
Indian Statistical Institute			
Foundation Course			
on			
Predictive Modeling			
using			
Python			
	1		

CONTENTS

Indian Statistical Institute

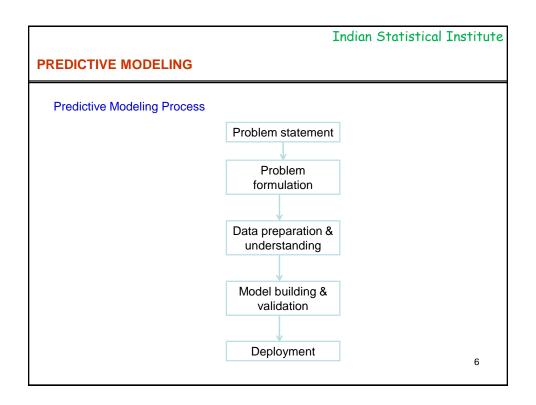
SL No.	Topics	SL No.	Topics
1	Introduction to Predictive Modeling	9	Linear Regression
2	Introduction to Python	10	Dummy Variable Regression
3	Descriptive Statistics	11	Binary Logistic Regression
4	Test of Hypothesis	12	Classification & Regression Tree
5	Normality Test	13	Random Forest
6	Analysis of Variance	14	Naive Bayes
7	Cross Tabulation & Chi Square Test	15	k Nearest Neighbors
8	Correlation	16	Support vector Machine

PREDICTIVE MODELING

Introduction

A set of methods to arrive at quantitative solutions to problems of business interest

Part of data science or statistical learning


Has assumed tremendous importance in the recent past as the data availability is constantly on the rise

There is widespread belief that the existing data may be fruitfully analyzed to arrive at hitherto unknown insights

PREDICTIVE MODELING

Examples

- An automobile manufacturer wants to understand how the fault and failure related data captured through the sensors may be used to classify the condition of vehicles so that preventive maintenance may be carried out optimally
- 2. An insurance company may wish to classify drivers as very risky, risky, safe etc. on the basis of their driving habits so that insurance premium may be fixed intelligently.
- 3. A company engaged in oil exploration may need to estimate the time and expenses of drilling under different geological conditions before taking up a drilling assignment.
- 5. Credit card as well as health insurance companies may wish to identify fraudulent transactions so that appropriate actions may be initiated
- 6. An email service provider may wish to develop a method to classify spam mail from usual mail on the basis of the content of the mail

Indian Statistical Institute
PREDICTIVE MODELING
Supervised learning
Understanding the behavior of a target (response / dependent / y) variable as a set of input or process varaibles (independent / explanatory / x) change
Typically attempts are made to develop a function or model to estimate the target
Often called dependency analyses
7

PREDICTIVE MODELING

Supervised learning: Examples

- 1. Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack. The prediction is to be based on demographic, diet and clinical measurements for that patient
- 2. Predict the price of a stock in 6 months from now, on the basis of company performance measures and economic data
- 3. Predict whether a particular credit card transaction is fraudulent. The prediction is to be based on past transaction history, transaction type, reputation of the merchants involved and other similar variables
- 4. Identify the impact of different variables like price, relative brand position, general economic condition, level of competition, and product type (luxury / necessity, etc) on the demand of a particular product during a given period

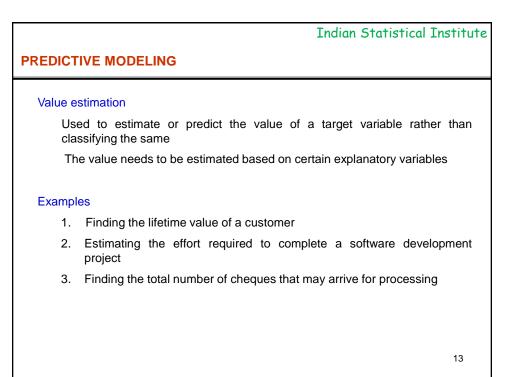
PREDICTIVE MODELING

Unsupervised learning: Examples

- 1. Identification of typical profile of employees who quit quickly
- 2. Identification of products that are usually sold together
- 3. Grouping of cities or geographies with respect to their characteristics
- 4. Develop a scale to measure brand position

9

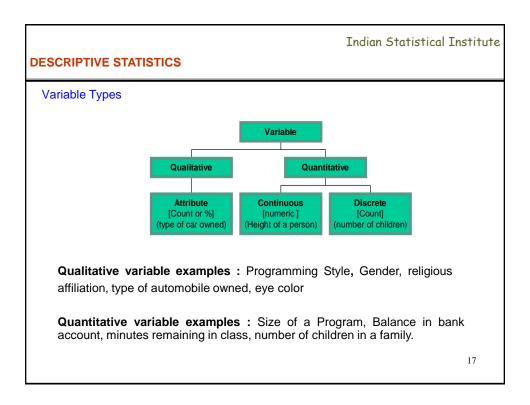
Indian Statistical Institute


PREDICTIVE MODELING

Predictive modeling tasks

- 1. Hypotheses testing
- 2. Classification and class probability estimation
- 3. Value estimation, explanatory and causal models

	Indian Statistical Institute				
PREDICT	PREDICTIVE MODELING				
Hypothe	esis testing				
Hy	potheses are statements about a given phenomenon				
	Hypothesis testing consists of determining the plausibility of the statements on the basis of data				
Exampl	es				
1.	Increasing number of years of education increases earning potential				
2.	Design A produces a lower defect rate compared to design B				
3.	A particular design of a web page leads to more conversion compared to another				
	11				


	Indian Statistical Institute
PREDICTIV	'E MODELING
Classificat	tion & class probability estimation
	I in situations where the target is to be classified
	problem is to allocate the target variable to one of the classes based on alue of some explanatory variable(s)
	est cases the probability that the target will belong to different classes is stimated
	ation to a particular class is made on the basis of the estimated abilities
Examples	
1. C	Classification of credit card transaction as fraudulent or not
2. C	Classification of whether a customer will renew her contract or not
	Classification of whether a sales bid will be won, lost or abandoned by ne customer
4. C	22 Classification of a loan application as low, high or medium risk

Indian Statistical Institute					
PREDICTIVE MODELING					
Fundamental tasks and techniques: Relationship					
Fundamental task	Statistical / data mining technique				
Phenomenon Understanding	Descriptive Statistics, hypothesis testing, graphical analysis and data visualization, contingency tables				
Classification	Logistic regression, Discriminant analysis, Decision trees, Neural networks, Support vector machine, Naive Bayes classification, etc				
Value Estimation	Table lookup, k nearest neighbor, Regression models – Multiple linear regression and its variants including shrinkage methods, Survival Analysis, Neural networks, non-parametric methods, etc				
	ental tasks and techniques: Rela Fundamental task Phenomenon Understanding Classification				

	Indian Statistical Ins	titut
DE	SCRIPTIVE STATISTICS	
h	mportance of Measurement	
	We don't know what we don't know	
	If we can't express what we know in the form of numbers, we really don't know much about it	N
	If we don't know much about it, we can't control it	
	If we can't control it, we are at the mercy of chance	
	Successful organizations have a common language to communicate	
	Common language promotes objectivity in decision-making process	
	Does the problem really exist? Measurement will answer that question	
	Improvement can happen only if we understand where we are and where we	we
	should go	
	Have we reached where we intended to? only data answers that question	
	A good data collection simplifies the problem solving effort	16

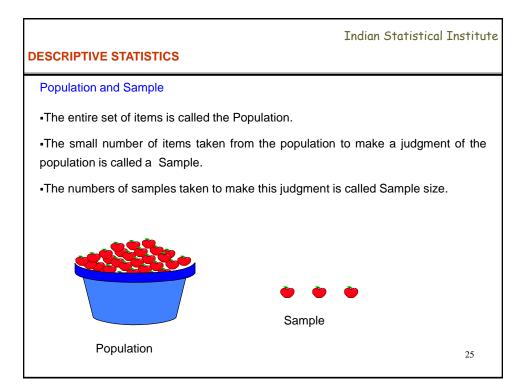
Indian Statistical Institute
Types of Data
Quantitative characteristics are of two principal types – Discrete and continuous.
Discrete: A characteristic may take only some isolated or discrete values, e.g., the number of defects on an item, the number of breakdown of machines in a shop, etc. This is often obtained by counting.
Continuous: A characteristic may theoretically take any value within a definite range, e.g., the body weight, length of a pencil, service response time, temperature in a room, etc. This is recorded with the help of a measuring equipment of defined accuracy.
Qualitative characteristic is typically represented by
Attribute Data: A characteristic that is judged "Good" or "Bad" by comparing it to a referenced standard Example: Defective / Non Defective, Delivered on time / Not on time
18

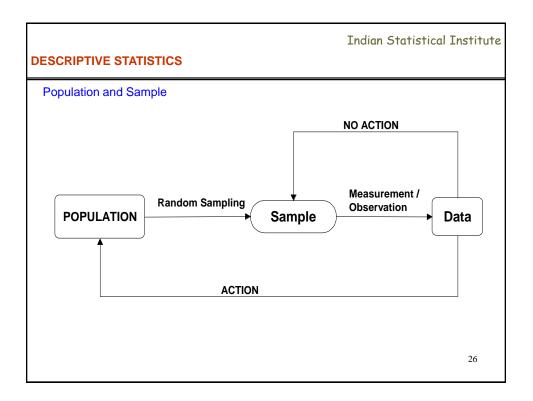
Indian Statistical Inst	itute	
DESCRIPTIVE STATISTICS		
Types of Data		
Discrete data		
Data that can take a limited number of values. For example:		
Days in a week		
Number of defects		
Attribute Data		
Data that can be classified in binary form. For example:		
 Items passed / rejected 		
 Responses to a customer satisfaction survey in 2 categories' Satisfied" and "Not Satisfied" 	"	
Continuous Data		
Data that can take any value within a specified range. For example:		
Temperature in this room		
Exchange rate of a currency		
Yield of a process	9	
Height of a person	~	

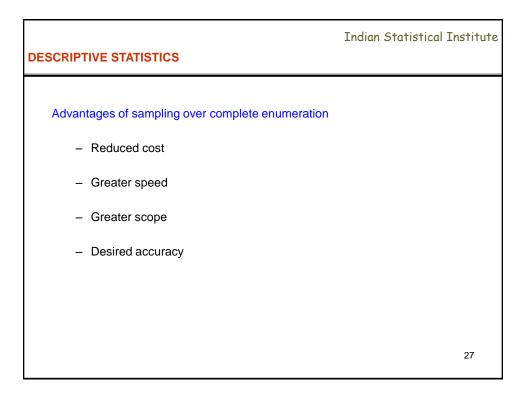
DESCRIPT	Indian Statistical Institute
Quiz	
1. (Give 3 examples of each type of data
-	Quantitative Continuous
_	Qualitative Attribute
-	Quantitative Discrete
2.	What guidelines help you distinguish between Quantitative Continuous and Quantitative Discrete data?
3.	What guidelines help you distinguish between Qualitative Attribute and Quantitative Discrete data?
	20

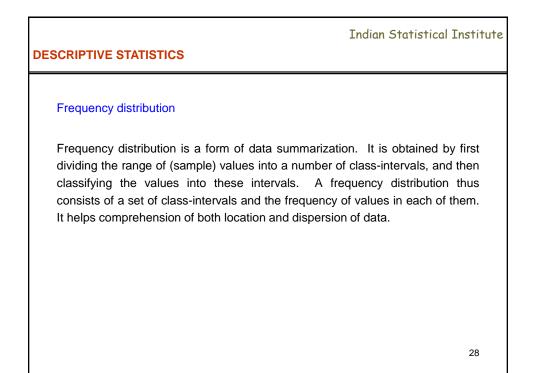
			Indian Statistical Institute		
DE	SCRIPTIVE STATISTICS				
	Answers				
	1.				
	Quantitative Continuous	Qualitative Attribute	Quantitative Discrete		
	Cycle time	Late deliveries	No. of Complaints		
	Cost	Accurate PO	No. of Errors		
	Effort	Defective programs	No. of Bugs		
:	 –Continuous data are measurable, usually on a continuous scale, such as time, amount (money), volume, length, or temperature 				
	 Discrete data are countable, on an integer scale, such as items with a characteristic (attribute) or number of occurrences 				
			21		

		Indian Statistical Ins	stitute
DE	ESCRIPTIVE STATISTICS		
	Answers		
	3.		
	Qualitative Attribute	Quantitative Discrete	
	You are interested in counting items with an attribute (Ex: projects delivered late)	5	
	You can also count items without the attribute (Ex: orders delivered "not-late" = on time)		
	You can determine the proportion of items with the attribute (Ex: % late deliveries)		
			22


Indian Statistical Institute


DESCRIPTIVE STATISTICS


Population and Sample


Population: An aggregate of living or non-living things whose characteristic(s) is under study.

Sample: A sample is part of the population. A sample is used as a basis for making estimates and inferences about the population. By size of the sample, we mean the number of elements or groups of elements of the population that constitute the sample.

DESCRIPTIVE STATISTICS

kample	: Respo	onse Tin	ne (in m	inutes) t	o 100 c	ustome	r compla	aints	
		,							1
93.7	98.8	100.5	75	87.6	102.3	83.4	98.1	98.3	147
100.4	116.1	82.9	71.3	94.6	117.8	104.3	109.9	109	106.7
109.2	91.1	89.7	107.2	65.9	96.8	112.9	86.2	112.3	112.2
101.2	116.1	80.2	105.2	90.6	130.1	108.1	98	94.1	107.6
105.3	81.8	93.3	99.4	109.5	87.4	142.1	87.2	101.5	101.6
143.9	96.3	84.9	109.3	94.5	79	115.9	93.1	110.3	121.7
63.9	87.2	107.2	132.7	126.2	131.4	125.2	109	104.3	106.9
79.3	89.8	88.9	103.7	119.6	77.4	76.5	94.5	98.5	80.9
111.5	88.3	100	99.7	127.5	121.5	91.8	74.6	90.1	110.5
76.3	87.9	98.5	82.8	100.2	114.4	92.9	110.2	97.5	100.3

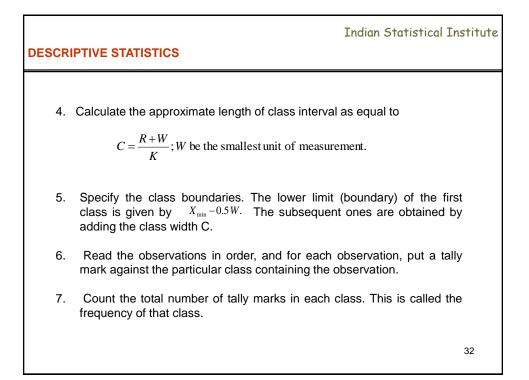
Indian Statistical Institute

DESCRIPTIVE STATISTICS

The stops involved	in the construction of a fr	requency table are:
The steps involved		requerity table are.

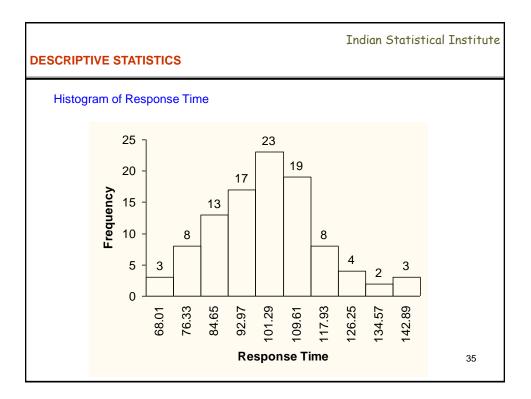
- 1. Collect around 100 observations(measurements) to form a frequency distribution. Each observation should be recorded to the same degree of accuracy. $R = X_{Max} X_{Min}$
- 2. Obtain the range of measurements as
- 3. Decide on appropriate number of class intervals (k) based on the guidelines provided below :

No. of observations Recommended No. of Class Intervals

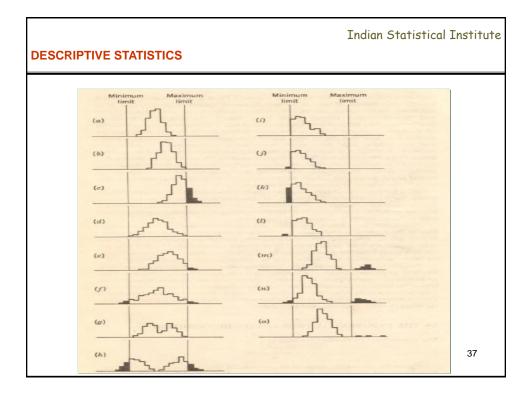

50-100	7	
101-200	8	
201-500	9	
500-100	10	
Over 1000	11-20	
		30

DESCRIPTIVE STATISTICS

These guidelines are not rigid and can be modified as and when found necessary. Generally, the number of classes should not be too large; otherwise the purpose of classification, viz, summarization of data will not be served. Moreover, by taking a large number of classes, one will introduce an irregular pattern in the frequencies which may be completely absent in the actual distribution.


The number of classes should not be too small either, for this also may obscure the true nature of the distribution, i.e, some useful information may be lost due to too much condensation. Further, if the number of classes is too small, each observation within any class is equal to the midpoint of that class will make the computed value of measures of central tendency and dispersion very unreliable.

Lastly, the classes should preferably be of equal width. Otherwise, the class frequencies will not be directly comparable and the computations of statistical measures will be laborious.



CRIPTIVE S						
Response	Time (in minu	ites) to 100) custome	er complai	nts	
93.7						
100.4						
109.2						
101.2						
105.3						
143.9						
63.9						
79.3						
111.5						
76.3						

CRIPTIVE STATISTICS		1	ndian Statistical	TU21
Frequency Distribution of	of Response Time			
Class	Midpoint of class (xi)	Frequency (fi)	% Cumulative Frequency (Fi)	
63.85 - 72.17	68.01	3	3	
72.17 - 80.49	76.33	8	11	
80.49 - 88.81	84.65	13	24	
88.81 - 97.13	92.97	17	41	
97.13 – 105.45	101.29	23	64	
105.45 – 113.77	109.61	19	83	
113.77 – 122.09	117.93	8	91	
122.09 - 130.41	126.25	4	95	
130.41 – 138.73	134.57	2	97	
138.73 – 147.05	142.89	3	100	

	Indian Statistical Institute
DESCRIP	PTIVE STATISTICS
Spe	ecimen of Histogram
Fig	ure shows 12 typical histogram.
1. 2.	Does the process have the ability to meet the specification limits? What action, if any, is appropriate on the process?
The	ese questions can be answered by analyzing.
1. 2. 3.	The centering of the histogram. This defines the aim of the process. The width of the histogram. This defines the variability about the aim. The shape of the histogram. When a normal or bell-shaped curve is expected, then any significant deviation or other aberration is usually caused by a manufacturing (or other) condition that may be the root of the quality problem. For example, histogram with two or more peaks may reveal that several "populations" have been mixed together.
	togram illustrate how variables data provide much more information than attributes data.

DESCRIPTIVE STATISTICS

For example, Figure b,d,g, and i warn of potential trouble even though all units in the sample are within specification limits. With attributes measurement, all the units would simply be classified as acceptable and the inspection report would have stated "50 inspected, 0 defective" – therefore no problem. One customer had a dramatic experience based on a lot which yielded a sample histogram similar to figure "i". Although the sample indicated that the lot met quality requirements, the customer realized that the vendor must have made much scrap and screened it out before delivery. A rough calculation indicated that full production must have been about 25 percent defective. The histogram enabled the customer to deduce this without ever having been inside the vendor's plant. Note how the " product tells on the process". As the customer would eventually pay for this scrap (in the selling price), he wanted the situation corrected. The vendor was contacted and advice was offered in a constructive manner.

As a general rule, at least 50 measurements are needed for the histogram to reveal the basic pattern of variation. Histogram based on too few measurements can lead to incorrect conclusions, because the shape of the histogram may be incomplete without the observer realizing it.

DESCRIPTIVE STATISTICS

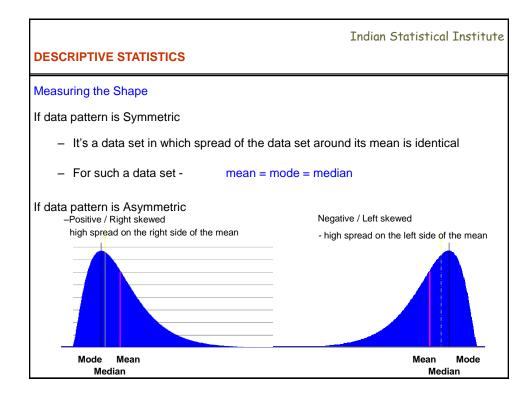
Histogram have limitations. Since the samples are taken at random rather than in the order of manufacture, the time to time process trends during manufacture are not disclosed. Hence the seeming central tendency of a histogram may be illusory – the process may have drifted substantially. In like manner, the histogram does not disclose whether the vendor's process was operating at its best, i.e., whether it was in a state of statistical control.

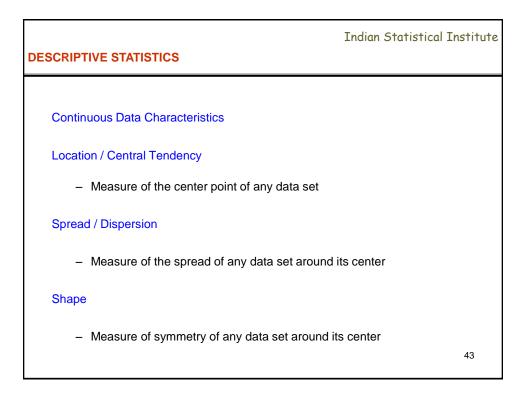
In spite of these shortcomings, the histogram is an effective analytical tool. The key to its usefulness is its simplicity. It speaks a language that everyone understands – comparison of product measurements against specification limits. To draw useful conclusions from this comparison requires little experience in interpreting frequency distribution, and no formal training in statistics. The experience soon expands, to include applications in development, manufacturing, vendor relations, and field data.

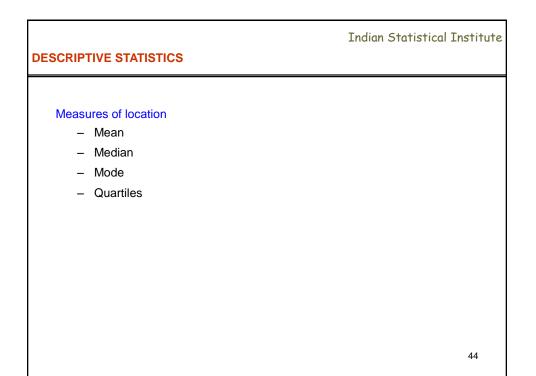
39

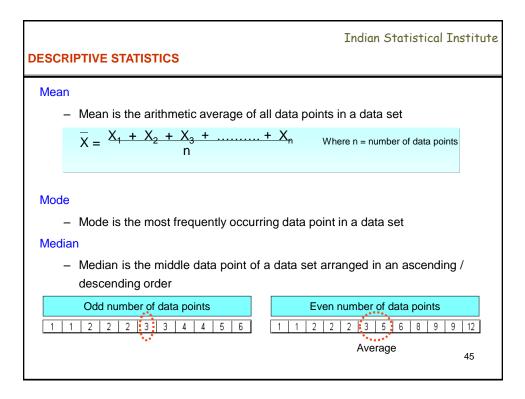
Indian Statistical Institute

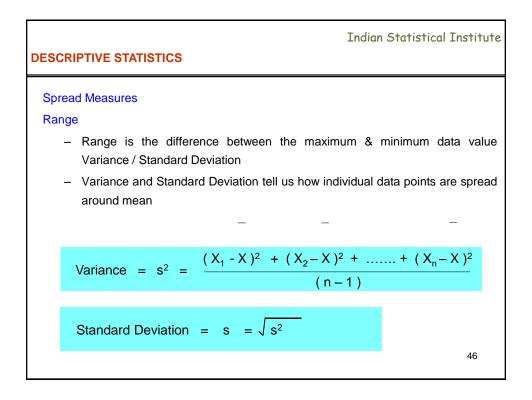
DESCRIPTIVE STATISTICS

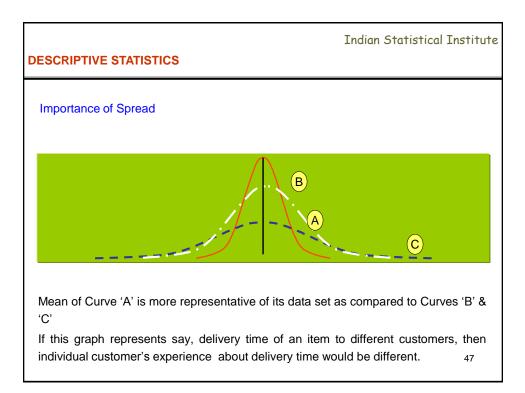

Exercise 1: The data shown below are chemical process yield on successive days. Construct a histogram for these data.

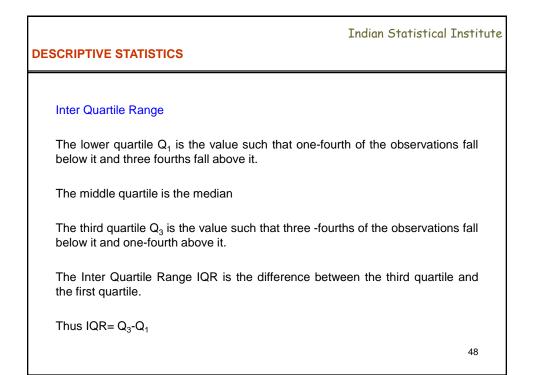

94.1	87.3	94.1	92.4	84.6	85.4
93.2	84.1	92.1	90.6	83.6	86.6
90.6	90.1	96.4	89.1	85.4	91.7
91.4	95.2	88.2	88.8	89.7	87.5
88.2	86.1	86.4	86.4	87.6	84.2
86.1	94.3	85	85.1	85.1	85.1
95.1	93.2	84.9	84	89.6	90.5
90	86.7	87.3	93.7	90	95.6
92.4	83	89.6	87.7	90.1	88.3
87.3	95.3	90.3	90.6	94.3	84.1


DESCRIPTIVE STATISTICS


Exercise 2: The time to failure in hours of an electronic component subjected to an accelerated life test is given below. Construct histogram of these data.

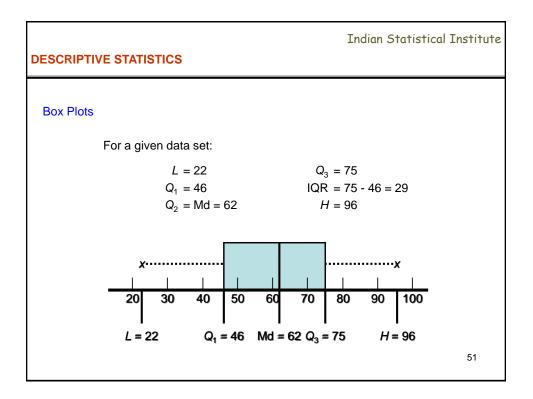

127	124	121	118
125	123	136	131
131	120	140	125
124	119	137	133
129	128	125	141
121	133	124	125
142	137	128	140
151	124	129	132
160	142	130	129
125	123	122	126

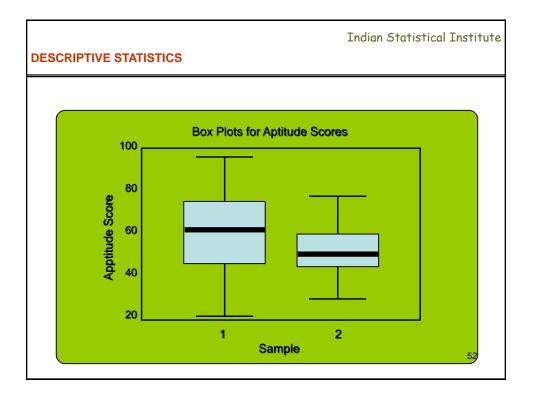




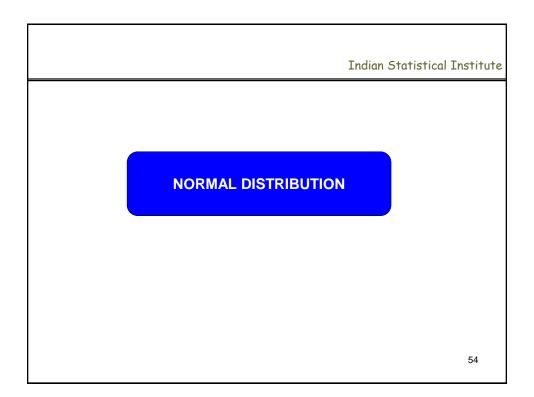
DESCRIPTIVE STATISTICS

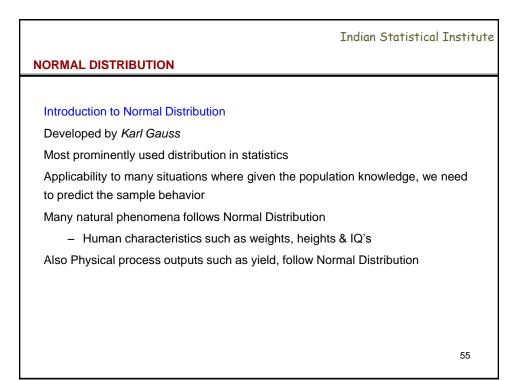
Box Plot

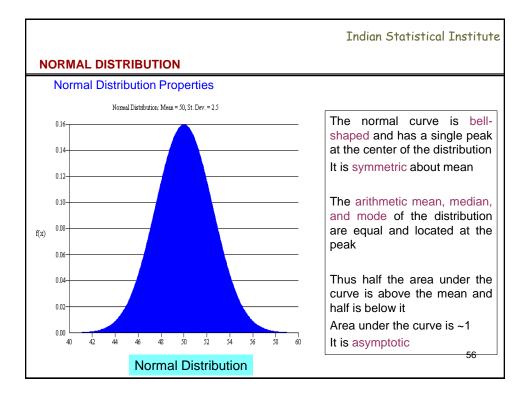

Box Plots are simple means of providing a useful picture of how the data are distributed. To draw Box Plot

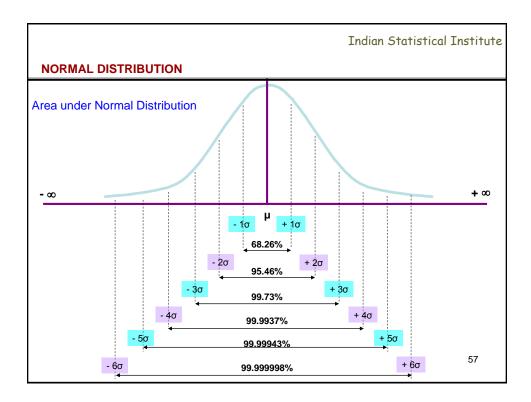

- Determine $\mathsf{Q}_1, \mathsf{Q}_3$ and IQR
- A line is drawn at the median to divide the box
- Two lines, known as Whiskers are drawn outward from the box.

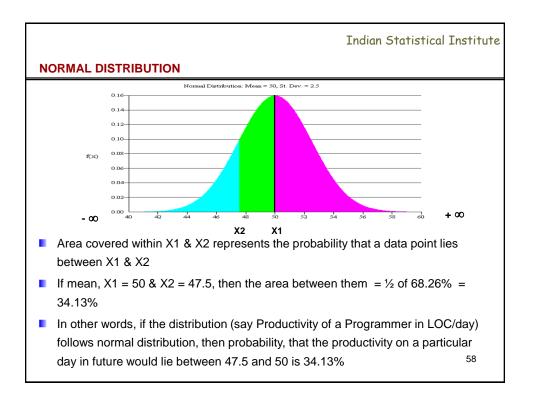
One line extends the top edge of the box at Q_3 to either maximum data value or $Q_3\text{+}1.5$ (IQR). Another line from the bottom edge of the box at Q_1 extends downward to a value that is either the minimum data value or Q_1 – 1.5 IQR whichever is greater.

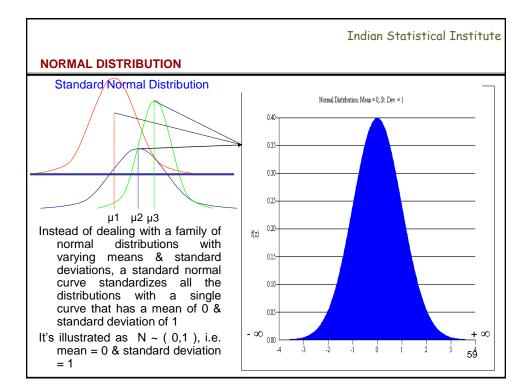

- The end points of the whiskers are known as upper and lower adjacent values
- Values that fall outside the adjacent values are candidates for consideration as₄₉ outliers. They are plotted as asterisks (*).

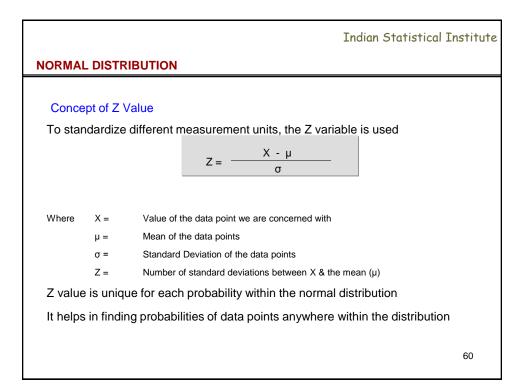

					Indi	an Statistica	l Institute
DESCRIP		FISTICS					
	93.7						
	100.4						
	109.2						
_	101.2						
_	105.3						
_	143.9		 				
	63.9		 				
	79.3		 		_		
	111.5 76.3		 		_		
	98.8		 				
	116.1		 				
	91.1						
	116.1						
	81.8		 				
	96.3						
	87.2						
	89.8						
	88.3						
	87.9						
	100.5						
	82.9						
	89.7						
	80.2						
	93.3						

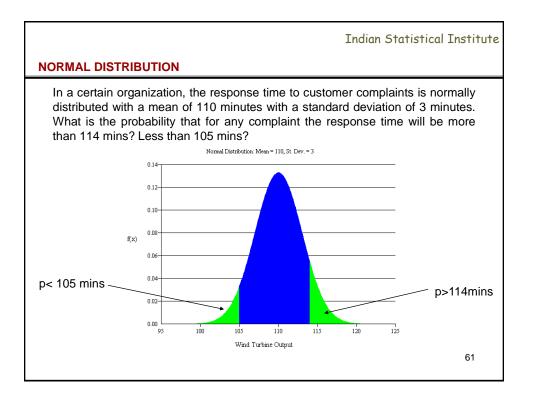


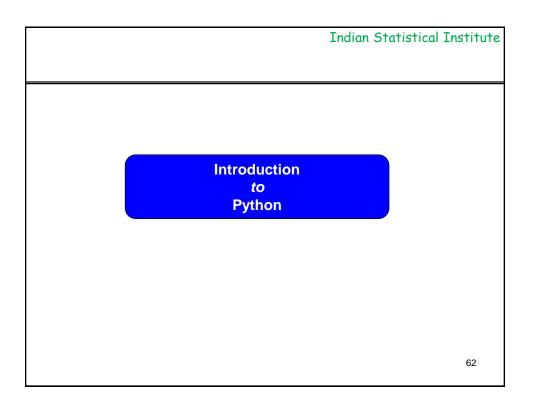


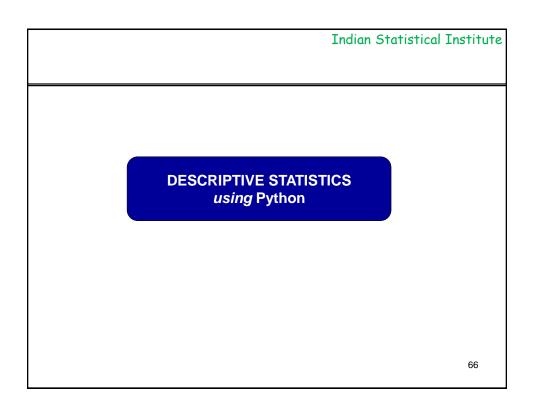

	Indian Statistical Institute
DESCRIPTIVE STATISTICS	
Exercise 1: The data of 30 customers on credit card usa	age in INR1000, are given.
1. Summarize and interpret the credit card usage?	
2. Plot histogram?	
	53

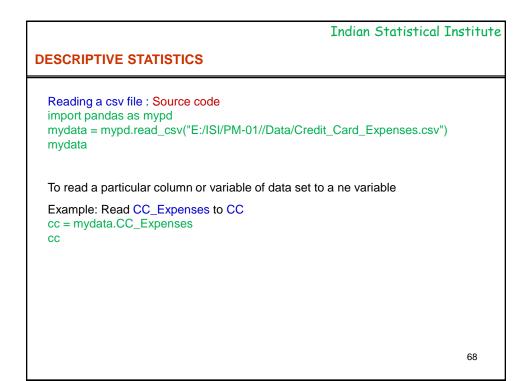










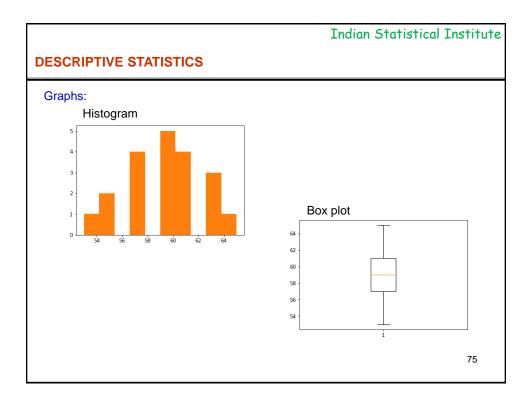

Indian Statistical Ins	titute
PYTHON INSTALLATION	
 Download Anaconda from <u>http://jupyter.readthedocs.io/en/latest/install.html</u> Run the set up (exe) file and follow instructions Check Jupyter notebook is installed 	<u>[</u>
	63

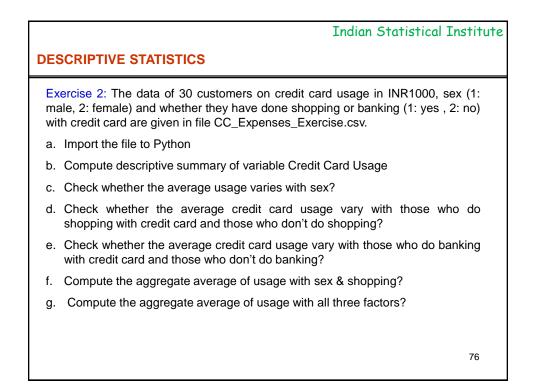
	Indian Statistical Instit
THON INSTALLATION	
3. Open Jupyter Notebook	
💭 jupyter	Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New - C
	Name 🛧 Last Modified 🛧
Anaconda3	a minute ago
Contacts	2 months ago
Desktop	3 hours ago
	24 days ago
Downloads	an hour ago
E Favorites	2 months ago
C Links	2 months ago
Music	2 months ago
OneDrive	2 months ago
C Pictures	2 months ago
Saved Games	2 months ago
Carches	2 months ago
Videos	2 months ago
Ø Untitled.ipynb	a month ago
🗆 🥔 Untitled1.ipynb	a month ago
🗌 🖉 Untitled2.ipynb	a month ago
Untitled3.ipynb	a month ago
C S Ontided3.pynb	

Indian Statistical Institute
Trusted / Python 3 O
65

Indian Statistical Inst	titute
DESCRIPTIVE STATISTICS	
Exercise 1: The monthly credit card expenses of an individual in 1000 rupees is given in the file Credit_Card_Expenses.csv.	
a. Read the dataset to Python	
 b. Compute mean, median minimum, maximum, range, variance, standa deviation, skewness, kurtosis and quantiles of Credit Card Expenses 	ard
c. Compute default summary of Credit Card Expenses	
d. Draw Histogram of Credit Card Expenses	
	07
	67

Description	
1.122	
addition	
subtraction	
multiplication	
division	
exponentiation	
modulus (x mod y) 5%2 is 1	
	multiplication division exponentiation

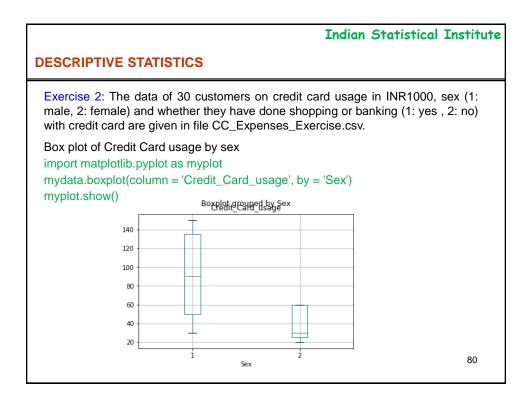

		Indian	Statistical Institute
DESCRIPTIVE	STATISTICS		
Operators - Lo	gical		
Operator		Description	
	<	less than	
	<=	less than or equal to	
	>	greater than	
	>=	greater than or equal to	
	==	exactly equal to	
	! =	not equal to	

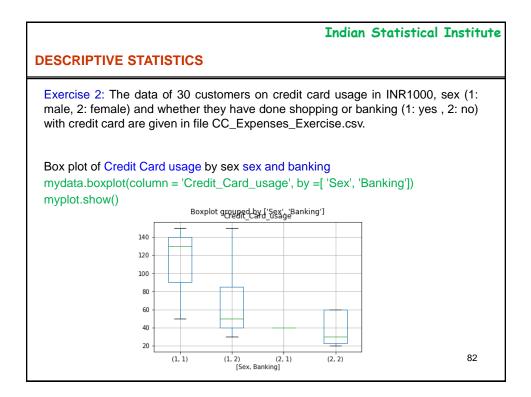

			Indian Statistical Institute
DES	CRIPTIVE STATISTICS		
Des	criptive Statistics		
Con	nputation of descriptive statistic	s for variable CC	
	······································		
	Function	Code	Value
	Mean	cc.mean()	59.2
	Median	cc.median()	59
	Mode	cc.mode()	59
	Standard deviation	cc.std()	3.105
	Variance	cc.var()	9.642
	Minimum	cc.min()	53
	Maximum	cc.max()	65
	Percentile	cc.quantile(0.9)	63
	Skewness	cc.skew()	-0.09
	Kurtosis	cc.kurt()	-0.436

		Indian Statistical Institut
ESCRIPTIVE STATISTIC	cs	
Descriptive Statistics		
Statistics	Code	
Summary	cc.describe()	
Statistics	Value	
Statistics	Value	
Statistics Count	Value 20	_
Count	20	
Count Mean	20 59.2	
Count Mean Standard Deviation	20 59.2 3.1052	
Count Mean Standard Deviation Minimum	20 59.2 3.1052 53	
Count Mean Standard Deviation Minimum Q1	20 59.2 3.1052 53 57	

		Indian Statistic	al Institu
ESCRIPTIVE STATI	STICS		
Descriptive Statistics			
withmetic functions for	r variable CC		
Function	Code	Value	
Count	cc.count()	20	
Sum	cc.sum()	1148	
Product	cc.prod()	6.21447E+18	
Product Function	cc.prod()	6.21447E+18	

DESCRIPTIVE STA
Graphs:
Graph
Histogram
Box Plot
Box Plot




Indian Statistical Institu	ıte
DESCRIPTIVE STATISTICS	
Exercise 2: The data of 30 customers on credit card usage in INR1000, sex (1: male, 2: female) and whether they have done shopping or banking (1: yes , 2: no) with credit card are given in file CC_Expenses_Exercise.csv.	
Reading dataset to variable: mydata import pandas as mypd mydata = mypd.read_csv("E:/ISI\PM-01/Data/CC_Expenses_Exercise.csv") mydata	
Reading the variable cc = mydata.Credit_Card_usage gender = mydata.Sex shopping = mydata.Shopping banking = mydata.Banking	
77	

DESCRIPT	Indian Statistical Institute								
male, 2: fe	Exercise 2: The data of 30 customers on credit card usage in INR1000, sex (1: male, 2: female) and whether they have done shopping or banking (1: yes , 2: no) with credit card are given in file CC_Expenses_Exercise.csv.								
Computing cc.describ		ve statistic	s for variat	le : CC					
Count	Mean	SD	Minimum	25%	50%	75%	Maximum		
30	30 66 42.9595 20 30 55 90 150								

	Indian Statistical Institute								
D	DESCRIPTIVE STATISTICS								
r	Exercise 2: The data of 30 customers on credit card usage in INR1000, sex (1: male, 2: female) and whether they have done shopping or banking (1: yes , 2: no) with credit card are given in file CC_Expenses_Exercise.csv.								
(Computing average	e credit card usa	age for different sex						
	cc.groupby(ge								
	Group	Sex	Average Credit Card Usage						
	1	Male	93.33333						
	2	Female	38.66667						
		•							
				79					

			Indian Statistical Institute
DESC	RIPTIVE STATISTICS	6	
male, with o Comp	, 2: female) and whether credit card are given in fi	r they have done s ile CC_Expenses_ e of credit card us	dit card usage in INR1000, sex (1: shopping or banking (1: yes , 2: no) Exercise.csv. sage for different sex and shopping
	Sex	Banking	Average Credit Card Usage
	Male	Yes	115.00000
	Male	No	68.57143
	Female	Yes	40.00000
	Female	No	38.57143
			81

DESCRIPTIVE STATISTICS

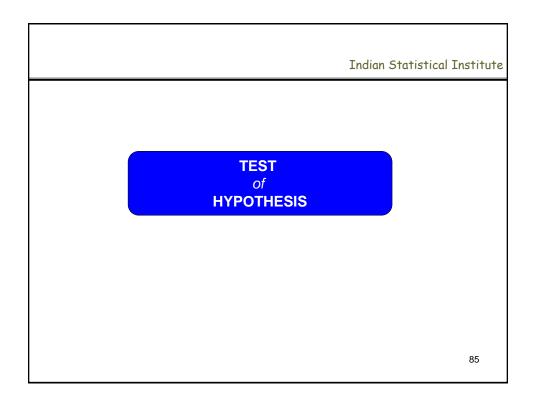
Exercise 2: The data of 30 customers on credit card usage in INR1000, sex (1: male, 2: female) and whether they have done shopping or banking (1: yes , 2: no) with credit card are given in file CC_Expenses_Exercise.csv.

Computing aggregate average of credit card usage by 3 factors

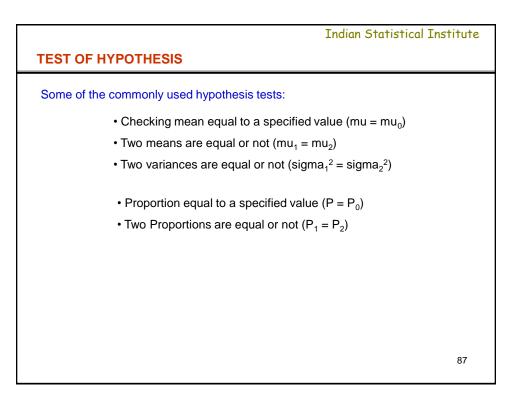
cc.groupby([gender, shopping, banking]).mean()

Sex	Shopping	Banking	Average Credit Card Usage
Male	Yes	Yes	130.00000
Male	Yes	No	62.00000
Male	No	Yes	70.00000
Male	No	No	85.00000
Female	Yes	Yes	40.00000
Female	Yes	No	48.00000
Female	No	No	33.33333 83

Indian Statistical Institute


DESCRIPTIVE STATISTICS

Exercise 2: The data of 30 customers on credit card usage in INR1000, sex (1: male, 2: female) and whether they have done shopping or banking (1: yes , 2: no) with credit card are given in file CC_Expenses_Exercise.csv.


Computing aggregate summary of credit card usage by 3 factors

cc.groupby([gender, shopping, banking]).describe()

Sex	Shopping	Banking	Count	Mean	SD	Min	25%	50%	75%	Max
Male	Yes	Yes	6	130	20.97618	90	130	135	140	150
Male	Yes	No	5	62	49.699	30	40	40	50	150
Male	No	Yes	2	70	28.284	50	60	70	80	90
Male	No	No	2	85	7.071	80	82.5	85	87.5	90
Female	Yes	Yes	1	40	-	40	40	40	40	40
Female	Yes	No	5	48	16.432	30	30	60	60	60
Female	No	No	9	33.3333	16.583	20	20	30	40	60
										84

Indian Statistical Institute **TEST OF HYPOTHESIS** Introduction: In many situations, it is required to accept or reject a statement or claim about some parameter Example: 1. The average cycle time is less than 24 hours 2. The % rejection is only 1% The statement is called the hypothesis The procedure for decision making about the hypothesis is called hypothesis testing **Advantages** 1. Handles uncertainty in decision making 2. Minimizes subjectivity in decision making 3. Helps to validate assumptions or verify conclusions 86

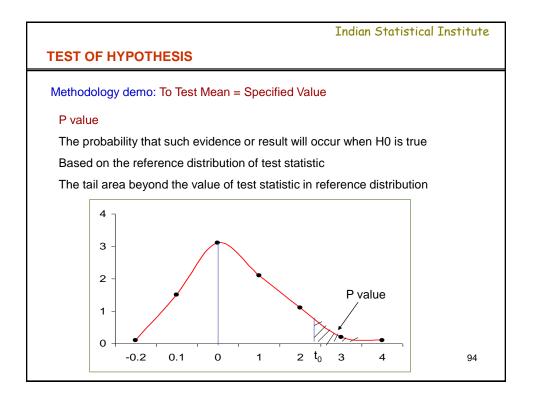
Indian Statistica	al Institute
TEST OF HYPOTHESIS	
Null Hypothesis:	
A statement about the status quo	
One of no difference or no effect	
Denoted by H0	
Alternative Hypothesis:	
One in which some difference or effect is expected	
Denoted by H1	
	88

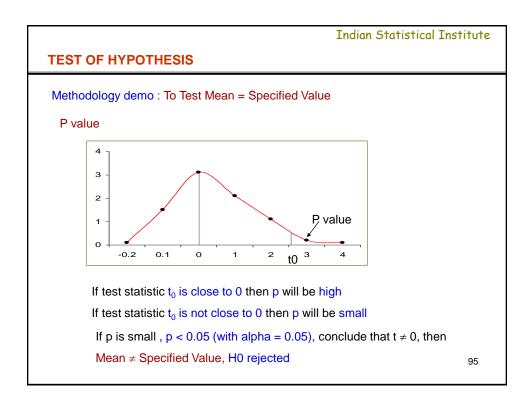
Indian Statistical Ins	titute
TEST OF HYPOTHESIS	
Types of errors in hypothesis testing	
The decision procedure may lead to either of the two wrong conclusions	
Type I Error	
Rejecting the null hypothesis H0 when it is true	
Type II Error	
Failing to reject the null hypothesis H0 when it is false	
Alpha (Significance level) = Probability of making type I error	
Beta = Probability of making type II error	
Power = 1 – Beta : Probability of correctly rejecting a false null hypothesis	
	89

TEST OF HYPOTHESIS

Hypothesis Testing: General Procedure

- 1. Formulate the null hypothesis H0 and the alternative hypothesis H1
- 2. Gather evidence (data collection)
- 3. Based on evidence take a decision to accept or reject H0


90


Indian Statistical Institute

- НҮРОТ	HESIS				
iody aemo	: To Test Me	an = Specif	ied Value (m	$u = mu_0$	
we want t	to test wheth	ner mean of	a process cl	0,	is 5 based on
4	4	5	5	6	
5	4.5	6.5	6	5.5	
e xbar with	h specified v	alue 5			
xbar - 5 is	s close to 0				
conclude	mean = 5				
mean ≠ 5	5				
					91
	ving samp 4 5 e the mea e xbar with xbar - sp xbar - 5 i conclude	4 4 5 4.5 e the mean of the same scher with specified wit	445 5 4.5 6.5 e the mean of the sample, xbar =e xbar with specified value 5xbar - specified value = xbar - 5 wxbar - 5 is close to 0conclude mean = 5	445554.5 6.5 6 e the mean of the sample, xbar = 5.15 e xbar with specified value 5xbar - specified value = xbar - 5 with 0xbar - 5 is close to 0conclude mean = 5	445565 4.5 6.5 6 5.5 e the mean of the sample, xbar = 5.15 e the mean of the sample, xbar = 5.15 e the mean of the sample, xbar = 5.15 e xbar with specified value 5 xbar - 5 with 0 xbar - 5 with 0 xbar - 5 is close to 0 conclude mean = 5

					Indian Stat	istical Institute
TEST	ОҒ НҮРОТ	THESIS				
Metho	dology demo	o : To Test M	lean = Spec	ified Value (mu = mu₀)	
Consid	der another s steristic is 50	set of sampl				process
	400	400	500	500	600]
	500	450	650	600	550	
C	xba Can we conc	ar - 500 = 5 [.] Iude mean ≠		5		
С	onclusion:					
	lifficult to say lone	/ mean = sp	ecified value	e by looking	at xbar - sp	ecified value
						92

Indian Statistical Institute
TEST OF HYPOTHESIS
Methodology demo: To Test Mean = Specified Value (mu = mu ₀)
Test statistic is calculated by dividing (xbar - specified value) by a function of standard deviation
To test Mean = Specified value
Test Statistic $t_0 = (xbar - Specified value) / (SD / \sqrt{n})$
If test statistic is close to 0, conclude that Mean = Specified value
To check whether test statistic is close to 0, find out p value from the sampling distribution of test statistic
93

					Indian S	Statistical Institute	
TE	ST OF HYI	POTHESIS					
То	Test Mean =	= Specified V	/alue (mu =	mu _o)			
E	xample: Su		ant to test w	hether mea	n of the proc	cess characteristic is	
	4	4	5	5	6]	
	5	4.5	6.5	6	5.5		
	H0: Mean = 5						
	H1: Mean ,	≠ 5					
	Calculate xbar = 5.15						
	SD = 0.8515						
	n = 10						
Test statistic t ₀ = (xbar - 5)/(SD / \sqrt{n}) = (5.15 - 5) / (0.8515 / $\sqrt{10}$) = 0.5571							
						96	

TEST OF HYPOTHESIS

One sample t test

Exercise 1 : A company claims that on an average it takes only 40 hours to process any purchase order. Based on the data given below, can you validate the claim? The data is given in PO_Processing.csv

99

Indian Statistical Institute

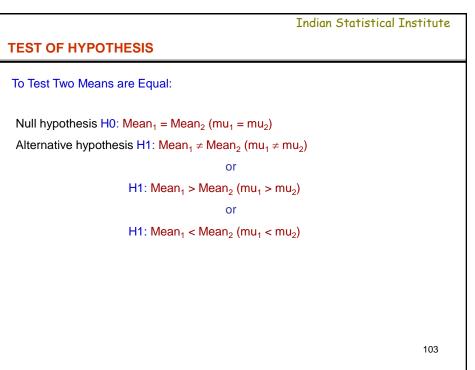
TEST OF HYPOTHESIS

One sample t test

Exercise 1 : A company claims that on an average it takes only 40 hours to process any purchase order. Based on the data given below, can you validate the claim? The data is given in PO_Processing.csv

Reading data to mydata import pandas as mypd from scipy import stats mydata = mypd.read_csv("E:/ISI/PM-01/Data/PO_Processing.csv") mydata PT = mydata.Processing_Time PT

Performing one sample t test stats.ttest_1samp(PT, 40)


TEST OF HYPOTHESIS

One sample t test

Exercise 1 : A company claims that on an average it takes only 40 hours to process any purchase order. Based on the data given below, can you validate the claim? The data is given in PO_Processing.csv

Statistics	Value
t	3.7031
P value	0.00035

		Indian Stati	stical Institute
TEST OF HYPOTHESIS			
One sample t test			
	oturing compon	v alaima that a	o on overego it
Exercise 2 : A computer manufa			
will respond to any complaint logg	-	-	
in 24 hours. Based on the dat	a, validate the	ciaim? The da	ata is given in
Compaint_Response_Time.csv	Bosson		1
	24	se Time 26	-
	31	20	-
	29	24	-
	26	23	
	28	27	
	26	28]
	29	27]
	29	23	
	27	27	-
	31	23	-
	25	25	-
	29	27	4
	29 25	26	-
	25	28 27	102
	20	21	1

Indian Statistical Institute
TEST OF HYPOTHESIS
To Test Two Means are Equal: Methodology
Calculate both sample means xbar1 & xbar2
Calculate SD1 & SD2
Compare xbar1 with xbar2
Or xbar1 - xbar2 with 0
Calculate test statistic t_0 by dividing (xbar1 – xbar2) by a function of SD1 & SD2
$t_0 = (xbar1 - xbar2) / (Sp \sqrt{((1/n1)+(1/n2))})$
Calculate p value from t distribution
If $p \ge 0.05$ then H0: Mean ₁ = Mean ₂ is not rejected
104

TEST OF HYPOTHESIS

Two sample t test

Exercise 1: A super market chain has introduced a promotional activity in its selected outlets in the city to increase the sales volume. Based on the data given below, check whether the promotional activity resulted in increasing the sales. The outlets where promotional activity introduced are denoted by 1 and others by 2? The data is given in Sales. Promotion.csv

Outlet	Sales	Outlet	Sales
1	1217	2	1731
1	1416	2	1420
1	1381	2	1065
1	1413	2	1612
1	1800	2	1361
1	1724	2	1259
1	1310	2	1470
1	1616	2	622
1	1941	2	1711
1	1792	2	2315
1	1453	2	1180
1	1780	2	1515

Indian Statistical Institute

105

TEST OF HYPOTHESIS

Two sample t test

Exercise 1: A super market chain has introduced a promotional activity in its selected outlets in the city to increase the sales volume. Based on the data given below, check whether the promotional activity resulted in increasing the sales. The outlets where promotional activity introduced are denoted by 1 and others by 2?

Reading data to mydata import pandas as mypd from scipy import stats mydata = mypd.read_csv("E:/ISI/PM-01/Data/Sales_Promotion.csv") mydata

Reading the variables sales_1 = mydata.Sales_Out1 sales_2 = mydata.Sales_Out2

TEST OF HYPOTHESIS

Two sample t test

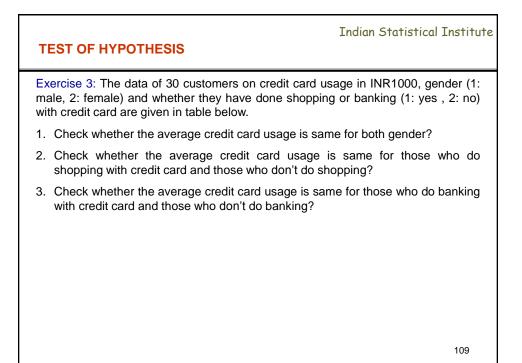
Exercise 1: A super market chain has introduced a promotional activity in its selected outlets in the city to increase the sales volume. Based on the data given below, check whether the promotional activity resulted in increasing the sales. The outlets where promotional activity introduced are denoted by 1 and others by 2?

2 sample t Test stats.ttest_ind(sales_1, sales_2)

Statistics	Value
t	0.9625
p value	0.3463

107

108


Indian Statistical Institute

TEST OF HYPOTHESIS

Two sample t test

Exercise 2: A bpo company have developed a new method for better utilization of its resources. 10 observations on utilization from both methods are given below: Check whether the mean utilization for both methods are same or not? Data is given in Utilization.csv.

Method	Utilization	Method	Utilization
Old	89.5	New	89.5
Old	90	New	91.5
Old	91	New	91
Old	91.5	New	89
Old	92.5	New	91.5
Old	91	New	92
Old	89	New	92
Old	89.5	New	90.5
Old	91	New	90
Old	92	New	91

Indian Statistical	Institute
TEST OF HYPOTHESIS	
Paired t test:	
A special case of two sample t test	
When observations on two groups are collected in pairs	
Each pair of observation is taken under homogeneous conditions	
Procedure	
Compute d: difference in paired observations	
Let difference in means be $\mu_D = \mu_1 - \mu_2$	
Null hypothesis H0: $\mu_D = 0$	
Alternative hypothesis H1: $\mu_D \neq 0$ or $\mu_D > 0$ or $\mu_D < 0$	
Test statistics t0 = $\frac{\overline{d}}{s_d / \sqrt{n}}$	
Reject H0 if p – value < 0.05	
	110

TEST OF HYPOTHESIS

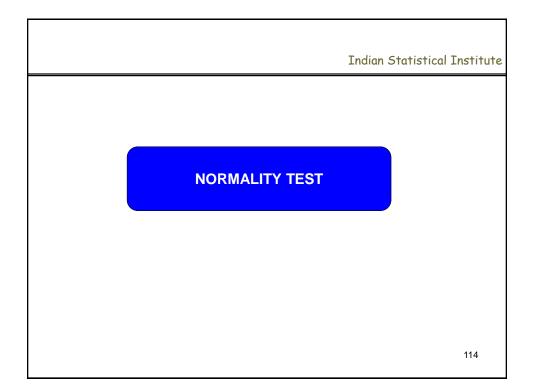
Paired t test: Exercise 1

The manager of a fleet of automobiles is testing two brands of radial tires. He assigns one tire of each brand at random to the two rear wheels of eight cars and runs the cars until the tire wear out. Is both brands have equal mean life? The data in kilometers is given in tires.csv

Brand 1	Brand 2
36925	34318
45300	42280
36240	35500
32100	31950
37210	38015
48360	47800
38200	37810
33500	33215

111

Indian Statistical Institute **TEST OF HYPOTHESIS** Paired t test: Exercise 1 The manager of a fleet of automobiles is testing two brands of radial tires. He assigns one tire of each brand at random to the two rear wheels of eight cars and runs the cars until the tire wear out. Is both brands have equal mean life? The data in kilometers is given in tires.csv Reading the file and variables mydata = mypd.read_csv("E:/ISI/PM-01/Course_Material/Data/Tires.csv") mydata b1 = mydata.Brand1 b2 = mydata.Brand2 Paired t test stats.ttest_rel(b1,b2) Statistics Value t 1.9039 P value 0.09863 112

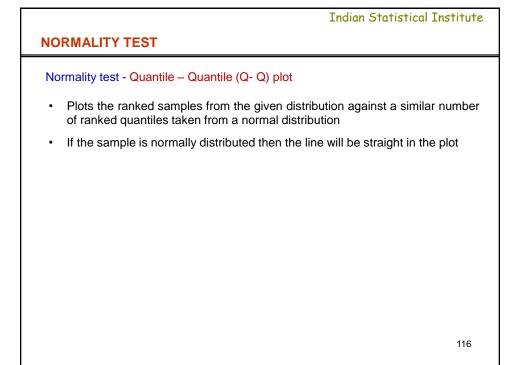

113

TEST OF HYPOTHESIS

Paired t test: Exercise 2

Ten individuals have participated in a diet – modification program to stimulate weight loss. Their weights (in kg) both before and after participation in the program is given in Diet.csv. One an average is the program successful?

Subject	Before	After
1	88	85
2	97	88
3	112	100
4	91	86
5	85	79
6	95	89
7	98	90
8	112	100
9	133	126
10	141	129


NORMALITY TEST

Normality test

A methodology to check whether the characteristic under study is normally distributed or not

Two Methods

- 1. Quantile Quantile (Q- Q) plot
- 2. Shapiro Wilk test

 NORMALITY TEST

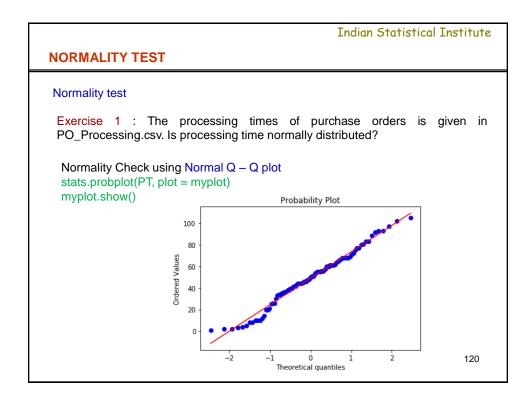
 Normality test - Shapiro - Wilk test

 H0: Deviation from bell shape (normality) = 0

 H1: Deviation from bell shape ≠ 0

 If p value ≥ 0.05 (5%), then H0 is not rejected, distribution is normal

Indian Statistical	Institute
NORMALITY TEST	
Normality test	
Exercise 1 : The processing times of purchase orders is PO_Processing.csv. Is the processing time normally distributed?	given in
	118


Indian Statistical Institute Exercise 1 : The processing times of purchase orders is given in PO_Processing.csv. Is processing time normally distributed? Reading the data and variable import pandas as mypd from scipy import stats import matplotlib.pyplot as myplot

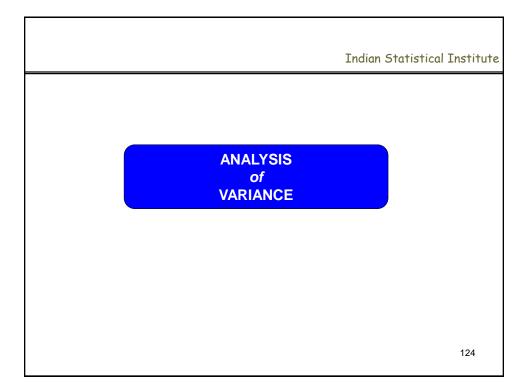
NORMALITY TEST

PT = mydata.Processing_Time

Normality test

119

mydata = mypd.read_csv("E:/ISI/PM-01/Data/PO_Processing.csv")


		Indian Stat	istical Institute
NOR	MALITY TEST		
Norm	ality test		
		g times of purchase orders	s is given in
P0_	Processing.csv. Is processing	g time normally distributed?	
Nor	mality test		
	s.mstats.normaltest(PT)		
			1
	Statistics	Value	
	W	0.33965	
	p value	0.84381	
			121
			121

		Indian Stati	stical Institute
NORMALITY TEST			
Normality toot			
Normality test			
Exercise 2 : The time taken to r			
Compaint_Response_Time.csv. C	Check whether	the complaint	response time
follows normal distribution?			
	Respon	se Time]
	24	26	-
	31	27	
	29	24	-
	26	23	
	28	27	-
	26	28	-
	29	27	
	29	23	-
	27	27	
	31	23	
	25	25	
	29	27	1
	29	26	1
	25	28	122
	26	27	1 122

NORMALITY TEST

Normality test

Exercise 3 : The impurity level (in ppm) is routinely measured in an intermediate chemical process. The data is given in Impurity.csv. Check whether the impurity follows normal distribution?

 Indian Statistical Institute

 ANALYSIS OF VARIANCE

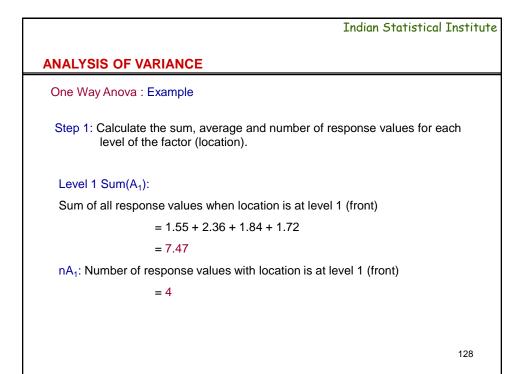
 ANOVA
 Analysis of Variance is a test of means for two or more populations

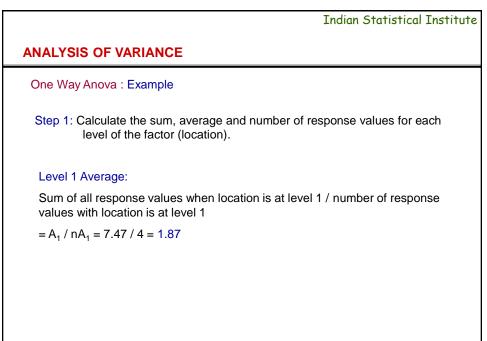
 Partitions the total variability in the variable under study to different components
 H0 = Mean₁ = Mean₂ = - - - = Mean_k

 Reject H0 if p - value < 0.05 Example:

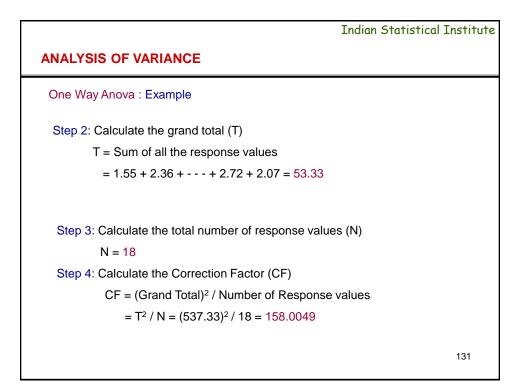
 To study location of shelf on sales revenue
 To study location of shelf on sales revenue

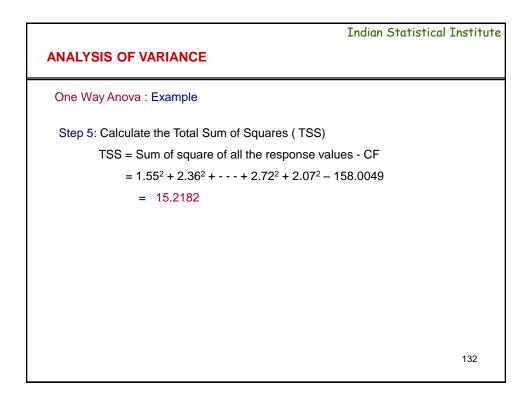
125

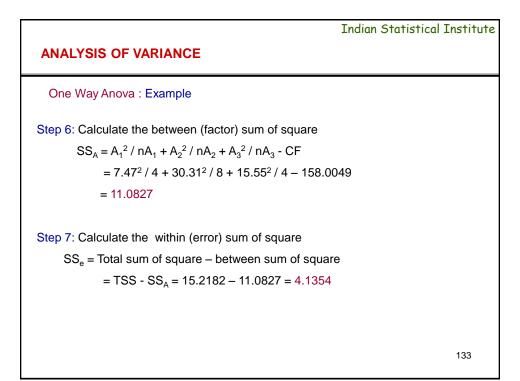

Indian Statistical Institute


ANALYSIS OF VARIANCE

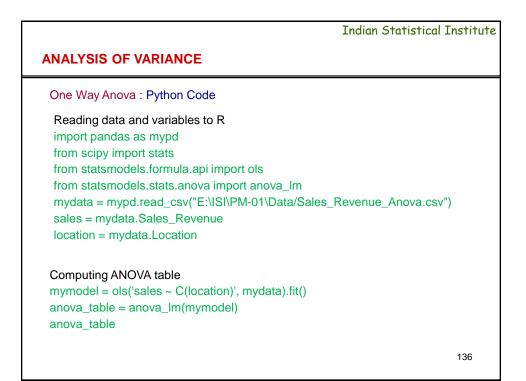
One Way Anova : Example

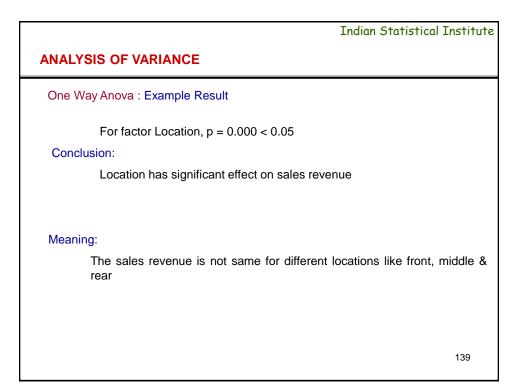

An electronics and home appliance chain suspect the location of shelves where television sets are kept will influence the sales revenue. The data on sales revenue in lakhs from the television sets when they are kept at different locations inside the store are given in sales revenue data file. The location is denoted as 1:front, 2: middle & 3: rear. Verify the doubt? The data is given in Sales_Revenue_Anova.csv.


	Indian Statistical Institute
ANALYSIS OF VARIANCE	
One Way Anova : Example	
Factor: Location(A)	
Levels : front, middle, rear	
Response: Sales revenue	
	127

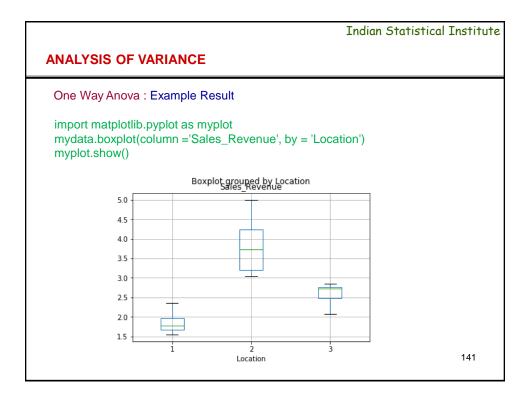


One W	'ay Anova : Exan	nple			
Step 1		sum, average an actor (location).	d number of res	ponse values fo	r each
		(front)	(middle)	(rear)	
	Sum	A ₁ : 7.47	A ₂ : 30.31	A ₃ : 15.55	
	Number	nA ₁ : 4	nA ₂ : 8	nA ₃ : 6	
	Average	1.87	3.79	2.59	




Indic	an Statistical Institute
ANALYSIS OF VARIANCE	
One Way Anova : Example	
Step 8: Calculate degrees of freedom (df)	
Total df = Total Number of response values - 1	
= 18 - 1 = 17	
Between df	
= Number of levels of the factor - 1	
= 3 - 1 = 2	
Within df = Total df – Between df	
= 17 - 2 = 15	
	404
	134

One Way A	nova :	Example				
Anova Tab	le:					
Source	df	SS	MS	F	F Crit	P value
Between	2	11.08272	5.541358	20.09949	3.68	0.0000
Within	15	4.135446	0.275696			
Total	17	15.21816				
MS = SS F = MS _B F Crit =	_{Between} ∕ I =fin∨ (p	orobability, be	tween df, with n df, within df	nin df) , proba	ability = 0.05	
Dyelu	- fdia					



e Way Anov	a :				
	df	SS	MS	F	p-value
Location	2	11.08272	5.541358	20.09949	5.7E-05
Residual	15	4.135446	0.275696		

Indian Statistical I	institute
ANALYSIS OF VARIANCE	
One Way Anova : Decision Rule	
If p value < 0.05, then	
The factor has significant effect on the process output or response.	
Meaning:	
When the factor is changed from 1 level to another level, there will be si	ignificant
change in the response.	
	138

One Way And	va : Example Re	sult	
The expecte averages.	d sales revenue	for different location under stud	y is equal to leve
	Location	Expected Sales Revenue	7
	Front	1.8675	
	Middle	3.78875	-

	Indian Statistical Institut
ANALYSIS OF VARIANCE	
Anova logic:	
Two Types of Variations:	
1. Variation within the level of a factor	
2. Variation between the levels of factor	
	142

143

ANALYSIS OF VARIANCE

Anova logic :

Variation between the level of a factor:

The effect of Factor.

Variation within the levels of a factor:

The inherent variation in the process or Process Error.

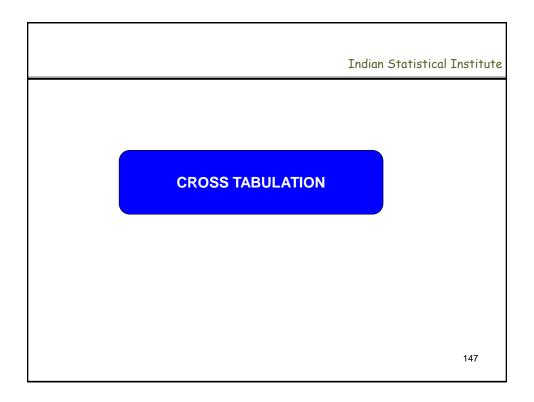
		Location	
	Front	Middle	Rear
	1.34	3.20	2.30
Ine	1.89	2.81	1.91
/er	1.35	4.52	1.40
Revenue	2.07	4.40	1.48
	2.41	4.75	
Sales	3.06	5.19	
ő		3.42	
		9.80	

Indian Statistical Institute
ANALYSIS OF VARIANCE

Anova logic :

If the variation between the levels of a factor is significantly higher than
the inherent variation
then the factor has significant effect on response

To check whether a factor is significant:
Compare variation between levels with variation within levels


144

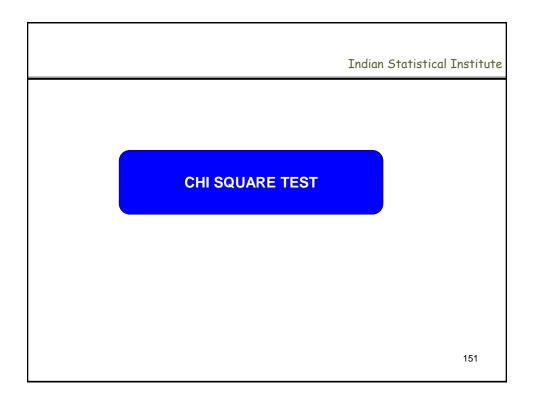
	Indian Statistical Institute
ANALYSIS OF VARIANCE	
Anova logic :	
Measure of variation between levels: MS of the factor	or (MS _{between})
Measure of variation within levels: MS Error (MS_{within})	,)
To check whether a factor is significant:	
Compare MS of between with MS within	
i.e. Calculate F = MS _{between} / MS _{within}	
If F is very high, then the factor is significant.	
	145

ANALYSIS OF VARIANCE

Exercise 1: An insurance company wants to check whether the waiting time of customer at their single window operation across 4 cities is same or not. The data is given in Insurance_waiting_time.csv?

Exercise 2: An two wheeler manufacturing company wants to study the effect of four engine tuning techniques on the mileage. The data collected is given in Mileage.csv file. Test whether the tuning techniques impacts the mileage?

	OSS TABULATION Indian Statistical Institut								
	 An approach to summarize and identify the relation between two or more variables or parameters 								
• De	 Describes two variables simultaneously 								
• E>	Expressed as two way table								
• Va	ariables need to be ca	itegorical oi	grouped						
	Input or Process	utput Variable							
	Variable	Very Good	Good	Average	Below Average	Poor			
	0 – 3								
	3 - 6								
	6 - 12								


CROSS TABULATION

Indian Statistical Institute

Example: A branded apparel manufacturing company has collected the data from 50 customers on usage, gender, awareness of brand and preference of the brand. Usage has been coded as 1, 2 ,and 3 representing light, medium and heavy usage. The gender has been coded as 1 for female and 2 for male users. The attitude and preference are measured on a 7 point scale (1: unfavorable to 7 : very favorable). The data is given in apparel_data.csv file .

- 1. Does male and female differ in their usage?
- 2. Does male and female differ in their awareness of the brand?
- 3. Does male and female differ in their preference?
- 4. Does higher the awareness means higher preference?

nypd id_csv(" age ender		ender vs. Us ·01/Data/App age)	U	csv")
		Usage		
nder	Light	Medium	Heavy	
nale	15	6	5	
ale	6	6	12	_
	nder nale ale	nale 15	nale 15 6	nale 15 6 5

Indian Statistical Ins	stitute
CHI SQUARE TEST	
Objective:	
To test whether two variables are related or not	
To check whether a metric is depends on another metric	
Usage:	
When both the variables (x & y) need to be categorical (grouped)	
H0: Relation between $x \& y = 0$ or x and y are independent	
H1: Relation between x & y \neq 0 or x and y are not independent	
If p value < 0.05, then H0 is rejected	
	152

CHI SQUARE TEST

Exercise:

A project is undertaken to improve the CSat score of transaction processing. Based on brainstorming, the project team suspects that lack of experience is a cause of low CSat score.

The following data was collected. Analyze the data and verify whether CSat score dependents on experience

Experience		С	Sat Sco	e	
(Months)	VD	D	Ν	S	VS
0-3	50	40	30	10	10
3- 6	5	30	50	35	7
6 - 9	6	7	30	40	50

Note: Table gives the count of CSat score of very dissatisfied to very satisfied for agents belonging to three different experience groups

CHI SQUARE 1	Indian Statistical HI SQUARE TEST								
Exercise:									
Step 1: Calcula	te the ro	ow and	colum	n sum					
Experience		CSat Score							
(Months)	VD	D	N	S	VS	Row Sum			
0 – 3	50	40	30	10	10	140			
3 - 6	5	30	50	35	7	127			
6 - 9	6	7	30	40	50	133			
Col Sum	61	77	110	85	67	400			
							154		

CHI SQUARE TEST

Exercise:

Step 2: Calculate expected count for each cell

Expected count of CSat score VD for group 0 – 3 months experience

= Expected count of cell (1,1) = (Row 1 sum x Column 1 sum) / Total

= (140 x 61) / 400 = 21.4

Table of expected count (the count expected if variables are not related)

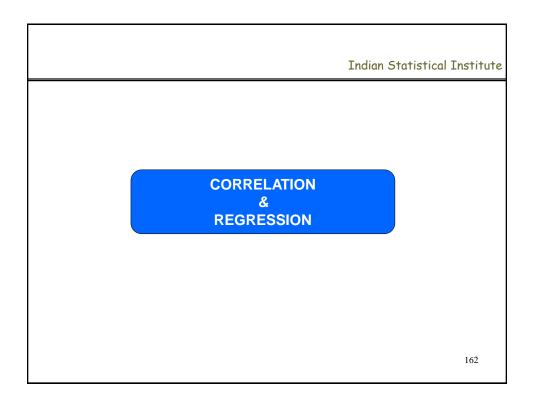
Experience		CSat Score					
(Months)	VD	D	Ν	S	VS	Row Sum	1
0 – 3	21.4	27	38.5	29.8	23.5	140	1
3 - 6	19.4	24.4	34.9	27	21.3	127]
6 - 9	20.3	25.6	36.6	28.3	22.3	133]
Col Sum	61	77	110	85	67	400	15

				Inc	lian Stat	istical Institut
CHI SQUARE TE	ST					
Exercise:						
Step 3: Take diffe	rence betwe	en obsei	ved cou	nt and ex	pected c	ount
For cell (1,1)						
observe	d Count = 5	50				
expecte	d Count = 2	1.4				
differen	ce = 28.7					
Table of observe	d count – e>	cpected of	count			
Experience		С	Sat Scor	е		
(Months)	VD	D	Ν	S	VS	
0 – 3	28.7	13.1	-8.5	-20	-13	1
3 - 6	-14.4	5.55	15.1	8.01	-14	1
		-19	-6.6	11.7	27.7	1

	Indian Statistical Institute									
С	CHI SQUARE TEST									
E	Exercise:									
	Step 4: Calcula	ite (obser	ved - exp	ected)2 /	expected	d for each	n cell			
	Table of (observed - expected) ² / expected									
	Experience		С	Stat Sco	re					
	(Months)	VD	D	Ν	S	VS				
	0-3	38.45	6.32	1.88	13.11	7.71				
	3 - 6	10.66	1.26	6.51	2.38	9.58				
	6-9	10.06	13.52	1.18	4.87	34.50				
								157		

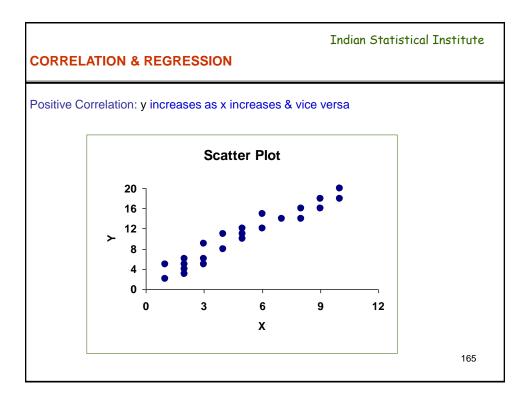
Indian Statistical Institute
CHI SQUARE TEST
Exercise:
Step 5: Calculate Chi Square = Sum of all ((observed - expected) ² / expected)
Chi Square calculated = 38.45 + 6.32 + + 34.5
Chi Square Calculated χ^2 = 161.98
If variables are not related then χ^2 will be close to 0
Step 6: Calculate p value
P value = chidist(chi Sq, df)
= chidist(161.98,8)
= 0.00
Conclusion:
Since p value $0.00 < 0.05$, Csat score depends on experience or the variables are related
158

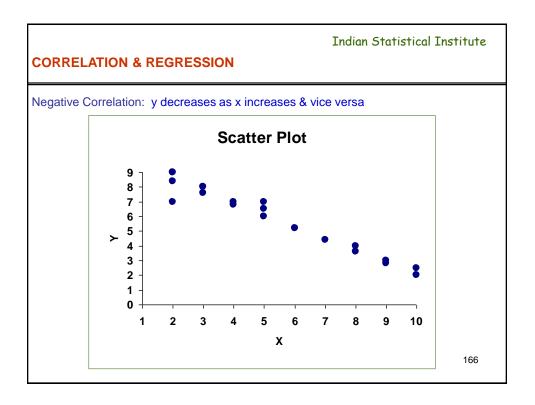
CHI SQUARE TEST

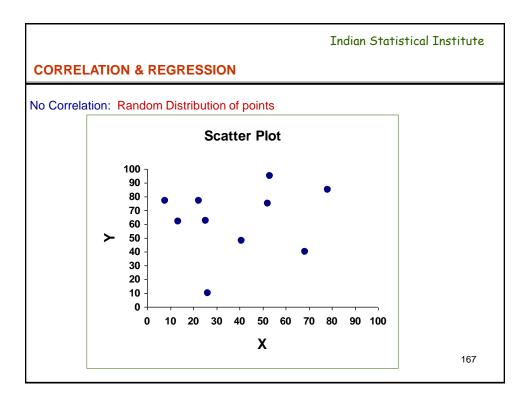

Example: A branded apparel manufacturing company has collected the data from 50 customers on usage, gender, awareness of brand and preference of the brand. Usage has been coded as 1, 2, and 3 representing light, medium and heavy usage. The gender has been coded as 1 for female and 2 for male users. The attitude and preference are measured on a 7 point scale (1: unfavorable to 7 : very favorable). The data is given in apparel_data.csv file .

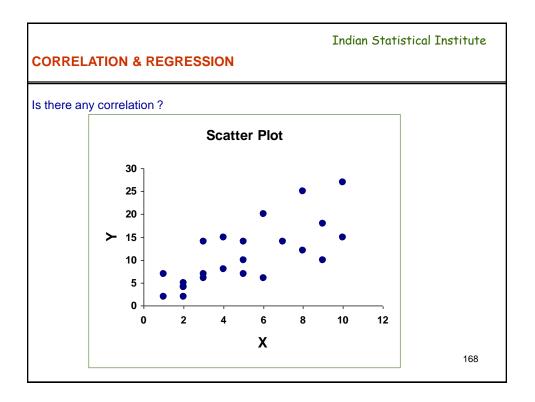
- 1. Estimate the relation between gender and usage?
- 2. Estimate the relation between gender and awareness of the brand?
- 3. Estimate the relation between gender and preference?
- 4. Does higher the awareness means higher preference?

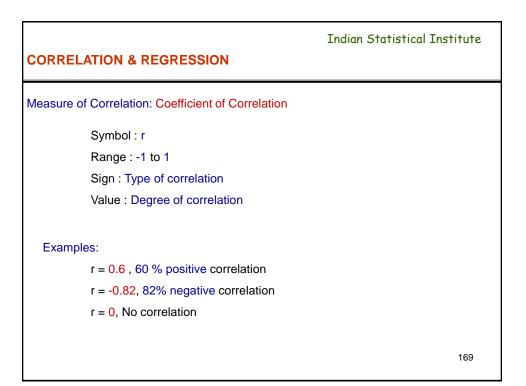
159

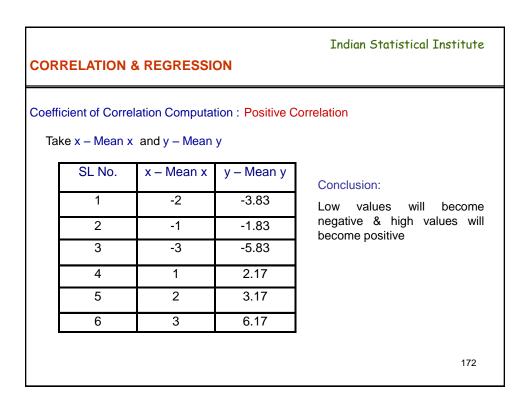

CHI SQUARE T	EST			Indiar	n Statistical Institut
b. Constructi import panda mydata = my usage = myd gender = my mytable = my mytable	as as mypd pd.read_csv ata.Usage data.Gender	("E:/ISI/PM	01/Data/Ap	C	CSV")
			Usage		
	Gender	Light	Medium	Heavy	
	Male	15	6	5	
	Female	6	6	12	
	remale	o	o	12	


CHI SQUARE TEST	Indian Sta	atistical Institute
c. Chi Square test of independenc from scipy import stats stats.chi2_contingency(mytable)	e - Gender vs. Usage	
Statistics	Value]
Chi Square	6.6702	
P value	0.03561	
		161




CORR	Indian Statistical Insti RELATION & REGRESSION	tute
Correla	ation:	
	Correlation analysis is a technique to identify the relationship betwe variables.	en two
	Type and degree of relationship between two variables.	
		163


Indian Statistical Institute CORRELATION & REGRESSION Correlation: Usage Explore the relationship between the output characteristic and input or process variable. Output variable : y : Dependent variable Input / Process variable : x : Independent variable 164



CORREL	ATION & REGRESSION	Indian Stati	stical Institute
Coefficien	t of Correlation Computation:	Positive Correlation	
Collec	t data on x and y: When x is l	ow, y is also low & vice versa	
	Х	У	
	2	5	
	3	7	
	1	3	
	5	11	
	6	12	
	7	15	170

Indian Statistical Institute **CORRELATION & REGRESSION** Coefficient of Correlation Computation : Positive Correlation Calculate Mean of x & y values SL No. х у 8.83 Mean

CORRELATION & REGRESSION

Coefficient of Correlation Computation : Positive Correlation

Generally when x values are negative, y values are also negative & vice versa

SL No.	x – Mean x	y – Mean y
1	-2	-3.83
2	-1	-1.83
3	-3	-5.83
4	1	2.17
5	2	3.17
6	3	6.17
6	3	6.17

173

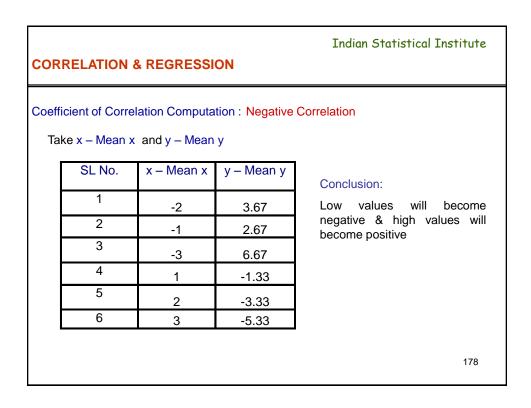
Indian Statistical Institute

COP	Indian Statistical Institut RRELATION & REGRESSION					
Coeff	icient of Corre	lation Comput	ation : Positive	Correlation		
Th	ien					
		ct of x & y valu	es will be gener	ally positive		
	SL No.	x – Mean x	y – Mean y	Product]	
	1	-2	-3.83	7.66		
	2	-1	-1.83	1.83		
	3	-3	-5.83	17.49		
	4	1	2.17	2.17		
	5	2	3.17	6.34		
	6	3	6.17	18.51]	
		· · ·	Sum = Sxy	54	174	

Sum of Product of x & y values (Sxy) will be positive	COR	Indian Statistical Institute					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		·					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SL No.	x – Mean x	y – Mean y	Product		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	-2	-3.83	7.66		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	-1	-1.83	1.83		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	-3	-5.83	17.49		
6 3 6.17 18.51 Sum = Sxy 54		4	1	2.17	2.17		
Sum = Sxy 54		5	2	3.17	6.34		
Sum = Sxy 54		6	3	6.17	18.51		
1/3				Sum = Sxy	54	175	

CORREL	ATION & REGRESSION		atistical Institute
Coefficient	t of Correlation Computatior	: Negative Correlation	
Collect	t data on x and y: When x is	low then y will be high & vice	versa
[x	У]
	2	12	-
	3	11	1
	1	15	
	5	7	
	6	5	1
	7	3	-
		<u> </u>	176

CORRELATION & REGRESSION

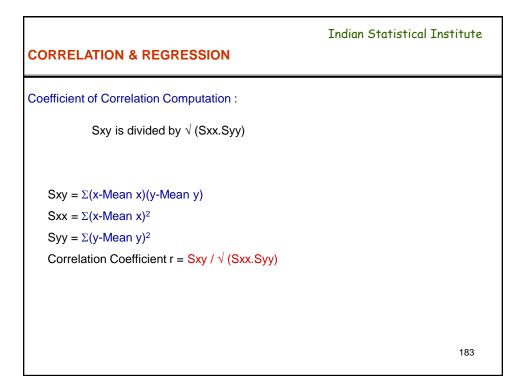

Coefficient of Correlation Computation : Negative Correlation

Calculate Mean of x & y values

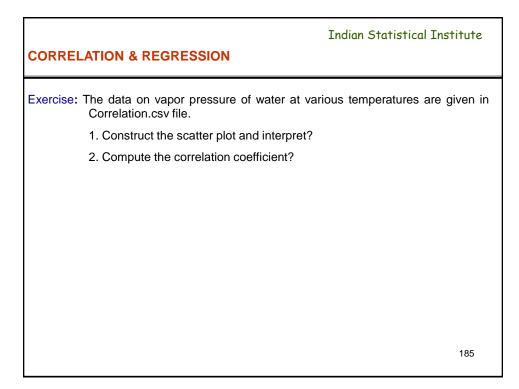
SL No.	x	У
1	2	12
2	3	11
3	1	15
4	5	7
5	6	5
6	7	3
Mean	4	8.83

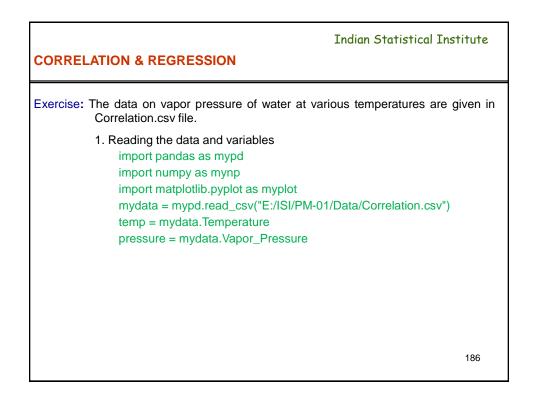
177

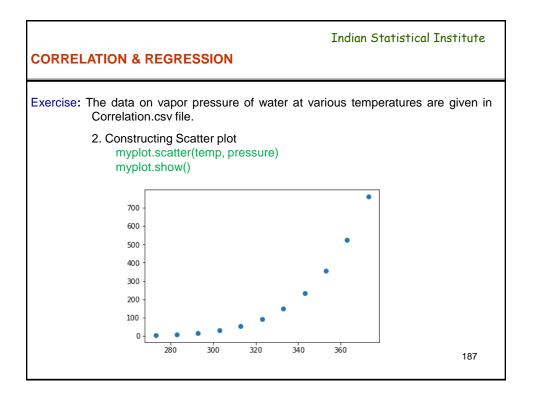
Indian Statistical Institute

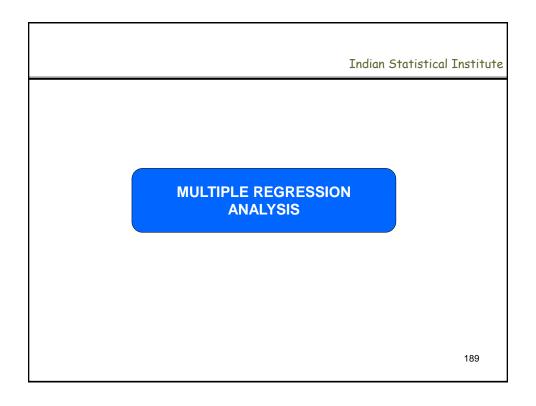


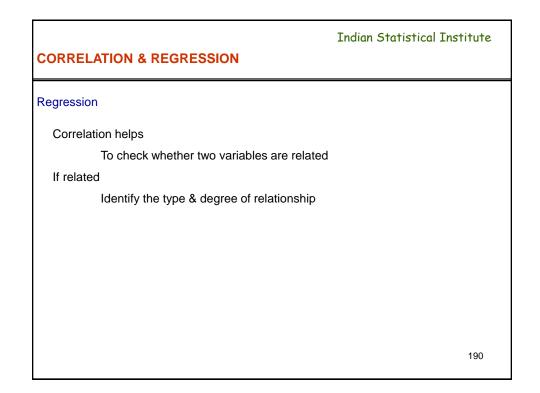
Indian Statistical Institute **CORRELATION & REGRESSION** Coefficient of Correlation Computation : Negative Correlation Generally when x values are negative, y values are positive & vice versa x – Mean x y – Mean y SL No. 1 3.67 -2 2 -1 2.67 3 6.67 -3 4 1 -1.33 5 2 -3.33 6 3 -5.33 179

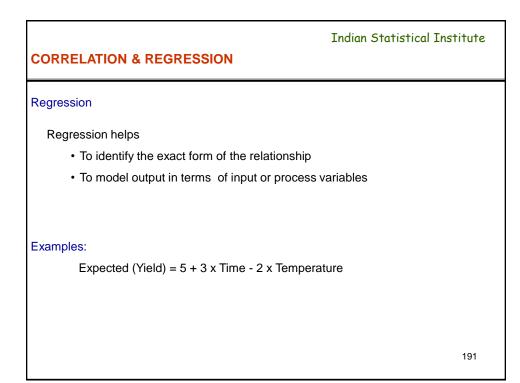

COR	Indian Statistical Institute RRELATION & REGRESSION					
Coeff	ficient of Correlation Computation : Negative Correlation					
	Then					
		ct of x & y value	es will be gener	ally negative		
1	SL No.	x – Mean x	y – Mean y	Product	1	
	1					
	2	-2	3.67	-7.34		
:	_	-1	2.67	-2.67		
	3	-3	6.67	-20.01		
	4	1	-1.33	-1.33		
	5	2	-3.33	-6.66		
	6	3	-5.33	-15.99]	
	Sum = Sxy			- 54		

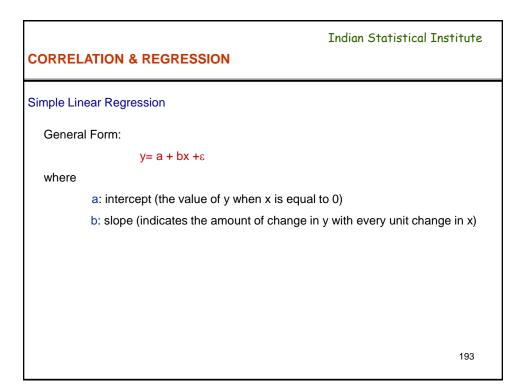

Coefficient of Correlation Computation : Negative CorrelationSum of Product of x & y values Sxy will be negative $\boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$	COR	Indian Statistical Institute RRELATION & REGRESSION					
SL No. $x - Mean x$ $y - Mean y$ Product 1 -2 3.67 -7.34 2 -1 2.67 -2.67 3 -3 6.67 -20.01	Coeff	Coefficient of Correlation Computation : Negative Correlation					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sum of Product of x & y values Sxy will be negative						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		SL No.	x – Mean x	y – Mean y	Product		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	-2	3.67	-7.34		
-3 6.67 -20.01		2	-1	2.67	-2.67		
4 1 -1.33 -1.33		3	-3	6.67	-20.01		
		4	1	-1.33	-1.33		
5 2 -3.33 -6.66		5	2	-3.33	-6.66		
6 3 -5.33 -15.99		6	3	-5.33	-15.99		
Sum = Sxy - 54			· · ·	Sum = Sxy	- 54	181	

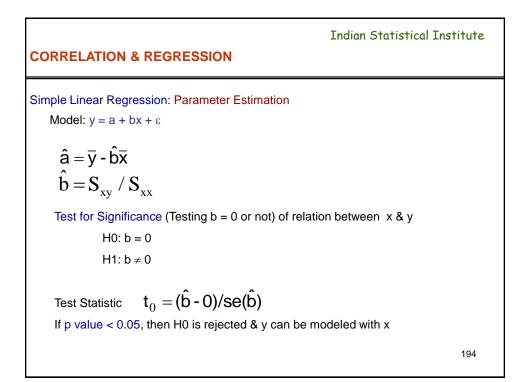

182

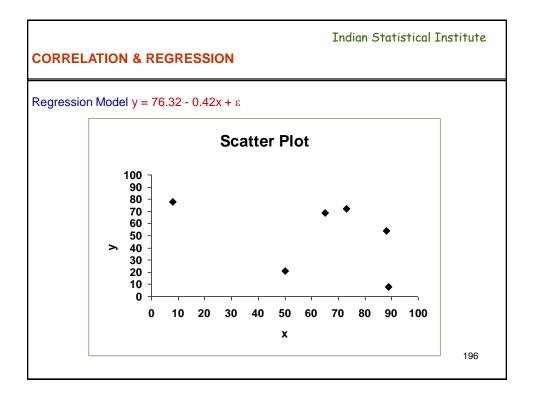

Indian Statistical					atistical Institute	
Coefficient of Correlation Computation :						
SL No. $x - Mean x y - Mean y$ Product $(x - Mean x)^2 (y - Mean y)^2$						
1	-2	3.67	-7.34	4	14.6689	
2	-1	2.67	-2.67	1	3.3489	
3	-3	6.67	-20.01	9	33.9889	
4	1	-1.33	-1.33	1	4.7089	
5	2	-3.33	-6.66	4	10.0489	
6	3	-5.33	-15.99	9	38.0689	
Sun	n		Sxy: -54	Sxx: 28	Syy:104.83	

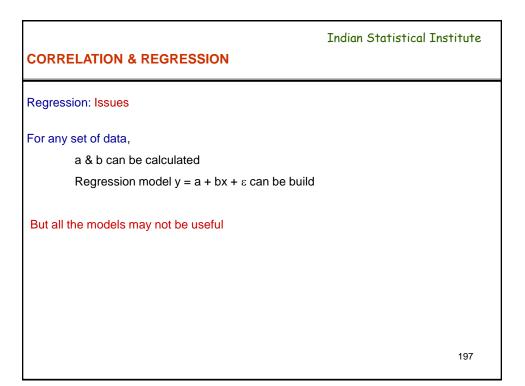


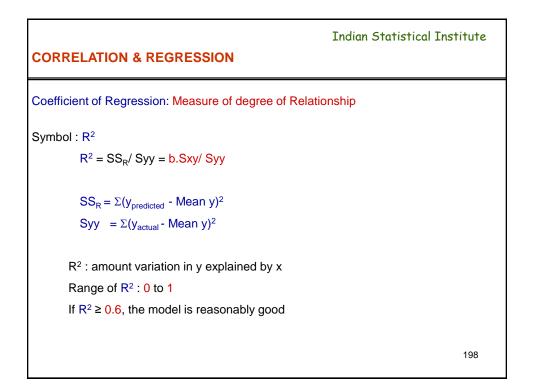



CORRE	LATION & REGRESSION	Indian Statistical Institute
Exercise	: The data on vapor pressu Correlation.csv file.	re of water at various temperatures are given in
	Computing correlation coe	efficient
	mynp.corrcoef(temp, pres	sure)
	Statistics	Value
	r	0.893
		188

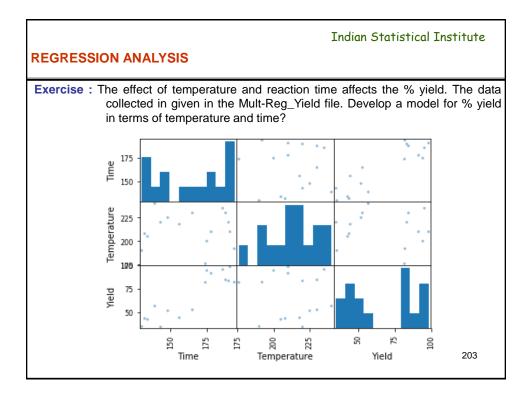





LATION & REGRE	SSION	Indian Statistical Institute
		variable
x 2	у 7	Regression Model y = 1 + 3x
5	16	_
3	10	
	t variable is modeled X 2 1 5 4 3	2 7 1 4 5 16 4 13 3 10



CORRELA	TION & REGRESSION	Indian Stati	stical Institute
Regression i	illustration: Issues		
Γ	X	У	
	65	69	
	8	78	
	89	8	
	88	21	
	50	24	
	73	72	
L		1] 195



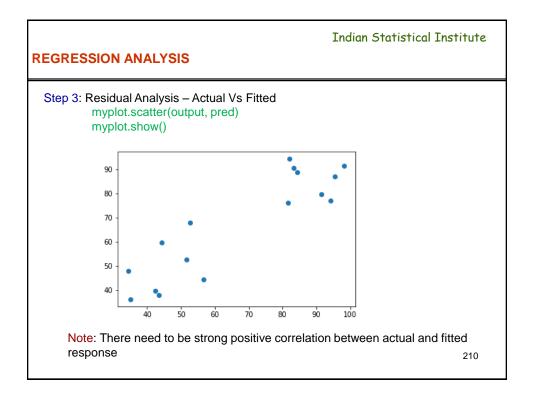
efficient of Regre	ssion: Testing the sign	ificance o	f Regres	sion	
Regression ANO	VA				
Model	SS	df	MS	F	p value
Regression	SS _R				
Residual	Syy – SS _R				
Total	Syy				
lf p value < 0	.05, then the regressi	on model	is signifi	cant	

REGRESSION ANALYSIS	Indian Statistical Institute
Multiple Linear Regression	
To model output variable y in terms of two or more va	ariables.
General Form:	
$y = a + b_1 x_1 + b_2 x_2 + \dots + b_k x_k + \varepsilon$	
Two variable case:	
$y = a + b_1 x_1 + b_2 x_2 + \varepsilon$	
Where	
a: intercept (the predicted value of y when all x's are	zero)
b _j : slope (the amount change in y for unit change in y 1,2,,k)	x_j keeping all other x's constant, j =
	200

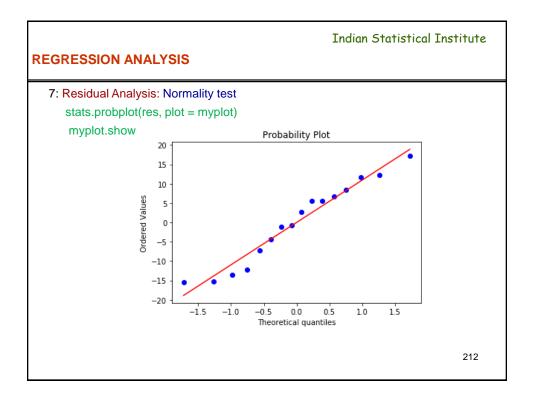
Indian Statistical Institute	
REGRESSION ANALYSIS	
Exercise : The effect of temperature and reaction time affects the % yield. The dat collected in given in the Mult-Reg_Yield file. Develop a model for % yie in terms of temperature and time?	
Step 1: Read data	
import pandas as mypd	
from scipy import stats	
import matplotlib.pyplot as myplot from pandas.tools.plotting import scatter_matrix	
from statsmodels.formula.api import ols	
from statsmodels.stats.anova import anova_Im	
mydata = mypd.read_csv("E:/ISI/PM-01/Data/Mult_reg_Yield.csv")	
time = mydata.Time	
temp = mydata.Temperature	
output = mydata.Yield	
201	

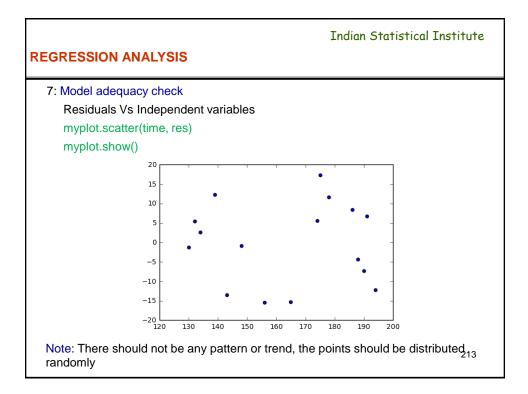
	Indian Statistical Institute
REGRESSION ANALYSIS	
Exercise : The effect of temperature and reaction tim collected in given in the Mult-Reg_Yield fi in terms of temperature and time?	
Step 1: Correlation Analysis scatter_matrix(mydata) myplot.show()	
Correlation between xs & y should be high	
Correlation between xs should be low	
	202

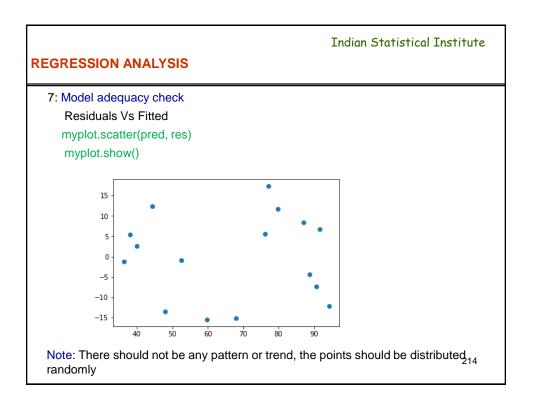
			Indian Sta [.]	tistical Institute
REGRE	SSION ANALYSIS			
Step 2: F	Regression Output			
	mymodel = ols("output ~ t	ime + temp", myd	data).fit()	
	mymodel.summary()			
	Statistics	Value	Criteria	
	R-squared:	0.806	≥ 0.6	
	Adj. R-squared:	0.777	≥ 0.6	
	F-statistic:	27.07		
	Prob (F-statistic):	2.32e-05	< 0.05	
	Log-Likelihood:	-59.703		
	AIC:	125.4		
	BIC:	127.7		


Step 2: Reg	ression Outpu	ut					
	anova_table	= anova	_lm(mymode	el)			
	anova_table						
		df	SS	MS	F	p-value	
	Time	1	6777.81	6777.81	53.98722	0.000006	
	Temp	1	19.25253	19.25253	0.153352	0.701696	
	Residual	13	1632.081	125.5447			
	Criteria: p v	/alue < 0	.05				

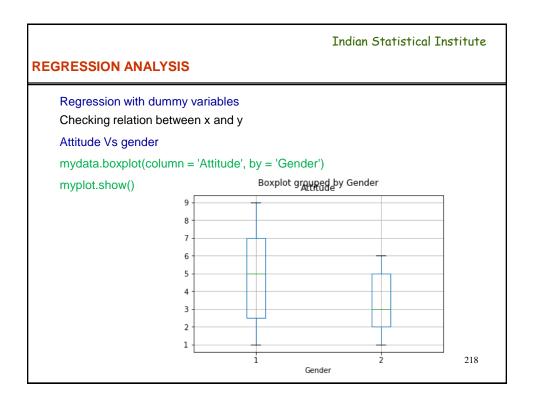
Regression O	utput				
Regression AN	IOVA				
Model	SS	df	MS	F	p value
Regression	6797.063	2	3398.531	27.07	0.0000
Residual	1632.08138	13	125.5447		
Total	8429.14438	15			
Iotal Criteria: P valu		15			

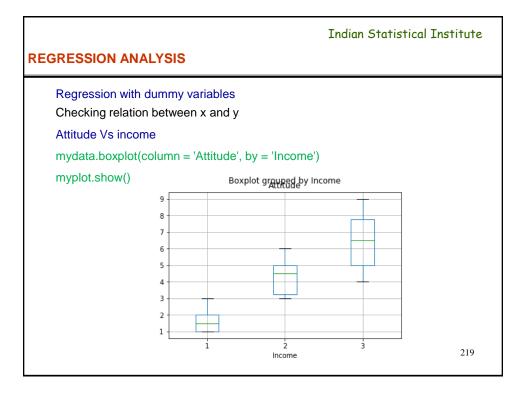

Indian Statistical Institute GRESSION ANALYSIS									
tep 2: Regr	ession Output -	- Identify th	e model						
	Coefficients	Std error	t	p-value	[0.025	0.975]			
Intercept	-67.8844	40.587	-1.673	0.118	-155.57	19.797			
Time	0.9061	0.123	7.344	0.000	0.64	1.173			
Temp	-0.0642	0.164	-0.392	0.702	-0.418	0.29			
Interpret	ation: Only time	e is related	to yield or	output as p	value < 0.	05			


EGRESSIO	N ANALYSIS			India	n Statistic	al Institut
Step 2: Reg	ession Output -	- Identify th	e model			
	Coefficients	Std error	t	p-value	[0.025	0.975]
Intercept	- 81.6205	19.791	-4.124	0.001	-124.067	-39.174
Time	Time 0.9065		7.580	0.000	0.650	1.163
	eld= 0.9065 x T atistics	īme - 81.62	1 Value	Criteria		
St		īme - 81.62				
St R·	atistics	īme - 81.62	Value	Criteria		
St R- Ac	atistics squared:	īme - 81.62	Value 0.804	Criteria ≥ 0.6		


REGRESSION ANALY	212		Indian	Statistical]	Institute
	010				
Step 3: Residual Analys pred = mymodel.predic res = output - pred					
	SL No	Actual	Predicted	Residuals	
	1	35	36.22	-1.22	
	2	81.7	76.10	5.60	
	3	42.5	39.84	2.66	
	4	98.3	91.51	6.79	
	5	52.7	67.94	-15.24	
	6	82	94.23	-12.23	
	7	34.5	48.00	-13.50	
	8	95.4	86.98	8.42	
	9	56.7	44.38	12.32	
	10	84.4	88.79	-4.39	
	11	94.3	77.01	17.29	
	12	44.3	59.79	-15.49	
	13	83.3	90.61	-7.31	
	14	91.4	79.73	11.67	
	15	43.5	38.03	5.47	
	16	51.7	52.53	-0.83	209

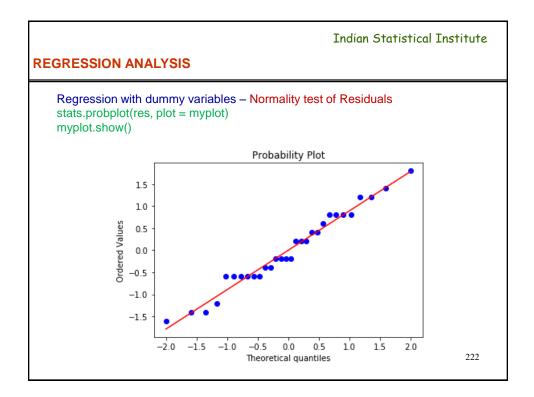
Indian Statistical Institute EGRESSION ANALYSIS					
Step 3: Residual Analysis: Normality stats.mstats.normaltest(res					
Normality Test: Yield data					
W	p value				
1.8945	0.3878				
res_sq = res**2 mse = res_sq.mean() import math as mymath rmse = mymath.sqrt(mse) rmse					
Statistic	Value				
MSE	103.21				
RMSE	10.159	211			
·					

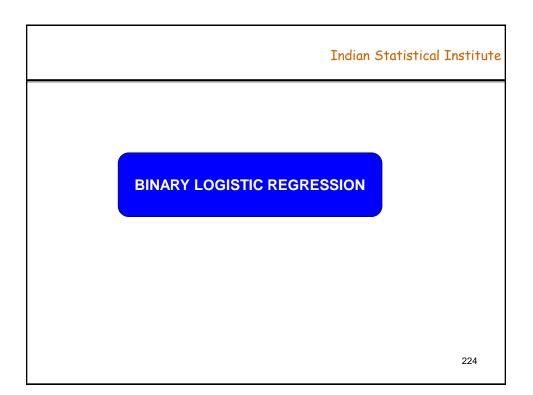




Definition of the provided for the second form 30 respondents and is specified for the second form 30 respondents and is specified for the second form 30 respondents and is specified for the second form 30 respondents and is specified for the second form 30 respondents and is specified. Attitude towards vocation is measured on a 9 point scale. Gender is coded as male = 1 and female = 2. Income is coded as specified for an under for attitude towards vocation and provided for attitude towards vocation and provided for attitude towards vocation and provided for the second formation and provided for attitude towards vocation and provided for the second formation and provided for the second formation and provided formation and provid

				Indian Statistical Institute			
REGRESSION ANALYSIS							
R	Regression with c	lummy variables	;				
	Variable		Dummy				
	Gender	Code	gender_Code				
	Male	1	0				
	Female	2	1				
					ī		
	Variable		Du	Dummy			
	Income	Code	Income1	Income 2			
	Low	1	0	0			
	Medium	2	1	0			
	High	3	0	1			
					216		


	Indian Statistical Institute
REGRESSION ANALYSIS	
Regression with dummy variables	
Read the fie and variables	
import pandas as mypd	
from scipy import stats	
import matplotlib.pyplot as myplot	
from statsmodels.formula.api import ols	
from statsmodels.stats.anova import anova_lm	
mydata = mypd.read_csv("E:/ISI/PM-01/Data/Tra	vel_dummy_Reg.csv")
gender = mydata.Gender	
income = mydata.Income	
attitude = mydata.Attitude	217



	Indian Statistical Institute									
REGR	EGRESSION ANALYSIS									
my	Regression with dummy variables – Output mymodel = ols('attitude ~ C(gender) + C(income)', mydata).fit() mymodel.summary()									
	R ²			0.86						
	Adjusted R ²			0.844						
	F Statistics				53.37					
	p value			0.0000						
		Coef	Std err	t	p-value	[0.025	0.975]			
	Intercept	2.4	0.336	7.145	0.00	1.71	3.09			
	C(gender)[T.2]	-1.6	0.336	-4.763	0.00	-2.29	-0.91			
		2.8	0.411	6.806	0.00	1.954	3.646			
	C(income)[T.2]	2.0	0.411	0.000			I I	220		

				Indian Statistical Institute								
REG	REGRESSION ANALYSIS											
Regression with dummy variables – Anova Table anova_table = anova_lm(mymodel) anova_table												
		df	SS	MS	F	P-value						
	C(gender)	1	19.2	19.2	22.69091	0.00006						
	C(income)	2	116.26667	58.13333	68.70303	0.00000						
	Residual	26	22	0.846154								
							221					

		Indian Statist	ical Institute						
REGRES	REGRESSION ANALYSIS								
Regression with dummy variables – Normality test of Residuals stats.mstats.normaltest(res)									
	Statistics	Value							
	w	0.5211							
	p-value	0.7706							
			223						

EXAMPLO CISTIC REGRESSION Used to develop models when the output or response variable y is binary The output variable will be binary, coded as either success or failure Models probability of success p which lies between 0 and 1 Linear model is not appropriate $p = \frac{e^{a+b_1x_1+b_2x_2+-\dots+b_kx_k}}{1+e^{a+b_1x_1+b_2x_2+\dots+b_kx_k}}$ p: probability of success x_i's : independent variables a, b₁, b₂, ---: coefficients to be estimated If estimate of $p \ge 0.5$, then classified as success, otherwise as failure

225

Indian Statistical Institute **BINARY LOGISTIC REGRESSION** Example: Develop a model to predict the non payment of overdrafts by customers of a multinational banking institution. The data collected is given in Logistic_Reg.csv file. The factors and response considered are given below. SL No Factor 1 Individual expected level of activity score 2 Transaction speed score 3 Peer comparison score in terms of transaction volume Response Values Outcome 0: Not Paid and 1: Paid

Indian Statistical Institut
BINARY LOGISTIC REGRESSION
Example: Develop a model to predict the non payment of overdrafts by customers of a multinational banking institution. The data collected is given in Logistic_Reg.csv file.
Reading the file and variables import pandas as mypd from sklearn.linear_model import LogisticRegression mydata = mypd.read_csv("E:/ISI/PM-01/Data/Logistic_Reg.csv") import statsmodels.api as mysm
x = mydata[["Ind_Exp_Act_Score", "Tran_Speed_Score", "Peer_Comb_Score"]] y = mydata.Outcome x["Intercept"]=1
227

Indian Statistical Institute									
BINARY LOGISTIC REGRESSION									
Example: Develop a model to predict the non payment of overdrafts by customers of a multinational banking institution. The data collected is given in Logistic_Reg.csv file.									
Developing the n mymodel = mysn myresult = mymo myresult.summa	n.Logit(y,x) odel.fit() ry()								
Logistic Regress Statistic	Value	Statistic	Value						
Response	Outcome	No. of values	980						
Model	Logit	Df Residuals	976						
		MLE Df Model 3							

BINARY LOGISTIC REGRESSION

Example: Develop a model to predict the non payment of overdrafts by customers of a multinational banking institution. The data collected is given in Logistic_Reg.csv file.

Logistic Regression Results

Statistic	Value	Criteria
Pseudo R ²	0.893	≥ 0.6
Log-Likelihood:	-63.416	
LL-Null:	-577.85	
LLR p-value:	0.00	< 0.05

229

Indian Statistical Institute

BINARY LOGISTIC REGRESSION

Example: Develop a model to predict the non payment of overdrafts by customers of a multinational banking institution. The data collected is given in Logistic_Reg.csv file.

Logistic Regression Results

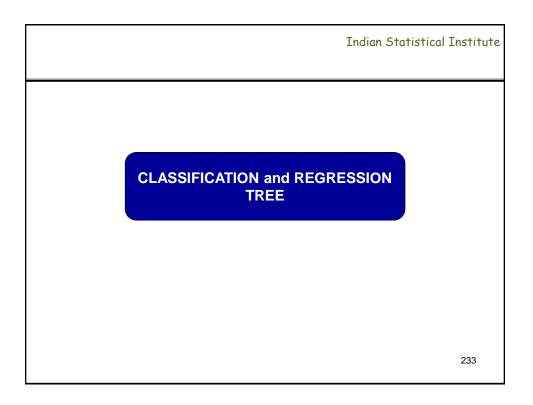
	Code	Coef	Std err	Z	p-value	95 % CI
Ind_Exp_Act_Score	X 1	2.7957	0.355	7.867	0.00	2.099 3.492
Tran_Speed_Score	X 2	2.7532	0.343	8.032	0.00	2.081 3.425
Peer_Comb_Score	X 3	3.5153	0.434	8.095	0.00	2.664 4.366
Intercept		-35.5062	4.406	-8.058	0.00	-71.012

Criteria: p-value < 0.05

231

BINARY LOGISTIC REGRESSION

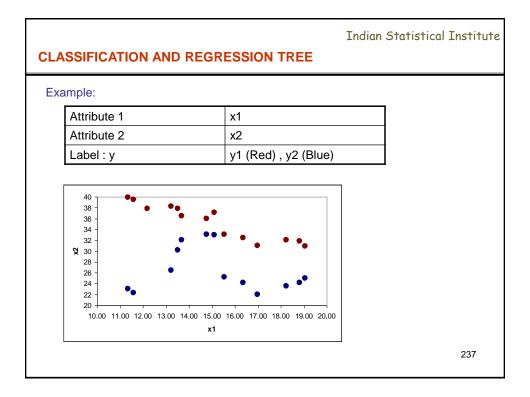
Example: Develop a model to predict the non payment of overdrafts by customers of a multinational banking institution. The data collected is given in Logistic_Reg.csv file.

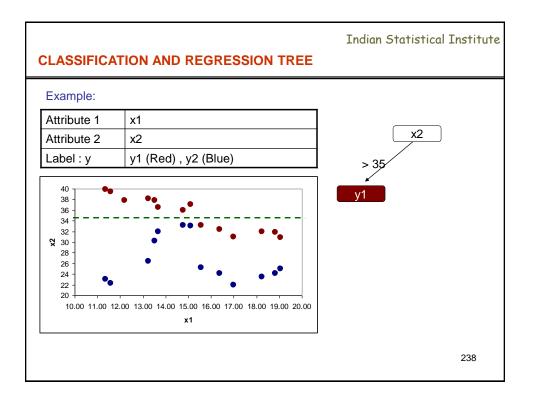

Logistic Regression Results

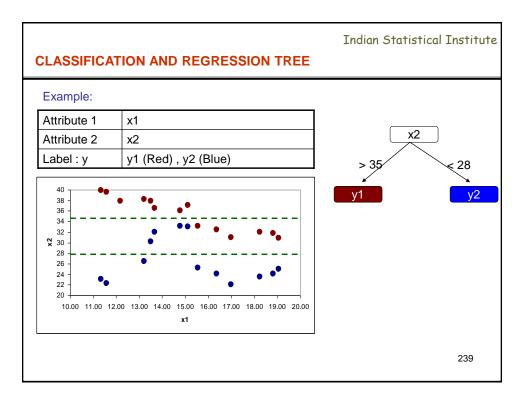
	Code	Coef	Std err	z	p-value	95 % CI
Ind_Exp_Act_Score	X 1	2.7957	0.355	7.867	0.00	2.099 3.492
Tran_Speed_Score	X 2	2.7532	0.343	8.032	0.00	2.081 3.425
Peer_Comb_Score	X 3	3.5153	0.434	8.095	0.00	2.664 4.366
Intercept		-35.5062	4.406	-8.058	0.00	-71.012

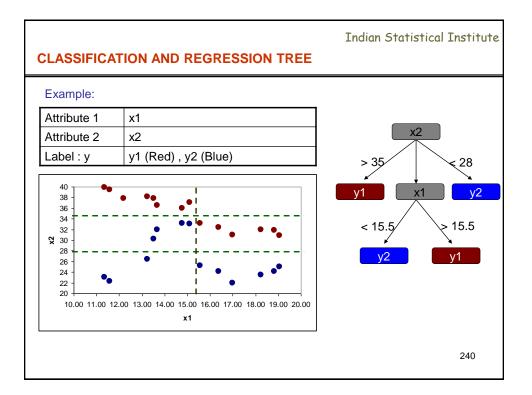
The Model

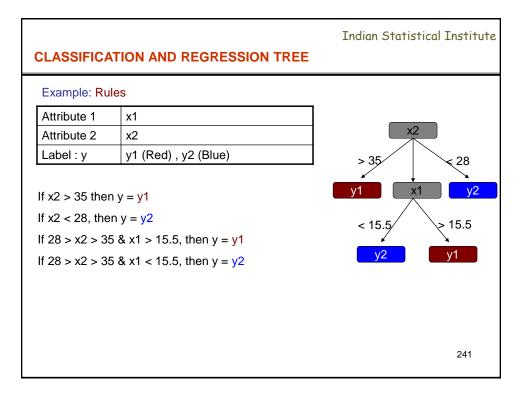
$$y = \frac{e^{-35.5062 + 2.7957x_1 + 2.7532x_2 + 3.5153x_3}}{1 + e^{-35.5062 + 2.7957x_1 + 2.7532x_2 + 3.5153x_3}}$$

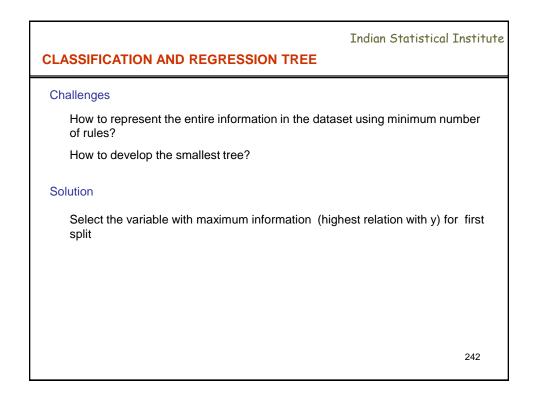

	Indian Statistical Institute								
BINARY LOGI	BINARY LOGISTIC REGRESSION								
customers of	Example: Develop a model to predict the non payment of overdrafts by customers of a multinational banking institution. The data collected is given in Logistic_Reg.csv file.								
Exporting the Predicted values pred = myresult.predict(x) myoutput = mypd.DataFrame(pred) myoutput.to_csv("E:\ISI\PM-01/output.csv")									
	Astual	Prec	licted]					
	Actual	0	1						
	0	257	14						
	1	14	695]					
Statistics			Computation Value						
Accuracy %		(25	7 + 695) / (2	57 + 695 + 14 + 14)	97.14				
Misclassifica	tion Error %		100 <i>– A</i>	Accuracy %	2.85				
Accura	cy of ≥ 80 %	6 is good	t t			232			

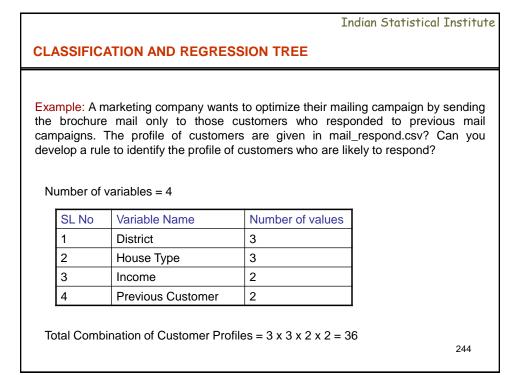


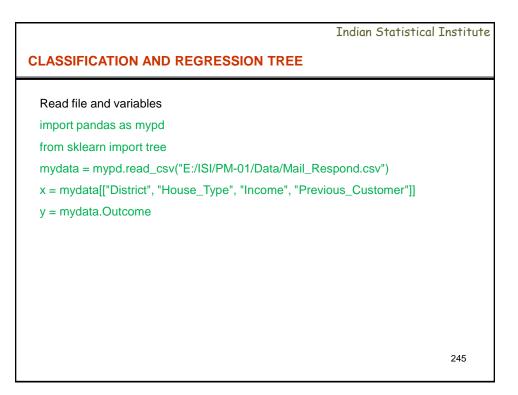

Indian Statistical Institute CLASSIFICATION AND REGRESSION TREE Objective To develop a predictive model to classify dependant or response metric (y) in terms of independent or exploratory variablesxs). When to Use xs : Continuous or discrete y : Discrete or continuous 234


	Indian Statistical Institute
CLASSIFICATION AND REGRESSION TREE	
Classification Tree	
When response y is discrete	
Method = "DecisionTreeClassifier"	
Regression Tree	
When response y is numeric	
Method = "DecisionTreeRegressor"	


CLA	SSIFICATI	on and	REGR	ESSION	TREE	India	n Statistical Institute			
Exa	xample:									
[Attribute 1			x1			7			
	Attribute 2			x2						
	Label : y			y1 (Red)	, y2 (Blu	e)	_			
•	x1	x2	Y	x1	x2	Y	_			
	11.35		Blue	11.85		-				
	11.59			12.09						
	12.19	24.5	Blue	12.69	37.8	Red				
	13.23	26.4	Blue	13.73	38.2	Red				
	13.51	30.2	Blue	14.01	37.8	Red				
	13.68	32	Blue	14.18	36.5	Red				
	14.78	33.1	Blue	15.28	36	Red				
	15.11	33	Blue	15.61	37.1	Red				
	15.55	25.2	Blue	16.05						
	16.37		Blue	16.87	32.4					
	16.99		Blue	17.49	_	Red				
	18.23		Blue	18.73		Red				
	18.83			19.33			236			
	19.06	25	Blue	19.56	30.9	Red				



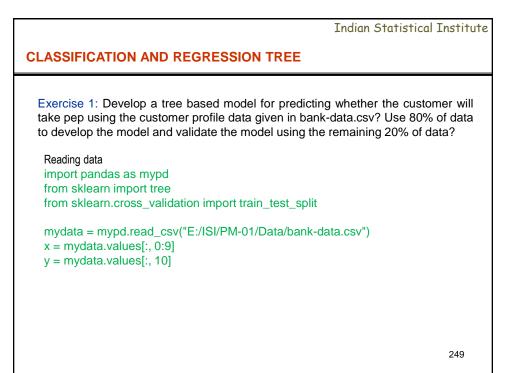


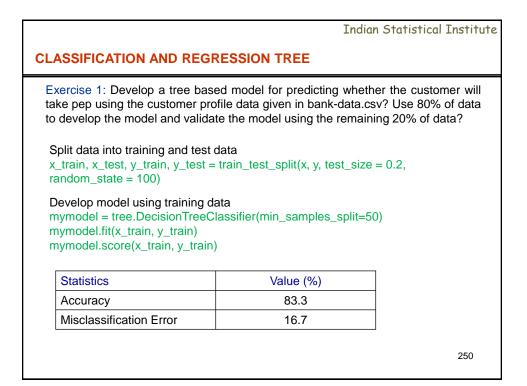

CLASSIFICATION AND REGRESSION TREE

Example: A marketing company wants to optimize their mailing campaign by sending the brochure mail only to those customers who responded to previous mail campaigns. The profile of customers are given below. Can you develop a rule to identify the profile of customers who are likely to respond (Mail_Respond.csv)?

Profile Variable	Values
District	0:Urban, 1: Suburban & 2: Rural
House Type	0:Detached, 1: Semi Detached & 2: Terrace
Income	0:Low & 1: High
Previous Customer	0:No & 1:Yes

Output Variable	Value
Outcome	0:No & 1:Yes

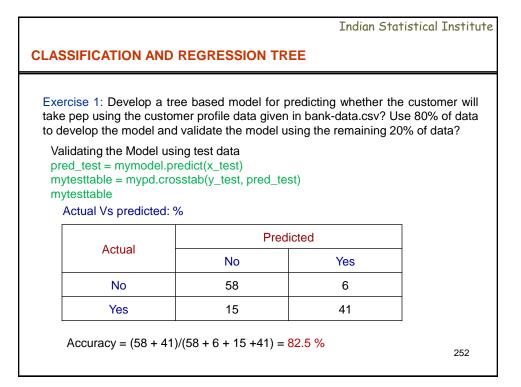

Develop the model		
mymodel = tree.DecisionTreeClas	sifier(min_samples_split = 10)	
mymodel.fit(x,y)		
mymodel.score(x,y)		
Statistica	Value (%)	
Statistics		
Accuracy	100	


Indian Statistical Institu			
Model Accuracy measured	sures		
pred = mymodel.pred	ict(x)		
mytable = mypd.crosstab(y, pred)			
mytable			
Actual Vs predicted:	%		
Actual	Prec	licted	
Actual	Prec	licted Yes	_
Actual			
	No	Yes	
No	No 34	Yes 0	

CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will take pep (0: No & 1: Yes) using the customer profile data given in bank-data.csv? Use 80% of data to develop the model and validate the model using the remaining 20% of data?

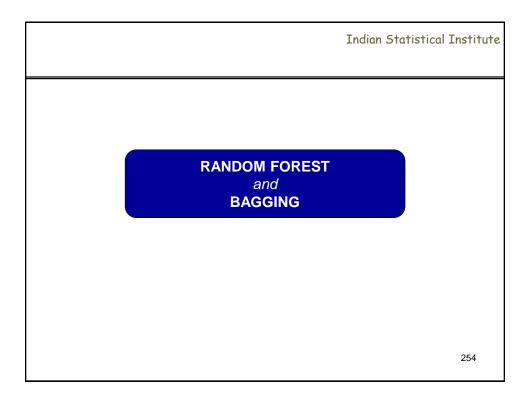
Variables	Values	
Age	Numeric	
Sex	0:Male & 1: Female	
Region	0: Inner City, 1: Rural, 2: Suburban & 3: Town	
Income	Numeric	
Married	0: No, 1: Yes	
Children	Numeric	
Car	0: No, 1: Yes	
Saving Account	0: No, 1: Yes	
Current Account	0: No, 1: Yes	
Mortgage	0: No, 1: Yes	248

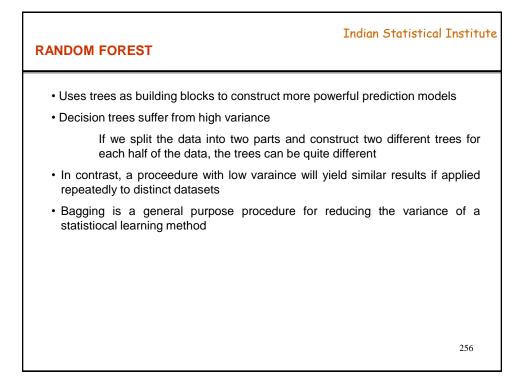

CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will take pep using the customer profile data given in bank-data.csv? Use 80% of data to develop the model and validate the model using the remaining 20% of data?

pred = mymodel.predict(x_train)
mytable = mypd.crosstab(y_train, pred)
mytable

Actual vs Predicted


Actual	Pred	icted
Actual	No	Yes
No	232	30
Yes	50	168


CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will take pep using the customer profile data given in bank-data.csv? Use 80% of data to develop the model and validate the model using the remaining 20% of data?

Data	Accuracy	Misclassification Error
Training	83.33	16.67
Test	82.5	17.5

Indian Statistical Institute **RANDOM FOREST** Improves predictive accuracy Generates large number of bootstrapped trees Classifies a new case using each tree in the new forest of trees Final predicted outcome by combining the results across all of the trees Regression tree – average Classification tree – majority vote

RANDOM FOREST

Procedure

- Take many training sets from the population
- · Build seperate prediction models using each training set
- · Average the resulting predictions
- · Averaging of a set of observatins reduce variance
- · Different training datasets are taken using bootstrap sampling
- Generally bootstraped sample consists of two third of the observations and the model is tested on the remaining one third of the out of the bag observations

For discrete response – will take the majority vote instead of average

Major difference between bagging and Random Forest

Bagging generally uses all the *p* predictors while random forest uses \sqrt{p} predictors

Indian Statistical Institute RANDOM FOREST Example Develop a model to predict the medain value of owner occupied homes using Bosten housing data ? Use 80% of the data to develop the model and validate the model using remaining 20% of the data? Python Code Call libraries and import data import pandas as mypd from sklearn.ensemble import RandomForestRegressor from sklearn.cross validation import train test split import math as mymath mydata = mypd.read_csv("E:/ISI/PM-01/Data/Boston Housing Data.csv") x = mydata.values[:, 0:12]y = mydata.values[:,13] 258

RANDOM FOREST	Indian Statistical Institute
Example Develop a model to predict the medain value of owne Bosten housing data ? Use 80% of the data to develop the model using remaining 20% of the data?	
Python Code Split data into training and test x_train, x_test, y_train, y_test = train_test_split(x, y, tes = 100)	st_size = 0.2, random_state
Develop the model using training data - Bagging mymodel = RandomForestRegressor(n_estimators = 5 max_features = None) mymodel.fit(x_train,y_train)	00, min_sample_split = 40,
n_estimators : Number of trees max_features = None, include all (p) explanatory varia max_features = 'auto', include subset (√p) explanatory	

RANDOM FOREST	Indian Statistical Institute
Example Develop a model to predict the medain value of owner Bosten housing data ? Use 80% of the data to develop the model using remaining 20% of the data? Python Code mymodel.score(x_train, y_train) pred = mymodel.predict(x_train) res = y_train - pred res_sq = res**2 res_ss = res_sq.sum() total_ss = y_train.var()*404 r_sq = 1 - res_ss/total_ss mse = res_sq.mean() rmse = mymath.sqrt(mse)	
	260

RANDOM FOREST

Example

Г

Develop a model to predict the medain value of owner occupied homes using Bosten housing data ? Use 80% of the data to develop the model and validate the model using remaining 20% of the data?

Statistics	Value
MSE	3.733
RMSE	1.932
R ²	95.41

261

RANDOM FOREST	Indian Statistical Institute
Example Develop a model to predict the medain value of owner Bosten housing data ? Use 80% of the data to develop the model using remaining 20% of the data? Python Code Validate the model using test data pred_test = mymodel.predict(x_test) res_test = y_test- pred_test res_test = y_test = test**2	
res_test_ss = res_test_sq.sum() total_test_ss = t_test.var()*101 r_test_sq = 1 - res_test_ss/total_test_ss mse = res_test_sq.mean() rmse = mymath.sqrt(mse)	262

RANDOM FOREST

Example

Г

Develop a model to predict the medain value of owner occupied homes using Bosten housing data ? Use 80% of the data to develop the model and validate the model using remaining 20% of the data?

Statistics	Training	Test
MSE	3.733	18.007
RMSE	1.932	4.243
R ²	95.41	81.17

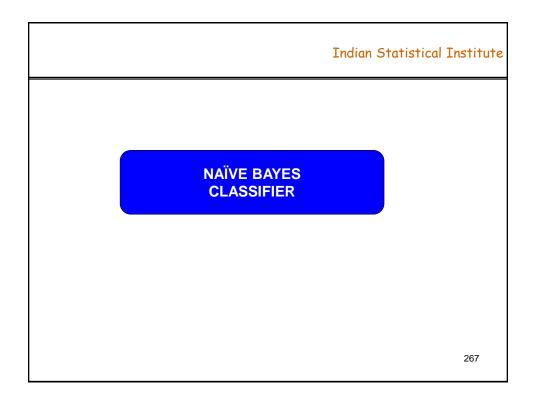
263

RANDOM	FOREST				Indian St	atistical Insti
•					•	homes using and validate
	using rema ng model wi	•	of the data? forest			
mymodel	= Random	ForestRear	essor(n est	timators = 5	500, min_sa	mples_split =
Developi	40, max_ ng model wi	_features= ' th CART				
Developi	40, max_ ng model wi	features= ' th CART isiontreeRe	'auto'] egressor(mir		_split=40)	sion Tree
Developi mymodel	40, max_ ng model wi l = tree.Deci	features= ' th CART isiontreeRe	'auto'] egressor(mir	n_samples_	_split=40)	
Developi mymodel	40, max_ ng model wi l = tree.Deci Bag	features= ' th CART siontreeRe	'auto'] egressor(mir Randon	n_samples_ n Forest	_split=40)	sion Tree
Developi mymodel Statistics	40, max_ ng model wi l = tree.Deci Bag Training	features= ' th CART isiontreeRe ging Test	'auto'] egressor(mir Randon Training	n_samples_ n Forest Test	_split=40) Regress Training	sion Tree Test

RANDOM FOREST

Exercise 1

Develop a model to predict whether a customer will take personal equity plan or not using bank-data .csv. Use 80% of the data to develop the model and validate the model using remaining 20% of the data?


265

RANDOM FOREST

Indian Statistical Institute

Exercise 2

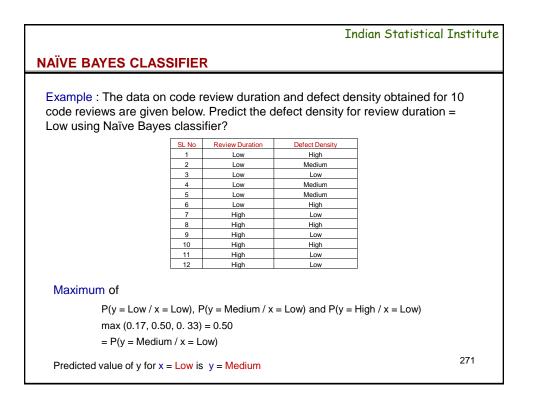
Develop a model to predict the plant variety using Iris data. Validate the model using Iris_test data?

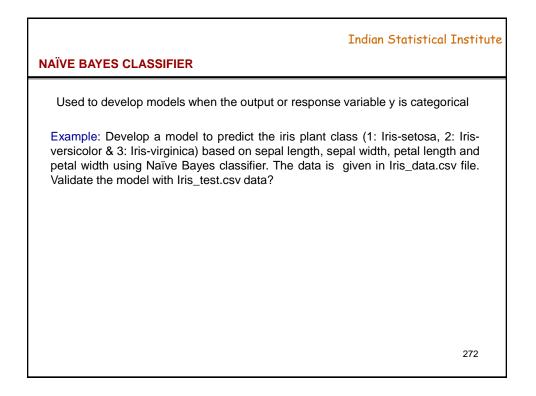
- Used to predict the probability that the value of the output variable will fall in an
- · Assigns each observation to the most likely class, given its predictor values
- Uses the conditional probability of P(y / x) for making prediction

interval for a given set of values of input or predictor variables

Methodology

NAÏVE BAYES CLASSIFIER


Assign a test observation with predictor vector x_0 to the class *j* for which


$$P(y=j/x=x_0)$$

is the largest

				ensity obtained for 10
			efect density fo	or review duration =
Low using Naïve Ba	ayes class	ifier?		
	SL No	Review Duration	Defect Density	
	1	Low	High	
	2	Low	Medium	
	3	Low	Low	_
	4	Low	Medium	_
	5	Low	Medium	_
	6	Low	High	_
	7	High	Low	_
	8	High	High	-
	9	High	Low	-
	10	High	High	-
	11	High	Low	-
	12	High	Low	
Predict y given x =	= Low			

	jiven below	. Predict the de		lensity obtained for 10 for review duration =
	SL No	Review Duration	Defect Density	
	1	Low	High	
	2	Low	Medium	
	3	Low	Low	
	4	Low	Medium	
	5	Low	Medium	
	6	Low	High	
	7	High	Low	
	8	High	High	
	9	High	Low	
	10	High	High	_
	11	High	Low	
	12	High	Low	
P(y = Medium / x = L	.ow)			ses x is Low = $1/6 = 0.17$ of cases x is Low = $3/6 = 0.50$

NAÏVE BAYES CLASSIFIER

Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data?

Read Data import pandas as mypd from sklearn.naive_bayes import GaussianNB

mydata = mypd.read_csv("E:/ISI/PM-01/Data/Iris_data.csv")
x = mydata.values[:, 0:4]
y = mydata.values[:, 4]

Develop Model mymodel = GaussianNB() mymodel.fit(x, y) pred = mymodel.predict(x) mytable = mypd.crosstab(y, pred) mytable

273

Indian Statistical Institute NAÏVE BAYES CLASSIFIER Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Irisversicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file. Validate the model with Iris test.csv data? predicted Actual Iris-setosa Iris-versicolor Iris-virginica 37 0 0 Iris-setosa Iris-versicolor 0 32 3 Iris-virginica 0 2 40 **Statistics** Value 95.61 Accuracy Misclassification Error 4.39

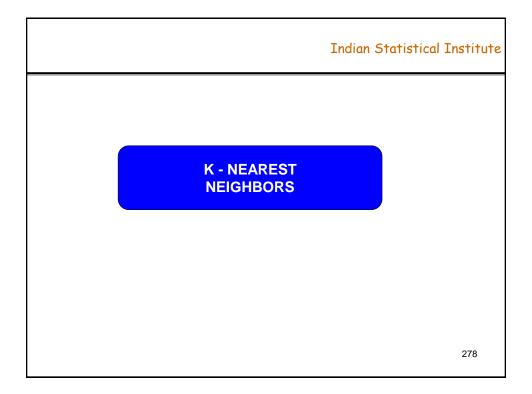
NAÏVE BAYES CLASSIFIER

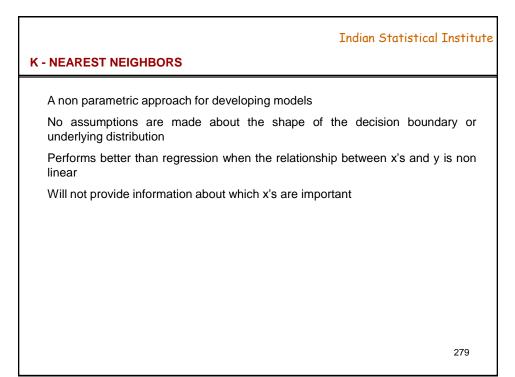
Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data?

Validating the model on test data mytestdata = mypd.read_csv("E:/ISI/PM-01/Data/Iris_test.csv") test_x =mytestdata.values[:,0:4] test_y = mytestdata.values[:,4]

pred_test = mymodel.predict(test_x)
mytesttable = mypd.crosstab(test_y, pred_test)
mytesttable

275


Indian Statistical Institute NAÏVE BAYES CLASSIFIER Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Irisversicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data? Validation Results Predicted Actual Iris-versicolor Iris-setosa Iris-virginica Iris-setosa 13 0 0 0 1 Iris-versicolor 14 Iris-virginica 0 1 7 Statistics Value Accuracy 94.44 Misclassification Error 5.56 276


NAÏVE BAYES CLASSIFIER

Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data?

Results

Statistics	Training	Test
Accuracy	95.61	94.44
Misclassification Error	4.39	5.56

$\label{eq:statistical Institute} Let X and X and$

K - NEAREST NEIGHBORS

Example 1

A develop a methodology to predict the value of y in terms of x1 and x2 based on the data given below. Use k – nearest neighbors approach with k = 3. using the methodology predict the value of y for x1 = 15.2 and x2 = 33.1

Training Data set						
Record No.	x1	x2	Y			
1	11.35	23	Blue			
2	11.59	22.3	Blue			
3	12.19	24.5	Blue			
4	13.23	26.4	Blue			
5	13.51	30.2	Blue			
6	13.68	32	Blue			
7	14.78	33.1	Blue			
8	15.11	33	Blue			
9	15.55	25.2	Blue			
10	11.85	39.9	Red			
11	12.09	39.5	Red			
12	12.69	37.8	Red			
13	13.73	38.2	Red			
14	14.01	37.8	Red			
15	14.18	36.5	Red			
16	15.28	36	Red			
17	15.61	37.1	Red			
18	16.05	33.1	Red			

	Test data	
x1	x2	у
15.20	33.1	?

]	Indian Statistical Institute
K - NEAREST NEIGH	BORS					
Example 1						
on the data given the methodology p Step 1: Compute	below. predict t	Use k he val	t – nea ue of y	arest ı y for x	neighbors an 1 = 15.2 and	erms of x1 and x2 based oproach with $k = 3$. using 1 x2 = 33.1 ord in training data from
test data	Record No.	x1	x2	Y	Ecludean distance	
	1	11.35	23	Blue	10.81	
	2	11.59	22.3	Blue	11.39	
	3	12.19	24.5	Blue	9.11	
	4	13.23	26.4	Blue	6.98	
	5	13.51	30.2	Blue	3.36	
	6	13.68	32	Blue	1.88	
	7	14.78	33.1	Blue	0.42	
	8	15.11	33	Blue	0.13	
	9 10	15.55 11.85	25.2 39.9	Blue	7.91	
	10	11.85	39.9	Red Red	7.58	
	12	12.69	39.5	Red	5.33	
	12	13.73	38.2	Red	5.31	
	13	14.01	37.8	Red	4.85	
	14	14.18	36.5	Red	3.55	
	16	15.28	36	Red	2.90	
	17	15.61	37.1	Red	4.02	282
	18	16.05	33.1	Red	0.85	
			•			

283

K - NEAREST NEIGHBORS

Example 1

A develop a methodology to predict the value of y in terms of x1 and x2 based on the data given below. Use k – nearest neighbors approach with k = 3. using the methodology predict the value of y for x1 = 15.2 and x2 = 33.1

Step 2: identify k = 3 records closest (with minimum distance) to test data

Record No.	x1	x2	Y	Ecludean distance
1	11.35	23	Blue	10.81
2	11.59	22.3	Blue	11.39
3	12.19	24.5	Blue	9.11
4	13.23	26.4	Blue	6.98
5	13.51	30.2	Blue	3.36
6	13.68	32	Blue	1.88
7	14.78	33.1	Blue	0.42
8	15.11	33	Blue	0.13
9	15.55	25.2	Blue	7.91
10	11.85	39.9	Red	7.58
11	12.09	39.5	Red	7.12
12	12.69	37.8	Red	5.33
13	13.73	38.2	Red	5.31
14	14.01	37.8	Red	4.85
15	14.18	36.5	Red	3.55
16	15.28	36	Red	2.90
17	15.61	37.1	Red	4.02
18	16.05	33.1	Red	0.85

Indian Statistical Institute **K - NEAREST NEIGHBORS** Example 1 A develop a methodology to predict the value of y in terms of x1 and x2 based on the data given below. Use k – nearest neighbors approach with k = 3. using the methodology predict the value of y for x1 = 15.2 and x2 = 33.1Step 3: Count different y values in k = 3 records. The predicted value is the mode Record No. x1 x2 Υ Euclidean distance 14.78 33.1 0.42 7 Blue 0.13 8 15.11 33 Blue 16.05 33.1 Red 0.85 18 Number of Occurrences y Blue 2 Red 1 Mode Blue x1 x2 Predicted y 15.20 33.1 Blue 284

K - NEAREST NEIGHBORS

Example 2 : The effect of temperature and reaction time affects the % yield. The data collected in given in the Mult-Reg_Yield file. Develop a model for % yield in terms of temperature and time? Use k – nearest neighbors approach with k = 2. Predict the yield for the following temperature & time?

Variable	Value
Time	185
Temperature	225
Yield	?

					Indian Stati	stical Institute
K - NEARES	ST NEIGHB	ORS				
Example 2 :	collected in in terms of	n given in th temperatu	he Mult-Re	g_Yield ie? Use	file. Develop a	e % yield. The data a model for % yield heighbors approach e & time?
	Record N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Time 130 174 134 191 165 194 143 186 139 188 175 156 190 178 132	Temperature 190 176 205 210 230 220 235 240 230 202 231 240 230 200 210 218 220 210 208	%Yield 35 81.7 42.5 98.3 52.7 82 34.5 95.4 56.7 84.4 94.3 44.3 91.4 43.5 51.7	Euclidean Distance 65.192 50.220 54.781 16.155 20.616 34.205 42.297 10.050 48.384 5.831 26.926 29.833 7.071 16.553 55.660 37.000	
		16 148 225 Variable Time Temperature Yield			Value 185 225 83.3)/2 = 83.85	286

Indian Statistical Ins K - NEAREST NEIGHBORS	stitute
Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length an petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file Validate the model with Iris_test.csv data? Use k = 5	nd
Call libraries and import data import pandas as mypd from sklearn.neighbors import KNeighborsClassifier	
mydata = mypd.read_csv("E:/ISI/PM-01/Data/Iris_data.csv") x = mydata.values[:, 0:4] y = mydata.values[:, 4]	
Develop Model mymodel = KNeighborsClassifier(n_neighbors = 5) mymodel.fit(x, y) mymodel.score(x, y) pred = mymodel.predict(x) mytable = mypd.crosstab(y, pred) mytable	287

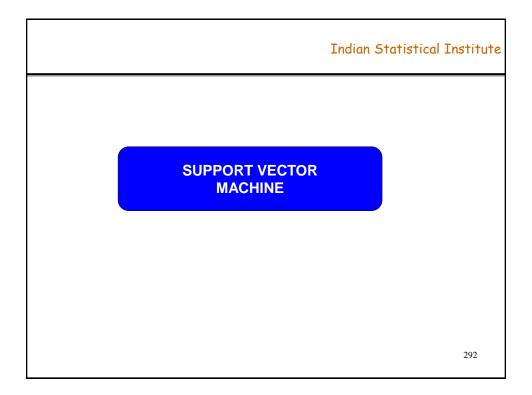
				India	n Statistical Institut
K - NE		BORS			
versi petal Valid	icolor & 3: Iris-vi	irginica) base aïve Bayes cla	d on sepal leng assifier. The da	th, sepal width ta is given in	ris-setosa, 2: Iris- a, petal length and Iris_data.csv file.
			Predicted		
	Actual	Iris-setosa	Predicted Iris-versicolor	Iris-virginica	
	Actual Iris-setosa	Iris-setosa 37		Iris-virginica 0	
			Iris-versicolor		
	Iris-setosa	37	Iris-versicolor 0		
	Iris-setosa Iris-versicolor	37 0	Iris-versicolor 0 34	0	
	Iris-setosa Iris-versicolor	37 0	Iris-versicolor 0 34 1	0	
	Iris-setosa Iris-versicolor Iris-virginica	37 0	Iris-versicolor 0 34 1	0 1 41	

K - NEAREST NEIGHBORS

Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data? Use k = 5

Validating the model on test data mytestdata = mypd.read_csv("E:/ISI/PM-01/Data/Iris_test.csv") test_x = mytestdata.values[:, 0:4] test_y = mytestdata.values[:, 4] pred_test = mymodel.predict(test_x) mytesttable = mypd.crosstab(test_y, pred_test) mytesttable

289


Indian Statistical Institute **K - NEAREST NEIGHBORS** Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Irisversicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data? Use k = 5 Validating the model on test data Predicted Actual Iris-setosa Iris-versicolor Iris-virginica 0 Iris-setosa 13 0 Iris-versicolor 0 13 2 Iris-virginica 0 0 8 **Statistics** Value Accuracy 94.44 Misclassification Error 5.56 290

K - NEAREST NEIGHBORS

Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Naïve Bayes classifier. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data? Use k = 5

Result

Statistics	Training	Test
Accuracy	98.24	94.44
Misclassification Error	1.76	5.56

SUPPORT VECTOR MACHINE

Hyperplane

In two dimensions, a hyperplane is a one dimension subspace namely a line

In three dimensions, a hyperplane is a flat two dimension subspace namely a plane

In a p dimensional space, a hyperplane is a flat affine subspace of p-1 dimension

Mathematical Equation

In 2 dimension $\beta_0 + \beta_1 x_1 + \beta_2 x_2 = 0$

Any point $x = (x_1, x_2)$ satisfying the above equation will be in the hyperplane

In *p* dimension

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p = 0$$

Any point $x = (x_1, x_2, - - , x_p)$ satisfying the above equation will be in the hyperplane

Indian Statistical Institute

SUPPORT VECTOR MACHINE

Hyperplane

Suppose for a $x = (x_1, x_2, - - -, x_p)$

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + - - - + \beta_p x_p > 0$$

Then the $x = (x_1, x_2, - - -, x_p)$ lies in one side of the hyperplane

Suppose for a $x = (x_1, x_2, - - -, x_p)$

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + - - - + \beta_p x_p < 0$$

Then the $x = (x_1, x_2, - - -, x_p)$ lies on the other side of the hyperplane

Hence

Hyperplane is dividing *p* dimensional space into 2 halves

We can easily determine which side of the hyperplane a point lies by evaluating the hyperplane 294

SUPPORT VECTOR MACHINE

Procedure

Suppose it is possible to construct a hyperplane that separate the training observations perfectly into two classes according to their class labels (say y = 1 Or y = -1).

Then a separating hyperplane has the property that

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p > 0 \quad \text{If } y = 1 \text{ and}$$

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p < 0 \quad \text{If } y = -1 \text{ and}$$

If a separating hyperplane exists, it can be used to construct a natural classifier

A test observation is assigned to a class depending on which side of the hyperplane it is located

295

Indian Statistical Institute

SUPPORT VECTOR MACHINE Maximal Marginal Classifier If the data can be perfectly separated using a hyperplane, then there exists many such hyperplanes

Then the best separating hyperplane (maximal marginal hyperplane) is the one which is furthest from the training observations

Margin: The minimal distance from hyperplane to an observation

Maximal marginal classifier is the separating hyperplane with maximum margin.

Indian Statistical In	stitute
SUPPORT VECTOR MACHINE	
Support Vector Machine	
In many cases no separating hyperplane exists So no maximum marginal classifier exists	
The generalisation of maximum marginal hyperplane to no separable cases is Support Vector Machine	;
In SVM, a hyperplane is chosen to separate most of the observations into the two classes but may misclassify a few observations	•
C: The number of misclassified observations. Optimum C can be obtained through cross validation.	I
	297

SUPPORT VECTOR MACHINE

Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Support Vector Machine. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data?

SUPPORT VECTOR MACHINE

Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Support Vector Machine. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data?

Call libraries and import data import pandas as mypd from sklearn import svm

mydata = mypd.read_csv("E:/ISI/PM-01/Data/Iris_data.csv")
mydata x = mydata.values[:, 0:4]
y = mydata.values[:, 4]

Develop Model mymodel = svm.SVC() mymodel.fit(x, y) mymodel.score(x, y) pred = mymodel.predict(x) mytable = mypd.crosstab(y, pred) mytable

299

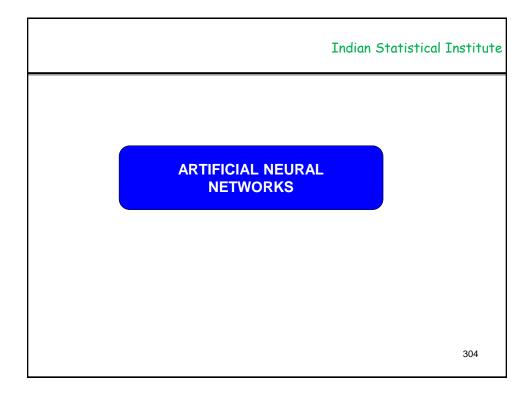
Indian Statistical Institute SUPPORT VECTOR MACHINE Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Irisversicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Support Vector Machine. The data is given in Iris_data.csv file. Validate the model with Iris test.csv data? Actual vs Predicted Predicted Actual Iris-setosa Iris-versicolor Iris-virginica 37 0 Iris-setosa 0 Iris-versicolor 0 33 2 Iris-virginica 0 0 42 **Statistics** Value Accuracy 98.24 Misclassification Error 1.76 300

SUPPORT VECTOR MACHINE

Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Support Vector Machine. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data?

Validating the model on test data mytestdata = mypd.read_csv("E:/ISI/PM-01/Data/Iris_test.csv") test_x = mytestdata.values[:, 0:4] test_y = mytestdata.values[:, 4] pred_test = mymodel.predict(test_x) mytesttable = mypd.crosstab(test_y, pred_test) mytesttable

301


Indian Statistical Institute SUPPORT VECTOR MACHINE Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Irisversicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Support Vector Machine. The data is given in Iris_data.csv file. Validate the model with Iris test.csv data? Validating the model on test data Predicted Actual Iris-setosa Iris-versicolor Iris-virginica 0 Iris-setosa 13 0 Iris-versicolor 0 14 1 Iris-virginica 0 0 8 **Statistics** Value Accuracy 97.22 Misclassification Error 2.78 302

SUPPORT VECTOR MACHINE

Example: Develop a model to predict the iris plant class (1: Iris-setosa, 2: Iris-versicolor & 3: Iris-virginica) based on sepal length, sepal width, petal length and petal width using Support Vector Machine. The data is given in Iris_data.csv file. Validate the model with Iris_test.csv data?

Result

Statistics	Training	Test
Accuracy	98.24	97.22
Misclassification Error	1.76	2.78

Indian Statistical Ir	nstitute
ARTIFICAL NEURAL NETWORKS	
Introduction	
One of the most fascinating machine learning modeling technique	
Generally uses back propagation algorithm	
Relatively complex (due to deep learning with many hidden layers)	
Structure is inspired by brain functioning	
Generally computationally expensive	
	305
	305

Indian Statistical Institute
ARTIFICAL NEURAL NETWORKS
Instructions
1. Normalize the data – Use Min – Max transformation (optional)
Normalized data = Data – Minimum / (Maximum – Minimum)
2. Number of hidden layers required = 1 for vast number of application
3. Number of neurons required = 2/3 of the number of predictor variables or input layers
Remark: The optimum number of layers and neurons are the ones which would minimize mean square error or misclassification error which can be obtained by testing again and again
306

ARTIFICAL NEURAL NETWORKS

Example: Develop a model to predict the non payment of overdrafts by customers of a multinational banking institution. The data collected is given in Logistic_Reg.csv file. The factors and response considered are given below. Use 80% of the data to develop the model and validate the model using remaining 20% of the data?

SL No	Factor
1	Individual expected level of activity score
2	Transaction speed score
3	Peer comparison score in terms of transaction volume

Response	Values
Outcome	0: Not Paid and 1: Paid

Indian Statistical Institute
ARTIFICAL NEURAL NETWORKS
Example
Importing packages
import pandas as mypd
from sklearn.cross_validation import train_test_split
from sklearn.neural_network import MLPClassifier
Reading the data
mydata = mypd.read_csv("E:/ISI/PM03/Course_Material/Data/Logistic_Reg.csv")
x = mydata.values[:, 0:3]
y = mydata.Outcome
Splitting the data into training and test
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 100)

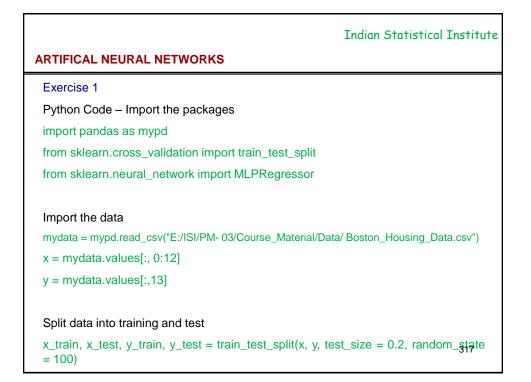
Indian Statistical Institute
ARTIFICAL NEURAL NETWORKS
Example
Develop the model
mymodel =MLPClassifier(solver = 'lbfgs', alpha = 1e-5, hidden_layer_sizes = (2), random_state = 100)
mymodel.fit(x_train, y_train)
Note:
Classification problem: Use MLPCLassifier
Value estimation: Use MLPRegressor
Solver: 'lbfgs' : Uses quasi-Newton method optimization algorithm. 'sgd' :Uses stochastic gradient descent optimization algorithm. 'adam' :Uses stochastic gradient-based optimizer 309

Indian Statistical Insti	tute
ARTIFICAL NEURAL NETWORKS	
Example: Interpretation	
hidden_layer_sizes : a vector representing hidden layers and hidden neurons in each layer	
hidden_layer_sizes = (I) : one hidden layers with / hidden neurons	
310	

		Indian Statistical Institute	
ARTIFICAL NEURAL NETWORKS			
Output			
mymodel.score(x_train, y	r_train)		
Statistics	Value		
% Accuracy	96.81		
% Error	3.19		
mymodel.predict_proba(x_train)		
		311	

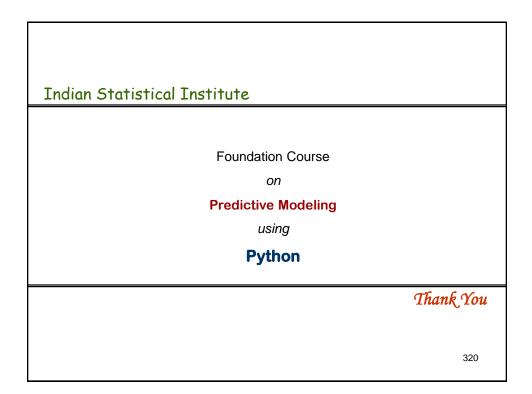
ARTIFICAL NEURAL N	IETWOR	KS]	Indian Statistical Institute
Output: Validation					
predtest = mymodel.p	redict(x_t	est)			
mytable = mypd.cross	tab(y_tes	st, predte	st)		
mytable					
Actual Vs Predicted					
			Prec	licted	_
_			0	1	
	Actual	0	54	4	_
		1	0	138	
					312
					512

Indian Statistical Institu ARTIFICAL NEURAL NETWORKS							
Output: Validation							
	Actual V	s Predict	ed (%)				
			Pred	licted			
			0	1			
	Actual	0	27.55	2.04			
	Actual	1	0.00	70.41			
Statistics Training Test]	
	% Accuracy		96.81 9		.96		
[% Error		3.19	2.	.04		
						313	


AR	TIFICAL NEURAL NETWORK	s	Indian Statistical Institute
Ou > 1 > 1 > 1 > 1	utput mse = mean(res^2) rmse = sqrt(mse) residual_ss = sum(res^2) total_ss = var(myzdata\$Conver r_sq = 1 – residual_ss / total_ss	rsion)*15	
	Statistics	Value	
	Mean Square Error	0.0009994	
	Root Mean Square Error	0.0316128	
	R Square	0.9905	
			314

					Indian Statistical I	nstitute		
ARTIFICAL NEURAL NETWORKS								
P	Prediction for new data set							
>	> test <- read_csv("E:/Infosys/output.csv")							
>	output = com	npute(my	model, test)					
>	> output\$net.result							
					1	1		
	Temperature	Time	Kappa_Number	Conversion	Predicted Conversion			
	1	0.0058	0.1243	0.9577	0.9882			
	1	0.0058	0.2090	0.9915	0.9813			
	1	0.0000 0.3220		1.0000	0.9782			
	1	0.0173 0.4633		0.9437	0.9269			
	1	0.0231	0.6610	0.9155	0.8871	315		

ARTIFICAL NEURAL NETWORKS


Exercise 1

Develop a model to predict the medain value of owner occupied homes using Bosten housing data ? Use 80% of the data to develop the model and validate the model using remaining 20% of the data?

		Indian Statistical Institu	te			
ARTIFIC	AL NEURAL NE	WORKS				
Exercis	e 1					
Develo	p the model					
mymod	mymodel = MLPRegressor(solver = 'lbfgs', alpha = 0.001, hidden_layer_sizes = (6), random_state= 100)					
mymod	el.fit(x_train, y_train, y_tra	iin)				
mymod	el.score(x_train,y	_train)				
Γ	Statistic	Value				
	R ²	66.76				
		318				

					Indian Statistical Institute		
ARTIFICA	L NEURAL NI	ETWORKS					
Validatio	Validation: Test data						
res = y_ res_sq res_ss total_ss	mymodel.predi _test – pred = res**2 = sum(res_sq) s = y_test.var() ^s - res_ss/total_s	*100					
	Statistic	Training	Test				
	R ²	66.76	63.43				
					319		

