
 

 

NOTES ON 

RELIABILITY 

THEORY 

 

 
BY TANUJIT CHAKRABORTY, RESEARCH SCHOLAR, ISI KOLKATA 

 

 



Content                                                     Page No 

 

Introduction to Reliability                                      1 

Hazard Function                                                    8 

Bath Tub Curve                                                     15 

Constant Failure Rate Model                                  22 

Time-Dependent Failure Models                              24 

System Reliability                                                  40 

Fault Tree Analysis                                                 55 

Life Tests                                                               59 

FMEA                                                                     71 

Sequential Life Testing                                           73 

Reliability, Availability, Serviceability                       79 

Warranty Analysis                                                   86 

Stress Strength Models                                           89 

Accelerated Life Testing                                          97 

 

 



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



89 
 

 
 
 

Stress Strength Models 

 
 

INTRODUCTION 

 

The purpose of studying Stress-Strength Models is to determine the probability that a 

component, a subsystem, or a system fails when the stress, in general, exceeds the strength. 

 

In order to compute the reliability we have to know the nature of stress (S) and strength (T) 

random variables. Our focus of this session is to show how to compute reliability of a component  

when the density functions for the stress and the strength are known.  

 

Stress-strength analysis is highly useful in mechanical component design. 

 
Our objective is to find the reliability of a component when the density functions for the stress 

and strength random variables are known.  

 

We can find expression for reliability when stress & strength following different distributions 

such as Normal, Exponential, Lognormal, Gamma, Weibull distribution. 

 

Examples of stress-related failures include the following: 

 

1. Misalignment of a journal bearing, lack of lubricants, or incorrect lubricants generate an 

internal load (mechanical or thermal stress) that causes the bearing to fail. 

 

2. The voltage applied to transistor gate is too high, causing a high temperature that melts 

the transistor’s semiconductor material. 

 

 

3. Cavitation causes pump failure, which in turn causes a violent vibration that ultimately 

breaks the rotor. 

 

4. Lack of heat removal from a feed pump in a power plant results in overheating of the 

pump seals, causing the seals to break. 

 
General Expression for Reliability 

 

Let the density function for the stress (S) be denoted by     , and that for strength (T) by     . 

Then by definition, 

 

                                                                          
 

 The probability that the strength T is greater than certain stress    is given by 
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        ∫        
 

  

 

 Now the reliability of the component is the probability that the strength T is greater than 

the stress S for all possible values of the stress S and is given by 

  ∫   

 

  

   *∫        
 

 

+                                                                 

 Reliability can also be computed on the basis that the stress remains less than the strength 

and the probability of the stress being less than    is given by 

        ∫   

  

  

      

 Hence the reliability of the component for all the possible values of the strength T is 

  ∫   

 

  

   *∫        
 

  

+                                                                     

 Some other expressions of unreliability. Let unreliability be denoted by  ̅.  ̅  
                                 . 

 

Substituting for R from equation (2) we have 

 ̅           ∫   

 

  

   *∫        
 

 

+    

   ∫   

 

  

   [       ]   

                                                ∫         
 

  
                                    (4) 

 

         Alternatively using equation (3) we have 

 ̅  ∫ [    

 

  

                                                                             

 Define      . Y is called the interference random variable. We can define reliability 

as  

         

Assuming T and S are independent random variables and greater than equal to zero the 

density of y is given by 

      ∫           
 

      

                    

{
 
 

 
 ∫                             

 

 

∫           

 

  

                              

              

 

Hence the probability of failure is given by 

 ̅  ∫         ∫ ∫   
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and the reliability by 

  ∫   

 

 

      ∫ ∫                                      
 

 

 

 

 

 
 

Reliability Computation for Normally Distributed Strength and Stress 

 

The probability density function for a normally distributed stress S is given by 

      
 

   √  
   * 

 

 
(
    

  
)
 

+                                     

The probability density function for a normally distributed stress S is given by 

      
 

  √  
   [ 

 

 
 
    

  
  ]                                     

 

where                                                              

                                    

                              

                                      
 

Let us define Y=T-S. It is well known that the random variable Y is normally distributed with a 

mean of  

         
  

and a standard deviation of  

   √  
    

  

The reliability R can now be expressed in terms of Y as 

         

 ∫
 

  √  
   [ 

 

 
(
    

  
)

 

]
 

 

   

If we let              then          
 

When    , the lower limit of   is given by  

  
    

  
  

     

√  
    

 
                                                

 

and when     , the upper limit of     . Therefore, 

  
 

√  
∫     

 ⁄
 

 
     

√  
    

 

                                                

 

Clearly the random variable              is the standard normal variable. Clearly reliability 

can be found by merely referring to the normal tables. 
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Equation (12) can be rewritten as 

     ( 
     

√  
    

 
)                                                   

 

Example 1 

An automotive component has been designed to withstand certain stresses It is known from 

the past experience that, because of variation in loading, the stress on the component is 

normally distributed with a mean of 30,000 kPa and a standard deviation of 3000 kPa. The 

strength of the component is also random because of variations in the material 

characteristics and the dimensional tolerances. It has been found that the strength is 

normally distributed with a mean of 40,000 kPa and a standard deviation of 4000 kpa. 

Determine the reliability of the component. 

 

Sol: We are given that                       

                    
Then the lower limit of the integral for R is given by 

   
             

√           
  

      

    
      

and hence from the normal tables R=0.977 

 

 

Example 2 

The stress developed in an engine component is known to be normally distributed with a 

mean of 350.00 Mpa and a standard deviation of 40.00 Mpa. The material strength 

distribution, based on the expected temperature range and various other factors, is known 

to be normal with a mean of 820.00 Mpa and a standard deviation of 80.00 Mpa. 

 

Sol: Conventional factor of safety, defined as the ratio of mean strength to mean stress, is given 

by 

     
  

  
 

      

      
      

To compute the reliability of the component we use the coupling equation: 

   
     

√  
    

 
  

             

√             
  

      

     
       

Hence the reliability of the component is 0.9999999. 

 

Now, suppose that poor heat treatment and larger variations in the environmental temperatures 

cause the standard deviation for the strength of the component to increase to 150.00 Mpa. In that 

case the factor of safety as defined before remains unchanged, but the reliability is altered. Using 

the coupling equation, 

   
     

√  
    

 
  

             

√              
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and the reliability of the component is found to be 0.99877. Thus we witness a downgrading of 

reliability resulting from an increased variability in the strength of the component. 

 

Example 3 

A new component is to be designed. A stress analysis revealed that the component is 

subjected to a tensile stress. But there are variations in the load and the tensile stress is 

found to be normally distributed with a mean of 35,000 psi and a standard deviation of 

4000 psi. The manufacturing operations create a residual compressive stress that is 

normally distributed with a mean of 10,000 psi and a standard deviation of 1500 psi. A 

strength analysis of the component showed that the mean value of the significant strength is 

50,000 psi. The variations introduced by various by various strength factors are not clear at 

the present time. The engineer wants to know the maximum value of the standard 

deviation for the strength that will ensure that the component reliability does not drop 

below 0.999. 

 

Sol: We are given that  

                      
                        

where   is the tensile stress and    is the residual compressive stress. 

 The mean effective stress  ̅ is obtained by 

 ̅    ̅    ̅                        
and its standard deviation by 

   √     
       

  

 √            

          
From the normal tables, we find the value of z associated with a reliability of 0.999 to be     . 

Substituting in the coupling equation yields 

      
           

√  
       

 

Solving for    we get 
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Reliability Computation for Log Normally Distributed Strength and Stress 

 

The standard form of a log normal density function is  

      
 

  √  
   [ 

 

   
        ]                                        

 

Where Y is the random variable. The parameters   and   are the mean and the standard 

deviation, respectively, of the variable    , which is normally distributed. First we develop those 

relationships for the log normal distribution that are needed later in the analysis. 

 

Let      . Then    (
 

 
)    From equation (14) we have 

     
 

 √  
   [ 

 

   
      ]             

 

and hence, 

              
and 

                   
  

 

Now considering the exponent of   in the expression 

           ∫
 

 √  
  

 

  

   { (
 

 
) (

   

 
)
 

}    

We have 

  
 

 
(
   

 
)
 

   
 

   
            

 

  
 

   
                 

 

  
  

   
 

       

   
 

 

   
[                   ] 

Therefore 

        (  
  

 
)∫

 

 √  

 

  

   * 
{         }

   
+                           

              (  
  

 
) 

To compute the variance of Y we observe that 

      ∫
 

 √  
   [   

 

   
      ]

 

  

   

 

Considering the exponent of   in the expression for      , we have 
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[                     ]  

  

   
 

        

   
 

  
 

   
[         ]         

 

which, when substituted back and simplified as before yields, 

         [       ] 
 

Hence by the definition of variance we may write 

        [       ]  ,   *  
  

 
+-

 

 

 [          ][         ]                                                          
 

 

We now observe that 
    

[    ] 
    

   

 

which, after rearranging, leads to 

     [
    

[    ] 
  ]                                                                                          

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

 
 
 

Example:  

The strength T and stress S are log normally distributed for a component with the 

following parameters: 

E(T) = 100,000 kPa              Standard Deviation of T = 10,000 kPa 

E(S) =   60,000 kPa              Standard Deviation of T = 20,000 kPa 

Compute the Reliability of the component. 
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Accelerated Life Testing 
 

INTRODUCTION  
The development of new products in a short time has motivated the development of new 
methods such as robust design, just−in−time manufacturing, and design for manufacturing and 
assembly.  

More importantly, both producers and customers expect that the product will perform the 
intended functions for extended periods of time. Hence, extended warranties and similar 
assurances of product reliability have become standard features of the product.  

These requirements have increased the need for providing more accurate estimates of 
reliability by performing testing of materials, components, and systems at different stages of 
product development. Testing under normal operating conditions requires a very long time 
possibly years and the use of an extensive number of units under test, so it is usually costly and 
impractical to perform reliability testing under normal conditions.  

This has led to the development of accelerated life testing (ALT), where units are subjected 
to a more severe environment (increased or decreased stress levels) than the normal operating 
environment so that failures can be induced in a short period of test time.  

Information obtained under accelerated conditions is then used in conjunction with a 
reliability prediction (inference) model to relate life to stress and to estimate the characteristics 
of life distributions at design conditions (normal operating conditions).  

Conducting an accelerated life test requires careful allocation of test units to different stress 
levels so that accurate estimation of reliability at normal conditions can be obtained using 
relatively small units and short test durations. 

 

 Design of Accelerated Life Testing Plans  
A detailed test plan is usually designed before conducting an accelerated life test. The plan 

requires determination of the type of stress, methods of applying stress, stress levels, the 
number of units to be tested at each stress level, and an applicable accelerated life testing 
model that relates the failure times at accelerated conditions to those at normal conditions.  

 
Stress loadings   
Stress in ALT can be applied in various ways. Typical loadings include constant, cyclic, step, 

progressive, random stress loading, and combinations of such loadings.  
Typical accelerated testing plans allocate equal units to the test stresses. However, units 

tested at stress levels close to the design or operating conditions may not experience enough 
failures that can be effectively used in the acceleration models.  

Therefore, it is preferred to allocate more test units to the low stress conditions than to the 
high stress conditions so as to obtain an equal expected number of failures at both conditions.  

 

Types of Stress   
The type of applied stress depends on the intended operating conditions of the product 

and the potential cause of failure. We classify the types of the stresses as follows:  
1. Mechanical stresses: Fatigue stress is the most commonly used accelerated test for 

mechanical components. When the components are subject to elevated temperature, then 
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creep testing (which combines both temperature and load) should be applied. Shock and 
vibration testing is suitable for components or products subject to such conditions as in the 
case of bearings, shock absorbers, tires and circuit boards in airplanes and automobiles.  

2. Electrical stresses: These include power cycling, electric field, current density, and 
electromigration. Electric field is one of the most common electrical stresses, as it induces 
failures in relatively short times; its effect is also significantly higher than other types of 
stress.  

3. Environmental stresses: Temperature and thermal cycling are commonly used for 
most products. Of course, it is important to use appropriate stress levels that do not induce 
different failure mechanisms than those under normal conditions. Humidity is as critical as 
temperature, but its application usually requires a very long time before its effect is noticed. 
Other environmental stresses include ultraviolet light, sulfur dioxide, salt and fine particles, 
and alpha and gamma rays.  
 
 

 
Accelerated Life Testing Models 
Elsayed classified the inference procedures (or models) that relate life under stress 

conditions to life under normal or operating conditions into three types:  
• statistical−based models 

• physics−statistics−based models 

• physics−experimental−based models  

The underlying assumption in relating the failure data, when using any of the models, is that 
the components/products operating under normal conditions experience the same failure 
mechanism as those occurring at the accelerated conditions.  

The statistics−based models are further classified as parametric models and non−parametric 
models. We are here going to discuss about Parametric-Statistics-based Models. 

 
Statistics−based models are generally used when the exact relationship between the 

applied stresses and the failure time of the component or product is difficult to determine 
based on physics or chemistry principles. In this case, components are tested at different stress 
levels and the failure times are then used to determine the most appropriate failure time 
distribution and its parameters.  

The most commonly used failure time distributions are the exponential, Weibull, normal, 
lognormal, gamma, and the extreme value distributions. The failure times follow the same 
general distributions for all different stress levels, including the normal operating conditions.  
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Parametric Statistics−based Models 
As stated above, statistics−based models are generally used when the exact relationship 
between the applied stresses (temperature, humidity, voltage, etc.) and the failure time of the 
component (or product) is difficult to determine based on physics or chemistry principles. In 
this case, components are tested at different accelerated stress levels           . The failure 
times at each stress level are then used to determine the most appropriate failure time 
probability distribution, along with its parameters. Under the parametric statistics−based model 
assumptions, the failure times at different stress levels are linearly related to each other.  

Moreover, the failure time distribution at stress level    is expected to be the same at 
different stress levels         as well as under the normal operating conditions. In other words, 
the shape parameters of the distributions are the same for all stress levels (including normal 
conditions) but the scale parameters may be different. 

 Failure times  

                        

Where    is the failure time under operating conditions,    is the failure time under 
operating conditions,    is the failure time under stress conditions, and    is the acceleration 
factor (the ratio between product life under normal conditions and life under accelerated 
conditions); 

 Cumulative distribution functions (CDFs) 

        (
 

  
)                      

 Probability density functions  

      (
 

  
)   (

 

  
)                 

 Failure rates 

      (
 

  
)   (

 

  
)                

The most widely used parametric models are the exponential and Weibull models. 
Therefore, we derive the above equations for both models and demonstrate their use.  

 
 
Acceleration Model for the Exponential Model  
This is the case where the time to failure under stress conditions is exponentially distributed 

with a constant failure rate   . The CDF at stress s is  

                                                
And the CDF under normal conditions is 

        (
 

  
)     

 
   
                 

The failure rates are related as        
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Table 22.1 Failure times of the capacitors in hours 

Temperature  
145  

Temperature  
240  

Temperature  
305  

75 
359 
701 
722 
738 
1015 
1388 
2285 
3157 
3547 
3986 
4077 
5447 
5735 
5869 
6242 
7804 
8031 
8292 
8506 
8584 
11512 
12370 
16062 
17790 
19767 
20145 
21971 
30438 
42004 

179 
407 
466 
571 
755 
768 
1006 
1094 
1104 
1493 
1494 
2877 
3001 
3160 
3283 
4654 
5259 
5925 
6229 
6462 
6629 
6855 
6983 
7387 
7564 
7783 
10067 
11846 
13285 
28762 

116 
189 
300 
305 
314 
403 
433 
440 
468 
609 
634 
640 
644 
699 
781 
813 
860 
1009 
1176 
1184 
1245 
2071 
2189 
2288 
2637 
2841 
2910 
2954 
3111 
4617 

Mean   9287 Mean   5244 Mean   1295 

 
Table 22.2 Temperatures and the 50th percentiles 
 

Temperature ( ) 145 240 305 

50th percentile  6437 3635 898 
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Example1. In recent years, silicon carbide (SiC) is used as an optional material for 
semiconductor devices, especially for those devices operating under high temperatures and 
high electric fields conditions. An extensive accelerated life experiment is conducted by 
subjecting 6H−SiC metal−oxide−silicon (MOS) capacitors to temperatures of 145, 240, and 
305 . The failure times are recorder in Table 22.1. Determine the mean time to failure 
(MTTF) of the capacitors at 25  and plot the reliability function.  

 
Solution: The data for every temperature are fitted using an exponential distribution and 

the means are shown in Table 22.1. In order to estimate the acceleration factor we chose some 
percentile of the failed population, which can be done non−parametrically using the rank 
distribution or a parametric model. In the example, the exponential distribution is used and the 
time at which 50  of the population fails is  

                           
The 50th percentiles are given in Table 22.2. 
We use the Arrhenius model to estimate the acceleration factor 

         
Where t is the time at which a specified portion of the population fails, k and c are 

constants and T is the absolute temperature (measured in degrees Kelvin). Therefore 

        
 

 
 

Using the values in table 22.2 and least−squares regression we obtain 
                         . Therefore, the estimated 50th percentile at 25  is 

                                          
The acceleration factor at 25  is 

   
      

    
        

And the failure rate under normal operating conditions is                      
     failures/h, the mean time to failure is 30419h and the plot of the reliability function is 
shown in Figure 22.3. 
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                                    Figure 22.3. Reliability function for the capacitors 
 
 
 
Acceleration Model for the Weibull Model 

 
Again, we consider the true linear acceleration case. Therefore, the relationships between the 
failure time distributions at the accelerated and normal conditions can be derived using 
Equations 22.2−22.4. Thus 

         
 (

 
  

)
  

  
                            

where    is the shape parameter of the Weibull distribution under stress conditions and    
is the scale parameter under stress conditions. The CDF under normal operating conditions is  

        (
 

  
)     

 [
 

    
]
  

    

    
 [

 
  

]
  

              
 
The underlying failure time distributions under both the accelerated stress and operating 

conditions have the same shape parameters, i.e.,                  . If the shape 
parameters at different stress levels are significantly different, then either the assumption of 
true linear acceleration is invalid or the Weibull distribution is inappropriate to use for analysis 
of such data. 

 
 
Let          . Then the probability density function under normal operating 

conditions is 
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 (

 

    
)
   

  
 [

 
    

]
 

 

                               
The MTTF under normal operating conditions is  

        
   

  (  
 

 
)                

The failure rate under normal operating conditions is  

      
 

    
 (

 

    
)
   

 
     

  
                   

 

Table 22.3. Time (hours) to detect leak 

100 psi 120 psi 140 psi 

1557 
4331 
5725 
5759 
6207 
6529 
6767 
6930 
7146 
7277 
7346 
7668 
7826 
7885 
8095 
8468 
8871 
9652 
9989 
10471 
11458 
11728 
12102 
12256 
12512 
13429 
13536 
14160 
14997 
17606 

1378 
2055 
2092 
2127 
2656 
2801 
3362 
3377 
3393 
3433 
3477 
3947 
4101 
4333 
4545 
4932 
5030 
5264 
5355 
5570 
5760 
5829 
5968 
6200 
6783 
6952 
7329 
7343 
8440 
9183 

215 
426 
431 
435 
451 
451 
496 
528 
565 
613 
651 
670 
708 
710 
743 
836 
865 
894 
927 
959 
966 
1067 
1124 
1139 
1158 
1198 
1293 
1376 
1385 
1780 
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Table 22.4 Percentiles at different pressures 
 

Pressure (psi) 100 120 140 

50th percentile  9050 4681 821 
 

Example2. A manufacturer of Bourdon tubes (used as a part of pressure sensors in 
avionics) wishes to determine its MTTF. The manufacturer defines the failure as a leak in the 
tube. The tubes are manufactured from 18 Ni (250) maraging steel and operate with dry 
99.9  nitrogen or hydraulic fluid as the internal working agent. Tubes fail as a result of 
hydrogen embrittlement arising from the pitting corrosion attack. Because of the criticality of 
these tubes, the manufacturer decides to conduct ALT by subjecting them to different levels 
of pressures and determining the time for a leak to occur. The units are continuously 
examined using an ultrasound method for detecting leaks, indicating failure of the tube. Units 
are subjected to three stress levels of gas pressures and the times for tubes to show leak are 
recorded in Table 22.3.  

Determine the mean lives and plot the reliability function for design pressures of 80 and 
90 psi.  

 
Solution:  We fit the failure times to Weibull distributions, which results in the following 

parameters for pressure levels of 100, 120, and 140 psi.  
For 100 psi:                  
For 120 psi:                 
For 140 psi:                
Since              , then the Weibull model is appropriate to describe the 

relationship between failure times under accelerated conditions and normal operating 
conditions. Moreover, we have a true linear acceleration. Following Example 1, we determine 
the time at which 50  of the population fails as  

   [        ]    
The 50th percentiles are shown in Table 22.4.  
The relationship between the failure time t and the applied pressure P can be assumed to 

be similar to the Arrhenius model;  
Thus 

         
Where k and c are constants. By making a logarithmic transformation, the above expression 

can be written as  

        
 

 
 

Using a linear regression model, we obtain                      . The estimated 50th 
percentiles at 80 psi and 90 psi are 84361 h and 27332 h respectively. The corresponding 
acceleration factors are 9.32 and 3.02. The failure rates under normal operating conditions are 

      
 

    
 (

 

    
)
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Or  

       
    

             
       

And  

       
    

            
       

The reliability functions are shown in Figure 22.4. 
The MTTFs for 80 and 90 psi are calculated as 

         
 

  (
 

 
)                        (  

 

    
)                 

        
And  

                               

 
Figure 22.4. Reliability functions at 80 and 90 psi 

 

 
The Arrhenius Model 
 

Elevated temperature is the most commonly used environmental stress for accelerated life 
testing of microelectronic devices. The effect of temperature on the device is generally 
modeled using the Arrhenius reaction rate equation given by 

     (
  
  

)                     
where r is the speed of reaction. A is an unknown non−thermal constant,        is the 

activation energy (i.e., energy that a molecule must have before it can take part in the 
reaction), k is the Boltzmann constant (8.623           ), and T(K) is the temperature. 
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Activation energy    is a factor that determines the slope of the reaction rate curve with 
temperature, i.e., it describes the acceleration effect that temperature has on the rate of a 
reaction and is expressed in electron volts (eV). For most applications,    is treated as a slope 
of a curve rather than a specific energy level. A low value of    indicates a small slope or a 
reaction that has a small dependence on temperature. On the other hand, a large value of    
indicates a high degree of temperature dependence.  

Assuming that device life is proportional to the inverse reaction rate of the process, then 
Equation 22.14 can be rewritten as 

          
    

           
 (

 

      
 

 

       
) 

             
 
The median lives of the units at normal operating temperature    and accelerated 

temperature    are related by 

  

  
 

        

        
 

Or 

        
  

 
(
 

  
 

 

  
)                

The thermal acceleration factor is 

      
  

 
(
 

  
 

 

  
) 

 
The calculation of the median life (or percentile of failed units) is dependent on the failure 

time distribution. When the sample size is small it becomes difficult to obtain accurate results. 
In this case, it is advisable to use different percentiles of failures and obtain a weighted average 
of the median lives. One of the drawbacks of this model is the inability to obtain a reliability 
function that relates the failure times under stress conditions to failure times under normal 
condition. We can only obtain a point estimate of life. We now illustrate the use of the 
Arrhenius model in predicting median life under normal operating conditions.  

 
 

Table 22.5. Failure time data (hours) for oxide breakdown 

Temperature  
180  

Temperature  
150  

112 
260 
298 
327 
379 
487 
593 
658 

162 
188 
288 
350 
392 
681 
969 
1303 
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701 
720 
734 
736 
775 
915 
974 
1123 
1157 
1227 
1293 
1335 
1472 
1529 
1545 
2029 
1568 

1527 
2526 
3074 
3652 
3723 
3781 
4182 
4450 
4831 
4907 
6321 
6368 
7489 
8312 
13778 
14020 
18640 

 

Example 3. The gate oxide in MOS devices is often a source of device failure, especially for 
high−density device arrays that require thin gate oxides. The reliability of MOS devices on 
bulk silicon and the gate oxide integrity of these devices have been the subject of 
investigation over the years. A producer of MOS devices conducts an accelerated test to 
determine the expected life at 30 . Two samples of 25 devices each are subjected to stress 
levels of 150  and 180 . The oxide breakdown is determined when the potential across the 
oxide reaches a threshold value. The times of breakdown are recorded in Table 22.5. the 
activation energy of the device is 0.42 eV. Obtain the reliability function of these devices.  

 
 
Solution: 

 
                                      Figure 22.5. Weibull probability plot 
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Figure 22.5 shows that it is appropriate to fit the failure data using Weibull distributions 
with shape parameters approximately equal to unity. This means that they can be represented 
by exponential distributions with means of 1037 and 4787 h for the respective temperatures of 
180   and 150  respectively. Therefore, we determine the 50th percentiles for these 
temperatures using Equation 22.8 as being 719 and 3318 respectively.  
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Which results in                 

 

  
 

 
 
 
 
 

 
 


