) - \overline{X}_1 \times 2 = 1 - \alpha$
 $P(\overline{X}_1 - X_2) - \overline{X}_2 \times \frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_2} \le (X_1 - X_2) + \frac{\sigma_2^2}{n_1} \times \frac{\sigma_2^2}{n_1} + \frac{\sigma_2^2}{n_2}) = 1 - \alpha$
 $P(\overline{X}_1 - \overline{X}_2) - \overline{X}_1 \times \overline{X}_2 \times \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}) = 1 - \alpha$
 $P(\overline{X}_1 - \overline{X}_2) - \overline{X}_1 \times \overline{X}_2 \times \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}) = 1 - \alpha$
 $P(\overline{X}_1 - \overline{X}_2) - \overline{X}_1 \times \overline{X}_2 \times \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}) = 1 - \alpha$
 $P(\overline{X}_1 - \overline{X}_2) - \overline{X}_1 \times \overline{X}_2 \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2}) = 1 - \alpha$
 $P(\overline{X}_1 - \overline{X}_2) - \overline{X}_1 \times \overline{X}_2 \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_2} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_1} \times \frac{\sigma_1^2}{n_1$

Ex.2. The mean contents of coffee cans filled on a positivelous production line are being studied. Standards specify that the mean contents must be 16.00%, and from past experience it is known that the 3d of the can content; is 0.10%. Find the prob. of type II ennon and power of the test if the true mean content M1 = 16:102, n = 20, x = 0.05.

501.

$$Z = \frac{\sqrt{10}}{\sqrt{10}}$$
 $Z \in (-20.052 \times 50.052) = (-1.96/1.96)$
 $Z = \frac{\sqrt{10}}{\sqrt{10}}$ $Z \in (-20.052 \times 50.052) = (-1.96/1.96)$

$$\beta = P(\text{accept Ho}|\text{ Ho is false})$$

$$= \Phi(\frac{24}{2} - \frac{5\sqrt{n}}{\sigma}) - \Phi(-\frac{24}{2} - \frac{5\sqrt{n}}{\sigma})$$

$$= \Phi(1.96 - \frac{0.1 \times \sqrt{20}}{0.1}) - \Phi(-1.96 - \frac{0.1 \times \sqrt{20}}{0.1})$$

$$= \Phi(-2.5121) - \Phi(-6.4321) = 0.006$$

Power of the test = 1-13= 0.994.

Ex.3. The life in hours of a battery is known to be approximately normally distributed with SD 0=1.25 hrs. A random sample of 100 batteries has a mean life of X=40 hrs.

(a) Is there exidence to support the claim that battery life exceeds 40 hours?

(b) What is the p-value for the test in (a)?

(c) What is the B-ennors for the test in (a) if true mean is 42hm;

solution: (a) X! Life of the battery Ho: 1 = 40 Vs Hilm >40

$$Z = \frac{\overline{X} - \sqrt{u}}{\sqrt{10}} = \frac{40 - 40}{1.25/\sqrt{10}} = 0.6 (-\infty, 1.64)$$

We have no evidence to reject Ho.

(c)
$$\beta$$
-entrop = $P\left(\text{aceept Ho}\right)$ the is false)
$$= \overline{P}\left(\frac{2}{9} - \frac{5\sqrt{5}}{0}\right) = \overline{P}\left(\frac{1.64 - \frac{2\sqrt{20}}{1.25}}{1.25}\right)$$

$$= 0$$

EX.4. A soft-drink machine at a steak house is regulated so that the amount of drink dispended is approximately normally distributed with a mean of 200 millileters and s.d. of 15mls. The machine is checked poriodically by taking a sample of 9 drinks and computing the average content. If x-bars falls in the interval 191 < X < 209, the machine is thought to be operating satisfactorily; otherwise we conclude that $\mu = 200 \, \text{ml}$.

(a) Find the prob. of committing a type I ennor when $\mu = 200 \, \text{ml}$.

(b) Find the prob. of committing a type I ennor when $\mu = 215 \, \text{ml}$.

Solution:

(a)
$$P(\text{Type I enmon}) = P(\text{Reject Ho} \mid \text{Ho is towe})$$

$$= 1 - P(\text{191} < \overline{X} < 209 \mid M = 200)$$

$$= 1 - P(\frac{191 - 200}{15 / 19} < \overline{Z} < \frac{209 - 200}{15 / 19})$$

$$= 1 - P(-1.8 < \overline{Z} < 1.8)$$

$$= 0.0718$$
(b) $P(\text{Type II envon}) = P(\text{accept Ho} \mid \text{Ho is false})$

$$= P(\frac{191 < \overline{X} < 209 \mid M = 215}{15 / 19})$$

$$= P(\frac{191 - 215}{15 / 19} < \overline{Z} < \frac{209 - 215}{15 / 19})$$

$$= P(-4.8 < \overline{Z} < -1.2)$$

$$= 0.1151$$

Ex.5. The following are the weights, in decagnams, of 10 packages of grass seed distributed by a certain company:

46.4 46.1 45.8 47.0 46.1 45.9 45.8 46.9 45.2 46.0

Find a 95% C.T. for variance assuming normal distribution.

Solution:
u is unknown.

$$\frac{(n-1)^{3^{2}}}{\chi^{2}_{\alpha/2}, n-1} < \sigma^{2} < \frac{(n-1)^{8^{2}}}{\chi^{2}_{1-\alpha/2}, n-1}$$

$$= \frac{9 \times 0.2862}{19.02} < 0^{2} < \frac{9 \times 0.2862}{2.70}$$

$$= 0.135 < 0^{2} < 0.954$$

Ex.6. The Edition Electric Institute has published figures on the number of klub his used annually by various home appliances. It is claimed that a vacuum cleaner uses an average of 46 klub his per year. If a n.s. of 12 homes included in a planned study indicates that vacuum cleaners use an average of 42 klub his per year with SD = 11.9 klub his, does this suggest at the 0.05 level of significance that vacuum cleaners use, on average less than 46 klub his annually? Assume Normal districtions

Solution: Ho: M=46 H: M<4B

$$t = \frac{x - 1}{\frac{9}{10}}$$

$$= \frac{42 - 46}{\frac{11.9}{12}} = -1.164 , \text{ under tho}.$$

t 0.95, 11 = -1.796 So, we fail to reject Ho.

So, racuum cleaners on anarrage doesn't use less

Ex.7. Engineers at a large automobile manufacturing company are toying to decide conferment to purchase broand A on brand B times for the company's new models. To help the arrive at a decision, an experiment is conducted using 12 of each broand. The times are our until they wear out.

 $\overline{X}_1 = 37900 \, \text{km}$, $S_1 = 5100 \, \text{km}$; $n_1 = 12$ $\overline{X}_2 = 39800 \, \text{km}$, $S_2 = 5900 \, \text{km}$; $n_2 = 12$

Test the hypothesis that there is no difference in the average wear of the two brands of times. Assume the poplin to be approximately normally distributed with equal variances.

Solution:- $\frac{(x_1-x_2)-(x_1-x_2)}{1-x_1+x_2}$ $\frac{(x_1-x_2)-(x_1-x_2)}{1-x_1+x_2}$ $\frac{1}{x_1}+\frac{1}{x_2}$ $\frac{1}{x_1}+\frac{1}{x_2}$ $\frac{1}{x_1}+\frac{1}{x_2}$ $\frac{1}{x_1}+\frac{1}{x_2}$ $\frac{1}{x_1}+\frac{1}{x_2}$ $\frac{1}{x_2}+\frac{1}{x_2}$ $\frac{1}{x_2}+\frac{1}{x_2}$ $\frac{1}{x_2}+\frac{1}{x_2}$ $\frac{1}{x_2}+\frac{1}{x_2}$ $\frac{1}{x_2}+\frac{1}{x_2}+\frac{1}{x_2}$

 $\frac{b^{1}-b}{n!} = \frac{b^{1}+b^{2}}{2} = \frac{30410000}{2}$

8p = 5514.53

 $2. t = \frac{37900 - 39800}{5574.83 \sqrt{\frac{1}{12} + \frac{1}{12}}} = -0.844, \text{ under Ho}.$

E (-t0.025,22, +0.025,22) = (-2.074, 2.074)

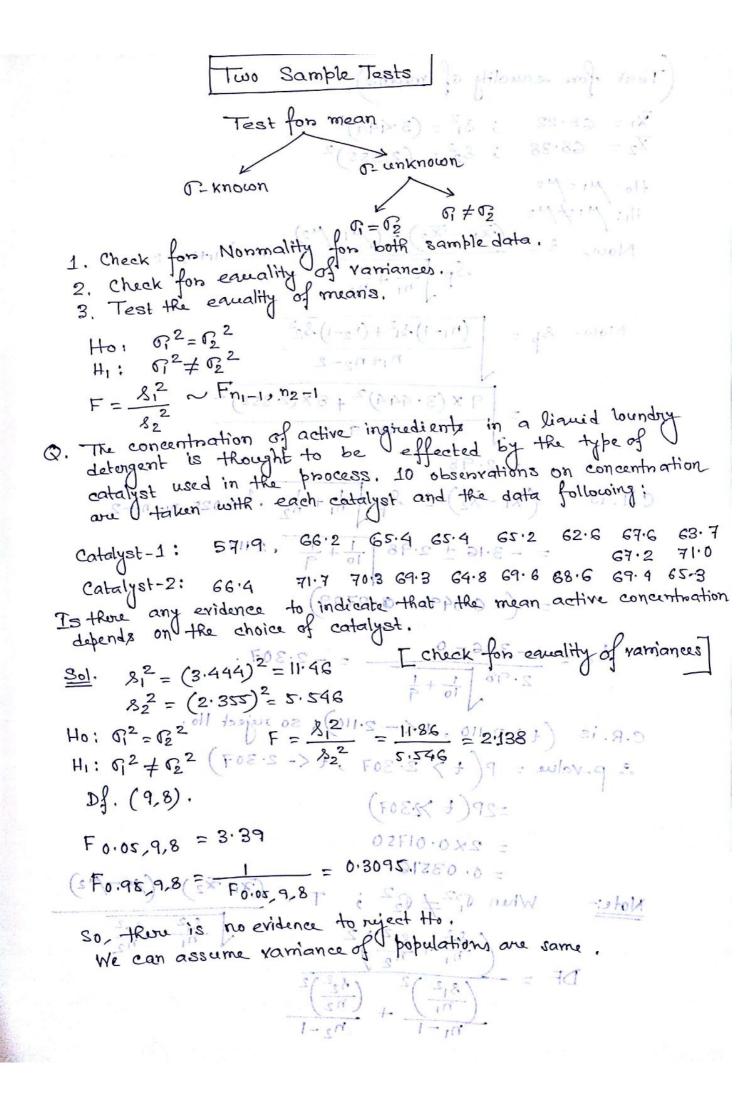
So, we fail to suject Ho.

! There is no difference in the average ween out of the two brands of times.

· Pained t-test: -

-test:
Sample I

Sample II


no

d (difference)

In Paired t-test, no, of sample sizes should be same for both samples, but for two sample t-test it need not be

Sample units are same in both the situation.
No. of sample sizes should be same for both samples.

Test hypothesis is to: /4d=0 $d=X_2-X_1$ +1:/4d>0 $Y(d)=Van(X_2)+Van(X_1)$ $-2Cov(X_2,X_1)$ So, test statistic is $t=\frac{\overline{d}-/4d}{8d/1n}\sim t_{n-1}$.

Test for equality of means)
$$\overline{X}_{1} = G5 \cdot 22 \quad ; \quad \delta_{1}^{2} = (3 \cdot 444)^{2}$$

$$\overline{X}_{2} = G8 \cdot 38 \quad ; \quad \delta_{2}^{2} = (2 \cdot 355)^{2}$$
Ho: $A_{1} = A_{2}^{2}$
Hi: $A_{1} \neq A_{2}^{2}$
Now, $A_{2} = A_{2}^{2} = A_{2}^{2} = A_{2}^{2}$
Now, $A_{3} = A_{2}^{2} = A_{2}^{2} = A_{2}^{2}$

$$= \frac{(n_{1}-1) \delta_{1}^{2} + (n_{2}-1) \delta_{2}^{2}}{n_{1}+n_{2}-2}$$

$$= \frac{9 \times (3 \cdot 444)^{2} + 8 \times (2 \cdot 355)^{2}}{10+9-2}$$

$$= \frac{9 \times (3 \cdot 444)^{2} + 8 \times (2 \cdot 355)^{2}}{10+9-2}$$

$$= \frac{2 \cdot 98}{10+9-2}$$

$$= -3 \cdot 16 + 2 \cdot 98 \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$+ c = \frac{-3 \cdot 16 - 0}{2 \cdot 98} \frac{1}{10} + \frac{1}{10} \cdot 2 \cdot 110$$

$$= (-6 \cdot 049, -3 \cdot 2709)$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10) \cdot 4 \cdot 10 \cdot 10$$

$$= (-7 \cdot 10)$$

Q.	AC City	Ac Village	2 3 5 5
•	3	48	
	7	44	
	25	40	
	10	38	
	15	33	
	<i>C</i> ,	21	a w
	6	20	: px = e
	12	20	
the territory		12	
95	15	40	
.7.0.0 ->- 1 -0.0.1	7		2.0
Sol. (check f	on variance		\
~ ~ =		$8^{2} = (7.634)^{2}$	
\(\frac{7}{2} =		$82^{2} = (15.35)^{2}$	
_	n		
Ho: G2		year may be a set	
٠٠٠ وز	# C22	(-1)	3.5.4
Nova F	= 31 =	0.2473	
i (30 + 10) (d.	jd 32 (c)	2.18 - FACE 0 = 0.3144	HV
Now, Fo	1.05, 9, 9	1.18.618	111 el m. en 2
: Reject	the null by	pothesis. (chick for ea	maining of means
Now,	T = (X1 -	$\frac{\sqrt{2}}{n_1} - \frac{\sqrt{n_1 - n_2}}{n_2}$ Ho;	41=/42
, , ,	· -	H1;	MIF/~2
	\	$\frac{n_1}{n_1} + \frac{n_2}{n_2}$	4
		00317000 1111	
	= -2.76	C FAMILIA TALLA	
$df = \frac{8}{8}$	$\frac{63.77}{1} = 13$	Now, CR = (+13 <-1.77)	, t1371771).
Talle :	S 46	much mall hypothesis,	
falls	i.e. M1 =/	ouject null hypothesis.	
b - V6	alue - p/1	13 <-2.766) +P(+13 > 2.76	6)
7-10	- 1(1	12 / - 120 u (C13 \ 5.40	7
	= 2.7	(+13 > 2.766) 0.00857	· / •
* 6			× , * -
	= 0	01714,	

Another formula for df:
$$df = \frac{\left(\frac{8_1^2}{n_1} + \frac{8_2^2}{n_2}\right)^2}{\left(\frac{8_1^2}{n_1}\right)^2 + \left(\frac{8_2^2}{n_2}\right)^2} - 2$$

$$\frac{\left(\frac{8_1^2}{n_1}\right)^2}{n_1 + 1} + \frac{\left(\frac{8_2^2}{n_2}\right)^2}{n_2 + 1}$$

Q. Two types of insection modeling machine are used to form plastic parts, a part is considered defective if it has excessive thronk case on is discolored. Two random excessive thronk case on is discolored. Two random excessive thronks case on is discolored. Two random excessive throng are selected and 15 defective parts are found in the sample from machine 1 while 8 defective found in the sample from machine 2. Is it parts are found in the sample from machines produce teasonable to conclude that both machines produce the same fraction of defective parts using x=0.05.

$$\hat{P}_{1} = \frac{d_{1}}{n_{1}} = 0.05$$

$$\hat{P}_{2} = \frac{d_{2}}{n_{2}} = 0.0267$$

$$E\left(\stackrel{\wedge}{\beta_1} - \stackrel{\wedge}{\beta_2}\right) = E\left(\stackrel{\wedge}{\beta_1}\right) - E\left(\stackrel{\wedge}{\beta_2}\right) = E\left(\frac{d_1}{h_1}\right) - E\left(\frac{d_2}{h_2}\right) = P_1 - P_2$$

$$Y\left(\stackrel{\wedge}{\beta_1} - \stackrel{\wedge}{\beta_2}\right) = \frac{P_1(1-P_1)}{|n_1|} + \frac{P_2(1-P_2)}{|n_2|} = P(1-P_1)\left(\frac{1}{h_1} + \frac{1}{h_2}\right),$$

$$Y\left(\stackrel{\wedge}{\beta_1} - \stackrel{\wedge}{\beta_2}\right) = \frac{P_1(1-P_1)}{|n_1|} + \frac{P_2(1-P_2)}{|n_2|} = P(1-P_2)$$

$$= P(1-P_1) + \frac{1}{h_2}$$

$$= P(1-P_2) + \frac{1}{h_2}$$

$$= P(1-P_$$

Now,
$$Z = \frac{(\hat{p_1} - \hat{p_2}) - (\hat{p_1} + \hat{p_2})}{(\hat{p_1} - \hat{p_2}) - (\hat{p_1} + \hat{p_2})} \sim N(0,1)$$

$$b = \frac{a_1 + a_2}{a_1 + a_2} = \frac{360 + 360}{15 + 8} = 0.0383$$

$$Z = \frac{\left(0.05 - 0.0267\right) - 0}{\left(0.0383\right)\left(\frac{2}{300}\right)} = 1.4869$$

.. point not fall in the C.R.

So, we can't reject the null hypothesis, i.e.,
the machine produce the same fraction defeative.

Chi-square test is used for: -

2. Independence of attributes

3. Equality of several propositions.

The no. of cons passing East Bound has been tabulated group of students, following data obtained:

1ab 2	7- / 1	0 .		
Vehicle/min(zi)	fi (frua)	211.0	αi	fi
40	141	5.5	54	96
41	241	1,100	55 /	- 90
42,	57		56	81
43	111	11.1	57	73
	194	212	58 59	64
44	256	· 0 ·)	60	61
45			60 ,	59
46	296	1.	61	50
476 -	378		62	42
48	250	. P	63	29
49	185	7/11	64	18
50	171		65.	· 15
51	RP 150- Page	· · · · · · · · · · · · · · · · · · ·	Total	N=2976
52 ,////	1,110 .27	di entlest	10/2/1	

Whether the assumption of a Poisson distribute as a probability model for this process.

$$\underline{\underline{sol.}} \quad P(n) = \frac{e^{-\lambda} \lambda^n}{n!} \quad ; \quad \dot{\lambda} = \overline{x} = \frac{\underline{\underline{Txifi}}}{\underline{2fi}} = 49.67406$$

P(40) = 0.022928

NXP(40) = 2976 X 0.022 928 = 65.472 = Expected free.

Observed frequency = 14 So, data does not follow Poisson distr.

Prop (1)

Q. Liet X denotes the no. of flaws observed on a large coil of galvanized steel. 75 coils are impected and the following data our observed;

	10,00	0:= fi	P(n)	1 EF=NXb(b)	(OL-ED) E!
2	0	0	6.0074	2.72	
<u></u> :	2 3	11 .	0.089	6.68	
•	4 5	13 +	871.0	13.40	•
E	6	12,	0.1433	10.75	
	7	10,	0.1004	7.54	- 4
#1 next	8	9.	0.0616	4.62	2
	>9	6	0.062	4.66	<u> </u>
•		N=75	1		
		· 🔨 📜		$-\lambda$. 1

$$2\alpha i \int_{1}^{2} = 368; \hat{\lambda} = \frac{368}{75} = 4.90; P(1) = \frac{e^{-\lambda} \lambda^{1}}{1!} = \frac{\chi^{2}}{1!} = \frac{$$

$$\dot{\chi}^2_0 = 2.524$$
; $\chi^2_{0.05,4} = 9.487$

2. Distribution fits the data well.

Q. For Normal time interval is given. Test whether Normal distr. will fit the data well on not.

distr	, will	fit the	data wer	C V OF				(0-E)/E
Class int		oi = fi	xi = a+1	taifi 1	fi (2:-2)	Par	NXP(%)	C)/E
2-6		2	4 .	8	291.7	.0223	1.121	
6-10	1	. 4	8	32	260.95	0941	4.89 43	0.00047
10-1	1	10	12	120 .	166.21	-2241	11. 6223	0.235194
. 14-		18	16	288	6:11	. 3012	12. 6762	6.34447
18-	22	12	20	240	184.69	-2291	11.9141	0.0006
22-	-26	, 5	24	120	184.69	.0983	5.1142	0.01954
26	-30	1	28	28	142:16	. 0238	1-2382	
-	Total	N=52	112	836	1324.63	0.99		0.6002

$$\bar{z} = 2xifi/\bar{z}fi = \frac{836}{52} = 16.07692$$
; N=52

$$S = \sqrt{\frac{2 \sin(2xi-2)^2}{N-1}} = 5.16$$

Prob =
$$\frac{4}{5} \left(\frac{6-\overline{x}}{5}\right) - \frac{4}{5} \left(\frac{2-\overline{x}}{5}\right) = -$$

OLS Estimates:
$$\hat{\beta} = b = \frac{Z(\alpha_1 - \overline{\alpha})(\beta_1 - \overline{\beta})}{Z(\alpha_1 - \overline{\alpha})^2} = \frac{S_{XY}}{S_{XX}}$$

$$\hat{\alpha} = a = \overline{y} - b\overline{\alpha}$$

$$E(\hat{\beta}) = E(S_{XY}/S_{XX}) = \frac{1}{S_{XX}} E(S_{XY}) = \frac{1}{S_{XX}} E[Z(x_1 - \overline{x})(\gamma_1 - \overline{y})]$$

$$= \frac{1}{S_{XX}} E(\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\beta_1), \text{ since } 2(\alpha_1 - \overline{\alpha})(\beta_1)$$

$$= \frac{1}{S_{XX}} \sum_{i=1}^{N} E(X_i - \overline{x})(\alpha_1 + \beta_1 + \epsilon_1)$$

$$= \frac{1}{S_{XX}} \sum_{i=1}^{N} E(X_i - \overline{x})(\alpha_1 + \beta_1 + \epsilon_1)$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha})(\alpha_1 + \beta_1 + \epsilon_1)]$$

$$= \frac{1}{S_{XX}} E[\frac{n}{s_1}(\alpha_1 - \overline{\alpha$$

25

=

$$V(\beta) = \frac{1}{S_{xx}^{2}} V\left[\sum (\alpha_{i} - \overline{x}) \frac{1}{\beta_{i}} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\sum_{i=1}^{n} (\alpha_{i} - \overline{x}) (\alpha + \beta \alpha_{i} + \epsilon_{i}) \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x})^{2} + \sum_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x})^{2} + \sum_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x})^{2} + \sum_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha_{i} - \overline{x}) \epsilon_{i} \right]$$

$$= \frac{1}{S_{xx}^{2}} V\left[\beta_{i=1}^{n} (\alpha$$

Ans.

$$E\left(SSE\right) = E\left(\sum_{i=1}^{n} \left(y_{i} - \alpha - b\alpha_{i}\right)^{2}\right)$$

$$= E\left[\sum_{i=1}^{n} \left(y_{i} - \overline{y} + b(\alpha_{i} - \overline{x})^{2}\right)\right]$$

$$= E\left[\left(\sum_{i=1}^{n} y_{i}^{2}\right) - n\overline{y}^{2} - b^{2}\sum_{i=1}^{n} (\alpha_{i} - \overline{x})^{2}\right]$$

$$= \left(\sum_{i=1}^{n} F\left(\overline{y}_{i}^{2}\right)\right) - n E\left(\overline{y}_{i}^{2}\right)$$

$$= \left(\sum_{i=1}^{n} Van(\overline{y}_{i}) + E(\overline{y}_{i})^{2}\right) - n \left[Van(\overline{y}_{i}) + E(\overline{y}_{i})\right]$$

$$= \sum_{i=1}^{n} \left(\alpha_{i} - \overline{x}\right)^{2} \left[Van(b) + E(b)\right]$$

$$= n \Omega^{2} + E\sum_{i=1}^{n} \left(\alpha_{i} + \beta \overline{x}_{i}\right)^{2} - n \left[\frac{\alpha_{i}^{2} + E(\alpha_{i} + \beta \overline{x}_{i})^{2}}{n}\right]$$

$$= n \Omega^{2} - \Omega^{2} - \Omega^{2}$$

$$= n \Omega^{2} - \Omega^{2} - \Omega^{2}$$

 $S_{XX} = \frac{\left(\frac{ZX}{z}\right)^{2}}{n} = 1651.42$ $S_{XY} = \frac{\left(\frac{ZX}{z}\right)^{2}}{n} = -5794.1$ Sol. 5x = 220.5 Z7 = 1333 $Syy = Zy^2 - (Zy)^2 = 23118.37$ 7 x2= 7053.67 5 Y2= 220549 IXY= 26869,4 b= Sxy = -3.51 $a = \sqrt{3 - bz} = 234.105$ $r_0 = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}} = -0.94$ $\int_{0}^{2} \pm \frac{877 - 68x7}{n-2} = \frac{877(1-n^{2})}{n-2} = 397.297$ Regression line: y = 234.07 - 3.5082 2 8 9 ei= ji- ĝi (Residuals) . 22 172 156.87 15.1\$5 yi= a+ Bxi+€i Hol B=0 Vs. Hil B #0 1 E(b)=B, V(b) = \frac{\sigma^2}{Sxx}; t = \frac{b-18}{0.4911} = \frac{-3.508-0}{0.4911} \tag{h-12} £0.025,7 = 2.365

Ex. 2. (Multiple Regression)

Ex. 2. A study was performed on wear of a bearing Y and its

relation to X1 (oil viscosity) and X2 (load)

γ	\times_1	×2
293	is	951
230	12.2	816
172	22	1058
91	43	1201
113	33	1357
125	40	1112
	Y 90.00	Name and the second

Fit a multiple linear model to these data.

 $\frac{Sol}{}$. The negression equation is $j = 384 - 3.64 \times 1 - 0.112 \times 2$ $S = 12.3539, R^2 = 98.58, Radj = 97.58$

ANOVA Table

Source	DF	88	Ms	F.	P
Regression	2	29787	14894	98.59	0.002 < 0.005
Residual Fono	2 3	458	723		
Kesidual France	5	30245			(**) (**)
Total		0	•		
	So,	significa	int,		

* calculations are done in MINITAB *

 $= E\left[(x,x)_{-1} X_{1}X_{2} + (x,x)_{-1}X_{1} \in \right]$

= B since F(E)=0 and (X'X)-1 X'X=I.

B is an unbiased estimator of B.

Scanned by CamScanner

Analysis of Variance. Hi: at least one douality is violated $\begin{aligned}
&\text{Hi: at least one douality is violated} \\
&\text{Hii: at least one double one double$ Joo = = = 1 1 /ab Jio = = 71/6 Sstotal = = = = = = (71) - 700) = TSS $=\sum_{i=1}^{2}\sum_{j=1}^{2}\left[\left(\exists i,-\underbrace{\exists i,0}\right)+\left(\underline{\exists i,0}-\underbrace{\exists i,0}\right)\right]^{2}$ Fixed effect Model: $\alpha_i = \mu_i - \mu_i$ $\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} (\mu_i - \mu_i) = 0$ $= \sum_{i=1}^{2} \left(\frac{1}{2} i - \frac{1}{2} i \right)^{2} + b \sum_{i=1}^{2} \left(\frac{1}{2} i - \frac{1}{2} i \right)^{2}$ = SS within + SS between

Q. Show that $E(SSA) = (a-1)T^2 + \mathbf{b} \left(\sum_{i=1}^{a} \alpha_i^2\right)$ $\frac{\text{dis}}{\text{dis}} = \frac{\text{dis} + \text{dis} + \text{dis}}{\text{dis}}$ $\frac{\text{dis}}{\text{dis}} = \frac{\text{dis} + \text{dis}}{\text{dis}}$ $\frac{\text{dis}}{\text{dis}} = \frac{\text{dis}}{\text{dis}}$ $\frac{\text{dis}}{\text{dis}} = \frac{\text{dis}}{\text{dis}}$ $\frac{\text{dis}}{\text{dis}} = \frac{\text{dis}}{\text{dis}}$ $\frac{\text{dis}}{\text{dis}} = \frac{\text{dis}}{\text{dis}}$ $\sum_{i=1}^{\infty} (\overline{y}_{i0} - \overline{y}_{00})^{2} = \sum_{i=1}^{\infty} \alpha i^{2} + \sum_{i=1}^{\infty} (\overline{\epsilon}_{i0} - \overline{\epsilon}_{00})^{2}$ SSA = b) xi2 + b) (Eio-Eno)2 E(SSA) = b = ai2 + b. (a-1). 52. = (a-1) 02 + b (= xi2)

$$E(MSA) = G^{2} + \frac{n(2\pi^{2})}{a-1}$$

$$E(SSE) = a(n-1)G^{2}$$

$$SSE = \sum_{i=1}^{n} \int_{j=1}^{k} (3ij - 3in)^{2}$$

$$SSE = \sum_{i=1}^{n} \int_{j=1}^{k} (n-1)G^{2}$$

$$E(SSE) = \sum_{i=1}^{n} (n-1)G^{2}$$

$$E(MSE) = \frac{E(SSE)}{a!} = \frac{a(n-1)G^{2}}{a(n-1)} = G^{2}$$

Non-parametric Inforunce

1. Sign Test: Ho:
$$\hat{\mu} = \tilde{\mu}_0$$
 Vs. Hi: $\hat{\mu} \neq \hat{\mu}_0$

6.82 8.01 7.46 6.95 7.05 7.35 7.25 Data: 7.91 7.85 We want to know whether the population median is 7 on not.

Data-median: 0.91 0.85 -0.18 1.01 0.46 -0.05 0.05 0.35 0.25 0.42

So, median can be 7, we accept the null hypothesis.

For
$$n > 10$$
, $Z = \frac{R^{\frac{1}{7}} - \frac{n}{2}}{\sqrt{\frac{n}{4}}} = \frac{8-5}{\sqrt{\frac{10}{4}}} = 1.897 \in (-1.96, 1.96)$

. We accept the

2. Wilcoxon Signed - Rank Test: - Assumption: Symmetric, continuous.

9 8 -3 10 7 -1.5 1.5 5 4 6

$$Z = \frac{W^{+} - \frac{n(n+1)}{4}}{h(n+1)(2n+1)}$$

```
same shake, spread, but
  3. Mann-Whitney Test: Assumption:
                                               location differy.
                           Ho: 1=12 Vs: H1: 17/
                                               26
                                         30
   Sample 1: 25
                                  31
                          29
                      27
                                                               37
                                                         35
                                                     38
                                               29
                                         34
                           32
                                  35
                      33
   Sample 2:
              31
   Appangement: - 24
         R1 = Sum of the wanks from sample 1=77
                                                    2 = 133
           R_1 + R_2 = 210 = \frac{n(n+1)}{2} = \frac{20 \times 21}{2}
                      \overline{Z} = \frac{R_1 - \frac{n_1(n_1 + n_2 + 1)}{2}}{n_1 n_2 (n_1 + n_2 + 1)} = \frac{-4 \cdot 23 - 2 \cdot 12}{2}
     n,78, n27,8,
    : We reject to.
                                 Ho! M1 = 1/2 = 1/3
Hi: at least one inequality holds
4. Kruskal-Wallis Test:
       Mobile than two samples
                                                 537
                                  568
                            560
        MetRod 1:
                    223
                                                  540
                                   579
                            599
                     553
         MetRod2:
                                          510
                                   528
                     492
                            530
         MetRod3:
  Annayoment:
                     492
                                      Ri= Sum of is Rank
                         R1 = 43.5
N= Total no. of readings
                         R2 = 53.5
 a = 3
                         R_3 = 23
        We accept to .
                                                 4.835
```

Contingency Table

Ho: P1=P2 H1: P1 7 P2 Ho; PI= P2 = . - - = PK

Hi: at least one equality is violated

Vi: Yendon i

	\ \'1	V 2	V ₃	1 V4	Total	
Good	182	147	89	163	281	Rı
Bad	18	,3	2	π	37	R ₂
Total	200 C	150	94. c ₃	174	618	G

$$E_{11} = \frac{R_1 \times C_1}{G_1} = \frac{581 \times 200}{618} = 188.02$$

$$E_{12} = \frac{R_1 \times C_2}{G} = \frac{581 \times 150}{618} = 141.02$$

$$\chi^{2}_{\text{calculate}} = \sum_{i=1}^{p} \sum_{j=1}^{c} \frac{\left(0ij - Eij\right)^{2}}{Eij} = 7.577 < \chi^{2}_{0.08,3}$$
Tabulated χ^{2} :

Calculate $\chi^{2}_{\alpha, (p-1)} = \chi^{2}_{0.05,3} = 7.815$

So, we fail to riject the.

.. all vendons provide more on less same proportion of defective.

Show that
$$E(SSE) = (n-2)\sigma^{2}$$

$$SSE = \sum_{i=1}^{n} \epsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - a - b \times i)^{2}$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

$$= \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} - \sum_{i=1}^{n} (\hat{y}_{i} - \hat{y}_{i})^{2}$$

$$= Syy - bSxy$$

$$Syy = E \left[\sum (y_{i} - \hat{y}_{i})^{2} \right]$$

$$E(Syy) = E\left[\frac{\gamma}{2}(3i-\overline{y})^{2}\right]$$

$$= E\left[\frac{\gamma}{12}(\alpha t - \overline{x})^{2}\beta^{2} + \sum_{i=1}^{n}(\epsilon t - \overline{\epsilon})^{2}\right]$$

$$= E\left[\frac{\gamma}{12}(\alpha t - \overline{x})^{2}\beta^{2} + \sum_{i=1}^{n}(\epsilon t - \overline{\epsilon})^{2}\right]$$

$$= \beta^{2}S \times x + (n-1)^{n}\alpha^{2}$$

$$= \left[\frac{Sxy}{Sxx} \cdot Sxy\right] = \frac{1}{Sxx}E(Sxy)$$

$$= E\left[\frac{\gamma}{12}(\alpha t - \overline{x})^{2}\right]$$

$$= \beta Sxx \quad ; E(\epsilon i) = 0$$

$$Y(Sxy) = V\left(\frac{\gamma}{12}(\alpha t - \overline{x})^{2}\right) = V\left[\frac{\gamma}{12}(\alpha t - \overline{x})^{2}\right]$$

$$= 0 + 0 + V\left(\frac{\gamma}{12}(\alpha t - \overline{x})^{2}\right)$$

$$= 0^{2}S \times x$$

$$So, E(SSE) = E\left(Syy\right) - E\left(Sxy\right)$$

$$= (n-1)^{n}O^{2} - O^{2}$$

Solved Examples:

1. A taxi company manager is trying to decide whether the use of regular belted times improves fuel economy. Twelve cary were educibled with readial times and driven over a prescribed test course. Without changing drivers, the same cars were then equipped with regular belted times and driven once again over the test course. The gasoline assumption in kmy litre are given below:

Can: 1 2 3 4 5 6 7 8 9 10 11 12 Radial Tines: 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2 Belted Tines: 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9

Can use conclude that consequipped with radial times give better fuel economy than those equipped with belted times?

Assume the population to be normal.

Solution:
$$di = xi - yi : 0.1 - 0.2 \quad 0.4 \quad 0.1 - 0.1 \quad 0.1$$

$$t = \frac{d - / 4}{84 / 10} \qquad Ho: / 4d = 0$$

$$= \frac{0.14 - 0}{0.197 / 102}, \text{ and } Ho$$

$$= 2.46 \ 7 \quad to.05, 11 = 1.796$$
We reject Ho.

We conclude that cans equipped with readial times give better ful economy than those earlipped with better times.

2. Ten engineering colleges in India wore surveyed. The sample contained 250 electrical engineers, 80 being women; 175 chemical engineers, 40 being women. Compute a 90% C.I. for the difference between the proportions of women in these two fields of engineering. Is there a significant difference between the two proportions?

$$= \frac{0.32 - 0.228}{\sqrt{0.282 \times (1 - 0.282 \left(\frac{1}{250} + \frac{1}{250}\right)}}$$

$$= 2.04 + \left(-1.64, 1.64\right)$$
We ryset the

3. The grades in statistics course for a particular semester were as follows: A B C D E
14 18 32 20 16 Grade 32 20 16 Test the hypothesis at, level of significance that the distribution of grades l'is uniform. Ho: X~ Uni H: X & Uni $N = \sum_{i=1}^{n} f_i = 100$. Expected freq. = NX f(x) = 100X $\frac{1}{5} = 20 = E_i$ $\chi_{c}^{2} = \sum_{i=1}^{5} \frac{(o_{i} - E_{i})^{2}}{E_{i}} = 10 \times 20.05, 4 = 9.49$ So, we reject the distr. is not uniform. 4. In an experiment to study the dependence of hypertension on smoking habits, the following data were taken on 180 individuals: Moderate Heavy Rowsum
26 30 87 Non-smoken Hypertension 21 36 2 G 19 62 49 No hypertension Test the hypothesis that the presence on absence of hypertension is independent of smoking habits using $\alpha = 0.05$. Ho: smoking has no effect Hi: smoking has no effect $E_{11} = \frac{R_1 \times C_1}{G} = \frac{69 \times 87}{180} = 33.35$; $E_{12} = 29.97$ $E_{13} = \frac{R_1 \times C_3}{G} = \frac{87 \times 49}{180} = 23.68;$ $E_{21} = 35.68$ $E_{22} = \frac{R_2 \times C_2}{G} = \frac{93 \times 62}{180} = 32.03; \quad E_{23} = 25.32$ $X_c^2 = \frac{2}{12} \frac{3}{12} \frac{(0ij - Eij)^2}{Eij} = 14.46 \times 20.05, 2 = 20.05, 2 = 20.05$

we ruject to.

5. A study of	and about by	a netail	merchant	to determine
" steely s	n between	weekly	advertising	to determine expenditures o
the relation	n belacat	U	0	
Adyt. Costs	Sales	× ²	· 42	XY
(X)	(Y)	X		
	205	1600	148225	12400
40	385		160000	8000
20	400	400	156025	9875
25	395	625		7.0.77
20	365	400	133225	7300
30	475	900	225625	14 250
20	440	2500	240100	22000
40 20	490	1600	176400	19600
23	420	400	313600	84m
40	560	2500	275625	28000
25	525	1600	230400	4000
. 50	480	625	260100	25500
. 30	210	2500		
Total: 410	5445	12620	2212925	191325
, *				
(a) J	= a+bx	TXV-	IXIX	191
V	$p = \frac{c}{2x\lambda}$	~	H	2.22
	>XX	Zx2	_ (Zx)2 ~	0-22
à = 7 - 6	$5 = \frac{Sxy}{Sxx}$ $5 = \frac{S445}{12}$	3.22× 4	10 = 343	73
0	tion is given	by 4~	373'33 T	2,222
Regression equ	d	0 1 -	313 13 1	3 - 7 -
(b) Sup	poso x=35			
ett en	estimate of	weekely	nales - "	24.5
· INDI	estimate of	()	- /	= 543.73+
	· · · · · · · · · · · · · · · · · · ·		,	3.22X35
				= 456.43,

\$40 / C.	1-too sided (1-x)101/. C.I.	8-eppop = \$ (20/2-5/h) -\$(-20/2-5/h)	7 - ta/2	$\frac{(n-1)s^2}{\chi^2_{4/2}, n-1} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi^2_{1-4/2}, n-1}$	p-242 (b(1-b)) < p < p + 24/2 (b) (1-b) 9-242 (b) (1-b) 95-4 90% - 24/2 = 1.96
One-sample Testing Procedure	Rejaction Region		to > ta/2,n-1 to > ta,n-1 to < - ta/,n-1	χ ₂ > χ _α / ₂ , η-1 χ ₂ > χ _α , η-1 χ _γ < χ _α , η-1	1201720/2 20720 20720
One-Sai	AHermative	#: \x \pi \x \\ #: \x \pi \x \\ #: \x \pi \x \\ #: \x \pi \x \\	H1: / + //w H1: / / //w H3: / / //w	H; 02462 H; 02762 H; 02462	H: P 7 Po H: p > Po H: p < Po
	Test	Z, = X-40	to = 22 - 14	xo= (n-1) s2	20 = 2 - 4P. (04-1) dy. 20 = 20 = 20 = 20 = 20 = 20 = 20 = 20 =
	Nall HyporResis	Ho: /4 = /40 p2 known	Ho: M=/40	Ho: 02=62	Ho: P=Po (proporation in Binomial)

	Two sided 100 (1-4/7. CI	81-72-24/01+02+62 = MI-142 =	R1-72-142-2 18 1+ 12 - 41-142	RI-RE - the df (Sit Set < /4-1/22	J-ty2,n-1,84 =/10 = J+ty2,n-1,81	$\frac{8_1^2}{8_2^2} \cdot \int_{1-\alpha_2/n_1-1,n_2-1} \leq \frac{6_1^2}{9_2^4} \leq \frac{a_1^2}{3_2^4} \cdot \frac{9}{30/2,n_1-1,n_2-1}$	$b_1 - b_2 - 2a_{12} \left(\frac{\beta_1(1-b_1)}{n_1} + \frac{\beta_2(1-b_2)}{n_2} \right)$ $\leq b_1 - b_2 \leq$
sample Testing Procedures	Rejection criteria	1201 > 2012 20 > 20 20 < - 20	1401 > ta, n1+n2-2 to > ta, n1+n2-2 to < -ta, n1+n2-2	140 > ta/2, df to > ta/df to < -ta/df	to > to/,n- to > to/,n- to <-to,n-	for fozzn-1,nz-1	12017242 30724 204-20
Two sample		#; \u-1-1-2 \deq 4. #; \u-1-1-2> \deq #; \u-1-1-2< \deq	H: 1-1-2740 H1: 1-1-2740 H1: 1-1-12740	H1: A1-M2740 H1: A1-M2740 H1: A1-M2 < 40	H; 144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H; G ² ≠G ² H; G ² >G ²	H; P1 7 P2 H; P1 > P2 H; P1 < P2
	Null hypothesis Test statistic	$Z_b = \overline{x_1 - \overline{x_2}} - \Delta_b$ $\sqrt{\frac{G_1^2}{n_1} + \frac{G_2^2}{n_2}}$	to = \(\frac{\pi_1 - \pi_2 - d_0}{\pi_p\frac{1}{1} + \pi_2}\) \$p\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$\Phi_{5} = \frac{x_{1} - x_{2} - 40}{\left(\frac{S_{1}^{2}}{h_{1}} + \frac{S_{2}^{2}}{h_{2}^{2}}\right)^{2}}$ $\Phi_{5}^{2} = \frac{\left(\frac{S_{1}^{2}}{h_{1}} + \frac{S_{2}^{2}}{h_{2}^{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{h_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{h_{2}^{2}}\right)^{2}}$	(0) 4 m - P = 04	fo = 812	$Z_0 = \frac{\beta^1 - \beta^2}{\left(\beta^1 + \beta^2\right) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ $\beta = \frac{41 + 42}{n_1 + n_2}$
	Null hypothesis	Ho: MI-/UZ=40	Ho: /41-/42=40	Ho: A1-1/2=40	Ho: MD=0 Pained data	H2: 05 = 05 2	Ho; PI=P2 Binomial