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Preface to the Second Edition

Since the publication in 1983 of Theory of Point Estimation, much new work
has made it desirable to bring out a second edition. The inclusion of the new
material has increased the length of the book from 500 to 600 pages, of the
approximately 1000 references about 25% have appeared since 1983.

The greatest change has been the addition to the sparse treatment of Bayesian
inference in the first edition. This includes the addition of new sections on
Equivariant, Hierarchical, and Empirical Bayes, and on their comparisons. Other
major additions deal with new developments concerning the information in-
equality and simultaneous and shrinkage estimation. The Notes at the end of
each chapter now provide not only bibliographic and historical material but also
introductions to recent development in point estimation and other related topics
which, for space reasons, it was not possible to include in the main text. The
problem sections also have been greatly expanded. On the other hand, to save
space most of the discussion in the first edition on robust estimation (in particu-
lar L, M, and R estimators) has been deleted. This topic is the subject of two
excellent books by Hampel et al (1986) and Staudte and Sheather (1990). Other
than subject matter changes, there have been some minor modifications in the
presentation. For example, all of the references are now collected together at
the end of the text, examples are listed in a Table of Examples, and equations
are references by section and number within a chapter and by chapter, section
and number between chapters.

The level of presentation remains the same as that of TPE. Students with a
thorough course in theoretical statistics (from texts such as Bickel and Doksum
1977 or Casellaand Berger 1990) would be well prepared. The second edition of
TPE is a companion volume to “ Testing Statistical Hypotheses, Second Edition
(TSH2).” Between them, they provide an account of classical statistics from a
unified point of view.

Many people contributed to TPE2 with advice, suggestions, proofreading and
problem-solving. We are grateful to the efforts of John Kimmel for overseeing
this project; to Matt Briggs, Lynn Eberly, Rich Levine and Sam Wu for proof-
reading and problem solving, to Larry Brown, Anirban DasGupta, Persi
Diaconis, Tom DiCiccio, Roger Farrell, Ledaw Gajek, Jm Hobert, Chuck
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viii PREFACE TO THE SECOND EDITION

McCulloch, Elias Moreno, Christian Robert, Andrew Rukhin, Bill Strawderman
and Larry Wasserman for discussions and advice on countless topics, and to
June Meyermann for transcribing most of TEP to LaTeX. Lastly, we thank Andy
Scherrer for repairing the near-fatal hard disk crash and Marty Wells for the
almost infinite number of times he provided us with needed references.

E. L. Lehmann
Berkeley, California

George Casdlla
Ithaca, New York

March 1998



Preface to the First Edition

This book is concerned with point estimation in Euclidean sample spaces.
The first four chapters deal with exact (small-sample) theory, and their approach
and organization paralel those of the companion volume, Testing Satistical
Hypotheses (TSH). Optimal estimators are derived according to criteria such as
unbiasedness, equivariance, and minimaxity, and the material is organized
around these criteria. The principal applications are to exponential and group
families, and the systematic discussion of the rich body of (relatively simple)
statistical problems that fall under these headings constitutes a second major
theme of the book.

A theory of much wider applicability is obtained by adopting a large sample
approach. The last two chapters are therefore devoted to large-sample theory,
with Chapter 5 providing a fairly elementary introduction to asymptotic con-
cepts and tools. Chapter 6 establishes the asymptotic efficiency, in sufficiently
regular cases, of maximum likelihood and related estimators, and of Bayes esti-
mators, and presents a brief introduction to the local asymptotic optimality the-
ory of Hajek and LeCam. Even in these two chapters, however, attention is
restricted to Euclidean sample spaces, so that estimation in sequential analysis,
stochastic processes, and function spaces, in particular, is not covered.

The text is supplemented by numerous problems. These and references to the
literature are collected at the end of each chapter. The literature, particularly
when applications are included, is so enormous and spread over the journals of
S0 many countries and so many specialties that complete coverage did not seem
feasible. The result is a somewhat inconsistent coverage which, in part, reflects
my personal interests and experience.

It is assumed throughout that the reader has a good knowledge of calculus
and linear algebra. Most of the book can be read without more advanced mathe-
matics (including the sketch of measure theory which is presented in Section
1.2 for the sake of completeness) if the following conventions are accepted.

1. A central concept is that of an integral such as Jf dP or [f du. This covers
both the discrete and continuous case. In the discrete case Jf dP becomes f
(x)P(x) where P(x) = P(X = x) and Jf du becomes Zf(x). In the continuous case,
Jf dP and Jf du become, respectively, [f(x)p(x) dx and [f(x) dx. Little is lost

ix
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(except a unified notation and some generality) by always making these substi-
tutions.

2. When specifying a probability distribution, P, it is necessary to specify not
only the sample space 1, but also the class @ of sets over which P is to be
defined. In nearly all examples 1 will be a Euclidean space and @ a large class
of sets, the so-called Borel sets, which in particular includes all open and closed
sets. The references to @ can be ignored with practically no loss in the under-
standing of the statistical aspects.

A forerunner of this book appeared in 1950 in the form of mimeographed
lecture notes taken by Colin Blyth during a course | taught at Berkeley; they
subsequently provided a text for the course until the stencils gave out. Some
sections were later updated by Michael Stuart and Fritz Scholz. Throughout the
process of converting this material into a book, | greatly benefited from the
support and advice of my wife, Juliet Shaffer. Parts of the manuscript were read
by Rudy Beran, Peter Bickel, Colin Blyth, Larry Brown, Fritz Scholz, and Geoff
Watson, al of whom suggested many improvements. Sections 6.7 and 6.8 are
based on material provided by Peter Bickel and Chuck Stone, respectively. Very
special thanks are due to Wei-Yin Loh, who carefully read the complete manu-
script at its various stages and checked all the problems. His work led to the
corrections of innumerable errors and to many other improvements. Finally, |
should like to thank Ruth Suzuki for her typing, which by now is legendary,
and Sheila Gerber for her expert typing of many last-minute additions and cor-
rections.

E.L. Lehmann
Berkeley, California,

March 1983
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Table of Notation

The following notation will be used throughout the book.
We present this list for easy reference.

Quantity Notation Comment
Random variable X,7Y, uppercase
Sample space X,y uppercase script
Roman letters
Parameter 6, A lowercase Greek letters
Parameter space 0,Q uppercase script
Greek letters
Realized values X,y lowercase
(data)
Distribution function  F(x), F(x|0), P(X|9) continuous
(cdf) Fy(x), Ps, (x) or discrete

Density function (pdf)  f(x), f(x]8), p(x|0)
Jo(x), Po(x)

Prior distribution A(y), Ay )
Prior density w(y), m(yIr)
Probability triple &, P, B)

notation is “generic”,
i.e., don'tassume

Fxly) = f(xl2)

may be improper

sample space, probability
distribution, and
sigma-algebra of sets
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Quantity Notation Comment
Vector h=(hq,...,h,) = {h;} boldface signifies
vectors
Matrix H = {h;} = |lhi;|l uppercase signifies
matrices
Special matrices 1 Identity matrix
and vectors 1 vector of ones
J=11 matrix of ones
Dot notation hi. =3 ij.zlh,»j average across the

dotted subscript

Gradient Vh(x) = (aihh(x), e a%h(x)) vector of partial

derivatives
= {7h00]
Hessian VVh(X) = {%;h(x)} matrix of partial
second derivatives

Jacobian {%hi(x)} matrix of
derivatives

Laplacian > %Zzh(x) sum of

second derivatives

Euclidean norm x| (2x2)/2
Indicator function Ip(x), I(x € A) equals 1 if
orl(x <a) X €A,
0 otherwise
Big "Oh,” little "oh” O(n), o(n) or Op(n), 0p(n) Asn — oo
0(n)

o), constant® — 0
subscriptp denotes
in probability




CHAPTER 1

Preparations

1 TheProblem

Statistics is concerned with the collection of data and with their analysis and
interpretation. We shall not consider the problem of data collection in this book
but shall take the data as given and ask what they have to tell us. The answer
depends not only on the data, on what is being observed, but also on background
knowledge of the situation; the latter is formalized in the assumptions with which
the analysisis entered. There have, typically, been three principal lines of approach:
Dataanalysis. Here, the data are analyzed on their own terms, essentially without
extraneous assumptions. The principal aim is the organization and summarization
of the data in ways that bring out their main features and clarify their underlying
structure.
Classical inference and decision theory. The observations are now postulated
to be the values taken on by random variables which are assumed to follow a
joint probability distribution,P, belonging to some known claga Frequently,
the distributions are indexed by a parameter, &&yot necessarily real-valued),
taking values in a sef?, so that

(1.1) P =(Py,0 € Q).

The aim of the analysis is then to specify a plausible valuedfdthis is the
problem of point estimation), or at least to determine a subsgt @f which we
can plausibly assert that it does, or does not, cortd@stimation by confidence
sets or hypothesis testing). Such a statement aboai be viewed as a summary
of the information provided by the data and may be used as a guide to action.

Bayesian analysis. In this approach, it is assumed in addition thais itself
a random variable (though unobservable) witknawn distribution. This prior
distribution (specified according to the problem) is modified in light of the data to
determine a posterior distribution (the conditional distributioé given the data),
which summarizes what can be said aboh the basis of the assumptions made
and the data.

These three methods of approach permit increasingly strong conclusions, but
they do so at the price of assumptions which are correspondingly more detailed
and possibly less reliable. It is often desirable to use different formulations in
conjunction; for example, by planning a study (e.g., determining sample size)
under rather detailed assumptions but performing the analysis under a weaker set
which appears more trustworthy. In practice, it is often useful to model a problem
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in a number of different ways. One may then be satisfied if there is reasonable
agreement among the conclusions; in the contrary case, a closer examination of
the different sets of assumptions will be indicated.

In this book, Chapters 2, 3, and 5 will be primarily concerned with the second
formulation, Chapter 4 with the third. Chapter 6 considers a large-sample treat-
ment of both. (A book-length treatment of the first formulation is Tukey’s classic
Exploratory Data Analysis, or the more recent book by Hoaglin, Mosteller, and
Tukey 1985, which includes the interesting approach of Diaconis 1985.) Through-
out the book we shall try to specify what is meant by a “best” statistical procedure
for a given problem and to develop methods for determining such procedures.
Ideally, this would involve a formal decision-theoretic evaluation of the problem
resulting in an optimal procedure.

Unfortunately, there are difficulties with this approach, partially caused by the
fact that there is no unique, convincing definition of optimality. Compounding this
lack of consensus about optimality criteria is that there is also no consensus about
the evaluation of such criteria. For example, even if it is agreed that squared error
loss is a reasonable criterion, the method of evaluation, be it Bayesian, frequentist
(the classical approach of averaging over repeated experiments), or conditional,
must then be agreed upon.

Perhaps even more serious is the fact that the optimal procedure and its prop-
erties may depend very heavily on the precise nature of the assumed probability
model (1.1), which often rests on rather flimsy foundations. It therefore becomes
important to consider theobustness of the proposed solution under deviations
from the model. Some aspects of robustness, from both Bayesian and frequentist
perspectives, will be taken up in Chapters 4 and 5.

The discussion so far has been quite general; let us now specialize to point
estimation. In terms of the model (1.1), suppose that a real-valued function
defined over2 and that we would like to know the value gf9) (which may, of
course, bé itself). Unfortunatelyf, and henceg(#), is unknown. However, the
data can be used to obtain an estimatg(6}, a value that one hopes will be close
to g(6).

Point estimation is one of the most common forms of statistical inference. One
measures a physical quantity in order to estimate its value; surveys are conducted
to estimate the proportion of voters favoring a candidate or viewers watching a
television program; agricultural experiments are carried out to estimate the effect of
a new fertilizer, and clinical experiments to estimate the improved life expectancy
or cure rate resulting from a medical treatment. As a prototype of such an estimation
problem, consider the determination of an unknown quantity by measuring it.

Example 1.1 Themeasurement problem. A number of measurements are taken

of some quantity, for example, a distance (or temperature), in order to obtain an
estimate of the quantity being measured. If themeasured values are, . . ., x,,

a common recommendation is to estimatey their mean

(X1+ ce +xn)
—
The idea of averaging a number of observations to obtain a more precise value

X =
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seems so commonplace today that it is difficult to realize it has not always been
in use. It appears to have been introduced only toward the end of the seventeenth
century (see Plackett, 1958). But why should the observations be combined in just
this way? The following are two properties of the mean, which were used in early
attempts to justify this procedure.

(i) An appealing approximation to the true value being measured is the ¥alue
for which the sum of squared differen8x; — a)? is a minimum. That this
least squares estimate ob is x is seen from the identity

(1.2) S —a)? = T(x; — x)?+n(x —a)?,

since the first term on the right side does not invalvand the second term

is minimized bya = x. (For the history of least squares, see Eisenhart 1964,
Plackett 1972, Harter 1974-1976, and Stigler 1981. Least squares estimation
will be discussed in a more general setting in §3.4.)

(ii) The leastsquares estimate defined in (i) is the value minimizing the sum of the
squared residuals, the residuals being the differences between the observations
x; and the estimated value. Another approach is to ask for the ¥dtwevhich
the sum of the residuals is zero, so that the positive and negative residuals are
in balance. The condition anis

1.3) (x; —a)=0,

and this again immediately leadsta= x. (That the two conditions lead to the
same answer is, of course, obvious since (1.3) expresses that the derivative of
(1.2) with respect ta is zero.)

These two principles clearly belong to the first (data analytic) level mentioned
at the beginning of the section. They derive the mean as a reasonable descriptive
measure of the center of the observations, but they cannot justifyan estimate
of the true value since no explicit assumption has been made connecting the
observations;; with 8. To establish such a connection, let us now assume that
the x; are the observed values @findependent random variables which have a
common distribution depending @n Eisenhart (1964) attributes the crucial step
of introducing such probability models for this purpose to Simpson (1755).

More specifically, we shall assume th&t = 6 + U;, where the measurement
errorU; is distributed according to a distributiadn symmetric about O so that the
X; are symmetrically distributed abo@itwith distribution

1.4) P(X; <x)=F(x —0).

Interms of this model, can we now justify the idea that the mean provides a more
precise value than a single observation? The second of the approaches mentioned
at the beginning of the section (classical inference) suggests the following kind of
consideration.

If the X's are independent and have a finite varianéethe variance of the
meanX is o2/n; the expected squared difference betw&eandd is therefore
only 1/n of what it is for a single observation. However, if tiés have a Cauchy
distribution, the distribution ok is the same as that of a singte (Problem 1.6),
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so that nothing is gained by taking several measurements and then averaging them.
WhetherX is a reasonable estimator®thus depends on the nature of thig ||

This example suggests that the formalization of an estimation problem involves
two basic ingredients:

(a) Areal-valued functiorg defined over a parameter spaegwhose value at
is to be estimated; we shall cgllf) theestimand. [In Example 1.1g(6) =6.]

(b) Arandomobservable X (typically vector-valued) taking on valuesin a sample
spaceX according to a distributiot®,, which is known to belong to a family
P as stated in (1.1). [In Example 1.X, = (X1, ..., X,), where theX; are
independently, identically distributed (iid) and their distribution is given by
(1.4). The observed valueof X constitutes thelata.]

The problem is the determination of a suitags#mator .

Definition 1.2 An estimator is a real-valued functiod defined over the sample
space. It is used to estimate estimand, g(#), a real-valued function of the pa-
rameter.

Of course, it is hoped tha(X) will tend to be close to the unknowg(6), but
such a requirement is not part of the formal definition of an estimator. The value
8(x) taken on by (X) for the observed value of X is theestimate of g(6), which
will be our “educated guess” for the unknown value.

One could adopt a slightly more restrictive definition than Definition 1.2. In
applications, itis often desirable to restddb possible values @f(9), for example,
to be positive wherg takes on only positive values, to be integer-valued wien
is, and so on. For the moment, however, it is more convenient not to impose this
additional restriction.

The estimato® is to be close tg(0), and sincef(X) is a random variable,
we shall interpret this to mean that it will be close on the average. To make this
requirement precise, it is necessary to specify a measure of the average closeness
of (or distance from) an estimator $¢6). Examples of such measures are

(1.5) P(16(X) — g(®)| <) forsome ¢ >0
and
(1.6) E|8(X) — g(0)|? forsome p > 0.

(Of these, we want the first to be large and the second to be smalliands take
on only positive values, one may be interested in

s(x) .|
‘% S
which suggests generalizing (1.6) to
.7 K(0)E18(X) — g(6)1".

Quite generally, suppose that the consequences of estingdéingy a valued
are measured b¥ (6, d). Of theloss function L, we shall assume that

(1.8) L®,d)>=0 forall 0,d
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and
(1.9) L[0,g(0)]=0 forall o,

so that the loss is zero when the correct value is estimated. The accuracy, or rather
inaccuracy, of an estimatéris then measured by thresk function

the long-term average loss resulting from the usé. @ne would like to find &
which minimizes the risk for all values &f.

As stated, this problem has no solution. For, by (1.9), it is possible to reduce the
risk at any given poinéy to zero by making(x) equal tog(6p) for all x. There
thus exists naniformly best estimator, that is, no estimator which simultaneously
minimizes the risk for all values @f, except in the trivial case tha{0) is constant.

One way of avoiding this difficulty is to restrict the class of estimators by ruling
out estimators that too strongly favor one or more value$ af the cost of ne-
glecting other possible values. This can be achieved by requiring the estimator to
satisfy some condition which enforces a certain degree of impartiality. One such
condition requires that thaias F4[5(X)] — g(6), sometimes called the systematic
error, of the estimatof be zero, that is, that

(1.11) Eo[8(X)] = g(6) forall 6 e .

This condition ofunbiasedness ensures that, in the long run, the amounts by which

8 over- and underestimatg$6) will balance, so that the estimated value will be
correct “on the average.” A somewhat similar condition is obtained by considering
not the amount but only the frequency of over- and underestimation. This leads to
the condition

(1.12) Pyo[8(X) < g(0)] = Po[8(X) > g(0)]

or slightly more generally to the requirement tigéd) be a median of(X) for all
values off. To distinguish it from this condition ahedian-unbiasedness, (1.11)
is calledmean-unbiasedness if there is a possibility of confusion.

Mean-unbiased estimators, due to Gauss and perhaps the most classical of all
frequentist constructions, are treated in Chapter 2. There, we will also consider
performance assessments that naturally arise from unbiasedness considerations.
[A more general unbiasedness concept, of which (1.11) and (1.12) are special
cases, will be discussed in Section 3.1.]

Adifferentimpartiality condition can be formulated when symmetries are present
in a problem. It is then natural to require a corresponding symmetry to hold for
the estimator. The resulting conditionefuivariance will be explored in Chapter
3 and will also play a role in the succeeding chapters.

In many important situations, unbiasedness and equivariance lead to estima-
tors that are uniformly best among the estimators satisfying these restrictions.
Nevertheless, the applicability of both conditions is limited. There is an alterna-
tive approach which is more generally applicable. Instead of seeking an estimator
which minimizes the risk uniformly i, one can more modestly ask that the risk
function be low only in some overall sense. Two natural global measures of the
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size of the risk are the average

(1.13) / R(6, 8)w(B)do
for some weight functiom and the maximum of the risk function
(1.14) SUpR(0, 8).

Q

The estimator minimizing (1.13) (discussed in Chapter 4) formally coincides with
the Bayes estimator whehis assumed to be a random variable with probabil-
ity density w. Minimizing (1.14) leads to theninimax estimator, which will be
considered in Chapter 5.

The formulation of an estimation problem in a concrete situation along the lines
described in this chapter requires specification of the probability model (1.1) and of
ameasure of inaccura@y(6, d). In the measurement problem of Example 1.1 and
its generalizations to linear models, it is frequently reasonable to assume that the
measurement errors are approximately normally distributed. In other situations,
the assumptions underlying a binomial or Poisson distribution may be appropri-
ate. Thus, knowledge of the circumstances and previous experience with similar
situations will often suggest a particular parametric farfiilpf distributions. If
such information is not available, one may instead adopt a nonparametric model,
which requires only very general assumptions such as independence or symmetry
but does not lead to a particular parametric family of distributions. As a compro-
mise between these two approaches, one may be willing to assume that the true
distribution, though not exactly following a particular parametric form, lies within
a stated distance of some parametric family. For a theory of such neighborhood
models see, for example, Huber (1981) or TSH2, Section 9.3.

The choice of an appropriate model requires judgment and utilizes experience;
it is also affected by considerations of convenience. Analogous considerations
for choice of the loss functio. appear to be much more difficult. The most
common fate of a point estimate (for example, of the distance of a star or the
success probability of an operation) is to wind up in a research report or paper. It
is likely to be used on different occasions and in various settings for a variety of
purposes which cannot be foreseen at the time the estimate is made. Under these
circumstances, one wants the estimator to be accurate, but just what measure of
accuracy should be used is fairly arbitrary.

This was recognized very clearly by Laplace (1820) and Gauss (1821), who
compared the estimation of an unknown quantity, on the basis of observations
with random errors, with a game of chance and the error in the estimated value
with the loss resulting from such a game. Gauss proposed the square of the error
as a measure of loss or inaccuracy. Should someone object to this specification
as arbitrary, he writes, he is in complete agreement. He defends his choice by an
appeal to mathematical simplicity and convenience. Among the infinite variety
of possible functions for the purpose, the square is the simplest and is therefore
preferable.

When estimates are used to make definite decisions (for example, to determine
the amount of medication to be given a patient or the size of an order that a store
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should place for some goods), it is sometimes possible to specify the loss function
by the consequences of various errors in the estimate. A general discussion of the
distinction between inference and decision problems is given by Blyth (1970) and
Barnett (1982).

Actually, it turns out that much of the general theory does not require a detailed
specification of the loss function but applies to large classes of such functions,
in particular to loss function& (6, d), which are convex /. [For example, this
includes (1.7) withp > 1 but not withp < 1. It does not include (1.5)]. We shall
develop here the theory for suitably general classes of loss functions whenever the
cost in complexity is not too high. However, in applications to specific examples
— and these form a large part of the subject — the choice of squared error as loss
has the twofold advantage of ease of computation and of leading to estimators that
can be obtained explicitly. For these reasons, in the examples we shall typically
take the loss to be squared error.

Theoretical statistics builds on many different branches of mathematics, from
set theory and algebra to analysis and probability. In this chapter, we will present
an overview of some of the most relevant topics needed for the statistical theory
to follow.

2 Measure Theory and I ntegration

A convenient framework for theoretical statistics is measure theory in abstract
spaces. The present section will sketch (without proofs) some of the principal
concepts, results, and notational conventions of this theory. Such a sketch should
provide sufficient background for a comfortable understanding of the ideas and
results and the essentials of most of the proofs in this book. A fuller account of
measure theory can be found in many standard books, for example, Halmos (1950),
Rudin (1966), Dudley (1989), and Billingsley (1995).

The most natural example of a “measure” is that of the length, area, or volume
of sets in one-, two-, or three-dimensional Euclidean space. As in these special
cases, a measure assigns non-negative (not necessarily finite) values to sets in some
spaceX. A measureu is thus a set function; the value it assigns to aseitill be
denoted by (A).

In generalization of the properties of length, area, and volume, a measure will
be required to bedditive, that is, to satisfy

(2.1) w(A U B) = u(A) + u(B) whenA, B are disjoint,

whereA U B denotes the union of andB. From (2.1), it follows immediately by
induction that additivity extends to any finite union of disjoint sets. The measures
with which we shall be concerned will be required to satisfy the stronger condition
of sigma-additivity, namely that

2.2) m (U Ai> =Y u(Ay)
i=1 i=1

for any countable collection of disjoint sets.
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The domain over which a measuyrés defined is a class of subsetsoflt would
seem easiest to assume that this is the class of all subs#&tsldrifortunately, it
turns out that typically it is not possible to give a satisfactory definition of the
measures of interest for all subsetsfin such a way that (2.2) holds. [Such
a negative statement holds in particular for length, area, and volume (see, for
example, Halmos (1950), p. 70) but not for the meaguoé Example 2.1 below.]

It is therefore necessary to restrict the definitionudd a suitable class of subsets

of X. This class should contain the whole spatas a member, and for any sét

also itscomplement X’ — A. In view of (2.2), it should also contain the union of any
countable collection of sets of the class. A class of sets satisfying these conditions
is called a0 -field or o -algebra. It is easy to see that 1, Ao, ... are members of
ao-field A, then so are their union and intersection (Problem 2.1).

If Ais ac-field of subsets of a spacg, then (¥, A) is said to be aneasurable
space and the setst of A to bemeasurable. A measure u is a nonnegative set
function defined over a-field .4 and satisfying (2.2). Ijx is a measure defined
over a measurable spac¥,(A), the triple (¢, A, 1) is called ameasure space.

A measure isr-finite if there exist setsA; in .A whose union isY¥ and such
thatu(A;) < oo. All measures with which we shall be concerned in this book are
o-finite, and we shall therefore use the temeasure to mean a -finite measure.

The following are two important examples of measure spaces.

Example2.1 Counting measure. Let X be countable and the class of all
subsets oft. For anyA in A, let u(A) be the number of points of if A is
finite, andu(A) = oo otherwise. This measuyeis calledcounting measure. That
wu is o-finite is obvious. I

Example 2.2 Lebesgue measure. Let X' ben-dimensional Euclidean spadg,,
and letA be the smallest-field containing all open rectangles

(2.3) A={(x1,...,x,)  a; <x; <b;}, —00<a <b; <.

We shall then say thatl(, .A) is Euclidean. The members ofd are calledBorel

sets. This is a very large class which contains, among others, all open and all closed
subsets ofY'. There exists a (unique) measwredefined overd, which assigns

to (2.3) the measure

(24) M(A) = (bl - Cll) T (bn - an)’
that is, its volumej is calledLebesgue measure. I

The intuitive meaning of measure suggests that any subset of a set of measure
zero should again have measure zeroAXf @, ) is a measure space, it may,
however, happen that a subset of a sefdiwhich has measure zero is not in
A and hence not measurable. This difficulty can be remedied by the process of
completion. Consider the clagsof all setsB = A U C whereA is in A andC is
a subset of a set il having measure zero. Theffi,is ao-field (Problem 2.7). If
w' is defined ovel3 by u/(B) = u(A), u' agrees withu over A, and ¢¢, B, ') is
called thecompletion of the measure spac&’( A, u).

When the process of completion is applied to Example 2.1 saflimEuclidean
andA is the class of Borel sets, the resulting larger clagsthe class of Lebesgue
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measurable sets. The measuredefined over3, which agrees with Lebesgue
measure over the Borel sets, is also called Lebesgue measure.

A third principal concept needed in additionaefield and measure is that of the
integral of a real-valued functiofi with respect to a measure However, before
defining this integral, it is necessary to specify a suitable class of funcfiofisis
will be done in three steps.

First, consider the class of real-valued functiercalledsimple, which take on
only a finite number of values, say, . .., a,;, and for which the sets

(2.5) A ={x:s(x)=a;}

belong toA. An important special case of a simple function isithgicator 7, of
a setA in A, defined by

1 if xeA

(2.6) IA(")”(XGA):{ 0 if x7A.

Ifthe setA is aninterval, for examplex( b], the indicator function of the interval
may be written in the alternate forfifa < x < b).

Second, letq, so, ... be anondecreasing sequence of non-negative simple func-
tions and let

2.7) F@) = lim s, (x).

Note that this limit exists since for every the sequence(x), sz2(x), .. . is non-
decreasing but thaf(x) may be infinite. A function with domai&X’ and range
[0, 00), that is, non-negative and finite valued, will be callédaneasurable or, for
short,measurableif there exists a nondecreasing sequence of non-negative simple
functions such that(2.7) holds for alle X.

Third, for an arbitrary functiory, define itspositive and negative part by

fT(x) =max(f(x),0),  f~(x) = —min(f(x), 0),
so thatf* and £~ are both non-negative and
f=r-r.
Then a function with domai&’ and range{ oo, oo) will be calledmeasurable if
both its positive and its negative parts are measurable. The measurable functions
constitute a very large class which has a simple alternative characterization.

It can be shown that a real-valued functifiis .A-measurable if and only if, for
every Borel seB on the real line, the set

{x: f(x) € B}

is in A. If follows from the definition of Borel sets that it is enough to check that
{x : f(x) < b} isin A for everyb. This shows in particular that ifA(, A) is
Euclidean andf continuous, thery is measurable. As another important class,
consider functions taking on a countable number of valueg.tikes on distinct
valuesay, az, ... On setsd, Ao, .. ., itis measurable if and only if; € A for all
l.

The integral can now be defined in three corresponding steps.
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(i) Foranon-negative simple functiertaking on valueg; on the sets\;, define

2.8) [ sdu=zaua.

whereau(A) is to be taken as zero whern= 0 andu(A) = co.
(i) For a non-negative measurable functigrgiven by (2.7), define

(2.9) /fdu: |imoo/snd,u.

Here, the limit on the right side exists since the fact that the functipns
are nondecreasing implies the same for the numpeyg .. The definition

(2.9) is meaningful because it can be shown thdf,f and{s,} are two
nondecreasing sequences with the same limit function, their integrals also
will have the same limit. Thus, the value ¢ffdu is independent of the
particular sequence used in (2.7).

The definitions (2.8) and (2.9) do not preclude the possibility fha#/;. or
[ fdu is infinite. A non-negative measurable functioniigegrable (with
respect tqu) if [ fdu < oo.

(iii) An arbitrary measurable functioy is said to be integrable if its positive and
negative parts are integrable, and its integral is then defined by

(2.10) [ ran=[ ran- [ rau.

Important special cases of this definition are obtained by takingufahe
measures defined in Examples 2.1 and 2.2.

Example 2.3 Continuation of Example2.1. If X = {x1, x2, ...} andu is count-
ing measure, it is easily seen from (2.8) through (2.10) that

/ fdu =Tf(x,). ||

Example 2.4 Continuation of Example 2.2. If u is Lebesgue measure, then

[ fdu exists whenever the Riemann integral (the integral taught in calculus
courses) exists and the two agree. However, the integral defined in (2.8) through
(2.10) exists for many functions for which the Riemann integral is not defined. A
simple example is the functiofi for which f(x) = 1 or 0, asx is rational or irra-
tional. It follows from (2.22) below that the integral gfwith respect to Lebesgue
measure is zero; on the other harfds not Riemann integrable (Problem 2.1]1).

In analogy with the customary notation for the Riemann integral, it will fre-
quently be convenient to write the integral (2.10) @8(x)d i (x). This is especially
true wheny is given by an explicit formula.

The integral defined above has the properties one would expect of it. In particular,
for any real numbers, ..., ¢,, and any integrable functiong, ..., f., X¢; f; is
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also integrable and
(2.11) /(Eciﬁ)du = Zci/ﬁdu.

Also, if f is measurable and integrable and if 0< f < g, then f is also
integrable, and

(2.12) /fdu < /gdu-

We shall often be dealing with statements that hold except on a set of measure
zero. If a statement holds for allin X — N wherew(N) = 0, the statement is
said to hold a.e. (almost everywhege)or a.e. if the measure is clear from the
context).

It is sometimes required to know whef(x) = lim f,(x) or more generally
when

(2.13) f(x) =lim f,(x)  (ae u)
implies that
(2.14) /fduzlim/fndu.

Here is a sufficient condition.

Theorem 2.5 (Dominated Convergence) If the f, are measurable and satisfy
(2.13), and if there exists an integrable function g such that

(2.19) |fa(¥)] < glx) forall wx,
thenthe f, and f areintegrable and (2.14) holds.

The following is another useful result concerning integrals of sequences of
functions.

Lemma 2.6 (Fatou) If { f,,} is a sequence of non-negative measurabl e functions,
then

(2.16) /(Iiminf fn> du < lim inf/fnd,u,
with the reverse inequality holding for limsup.

Recall that theiminf andlimsup of a sequence of numbers are, respectively, the
smallest and largest limit points that can be obtained through subsequences. See
Problems 2.5 and 2.6.

As a last extension of the concept of integral, define

(2.17) fA fdu = / Infdu

when the integral on the right exists. It follows in particular from (2.8) and (2.17)
that
(2.18) / du = u(A).

A

Obviously such properties as (2.11) and (2.12) continue to hold \hereplaced
by /-
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Itis often useful to know under what conditions an integrable funcfisatisfies

(2.19) /A fdu=0.
This will clearly be the case when either
(2.20) f=0 on A
or

(2.21) w(A) =0.
More generally, it will be the case whenever
(2.22) f=0 a.e.omM,

that is, f is zero except on a subset #fhaving measure zero.
Conversely, iff is a.e. non-negative oA,

(2.23) / fdpu=0= f=0 a.e.0om,
A
and if f is a.e. positive o, then

(2.24) /A fdu=0= u(A)=0.

Note that, as a special case of (2.22); dindg are integrable functions differing
only on a set of measure zero, that isfif g (a.e.u), then

/fd/ngdu-

It is a consequence that functions can never be determined by their integrals
uniquely but at most up to sets of measure zero.
For a non-negative integrable functigh let us now consider

(2.25) v(A)=/AfdpL

as a set function defined over. Thenv is non-negativey -finite, ando -additive
and hence a measure ovér,(A).

If « andv are two measures defined over the same measurable gpadg, (tis
a question of central importance whether there exists a fungtgurch that (2.25)
holds for allA € A. By (2.21), a necessary condition for such a representation is
clearly that

(2.26) 1(A) = 0= v(A) = 0.

When (2.26) holdsy is said to beabsolutely continuous with respect tqu. It is a
surprising and basic fact known as tRadon-Nikodym theorem that (2.26) is not
only necessary but also sufficient for the existence of a fungtisatisfying (2.25)

for all A € A. The resulting functiory is called theRadon-Nikodym derivative

of v with respect tqu. This f is not unique because it can be changed on a set of
u-measure zero without affecting the integrals (2.25). Howeveruitiigue a.e.
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in the sense that § is any other integrable function satisfying (2.25), ther g
(a.e.w). Itis a useful consequence of this result that

/fduzo forall Ac A
A

implies thatf = 0 (a.e.u).

The last theorem on integration we require is a form of Fubini's theorem which
essentially states that in a repeated integral of a non-negative function, the order
of integration is immaterial. To make this statement precise, define the Cartesian
productA x B of any two setsA, B as the set of all ordered pairs, () with
a € A,be B.Let (X, A pn) and (V, B, v) be two measure spaces, and define
A x Bto be the smallest-field containing all setd x B with A € AandB € B.

Then there exists a unique measumver.A x B which to any product set x B
assigns the measur€A) - v(B). The measure is called theproduct measure of
w andv and is denoted by x v.

Example 2.7 Bord sets. If X and) are Euclidean spacéds, andE, and.A and
B the o-fields of Borel sets oft and) respectively, themt’ x ) is Euclidean
spaceE,,+,, andA x B is the class of Borel sets &f x Y. If, in addition,« and

v are Lebesgue measure oti,(A) and (V, B), thenu x v is Lebesgue measure
on (X x Y, Ax B). |

Anintegral with respectto a product measure generalizes the concept of adouble
integral. The following theorem, which is one version of Fubini’'s theorem, states
conditions under which a double integral is equal to a repeated integral and under
which it is permitted to change the order of integration in a repeated integral.

Theorem 2.8 (Fubini) Let (¥, A, u) and (V, B, v) be measure spaces and fet
be a non-negativel x B-measurable function defined anx ).

Then

ez [ [ fy f(x,y)dV(y)} diulx) = fy [ [ f(x,y)du(x)} av()

= fd(p x v).
XxY

Here, the first term is the repeated integral in whicis first integrated for fixed
x with respect tov, and then the result with respectto The inner integrals of
the first two terms in (2.27) are, of course, not defined unjgss y), for fixed
values of either variable, is a measurable function of the other. Fortunately, under
the assumptions of the theorem, this is always the case. Similarly, existence of
the outer integrals requires the inner integrals to be measurable functions of the
variable that has not been integrated. This condition is also satisfied.

3 Probability Theory

For work in statistics, the most important application of measure theory is its
specialization to probability theory. A measuPedefined over a measure space
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(X, A) satisfying

3.1) P(X)=1

is aprobability measure (or probability distribution), and the valué (A) it assigns

to A is theprobability of A. If P is absolutely continuous with respect to a measure
w with Radon-Nikodym derivativep, so that

(3.2) P(4) = /A pdu.

p is called theprobability density of P with respect tqu. Such densities are, of
course, determined only up to setsueimeasure zero.

We shall be concerned only with situations in whiths Euclidean, and typi-
cally the distributions will either be discrete (in which casean be taken to be
counting measure) or absolutely continuous with respect to Lebesgue measure.

Statistical problems are concerned not with single probability distributions but
with families of such distributions

(3.3) P={P,0 e Q)

defined over a common measurable spaceA). When all the distributions gP
are absolutely continuous with respect to a common measuas will usually be
the case, the famil is said to bedominated (by w).
Most of the examples with which we shall deal belong to one or the other of the
following two cases.

(i) Thediscrete case. Here, X' is a countable se is the class of subsets &f,
and the distributions oP are dominated by counting measure.

(i) The absolutely continuous case. Here, X' is a Borel subset of a Euclidean
space,A is the class of Borel subsets af, and the distributions oP are
dominated by Lebesgue measure ovEr ().

Itis one of the advantages of the general approach of this section that it includes
both these cases, as well as mixed situations such as those arising with censored
data (see Problem 3.8).

When dealing with a family of distributions, the most relevant null-set concept
is that of aP-null set, that is, of a selv satisfying

(3.4) P(N)=0 forall PeP.

If a statement holds except on a Asatisfying (3.4), we shall say that the statement
holds (a.eP). If P is dominated by, then

implies (3.4). When the converse also holdsandP are said to bequivalent.

To bring the customary probabilistic framework and terminology into conso-
nance with that of measure theory, it is necessary to define the concepts of random
variable and random vector. A random variable is the mathematical representation
of some real-valued aspect of an experiment with uncertain outcome. The experi-
ment may be represented by a spécand the full details of its possible outcomes
by the points of £. The frequencies with which outcomes can be expected to fall
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into different subset& of £ (assumed to form a-field B) are given by a proba-
bility distribution over €, 15). A randomvariableis then a real-valued functiaki
defined ove€. Since we wish the probabilities of the eveits< a to be defined,
the functionX must be measurable and the probability

(3.6) Fx(a) = P(X < a)

is simply the probability of the sé¢ : X(e) < a}. The functionFy defined through
(3.6) is thecumulative distribution function (cdf) of X.

It is convenient to digress here briefly in order to define another concept of
absolute continuity. A real-valued functighon (—oo, o) is said to beabsol utely
continuousif given anye > 0, there exit$ > 0 such that for each finite collection
of disjoint bounded open intervals; ( b;),

3.7) (b —a;) <8 implies Z|f(b;) — f(a)| < e.

A connection with the earlier concept of absolute continuity of one measure with
respect to another is established by the fact that & aif the real line is absolutely
continuous if and only if the probability measure it generates is absolutely con-
tinuous with respect to Lebesgue measure. Any absolutely continuous function is
continuous (Problem 3.2), but the converse does not hold. In particular, there exist
continuous cumulative distribution functions which are not absolutely continuous
and therefore do not have a probability density with respect to Lebesgue measure.
Such distributions are rather pathological and play little role in statistics.

If not just one but: real-valued aspects of an experiment are of interest, these
are represented by a measurable vector-valued functign (., X,) defined over
&, with the joint cdf

(3.8) Fx(ay,...,a,) = P[X1<ai,..., X, <ay,]
being the probability of the event
(3.9) {e: Xi(e) <ayg,..., Xu(e) < a,}.

The cdf (3.8) determines the probabilities a&f,( . . . X,,) falling into any Borel set
A, and these agree with the probabilities of the events

{e:[X1(e), ..., X,(e)] € A}.

From this description of the mathematical model, one might expect the starting
point for modeling a specific situation to be the measurable sgad®) @énd a fam-
ily P of probability distributions defined over it. However, the statistical analysis
of an experiment is typically not based on a full description of the experimental
outcome (which would, for example, include the smallest details concerning all
experimental subjects) represented by the paird6£. More often, the starting
point is a set of observations, represented by a random vEcto(Xy, ..., X,),
with all other aspects of the experiment being ignored. The specification of the
model will therefore begin witlX, thedata; the measurable spac& (.A4) in which
X takes on its values, tteample space; and a familyP of probability distributions
to which the distribution ofX is known to belong. Real-valued or vector-valued
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measurable functiong = (T, ..., T;) of X are calledstatistics; in particular,
estimators are statistics.

The change of starting point frord (B) to (X, .A) requires clarification of two
definitions: (1) In order to avoid reference & (8), it is convenient to requir® to
be a measurable function ovet (.A) rather than over{, ). Measurability with
respect to the originaky, B) is then an automatic consequence (Problem 3.3). (2)
Analogously, the expectation of a real-valued integradbis originally defined as

/ T[X(e)]d P(e).

However, it is legitimate to calculate it instead from the formula

E(T) = f T(x)d Py(X)

where Py denotes the probability distribution af.

As a last concept, we mention tepport of a distributionP on (X, A). ltis
the set of all points for which P(A) > 0 for all open rectangled [defined by
(2.3)] which containe.

Example 3.1 Support. Let X be a random variable with distributiaP and cdf
F, and suppose the support®fis a finite intervall with end points: andb. Then,
I must be the closed interval [b] and F is strictly increasing ond, 4] (Problem
3.4). [

If P and Q are two probability measures o/'(.A) and are equivalent (i.e.,
each is absolutely continuous with respect to the other), then they have the same
support; however, the converse need not be true (Problems 3.6 and 3.7).

Having outlined the mathematical foundation on which the statistical develop-
ments of the later chapters are based, we shall from now on ignore it as far as
possible and instead concentrate on the statistical issues. In particular, we shall
pay little or no attention to two technical difficulties that occur throughout.

() The estimators that will be derived are statistics and hence need to be measur-
able. However, we shall not check that this requirement is satisfied. In specific
examples, it is usually obvious. In more general constructions, it will be tac-
itly understood that the conclusion holds only if the estimator in question is
measurable. In practice, the sets and functions in these constructions usually
turn out to be measurable although verification of their measurability can be
quite difficult.

(ii) Typically, the estimators are also required to be integrable. This condition
will not be as universally satisfied in our examples as measurability and will
therefore be checked when it seems important to do so. In other cases, it will
again be tacitly assumed.

4 Group Families

The two principal families of models with which we shall be concerned in this book
areexponential families andgroup families. Between them, these families cover
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many of the more common statistical models. In this and the next section, we shall
discuss these families and some of their properties, together with some of the more
important special cases. More details about these and other special distributions
can be found in the four-volume reference work on statistical distributions by
Johnson and Kotz (1969-1972), and the later editions by Johnson, Kotz, and Kemp
(1992) and Johnson, Kotz, and Balakrishnan (1994,1995).

One of the main reasons for the central role played by these two families in
statistics is that in each of them, it is possible to effect a great simplification of the
data. In an exponential family, there exists a fixed (usually rather small) number of
statistics to which the data can be reduced without loss of information, regardless
of the sample size. In a group family, the simplification stems from the fact that the
different distributions of the family play a highly symmetric role. This symmetry
in the basic structure again leads essentially to a reduction of the dimension of the
data since it is then natural to impose a corresponding symmetry requirement on
the estimator.

A group family of distributions is a family obtained by subjecting a random
variable with a fixed distribution to a suitable family of transformations.

Example 4.1 Location-scale families. Let U be a random variable with a fixed
distribution F'. If a constant: is added tdJ, the resulting variable

(4.1) X=U+a

has distribution

(4.2) P(X <x)=F(x —a).

The totality of distributions (4.2), for fixed and as: varies from—oo to oo, is

said to constitute bocation family.
Analogously, ascale family is generated by the transformations

(4.3) X=bU, b=>0,

and has the form

(4.4) P(X <x)=F(x/b).
Combining these two types of transformations into
(4.5) X=a+bU, b>0,
one obtains théocation-scale family

(4.6) HX§m:F<x;“>

In applications of these familied; usually has a density’ with respect to
Lebesgue measure. The density of (4.6) is then given by

(4.7) %f(x;“>.

Table 4.1 exhibits several such densities, which will be used in the sequel|

In each of (4.1), (4.3), and (4.5), the class of transformations has the following
two properties.
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Table 4.1 ocation-Scale Families —o0 <a < 00, b > 0

Density Support Name Notation

ﬁe’(x’“)z/sz —00 <X < 0 Normal N(a, b?)

1
;e

1
b

A ebrallb —o00 <x <oo  Double exponential  DE(a, b)

b1 —00 < X <00 Cauchy C(a, D)

7 b2+(x—a)?

e (x—a)/b

e (r—a)/b]2 —0 <X <00 LOgiStiC L(a, b)

1
b
—abp . (x) a<x<oo Exponential E(a, D)

Tla—pj2.avby2(x)  a— % <x<a+ g Uniform U (a - %, a+ g)

(i)

Closure under composition. Application of a 1:1 transformatiogy from X

to X followed by anotherg,, results in a new such transformation called the
composition ofg; with g, and denoted by, - g;. For the transformation (4.1),
addition first ofa; and then ofi, results in the addition af; + a,. For (4.3),
multiplication byb; and then by, is equivalent to multiplication by, - b.
The composition rule (4.5) is slightly more complicated. First transforming
tox = a; +b1u and then the result to = a, +b,x results in the transformation

(4.8) y = az +by(ay + biu) = (az + boay) + bobyu.

A classJ of transformations is said to losed under composition ig; €
J, g2 € J impliesthatg, - g1 € J. We have just shown that the three classes
of transformations,

(4.1) with—o00 <a < oo,

(4.9) (4.3) with0 < b,

(ii)

(45) with—o0o<a <o00,0<b,

are all closed with respect to composition. On the other hand, the class (4.1)
with |a| < 1is not, sincd/ +1/2 andU + 2/3 are both members of the class
but their composition is not.

Closure under inversion. Given any 1: 1 transformation’ = gx, let g2,
theinverse of g, denote the transformation which undoes whaid, that is,
takesx’ back tox so thatx = g~1x’. For the transformation which addsthe
inverse subtracts; the inverse in (4.3) of multiplication by is division by

b; and the inverse af + bu is (x — a)/b. A classJ is said to be closed under
inversion ifg € J impliesg™! € J. The three classes listed in (4.9) are all
closed under inversion. On the other hand, (4.1) with & is not.
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The structure of the class of transformations possessing these properties is a
special case of a more general mathematical object, simply cafjemlip.

Definition 4.2 A setG of elements is called group if it satisfies the following
four conditions.

(i) There is defined an operation, group multiplication, which with any two el-
ements, b € G associates an elemenbf G. The element is called the
product ofa andb and is denotedb.

(i) Group multiplication obeys the associative law
(ab)c = a(bc).

(iif) There exists an elemeite G, called theidentity, such that

ae=ea=a forall aegG.

(iv) Foreach element € G, there exists an elemeat?, itsinverse, such that

aa t=ala=e.
Both the identity element and the inverse! of any element: can be shown to
be unique.

The groups of primary interest in statistics &ransformation groups.

Definition 4.3 A classG of transformations is calledtaansformation group if it
is closed under both composition and inversion.

It is straightforward to verify (Problem 4.4) that a transformation group is, in
fact, a group. In particular, note that tidentity transformation x = x is a member
of any transformation grou@ sinceg € G impliesg~! € G and hencg g € G,
and by definitiong g is the identity. Note also that the inverge )1 of gt is
g, so thatgg~1 is also the identity.
A transformation groug; which satisfies

82-81-81"82

for all g1, g» € G is calledcommutative. The first two groups of transformations
of (4.9) are commutative, but the third is not.

Example 4.4 Continuation of Example 4.1. The group families (4.2), (4.4), and
(4.6) generalize easily to the case thhis a vectorU = (U, ..., U,), if one
defines

(4100 U+a=Ui+a,...,U,+a) and bU=(bUy,...,bU,).

This covers in particular the case thé, ..., X, are iid according to one of the
previous families, for example, one of the densities of Table 4.1. Larger group
families are obtained in the same way by letting

(411) U+a= (U]_ +ay,...,U, +an) andbU = (blUl, Ceey ann)~
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Example 4.5 Multivariate normal distribution. As a more special but very im-

portant example, suppose next thht (U, ..., U,) where theU; are indepen-
dently distributed a® (0, 1) and let

X1 a Ui
(4.12) =] |+B]

Xp ap Up

where B is nonsingularp x p matrix. The resulting family of distributions in
p-space is the family of nonsingularvariate normal distributions. If the three
columns of (4.12) are denoted by a, andU, respectively, (4.12) can be written
as

(4.13) X =a+ BU.
From this equation, it is seen that the covariance mairof X are given by
(4.14) E(X)=a and T =E[(X—-a)(X—a)]=BB.

To obtain the density oX, write the density ofJ as
1 e—(1/2)u’u.
(v2m)P

Now U = B~1(X — a) and the Jacobian of the linear transformation (4.13) is just
the determinantB| of B. Thus, by the usual formula for transforming densities,
the density oiX is seen to be

|B|7l —(x—aYSs1(y_
4.15 P21 x-aysi(x-a)/2.
@19 (V2m)p
For the casg = 2, this reduces to (Problem 4.6)
(4.16) . o [(x=8)2/0%=2p(x—&)(y—n)/o+(y—n)?/1]/2(1~p?)

2not/1— p?

where we write £, y) for (x1, x2) and &, n) for (a1, a»), and wheres? = var(X),
2 =var(Y), andpot = cov(X, Y). [

There is a difference between the transformation groups (4.1), (4.3), and (4.5),
on the one hand, and (4.13), on the other. In the first three cases, different transfor-
mations of the group lead to different distributions. This is not true of (4.13) since
the distributions of

ay+BiU and a+ BU
coincide provideds; = a, and B1B; = B,Bj. This occurs whem, = a, and
(B, 'B1)(B,*By) is the identity matrix, that is, wheB, *B; is orthogonal. The
same family of distributions can therefore be generated by restricting the matrices
B in (4.13) to belong to a smaller group. In particular, it is enough tG;lée the
group of lower triangular matrices, in which all elements above the main diagonal
are zero (Problems 4.7 - 4.9).

1 When itis not likely to cause confusion, we shall isand so on to denote both the vector and the
column with element#/;.
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Example 4.6 Thelinear model. Let us next consider a different generalization

of a location-scale family. As before, l&t = (U, ..., U,) have a fixed joint
distribution and consider the transformations

(417) X,-=a,-+bU,-, i=1,...,l’l,

where the translation vectar= (as, .. ., a,) is restricted to be in somedimen-

sional linear subspace of n-space, that is, to satisfy a set of linear equations
(418) a; :Zdijﬁj (i=1,...,n).
=1

Here, thed;; are fixed (without loss of generality the matiix= (d;;) is assumed
to be of ranks) and thes; are arbitrary.

The mostimportant case of this model is that in whichtiheare iid asv (0, 1).
The joint distribution of theX’s is then given by

_ 1 el s —a)
(4.19) (@b)"eXp[ 2sz(x, al)j|

with a ranging overs2. I

We shall next consider a number of models in which the groups (and hence the
resulting families of distributions) are much larger than in the situations discussed
so far.

Example4.7 A nonparametric iid family. Let Uy, ..., U, be n independent
random variables with a fixed continuous common distribution\s@y 1), whose
support is the whole real line, and I6tbe the class of all transformations

(4.20) X; = g(U)
whereg is any continuous, strictly increasing function satisfying
(4.21) lim g(u)=—o0, Ilim g(u)=oc.

This class constitutes a group. Tie are again iid with common distribution,
sayF,. The clasqF, : g € G} is the class of all continuous distributions whose
support is £ oo, 00), that is, the class of all distributions whose cdf is continuous
and strictly increasing on<{oo, c0).

In this example, one may wish to impose grthe additional restriction of
differentiability for all x. The resulting family of distributions will be as before
but restricted to have probability density with respect to Lebesgue measule.

Many variations of this basic example are of interest, we shall mention only a
few.

Example 4.8 Symmetric distributions. Consider the situation of Example 4.7
but with g restricted to be odd, that is, to satisfy—u) = —g(u) for all . This
leads to the class of all distributions whose support is the whole real line and which
are symmetric with respect to the origin. If instead weXet= g(u;) +a, —o0 <

a < oo, the resulting class is that of all distributions whose support is the real line
and which are symmetric with the poimiof symmetry being specified. I
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Example 4.9 Continuation of Example 4.7. In Example 4.7, replac¥ (0, 1) as
the initial distribution of thel; with the uniform distribution on (01), and letG
be the class of all strictly increasing continuous functignsn (0, 1) satisfying
g(0) = 0,g(1) = 1. If, then,X; = a + bg(U;) with —co < a < 00,0 < b, the
resulting group family is that of all continuous distributions whose support is an
interval. I

The examples of group families considered so far are of two types. In Examples
4.1 - 4.6, the distributions within a family were naturally indexed by a relatively
small number of parameterg &ndb in Example 4.1; the elements of the matrix
B and the vecton in Example 4.4; the quantitidsand 4, . .., B, in Example
4.6). On the other hand, in Examples 4.7 - 4.9, the distribution ofsth&as
fairly unrestricted, subject only to conditions such as independence, identity of
distribution, nature of support, continuity, and symmetry. The next example is the
prototype of a third kind of model arising in survey sampling.

Example 4.10 Sampling from afinite population. To motivate this model, con-
sider a finite population oV elements (or subjects) to each of which is attached
a real number (for example, the age or income of the subject) and an identifying
label. A random sample af elements drawn from this population constitutes the
observations. Let the observed values and labelskhe k), . .., (X,, J,). The
following group family provides a possible model for this situation.

Let vy, ..., vy be any fixedN real numbers, and let the pair&y( J1), ...,
Uy, J,) ben of the pairs (1, 1), ..., (vy, N) selected at random, that is, in such
a way that all

(1:) possible choices of pairs are equally likely.

Finally, letG be the group of transformations
(422) X1=Ur+ay,....X,=U, +ay,

where theN-tuple @, ..., , ay) ranges over all possibl& -tuples—oco < ay,
az, ...,ay < oo. If we puty; = v; +a;, then the pairsXq, J1), ..., (Xu, Ju)
are a random sample from the population @), . .., (yn, N), they values being
arbitrary.

This example can be extended in a number of ways. In particular, the sampling
method, reflecting some knowledge concerning the populatipivalues, may be
more complex. Irstratified sampling, for instance, the population of is divided
into, say,s subpopulations oNy, ..., N, members EN; = N) and a sample of
n; is drawn at random from th#h subpopulation (Problem 4.12). This and some
other sampling schemes will be considered in Section 3.7. A different modification
places some restrictions on this such as O< y; < oo, 0r 0 < y; < 1 (Problem
4.11). I

It was stated at the beginning of the section that in a group family, the differ-
ent members of the family play a highly symmetric role. However, the general
construction of such a familf as the distributions o U, whereU has a fixed
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distribution Py andg ranges over a grou@ of transformations, appears to single
out the distributionP, of U (which is a member oP since the identity transfor-
mation is a member af) as the starting point of the construction. This asymmetry
is only apparent. LeP; be any distribution of other thanP, and consider the
family P’ of distributions ofgV asg ranges ovet;, whereV has distributionp;.
Since P; is an element of?, there exists an elemepgg of G for which goU is
distributed according t®;. Thus,goU can play the role o¥/, andP’ is the family
of distributions ofggoU asg ranges ove6. However, ag ranges ove6, so does
g8o (Problem 4.5), so that the family of distributionsgfoU, g € G, is the same
as the family ofP of gU, g € G. A group family is thus independent of which of
its members is taken as starting distribution.

If one cannot find a group generating a given fanfiyof distributions, the
guestion arises whether such a group exists, that is, whetea group family.
In principle, the answer is easy. For the sake of simplicity, supposefthiata
family of univariate distributions with continuous and strictly increasing cumula-
tive distribution functions. Lefp and F' be two such cdf's and suppose tltais
distributed according tép. Then, ifg is strictly increasingg (U) is distributed ac-
cording toF ifand only if g = F~1(Fy) (Problem 4.14). Thus, the transformations
generating the family must be the transformations

(4.23) (F~Y(Fp), F € P}.

The familyP will be a group family if and only if the transformations (4.23) form
agroup, that is, are closed under composition and inversion. In specific situations,
the calculations needed to check this requirement may not be easy. For an important
class of problems, the question has been settled by Borges and Pfanzagl (1965).

5 Exponential Families

A family {P,} of distributions is said to form astdimensional exponential family
if the distributionsP, have densities of the form
(5.1) pe(x) = exp[z ni(0)T; (x) — B(e)} h(x)

i=1
with respect to some common measureHere, then;, and B are real-valued
functions of the parameters and theare real-valued statistics, ands a pointin

the sample spac#, thesupport of the density. Frequently, it is more convenient
to use they; as the parameters and write the density inddrgonical form

(5.2) plxin) = eXp[Z niTi(x) — A(n)} h(x).
i=1
It should be noted that the form (5.2) is not unique. We can, for example, multiply
n; by a constant if, at the same timeT; is replaced byf; /c. More generally, we
can make linear transformations of th's andT’s.
Both (5.1) and (5.2) are redundant in that the faéiaf) could be absorbed into
w. The reason for not doing so is that it is then usually possible to gat@be
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either Lebesgue measure or counting measure rather than having to define a more
elaborate measure.

The functionp given by (5.2) is non-negative and is therefore a probability
density with respect to the given provided its integral with respect o equals
1. A constantA(n) for which this is the case exists if and only if

(5.3) / T p(x)dp(x) < oo.

The setE of pointsy = (11, ..., ns) for which (5.3) holds is called theatural
parameter space of the family (5.2) andy is called thenatural parameter. It

is not difficult to see thak is convex (TSH2, Section 2.7, Lemma 7). In most
applications, it turns out to be open, but this need not be the case (Problem 5.1).
In the parametrization (5.1), the natural parameter space is the &etbfes for
which [71(0), ..., ns(8)]isin E.

Example 5.1 Normal family. If X has theN (¢, o?) distribution, ther® = (£, 0?)
and the density with respect to Lebesgue measure is

1. &1 1
202 202 ./27'[0"

a two-parameter exponential family with natural parameteisit) = (£/02,
—1/20?) and natural parameter spagex (—oo, 0). I

polx) = exp[%x -

Some other examples of one- and two-parameter exponential families are shown
in Table 5.1.

If the statisticsTh, ..., T, satisfy linear constraints, the numbeof terms in
the exponent of (5.1) can be reduced. Unless this is done, the parameaees
statistically meaningless; they augidentifiable (see Problem 5.2).

Definition 5.2 If X is distributed according tp,, therd is said to beunidentifiable
on the basis of X if there exist; Z 6, for which Py, = P,.

A reduction is also possible when this satisfy a linear constraint. In the latter
case, the natural parameter space will be a convex setwhich lies in alinear subspace
of dimension less thax. If the representation (5.2) is minimal in the sense that
neither theT’s nor then's satisfy a linear constraint, the natural parameter space
will then be a convex set it containing an open-dimensional rectangle. If
(5.2) is minimal and the parameter space containsdmensional rectangle, the
family (5.2) is said to be ofull rank.

Example 5.3 Multinomial. In n independent trials witkh + 1 possible outcomes,
let the probability of théth outcome be; in each trial. IfX; denotes the number
of trials resulting in outcomeé (i =0, 1, ..., s), then the joint distribution of the
X’s is themultinomial distribution M (po, ..., ps;n)
I
(5.4) P(Xo=x0,.... Xy = 0) = ———p° . p¥,
Xo! e X!

which can be rewritten as

explolog po + - - - + x,log py)h(x).
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Table 5.1.Some One- and Two-Parameter Exponential Families

Density Name Notation  Support
1
@b x4 lemx/a Gammag, b) I'(a, b) O<x <o
a a
1 f/2—-1_—x/2 ; 2
W}C e Ch|-squaredf) Xf O <X <X
I'(a+b
= ((“)F (b))x“’l(l — )t Betag, b) Bla,b) O<x<1
a
p(l—py—= Bernoulli(p) b(p) x=0,1
(Z) (L= py* Binomial(p, ) b(p,n) x=01,....n
1., ., .
e Poissont) P()) x=01,...
X
m+x—1 . . .
o g Negative binomialp, m) Nb(p,m) x=0,1,...

*The density of the first three distributions is with respect to Lebesgue measure,
and that of the last four with respect to counting measure.

Since thex; add up ton, this can be reduced to

(5.5) explnlog po + x1109(p1/po) + - - - + x5 10g(ps / po)l h(x).
This is ans-dimensional exponential family with

(5.6)  mi =log(pi/po), A(n)=—nlogpo=nlog [1 + Ze"'] ~

i=1

The natural parameter space is the set ofiall (. ., n;) with —co < n; < co. ||

In the normal family of Example 5.1, it might be the case that the mean and
the variance are related. [Such a model can be useful in data analysis, where the
variance may be modeled as a power of the mean (see, for example, Snedecor and
Cochran 1989, Section 15.10).] In such cases, when the natural parameters of the
distribution are related in a nonlinear way, we say that (5.1) or (5.2) fooas/ad
exponential family (see Note 10.6).

Example 5.4 Curved normal family. For the normal family of Example 5.1,
assume thaj = o, so that

o1, 11 1
(57) pg(}C) - exp[gx - g.x - §:| ﬁé, S > 0.
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Although this is formally a two-parameter exponential family with natural param-
eter @ —%), this parameter is, in fact, generated by the single pararaetdre

two-dimensional paramete%;(—%) lies on a curve iM?, making (5.7) a curved
exponential family. I

The underlying parameter in a curved exponential family need not be one di-
mensional. The following is an example in which it is two dimensional.

Example5.5 Logit model. Let X; be independerit(p;, n;),i =1, ..., m, sothat
their joint distribution is

m
n; . xs
P(X1=x1,..., Xpm =xp) = 1_[ <x1> pii(L— p)riTh.
izl \7!
This can be written as

m pi m n; s
(5.8) exp{;x,» og 2 } (%) a-rr.

t) =1

an m-dimensional exponential family with natural parameters= log[(p;/
Q- p)i =1,...,m. The quantity logp/(1 — p)] is known as thdogit of
p.
If the n’s satisfy

(5.9) ni=a+Bz;,i=1...,m,

for known covariateg;, the model only contains the two parametemsndg and
(5.8) becomes a curved exponential family (see Note 10.6). I

Note that the parameter space ofsadimensional curved exponential family
cannot contain am-dimensional rectangle, so a curved exponential family is not
of full rank. Nevertheless, as long as tiies are not rank deficient, a curved
exponential family shares many of the following properties of a full rank family.
(An exception is completeness of the sufficient statistic, discussed in the next
section.) A more detailed treatment can be found in Brown (1986a) or Barndorff-
Nielsen and Cox (1994).

Let X andY be independently distributed accordingtdimensional exponen-
tial families (not necessarily full rank) with densities

(5.10)  exp[xn;Ti(x) — A()]h(x) and exdXn;Ui(y) — C(n)] k(y)

with respect to measurgs and v over (¥, .4) and (V, B), respectively. Then,

the joint distribution ofX, Y is again an exponential family, and by induction, the
result extends to the joint distribution of more than two factors. The mostimportant
special case is that of iid random variablés each distributed according to (5.1):
The exponential structure is preserved under random sampling. The joint density
of X =(Xyg,...,X,)is

(5.11) exp[Zn:(0)T; (x) — nB(0)] h(x1) - - - h(x,)
with T} (x) = £_,Ti(x;).
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Example 5.6 Normal sample. LetX; (i = 1, ..., n) beiid according tav (£, o'2).

Then, the joint density oX 4, ..., X,, with respect to Lebesgue measuretipis
£ 1, n , 1

5.12 exp| =Zx; — —¥x2— — &%) ————.

( ) p(oz N g2 2 2(72g (W2 o)

As in the caser = 1 (Example 5.1), this constitutes a two-parameter exponential
family with natural parameterg (o2, —1/202). I

Example5.7 Bivariate normal. Suppose thatX;, ¥;),i = 1, ..., n, is a sample
from the bivariate normal density (4.16). Then, it is seen that the joint density of
then pairs is a five-parameter exponential density with statistics

T1=XX;, T,=%X? T3=3X;Y;,, T;=3Y;, Ts=XY?
This example easily generalizes to thevariate case (Problem 5.3). I

A useful property of exponential families is given by the following theorem,
which is proved, for example, in TSH2 (Chapter 2, Theorem 9) and in Barndorff-
Nielsen (1978, Section 7.1).

Theorem 5.8 For any integrable function f and any » in the interior of E, the
integral

(5.13) / £ () explEn T (o)A () du(x)

is continuous and has derivatives of all orders with respect to the n’s, and these
can be obtained by differentiating under the integral sign.

As an application, differentiate the identity
[ explEn i) ~ A6 dut) = 1
with respect toy; to find
ad
(5.14) E(T)) = 5 - A(n).
nj

Differentiating (5.14), in turn, with respebt i leads to
2

(5.15) cov(T;, Ty) = A®).

on;on
(For the corresponding formulas in terms of (5.1), see Problem 5.6.)

Example 5.9 Continuation of Example 5.3. From (5.6), (5.14), and (5.15), one
easily finds for the multinomial variables of Example 5.3 that (Problem 5.15)

Y = np A _|npi@—pp)ifk=j
(5.16) E(X;)=np;, cov(X;, Xy) { oo itk
[

As will be discussed in the next section, in an exponential family the statistics
T = (T1, ..., Ts) carry all the information abouf or 6 contained in the data, so
that all statistical inferences concerning these parameters will be baseda.the
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For this reason, we shall frequently be interested in calculating not only the first
two moments of the’s given by (5.14) and (5.15) but also some of the higher
moments

(5.17) Uy, = E(T(H - T)
and central moments
(5.18) Mry,.r, = E{[T1 — E(T)]™ - - - [T — E(T))]"™).

A tool that often facilitates such calculations is thement generating function
(5.19) Mr(uq, ..., ug) = E(g“1T1+~~-+L¢xTx).

If My exists in some neighborhooﬂui2 < & of the origin, then all moments
ar,...r, existand are the coefficients in the expansioigfas a power series

(5.20) Mr(us, ..., ug) = Z Oy, Uy ol [l o)
(r1se-nrs)

As an alternative, it is sometimes more convenient to calculate, instead, the
cumulants «,,... ., defined as the coefficients in the expansion of cixeulant
generating function

(5.22) Kr(ua, ..., us) =logMz(uy, ..., us)
= Z Kpy,op g ol gl o)

From the cumulants, the moments can be determined by formal comparison of
the two power series (see, for example, Cearti946a, p. 186, or Stuart and Ord
1987, Chapter 3.). For= 1, one finds, for example (Problem 5.7),

(5.22) o1 = k1, Q=Ko+ Klz, a3 = k3 + k1K + /(13,
og = Kg+ 3K22 + i3 + 6/(12/(2 + Kf.
For exponential families, the moment and cumulant generating functions can
be expressed rather simply as follows.

Theorem 5.10 If X isdistributed with density (5.2), then for any  inthe interior
of &, the moment and cumulant generating functions M7 (x) and K7 (u) of the T's
exist in some neighborhood of the origin and are given by

(5.23) Kr(u) = A(n +u) — A(n)
and

(5.24) My (u) = X010 40
respectively.

Frequently, the calculation of moments becomes particularly easy when they can
be represented as the sum of independent terms. We shall illustrate two examples
for the case = 1.

(a) Suppos« = X1 +---+ X, where theX; are independent with moment and
cumulant generating functioridx, (1) and Ky, (), respectively. Then

Mx(u) = E[e™* )] = My, (u) - - - Mx, (u)
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and therefore
Kx(u) =) Kx,(u).
i=1

From the definition of cumulants, it then follows that
(5.25) ke = Kir
i=1

wherex;, is therth cumulant ofX;.

(b) The situation is also very simple for low central moments. # E(X;), 02 =
var(X;) and theX; are independent, one easily finds (Problem 5.7)

(5.26) var(£X,) = So?,  E[S(X; - &)°=ZEX; — &)°,
E[Z(X; —&)]*=ZEX; —&)*+ 62 ofo?.
i<j
For the case of identical components withe &, 02 = o2, this reduces to
(5.27) var(£X;) =no?,  E[Z(X; - &)} =nE(X; - £)°,
E[Z(X; — £)]* = nE(X1—£)* +3n(n — 1)o*.

The following are a few of the many important special cases of exponential fam-
ilies and some of their moments. Additional examples are given in the problems;
see also Johanson (1979), Brown (1986a), or Hoffmann-Jorgensen (1994, Chapter
12).

Example5.11 Binomial moments. Let X have the binomial distributioh(p, n)
sothatforx =0, 1,...,n,

(5.28) P(X=x)= (Z) p¢"" O<p<l,qg=1-p).

This is the special case of the multinomial distribution (5.4) witke 1. The
probability (5.28) can be rewritten as

(l’l ) &~ log(p/q)+nlogq
x 9

which defines an exponential family, wigla being counting measure over the
pointsx =0, 1, ..., n and with

(5.29) n=log(p/q). A(n)=nlog(l+e").
From (5.24) and (5.29), one finds that (Problem 5.8)
(5.30) Mx(u) = (g + pe")".

An easy way to obtain the expectation and the first three central momeXits of
is to use the fact that arises as the number of successesBernoulli trials with
success probability, and hence that = X X;, whereX; is 1 or 0, as théth trial
is or is not a success. From (5.27) and the momenis abne then finds (Problem
5.8)
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(5.31) E(X)=np, E(X—np)®=npq(q — p).
var(X) =npq. E(X —np)* = 3(pq)® +npq(1 - 6pq). I

Example 5.12 Poisson moments. A random variableX has the Poisson distribu-
tion P(A) if

(5.32) P(X :x)=k—):e_)‘, x=0,1,...; A>0.
Writing this as an exponentiajlcl-‘amily in canonical form, we find
(5.33) n=logx, A()=r=¢"

and hence

(5.34) Kx(u) =" — 1), My(u) =0,

so that, in particularg, = A for all r. The expectation and first three central
moments are given by (Problem 5.9)
(5.35) E(X)=x, EX-A)3=2,

var(X) =1, E(X —A)*=x1+3)2 |

Example 5.13 Normal moments. Let X have the normal distributio (¢, o?)
with density

(5.36) !

V2ro
with respect to Lebesgue measure. For fixethis is a one-parameter exponential
family with

o~ (x—§)2/207

(5.37) n=£/0? and A(n) = n?c?/2 + constant
It is thus seen that .

(5.38) My (u) = 5¥t/2o

and hence in particular that

(5.39) E(X)=¢.

Since the distribution ok — £ is N(0, o'2), the central momengs, of X are simply
the momentsy, of N(0, o2), which are obtained from the moment generating
function

Mo(u) = /2
to be
(5.40) o1 =0, pa=1-3---(2r —1)?, r=12,....

Example5.14 Gamma moments. A random variableX has thegamma distribu-
tion I'(«, b) if its density is

1
(5.41) o )baxafleﬂ/b, x>0 a>0, b>0,
o



15] EXPONENTIAL FAMILIES 31

with respect to Lebesgue measure onxf). Here b is a scale parameter, whereas
« is called theshape parameter of the distribution. For = f/2 (f an integer),

b = 2, thisis thexz-distributionxj% with f degrees of freedom. For fixed-shape
parametety, (5.41) is a one-parameter exponential family with —1/b and

A(n) = aloghb = —alog(—n).
Thus, the moment and cumulant generating functions are seen to be
(5.42) Mx(u)=(1—bu)™ and Kx(u) = —alog(l— bu),u < 1/b.
From the first of these formulas, one finds
NGRS r)b,.

(5.43) EX)=a@+1)---(a+r—10p" = r@)

and hence (Problem 5.17)
(5.44) E(X)=ab, E(X —ab)®=2ab®,
var(X) = ab?, E(X — ab)* = (3a? + 6a)b*. I

Another approach to moment calculations is to use an identity of Charles Stein,
which was given a thorough treatment by Hudson (1978). Stein’s identity is pri-
marily used to establish minimaxity of estimators, but it is also useful in moment
calculations.

Lemma5.15 (Stein’sidentity) If X isdistributed with density (5.2) and g isany
differentiable function such that E|g’(X)| < oo, then

(5.45) {[Z&g }:mT(Xq u»}:—Egum

provided the support of X is(—o0, 00). If the support of X isthe bounded interval

(a, b), then (5.45) holdsif exp(}_ n; T;(x)}h(x) — Oasx — a or b.

The proof of the lemma is quite straightforward and is based on integration by
parts (Problem 5.18). We illustrate its use in the normal case.

Example5.16 Stein’s identity for the normal. If X ~ N(u, ?), then (5.45)
becomes

E{g(X)(X — 1)} = 0*Eg/(X).
This immediately shows thdt(X) = u (takeg(x) = 1) andE(X?) = o2+ u? (take
g(x) = x). Higher-order moments are equally easy to calculate (Problem 5||18).

Not only are the moments of the statistifsappearing in (5.1) and (5.2) of
interest but also the family of distributions of tifés. This turns out again to be
an exponential family.

Theorem 5.17 If X isdistributed according to an exponential family with density
(5.1) with respect toameasure . over (X, A),thenT = (T4, ..., T;) isdistributed
according to an exponential family with density

(5.46) exp[Zn;t; — A(m)] k(1)
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with respect to a measure v over Ej.

For a proof, see, for example, TSH2, Section 2.7, Lemma 8.

Let us now apply this theorem to the case of two independent exponential fami-
lies with densities (5.10). Thenit follows from Theorem 5.17 tiat{, . .., T+
Uy) is also distributed according to andimensional exponential family, and by
induction, this result extends to the sum of more than two independent terms.

In particular, letXs, ..., X,, be independently distributed, each according to a
one-parameter exponential family with density
(5.47) exp[nTi(x;) — Ai(m)] hi(x;).

Then, the sun}) "', T;(X;) is again distributed according to a one-parameter expo-
nential family. In fact, the sum of independent Poisson or normal variables again
has a distribution of the same type, and the same is true for a sum of independent
binomial variables with commomp, or a sum of independent gamma variables

[ («;, b) with commonb.

The normal distributionsV (£, o?) for fixed o constitute both a one-parameter
exponential family (Example 5.12) and a location family (Table 4.1). Itis natural to
ask whether there are any other families that enjoy this double advantage. Another
example is obtained by putting = logY whereY has the gamma distribution
(e, b) given by (5.41), and where the location paramétés 6 = logb. Since
multiplication of a random variable by a constarng O preserves both the expo-
nential and location structure, a more general example is provided by the random
variablec log Y foranyc # 0. It was shown by Dynkin (1951) and Ferguson (1962)
that the cases in whicK is normal or is equal telogY, with Y being gamma,
provide the only examples of exponential location families.

The I'(«, b) distribution, with known parameter, constitutes an example of
an exponential scale family. Another example of an exponential scale family is
provided by the inverse Gaussian distribution (see Problem 5.22), which has been
extensively studied by Tweedie (1957). For a general treatment of these and other
results relating exponential and group families, see Barndorff-Nielsen et al. (1992)
or Barndorff-Nielsen (1988).

6 Sufficient Statistics

The starting point of a statistical analysis, as formulated in the preceding sections,
is a random observablg taking on values in a sample spate and a family of
possible distributions oX. It often turns out that some part of the data carries no
information about the unknown distribution and tiatan therefore be replaced by
some statisti@ = T(X) (not necessarily real-valued) without loss of information.

A statistic T is said to besufficient for X, or for the familyP = {P,,0 € Q}

of possible distributions ok, or for 6, if the conditional distribution ol given

T =t is independent of for all ¢.

This definition is not quite precise and we shall return to it later in this section.
However, consider first in what sense a sufficient statiBtimontains all the in-
formation abou® contained inX. For that purpose, suppose that an investigator
reports the value of’, but on being asked for the full data, admits that they have
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been discarded. In an effort at reconstruction, one can use a random mechanism
(such as a pseudo-random number generator) to obtain a random quartisy
tributed according to the conditional distributionXfgiven:. (This would not be
possible, of course, if the conditional distribution depended on the unkAgwn
Then the unconditional distribution o&f is the same as that &f, that is,

Py(X' € A)=Py(X € A) forall A,

regardless of the value éf Hence, from a knowledge df alone, it is possible
to construct a quantitX’ which is completely equivalent to the origingl Since
X and X’ have the same distribution for &, they provide exactly the same
information abou® (for example, the estimatoiX) and§(X’) have identical
distributions for any).

In this sense, a sufficient statistic provides a reduction of the data without loss of
information. This property holds, of course, only as long as attention is restricted
to the modelP and no distributions outside are admitted as possibilities. Thus,
in particular, restriction td@” is not appropriate when testing the validity®f

The construction oX’ is, in general, effected with the help of an independent
random mechanism. An estimatéfX’) depends, therefore, not only @ but
also on this mechanism. It is thus not an estimator as defined in Section 1, but
a randomized estimator. Quite generallyXifis the basic random observable, a
randomized estimator of g(0) is a rule which assigns to each possible outcerag
X arandom variabl& (x) with a known distribution. WheX = x, an observation
of Y (x) will be taken and will constitute the estimategd®). The risk, defined by
(1.10), of the resulting estimator is then

/ |:/ L6, y)dPYX:x(y):| d Pxg(x),
X LJY

where the probability measure in the inside integral does not depehd\dith this
representation, the operational significance of sufficiency can be formally stated
as follows.

Theorem 6.1 Let X be distributed according to Py € P and let T be sufficient
for . Then, for any estimator §(X) of g(#), there exists a (possibly randomized)
estimator based on T' which has the same risk function as §(X).

Proof. Let X’ be constructed as above so thqX) is an (possibly randomized)
estimator depending on the data only throdghSinces(X) andé’(X) have the
same distribution, they also have the same risk function. O

Example 6.2 Poisson sufficient statistic. Let X3, X, be independent Poisson
variables with common expectatianso that their joint distribution is

)\‘xl +x2
e 22X

P(X1=x1, X2 =x2) = ——
X1:X2:

Then, the conditional distribution of, given X; + X, =t is given by
Ae 2 /xq)(t — x1)!

P(X1=xi|X1+Xo=1)=
Z;:o)*’e_z'\/y!(f - )
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1 1 -
Sl =) \ T -y )

Since thisis independent bf so is the conditional distribution giverf (X1, X, =
t — X1), and hencel' = X7 + X5 is a sufficient statistic foi. To see how to
reconstructX1, X») from T, note that

s 1 1
yit—y) 1!

AV N
P(X1=x1|X1+X2=t)=(xl>(2> <2> )

that is, the conditional distribution aX; given ¢ is the binomial distribution
b(1/2, t) corresponding te trials with success probability/2. Let X and X}, =
t — X/ be respectively the number of heads and the number of tail®8ses with
afair coin. Then, the joint conditional distribution of{, X5) givent is the same
as that of §;, X») givenr. I

so that

Example 6.3 Sufficient statistic for auniform distribution. Let X3, ..., X, be
independently distributed according to the uniform distribuig@, 6). Let T be

the largest of the X's, and consider the conditional distribution of the remaining
n — 1 X’s givent. Thinking of then variables as: points on the real line, it is
intuitively obvious and not difficult to see formally (Problem 6.2) that the remaining
n — 1 points (after the largest is fixed gtbehave liken — 1 points selected at
random from the interval (@). Since this conditional distribution is independent
of 0, T is sufficient. Given onlyf" = ¢, it is obvious how to reconstruct the original
sample: Seleot — 1 points at random on (). I

Example 6.4 Sufficient statisticfor asymmetricdistribution. Suppose that is
normally distributed with mean zero and unknown variam¢€or more generally
that X is symmetrically distributed about zero). Then, given {igt= ¢, the only
two possible values ot are+¢, and by symmetry, the conditional probability of
each is J2. The conditional distribution of given: is thus independent of and

T = |X] is sufficient. In fact, a random variabl¢’ with the same distribution as
X can be obtained frori by tossing a fair coin and letting’ = 7 or —T as the
coin falls heads or tails. I

The definition of sufficiency given at the beginning of the section depends on
the concept of conditional probability, and this, unfortunately, is not capable of a
treatmentwhichis both general and elementary. Difficulties arise Wk@h=t) =
0, so that the conditioning event has probability zero. The definition of conditional
probability can then be changed at one or more valuegioffact, at any set of
values which has probability zero) without affecting the distributioiX pfvhich
is the result of combining the distribution @fwith the conditional distribution of
X givenT.

Inelementary treatments of probability theory, the conditional probalfili/ <
Alr) is considered for fixed as defining the conditional distribution &f given
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T =t. Amore general approach can be obtained by a change of viewpoint, namely
by consideringP(X € Alr) for fixed A as a function of, defined in such a way
that in combination with the distribution &, it leads back to the distribution
of X. (See TSH2, Chapter 2, Section 4 for details.) This provides a justification,
for instance, of the assignment of conditional probabilities in Example 6.4 and
Example 6.10.

In the same way, the conditional expectatidgr) = E[5(X)|7] can be defined in
such a way that
(6.1) En(T) = ES(X),
that is, so that the expected value of the conditional expectation is equal to the
unconditional expectation.

Conditional expectation essentially satisfies the usual laws of expectation. How-
ever, since it is only determined up to sets of probability zero, these laws can only
hold a.e. More specifically, we have with probability 1

Elaf(X)+bg(X)|t] = aE[f(X)|t] + bE[g(X)]

and
(6.2) E[b(T) f(X)It] = b()E[f(X)l1].

Asjustdiscussed, the functiofigA |¢) are not uniquely defined, and the question
arises whether determinations exist which, for each fixetefine a conditional
probability. It turns out that this is not always possible. [See Romano and Siegel
(1986), who give an example due to Ash (1972). A more detailed treatment is
Blackwell and Ryll-Nardzewsky (1963).] It is possible when the sample space is
Euclidean, as will be the case throughout most of this book (see TSH2, Chapter
2, Section 5). When this is the case, a statigtican be defined to be sufficient if
there exists a determination of the conditional distribution functions givenz
which is independent df.

The determination of sufficient statistics by means of the definition is incon-
venient since it requires, first, guessing a statigtithat might be sufficient and,
then, checking whether the conditional distributionXajivent is independent of
6. However, for dominated families, that is, when the distributions have densities
with respect to a common measure, there is a simple criterion for sufficiency.

Theorem 6.5 (Factorization Criterion) A necessary and sufficient condition for
a statistic T to be sufficient for a family P = {P,, 0 € Q} of distributions of X
dominated by a o-finite measure . is that there exist non-negative functions g
and & such that the densities p, of P, satisfy

(6.3) po(x) = go[T (x)]h(x) (a-e.p).
Proof. See TSH2, Section 2.6, Theorem 8 and Corollary 1. O

Example 6.6 Continuation of Example 6.2. Suppose thaky, ..., X, are iid
according to a Poisson distribution with expectatioThen

Po(X1=x1, ..., Xy =x,) = A% e ™/ TI(x;1).

This satisfies (6.3) witll = £ X;, which is therefore sufficient. I
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Example 6.7 Normal sufficient statistic. Let X+, ..., X, be iid asN (&, 62) so
that their joint density is

1
(6.4) LI N 2]
o

1
Pso(x) = —(«/EO')” exp|: 252 > 552
Then it follows from the factorization criterion th@t= (X X2, £X;) is sufficient
for 6 = (£, o). Sometimes it is more convenient to repldcdy the equivalent
statisticT’ = (X, $?) whereX = £X;/n andS? = ©(X; — X)? = £ X? — nX2.
The two representations are equivalent in that they identify the same points of the
sample space, that ig(x) = T(y) if and only if T'(x) = T'(y). I

Example 6.8 Continuation of Example 6.3. The joint density of a sample
X1,..., X, fromU(0,0)is
1 n

(6.5) o) = o n 10 < x)I(xi <)
where the indicator functior(-) is defined in (2.6). Now
[110<x)I(xi <0)=1I(xy <0)[]1(0<x)

i=1 i=1
wherex,) is the largest of the values. It follows from Theorem 6.5 tha,, is
sufficient, as had been shown directly in Example 6.3. I

As a final illustration, consider Example 6.4 from the present point of view.

Example 6.9 Continuation of Example 6.4. If X is distributed asv (0, o2), the
density ofX is
1 e_xz/zaz
V2o
which depends ononly throughy?, so that (6.3) holds witli'(x) = x2. As always,
of course, there are many equivalent statistics su¢i psx* or X’ I

Quite generally, two statisticd, = T(X) andT’ = T'(X), will be said to be
equivalent (with respect to a famify of distributions ofX) if each is a function
of the other a.eP, that is, if there exists @-null setN and functionsf andg
such thatr'(x) = f[T'(x)] andT'(x) = g[T (x)] for all x € N. Two such statistics
carry the same amount of information.

Example 6.10 Sufficiency of order statistics. Let X = (X4, ..., X,,) be iid ac-
cording to an unknown continuous distributidhand letT = (Xq), ..., X))
whereX () < --- < X(, denotes the ordered observations, the so-caitder
gtatistics. By the continuity assumptions, th€'s are distinct with probability 1.
GivenT, the only possible values for are then! vectors X, - - -, X¢,)), and
by symmetry, each of these has conditional probability! IThe conditional dis-
tribution is thus independent d@f, andT is sufficient. In fact, a random vector
X’ with the same distribution a&¥ can be obtained fronT by labeling then
coordinates ofl’ at random. Equivalent t@ is the statisticU = (Ui, ..., U,)
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whereU, = XX;, U, =XX;X; (i Zj),..., U, = X1--- X,,, and also the statistic
V =(Vy,...,V,) whereV, = X} +... + X* (Problem 6.9). I

Equivalent forms of a sufficient statistic reduce the data to the same extent.
There may, however, also exist sufficient statistics which provide different degrees
of reduction.

Example 6.11 Different sufficient statistics. Let X1, ..., X, be iid asN (0, 0?)
and consider the statistics

Ti(X) = (X1, ..., X,),
To(X) = (X3,..., X7),
Ta(X) = (XT+- -+ X5, X2y + -+ XD),
Ta(X)= XZ+...+ X2,

These are all sufficient (Problem 6.5), with providing increasing reduction of
the data ag increases. I

It follows from the interpretation of sufficiency given at the beginning of this
section that ifT is sufficient andl’ = H(U), thenU is also sufficient. Knowledge
of U implies knowledge off and hence permits reconstruction of the original
data. Furthermorel’ provides a greater reduction of the data tliamunlessH
is 1:1, in which casd” andU are equivalent. A sufficient statistiE is said to
beminimal if of all sufficient statistics it provides the greatest possible reduction
of the data, that is, if for any sufficient statistitthere exists a functiol/ such
thatT = H(U) (a.e.P). Minimal sufficient statistics can be shown to exist under
weak assumptions (see, for example, Bahadur, 1954), but exceptions are possible
(Pitcher 1957, Landers and Rogge 1972). Minimal sufficient statistics exist, in
particular if the basic measurable space is Euclidean in the sense of Example 2.2
and the familyP of distributions is dominated (Bahadur 1957).

Itis typically fairly easy to construct a minimal sufficient statistic. For the sake
of simplicity, we shall restrict attention to the case that the distributior3 afi
have the same support (but see Problems 6.11 - 6.17).

Theorem 6.12 LetP beafinitefamilywithdensitiesp;,i =0, 1, ..., k,all having
the same support. Then, the statistic

p1(X) paX) Pk(X)>
po(X)" po(X)" "7 po(X)

(6.6) T(X)= (
isminimal sufficient.

The proof is an easy consequence of the following corollary of Theorem 6.5
(Problem 6.6).

Corollary 6.13 Under the assumptions of Theorem 6.5, a necessary and sufficient
condition for a statistic U to be sufficient is that for any fixed 6 and 6o, the ratio
po(x)/ pey(x) isafunction only of U (x).

Proof of Theorem 6.12. The corollary states thdf is a sufficient statistic foP if
and only if T is a function ofU, and this prove§ to be minimal. O
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Theorem 6.12 immediately extends to the casefhiatcountable. Generaliza-
tions to uncountable families are also possible (see Lehmann and &&eé&f,
Dynkin 1951, and Barndorff-Nielsen, Hoffmann-Jorgensen, and Pedersen 1976),
but must contend with measure-theoretic difficulties. In most applications, min-
imal sufficient statistics can be obtained for uncountable families by combining
Theorem 6.12 with the following lemma.

Lemma 6.14 If P isafamily of distributions with common support and Py C P,
and if T is minimal sufficient for 7P and sufficient for P, it is minimal sufficient
for P.

Proof. If U is sufficient forp, it is also sufficient fof?,, and hencd is a function

of U. ]
Example 6.15 L ocation families. As an application, let us now determine mini-
mal sufficient statistics for a samplg, ..., X, from a location familyP, that is,
when

(6.7) po(x) = fx1—0) - fxy —0),

wheref is assumed to be known. By Example 6.10, sufficiency permits the rather
trivial reduction to the order statistics for gil However, this reduction uses only
the iid assumption and neither the special structure (6.7) nor the knowledge of
To illustrate the different possibilities that arise when this knowledge is utilized,
we shall take forf the six densities of Table 4.1, each witlx 1.
(i) Normal. If Py consists of the two distributions/(6p, 1) and N (61, 1), it
follows from Theorem 6.12 that the minimal sufficient statistic foy is
T(x) = pe,(X)/pe,(X), which is equivalent t&X. SinceX is sufficient for
={N(,1), —oo < 0 < oo} by the factorization criterion, it is minimal
sufficient.
(if) Exponential. If the X’s are distributed a (¢, 1), it is easily seen thaX ;) is
minimal sufficient (Problem 6.17).
(i) Uniform. For a sample fronU(® — 1/2,0 + 1/2), the minimal sufficient
statistic is (1), X(»)) (Problem 6.16).
In these three instances, sufficiency was able to reduce the origidial
mensional data to one or two dimensions. Such extensive reductions are not
possible for the remaining three distributions of Table 4.1.

(iv) Logistic. The joint density of a sample from(9, 1) is
(6.8) po(x) = expl-2(x; — 0)]/ | J{L +expl-(x; — 0)])%.

Consider a subfamily?y consisting of the distribution (6.8) withy = 0 and
01, ..., 6. Then by Theorem 6.12, the minimal sufficient statisticfgis 7' (X) =
[Tu(X), ..., Tk(X)], where

ng n 14 % 2
(6.9) Ti(x) = ]‘[ Troo ) -

We shall now show that far = n + 1, T(X) is equivalent to the order statistics,
thatis, thatT'(x) = T(y) ifand only if x = (x1, ..., x,) andy = (y1, ..., y,) have
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the same order statistics, which means that one is a permutation of the other. The
equationT;(x) = T;(y) is equivalent to
o Lreptx) Vo (_ltexpy) |\’
1+exptx; +0)) 1+exptyi +0))
and hencd'(x) = T(y) to
L 1+ u; L 1+ V;
(6.10) I1 Si _ I SV for g =gy, B

i=1 l+1/li -1 1+U,‘

whereg; = e u; = e, andv; = e™¥. Now the left- and right-hand sides of
(6.10) are polynomials i of degreen which agree fon + 1 values of if and
only if the coefficients ot” agree foralr =0, 1, ..., n. Forr = 0, this implies
IM(1 +u;) = TI(1 +v;), so that (6.10) reduces (1 +&u;) = TI(1 + &v;) for
& =£&,..., &+, and hence for al. It follows thatI1(n + u;) = T1(n + v;) for all
n, SO that these two polynomials inhave the same roots. Since this is equivalent
to thex’s andy’s having the same order statistics, the proof is complete.

Similar arguments show that in the Cauchy and double exponential cases, too,
the order statistics are minimal sufficient (Problem 6.10). This is, in fact, the typical
situation for location families, examples (i) through (iii) being happy exceptions.

As a second application of Theorem 6.12 and Lemma 6.1, let us determine
minimal sufficient statistics for exponential families.

Corollary 6.16 (Exponential Families) Let X be distributed with density (5.2).
Then, T = (T4, ..., T;) isminimal sufficient provided the family (5.2) satisfies one
of the following conditions:

(i) Itisof full rank.

(i) The parameter space containss + 1 pointsy)(j =0, ..., s), which span Ej,
in the sense that they do not belong to a proper affine subspace of E;.

Proof. ThatT is sufficient follows immediately from Theorem 6.5. To prove min-
imality under assumption (i), 162, be a subfamily consisting ef+ 1 distributions
nU) = (n(lf), A nﬁ'j)),j =0,1,...,s. Then, the minimal sufficient statistic f@%

is equivalent to

1 0 3 0
So® - ) NT(x), ..., 20 — 1O T(X),

L

which is equivalent td” = [T1(X), .. ., Ty(X)], provided thes x s matrix||n§j) -
nf°)|| is nonsingular. A subfamilyP, for which this condition is satisfied exists
under the assumption of full rank.

The proof of minimality under assumption (ii) is similar. O

Itis seen from this result that the sufficient statistitef Examples 6.6 and 6.7
are minimal. The following example illustrates the applicability of part (ii).

Example 6.17 Minimal sufficiency in curved exponential families. Let X1, X,
..., X, have joint density (6.4), but, as in Example 5.4, assume&hato, so
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the parameter space is the curve of Figure 10.1 (see Note 10.6). The statistic
T = (Y X;, Y X?) is sufficient, and it is also minimal by Corollary 6.16. To see
this, recall that the natural parametenis (1/&, —1/2&2), and choose

1@=(1-3), W=2-5, ¥=0E-%
and note that the 2 2 matrix
2-1 3—-1
(—% t3 “ht %)
has rank 2 and is invertible.
In contrast, suppose that the parameters are restricted according to?,

another curved exponential family. This defines an affine subspace (with zero
curvature) and the sufficient statisficis no longer minimal (Problem 6.20). ||

Let X3, ..., X, be iid, each with density (5.2), assumed to be of full rank.
Then, the joint distribution of th&’s is again full-rank exponential, witli =
(T, ..., 1)) whereT* = E;lle,-(Xj). This shows that in a sample from the
exponential family (5.2), the data can be reduced te-dimensional sufficient
statistic, regardless of the sample size.

The reduction of a sample to a smaller number of sufficient statistics greatly
simplifies the statistical analysis, and it is therefore interesting to ask what other
families permit such a reduction. The dimensionality of a sufficient statistic is a
property which differs from those considered so far, in that it depends not only
on the sets of points of the sample space for which the statistic takes on the same
value but it also depends on these values; that is, the dimensionality may not be the
same for different representations of a sufficient statistic (see, for example, Denny,
1964, 1969). To make the concept of dimensionality meaningful, let ug'call
continuous s-dimensional sufficient statistic over a Euclidean sample spageif
the assumptions of Theorem 6.5 holdTifx) = [Ti(x), ..., T;(x)] whereT is
continuous, and if the factorization (6.3) holds not only a.e. but for all.X’.

Theorem 6.18 Suppose Xy, ..., X, arereal-valuediid accordingtoadistribution
with density f,(x;) with respect to Lebesgue measure, which is continuous in x;
and whose support for all 6 isan interval 1. Suppose that for the joint density of
X:(Xl,...,X,,)
po(x) = folx1) - - fo(xn)
there exists a continuous k-dimensional sufficient statistic. Then
(i) if k = 1, there exist functions n1, B and 4 such that (5.1) holds;

(ii) k£ > 1, and if the densities f,(x;) have continuous partial derivatives with
respect to x;, then there exist functions »;, B and 4 such that (5.1) holdswith
s <k.

For a proof of this result, see Barndorff-Nielsen and Pedersen (1968). A corre-
sponding problem for the discrete case is considered by Andersen (1970a).

This theorem states essentially that among “smooth” absolutely continuous fam-
ilies of distributions with fixed support, exponential families are the only ones that
permit dimensional reduction of the sample through sufficiency. It is crucial for
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this result that the support of the distributioAgis independent of. In the con-
trary case, a simple example of a family possessing a one-dimensional sufficient
statistic for any sample size is provided by the uniform distribution (Example 6.3).
The Dynkin-Ferguson theorem mentioned at the end of the last section and
Theorem 6.18 state roughly that)(the only location families which are one-
dimensional exponential families are the normal and log of gamma distributions
and ¢) only exponential families permit reduction of the data through sufficiency.
Together, these results appear to say that the only location families with fixed
support in which a dimensional reduction of the data is possible are the normal and
log of gamma families. This is not quite correct, however, because alocation family
— although it is a one-dimensional family — may also be a curved exponential
family.

Example 6.19 L ocation/curved exponential family. LetX;, ..., X, be iid with
joint density (with respect to Lebesgue measure)

(6.11) C exp[— i(xi - 9)4}

=1
= Cexp(not)exp(#°Tx; — 60°Tx2 +49Tx> — Tx).

According to (5.1), this is a three-dimensional exponential family, and it provides
an example of a location family with a three-dimensional sufficient statistic sat-
isfying all the assumptions of Theorem 6.18. This is a curved exponential family
with parameter spac® = {(61, 62, 63) : 61 = 63,6, = 62}, a curved subset of
three-dimensional space. I

The tentative conclusion, which had been reached just before Example 6.19
and which was contradicted by this example, is nevertheless basically correct.
Typically, a location family with fixed support{co, oo) will not constitute even a
curved exponential family and will, therefore, not permit a dimensional reduction
of the data without loss of information.

Example 6.15 shows that the degree of reduction that can be achieved through
sufficiency is extremely variable, and an interesting question is, what characterizes
the situations in which sufficiency leads to a substantial reduction of the data? The
ability of a sufficient statistic to achieve such a reduction appears to be related
to the amount of ancillary information it contains. A statisti¢X) is said to
be ancillary if its distribution does not depend @h andfirst-order ancillary if
its expectationE,[V (X)] is constant, independent 6f An ancillary statistic by
itself contains no information abodt but minimal sufficient statistics may still
contain much ancillary material. In Example 6.15(iv), for instance, the differences
Xuw — X»( =1,...,n— 1) are ancillary despite the fact that they are functions
of the minimal sufficient statistics(a), . . . , X(»))-

Example 6.20 Location ancillarity. Example 6.15(iv) is a particular case of a
location family. Quite generally, when sampling from any location family, the
differencesX; — X;,i 7 j, are ancillary statistics. Similarly, when sampling from
scale families, ratios are ancillary. See Problem 6.34 for details. |
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A sufficient statisticT appears to be most successful in reducing the data if
no nonconstant function df is ancillary or even first-order ancillary, that is, if
Eo[f(T)] = ¢ for all & € Q implies f(¢) = ¢ (a.e.P). By subtractinge, this
condition is seen to be equivalent to

(6.12) Eo[f(T)]=0 forall 6 e Q implies f(r) =0(ae. P)

whereP = {Py, 6 € Q}. A statisticT satisfying (6.12) is said to beomplete. As
will be seen later, completeness brings with it substantial simplifications of the
statistical situation.

Since complete sufficient statistics are particularly effective in reducing the data,
it is not surprising that a complete sufficient statistic is always minimal. Proofs are
given in Lehmann and Schéff1950), Bahadur (1957), and Schervish (1995); see
also Problem 6.29.

What happens to the ancillary statistics when the minimal sufficient statistic is
complete is shown by the following result.

Theorem 6.21 (Basu's Theorem) If T is a complete sufficient statistic for the
family P = { Py, 0 € Q}, then any ancillary statistic V isindependent of T.

Proof. If V is ancillary, the probabilitypy, = P(V € A) is independent ob
for all A. Letna(t) = P(V € A|T =1t). Then,Ey[na(T)] = pa and, hence, by
completeness,

na(t) = pala.e. P).
This establishes the independenc&/cdndT . a

We conclude this section by examining some complete and incomplete families
through examples.

Theorem 6.22 If X is distributed according to the exponential family (5.2) and
the family is of full rank, then T = [T1(X), ..., T,(X)] is complete.

For a proof, see TSH2 Section 4.3, Theorem 1; Barndorff-Nielsen (1978),
Lemma 8.2.; or Brown (1986a), Theorem 2.12.

Example 6.23 Completeness in some one-parameter families. We give some
examples of complete one-parameter families of distributions.

(i) Theorem 6.22 proves completeness of

(a) X for the binomial family{b(p, n),0 < p < 1}
(b) X for the Poisson familyP (1), 0 < A}

(i) Uniform. LetX4, ..., X, beiid according to the uniform distributidi(0, 9),
0 < 0. Itwas seen in Example 6.3 thEt= X, is sufficient ford. To see that
T is complete, note that

P(T <t)=1t"/0", O0<t <6,
so thatT has probability density
(6.13) po(t) =nt"1/0", 0<1t<6.
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SupposeE, f(T) = 0 for allg, and letf* and £~ be its positive and negative
parts, respectively. Then,

6 %
/ ") de = / "L @) de
0 0

for all . It follows that
/t"*1f+(t)dt:/t”*lf*(t)dt
A A

for all Borel setsA, and this impliesf =0 a.e.

Exponential. Let Yy, ..., Y, be iid according to the exponential distribution
E(n,1).1f X; =e " andf = e~ ", thenX,, ..., X, iid asU (0, 8) (Problem
6.28), and it follows from (ii) thai, or, equivalentlyY(, is sufficient and
complete. I

Example 6.24 Completenessin some two-parameter families.
(i) Normal N(&, o2). Theorem 6.22 proves completenessXf §2) of Example

(ii)

6.7 in the normal family{ N (£, 02), —o00 < £ < 00,0 < o).

Exponential E(a, b). Let X4, ..., X,, be iid according to the exponential
distribution E(a, b), —oo < a < 00,0 < b, and letTy = X, T =
X[X; — X@w). Then, (1, T») are independently distributed &a, b/n) and
%bxzzn_z, respectively (Problem 6.18), and they are jointly sufficient and com-
plete. Sufficiency follows from the factorization criterion. To prove complete-
ness, suppose that

E.p[f(T1, T»)] =0 forall a,b.
Then if

(6.14) g(t1, b) = Ep[ f (11, T2)],

we have that for any fixed,
o0
[ g(t1, b)e " bdy, =0 forall a.

It follows from Example 6.23(iii) that
g(tlv b) = 0’

except on a se¥,, of ¢, values which has Lebesgue measure zero and which
may depend oh. Then, by Fubini’'s theorem, for almost allwe have

g1, b) =0a.e. inb.

Since the densities df, constitute an exponential family(z1, ») by (6.14)

is a continuous function df for any fixedt,. It follows that for almost all

t1, g(t1, b) = 0, not only a.e. but for alb. Applying completeness df; to
(6.14), we see that for almost all, f(z1,1,) = 0 a.e. inf. Thus, finally,

f(r1, t2) = 0 a.e. with respect to Lebesgue measure inthe,j plane. [For
measurability aspects which have been ignored in this proof, see Lehmann
and Scheft (1955, Theorem 7.1).] I
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Example 6.25 Minimal sufficient but not complete.

(i) Location uniform. Let X4, ..., X, beiid according td/(6 — 1/2,6 + 1/2),
—00 < f < oo. Here,T = {X(1), X)) is minimal sufficient (Problem 6.16).
Onthe other hand; is not complete sinck,,)— X (1) is ancillary. For example,
Eo[X(my — X — (n —1)/(n+1)] = Oforallo.

(i) Curved normal family. In the curved exponential family derived from the
N(&, o?) family with £ = o, we have seen (Example 6.17) that the statistic
T = (3 x;, Y. x?) is minimal sufficient. However, it is not complete since
there exists a functioyi(T") satisfying (6.12). This follows from the fact that
we can find unbiased estimators fpbased on eithe}_ X, or )" X? (see
Problem 6.21). I

We close this section with an illustration of sufficiency and completeness in
logit dose-response models.

Example 6.26 Completenessin thelogit model. For the model of Example 5.5,
whereX; are independerit(p;, n;),i =1, ..., m, thatis,

— — — - n; Xi i
619 o= Xz =[] (3) mra-
it can be shown thaX = (X4, - - -, X,,) is minimal sufficient. The natural param-

eters are the logitg; = log[(p; /(1 — p;)],i = 1, ..., m [see (5.8)], and if they;’s
are unrestricted, the minimal sufficient statistic is also complete (Problem §.23).

Example 6.27 Dose-response model. Suppose:; subjects are each given dose
leveld; ofadrug,; = 1, 2, and that/; < d,. The response of each subject is either

0 or 1, independent of the others, and the probability of a successful response is
pi = ne(d;). The joint distribution of the response veckr= (X;, X,) is

2
— n; RY L7 _ 10— Xi
(616 9 =T (%) oty 1= miaor =
Note the similarity to the model (6.15).
The statisticX is minimal sufficient in the model (6.16), and remains sp (€;)
has the form

(6.17) no(d)=1—e %, di=1dy=2n1=2n,=1
However, it is not complete since

(6.18) Eq[I(X1=0)—I(X2=0)] =0.

If instead of (6.17), we assume thgt(d;) is given by

(6.19) ne(d) =1— e =0 =1 2

whered, /d; is an irrational number, theX is a complete sufficient statistic.

These models are special cases of those examined by Messig and Strawderman
(1993), who establish conditions for minimal sufficiency and completeness in a
large class of dose-response models. I
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Table 7.1 Convex Functions

Functiong Interval @, b)
(i) |x] —00 < X < 00
(i) x2 —00 < X < 00
(i) x?,p>1 O<x
(iv)1/x?,p >0 O<x

(V) e* —00 < X < 00
(vi) —logx O<x <o0

7 Convex Loss Functions

The property of convexity and the associated property of concavity play an impor-
tant role in point estimation. In particular, the point estimation problem outlined
in Section 1 simplifies in a number of ways when the loss functi¢h d) is a
convex function ofi.

Definition 7.1 A real-valued functior defined over an open interval= (a, b)
with —oo <a < b < ocisconvexifforanyy <x <y <bandanyO< y <1

(7.1) olyx+(L—y)yl = vo(x)+(1—y)o().

The function is said to betrictly convex if strict inequality holds in (7.1) for all
indicated values of, y, andy. A function¢ is concave ond, b) if —¢ is convex.

Convexity is a very strong condition which implies, for example, thé con-
tinuous in ¢, b) and has a left and right derivative at every pointafi). Proofs
of these properties and of the other properties of convex functions stated in the fol-
lowing without proof can be found, for example, in Hardy, Littlewood, and Polya
(1934), Rudin (1966), Roberts and Varberg (1973), or Dudley (1989).
Determination of whether or not a function is convex is often easy with the help
of the following two criteria.

Theorem 7.2

(i) If ¢ is defined and differentiable on (a, b), then a necessary and sufficient
condition for ¢ to be convex isthat

(7.2) d'(x)<¢'(y) forall a<x<y<b.
The function is strictly convex if and only if the inequality (7.2) is strict for
alx < y.

(ii) If, in addition, ¢ is twice differentiable, then the necessary and sufficient
condition (7.2) is equivalent to

(7.3) ¢"(x) >0 foral a<x<b
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with strict inequality sufficient (but not necessary) for strict convexity.

Example 7.3 Convex functions. From these criteria, it is easy to see that the
functions of Table 7.1 are convex over the indicated intervals: In all these ¢ases,
is strictly convex, except in (i) and in (iii) witlp = 1. I

In general, a convex function is strictly convex unless it is linear over some
subinterval of ¢, ) (Problems 7.1 and 7.6).
A basic property of convex functions is contained in the following theorem.

Theorem 7.4 Let ¢ be a convex function defined on I = (a, b) and let ¢ be any
fixed point in 7. Then, there exists a straight line

(7.4) y = L(x) =clx —1) +(t)
through the point [z, ¢(r)] such that
(7.5) L(x) < ¢(x) forall xinl.

By definition, a function is convex if the value of the function at the weighted
average of two points does not exceed the weighted average of its values at these
two points. By induction, this is easily generalized to the average of any finite
number of points (Problem 7.8). In fact, the inequality also holds for the weighted
average of any infinite set of points, and in this general form, itis known as Jensen’s
inequality.

The weighted average gfwith respect to the weight functiaf is represented
by
(7.6) / dpdA

1

whereA is a measure witlA (1) = 1. In the particular case thatassigns measure
y and 1— y to the pointsx andy, respectively, this reduces to the right side of
(7.1). It is convenient to interpret (7.6) as the expected valyg B, whereX is

a random variable taking on valuesfraccording to the probability distribution
A.

Theorem 7.5 (Jensen’slnequality) If ¢ isa convex function defined over an open

interval 7, and X isarandomvariablewith P(X e I) = 1 and finite expectation,
then

(7.7) SLE(X)] < E[¢(X)].

If ¢ isstrictly convex, theinequality isstrict unless X isa constant with probability
1

Proof. Lety = L(x) be the equation of the line which satisfies (7.5) and for which
L(t) = ¢(¢t) whenz = E(X). Then,

(7.8) E[¢p(X)] = E[L(X)] = LIE(X)] = ¢[E(X)].

which proves (7.7). I is strictly convex, the inequality in (7.5) is strict for all

x ¥ t, and hence the inequality in (7.8) is strict unlegX) = E[¢(X)] with
probability 1. a

Note that the theorem does not exclude the possibility tBfH(X)]
= 0Q.
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Corollary 7.6 If X is a nonconstant positive random variable with finite expec-
tation, then

1 1
and
(7.10) E(log X) < log[E(X)].

Example 7.7 Entropy distance. For density functionsf and g, we define the
entropy distance betweenf andg , with respect tof (also known ad<ullback-
Leibler Information of g at f or Kullback-Leibler distance between ¢ and f)
as

(7.11) E¢[log(f(X)/g(X)] = f'OQ[f(X)/g(x)]f(x)dX-

Corollary 7.6 shows that

E[log(f(X)/g(X))]

—E [log(g(X)/f (X))]
—log[E £ ((X)/f (X))]
0,

(7.12)

In v

and hence that the entropy distance is always non-negative, and equals zero if
f = g. Note that inequality (7.12) also establishes

(7.13) Eylog[g(X)] = Ey log[f(X)].

which plays an important role in the theory of the EM algorithm of Section 6.4.
Entropy distance was explored by Kullback (1968); for an exposition of its
properties see, for example, Brown (1986a). Entropy distance has, more recently,
found many uses in Bayesian analysis, see e.g., Berger (1985) or Robert (1994a),

and Section 4.5. I

In Theorem 6.1, it was seen thafifis a sufficient statistic, then for any statistical
procedure there exists an equivalent procedure (i.e., having the same risk function)
based only orif". We shall now show that in estimation with a strictly convex loss
function, a much stronger statement is possible: Given any estih@pmhich
is not a function off’, there exists &etter estimator depending only 6h.

Theorem 7.8 (Rao-Blackwell Theorem) Let X be a random observable with
distribution P, € P = {Py, 0’ € Q}, and let T be sufficient for P. Let § be an
estimator of an estimand g(0), and let thelossfunction L(0, d) bea strictly convex
function of d. Then, if § has finite expectation and risk,

R0, 8) = EL[8, 5(X)] < oo,

and if

(7.14) n(r) = E[5(X)l1],
the risk of the estimator n(7') satisfies

(7.15) R(6,n) < R(9,9)

unless §(X) = n(T) with probability 1.
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Proof. In Theorem 7.5, letp(d) = L(0,d), let§ = §(X), and letX have the
conditional distributionP X! of X givenT =¢. Then

L[6. n(1)] < E{L[6, 6(X)]I7}

unless3(X) = n(T') with probability 1. Taking the expectation on both sides of this
inequality yields (7.15), unles® X) = n(T) with probability 1. a

Some points concerning this result are worth noting.

1. Sufficiency ofT is used in the proof only to ensure thgf") does not depend
on# and hence is an estimator.

2. Ifthe loss function is convex but not strictly convex, the theorem remains true
provided the inequality sign in (7.15) is replacedbyEven in that case, the
theorem still provides information beyond the results of Section 6 because it
shows that the particular estimatg(T’) is at least as good @$X).

3. The theorem is not true if the convexity assumption is dropped. Examples
illustrating this fact will be given in Chapters 2 and 5.

In Section 6, randomized estimators were introduced, and such estimators may
be useful, for example, in reducing the maximum risk (see Chapter 5, Example
5.1.8), but this can never be the case when the loss function is convex.

Coroallary 7.9 Given any randomized estimator of g(0), there exists a nonran-
domized estimator which is uniformly better if the loss function is strictly convex
and at least as good when it is convex.

Proof. Note first that a randomized estimator can be obtained as a nonrandomized
estimatos* (X, U), whereX andU are independent arid is uniformly distributed

on (0, 1). This is achieved by observing = x and then usind/ to construct the
distribution ofY givenX = x, whereY = Y (x) is the random variable employed in

the definition of a randomized estimator (Problem 7.10). To prove the theorem, we
therefore need to show that given any estimdtgX, U) of g(0), there exists an
estimatos(X), depending otX only, which has uniformly smaller risk. However,

this is an immediate consequence of the Rao-Blackwell theorem since for the
observationsX, U), the statisticX is sufficient. Foi§(X), one can therefore take

the conditional expectation éf (X, U) given X. a

An estimatos is said to benadmissibleif there exists another estima@mhich
dominates it (that is, such thak (9, §') < R(0, 8) for all , with strict inequality
for somef) andadmissible if no such estimato8’ exists. If the loss functiord
is strictly convey, it follows from Corollary 7.9 that every admissible estimator
must be nonrandomized. Another property of admissible estimators in the strictly
convex loss case is provided by the following uniqueness result.

Theorem 7.10 If L isstrictly convex and § isan admissible estimator of g(6), and
if 8" isanother estimator with the same risk function, that is, satisfying R(#, §) =
R(6, &) for all 6, then 8’ = § with probability 1.

Proof. If §* = (s + '), then

(7.16) R(,8%) < %[R(Q, 8)+R(0,8)] = R, )
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unlesss = &’ with probability 1, and (7.16) contradicts the admissibilitysof O

The preceding considerations can be extended to the situation in which the
estimandg(0) = [g1(0), .. ., gx(0)] and the estimato#(X) = [51(X), ..., & (X)]
are vector-valued.
Definition 7.11 For any two pointx = (xq, ..., x;) andy = (y1, ..., yx) in Eg,
defineyx+(1— y)y to be the point with coordinatesy; +(1—y)y;,i =1, ..., k.
(i) A set Sin E; is convexif for any x,y € S, the points
yX+(@=y)y, O0<y<1
are also inS. (Geometrically, this means that the line segment connecting any
two points inS liesin S.)

(i) A real-valued function ¢ defined over an open convex sein E; is convex
if (7.1) holds withx andy replaced byx andy; it is strictly convex if the
inequality is strict for allk andy.

Example 7.12 Convex combination. If ¢; is a convex function of a real variable
defined over an intervdl; for eachj = 1, ..., k, then for any positive constants
ar, ..., dg

(717) ¢(X) = Edj¢j(Xj)

is a convex function defined over thalimensional rectangle with sidés . . ., Ii;

it is strictly convex, provideds,, ..., ¢, are all strictly convex. This example
implies, in particular, that the loss function

(7.18) L6, d) = Sa;[d; — g:(6)]?

is strictly convex. I

A useful criterion to determine whether a given functigris convex is the
following generalization of (7.3).

Theorem 7.13 Let ¢ be defined over an open convex set S in E; and twice differ-
entiablein S. Then, a necessary and sufficient condition for ¢ to be convex is that
thek x k matrix with i jth element 32¢(x1, . . ., x¢)/dx; dx ;, which isknown asthe
Hessian matrixis positive semidefinite; if the matrix is positive definite, then ¢ is
strictly convex.

Example 7.14 Quadratic loss. Consider the loss function
(7.19) L(0,d) = £Xa;[d; — £:(0)][d; — g;(©)].

SinceazL/adiadj = a;;, L is strictly convex, provided the matrj;; || is positive
definite. I

Let us now consider some consequences of adopting a convex loss function in a
location model. In Section 1, it was pointed out that there exists a unique number
a minimizing (x; — a)?, namelyx, and that the minimizing value A, |x; —al
is either unique (when is odd) or the minimizing values constitute an interval.
This interval structure of the minimizing values does not hold, for example, when
minimizing =/Tx; — a]. Inthe case = 2, for instance, there exist two minimizing
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values,a = x; anda = x, (Problem 7.12). This raises the general question of the
set of values: minimizing Zp(x; — a), which, in turn, is a special case of the
following problem. LetX be a random variable ank(0, d) = p(d — 0) a loss
function, withp even. Then, what can be said about the set of valumimizing
E[p(X —a)]? This specializes to the earlier cas&ifakes on the values, ..., x,

with probabilities ¥n each.

Theorem 7.15 Let p be a convex function defined on (—oo, o) and X a random
variable such that ¢(a) = E[p(X — a)] isfinite for somea. If p is not monotone,
¢(a) takes on its minimum value and the set on which thisvalueistakenisa closed
interval. If p is strictly convex, the minimizing value is unique.

The proof is based on the following lemma.

Lemma7.16 Let ¢ be a convex function on (—oo, co) which is bounded below
and suppose that ¢ is not monotone. Then, ¢ takes on its minimum value; the set
S onwhich thisvalueis taken on isa closed interval and is a single point when ¢
isstrictly convex.

Proof. Sinceg is convex and not monotone, it tendsatwasx — +o0. Sincegp
is also continuous, it takes on its minimizing value. THas an interval follows
from convexity and that it is closed follows from continuity. O

Proof of Theorem 7.15. By the lemma, it is enough to prove thatis (strictly)
convex and not monotone. Thatis not monotone follows from that fact that
¢(a) - oo asa — +oo. This latter property o is a consequence of the facts
that X — a tends in probability toroo asa — oo and thatp(r) — oo as

t — +o0. (Strict) convexity ofp follows from the corresponding property pf

O

Example 7.17 Squared error loss. Let p(r) = 2 and suppose thai(X?) < oo.
Sincep is strictly convex, if follows thatp(a) has a unique minimizing value. If
E(X) = u, which by assumption is finite, we have, in fact,

(7.20) ¢(a) = E(X —a)® = E(X — u)* + (u — a)?,
which shows thad(a) is a minimum if and only itz = w. I

Example 7.18 Absolute error loss. Let p(¢) = |¢| and suppose thdt|X| < oo.
Sincep is convex but not strictly convex, it follows from Theorem 7.15 thét)
takes on its minimum value and that the Sedf minimizing values is a closed
interval. The sef is, in fact, the set ofnedians of X (Problems 1.7 and 1.8). ||

The following is a useful consequence of Theorem 7.15 (see also Problem 7.27).

Corollary 7.19 Under the assumptions of Theorem 7.15, suppose that o is even
and X is symmetric about 1. Then, ¢(a) attainsitsminimumat a = .

Proof. By Theorem 7.15 the minimum is taken onulf- ¢ is a minimizing value,
so isu — ¢ and so, therefore, are all valuesetweenu — ¢ andu + ¢, which
includesa = u. O
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Now consider an example in whighis not convex.

Example 7.20 Nonconvex loss. Let p(t) = 1 if || > k andp(r) = O otherwise.

Minimizing ¢(a) is then equivalent to maximizing(a) = P(|X — a| < k).

Consider the following two special cases (Problem 7.22):

(i) The distribution of X has a probability density (with respect to Lebesgue

measure) which is continuous, unimodal, and suchfetdecreases strictly
asx moves away from the mode in either direction. Then, there exists a unique
valuea for which f(a — k) = f(a + k), and this is the uniqgue maximizing
value ofyr(a).

(i) Suppose thatf is even and/-shaped withf(x) attaining its maximum at
x = +A and f(x) = 0 for |x|] > A. Then,y¥(a) attains its maximum at the
two pointsa = —A +k anda = A — k. I

Convex loss functions have been seen to lead to a number of simplifications of
estimation problems. One may wonder, however, whether such loss functions are
likely to be realistic. IfL (6, d) represents not just a measure of inaccuracy but a
real (for example, financial) loss, one may argue that all such losses are bounded:
once you have lost all, you cannot lose any more. On the other hahehiftake on
all values in (oo, 00) or (0, o0), no nonconstant bounded function can be convex
(Problem 7.18). Unfortunately, bounded loss functions with unboudaed lead
to completely unreasonable estimators (see, for example, Theorem 2.1.15). The
reason is roughly that arbitrarily large errors can then be committed with essentially
no additional penalty and their leverage used to unfair advantage. Perhaps convex
loss functions result in more reasonable estimators because the large penalties they
exact for large errors compensate for the unrealistic assumption of unbo#nded
They make such values so expensive that the estimator will try hard to avoid them.

The most widely used loss function is squared error

(7.21) L(6,d) =[d — g(O)]?
or slightly more generally weighted squared error
(7.22) L(9,d) = w®)[d — g(6)]>

Since these are strictly convex dh the simplifications represented by Theorem
7.8, Corollary 7.9, and Theorem 7.10 are valid in these cases. The most slowly
growing even convex loss function is absolute error

(7.23) L®,d) = |d — g(0)].

The faster the loss function increases, the more attention it pays to extreme
values of the estimators and hence to outlying observations, so that the perfor-
mance of the resulting estimators is strongly influenced by the tail behavior of
the assumed distribution of the observable random variables. As a consequence,
fast-growing loss functions lead to estimators that tend to be sensitive to the as-
sumptions made about this tail behavior, and these assumptions typically are based
on little information and thus are not very reliable.

It turns out that the estimators produced by squared error loss often are uncom-
fortably sensitive in this respect. On the other hand, absolute error appears to go
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too far in leading to estimators which discard all but the central observations. For

many important problems, the most appealing results are obtained from the use of
loss functions which lie between (7.21) and (7.23). One interesting class of such

loss functions, due to Huber (1964), puts

[d —g(6)]? if |d—gO) <k
2k|d — g(0)| — k*if |d — g(0)| = k.

This agrees with (7.21) fdd — g(0)| < k, but abovet and below—k, it replaces
the parabola with straight lines joined to the parabola so as to make the function
continuous and continuously differentiable (Problem 7.21).

The Huber loss functions are convex but not strictly convex. An alternative
family, which also interpolates between (7.21) and (7.23) and which is strictly
convey, is

(7.25) LO,d)=|d—g®), 1l<p<2

It is a disadvantage of both (7.24) and (7.25) that the resulting estimators, even
in fairly simple problems, cannot be obtained in closed form and hence are more
difficult to grasp intuitively and to interpret. This may account at least in part for
the fact that squared error is the most commonly used loss function or measure of
accuracy and that the classic estimators in most situations are the ones derived on
this basis. As indicated at the end of Section 1, we shall develop here the theory
under the more general assumption of convex loss functions (which, in practice,
does not appear to be a serious limitation), but we shall work most examples for
the conventional squared error loss. The issue of the robustness of the resulting
estimators, which requires going outside the assumed model, will not be treated
in detail here. References for further study of robustness include Huber (1981),
Hampel et al. (1986), and Staudte and Sheather (1990).

With some care, the properties of convex and concave functions generalize to
multivariate situations. For example, Theorem 7.4 generalizes to the following
supporting hyperplane theorem for convex functions.

(7.24) L(9,d) = {

Theorem 7.21 Let ¢ be a convex function defined over an open convex set S in
E; andlett beany pointin S. Then, there exists a hyperplane

(7.26) y=L(X) = Zei(x; — 1) + (1)
through the point [t, ¢(t)] such that
(7.27) L(X) < ¢(x) foral xeS.

Jensen’s inequality (Theorem 7.5) generalizes in the obvious way. The only
changes that are needed are replacement of the intebyedn open convex sét
of the random variabl& by a random vectoX satisfyingP(X € §) = 1, and of
the expectatior (X) by the expectation vectdt (X) = [E(X4), .. ., E(X)]- For
the resulting modification of the inequality (7.7) to be meaningful, it is necessary
to know thatE(X) is in S so thatgp[ E(X)] is defined.

Lemma 7.22 If X is arandom vector with P(X € S) = 1, where S is an open
convex setin Ey, and if E(X) exists, then E(X) € S.
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A formal proof is given by Ferguson (1967, p. 74). Here, we shall give only a
sketch. Suppose that= 2, and suppose that= E(X) is notinS. Then, Theorem
7.21 guarantees the existence of a line; + a,x, = b through the point4, &)
such thatS lies entirely on one side of the line. By a rotation of the plane, it can be
assumed without loss of generality that the equation of the ling #s&, and that
S lies above this line so that(X, > &) = 1. It follows thatE(X,) > &, which
is a contradiction.

The notions of convexity and concavity can also be extended to the multidi-
mensional case in a slightly different way, one that examines the behavior of the
function when it is averaged over spheres instead of over pairs of points.

Definition 7.23 A continuous functionf : R¥ — R is superharmonic at a point
Xo € RFif, for everyr > 0, the average of over the surface of the sphere
S,(Xp) = {X : ||x — Xo|| = r} is less than or equal t@g(xo). The functionf is
superharmonic irR? if it is superharmonic at eacky € R?. (See Problem 7.15
for an extension.)

If we denote the average gfover the surface of the sphere Ry, (f), we thus
define f to besuperharmonic, harmonic, or subharmonic, depending on whether
A, (f)islessthan or equal to, equal to, or greater than or equaltespectively.
These definitions are analogous to those of convexity and concavity, but here we
take the average over the surface of a sphere. (Note thatin one dimension, the sphere
reduces to two points, so superharmonic and concave are the same property.) The
following characterization of superharmonicity, which is akin to that of Theorem
7.13, is typically easier to check than the definition. (For a proof, see Helms 1969).

Theorem 7.24 If f : R* — R istwicedifferentiable, then f issuperharmonicin
R¥if and only if for all x € R¥,

k42
d
(7.28) > P f(x) <o.
i=1 9%
If Equation (7.28) is an equality, then f is harmonic, and if the inequality is
reversed, then f is subharmonic.
Example 7.25 Subharmonic functions. Some multivariate analogs of the con-
vex functions in Example 7.3 are subharmonic. For examplé(it, . .., x;) =
S x7 then
k 32 k 5
Y@= plp— 1"
i71 0] i=1
This function is subharmonic j > 1 andx; > 0, or if p > 2 is an even integer.
Problem 7.14 considers some other multivariate functions. I

Example 7.26 Subharmonic loss. The loss function of Example 7.14, given in
Equation (7.19), has second derivathfd. /dd? = a;;. Thus, it is subharmonic if,
and only if,>". a;; > 0. This is a weaker condition than that needed for multidi-
mensional convexity. I

The property of superharmonicity is useful in the theory of minimax point
estimation, as will be seen in Section 5.6.
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8 Convergencein Probability and in Law

Thus far, our preparations have centered on “small-sample” aspects, that is, we
have considered the sample sizas being fixed. However, it is often fruitful to
consider a sequence of situations in whictends to infinity. If the given sample

size is sufficiently large, the limit behavior may provide an important complement
to the small-sample behavior, and often discloses properties of estimators that are
masked by complications inherent in small-sample calculations. In preparation for
a study of such large-sample asymptotics in Chapter 6, we here present some of
the necessary tools.

In particular, we review the probabilistic foundations necessary to derive the
limiting behavior of estimators. It turns out that under rather weak assumptions,
the limit distribution of many estimators is normal and hence depends only on
a mean and a variance. This mitigates the effect of the underlying assumptions
because the results become less dependent on the model and the loss function.

We consider a sampl¥ = (X4,..., X,,) as a member of a sequence corre-
sponding tan = 1, 2 (or, more generally;o, ng + 1, ...) and obtain the limiting
behavior of estimator sequencesias> co. Mathematically, the results are thus
limit theorems.

In applications, the limiting results (particularly the asymptotic variances) are
used as approximations to the situation obtaining for the actualfiniteveakness
of this approach is that, typically, no good estimates are available for the accuracy
of the approximation. However, we can obtain at least some idea of the accuracy
by numerical checks for selected values:of

Suppose foramomentthag, . . ., X, areiid according to a distributioPy, 6 €
Q, and that the estimand g£6). Asn increases, more and more information about
0 becomes available, and one would expect that for sufficiently large valueg of
would typically be possible to estimag€d) very closely. Ifs, = 3,(Xq, ..., X,)
is a reasonable estimator, of course, it cannot be expected to be clg®g for
every sample pointdq, .. ., x,,) since the values of a particular sample may always
be atypical (e.g., a fair coin may fall heads in 1000 successive spins). What one
can hope for is that, will be close tog(0) with high probability.

This idea is captured in the following definitions, which do not assume the
random variables to be iid.

Definition 8.1 A sequence of random variablés defined over sample spaces
(., B,) tendsin probability to a constant (Y, £ c) if for everya > 0

(8.1) P[|Y, —c|>a]l -0 asn— oo.

A sequence of estimatoés of g(0) is consistent if for every € Q

(8.2) 8, 2% (0).

The following condition, which assumes the existence of second moments, fre-
qguently provides a convenient method for proving consistency.

Theorem 8.2 Let {§,} be a sequence of estimators of g(6) with mean squared
error E[8, — g(6)]°.
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@) If
(8.3) E[8, — g(0)]> — 0 forall 0,
then §,, is consistent for estimating g(6).
(if) Equivalent to (8.3), 8, isconsistent if
(8.4) b,(0) - 0 and var(s,) — 0 forall 0,
where b,, isthe bias of §,,.
(iii) Inparticular, 8, isconsistent if it is unbiased for each n and if

(8.5) var(s,) — 0 forall 6.

The proof follows from Chebychev’s Inequality (see Problem 8.1).

Example 8.3 Consistency of the mean. Let X3, ..., X, be iid with expectation
E(X;) = £ and variance? < oco. Then,X is an unbiased estimator &fwith vari-
ances?/n, and hence is consistent by Theorem 8.2(iii). Actually, it was proved by
Khinchin, see, for example, Feller 1968, Chapter X, Section 1,2) that consistency
of X already follows from the existence of the expectation, so that the assumption
of finite variance is not needed. I

Note. The statement thaX is consistent is shorthand for the fuller assertion
that the sequence of estimatdfs = (X1 +- - - + X,,)/n is consistent. This type of
shorthand is used very common and will be used here. However, the full meaning
should be kept in mind.

Example 8.4 Consistency of S2. Let X1, ..., X, be iid with finite variancer2.
Then, the unbiased estimator

S?2=%(X; — X)?/(n — 1)

is a consistent estimator of. To see this, assume without loss of generality that
E(X;) =0, and note that

s2=_" - [}EX,?—XZ]
n

n

By Example 8.3XX2%/n L 52andx? 5 0. Sincen/(n — 1) — 1, it follows
from Problem 8.4 thas? £ 2. (See also Problem 8.5.) [
Example 8.5 Markov chains. As an illustration of a situation involving depen-
dentrandom variables, consider atwo-state Markov chain. The varighlés, . . .

each take on the values 0 and 1, with the joint distribution determined by the initial
probability P(X; = 1) = p1, and the transition probabilities

P(Xi+1=1X;=0)=mg, PX;+1=1X;=1)=m,
of which we shall assume Q g, 71 < 1. For such a chain, the probability

Pk = P(Xy=1)
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typically depends ok and the initial probabilityp; (but see Problem 8.10). How-
ever, ask — oo, p; tends to a limitp, which is independent gf;. It is easy to
see what the value gf must be. Consider the recurrence relation

(8.6) Pi+1 = prme + (L — pi)mo = pi(mr1 — mo) + mo.
If
(8.7) Pk = P,
this implies
o
8.8 = —
(8.8) L p———

To prove (8.7), it is only necessary to iterate (8.6) starting with 1 to find
(Problem 8.6).
(8.9) pr = (p1— p)(m1 — 7o)+ p.
Since|mr; — mp| < 1, the result follows. .

For estimating, aftern trials, the natural estimator ¥§,, the frequency of ones
in these trials. Since )

E(X,)=(p1+---+py)/n,

it follows from (8.7) thgtE(Xn) — p (Problem 8.7), so that the bias_iif, tends
to zero. Consistency df,, will therefore follow if we can show that vak(,) — 0.
Now,

var(X,) = Y "y " cov(X;, X,)/n”.
i=1 j=1
Asn — oo, this average of? terms will go to zeroif covk;, X ;) — O sufficiently
fastagj—i| — oo. The covariance aX; andX ; can be obtained by a calculation
similar to that leading to (8.9) and satisfies

(8.10) cov(X;, X;)| < Mmy — mol/ .

From (8.10), one finds that va¥() is of order ¥n and hence thaX,, is consistent
(Problem 8.11).

Instead ofp, one may be interested in estimatingandr; themselves. Again,
it turns out that the natural estimatdp:/(Noo + No1) for mo, whereNy; is the
number of pairsX;, X;+1) with X; =0, X;+1 = j, j =0, 1, is consistent.

Consider, on the other hand, the estimatiopofit does not appear that observa-
tions beyond on the first provide any information abeytand one would therefore
not expect to be able to estimateconsistently. To obtain a formal proof, suppose
for a moment that the's are known, so thap; is the only unknown parameter. If
a consistent estimatdy, exists for the original problem, the¥) will continue to
be consistent under this additional assumption. However, when'stae known,
X, is a sufficient statistic fop; and the problem reduces to that of estimating a
success probability from a single trial. That a consistent estimatpi aannot
exist under these circumstances follows from the definition of consistency]

When X4, ..., X,, are iid according to a distributio®,, 8 € 2, consistent
estimators of real-valued functions éfwill exist in most of the situations we
shall encounter (see, for example, Problem 8.8). There is, however, an important
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exception. Suppose thg’s are distributed according t6(x; — 6) where F is

N(&, 0?), with 6, &, ando? unknown. Then, no consistent estimatoé @ixists. To

see this, note that th¥’s are distributed a#/ (& +6, o2). Thus,X is consistent for
estimatings + 0, but& andé cannot be estimated separately because they are not
uniquely defined, they anenidentifiable (see Definition 5.2). More precisely, for

X ~ Py, thereexistpairgy, &) and 02, &) with 61 7 6, forwhich Py, ¢, = Py, &,
showing the parametérto be unidentifiable. A parameter that is unidentifiable
cannot be estimated consistently sid¢& 4, ..., X,,) cannot simultaneously be
close to bottp; andé.

Consistency is too weak a property to be of much interest in itself. It tells us
that for largen, the errors,, — g(0) is likely to be small but not whether the order
of the error is ¥n, 1/4/n, 1/logn, and so on. To obtain an idea of the rate of
convergence of a consistent estimatgrconsider the probability

(8.11) Pu(a)= P {wn —(0)] < ki} |

n

If k, is bounded, thew®,(¢) — 1. On the other hand, ¥, — oo sufficiently fast,
P,(a) — 0. This suggests that for a given> 0, there might exist an intermediate
sequencé, — oo for which P,(a) tends to a limit strictly between 0 and 1.
This will be the case for most of the estimators with which we are concerned.
Commonly, there will exist a sequenkg — oo and a limit functionH which is

a continuous cdf such that for all

(8.12) P{k,[6, — g(®)] <a} - H(a) asn— oc.

We shall then say that the errigy, — ¢(6)| tends to zero at rate/k,,. The rate, of
course, is not uniquely determined by this definition. Aklis a possible rate, so
is 1/ k,, for any sequenck, for whichk,/ k, tends to a finite nonzero limit. On the
other hand, ik;, tends tooo more slowly (or faster) thak,, that is, ifk, /k, — O
(or c0), thenk, [8, — g(0)] tends in probability to zero (aso) (Problem 8.12).

One can think of the normalizing constaktsin (8.12) in another way. I8, is
consistent, the erros — g(0) tend to zero ag — oo. Multiplication by constants
k, tending to infinity magnifies these minute errors—it acts as a microscope. If
(8.12) holds, theh, is just the right degree of magnification to give a well-focused
picture of the behavior of the errors.

We formalize (8.12) in the following definition.

Definition 8.6 Suppose thafy, } is a sequence of random variables with cdf
Hy(a) = P(Y, < a)

and that there exists a cdf such that

(8.13) H,(a) — H(a)

at all pointsa at which H is continuous. Then, we shall say that the distribution
functions H,, converge weakly to H, and that theY,, have thelimit distribution
H, or convergein law to any random variabl® with distribution H. This will be

denoted byy, L yor by L(Y,) — H.We may also say that, tends in law to
H and writeY,, — H.
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The crucial assumption in (8.13) is thAY—o0) = 0 andH (+o0) = 1, that is,
that no probability mass escapesttoo (see Problem 1.37).

The following example illustrates the reason for requiring (8.13) to hold only
for the continuity points off.

Example 8.7 Degenerate limit distribution.

() LetY, be normally distributed with mean zero and variannésvherean -0
asn — o0.

(ii) Let Y, be a random variable taking on the valye: With probability 1.

In both cases, it seems natural to say thatends in law to a random variable
Y which takes on the value 0 with probability 1. The dd{«) of Y is zero for
a < 0and 1 fora > 0. The cdfH,(a) of Y, in both (i) and (ii) tends tdH (a) for
all a #7 0, but not fora = 0 (Problem 8.14). I

An important property of weak convergence is given by the following theorem.
Its proof, and those of Theorems 8.9-8.12, can be found in most texts on probability
theory. See, for example, Billingsley (1995, Section 25).

Theorem 8.8 The sequence Y, convergesin lawto Y if and only if E[ f(Y,,)] —
E[f(Y)] for every bounded continuous real-valued function f.

A basic tool for obtaining the limit distribution of many estimators of interest
is the central limit theorem (CLT), of which the following is the simplest case.

Theorem 8.9 (Central Limit Theorem)Let X; (i = 1,..., n)beiidwith E(X;) =
£ and var(X;) = 02 < oo. Then, \/n(X — &) tendsin law to N (0, o'?) and hence
Jn(X — €)/o to the standard normal distribution N (0, 1).

The usefulness of this result is greatly extended by Theorems 8.10 and 8.12
below.
Theorem 8.10 If Y, A Y,and A, and B, tend in probability to a and b, respec-
tively, then A, + B, Y, = a +bY.

WhenY, converges to a distributioF/, it is often required to evaluate prob-

abilities of the formP (Y, < y,) wherey, — y, and one may hope that these
probabilities will tend toH (y).

Corollary 811 If ¥, £ H, and y, converges to a continuity point y of H, then
P(Yy < ya) = H(y).
Proof. P(Y, < y,) = P[Y, +(y — y,) < y] and the result follows from Theorem

8.10 withB, =1 andA, =y — y,. |
The following widely used result is often referred to as dekta method.
Theorem 8.12 (Delta Method) If

(8.14) JalT, — 0] 5 N(O, 72,
then
(8.15) Valh(T,) = h(0)] 5 N(O, <1 (0)]D),

provided #'(9) exists and is not zero.
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Proof. Consider the Taylor expansion bT;,) aroundh(0):
(8.16) M(T,) = h(8) + (T, — O)[1'(6) + R.],

whereR,, — 0 asT, — 6. It follows from (8.14) thatf,, — 6 in probability and
hence that?, — 0 in probability. The result now follows by applying Theorem
8.10 to/n[h(T;) — h(0)]. O
Example 8.13 Limit of binomial. LetX;,i =1, 2, ..., be independent Bernoulli
(p) random variables and 1@}, = £ 3", X;. Then by the CLT (Theorem 8.9)

(8.17) Vn (T, = p) = N[0, p(1 - p)]
sinceE(T,) = p and var(;,,) = p(1 — p).

Suppose now that we are interested in the large sample behavior of the estimate
T,,(1— T,) of the variancé:(p) = p(1 — p). Sinceh'(p) = 1— 2p, it follows from
Theorem 8.12 that
(818)  Vn[T,(1—T,)— p(1—p)— N[O, (1—2p)*p(1 - p)]
for p #1/2. I

When the dominant term in the Taylor expansion (8.16) vanishes [as it does at
p =1/2in (8.18)], it is natural to carry the expansion one step further to obtain

H(T,) = h0) + (T, = O)(0) + (T, — O71H0) + Ry,
whereR,, — 0 in probability as7,, — 6, or, sincei’'(0) = 0,
819 M(T,) — h(O) = (T, — O71H(6) + Ri].

In view of (8.14), the distribution of (7, — 6)]? tends to a nondegenerate limit
distribution, namely (after division by?) to a x?-distribution with 1 degree of
freedom, and hence

(8.20) n(T, — 0)*> — 2. Xlz.

The same argument as that leading to (8.15), but wii$) = 0 andh”(9) # O,
establishes the following theorem.

Theorem 8.14 If /a[T, — 0] 55 N(O, ) and if h'(6) = O, then
(8.21) n[h(T,) — h(0)] — %tzh”(e)xf

provided 4" (9) exists and is not zero.
Example 8.15 Continuation of Example8.13. Fori(p) = p(1— p), we have, at
p=1/2,h'(1/2) =0 andh”(1/2) = —2. Hence, from Theorem 8.14, at= 1/2,

1 1
(8.22) n |:T;1(1 —T,) — Zi| - _EX:%'

Although (8.22) might at first appear strange, note &t — 7,) < 1/4, so the
left side is always negative. An equivalent form for (8.22) is

1
2n [Z —T,(1— Tn):| — x2 I
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The typical behavior of estimator sequences as sample sizes tend to infinity
is that suggested by Theorem 8.12, that isj,ifis the estimator of(0) based
on n observations, one may expect thgk[s, — g(9)] will tend to a normal
distribution with mean zero and variance, séi#). It is in this sense that the
large-sample behavior of such estimators can be studied without reference to a
specific loss function. The asymptotic behaviospis governed solely by?(6)
since knowledge of?(9) determines the probability of the errgfn[s, — g(6)]
lying in any given interval. In particulat?(0) provides a basis for the large-sample
comparison of different estimators.

Contrast this to the finite-sample situation where, for example, if estimators are
compared in terms of their risk, one estimator might be best in terms of absolute
error, another for squared error, and still another in terms of a higher power of the
error or the probability of falling within a stated distance of the true value. This
cannot happen here, a§(0) provides the basis for all large-sample evaluations.

Itis straightforward to generalize the preceding theorems to functions of several
means. The expansion (8.16) is replaced by the corresponding Taylor’s theorem in
several variables. Although the following theorem starts in a multivariate setting,
the conclusion is univariate.

Theorem 8.16 Let (X1,,..., X5),v = 1,...,n, be n independent s-tuples of
random variables with E(X;,) = & and cov(X,,, X,) = 0;;. Let X; = £X;,/n,
and suppose that % is a real-valued function of s arguments with continuous first
partial derivatives. Then,

_ - oh dh
\/E[h(le R X.X) - h(él’ ) S&)] _L) N(07 vz)’ Uz = 2201]_ T
0§ 0§
provided v? > 0.
Proof. See Problem 8.20. ]

Example 8.17 Asymptotic distribution of $2. As an illustration of Theorem
8.16, consider the asymptotic distribution$¥ = ©(Z, — Z)2/n where theZ’s
are iid. Without loss of generality, suppose tZ,) = 0, E(Z2) = o2. Since
82 = (1/n)x Z%2— Z?, Theorem 8.16 applies witkiy, = Z2, X,, = Z,, h(x1, x2) =
x1— x3,& =0, and&; = var(Z,) = o2. Thus,/n(S? — 02 — N(O, v?) where
v? = var(Z?). I

We conclude this section by considering the multivariate case and extending
some of the basic probability results for random variables to vectors of random
variables. The definitions of convergence in probability and in law generalize very
naturally as follows.

Definition 8.18 A sequence of random vectors = (Y1, ..., Y,,),n=1,2, ...,

tendsin probability toward a constant vectar= (cs, ..., ¢.) if Yi, £ ¢; for each
i =1,...,r,and it convergem law (or weakly) to a random vectoy with cdf H
if

(8.23) H,(a) > H(a)
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at all continuity points of H, where
(8.24) H,(@) = P[Yy, <ai,..., Y, <a]
is the cdf ofY,,.

Theorem 8.8 extends to the present case.

Theorem 8.19 Thesequence{Y ,} convergesinlawtoY ifandonlyif E[ f(Y,)] —
E[f(Y)] for every bounded continuous real-valued f.

[For a proof of this and Theorem 8.20, see Billingsley (1995, Section 29).]
Weak convergence of,, to Y does not imply
(8.25) P(Y, € A) —> P(Y € A)

for all setsA for which these probabilities are defined since this is not even true
for the setA defined by
Tlialv"'aTr <a

unlessH is continuous ah.

Theorem 8.20 Thesequence{Y ,} convergesinlawtoY if and onlyif (8.25) holds
for all sets A for which the probabilities in question are defined and for which the
boundary of A has probability zero under the distribution of Y.

As in the one-dimensional case, the central limit theorem provides a basic tool
for multivariate asymptotic theory.

Theorem 8.21 (Multivariate CLT) Let X, = (X1, ..., X;,) beiid with mean
vector § = (&1, ..., &) and covariance matrix £ = ||o;;||, and let X;, = (X;1 +
<o+ X;,)/n. Then,

[\/E(‘)_(ln - ‘i:l)9 BRRE) \/E()_(rn - ‘i:r)]

tends in law to the multivariate normal distribution with mean vector 0 and co-
variance matrix .

As a last result, we mention a generalization of Theorem 8.16.
Theorem 8.22 Suppose that

[Vn(Ye, — 61). ..., Vn(Yy —6,)]

tends in law to the multivariate normal distribution with mean vector 0 and co-
variance matrix X, and suppose that kg, ..., h, are r real-valued functions of
0 = (04, ...,06,), defined and continuoudly differentiable in a neighborhood  of
the parameter point 6 and such that the matrix B = ||dh;/d0;|| of partial deriva-
tivesis nonsingular in w. Then,

[\/E[hl(Yn) - hl(e)]v cees \/E[hr(Yn) - hr(o)]]

tends in law to the multivariate normal distribution with mean vector 0 and with
covariance matrix BX B'.

Proof. See Problem 8.27 ]
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9 Problems

Section 1

1.1 If (x1, y1), ..., (x., y») @ren points in the plane, determine the best fitting line=
a + Bx in the least squares sense, that is, determine the valaes g8 that minimize
Sy — (o + Bx;))%

12 Let X, ..., X, be uncorrelated random variables with common expectatiand
variances2. Then, among all linear estimatofsy; X; of 6 satisfyingZ«; = 1, the mean
X has the smallest variance.

1.3 In the preceding problem, minimize the variancenf; X;(X«; = 1)
(@) When the variance of; is 02 /a; (o; known).
(b) When theX; have common varianeg” but are correlated with common correlation
coefficientp.
(For generalizations of these results see, for example, Watson 1967 and Kruskal 1968.)

1.4 Let X andY have common expectati@n variancesr? andt?, and correlation coeffi-

cientp. Determine the conditions an z, andp under which
(a) varX) < var[(X +Y)/2].
(b) The value ofx that minimizes vagf X + (1 — «)Y] is negative.
Give an intuitive explanation of your results.

15 Let X; (i = 1,2) be independently distributed according to the Cauchy densities
C(a;, b;). Then,X; + X, is distributed as”(a; + az, b1 + by). [Hint: Transform to new
variablesy; = X; + X5, ¥, = X, ]

1.6 If Xq,..., X, areiid asC(a, b), the distribution ofX is againC(a, b). [Hint: Prove by
induction, using Problem 5.]

1.7 A median of X is any valuen such thatP(X < m) > 1/2 andP(X > m) > 1/2.

(&) Show that this is equivalent (X < m) < 1/2 andP(X > m) < 1/2.
(b) Show that the set of medians is always a closed interyat m < m;.

1.8 If ¢(a) = E|X — a| < oo for somea, show thatp(a) is minimized by any median of
X. [Hint: If mg < m < m4 (in the notation of Problem 1.7) amey < ¢, then

E|X—c|—E|IX—m|=(c—m)[P(X <m)— P(X >m)]+ 2/ (c — x)d P(x)].

19 (@) The median of any set of distinct real numbefs..., x, is defined to be the
middle one of the ordereds whenr is odd, and any value between the two middle
orderedc’s whenn is even. Show that this is also the median of the random variable
X which takes on each of the values . . ., x, with probability 1/n.

(b) For any set of distinct real numbets, ..., x,, the sum of absolute deviations
T |x; — a| is minimized by any median of thes.

(c) Forngivenpointsg;, y;),i =1, ..., n,findthe valué that minimizes | y; — bx;|.
[Hint: Reduce the problem to a special case of Problem 8.]

1.10 Forany setofnumbers, - - -, x, and a monotone functidr(-), show that the value of

a that minimizesy"!_, [h(x;) — h(a)]?is given bya = h=* (3_I_; h(x;)/n). Find functions

h that will yield the arithmetic, geometric, and harmonic means as minimizers.

[Hint: Recall that the geometric mean of non-negative numbe(ﬂis,—)l/" and the

harmonic mean isﬁ(l/n) Z(l/x,-)]fl. This problem, and some of its implications, is
considered by Casella and Berger (1992).]
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111 (a) Iftwo estimators;, §; have continuous symmetric densitiéx — 6),i = 1, 2,
and f1(0) > f»(0), then

P[|81— 0| <c] > P[|62—0] <] forsomec >0

and hencé; will be closer tod thans, with respect to the measure (1.5).
(b) LetX, Y beindependently distributed with common continuous symmetric density
f,and lets; = X, 8, = (X +Y)/2. The inequality in part (a) will hold provided
2 [ f3(x)dx < f(0) (Edgeworth 1883, Stigler 1980).
112 (a) Letf(x) = (1/2)(k — 1)/(1 +|x|)*, k > 2. Show thatf is a probability density
and that all its moments of order k — 1 are finite.
(b) The density of part (a) satisfies the inequality of Problem 1.11(b).
113 (a) If X is binomialb(p, n), show that

f_ = n—1 k(1 _ n—k+1
E’n p’—Z(k_]_)p(l p) for

k-1 k
=p=-.
n

n

(b) Graph the risk function of part (i) for = 4 andn = 5.
[Hint: For (a), use the identity

(D(x_np):n[(z:i)(l_p)—<n;1>19], l<x<n

(Johnson 1957-1958, and Blyth 1980).]

Section 2

21 If Ay, Ay, ... are members of a-field A (the A’s need not be disjoint), so are their
union and intersection.

2.2 Foranya < b, thefollowing sets are Borel sets (@): a < x}and (b)}{x : a < x < b}.
2.3 Under the assumptions of Problem 2.1, let

A=liminf A, ={x : x € A, for all except a finite number of s},
A =limsupA, = {x : x € A, forinfinitely manyn}.

Then,A andA are inA.
2.4 Show that

(@ IfAyCc Ao C---,thenA=A=UA,.
() FA;DA;D---,thenA=A=NA,.
2.5 For any sequence of real numbess a,, . . ., show that the set of all limit points of

subsequences is closed. The smallest and largest such limit point (which may be infinite)
are denoted by lim inf; and lim supg,, respectively.

2.6 Under the assumptions of Problems 2.1 and 2.3, show that
Li(x) =liminf I, (x) and Ig(x)=limsupi,, (x)

wherel, (x) denotes the indicator of the sét

2.7 Let (X, A, 1) be a measure space andfEbe the class of all set$ U C with A € A
andC a subset of a set’ € A with u(A”) = 0. Show thai3 is ac -field.

2.8 If f andg are measurable functions, so aref(i} g, and (ii) max(f, g).

29 If fisintegrable with respectto, sois|f|, and| [ fdu| < [|f|du. [Hint: Express
|flinterms of f* and f~.]
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2.10 Let X = {xy, x2, ...}, u = counting measure o', and f integrable. Therf fdu =
> f(x;). [Hint: Suppose, first, thaf > 0 and lets, (x) be the simple function, which is
f(x)forx =xi,...,x,, and O otherwise.]

2.11 Let f(x) = 1 or 0 asx is rational or irrational. Show that the Riemann integralfof
does not exist.

Section 3
3.1 Let X have a standard normal distribution and¥et 2X. Determine whether

(a) the cdfF(x, y) of (X, Y) is continuous.
(b) thedistribution of X, Y) is absolutely continuous with respectto Lebesgue measure
in the (x, y) plane.
3.2 Show that any functiorf which satisfies (3.7) is continuous.

3.3 Let X be ameasurable transformation from (£, B) to (X, A) (i.e., such that for any
A € A, thesetle : X(e) € A} isin B), and letY be a measurable transformation from
(X, A)to (W, C). Then,Y[X(e)] is a measurable transformation fros, (3) to (I, C).

3.4 In Example 3.1, show that the supportfs [a, b] if and only if F is strictly increasing
on [a, b].

3.5 LetS be the support of a distribution on a Euclidean spaced). Then, {) S is closed;
(ii) P(S) = 1; (iii) S is the intersection of all closed seafswith P(C) = 1.

3.6 If P and Q are two probability measures over the same Euclidean space which are
equivalent, then they have the same support.

3.7 Let P andQ assign probabilities

1
P:P<X27>:p,,>0, n=12... (Ep,=1),
n

1 1 1
Q:PX=0==; P(X=-)=¢,>0;, n=12,... ¢, == ).
2 n 2

Then, show thaP and Q have the same support but are not equivalent.

3.8 SupposeX andY are independent random variables wkh~ E(x,1) andY ~
E(u, 1). Itis impossible to obtain direct observations¥andY . Instead, we observe
the random variableg and W, where

1 ifZ=X

Z=min{X,¥Y} and W:{O if Z=7Y.

Find the joint distribution ofZ andW and show that they are independent. (Thand

Y variables areensored., a situation that often arises in medical experiments. Suppose
that X measures survival time from some treatment, and the patient leaves the survey
for some unrelated reason. We do not get a measurementtmut only a lower bound.)

Section 4

4.1 If the distributions of a positive random variabteform a scale family, show that the
distributions of logX form a location family.

4.2 If X is distributed according to the uniform distributiéf(0, ), show that the distri-
bution of — log X is exponential.
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4.3 Let U be uniformly distributed on (1) and consider the variables = U%,0 < «.
Show that this defines a group family, and determine the densiXy of

4.4 Show that a transformation group is a group.

45 If go is any element of a grou@, show that ag ranges ovet; so doeggo.

4.6 Show that forp = 2, the density (4.15) specializes to (4.16).

4.7 Show that the family of transformations (4.12) wimonsingular and lower triangular
form a groupG.

4.8 Show that the totality of nonsingular multivariate normal distributions can be obtained
by the subgrougs of (4.12) described in Problem 4.7.

4.9 In the preceding problem, show th@tcan be replaced by the subgroGyg of lower
triangular matrice® = (b;;), inwhichthe diagonal elemerts,, . .., b,, are all positive,
but that no proper subgroup 6f, will suffice.

4.10 Show that the family of all continuous distributions whose support is an interval with
positive lower end point is a group familynt: Let U be uniformly distributed on the
interval (2, 3) and leX = b[g(U)]* wherea, b > 0 and where; is continuous and 1:1
from (2, 3) to (2, 3).]

4.11 Find a modification of the transformation group (4.22) which generates a random
sample from a populatiofy, ..., yy} where they’s, instead of being arbitrary, are
restricted to (a) be positive and (b) satisfy<Oy; < 1.

4.12 Generalize the transformation group of Example 4.10 to the caseopulations
{vij, j=1,....N;},i =1,...,s, with a random sample of size being drawn from
theith population.

4.13 Let U be a positive random variable, and let

X=bUY, b>0 ¢>0.

(a) Show that this defines a group family.
(b) If U is distributed as£(0, 1), thenX is distributed according to thé&eibull distri-

bution with density
¢ (f>c_l e 6P x> 0.
b \b
4.14 If F and Fp are two continuous, strictly increasing cdf’s on the real line, and if the
cdf of U is Fy andg is strictly increasing, show that the cdf gfU) is F if and only if
g = FY(Fo).
4.15 The following two families of distributions are not group families:
(a) The class of binomial distributiorigp, n), with n fixed and O< p < 1.
(b) The class of Poisson distributiof®gA), 0 < A.
[Hint: (a) How many 1:1 transformations are there taking the set of int¢@ets. . ., n}
into itself?]
416 Let X4, ..., X, have a multivariate normal distribution with(X;) = & and with
covariance matriX:. If X is the column matrix with elements; and B is anr x r

matrix of constants, theB X has a multivariate normal distribution with me&§ and
covariance matriBX B’.

Section 5

5.1 Determine the natural parameter space of (5.2) wherl, T1(x) = x, u is Lebesgue
measure, and(x) is (i) e " and (i) e ™!/(1 + x?).
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5.2 Suppose in (5.2} = 2 andT>(x) = T1(x). Explain why it is impossible to estimaig.
[Hint: Compare the model with that obtained by puttifig= n1 + ¢, n5 = 72 — ¢.]

5.3 Show that the distribution of a sample from thevariate normal density (4.15) con-
stitutes an-dimensional exponential family. Determinand identify the functions;,
T;, andB of (5.1).

5.4 Efron (1975) gives very general definitions of curvature, which generalize (10.1) and
(10.2). For thes-dimensional family (5.1) with covariance matriy, if 0 is a scalar,

define thestatistical curvature to bey, = (|Mg|/m§1)1/2 where

M, = (mll m12> - (fléieﬂle %%ﬁe)
na1 Ma2 %EN% ﬁézeﬁe ’
with n(6) = {n;(0)}, n(0) = {n/(0)} andij(6) = {n/(0)}. Calculate the curvature of the

family (see Example 6.19) exp[— Y_/_,(x; — 6)"] for m =2, 3, 4. Are the values of
y, ordered in the way you expected them to be?

5.5 Let (X1, X,) have a bivariate normal distribution with mean vedor (&1, &) and
identity the covariance matrix. In each of the following situations, verify the curvature,
y, of the family.

@ &=(0,0), 7 =0.
(b) & =(61,62),02+602=r% v, =1/r.
5.6 In the density (5.1)

(@) Fors = 1 show that, [T(X)] = B'(6)/n'(6) and vag [T (X)] = ;’g;;g - "’[’;’jg(f);g@).

(b) Fors > 1, show thatt, [T(X)] = J~'V B where/J is the Jacobian matrix defined

by J = {‘;Z" } andV B is the gradient vectov B = {3~ B(9)}.

i

(See Johnson, Ladalla, and Liu (1979) for a general treatment of these identities.)
5.7 Verify the relations (a) (5.22) and (b) (5.26).

5.8 For the binomial distribution (5.28), verify (a) the moment generating function (5.30)
and (b) the moments (5.31).

5.9 For the Poisson distribution (5.32), verify the moments (5.35).

5.10 In a Bernoulli sequence of trials with success probabpityet X + m be the number
of trials required to achieve successes.

(a) Show that the distribution of, the negative binomial distribution, is as given in
Table 5.1.

(b) Verify thatthe negative binomial probabilities add up to 1 by expan(ji;ng %)7”1
=p"(l—q)™.

(c) Show that the distributions of (a) constitute a one-parameter exponential family.

(d) Show that the moment generating functionXois Mx (u) = p™ /(1 — ge")™.

(e) Show thatE(X) = mq/p and varK) = mq/p>.

(f) By expandingKx(u), show that the first four cumulants &f arek,; = mgq/p,
ka =mq/p? ks =mq(1+q)/p® andks = mq(1 +4q +4%)/ p*.

5.11 In the preceding problem, l&f; + 1 be the number of trials required after tthe-(1)st
success has been obtained until the next success occurs. Use the facttit, X;
to find an alternative derivation of the mean and variance in part (e).
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5.12 A discrete random variable with probabilities
P(X =x)=a(x)0*/C(®), x=0,1,...;a(x)>0;0 >0,
is apower seriesdistribution. This is an exponential family (5.1) with= 1, = log#,
andT = X. The moment generating functiony (u) = C(0e")/ C(0).

5.13 Show that the binomial, negative binomial, and Poisson distributions are special cases
of the power series distribution of Problem 5.12, and determiaedC(6).

5.14 The distribution of Problem 5.12 with(x) = 1/x andC(#) = —log(1— 6), x =
1,2,...;0 < 6 < 1, is thelogarithmic series distribution. Show that the moment
generating function is log(% 6¢*)/ log(1 — 6) and determiné (X) and var{).

5.15 For the multinomial distribution (5.4), verify the moment formulas (5.16).

5.16 Asan alternative to using (5.14) and (5.15), obtain the moments (5.16) by representing
eachX; as a sum of: indicators, as was done in (5.5):

5.17 For the gamma distribution (5.41).

(a) verify the formulas (5.42), (5.43), and (5.44);
(b) show that (5.43), with the middle term deleted, holds not only for all positive
integers but for all realr > —«.
5.18 (a) Prove Lemma 5.15. (Use integration by parts.)

(b) By choosingg(x) to bex? andx?, use the Stein Identity to calculate the third and
fourth moments of thev (i, o'2) distribution.

5.19 Using Lemma 5.15:

(a) Derive the form of the identity foX ~ Gammag, b) and use it to verify the
moments given in (5.44).

(b) Derive the form of the identity fok ~ Betag, b), and use it to verify thak (X) =
a/(a +b) and var§) = ab/(a + b)*(a + b + 1).

5.20 As an alternative to the approach of Problem 5.19(b) for calculating the moments of
X ~ B(a, b), a general formula foE X* (similar to equation (5.43)) can be derived.
Do so, and use it to verify the mean and variance&ajiven in Problem 5.19.Hint:

Write EX* as the integral of°~1(1 — x)¢~! and use the consta#t(c, d) of Table 5.1.
Note that a similar approach will work for many other distributions, includingythe
Student'sr, and F distributions.]

5.21 The Stein Identity can also be applied to discrete exponential families, as shown by
Hudson (1978) and generalized by Hwang (1982&y.tiikes valuesiv = {0, 1, ..., }
with probability function
pe(x) = exppx — B(6)]h(x),
then for anyg : N — 9 with E,|g(X)| < oo, we have the identity
Eg(X) = e "Efr(X)g(X — 1))
wherer(0) = 0 andr(x) = h(x — 1)/ h(x) for x > 0.
(a) Prove the identity.
(b) Use the identity to calculate the first four moments of the binomial distribution
(5.31).
(c) Use the identity to calculate the first four moments of the Poisson distribution
(5.35).
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5.22 The inverse Gaussian distributiahG; (A, 1), has density function

\/ Zie(“)l/zxfs/zef%(%””), x>0, A, u>0.
T

(a) Show that this density constitutes an exponential family.

(b) Show that this density is a scale family (as defined in Example 4.1).

(c) Show that the statistick = (1/n)Zx; and $* = =(1/x; — 1/x) are complete
sufficient statistics.

(d) Show thatX ~ IG(ni, np) andS* ~ (1/A)x2 ;.

Note: Together with the normal and gamma distributions, the inverse Gaussian completes

the trio of families that are both an exponential and a group family of distributions. This
fact plays an important role in distribution theory based on saddlepoint approximations

(Daniels 1983) or likelihood theory (Barndorff-Nielsen 1983).
5.23 In Example 5.14, show that
(@) x2is the distribution ofY? whereY is distributed asv (0, 1);
(b) x?2is the distribution ofY2 + - - - + Y2 where theY; are independen¥ (0, 1).
5.24 Determine the values for which the density (5.41) is (a) a decreasing functiom of
on (0 oo) and (b) increasing for < xo and decreasing for > xo(0 < xo). In case (b),

determine the mode of the density.
5.25 A random variableX has thePareto distribution P(c, k) if its cdf is 1 — (k/x),

x>k>0,c>0.
(&) The distributiong(c, 1) constitute a one-parameter exponential family (5.2) with
n=—candT =logX.
(b) The statisticT” is distributed as (logk, 1/c).
(c) The familyP(c, k) (0 < k, 0 < ¢) is a group family.
5.26 If (X,Y) is distributed according to the bivariate normal distribution (4.16) with
E=n=0:
(@) Show that the moment generating functionXf ¥) is

2.2 2.2
MX,Y(ulv MZ) —e [ula +2poTuiuptust ]/2.

(b) Use (a) to show that

M2 =21 =0, pa1=port,
p13=3p0t3,  pa=3p0%t,  pap = (1+2p%)0%7

5.27 (a) If X is a random column vector with expectationthen the covariance matrix
of X'is covX) = E[(X’ — &)(X' — &")].
(b) If the density oiX is (4.15), thert = aand covK) = X.
528 (a) LetX be distributed with density,(x) given by (5.1), and leA be any fixed
subset of the sample space. Then, the distribution® tfuncated on A, that is,
the distributions with density,(x)14(x)/Py(A) again constitute an exponential
family.
(b) Give an example in which the natural parameter space of the original exponential
family is a proper subset of the natural parameter space of the truncated family.
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5.29 If X; are independently distributed accordind@;, b), show tha& X; is distributed
asI'(Zw;, b). [Hint: Method 1. Prove it first for the sum of two gamma variables by a
transformation to new variableg = X; + X, ¥> = X3/ X, and then use induction.
Method 2. Obtain the moment generating function®; and use the fact that a distri-
bution is uniquely determined by its moment generating function, when the latter exists
for at least soma 7 0.]

5.30 When theX; are independently distributed according to Poisson distributRing),
find the distribution of2 X;.

531 Let Xy, ..., X, be independently distributed &%«, b). Show that the joint distribu-
tion is a two-parameter exponential family and identify the functigngd;, and B of
(5.2).

5.32 If Y is distributed a$™(«, b), determine the distribution aflog ¥ and show that for
fixed o and varyingp it defines an exponential family.

5.33 Morris (1982, 1983b) investigated the properties of natural exponential families with
quadratic variance functions. There are only six such families: normal, binomial, gamma,
Poisson, negative binomial, and the lesser-known generalized hyperbolic secant distri-
bution, which is the density of =  log(;%;) wheny ~ Beta¢ + %, 3 — £), 16| < 5.

() Find the density ok, and show that it constitutes an exponential family.
(b) Find the mean and variance ¥f and show that the variance equals 4% where
1 is the mean.

Subsequent work on quadratic and other power variance families has been done by Bar-
Lev and Enis (1986, 1988), Bar-Lev and Bshouty (1989), and Letac and Mora (1990).

Section 6

6.1 Extend Example 6.2 to the case thét, ..., X, are independently distributed with
Poisson distribution® (1;) wherex; = a; A (a; > 0, known).

6.2 LetX,,..., X, beiid according to a distributiof and probability density’. Show that
the conditional distribution giveX ;) = a of thei — 1 values to the left of and then —i
values to the right af is that ofi — 1 variables distributed independently according to the
probability densityf (x)/ F (a) andn —i variables distributed independently with density
f(x)/[1 — F(a)], respectively, with the two sets being (conditionally) independent of
each other.

6.3 Let f be a positive integrable function over, (&), and letp, (x) be the density over
(0, 6) defined byp, (x) = ¢(0) f(x) if 0 < x < 6, and 0 otherwise. IX4, ..., X, areiid
with densityp,, show thatX, is sufficient for6.

6.4 Let f be a positive integrable function defined overp, co) and letp¢ ,(x) be the
probability density defined by; ,(x) = c(&, n) f(x) if § < x < n, and O otherwise. If
X1, ..., X, are iid with densityp; ,,, show that &1y, X(,)) is sufficient for €, n).

6.5 Show that each of the statisti#s — T, of Example 6.11 is sufficient.

6.6 Prove Corollary 6.13.

6.7 Let X1,...,X,, and Yy, ..., Y, be independently distributed according d¢&, o-2)
andN (i, T2), respectively. Find the minimal sufficient statistics for these cases:

(@) &,n,0, tarearbitrary—oco < £, 1 < 00,0 < o, 7.
(b) o =t andég, n, o are arbitrary.
(c) £ =nandg, o, T are arbitrary.
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6.8 Let X4, ..., X, beiid according taV(o, 02), 0 < o. Find a minimal set of sufficient
statistics.
69 (@) If (x1,...,x,)and (1, ..., y.), have the same elementary symmetric functions

Ex; = By, Bigixiyj = iz YiVj,---,X1:-X, = y1---Ya, then they's are a
permutation of the'’s.
(b) In the notation of Example 6.10, show tliatis equivalent toV. [Hint: Compare
the coefficients and the roots of the polynomi&léc) = I(x — u;) and Q(x) =
M(x —v;).]
6.10 Show that the order statistics are minimal sufficient for the location family (6.7) when
f is the density of
(a) the double exponential distributid»(0, 1).
(b) the Cauchy distributiod’(0, 1).
6.11 Prove the following generalization of Theorem 6.12 to families without common
support.

Theorem 9.1 Let P be a finite family with densities p;,i = 0, ..., k, and for any x,
let S(x) be the set of pairs of subscripts (i, j) for which p;(x) + p;(x) > 0. Then, the
statistic

pi(X)

0= {2455
isminimal sufficient. Here, p;(x)/pi(x) = oo if p;(x) = 0and p;(x) > 0.

i<jand (i, j) € S(X)}

6.12 In Problem 6.11 it is not enough to replaggX) by po(X). To see this lek = 2 and
po=U(—-1,0), p1 =U(0, 1), andp,(x) =2x,0 < x < 1.
6.13 Letk =1andP, =U(i,i +1),i =0, 1.

(a) Showthataminimal sufficientstatisticfBr={ Py, P1}isT(X) =iifi < X < i+1,
i=0,1.

(b) LetX; andX; be iid according to a distribution frof. Show that each of the two
statisticsT;, = T(X) and Tz = T(X>) is sufficient for (;, X>).

(c) Show thatr'(X;) andT (X;) are equivalent.

6.14 In Lemma 6.14, show that the assumption of common support can be replaced by
the weaker assumption that evePy-null set is also @-null set so that (a.ePy) is
equivalent to (a.eP).

6.15 Let X, ..., X, be iid according to a distribution from® = {U(0, 6),6 > 0}, and
let Py be the subfamily of® for which 6 is rational. Show that everf,-null set in the
sample space is alsgranull set.

6.16 Let X, ..., X, be iid according to a distribution from a famify. Show that7 is
minimal sufficient in the following cases:
(a) P = {U(O, 9), 0 > 0}, T = X(n).
(b) P = {U(Ol, 92), —0 <0 <6 < OO}, T= (X(]_), X(n)).
(C) P= {U(@ - 1/2, 0+ 1/2), —o00o <0 <oo}; T= (X(l), X(,,)).
6.17 Solve the preceding problem for the following cases:
(@ P={E@®,1), —c0o <0 < oo}; T = X(.
(b) P={E(,b),0 <b}; T =TX;.
(c) P={E(a,b),—00 <a <00,0<b}; T = (X, Z[X; — X).
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6.18 Show that the statistick;) and [ X; — X(3)] of Problem 6.17(c) are independently
distributed ast(a, b/n) andbGammayg — 2, 1) respectively.
[Hint: If a = 0 andb = 1, the variable§’; = (n — i + 1)[X;) — X¢-yl, i =2,...,n, are
iidasE(0, 1).]
6.19 Show that the sufficient statistics of (i) Problem 6.3 and (ii) Problem 6.4 are minimal
sufficient.
6.20 (a) Show that in theV (6, #) curved exponential family, the sufficient statistic=
(X" xi, Y x?) is not minimal.
(b) For the density of Example 6.19, show tfiat (3" x;, 3" x2, 3" x?) is a minimal
sufficient statistic.

6.21 For the situation of Example 6.25(ii), find an unbiased estimatérazsed or_ X;,
and another based dn X?); hence, deduce thdt= (3" X;, > X?) is not complete.

6.22 For the situation of Example 6.26, show thats minimal sufficient and complete.
6.23 For the situation of Example 6.27:
(a) Show tha = (X;, X,) is minimal sufficient for the family (6.16) with restriction
(6.17).
(b) Establish (6.18), and hence that the minimal sufficient statistic of part (a) is not
complete.

6.24 (Messig and Strawderman 1993) Show that for the general dose-response model

m

pe =TT () buadl (1= ma@y =

i=1

the statisticX = (Xq, Xo,...,X,,) is minimal sufficient if there exist vectors
01, 62, - - -, 6,,) such that then x m matrix

P =llog 1o, (d;) [1 = 1 ()]
Tiao(di) [1 — MNo; (di)]

is invertible. (Hint: Theorem 6.12.)

6.25 Let (X;,Y;),i =1,...,n, beiid according to the uniform distribution over a &ein
the (x, y) plane and leP be the family of distributions obtained by letti®yrange over
a classR of setsR. Determine a minimal sufficient statistic for the following cases:

(a) R isthe setof all rectangles < x < az, b1 <y < by, —00 < a1 < az < 00,
—00 < by < by < .

(b) R is the subset oR, for whicha, — a; = b, — b.
(c) R” is the subset oR’ for whicha, — a; = b, — by = 1.
6.26 Solve the preceding problem if
(a) R is the set of all triangles with sides parallel to thaxis, they axis, and the line
y = x, respectively.
(b) R’ is the subset oR in which the sides parallel to theandy axes are equal.
6.27 Formulate a general result of which Problems 6.25(a) and 6.26(a) are special cases.

6.28 If Y is distributed ast(n, 1), the distribution ofX = e~ is U(0, e~"). (This result is
useful in the computer generation of random variables; see Problem 4.4.14.)
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6.29 If a minimal sufficient statistic exists, a necessary condition for a sufficient statistic to
be complete is for it to be minimalHint: Suppose thal' = 2(U) is minimal sufficient
andU is complete. To show thdf is equivalent tal’, note that otherwise there exists
¥ such thaty (U) # n[h(U)] with positive probability wherey(r) = E[v(U)|t].]

6.30 Show that the minimal sufficient statisti@s = (X, X,) of Problem 6.16(b) are
complete. Hint: Use the approach of Example 6.24.]

6.31 For each of the following problems, determine whether the minimal sufficient statistic
is complete: (a) Problem 6.7(a)-(c); (b) Problem 6.25(a)-(c); (c) Problem 6.26(a) and
(b).

6.32 (a) Show thatifPy, P, are two families of distributions such tHgy € P, and every

null set of P is also a null set of?;, then a sufficient statisti€ that is complete
for P, is also complete foP;.

(b) LetP, be the class of binomial distributiob$p, n), 0 < p < 1, n =fixed, and let
P1=Po U {Q} whereQ is the Poisson distribution with expectation 1. Ttenis
complete bufP; is not.

6.33 Let X1, ..., X, be iid each with density (x) (with respect to Lebesgue measure),
which is unknown. Show that the order statistics are complete.
[Hint: Use Problem 6.32(a) witP, the class of distributions of Example 6.15(iv).
Alternatively, letP, be the exponential family with density

_ o 2_ Ny 2n
C(Gl, o 9,,)6 01X x; —02Xx7 Op Zx! —2x; ]

6.34 Suppose thak, ..., X, are an iid sample from a location-scale family with distri-
bution functionF ((x — a)/b).
(a) If bis known, show that the difference¥{ — X;)/b,i =2, ..., n, are ancillary.
(b) If a is known, show that the ratioX( — a)/(X; —a),i =2, ..., n, are ancillary.
(c) If neithera or b are known, show that the quantitie¥,(— X;)/(X2 — X;), i =
3,...,n, are ancillary.
6.35 Use Basu'’s theorem to prove independence of the following pairs of statistics:

(@) X andZ(X; — X)? where theX's are iid asN (&, 2).
(b) X andX[X; — X (] in Problem 6.18.
6.36 (a) Under the assumptions of Problem 6.18, the rafios [X () — Xy]/ X —
Xu-pl, i =1,...,n— 2, are independent ¢X ), Z[X; — X(3)]}.
(b) Under the assumptions of Problems 6.16(b) and 6.30 the rdtios [X;) —
X(l)]/X(,,) — X(l)], i=2,...,n—1,are independent QK(l), X(,,)).
6.37 Under the assumptions of Theorem 6.5 Adte any fixed set in the sample spagg,
the distributionP, truncated om, andP* = { P, 6 € Q}. Then prove
(a) if T is sufficient forP, it is sufficient forP*.
(b) if, in addition, T is complete forP, it is also complete foP*.
Generalizations of this result were derived by Tukey in the 1940s and also by Smith

(1957). The analogous problem for observations thatewsored rather than truncated
is discussed by Bhattacharyya, Johnson, and Mehrotra (1977).

6.38 If X1,..., X, areiid asB(a, b),
(@) Show thatlX;, I1(1 — X;)] is minimal sufficient for &, b).
(b) Determine the minimal sufficient statistic wher b.
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Section 7
7.1 Verify the convexity of the functions (i)-(vi) of Example 7.3.
7.2 Show thatx? is concave over (0x) if 0 < p < 1.

7.3 Give an example showing that a convex function need not be continuous on a closed
interval.

7.4 If ¢ is convex on ¢, b) andyr is convex and nondecreasing on the range ,ahow
that the functiony[¢(x)] is convex on ¢, b).

7.5 Prove or disprove by counterexample each of the following statemegtss fonvex
on (a, b), then so is (ik?™ and (i) logp(x) if ¢ > 0.

7.6 Show that if equality holds in (7.1) for someQy < 1, theng is linear on k, y].

7.7 Establish the following lemma, which is useful in examining the risk functions of
certain estimators. (For further discussion, see Casella 1990).

Lemma9.2 Letr : [0, 00) — [0, co) be concave. Then, (i) r(¢) is hondecreasing and
(i) r(z)/t is nonincreasing.

7.8 Prove Jensen’s inequality for the case tkidakes on the values, . . ., x, with prob-
abilitiesyy, ..., y,(Zy: = 1) directly from (7.1) by induction over.

7.9 A slightly different form of the Rao-Blackwell theorem, which applies only to the
variance of an estimator rather than any convex loss, can be established without Jensen’s
inequality.

(a) For any estimata(x) with var[§(X)] < oo, and any statisti@, show that
var[§(X)] = var[E(8(X)|T)] + E[var(5(X)|T)].

(b) Based ontheidentity in part (a), formulate and prove a Rao-Blackwell type theorem
for variances.

(c) The identity in part (a) plays an important role in both theoretical and applied
statistics. For example, explain how Equation (1.2) can be interpreted as a special
case of this identity.

7.10 Let U be uniformly distributed on (A1), and letF be a distribution function on the
real line.

(a) If Fis continuous and strictly increasing, show tiat'(U) has distribution func-
tion F.

(b) For arbitraryF, show thatF~1(U) continues to have distribution functian

[Hint: Take F~* to be any nondecreasing function such tRat[ F (x)] = x for all x for
which there exists n@’ # x with F(x') = F(x).]
7.11 Show that thek-dimensional spherEX x? < ¢ is convex.

i

7.12 Show thatf(a) = /|x — a| + 4/]y — a| is minimized bya = x anda = y.
7.13 (a) Show thatp(x) = e** is convex by showing that its Hessian matrix is positive
semidefinite.

(b) Show that the result of Problem 7.4 remains valigl i§ a convex function defined
over an open convex set iy.

(c) Use (b) to obtain an alternative proof of the result of part (a).
7.14 Determine whether the following functions are super- or subharmonic:

@ i x’, p<1lx>0.
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(b) e~ izl
(©) log(ITkyx:)-

7.15 A function islower semicontinuous at the pointy if f(y) < liminf,_, f(x). The
definition of superharmonic can be extended from continuous to lower semicontinuous
functions.

(a) Show that a continuous function is lower semicontinuous.
(b) The functionf(x) = I(a < x < b) is superharmonic onH{oco, o).
(c) For an estimatad of 6, show that the loss function

_[0 if|d-6]<k
L(e’d)'{z if |d—0]>k

is subharmonic.
716 (a) If f : M? — N is superharmonic, thep(f(-)) is also superharmonic, where
¢ : M — Nis a twice-differentiable increasing concave function.
(b) If his superharmonic, theit (x) = [ g(x — y)h(y)dy is also superharmonic, where
g(+) is a density.
(c) If i, is superharmonic, then soAs(x) = [ h, (x)dG(y) whereG(y) is a distribu-
tion function.
(Assume that all necessary integrals exist, and that derivatives may be taken inside the
integrals.)
7.17 Use the convexity of the functiamof Problem 7.13 to show that the natural parameter
space of the exponential family (5.2) is convex.
7.18 Show that if f is defined and bounded over o, co) or (0, 0o0), then f cannot be
convex (unless it is constant).
7.19 Show thatp(x, y) = —./xy is convex over > 0,y > 0.

7.20 If f andg are real-valued functions such thet, g2 are measurable with respect to
the o -finite measurege, prove theSchwarz inequality

(/ fgdu)zs /fzdufgzdu.

[Hint: Write [ fgdu = Eo(f/g), whereQ is the probability measure witiQ =
g%du/ [ g*dp, and apply Jensen’s inequality wigtfx) = x2.]

7.21 Show that the loss functions (7.24) are continuously differentiable.

7.22 Prove that statements made in Example 7.20(i) and (ii).

7.23 Let f be a unimodal density symmetric about 0, andJét, d) = p(d — 0) be a loss
function with p nondecreasing on (8o) and symmetric about O.

(&) The functionp(a) = E[p(X — a)] defined in Theorem 7.15 takes on its minimum
at0.
(b) If
Sa ={x i [p(x +a) = plx = a)][ f(x +a) — f(x —a)] 70},
theng(a) takes on its uniqgue minimum valueat= 0O if and only if there existag

such thatp(ap) < oo, andu(S,) > O for alla. [Hint: Note thatp(0) < 1/2[¢(2a) +
¢(—2a)], with strict inequality holding if and only ifc(S,) > 0 for alla.]
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7.24 (a) Suppose thaf andp satisfy the assumptions of Problem 7.23 and thas
strictly decreasing on [@o). Then, if¢(ag) < oo for someag, ¢(a) has a unique
minimum at zero unless there exists d such that

p(0)=c and p(x)=d forall x#O0.

(b) If p is symmetric about 0, strictly increasing on f), and¢(as) < oo for some
ap, theng(a) has a unique minimum at (0) for all symmetric unimogal

[Problems 7.23 and 7.24 were communicated by Dr. W.Y. Loh.]
7.25 Let p be a real-valued function satisfying

0<p(t)<M <oo and p(t) > M ast — +oo,

and letX be a random variable with a continuous probability dengityrheng(a) =
E[p(X — 1)] attains its minimum.Hlint: Show that (ayp(a) - M asa — +oo and
(b) ¢ is continuous. Here, (b) follows from the fact (see, for example, TSH2, Appendix,
Section 2) thatiff,,n = 1, 2, .. ., andf are probability densities such thgi(x) — f(x)
a.e., then/ v f, — [y f for any boundedy.]

7.26 Let ¢ be a strictly convex function defined over an interya(finite or infinite). If
there exists a valug in I minimizing ¢(a), thenag is unique.

7.27 Generalize Corollary 7.19 to the case wh¥randu are vectors.

Section 8

8.1 (a) Prove Chebychev’s Inequality: For any random variabénd non-negative func-
tion g(*),

1
P(s(X) z ) = “Eg(X)
for everye > 0. (In many statistical applications, it is useful to take) =
(x — a)?/b? for some constants andb.)
(b) Prove Lemma 9.3Hint: Apply Chebychev’s Inequality.]

Lemma 9.3 A sufficient condition for Y, to converge in probability to ¢ isthat E(Y, —
c)? = 0.

8.2 To see that the converse of Theorem 8.2 does not hold{iget. ., X, be iid with

E(X;) =0, var(X;) = 02 < oo, and lets, = X with probability 1— ¢, ands, = A, with
probabilitye,. If ¢, and A, are constants satisfying

&, — 0 and g,A, - oo,

thens, is consistent for estimating, but £(8, — 6)? does not tend to zero.

8.3 Supposep(x) is an even function, nondecreasing and non-negative: for 0 and
positive forx > 0. Then,E{p[5, — g(8)]} — 0 for all 6 implies thats, is consistent for
estimatingg ().

84 (a) If A,, B,, andY, tend in probability taz, b, andy, respectively, them, + B, Y,

tends in probability ta + by.
(b) If A, takes on the constant valug with probability 1 ancu, — a, thenA, — a
in probability.

8.5 Referring to Example 8.4, show thats? % o2 forany sequence of constaais— 1.
In particular, the MLE5? = =1 §2 is a consistent estimator of.

8.6 Verify Equation (8.9).
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8.7 If {a,} is a sequence of real numbers tending tand ifb, = (a; + - - - +a,)/n, then
b, — a.
8.8 (a) If s, is consistent fop, andg is continuous, theg(é,) is consistent fog ().
(b) LetXq,..., X, beiid asN(#, 1), and letg(6) = 0if & # 0 andg(0) = 1. Find a
consistent estimator gf(@).
8.9 (a) In Example 8.5, find cow;, X;) foranyi 7 j.
(b) Verify (8.10).
8.10 (a) In Example 8.5, find the value pf for which p, becomes independent bf
(b) If p; has the value given in (a), then for any integgrs: - - - < i, andk, the joint
distribution ofX;,, ..., X;, is the same as that &f, .+, ..., X; .
[Hint: Do not calculate, but use the definition of the chain.]

8.11 Supposey, ..., X, have acommon mednand variance?, and that covX;, X ;) =
pj—i. For estimating, show that:

(@) X is not consistentip; ; = p 70 foralli 7 j;

(b) X is consistentifp, ;| < My’ with |y| < 1.

[Hint: () Note that varX) > O for all sufficiently large: requireso > 0, and determine
the distribution ofX in the multivariate normal case.]

8.12 Suppose that,[s, — g(9)] tends in law to a continuous limit distributioH. Prove
that:

(@) If k,/k, — d # 0 oroo, thenk,[5, — g(6)] also tends to a continuous limit
distribution.

(b) If k,/k, — 0 or oo, thenk,[5, — g(0)] tends in probability to zero or infinity,
respectively.
(c) If k, — oo, thens, — g(0) in probability.
8.13 Show that if¥,, — ¢ in probability, then it tends in law to a random varialslevhich
is equal tac with probability 1.
8.14 (a) In Example 8.7(i) and (ii)Y,, — O in probability. Show that:

(b) If H, denotes the distribution function df, in Example 8.7(i) and (ii), then
H,(a) — Oforalla < 0andH,(a) - 1foralla > 0.

(c) Determine limH, (0) for Example 8.7(i) and (ii).
8.15 If T, > O satisfies/n[T, — 6] A N(0, 72), find the limiting distribution of (a)/7,
and (b) logr, (suitably normalized).
8.16 If T, satisfies/n[7, — 6] £ N(0, 7?), find the limiting distribution of (a 2 (b)
log|T,|, (c) 1/T,, and (d)e™ (suitably normalized).
8.17 Variancestabilizing transformationsare transformations for which the resulting statis-
tic has an asymptotic variance that is independent of the parameters of interest. For each

of the following cases, find the asymptotic distribution of the transformed statistic and
show that it is variance stabilizing.

(a) Tn = ,% Z;l:]_ Xis Xi NPOiSSOM)i h(Tn) = ﬁn-
(b) 7, = 13", X:. X; ~Bernoulli(p), h(T,) = arcsin/T .

8.18 (a) The functiornw(-) is a variance stabilizing transformation if the estimat(F,)
has asymptotic varianag(6)[v'(8)]? = ¢, wherec is a constant independent @f
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(b) For any positive integer, find the variance stabilizing transformationf{(6) = 6”.
In particular, be careful of the important case 2.

[Avariance stabilizing transformation (if it exists) is the solution of a differential equation
resulting from the Delta Method approximation of the variance of an estimator (Theorem
8.12) and is not a function of the distribution of the statistic (other than the fact that the
distribution will determine the form of the variance). The transformations of part (b) are
known as the Box-Cox family of power transformations and play an important role in
applied statistics. For more details and interesting discussions, see Bickel and Doksum
1981, Box and Cox 1982, and Hinkley and Runger 1984.]

8.19 Serfling (1980, Section 3.1) remarks that the following variations of Theorem 8.12
can be established. Show that:

(a) If h is differentiable in a neighborhood 6f andh’ is continuous a@, thenh’(6)
may be replace by'(7},) to obtain

[A(T,) —h(O)] ¢
ﬁw — N(0,1).

(b) Furthermore, ifr? is a continuous function of, sayt?(9), it can be replaced by
72(T,) to obtain
[A(T,) — h(9)] ¢
—_— N(O, 1).
gy VO
8.20 Prove Theorem 8.16.

[Hint: Under the assumptions of the theorem we have the Taylor expansion

hose o) = hEs o 6) + E(n — ) [% + R:}

whereR; — 0 asx; — &;.]

8.21 A sequence of numbem, is said to bev(1/k,) asn — oo if k,R, — 0 and to be
0(1/k,) if there existM andng such thatk,R,| < M for all n > ng or, equivalently,
if k,R, is bounded.

(@) If R, =0(1/k,), thenR, = 0(1/k,).

(b) R, =0(1)ifand only ifR, is bounded.

(c) R, =0(1)ifand only ifR, — O.

(d) If R, is O(1/k,) andk,/k, tends to a finite limit, therr, is O(1/k)).

8.22 (a) If R, andR, are bothO(1/k%,), sOiSR, + R,.
(b) If R, andR), are botho(1/k,), SO ISR, + R),.
8.23 Supposé, /k, — oo.

(a) If R, =0(1/k,) andR;, = 0(1/k;), thenR, + R, = 0(1/k,).
(b) If R, =0(1/k,) andR, = o(1/k}), thenR, + R, = o(1/k,).

8.24 A sequence of random variablEsis bounded in probability if given anye > 0, there
existM andng such thatP(|Y,,| > M) < ¢ for all n > ngy. Show that ifY, converges in
law, theny, is bounded in probability.

8.25 In generalization of the notatianand O, let us say that, = o0,(1/k,) if k,Y, — 0
in probability and that’,, = 0,(1/k,) if k,Y, is bounded in probability. Show that the
results of Problems 8.21 - 8.23 continue to hold &nd O are replaced by, andO,,.
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8.26 Let (X,,Y,) have a bivariate normal distribution with meaB¢Xx,) = E(Y,) = 0O,
variancesE(X?) = E(¥?) = 1, and with correlation coefficiens, tending to 1 as
n — o0.

(&) ShowthatX,,Y,) £ (X,Y)whereX isN(0,1) andP(X =Y) = 1.
(b) If S ={(x,y):x =y}, show that (8.25) does not hold.

8.27 Prove Theorem 8.22Hint: Make a Taylor expansion as in the proof of Theorem 8.12
and use Problem 4.16.]

10 Notes

10.1 Fubini’s Theorem
Theorem 2.8, called variously Fubini's or Tonelli's theorem, is often useful in mathe-
matical statistics. A variant of Theorem 2.8 alloywgo be nonpositive, but requires an
integrability condition (Billingsley 1995, Section 18). Dudley (1989) refers to Theorem
2.8 as the Tonelli-Fubini theorem and recounts an interesting history in which Lebesgue
played a role. Apparently, Fubini’s first published proof of this theorem was incorrect
and was later corrected by Tonelli, using results of Lebesgue.

10.2 Sufficiency

The concept of sufficiency is due to Fisher (1920). (For some related history, see Stigler
1973.). In his fundamental paper of 1922, Fisher introduced the term sufficiency and
stated the factorization criterion. The criterion was rediscovered by Neyman (1935) and
was proved for general dominated families by Halmos and Savage (1949). The theory of
minimal sufficiency was initiated by Lehmann and Schgff950) and Dynkin (1951).
Further generalizations are given by Bahadur (1954) and Landers and Rogge (1972).
Yamada and Morimoto (1992) review the topic. Theorem 7.8 with squared error loss
is due to Rao (1945) and Blackwell (1947). It was extended topthepower of the

error (p > 1) by Barankin (1950) and to arbitrary convex loss functions by Hodges and
Lehmann (1950).

10.3 Exponential Families

One-parameter exponential families, as the only (regular) families of distributions for
which there exists a one-dimensional sufficient statistic, were also introduced by Fisher
(1934). His result was generalized to more than one dimension by Darmois (1935),
Koopman (1936), and Pitman (1936). (Their contributions are compared by Barankin
and Maitra (1963).) Another discussion of this theorem with reference to the literature is
given, for example, by Hipp (1974). Comprehensive treatments of exponential families
are provided by Barndorff-Nielsen (1978) and Brown (1986a); a more mathematical
treatment is given in Hoffman-Jorgenson (1994). Statistical aspects are emphasized in
Johansen (1979).

10.4 Ancillarity
To illustrate his use of ancillary statistics, group families were introduced by Fisher

(1934). (For more information on ancillarity, see Buehler 1982, or the review article by
Lehmann and Scholtz 1992).)

Ancillary statistics, and more general notions of ancillarity, have played an important
role in developing inference in both group families and curved exponential families,
the latter having connections to the field of “small-sample asymptotics,” where it is
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shown how to obtain highly accurate asymptotic approximations, based on ancillaries
and saddlepoints.

Forexample, as curved exponential families are not of full rank, itis typical thata minimal
sufficient statistic is not complete. One might hope thats-atimensional sufficient
statistic could be split into d-dimensional sufficient piece and an- d-dimensional
ancillary piece. Although this cannot always be done, useful decompositions can be
found. Such endeavors lie at the heart of conditional inference techniques.

Good introductions to these topics can be found in Reid (1988), Field and Ronchetti
(1990), Hinkley, Reid, and Snell (1991), Barndorff-Nielsen and Cox (1994), and Reid
(1995).

10.5 Completeness

Completeness was introduced by Lehmann and Selig&50). Theorem 6.21 is due to
Basu (1955b, 1958). Although there is no converse to Basu’'s theorem as stated here,
some alternative definitions and converse results are discussed by Lehmann (1981).
There are alternate versions of Theorem 6.22, which relate completeness in exponential
families to having full rank. This is partially due to the fact thafull or full-rank
exponential family can be defined in alternate ways. For example, referring to (5.1), if
we define® as the index set of the densitips(x), that is, we consider the family of
densitied py(x), 6 € O}, then Brown (1986a, Section 1.1) defines the exponential family

to befull if ® = E, whereZ is the natural parameter space [see (5.3)]. But this property

is not needed for completeness. As Brown (1986a, Theorem 2.12) states, as long as the
interior of ® is nonempty (that isp contains an open set), the fam{ly, (x), 6 € ®}is
complete. Another definition of faull exponential model is given by Barndorff-Nielsen

and Cox (1994, Section 1.3), which requires that the statigtics ., 7, not be linearly
dependent.

In nonparametric families, the property of completeness, and determination of complete
sufficient statistics, continues to be investigated. See, for example, Mandelbaum and
Ruschendorf (1987) and Mattner (1992, 1993, 1994). For example, building on the work
of Fraser (1954) and Mandelbaum anidsRhendorf (1987), Mattner (1994) showed that

the order statistics are complete for the family of densifies cases such as

(a) P={all probability measures on the real line with unimodal densities with respect
to Lebesgue measuyre
(b) P={(1—1)P+tQ: P eP,Q e Q(P),t €[0, €]}, wherex is fixed and, for each
P € P, P is absolutely continuous with respect to the complete and convex family
Q(P).
10.6 Curved Exponential Families
The theory of curved exponential families was initiated by Efron (1975, 1978), who
applied the ideas gflane curvature andarc length to better understand the structure of
exponential families. Curved exponential families have been extensively studied since
then. (See, for example, Brown 1986a, Chapter 3; Barndorff-Nielsen 1988; McCul-
lagh and Nelder 1989; Barndorff-Nielsen and Cox 1994, Section 2.10.) Here, we give
some details in a two-dimensional case; extensions to higher dimensions are reasonably
straightforward (Problem 5.4).
For the exponential family (5.1), with = 2, the parameter i9{(0), n2(0)), whered
is an underlying parameter which is indexing the parameter spagétsilf is a one-
dimensional parameter, then the parameter space is a curve in two dimensions, a subset
of the full two-dimensional space. Assuming that this have at least two derivatives
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as functions of), the parameter space is a one-dimensialifédrentiable manifold, a
differentiable curve. (See Amari et al 1987 or Murray and Rice 1993 for an introduction
to differential geometry and statistics.)

Figure 10.1Thecurve n(t) = (n1(z), n2(z)) = (z, — % 72). Theradius of curvature y, isthe
instantaneous rate of change of the angle Aa, between the derivatives V(t), with respect
to the arc length As. The vector Vn(t), the tangent vector, and the unit normal vector
N(t) = [—n5(7), ni(v)]/[ds. /dt] provide a moving frame of reference.

Normal Curved Exponential Family

. ]
ARZIED!

~ ]

\V’T;'(2> |

3 4

Example 10.1 Curvature. For the exponential family (5.7) let= 1, so the parameter

£
space is the curve
1

n(r) = (z, —érz),
as shown in Figure 10.1. The direction of the cunye), at any pointr, is measured by
the derivative vector (thgradient) Vn(t) = (n;(t), n5(7)) = (1, —7). At eachr we can
assign an angular value

a(t) = polar angle of normalized gradient vecton(t)

¢ (1(7), 15(7))
[(n1)? + ()42
which measures how the curve “bends.” Tduevature, y,, is a measure of the rate of
change of this angle as a function of the length s(t), wheres(t) = for |Vn(t)|dt.

= polar angle o
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e (c +57) — a(o) _ da(o)
a(t+d6t) —a(r da(t
10.1 . = lim = ;
(10.1) Ve S ron) —s(r)  ds(d)
see Figure 10.1. An application of calculus will show that

7o i

NNy — NaN1
10.2 = e T
(102) Y= oy + ()

so for the exponential family (5.7), we hayg= —(1 + t2)%2, I

For the most part, we are only concerned wjtH, as the sign merely gives the direction

of parameterization, and the magnitude gives the degree of curvature. As might be
expected, lines have zero curvature and circles have constant curvature. The curvature
of a circle is equal to the reciprocal of the radius, which leads to calljfig, [Lthe

radius of curvature. Definitions of arc length, and so forth, naturally extend beyond two
dimensions. (See Problems 5.5 and 5.4.)

10.7 Large Deviation Theory

Limit theorems such as Theorem 1.8.12 refer to sequences of situatians>aso.
However, in a given problem, one is dealing with a specific large value. &ny
particular situation can be embedded in many different sequences, which lead to different
approximations.

Suppose, for example, that it is desired to find an approximate value for
(10.3) P(IT, — g(0) = a)

whenn = 100 anda = 0.2. If \/n[T, — g(0)] is asymptotically normally distributed
asN(0, 1), one might want to put = ¢/+/n (so thatc = 2) and consider (10.3) as a
member of the sequence

2
10.4 P\IT, — g0 — | = 2[1 - ®(2)].
(10.4) (- e = 2= ) ~ 211 oc2)
Alternatively, one could keep = 0.2 fixed and consider (10.3) as a member of the
sequence
(10.5) P(IT, — g(9)| = 0.2).

SinceT, — g(0) — 0, this sequence of probabilities tends to zero, and in fact does so at
a very fast rate. In this approach, the normal approximation is no longer useful (it only
tells us that (10.5%> 0 asn — o0). The study of the limiting behavior of sequences
such as (10.5) is calld@drge deviation theory. An exposition of large deviation theory

is given by Bahadur (1971). Books on large deviation theory include those by Kester
(1985) and Bucklew (1990). Much research has been done on this topic, and applications
to various aspects of point estimation can be found in Fu (1982), Kester and Kallenberg
(1986), Sieders and Dzhaparidze (1987), and Pfanzagl (1990).

We would, of course, like to choose the approximation that comes closer to the true
value. It seems plausible that for values of (10.3) not extremely close to 0 and for mod-
erate sample sizes, (10.4) would tend to do better than that obtained from the sequence
(10.5). Some numerical comparisons in the context of hypothesis testing can be found
in Groeneboom and Oosterhoff (1981); other applications in testing are considered in
Barron (1989).
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CHAPTER 2

Unbiasedness

1 UMVU Estimators

It was pointed out in Section 1.1 that estimators with uniformly minimum risk
typically do not exist, and restricting attention to estimators showing some degree
of impartiality was suggested as one way out of this difficulty. As a first such
restriction, we shall study the condition arfibiasedness in the present chapter.

Definition 1.1 An estimators(x) of g(#) is unbiased if
(1.2) Ep[8(X)] = g(®) forall 0 € Q.

When used repeatedly, an unbiased estimator in the long run will estimate the
right value “on the average.” This is an attractive feature, but insistence on unbi-
asedness can lead to problems. To begin with, unbiased estimatpraayf not
exist.

Example 1.2 Nonexistence of unbiased estimator. Let X be distributed accord-
ing to the binomial distributio(p, n) and suppose that(p) = 1/p. Then, unbi-
asedness of an estimatorequires

(1.2) i(S(k) (’;) pkg"* =g(p) forall 0<p <1
k=0

That no sucl$ exists can be seen, for example, for the fact that as 0, the left
side tends t@(0) and the right side too. Yet, estimators of Ap exist which (for
n not too small) are close to/p with high probability. For example, sincé/n
tends to be close tp, n/ X (with some adjustment wheki = 0) will tend to be
closeto ¥p. I

If there exists an unbiased estimator gfthe estimang; will be called U-
estimable. (Some authors call such an estimand “estimable,” but this conveys the
false impression that argynot possessing this property cannot be accurately esti-
mated.) Even wheg is U-estimable there is no guarantee that any of its unbiased
estimators are desirable in other ways, and one may instead still prefer to use an
estimator that does have some bias. On the other hand, a large bias is usually con-
sidered a drawback and special methods of bias reduction have been developed
for such cases.

Example 1.3 Thejackknife. A general method for bias reduction was initiated
by Quenouille (1949, 1956) and later named the jackknife by Tukey (1958). Let
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T (x) be an estimator of a parametgp) based on a sample= (x4, ..., x,) and
satisfyingE[T (X)] = =(9) + 0(%). Definex(_;) to be the vector of sample values
excludingx;. Then, the jackknifed version @f(x) is

(1.3) T(x) = nT(x) — ”T_l 3T (%)
i=1

It can be shown that[T;(X)] = =(0) + O(Wiz), so the bias has been reduced (Stuart
and Ord 1991, Section 17.10; see also Problem 1.4). I

Although unbiasedness is an attractive condition, after a best unbiased estimator
has been found, its performance should be investigated and the possibility not ruled
out that a slightly biased estimator with much smaller risk might exist (see, for
example, Sections 5.5 and 5.6).

The motive for introducing unbiasedness was the hope that within the class
of unbiased estimators, there would exist an estimator with uniformly minimum
risk. In the search for such an estimator, a natural approach is to minimize the
risk for some particular valug, and then see whether the result is independent of
6o. To this end, the following obvious characterization of the totality of unbiased
estimators is useful.

Lemma 1.4 If § isany unbiased estimator of g(), the totality of unbiased esti-
matorsisgiven by § = §o — U where U isany unbiased estimator of zero, that is,
it satisfies
Eg(U)=0 forall 6 e Q.
To illustrate this approach, suppose the loss function is squared error. The risk
of an unbiased estimatdris then just the variance éf Restricting attention to
estimatorssg, 8, andU with finite variance, we have, ¥ is unbiased,

var() = var@o — U) = E(8o — U)? — [g()]?
so that the variance @fis minimized by minimizingE (8o — U)?.

Example 1.5 Locally best unbiased estimation. Let X take on the values 1, O,
1, ... with probabilities (Problem 1.1)

(1.4) P(X=-1)=p, P(X=k)=¢%p*, k=0.1,...,

where O< p < 1 andg = 1— p, and consider the problems of estimating fa)
and (b)¢2. Simple unbiased estimators pfandg? are, respectively,

_{1 if X=-1 1 if X=0
8o =

0 otherwise 2N %1 = {0 otherwise

Itis easily checked thdt is an unbiased estimator of zero if and only if [Problem
1.1(b)]

(1.5) Uk)=—-kU(-1) for k=0,1,...

or equivalently ifU (k) = ak forall k = —1,0, 1, ... and some:. The problem
of determining the unbiased estimator which minimizes the variangg #tus
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reduces to that of determining the valuezofvhich minimizes
(1.6) T P(X = k)[8; (k) — ak]?.

The minimizing values of are (Problem 1.2)

o

a(’)k:_po/ |:p0+quk2pS:| and a7 =0
k=1

in cases (a) and (b), respectively. Singedoes not depend opo, the estimator

87 = 61 — aiX = 81 minimizes the variance among all unbiased estimators not

only whenp = pg but for all values ofp. On the other hand = 6o — a X does

depend orpg, and it therefore only minimizes the variancepat po. I

The properties possesseddjyandé] are characterized more generally by the
following definition.

Definition 1.6 An unbiased estimatd(x) of g(6) is theuniform minimum vari-
ance unbiased (UMVU) estimator ofg(0) if vargs(x) < vargé’(x) for all 6 € Q,
wheres’(x) is any other unbiased estimatorgp). The estimatos(x) is locally
minimum variance unbiased (LMVU) at 6 = 6y if varg,s(x) < var,d’(x) for any
other unbiased estimatéi(x).

In terms of Definition 1.6, we have shown in Example 1.5 #jas UMVU and
thatsj is LMVU. Sinced] depends ompo, no UMVU estimator exists in this case.
Notice that the definition refers to “the” UMVU estimator, since UMVU estima-
tors are unique (see Problem 1.12). The existence, uniqueness, and characterization
of LMVU estimators have been investigated by Barankin (1949) and Stein (1950).
Interpreting E(8p — U)? as the distance betweép and U, the minimizingU*
can be interpreted as the projectiondgfonto the linear spack formed by the
unbiased estimatois of zero. The desired results then follow from the projection
theorem of linear space theory (see, for example, Bahadur 1957, and Luenberger
1969).
The relationship of unbiased estimatorg @f) with unbiased estimators of zero
can be helpful in characterizing and determining UMVU estimators when they
exist. Note that i#(X) is an unbiased estimator g{9), then so i$(X) +aU(X),
for any constant and any unbiased estimatdrof zero and that

varg,[8(X) + aU(X)] = varg,s(X) + a®var, U (X) + 2acovy, (U (X), §(X)).

If covy (U (X), §(X)) # 0 for somed = 6y, we shall show below that there exists a
value ofa for which vap,[§(X) +aU(X)] < varg,d(X). As aresult, the covariance
with unbiased estimators of zero is the key in characterizing the situations in which
a UMVU estimator exists. In the statement of the following theorem, attention
will be restricted to estimators with finite variance, since otherwise the problem of
minimizing the variance does not arise. The class of estimataith £,5% < oo

for all 6 will be denoted byA.

Theorem 1.7 Let X havedistribution Py, 8 € 2, let § be an estimator in A, and
let 4 denote the set of all unbiased estimators of zero which are in A. Then, a
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necessary and sufficient condition for § to bea UMVU estimator of its expectation
g(0) isthat
a.7) Eg(8U)=0 foral Ueld andall 6 € Q.

(Note: SinceEy(U) = 0forallU € U, it follows that E4(8U) = cow(8, U), SO
that (1.7) is equivalent to the condition thaits uncorrelated with every € U4.)

Proof.

(a) Necessity. Suppose is UMVU for estimating its expectatiog(d). Fix U €
U, 0 € Q,and for arbitrary redl, lets’ = §+AU. Then,§’ is also an unbiased
estimator ofg(#), so that

var (s + AU) > varg(s) forall A.
Expanding the left side, we see that
A2varyU + 2xcovy (8, U) > 0 forall A,

a gquadratic irk. with real rootsk = 0 andi = —2 cow (8, U)/varg(U). It will
therefore take on negative values unlesg W) = 0.

(b) Sufficiency. SupposeE,(SU) = 0 for all U € U. To show that is UMVU,
let 8’ be any unbiased estimator 6% (). If vargd’ = oo, there is nothing to
prove, so assume @ < oo. Then,§ — § € U (Problem 1.8) so that

Ep[8(6 —8)]=0
and henceg, (82) = E4(88"). Sinces ands’ have the same expectation,
vargs = cov (8, 8'),

and from the covariance inequality (Problem 1.5), we conclude thayax
vary(8').

d

The proof of Theorem 1.7 shows that condition (1.7), if required only fer,,
is necessary and sufficient for an estimatavith E4(82) < oo to be LMVU at
6o. This result also follows from the characterization of the LMVU estimator as
§ = 89 — U* wheredy is any unbiased estimator gfandU* is the projection of
8o ontoU. Interpreting the equatiof,,(SU) = O as orthogonality 0y and U,
the projection ofU* has the property that= 6o — U* is orthogonal td@/, that is,
Eg(8U) = O0forallU € U. If the estimator is to be UMVU, this relation must
hold for all 6.

Example 1.8 Continuation of Example 1.5. As an application of Theorem 1.7,
let us determine the totality of UMVU estimators in Example 1.5. In view of (1.5)
and (1.7), a necessary and sufficient conditiord ftarbe UMVU for its expectation

is

(1.8) E,(6X)=0 forall p,

that is, fors X to be ini/ and hence to satisfy (1.5). This condition reduces to

ks(k) = k8(—1) for k=0,1,2, ...,
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which is satisfied provided
(1.9) S(k)=8(-1) for k=1,2,...

with §(0) being arbitrary. If we put(—1) =a, §(0) = b, the expectation of suchsa
is g(p) = bg?+a(1—¢?) andg(p) is therefore seen to possess a UMVU estimator
with finite variance if and only if it is of the form + cg2. I

It is interesting to note, although we shall not prove it here, that Theorem 1.7
typically, but not always, holds not only for squared error but for general convex
loss functions. This result follows from a theorem of Bahadur (1957). For details,
see Padmanabhan (1970) and Linnik and Rukhin (1971).

Constants are always UMVU estimators of their expectations since the variance
of a constantis zero. (§fis a constant, (1.7) is of course trivially satisfied.) Deleting
the constants from consideration, three possibilities remain concerning the set of
UMVU estimators.

Case 1. No nonconstan¥/ -estimable function has a UMVU estimator.

Example 1.9 Nonexistence of UMVU estimator. Let X4, ..., X,, be a sample
from a discrete distribution which assigns probabili}81o each of the points

6 —1,0,6 +1, and le® range over the integers. Then, no honconstant function
of 6 has a UMVU estimator (Problem 1.9). A continuous version of this example
is provided by a sample from the uniform distributiorie — 1/2, 6 + 1/2); see
Lehmann and Scheff(1950, 1955, 1956). (For additional examples, see Section
2.3)) I

Case 2. Some, but not all, nonconstabitestimable functions have UMVU esti-
mators. Example 1.5 provides an instance of this possibility.

Case 3. Every U-estimable function has a UMVU estimator.

A condition for this to be the case is suggested by (Rao-Blackwell) Theorem
1.7.8. If T is a sufficient statistic for the familfp = {P,, 0 € Q} andg(0) is
U-estimable, then any unbiased estimaitaf g(6) which is not a function of”
is improved by its conditional expectation givén sayn(T). Furthermorey(T)
is again an unbiased estimatorg®) since by (6.1)E,[n(T)] = Es[5(X)].

Lemma 1.10 Let X bedistributed according to a distribution fromP = {Py, 6 €
@}, and let T be a complete sufficient statistic for P. Then, every U-estimable
function g(@) has one and only one unbiased estimator that is a function of 7.
(Here, uniqueness, of course, means that any two such functions agree a.e. P.)

Proof. That such an unbiased estimator exists was established just preceding the
statement of Lemma 1.10. 8§ ands; are two unbiased estimators gf), their
differencef (T) = 61(T) — 82(T) satisfies

Eof(T)=0 forall 6 € Q,



88 UNBIASEDNESS [21

and hence by the completenessiofs,(T) = §2(T) a.e.P, as was to be proved.
O

So far, attention has been restricted to squared error loss. However, the Rao-
Blackwell theorem applies to any convex loss function, and the preceding argument
therefore establishes the following result.

Theorem 1.11 Let X be distributed according to a distribution in P = {P,, 0 €
Q}, and suppose that T isa complete sufficient statistic for P.

(a) For every U-estimable function g(9), there exists an unbiased estimator that
uniformly minimizes the risk for any loss function L (6, d) which is convex in
its second argument; therefore, this estimator in particular is UMVU.

(b) The UMVU estimator of (i) is the unique unbiased estimator which isa func-
tion of T'; it isthe unique unbiased estimator with minimumrisk, provided its
riskisfiniteand L is strictly convexind.

It is interesting to note that under mild conditions, the existence of a complete
sufficient statistic is not only sufficient but also necessary for Case 3. This result,
which is due to Bahadur (1957), will not be proved here.

Corollary 1.12 If P isan exponential family of full rank given by (5.1), then the
conclusions of Theorem 1.11 hold with 6 = (61, ...,6,)and T = (T4, ..., Ty).

Proof. This follows immediately from Theorem 1.6.22. O

Theorem 1.11 and its corollary provide best unbiased estimators for large classes
of problems, some of which will be discussed in the next three sections. For the
sake of simplicity, these estimators will be referred to as being UMVU, but it
should be kept in mind that their optimality is not tied to squared error as loss, but,
in fact, they minimize the risk for any convex loss function.

Sometimes we happen to know an unbiased estimatafr ¢(6) which is a
function of a complete sulfficient statistic. The theorem then state ibtMVU.
Suppose, for example, that, . .., X, are iid according taV (£, o2) and that the
estimand isr2. The standard unbiased estimatoséis thens = £(X; — X)?/(n —

1). Since this is a function of the complete sufficient statigtis (X X;, X(X; —
X)?), 8 is UMVU. Barring such fortunate accidents, two systematic methods are
available for deriving UMVU estimators through Theorem 1.11.

Method One: Solving for §
If T is a complete sufficient statistic, the UMVU estimator of dmestimable
functiong(0) is uniquely determined by the set of equations
(1.10) E¢8(T)=g(0) forall 6 € Q.

Example 1.13 Binomial UMVU estimator. Suppose thaf" has the binomial
distributionb(p, n) and thatg(p) = pg. Then, (1.10) becomes

n

(1.12) Z <;l) s(t)p'q"t=pqg foral 0<p <1
=0
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If o= p/qsothatp = p/(1+p)andg = 1/(1 +p), (1.11) can be rewritten as

n

> <’Z> 8(t)p" = p(L+p) 2= S <’;:f) o' (0<p <o)

=0 t=1
A comparison of the coefficients on the left and right sides leads to

8() = :[EZ - tl))'

Method Two: Conditioning

If §(X) is any unbiased estimator g{#), it follows from Theorem 1.11 that
the UMVU estimator can be obtained as the conditional expectatidfXgfgiven
T. For this derivation, it does not matter which unbiased estimatgrbeing
conditioned; one can thus chooseso as to make the calculation 8f(7T) =
E[8(X)|T] as easy as possible.

Example 1.14 UMVU estimator for a uniform distribution. Suppose thak,
..., X,, are iid according to the uniform distributid(0, 6) and thatg(6) = 6/2.
Then,T = X, the largest of theX's, is a complete sufficient statistic. Since
E(X1) = 6/2, the UMVU estimator ob/2 is E[X1|X(,) = t]. If X = ¢, then
X, = t with probability /n, and X; is uniformly distributed on (0¢) with the
remaining probabilityf — 1)/n (see Problem 1.6.2). Hence,

n—1 1t n+l t

1
E[X1|l] = ; -t +

Thus, [ +1)/n] - T/2 and [@ + 1)/n] - T are the UMVU estimators af/2 and
0, respectively. I

The existence of UMVU estimators under the assumptions of Theorem 1.11 was
proved there for convex loss functions. That the situation tends to be very different
without convexity of the loss is seen from the following results of Basu (1955a).
Theorem 1.15 Let theloss function L(6, d) for estimating g(6) be bounded, say
L(0,d) < M,andassumethat L[0, g(0)] = Ofor all 6, that is, thelossiszero when
the estimated value coincides with the true value. Suppose that g is U-estimable
and let 6y be an arbitrary value of 6. Then, there exists a sequence of unbiased
estimators §,, for which R(6g, 8,) — O.

Proof. Sinceg(0) is U-estimable, there exists an unbiased estimito). For any
O<m<1,let

2(6p) with probability 1—

8 (x) =
;[S(x) — g(60)] + g(6o)  with probability 7z.

Then,s, is unbiased for allr and allg, since

Eg(87) = (1 —m)g(6o) + %[g(Q) — 8(60)] + g (60) = g(0).
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The riskR(6o, 8.,) atbois (1—)-0 plus times the expected loss of/)[$(X) —
g(60)] + (o), so that

R(6o,8.) < 7M.
Asm — 0, itis seen thaR(fy, §,) — O. |

This resultimplies that for bounded loss functions, no uniformly minimum-risk-
unbiased or even locally minimume-risk-unbiased estimator exists except in trivial
cases, since at eaéh, the risk can be made arbitrarily small even by unbiased
estimators. [Basu (1955a) proved this fact for a more general class of nonconvex
loss functions.] The proof lends support to the speculation of Section 1.7 that the
difficulty with nonconvex loss functions stems from the possibility of arbitrarily
large errors since as — 0, the errond, (x) — g(6o)| — oo. Itis the leverage of
these large but relatively inexpensive errors which nullifies the restraining effect
of unbiasedness.

This argument applies not only to the limiting case of unbounded errors but
also, although to a correspondingly lesser degree, to the case of finite large errors.
In the latter situation, convex loss functions receive support from a large-sample
consideration. To fix ideas, suppose the observations consistifdrvariables
X1, ..., X,.Asnincreases, the error in estimating a given val(® will decrease
and tend to zero a8 — oo. (See Section 1.8 for a precise statement.) Thus,
essentially only the local behavior of the loss function near the true wdf)es
relevant. If the loss function is smooth, its Taylor expansion aboui(0) gives

L(0,d) = a(0) +b(©O)[d — g(0)] + c(O)[d — g(0)]* + R,

where the remaindeR becomes negligible as the eridar— g(6)| becomes suf-
ficiently small. If the loss is zero whed = g(6), thena must be zero, so that
b(0)[d — g(0)] becomes the dominating term for small errors. The condition
L(6, d) > 0 for all 6 then impliesh(6) = 0 and hence

L(0,d) = c(0)[d — g(6)]> + R.

Minimizing the risk for large: thus becomes essentially equivalent to minimizing
E[8(X) — g(6)]?, which justifies not only a convex loss function but even squared
error. Not only the loss function but also other important aspects of the behavior
of estimators and the comparison of different estimators greatly simplify for large
samples, as will be discussed in Chapter 6.

The difficulty which bounded loss functions present for the theory of unbiased
estimation is not encountered by a different unbiasedness concept, that of median
unbiasedness mentioned in Section 1.1. For estimati@ypin a multiparameter
exponential family, it turns out that uniformly minimum risk median unbiased
estimators exist for any loss functian for which L(0, d) is a nondecreasing
function ofd asd moves in either direction away frog(6). A detailed version
of this result can be found in Pfanzagl (1979). We shall not discuss the theory of
median unbiased estimation here since the methods required belong to the theory
of confidence intervals rather than that of point estimation (see TSH2, Section 3.5).
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2 Continuous One- and Two-Sample Problems

The problem of estimating an unknown quantityfrom » measurements af

was considered in Example 1.1.1 as the prototype of an estimation problem. It
was formalized by assuming that themeasurements are iid random variables
X1, ..., X, with common distribution belonging to the location family

(2.1) Py(X; < x) = F(x — 0).

The problem takes different forms according to the assumptions made Bbout
Some possibilities are the following:

(a) F is completely specified.

(b) F is specified except for an unknown scale parameter. In this case, (2.1) will
be replaced by a location-scale family. It will then be convenient to denote the
location parameter b§ rather thard (to reserve for the totality of unknown
parameters) and hence to write the family as

2.2) Py(X; §x)=F<x;$).

Here, it will be of interest to estimate bothando .

(c) The distribution of theX's is only approximately given by Equation (2.1) or
(2.2) with a specified. What is meant by “approximately” leads to the topic
of robust estimation

(d) F is known to be symmetric about 0 (so that thés are symmetrically
distributed abou# or &) but is otherwise unknown.

(e) F is unknown except that it has finite variance; the estimagdisE (X;).
In all these modelst is assumed to be continuous.

Atreatment of Problems (a) and (b) for an arbitrary knagwia givenin Chapter 3
from the point of view of equivariance. In the present section, we shall be concerned
with unbiased estimation of or (£, o) in Problems (a) and (b) and some of their
generalizations for some special distributions, particularly for the casertlst
normal or exponential. Problems (c), (d), and (e) all fall under the general heading
of robust and nonparametric statistics (Huber 1981, Hampel et al. 1986, Staudte
and Sheather 1990). We will not attempt a systematic treatment of these topics
here, but will touch upon some points through examples. For example, Problem
(e) will be considered in Section 2.4.

The following three examples will be concerned with the normal one-sample
problems, that is, with estimation problems arising whén. .., X,, are dis-
tributed with joint density (2.3).

Example 2.1 Estimating polynomialsof anormal variance. Let Xy, ..., X, be
distributed with joint density

1 1 a2
(2.3) meXp[—FE(M 5)],

and assume, to begin with, that only one of the parameters is unknownis|f
known, it follows from Theorem 1.6.22 that the sample mé&ais a complete
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sufficient statistic, and sincé(X) = &, X is the UMVU estimator of. More
generally, ifg(¢) is anyU -estimable function of, there exists a unique unbiased
estlmatorS(X) based orX and itis UMVU. If, in particular,g(¢) is a polynomial
of degree, §(X) will also be a polynomial of that degree, which can be determined
inductively forr = 2, 3, ... (Problem 2.1).

If £ is known, (2.3) is a one-parameter exponential family withe (X, —
£)? being a complete sufficient statistic. Sinte= S2/02 is distributed as?
independently o&2, it follows that

( Sr ) 1
E(=)=—,
o’ K.,
wherek, , is a constant, and hence that

(2.4) K,,S"
is UMVU for o". Recall from Example 1.5.14 witlhh = n/2, b = 2 and withr/2

in place ofr that
ST 2 av2y = Ll +1)/2] 0
£(57) = el =y

so that

(2.5) K, = — /2

22T [(n +r)/2]
As a check, note that for= 2, K,,, = 1/n, and hence (5?) = no?

Formula (2.5) is established in Example 1.5.14 onlyAfox 0. It is, however,
easy to see (Problem 1.5.19) that it holds whenever

(2.6) n> —r,

but that the £/2)th moment of? does not exist when < —r.

We are now in a position to consider the more realistic case in which both
parameters are unknown. Then, by Example 1.6X24nd 52 = (X — X)?
jointly are complete sufficient statistics faf, @ 2). This shows thak continues
to be UMVU for&. Since vark) = o2/n, estimation ofs2 is, of course, also of
greatimportance. Now§? /o2 is distributed ag?_; and it follows from (2.4) with
n replaced by: — 1 and the new definition of? that

(27) anl,rSr

is UMVU for o” providedn > —r + 1, and thus in particula§?/(n — 1) is UMVU
for 0.

Sometimes, it is of interest to measuwen o-units and hence to estimate
g(&,0) = £/o. Now X is UMVU for & andK,_1_1/S for 1/o. SinceX and
S are independent, it follows thafn_l,_l)_(/S is unbiased fok /o and hence
UMVU, providedn — 1 > 1, thatisn > 2.

If we next consider calculating the varianceff_; _1X/S or, more generally,
calculating the variance of UMVU estimators of polynomial functions ahdo,
we are led to calculating the momer$X*) andE(S*) forallk = 1,2, .... This
is investigated in Problems 2.4-2.6 I
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Another class of problems within the framework of the normal one-sample
problem relates to the probability

(2.8) p=P(X1=u).

Example 2.2 Estimating a probability or a critical value. Suppose that the
observations(; denote the performances of past candidates on an entrance exam-
ination and that we wish to estimate the cutoff vadutr which the probability

of a passing performancg, > u, has a preassigned probability-1p. This is the
problem of estimating in (2.8) for a given value op. Solving the equation

2.9) p=reazn=o(5)
o
(whered® denotes the cdf of the standard normal distributionyfshows that
u=g 0)=E+odY(p).
It follows that the UMVU estimator of: is
(2.10) X + K, 11507 (p).

Consider next the problem of estimatipgor a given value of:. Suppose, for
example, that a manufactured item is acceptable if some quality characteristic is
< u and that we wish to estimate the probability of an item being acceptable, its
reliability, given by (2.9).

To illustrate a method which is applicable to many problems of this type, con-
sider, first, the simpler case that= 1. An unbiased estimatéiof p is the indicator
ofthe eventX; < u. SinceX is a complete sufficient statistic, the UMVU estimator
of p = P(X1 < u) = — &) is therefore

E[8|X] = P[X1 < u|X].

To evaluate this probability, use the fact that — X is independent oK. This
follows from Basu’s theorem (Theorem 1.6.21) sifGe— X is ancillary Hence,

P[X1<ulx]=P[Xi— X <u—%|5]=P[X1— X <u—7x],

and the computation of a conditional probability has been replaced by that of an
unconditional one. NowX; — X is distributed asV (0, (» — 1)/n), so that

n _
-0,

(2.11) P[Xl—)‘(gu—)z]zcb[
which is the UMVU estimator op.
Closely related to the problem of estimatipgwhich is the cdf
F(u) = P[X1 < u] = d(u —§)

of X, evaluated at, is that of estimating the probability densityat: g(&) =
o(u —&). We shall now show that the UMVU estimator of the probability density
g(&) = p; *1(u) of X, evaluated at is the conditional density ok, given X

1 Such applications of Basu’s theorem can be simplified when invariance is present. The theory and
some interesting illustrations are discussed by Eaton and Morris (1970).
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evaluated at, §(X) = p*X(«). Since this is a function af, it is only necessary

to check thats is unbiased. This can be shown by differentiating the UMVU
estimator of the cdf after justifying the required interchange of differentiation and
integration, or as follows. Note that the joint density\afandX is p*1* (u) pf (x)

and that the marginal density is therefore

Pg(l(u) = /; lelX(u)pg(x) dx.

o0

This equation states just thitX) is an unbiased estimator gf). Differentiating
the earlier equation

P[X1 < uli] = cb[,/ 2 (u—i)}
n—1

with respect ta«, we see that the derivative

41 pIXy < ulX] = pX¥ ()
du

=\/ni1¢[\/ni1(”_i)}’

(whereg is the standard normal density) is the UMVU estimatop§f(u).
Suppose now that both ando are unknown. Then, exactly as in the case

o = 1, the UMVU estimator ofP[ X1 < u] = ®((u — &)/0) and of the density

pX1(u) = (1/0)p((u — £)/0) is given, respectively, bP[X1 < u|X, S] and the

conditional density oX; givenX ands evaluated at, wheres? = ©(X; — X)2. To

replace the conditional distribution with an unconditional one, note #hat () /S

is ancillary and therefore, by Basu’s theorem, independerX o$}. It follows, as

in the earlier case, that

(2.12) P[X1§u|i,s]=P[Xl_X 5”_1
R
and that 1 ~
(2.13) pXEsu) = = f (” — x)
S S

where f is the density of X1 — X)/S. A straightforward calculation (Problem
2.10) gives

_ r (nzl) n I’lZ2 (n/2)-2 - P
f(z)_F(%)F(%) n—l(l_n—l) if 0 <zl < —
(2.14)

and zero elsewhere. The estimator (2.13) is obtained by substitution of (2.14), and
the estimator (2.12) is obtained by integrating the dengity I

We shall next consider two extensions of the normal one-sample model. The
first extension is concerned with the two-sample problem, in which there are two
independent groups of observations, each with a model of this type, but corre-
sponding to different conditions or representing measurements of two different
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guantities so that the parameters of the two models are not the same. The sec-
ond extension deals with the multivariate situatiomqgf-tuples of observations

(X1, - s Xpu),v =1, ..., n,with (X1, ..., X,,) representing measurements of

p different characteristics of theh subject.

Example 2.3 Thenormal two-sampleproblem. Let Xy, ..., X,, andYy, ..., Y,
be independently distributed according to normal distributigis, o) andN(»,
2), respectively.

(a) Suppose thdt, n, o, T are completely unknown. Then, the joint density

1 1 1
——————eX X -2 - =2(y, — 2]
(V2ryrgnes p[ A
constitutes an exponential family for which the four statistics

X, Y, S2=3%(X;-X)? Si=%(Y;-Y)?

(2.15)

are sufficient and complete. The UMVU estimatorg @ndo” are therefore
X and K,-1,S%, as in Example 2.1, and those gfandt” are given by
the corresponding formulas. In the present model, interest tends to focus on
comparing parameters from the two distributions. The UMVU estimator of
n —&isY — X and that ofc” /o" is the product of the UMVU estimators of
" and Yo"

(b) Sometimes, it is possible to assume that r. ThenX, ¥, ands? = £(X; —
X)? + X(Y; — Y)? are complete sufficient statistics [Problem 1.6.35(a)] and
the natural unbiased estimator€of, 0", n—&,and § —&) /o are all UMVU
(Problem 2.11).

(c) As athird possibility, suppose that= £ but thato andt are not known to be
equal, and that it is desired to estimate the common rae@his might arise,
for example, when two independent sets of measurements of the same quantity
are available. The statisti® = (X, Y, $2, 52) are then minimal sufficient
(Problem 1.6.7), but they are no longer complete sii¢é — X) = 0.

If /72 = y is known, the best unbiased linear combinatiorXadndY is

2 2 2
Sy:a)?+(l—a)17, Whereazr_/<a_+r_)
n m

n

(Problem 2.12). Since, inthis cagé,= (S X?+y £Y?, ©X;+y XY;)is acomplete
sufficient statistic (Problem 2.12) add is a funct|on ofT”’, 8, is UMVU. When
o?/t? is unknown, a UMVU estimator of does not exist (Problem 2.13), but
one can first estimate, and then estimate by & = X + (1 — @)Y. It is easy
to see tha€ is unbiased provided is a function of onlysZ and 2 (Problem
2.13), for example, i&-? andz? in « are replaced b2 /(m — 1) andS}Z,/(n —1).
The problem of finding a good estimator &fhas been considered by various
authors, among them Graybill and Deal (1959), Hogg (1960), Seshadri (1963),
Zacks (1966), Brown and Cohen (1974), Cohen and Sackrowitz (1974), Rubin
and Weisberg (1975), Rao (1980), Berry (1987), Kubokawa (1987), Loh (1991),
and George (1991). I
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It is interesting to note that the nonexistence of a UMVU estimator holds not
only for & but for anyU -estimable function of . This fact, for which no easy proof
is available, was established by Unni (1978, 1981) using the results of Kagan and
Palamadov (1968).

In cases (a) and (b), the differenge- & provides one comparison between the
distributions of theX's andY’s. An alternative measure of the superiority (if large
values of the variables are desirable) of #ie over the X’s is the probability
p = P(X < Y). The UMVU estimator ofp can be obtained as in Example
2.2asP(X; < Y1|X,Y, S2, 82) and P(X; < Y1|X, Y, $?) in cases (a) and (b),
respectively (Problem 2.14). In case (c), the problem disappears singe th&r.

Example 2.4 Themultivariate normal one-sampleproblem. Suppose thaty;,
Y;,...),i =1,...,n, are observations gf characteristics on a random sample of
n subjects from a large population, so that thp-vectors can be assumed to be
iid. We shall consider the case that their common distributiorpisvariate normal
distribution (Example 1.4.5) and begin with the case 2.

The joint probability density of the(;, Y;) is then

1 ! 1 1 ,
(2.16) <2natm> exp{ 2(1—- )|: Zhi=8)

_i—pz(x, £)yi —n)+ T—lzﬁ(yi — n)zn

whereE(X;) = £, E(Y;) = n, var(X;) = o2, var(¥;) = 72, and cov{;, ;) = pot,

so thatp is the correlation coefficient betweefy andY;. The bivariate family
(2.16) constitutes a five- parameter exponential family of full rank, and the set of
sufficient statistic§” = (X, ¥ S)z(, Sy, Sxy) where

(2.17) Sxy = Z(X; — X)(¥; — Y)

is therefore complete. Since the marginal distributions okthendY; areN (£, o?)
andN(n, t2), the UMVU estimators of ando? areX andsSz /(n — 1), and those
of n andr? are given by the corresponding formulas. The stattic/ (n — 1) is an
unbiased estimator gfor (Problem 2.15) and is therefore the UMVU estimator
of cov(X;, ;).

For the correlation coefficient, the natural estimator is the sample correlation
coefficient

(2.18) R = Sxy/\/S%52.

However, R is not unbiased, since it can be shown [see, for example, Stuart and
Ord (1987, Section 16.32)] that

(1-0% 1
(2.19) E(R) = p [1 - Tp +0 <;)} .

By implementing Method One of Section 2.1, together with some results from the
theory of Laplace transforms, Olkin and Pratt (1958) derived a funcigR) of
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R which is unbiased and hence UMVU. It is given by

11n-1
=rF 11— r?
G(r)r<22 — r>,

whereF(a, b; c; x) is thehypergeometric function
>\ I'(a + k)T (b + k) (c)x*

F(a, b;c;x) =

= T@r®)r(c+kk!
__ T 1yb=1(1 — g)e-b-1
" T(B)(c —b) / (1= 1x) dt

Calculation ofG(r) is facilitated by using a computer algebra program. Alterna-
tively, by substituting in the above series expansion, one can derive the approxi-

mation
1—r2 1
60 =r |1+ 5550 (32

which is quite accurate.

These results extend easily to the general multivariate case. Let us change
notation and denote byXg,,...,Xp,), v = 1,...,n, a sample from a non-
singular p-variate normal distribution with mearfs(X;,) = & and covariances
cov(X;v, Xj,) = ;5. Then, the density of th&’s is

2.20 o 1229 Y

(2.20) e eXp{ 5 kS jk

where

(2.21) Sh =Y (Xjy — E)(Xiw — &)
v=1

and where® = (0;;) is the inverse of the covariance matréx{). This is a full-rank
exponential family, for which the + (g) = 5p(p +1) statisticsX;. = X X;,/n
@=1...,p)andSj = 2(X;, — X;.)(Xr» — Xx.) are complete.

Since the marginal distributions of tig,, and the pairX ;,, X, ) are univariate
and bivariate normal, respectively, it follows from Example 2.1 and the earlier part
of the present example, that. is UMVU for & andS;i/(n — 1) for o ;. Also, the
UMVU estimators of the correlation coefficiemis. = o1/,/0;;0x are just those
obtained from the bivariate distribution of thE (,, Xy, ). The UMVU estimator of
the square of the multiple correlation coefficient of one of pheordinates with
the otherp — 1 was obtained by Olkin and Pratt (1958). The problem of estimating
a multivariate normal probability density has been treated by Ghurye and Olkin
(1969); see also Gatsonis 1984. I

Results quite analogous to those found in Examples 2.1-2.3 obtain when the
normal density (2.3) is replaced by the exponential density

1 1
(2.22) o exp[—EZ(xi — a)i| , X >a.
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Despite its name, this two-parameter family does not constitute an exponential
family since its support changes with However, for fixeda, it constitutes a
one-parameter exponential family with parametgy.1

Example 2.5 The exponential one-sample problem. Suppose, first, that is
known. Then X is sufficient fora and complete (Example 1.6.24). The distri-
bution ofn[X 1) — a]/b is the standard exponential distributi@(0, 1) and the
UMVU estimator ofa is X1y — (b/n) (Problem 2.17). On the other hand, when
a is known, the distribution (2.22) constitutes a one-parameter exponential family
with complete sufficient statistie (X; — a). Since 2 (X; — a)/b is distributed as
x5, itis seen thal(X; — a)/n is the UMVU estimator fob (Problem 2.17).

When both parameters are unknowiy) andX[X; — X (1)] are jointly sufficient
and complete (Example 1.6.27). Since they are independently distrib{ge,—
al]/b asE(0, 1) and Z[X; — X)l/b asxzz(n_l) (Problem 1.6.18), it follows that
(Problem 2.18)

1 1
(223)  ——3[Xi —X@] and Xq) - mﬁ[xi - X
are UMVU for b anda, respectively.
It is also easy to obtain the UMVU estimatorsayfs and of the critical value
u for which P(X; < u) has a given value. If, instead,u is given, the UMVU
estimator ofP(X1 < u) can be found in analogy with the normal case (Problems
2.19 and 2.20). Finally, the two-sample problems corresponding to Example 2.3(a)

and (b) can be handled very similarly to the normal case (Problems 2.21-3.23).

An important aspect of estimation theory is the comparison of different estima-
tors. As competitors of UMVU estimators, we shall now consider the maximum
likelihood estimator (ML estimator, see Section 6.2). This comparison is of in-
terest both because of the widespread use of the ML estimator and because of its
asymptotic optimality (which will be discussed in Chapter 6). If a distribution is
specified by a parametér(which need not be real-valued), the ML estimator of
6 is that value of & which maximizes the probability or probability density. The
ML estimator ofg(6) is defined to be(6).

Example2.6 Comparing UMVU and ML estimators. Let X3, ..., X,, be iid
according to the normal distributia¥(&, o). Then, the joint density of th&'s is
given by (2.3) and it is easily seen that the ML estimatogsarfido? are (Problem
2.26)

(2.24) E=X and 4%= 1 > (X — X)2.
n
Within the framework of this example, one can illustrate the different possible
relationships between UMVU and ML estimators.
(@) When the estimang(¢, o) is &, thenX is both the ML estimator and the
UMVU estimator, so in this case, the two estimators coincide.

(b) Leto be known, say = 1, and letg(&, o) be the probabilityp = ®(u — &)
considered in Example 2.2 (see also Example 3.1.13). The UMVU estimator
is ®[/n/(n — 1)(u — X)], whereas the ML estimator &(u — X). Since the
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ML estimator is biased (by completeness, there can be only one unbiased
function of X), the comparison should be based on the mean squared error
(rather than the variance)

(2.25) Rs(€,0) = E[s — g(&.0)]°

as risk. Such a comparison was carried out by Zacks and Even (1966), who
found that neither estimator is uniformly better than the othernFo#, for
example, the UMVU estimator is better whign— £| > 1.3 or, equivalently,
whenp < .1 orp > .9, whereas for the remaining values the ML estimator
has smaller mean squared error.

This example raises the question whether there are situations in which the
ML estimator is either uniformly better or worse than its UMVU competitor.
The following two simple examples illustrate these possibilities.

(c) If £ ando? are both unknown, the UMVU estimator and the ML estimator of
o2 are, respectively§?/(n — 1) ands?/n, wheres? = 3" (X, — X)?. Consider
the general class of estimatai$’. An easy calculation (Problem 2.28) shows
that

(2.26) E(cS? — %) =0 [(n® — 1)c® — 2(n — 1)c +1].
For any giver, this risk function is proportional te%. The risk functions
corresponding to different values gftherefore, do not intersect, but one lies
entirely above the other. The right side of (2.26) is minimized byl/(n +1).
Since the values = 1/(n — 1) andc = 1/n, corresponding to the UMVU and
ML estimator, respectively, lie on the same side g+ 1) with 1/n being
closer and the risk function is quadratic, it follows that the ML estimator has
uniformly smaller risk than the UMVU estimator, but that the ML estimator,
in turn, is dominated by?/(n + 1). (For further discussion of this problem,
see Section 3.3.)

(d) Suppose that?is known and let the estimand bé Then, the ML estimator
is X? and the UMVU estimator i¥? — o2/n (Problem 2.1). That the risk of
the ML estimator is uniformly larger follows from the following lemma.

Lemma 2.7 Let the risk be expected squared error. If § is an unbiased estimator
of g(9) andif §* = § +b, wherethebiasb isindependent of 9, then §* hasuniformly
larger risk than §, in fact,

Rs-(0) = Rs(0) + b2,

For small sample sizes, both the UMVU and ML estimators can be unsatisfac-
tory. One unpleasant possible feature of UMVU estimators is illustrated by the
estimation oft? in the normal case [Problem 2.5; Example 2.6(d)]. The UMVU
estimator isX?—o2/n wheno is known, and¥?— 52/n(n—1) when itis unknown.

In either case, the estimator can take on negative values although the estimand is
known to be non-negative. Except whier O orr is small, the probability of such
values is not large, but when they do occur, they cause some embarrassment. The
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difficulty can be avoided, and at the same time the risk of the estimator improved,

by replacing the estimator by zero whenever it is negative. This idea is developed
further in Sections 4.7 and 5.6. It is also the case that most of these problems
disappear in large samples, as we will see in Chapter 6.

The examples of this section are fairly typical and suggest that the difference
between the two estimators tends to be small. For samples from the exponential
families, which constitute the main area of application of UMVU estimation, it
has, in fact, been shown under suitable regularity assumptions that the UMVU and
ML estimators are asymptotically equivalent as the sample size tends to infinity,
so that the UMVU estimator shares the asymptotic optimality of the ML estimator.
(For an exact statement and counterexamples, see Portnoy 1977b.)

3 Discrete Distributions

The distributions considered in the preceding section were all continuous. We shall
now treat the corresponding problems for some of the basic discrete distributions.

Example 3.1 Binomial UMVU estimators. In the simplest instance of a one-
sample problem with qualitative rather than quantitative “measurements,” the ob-
servations are dichotomous; cure or no cure, satisfactory or defective, yes or no.
The two outcomes will be referred to generically as success or failure.

The results ofi independent such observations with common success probability
p are conveniently represented by random variaBdesvhich are 1 or 0 as the
ith case or “trial” is a success or failure. Thah(X; = 1) = p, and the joint
distribution of theX's is given by

(3.1) P(X1=x1,..., X, =x,) = pXig" %% (¢ =1-p).

This is a one-parameter exponential family, ahd= X X; —the total number
of successes—is a complete sufficient statistic. Si¢E;) = E(X) = p and
X = T/n, it follows that 7' /n is the UMVU estimator ofp. Similarly, =(X; —
X)2/(n —1) = T(n — T)/n(n — 1) is the UMVU estimator of vaiX;) = pg
(Problem 3.1; see also Example 1.13).

The distribution off is the binomial distributio®(p, n), and it was pointed out
in Example 1.2 that Ap is notU -estimable on the basis @f, and hence not in the
present situation. In fact, it follows from Equation (1.2) that a funcg@p) can
be U-estimable only if it is a polynomial of degreen.

To see that every such polynomial is actudllyestimable, it is enough to show
that p™ is U-estimable for everyn < n. This can be established, and the UMVU
estimator determined, by Method 1 of Section 1 (Problem 3.2). An alternative
approach utilizes Method 2. The quantjy is the probability

pm =P(X1=~-~=Xm :1)
and its UMVU estimator is therefore given by
3)=P[X1=---=X,, =T =1].

This probability is 0 ift < m. Fort > m, §(z) is the probability of obtaining:
successes in the first trials andr — m successes in the remaining- m trials,
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divided by P(T =), and hence itis

m (N —m t—m n—1 n t n—1
o (17 nas  (7) e

(T —1)--- (T —m+1)
nn—21)---(n—m+1)"

Since this expression is zerowhg&r= O, ..., m — 1, it is seen thai(T), given by
(8.2)forallT =0,1,...,n,isthe UMVU estimator op™. This proves thag(p)
is U-estimable on the basis afbinomial trials if and only if it is a polynomial of
degree< n. I

or

(3.2) 8(T) =

Consider now the estimation of &, for which no unbiased estimator exists.
This problem arises, for example, when estimating the size of certain animal pop-
ulations. Suppose that a lake contains an unknown nuitersome species of
fish. A random sample of siZeis caught, tagged, and released again. Somewhat
later, a random sample of sizés obtained and the numb&rof tagged fish in the
sample is noted. (This is tleapture-recapture method. See, for example, George
and Robert, 1992.) If, for the sake of simplicity, we assume that each caught fish is
immediately returned to the lake (or alternatively tais very large compared to
n), then fish in this sample constitutebinomial trials with probabilityp = k/N
of success (i.e., obtaining a tagged fish). The population/¢ietherefore equal
tok/p. We shall now discuss a sampling scheme under whighdnd hencé/ p,
is U-estimable.

Example 3.2 Inverse binomial sampling. Reliable estimation of Ap is clearly
difficult whenp is close to zero, where a small changeefill cause alarge change
in 1/ p. To obtain control of 1p for all p, it would therefore seem necessary to take
more observations the smallgris. A sampling scheme achieving this is inverse
sampling, which continues until a specified number of successes, $eyve been
obtained. Let’ +m denote the required number of trials. Th&rhas thenegative
binomial distribution given by (Problem 1.5.12)

c3  rr=n=("r s yeo
with
(3.4) E(Y)=m(1—p)/p; var(y)=m(l- p)/p>.

It is seen from (3.4) that
3Y) = +m)/m,

the reciprocal of the proportion of successes, is an unbiased estimatqy.of 1
The full data in the present situation are ifobut also include the positions in
which them successes occur. Howevéft,is a sufficient statistic (Problem 3.6),
and it is complete since (3.3) is an exponential family. As a function, 6{Y) is
thus the unique unbiased estimator gplbased on the full data, it is UMVU.
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It is interesting to note that/{1 — p) is not U-estimable with the present
sampling scheme, for suppo&g’) is an unbiased estimator so that

o iS(y) (’"njy__l 1) (1—pY =1/(L—p) forall 0<p <1
y=0

The left side is a power series which converges for akQp < 1, and hence
converges and is continuous for gll] < 1. As p — 1, the left side therefore
tends tos(0) while the right side tends to infinity. Thus, the assurfietbes not
exist. (For the estimation qgf", see Problem 3.4.) I

The situations described in Examples 3.1 and 3.2 are special casgaaitial
binomial sampling in which the number of trials is allowed to depend on the
observations. The outcome of such sampling can be represented as a random walk
in the plane. The walk starts at, (@ and moves a unit to the right or up as the first
trial is a success or failure. From the resulting pointQlor (0, 1), it again moves
a unit to the right or up, and continues in this way until the sampling plan tells it
to stop. A stopping rule is thus defined by a Bedf points, aboundary, at which
sampling stops. We requi to satisfy

(3.5 > Px.y)=1
(x.y)eB

since otherwise there is positive probability that sampling will go on indefinitely.
A stopping rule that satisfies (3.5) is calleldsed.

Any particular sample path ending in,(y) has probabilityp*¢”, and the prob-
ability of a path ending in any particular point,(y) is therefore

(3.6) P(x,y)=N(x,y)r*q’,

where N (x, y) denotes the number of paths along which the random walk can
reach the pointy, y). As illustrations, consider the plans of Examples 3.1 and 3.2.
() InExample 3.1B is the set of pointsy, y) satisfyingc+y =n,x =0, ..., n,

and for any £, y) € B, we haveN (x, y) = <Z>

(b) In Example 3.2B is the set of pointsa(, y) withx =m;y =0,1,..., and

for any such point
_(mty-1
N(x,y)= v .

The observations in sequential binomial sampling are represented by the sample
path, and it follows from (3.6) and the factorization criterion that the coordinates
(X, Y) of the stopping point in which the path terminates constitute a sufficient
statistic. This can also be seen from the definition of sufficiency, since the condi-
tional probability of any given sample path given that it endsciny is

rq _ 1
N(x,y)p*q” N(x,y)

which is independent gb.
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Example 3.3 Sequential estimation of binomial p. For any closed sequential
binomial sampling scheme, an unbiased estimatop dlepending only on the
sufficient statistic X, Y) can be found in the following way. A simple unbiased
estimator is§ = 1 if the first trial is a success add= 0 otherwise. Application of
the Rao-Blackwell theorem then leads to

§'(X,Y) = E[8|(X, Y)] = P[1% trial = succes§X, Y)]

as an unbiased estimator depending onlyXonK). If the point (1, 0) is a stopping
point, thend’ = § and nothing is gained. In all other cas&swill have a smaller
variance tham. An easy calculation [Problem 3.8(a)] shows that

3.7) 8'(x, y) = N'(x, y)/N(x, y)

whereN’(x, y) is the number of paths possible under the sampling schemes which
pass through (10) and terminate inx, y). I

More generally, if &, b) is anyaccessible point, that is, if it is possible under
the given sampling plan to reach, ¢), the quantityp®q” is U-estimable, and
an unbiased estimator depending only &n Y) is given by (3.7), wherd/'(x, y)
now stands for the number of paths passing through)(and terminating inx, y)
[Problem 3.8(b)].

The estimator (3.7) will be UMVU for any sampling plan for which the sufficient
statistic (, Y) is complete. To describe conditions under which this is the case, let
us call an accessible point that is notBna continuation point. A sampling plan
is calledsimpleif the set of continuation points, on each line segment+y = ¢
is an interval or the empty set. A plan is calliite if the number of accessible
points is finite.

Example 3.4 Two sampling plans.

(a) Leta, b, andm be three positive integers with< b < m. Continue obser-
vation until eithera successes or failures have been obtained. If this does not
happen during the first trials, continue until eitheb successes or failures
have been obtained. This sampling plan is simple and finite.

(b) Continue untilboth at leasta successes andfailures have been obtained.
This plan is neither simple nor finite, but it is closed (Problem 3.10). ||

Theorem 3.5 A necessary and sufficient condition for a finite sampling plan to be
completeisthat it issimple.

We shall here only prove sufficiency. [For a proof of necessity, see Girschick,
Mosteller, and Savage 1946.] If the restriction to finite plans is dropped, simplicity
is no longer sufficient (Problem 3.9). Another necessary condition in that case is
stated in Problem 3.13. This condition, together with simplicity, is also sufficient.
(For a proof, see Lehmann and Stein 1950.)

For the following proof it may be helpful to consider a diagram of plan (a) of
Example 3.4.

Proof. Proof of sufficiency. Suppose there exists a nonzero funcéigx, Y) whose
expectation is zero for ap (0 < p < 1). Letry be the smallest value affor
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which there exists a boundary poing(yg) onx + y = 1o such thaB(xg, yo) # 0.
Since the continuation points an+ y = 1 (if any) form an interval, they all lie on
the same side ofvf, yg). Suppose, without loss of generality, thag,(yo) lies to
the left and above€’,, and let 4, y1) be that boundary point an+ y = 1y above
C,, and withé(x, y) 7 0, which has the smallestcoordinate. Then, all boundary
points withé(x, y) # 0 satisfyr > 1o andx > x;. It follows thatforall0< p < 1

E[8(X, Y)] = N(x1, y1)8(x1, y1)p™ig” ™ + p"**R(p) = 0

whereR(p) is a polynomial inp. Dividing by p** and lettingp — 0, we see that
8(x1, y1) = 0, which is a contradiction. a

Fixed binomial sampling satisfies the conditions of the theorem, but, there (and
for inverse binomial sampling), completeness follows already from the fact that it
leads to a full-rank exponential family (5.1) wigh= 1. An example in which thisis
not the case is curtailed binomial sampling, in which sampling is continued as long
asX <a,Y <b,andX +Y < n(a, b < n) and is stopped as soon as one of the
three boundaries is reached (Problem 3.11). Double sampling and curtailed double
sampling provide further applications of the theory. (See Girshick, Mosteller, and
Savage 1946; see also Kremers 1986.)

The discrete distributions considered so far were all generated by binomial trials.
A large class of examples is obtained by considering one-parameter exponential
families (5.2) in whichT"(x) is integer-valued. Without loss of generality, we shall
takeT (x) to bex and the distribution ok to be given by

(3.8) P(X = x) = ™ B0g(x).
Puttingd = ¢, we can write (3.8) as
(3.9) P(X =x)=akx)p*/C(H), x=0,1,..., 6>0.

For any functiona(x) for which Za(x)0* < oo for somed > 0, this is a family
of power seriesdistributions (Problems 1.5.14—-1.5.16). The binomial distribution

b(p, n) is obtained from (3.9) by putting(x) = (Z) forx =0,1,...,n, and

a(x) = 0 otherwisep = p/q andC(#) = (¢ + 1)'. The negative binomial dis-
" +)i_1 1 ,0 =¢g,andC(9) = (1 — 6)~" is another
example. The family (3.9) is clearly completedlfx) > Oforallx = 0,1,...,

thenod” is U-estimable for any positive integerand its unique unbiased estimator
is obtained by solving the equations

tribution with a(x) =

Y (x)a(x)er =0"-C(p) forall 6 Q.

x=0
SinceXa(x)6* = C(#), comparison of the coefficients 6f yields
0 if x=0,...,r—1
alx —r)/a(x) if x>r

(3.10) 5(x) = {

Suppose, next, thaf,, ..., X, are iid according to a power series family (3.9).
Then,X; +-- -+ X, is sufficient for9, and its distribution is given by the following
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lemma.

Lemma 3.6 Thedistributionof 7 = X3 + - - - + X,, isthe power series family
_A(r, n)o?

EO

where A(z, n) isthe coefficient of 6” in the power series expansion of [C(6)]".

(3.11) P(T = 1)

Proof. By definition,

e 2t

where ¥, indicates that the summation extends overmatlples of integers
(x1, ..., xp)Withxg +-- - +x, =¢. If

(3.12) B(t.n) =Y _a(x1)- - a(x,).
t
the distribution ofT is given by (3.11) withB(¢, n) in place ofA(z, n). On the
other hand,
[cO)]" = [Za(ﬂe"} ,
x=0
and foranyr =0, 1, ..., the coefficient 0B’ in the expansion of the right side as
a power series il is just B(z, n). Thus,B(t, n) = A(z, n), and this completes the
proof. a

It follows from the lemma thal” is complete and from (3.10) that the UMVU
estimator o®” on the basis of a sample nfis

0 if tr=0,...,r—1
(3.13) 5(t)=1 At —r,n) TP
A(t, n)
Consider, next, the problem of estimating the probability distributioki 6bm
a sampleXy, ..., X,. The estimand can be written as

g(0) = Po(X1=1x)
and the UMVU estimator is therefore given by
8(1) = P[X1=x|X1+---+ X, =t]
_P(X1=x)P(Xp+---+X, =t —X)
P(T =1) '
In the present case, this reduces to

At — -1
(3.14) sy= WAl —xn=1) o<t
A(t, n)
Example 3.7 Poisson UMVU estimation. The Poisson distribution, shown in
Table 1.5.1, arises as a limiting case of the binomial distribution for larged
small p, and more generally as the number of events occurring in a fixed time
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period when the events are generated by a Poisson process. The distritj@ion
of a Poisson variable with expectatiéns given by (3.9) with

(3.15) a(x) = x—ll c®) =¢.

Thus, [C(8)]" = "’ and
t
(3.16) At,n) = ’:—I
The UMVU estimator ob” is therefore, by (3.13), equal to
tt—=1)---(t—r+1)
nr
forall ¢ > r. Since the right side is zerofor= 0, ..., r — 1, formula (3.17) holds

forall r.
The UMVU estimator ofPs(X = x) is given by (3.14), which, by (3.16), be-

comes .
I\ [(n—1\""
3(;):<’)<—> <" ) . x=01,...,1.
X n n

For varyingx, this is the binomial distributioh(1/n, ¢).

In some situations, Poisson variables are observed only when they are positive.
For example, suppose that we have a sample from a truncated Poisson distribution
(truncated on the left at 0) with probability function

1 6"
69—1E’ x—1,2,....

This is a power series distribution with

(3.17) HOE

(3.18) P(X =x)=

1
a(x) = = if x>1, a(0)=0,
x!

and
Cc@H)=¢ —1
For any values of andn, the UMVU estimatoi(r) of 0, for example, can now
be obtained from (3.13). (See Problems 3.18-3.22; for further discussion, see Tate
and Goen 1958.) I

We next consider some multiparameter situations.

Example 3.8 Multinomial UMVU estimation. Let (Xo, X3, ..., X,,) have the
multinomial distribution (5.4). As was seen in Example 1.5.3, this isparameter
exponential family, withX 4, .. ., X;) or (Xo, X1, ..., X;) constituting a complete
sufficient statistic. [Recall thatg =n — (X1 +--- + X,).] Since E(X;) = np;, it
follows thatX; /n is the UMVU estimator of;. To obtain the UMVU estimator of
pipj, hote that one unbiased estimato$ is 1 if the first trial results in outcome
i and the second trial in outcomieands = 0 otherwise. The UMVU estimator of
pip; is therefore

E(5|Xo, ..., X,)

_ (I’l—Z)IX,X] n! _ X,'Xj
T Xol- X, )Xol XU n(n—1)
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Table 3.1.1 x J Contingency Table

Bi---B; Total

Ay niyc-cny o N

A npp---njpy nr+

Total n4p---nay n

In the application of multinomial models, the probabilities . . ., p, are fre-
guently subject to additional restrictions, so that the number of independent param-
etersis less than In general, such a restricted family will not constitute a full-rank
exponential family, but may be a curved exponential family. There are, however,
important exceptions. Simple examples are provided by certain contingency tables.

Example 3.9 Two-way contingency tables. A numbern of subjects is drawn at
random from a population sufficiently large that the drawings can be considered
to be independent. Each subject is classified according to two characteustics:
with possible outcome4d,, ..., A;, and B, with possible outcomesy, ..., Bj;.
[For example, students might be classified as being male or ferhate?) and
according to their average performande B8, C, D, or F; J = 5).] The probability
that a subject has properties;( B;) will be denoted byp;; and the number of
such subjects in the sample by . The joint distribution of the J variablesn;;
is an unrestricted multinomial distribution with= 7 J — 1, and the results of the
sample can be represented infax J table, such as Table 3.1. From Example 3.8,
it follows that the UMVU estimator op;; is n;;/n.

A special case of Table 3.1 arises wheémand B are independent, that is, when
Pij = Di+D+j Wherepi+ =p1t---tpiy and[)+j = pij +...+ Pij- The jOint
probability of thel J cell counts then reduces to

n! ni+ n+j
Thisis an { +J — 2)-parameter exponential family with the complete sufficient
statistics g+, n+;),i =1,...,1,j=1,...,J,or,equivalently; = 1,..., 1 — 1,
j=1...,J =1 Infact, @1+, ...,n5+) and @41, ..., n+,) are independent,
with multinomial distributionsM (p1+, ..., pi+;n) and M(p+1, ..., p+s;n), re-
spectively (Problem 3.27), and the UMVU estimatorgaf p+; andp;; = p;+p+;
are, thereforey;+/n, n.;/n andn;.n.;/n?, respectively. I

When studying the relationship between two characterigtiaad B, one may
find A and B to be dependent although no mechanism appears to exist through
which either factor could influence the other. An explanation is sometimes found
in the dependence of both factors on a common third factpg phenomenon
known asspurious correlation. The following example describes a model for this
situation.
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Example 3.10 Conditional independencein athree-way table. In the situation

of Example 3.9, suppose that each subject is also classified according to a third
factor C asCy, ..., or Cg. [The third factor for the students of Example 3.9
might be their major (History, Physics, etc.).] Consider this situation under the
assumption that conditionally givefy. (k = 1, ..., K), the characteristicd and

B are independent, so that

(3.19) Dijk = D++k Di+k P+jlk

wherep;+, p+jik, andp;; denote the probability of the subject having properties
A;, Bj, or (A;, B;), respectively, given that it has propedy.

After some simplification, the joint probability of the/ K cell countsn; j; is
seen to be proportional to (Problem 3.28)

320)  [[ewpisupes)™ =]] [p’ii)f [Tl pi;f;} .
i J

i,j.k k
This is an exponential family of dimension
(K-1)+K(I+J—-2)=K(I+J-1)—1

with complete sufficient statistic® = {(n++, iwk, Baji), § = 1.0, 1, j =
1,...,J,k =1, ..., K}. Since the expectation of any cell countiigimes the
probability of that cell, the UMVU estimators @f,.t, pi+x, andp. j; aren/n,
ni+k/n, andn. i /n, respectively. I

Consider, now, the estimation of the probabiliy. The unbiased estimator
80 = nijx/n, which is UMVU in the unrestricted model, is not a function of
T and hence no longer UMVU. The relationship (3.19) suggests the estimator
81 = (n++k/n) - (i /nesr) - (n4+jx/n+), Which is a function off'. It is easy to
see (Problem 3.30) that is unbiased and hence is UMVU. (For additional results
concerning the estimation of the parameters of this model, see Cohen 1981, or
Davis 1989.)

To conclude this section, an example is provided in which the UMVU estimator
fails completely.

Example 3.11 Misbehaved UMVU estimator. Let X have the Poisson distribu-
tion P(9) and letg(9) = =%, wherea is a known constant. The condition of
unbiasedness of an estimasdeads to
8(x)0° _ ae _ 21— a)or

Z Xl ¢ - Z x!
and hence to
(3.21) 5(X) = (1—a)X.
Supposez = 3. Then,g(8) = ¢~¥, and one would expect an estimator which
decreases from 1 to 0 asgoes from 0 to infinity. The ML estimatar—3¥ meets
this expectation. On the other hand, the unique unbiased estia{a)or (—2)*
oscillates wildly between positive and negative values and appears to bear no
relation to the problem at hand. (A possible explanation for this erratic behavior is
suggested in Lehmann (1983).) Itis interesting to see that the difficulty disappears
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if the sample size is increased. X, - - -, X,, are iid according toP(6), then
T = )Y X, is a sufficient statistic and has the Poiss®frd) distribution. The
condition of unbiasedness now becomes

8(1)n0) _ aye _ (n —a)'o’
2 n ¢ =2 1!
and the UMVU estimator is
T
(3.22) 5(T) = (1 - ‘-‘)
n

This is quite reasonable as soomas a. I

4 Nonparametric Families

Section 2.2 was concerned with continuous parametric families of distributions
such as the normal, uniform, or exponential distributions, and Section 2.3 with

discrete parametric families such as the binomial and Poisson distributions. We
now turn to nonparametric families in which no specific form is assumed for the

distribution.

We begin with the one-sample problem in whikl, . . ., X, are iid with distri-
butionF € F. About the familyF, we shall make only rather general assumptions,
for example, that it is the family of distributioswhich have a density, or are con-
tinuous, or have first moments, and so on. The estingdhd might, for example,
be E(X;) = [ xdF(x), orvarX;, or P(X; < a) = F(a).

It was seen in Problem 1.6.33 that for the faniHy of all probability densities,
the order statisticX(1y < - - - < X, constitute a complete sufficient statistic, and
the hint given there shows that this result remains valfifs further restricted by
requiring the existence of some momeh(&or an alternative proofs, see TSH2,
Section 4.3. Also, Bell, Blackwell, and Breiman (1960) show the result is valid for
the family of all continuous distributions.)

An estimator§(X., ..., X,,) is a function of the order statistics if and only if
it is symmetric in itsn arguments. For familieg for which the order statistics
are complete, there can therefore exist at most one symmetric unbiased estimator
of any estimand, and this is UMVU. Thus, to find the UMVU estimator of any
U-estimableg(F), it suffices to find a symmetric unbiased estimator.

Example 4.1 Estimating the distribution function. Let g(F) = P(X < a) =

F(a), a known. The natural estimator is the numberX@$ which are< a, di-

vided by N. The number of suclX’s is the outcome of: binomial trials with
success probability(a), so that this estimator is unbiased (). Since it is

also symmetric, it is the UMVU estimator. This can be paraphrased by saying
that the empirical cumulative distribution function is the UMVU estimator of the
unknown true cumulative distribution function.

Note. Inthe normal case of Section 2.2, it was possible to find unbiased estimators
not only of P(X < u) but also of the probability densityy (x) of X. No unbiased

2 The corresponding problem inwhich the values of some moments (or expectations of other functions)
are given is treated by Hoeffding (1977) and N. Fisher (1982).
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estimator of the density exists for the famifg. For proofs, see Rosenblatt 1956,
and Bickel and Lehmann 1969, and for further discussion of the problem of esti-
mating a nonparametric density see Rosenblatt 1971, the books by Devroye and
Gyoerfi (1985), Silverman (1986), or Wand and Jones (1995), and the review ar-
ticle by Izenman (1991). Nonparametric density estimation is an example of what
Liu and Brown (1993) calsingular problems, which pose problems for unbiased
estimation. See Note 8.3. I

Example 4.2 Nonparametric UMV U estimation of a mean. Let us now further
restrictFy, the class of all distributiong having a density, by adding the condition
E|X| < oo, and letg(F) = [ xf(x)dx. SinceX is symmetric and unbiased for
g(F), X is UMVU. An alternative proof of this result is obtained by noting that
is unbiased fog(F). The UMVU estimator is found by conditioning on the order
statistics;E[X1]X(y), ..., X(»]. But, given the order statistic(; assumes each
value with probability ¥n. Hence, the above conditional expectation is equal to
A/m)EXq) = X.

In Section 2.2, it was shown that is UMVU for estimatingE(X;) = & in the
family of normal distributionsV (&, o2); now it is seen to be UMVU in the family
of all distributions that have a probability density and finite expectation. Which of
these results is stronger? The uniformity makes the nonparametric result appear
much stronger. This is counteracted, however, by the fact that the condition of
unbiasedness is much more restrictive in that case. Thus, the number of competitors
which the UMVU estimator “beats” for such a wide class of distributions is quite
small (see Problem 4.1). It is interesting in this connection to note that, for a
family intermediate between the two considered here, the family of all symmetric
distributions having a probability density, is not UMVU (Problem 4.4; see also
Bickel and Lehmann 1975-1979). I

Example 4.3 Nonparametric UMVU estimation of a variance. Let g(F) =
varX. Then [Z(X; — X)?]/(n— 1) is symmetric and unbiased, and hence is UMVU.

Example 4.4 Nonparametric UMVU estimation of a second moment. Let
g(F) = &2, where& = EX. Now, 02 = E(X?) — £2 and a symmetric unbiased
estimator ofE(X?) is £X?2/n. Hence, the UMVU estimator df? is ©X?/n —
>(X; — X)?/(n —1).

An alternative derivation of this result is obtained by noting tkiak, is un-
biased foré?. The UMVU estimator oft? can thus be found by conditioning:
E[X1, X2|X @), ..., X(]- But, giventhe order statistics, the palf;, X,} assumes
the value of each paiiX ), X(j}, i 7 j, with probability I/n(n — 1). Hence, the
above conditional expected value is

which is equivalent to the earlier result. I

Consider, now, quite generally a functigitF) which is U-estimable inFg.
Then, there exists an integer < n and a functions(Xy, ..., X,,), which is
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unbiased fog(F). We can assume without loss of generality that symmetric
in its m arguments; otherwise, it can be symmetrized. Then, the estimator

1
(4.1) — Y (Xi.....X,)
n . ;
< ) (i15eesim)
m
is UMVU for g(F); here, the sumis over all-tuples (s, . . ., i,,) from the integers
1,2,...,nwithi; < --- < i,. That this estimator is UMVU follows from the

facts that it is symmetric and that each of téé’l > summands has expectation

g(F).

The class of statistics (4.1) calléd statisticswas studied by Hoeffding (1948)
who, in particular, gave conditions for their asymptotic normality; for further work
on U-statistics, see Serfling 1980, Staudte and Sheather 1990, Lee 1990, or Ko-
roljuk and Borovskich 1994,

Two problems suggest themselves:

(a) Whatkind of functiong(F) have unbiased estimators, thatis,&restimable?

(b) If a functionalg(F) has an unbiased estimator, what is the smallest number
of observations for which the unbiased estimator exists? We shall call this
smallest number theéegree of g(F).

(For the case thaF assigns positive probability only to the two values 0 and 1,
these equations are answered in the preceding section.)

Example 4.5 Degree of the variance. Let g(F) be the variance? of F. Then
¢(F) has an unbiased estimator in the subggof Fo, with Er X2 < oo andn = 2
observations, sincE(X; — X)?/(n — 1) = (X, — X1)? is unbiased for2. Hence,

the degree o5 2 is < 2. Furthermore, since in the normal case with unknown mean
there is no unbiased estimatorsof based on only one observation (Problem 2.7),
there is no such estimator within the clags It follows that the degree af? is 2.

We shall now give another proof that the degree ®in this example is greater
than 1 to illustrate a method that is of more general applicability for problems of
this type.

Let ¢ be any estimand that is of degree 1Af. Then, there exist$ such that

/ S8(x)dF(x) = g(F), forall Fe F)

Fix two arbitrary distributionsFy and F in cal F with F; # F,, and letF =
aF1+(1—a)F;,0<a <1. Then,

4.2) glaFi+(Ql-a)F)]=« / S(x)dFi(x)+(1— ) / 8(x)d Fa(x).

Then,a F; +(1— ) F; is also incal F;,, and as a function af, the right-hand side
is linear ina. Thus, the onlyg’s that can be of degree 1 are those for which the
left-hand side is linear in.
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Now, consider
g(F) =af = E(X?) — [EX]?.
In this case,

(43)  oZriamp = 2E(XD) + (1— @)E(X3) — [0EX1 + (1 — a) EX,]?

o

whereX; is distributed according t&;. The coefficient ofx? on the right-hand
side is seen to be[E(X,) — E(X1)]?. Since this is not zero for alfy, F, € Fos
the right-hand side is not linear in and it follows thaw-? is not of degree 1. ||

Generalizing (4.2), we see thatd(F) is of degreen, then

glaF1+(1—a)Fy]
(4.4) = [ [8(x1, ..., xp)d[aFi(x1) + (1 — o) Fa(x1)] - - -
is a polynomial of degree at most,

which is thus a necessary condition fpito be estimable withn observations.
Conditions for (4.4) to be also sufficient are given by Bickel and Lehmann (1969).

Condition (4.4) may also be useful for proving that there exists no value of
for which a functionak (F) has an unbiased estimate.

Example 4.6 Nonexistenceof unbiased estimator. Letg(F) = o. Theng[a F1 +

(1 — @) Fy] is the square root of the right-hand side of (4.3). Since this quadratic
in « is not a perfect square for dly, F> € F, it follows that its square root is not

a polynomial. Hence does not have an unbiased estimator for any fixed number
n of observations. I

Letus now turn from the one-sample to the two-sample problenkiet. ., X
andYs, ..., Y, be independently distributed according to distributi6handG €
Fo. Then the order statisticg) < - - - < X,y and¥(yy < - - - < ¥, are sufficient
and complete (Problem 4.5). A statiséids a function of these order statistics if
and only ifé is symmetric in theX;’s and separately symmetric in tiie’s.

Example 4.7 Two-sampleUMVU estimator. Leta(F, G) = E(Y)—E(X). Then
Y — X is unbiased foi(F, G). Since it is a function of the complete sufficient
statistic, it is UMVU. I

The concept of degree runs into difficulty in the present case. Smallest vaJues
andng are sought for which a given functionaF, G) has an unbiased estimator.
One possibility is to find the smallest for which there exists an such that
h(F, G) has an unbiased estimator, and tadgtandng be the smallest values so
determined. This procedure is not symmetrigiandn. However, it can be shown
that if the reverse procedure is used, the same minimum values are obtained. [See
Bickel and Lehmann, (1969)].

As a last illustration, let us consider the bivariate nonparametric problem. Let
(X1, Y1), ..., (X,,, Y,) be iid according to a distributiod € F, the family of
all bivariate distributions having a probability density. In analogy with the order
statistics in the univariate case, the set of pairs

T = {[X(l)a Yj]_]7 ey [X(n)v Y],,]}
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that is, then pairs (X;, Y;), ordered according to the value of their first coordinate,
constitute a sufficient statistic. An equivalent statistic is

T'={[Xs, Yol ..., [Xi,, Y]},

that is, the set of pairsX(, Y;) ordered according to the value of the second co-
ordinate. Here, as elsewhere, the only aspe@t tifat matters is the set of points
to which T assigns a constant value. In the present case, these arkeghimts
that can be obtained from the given poinX|( Y1), ..., (X,, Y,)] by permuting
then pairs. As in the univariate case, the conditional probability of each of these
permutations giveff or T’ is 1/n!. Also, as in the univariate casg,is complete
(Problem 4.10).

An estimato is a function of the complete sufficient statistic if and only i§
invariant under permutation of thepairs. Hence, any such function is the unique
UMVU estimator of its expectation.

Example 4.8 U-estimation of covariance. The estimatoE (X; —X) (Y;—Y)/(n—
1) is UMVU for cov(X, Y) (Problem 4.8). I

5 TheInformation Inequality

The principal applications of UMVU estimators are to exponential families, as
illustrated in Sections 2.2—2.3. When a UMVU estimator does not exist, the vari-
anceV, (6p) of the LMVU estimator aty is the smallest variance that an unbiased
estimator can achieve &4. This establishes a useful benchmark against which to
measure the performance of a given unbiased estimdatbthe variance o is
close toV, (9) for all 8, not much further improvement is possible. Unfortunately,
the functionV, (0) is usually difficult to determine. Instead, in this section, we shall
derive some lower bounds which are typically not sharp [i.e., lie béig{®)] but
are much simpler to calculate. One of the resulting inequalities for the variance, the
information inequality, will be used in Chapter 5 as a tool for minimax estimation.
However, its most important role is in Chapter 6, where it provides insight and
motivation for the theory of asymptotically efficient estimators.

For any estimatoé of g(9) and any functiony(x, 8) with a finite second mo-
ment, thecovariance inequality (Problem 1.5) states that

[cov(s, ¥)]?
var@)

In general, this inequality is not helpful since the right side also invaivétow-
ever, when coV, ¥) depends o# only throughE,(8) = g(6), (5.1) does provide
a lower bound for the variance of all unbiased estimatorg(#f. The following
result is due to Blyth (1974).

(5.1) var(§) >

Theorem 5.1 A necessary and sufficient condition for cov(s, ¢) to depend on §
only through g(#) isthat for all 6

(5.2) cov(U,y)=0 foralU el,
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where !/ isthe class of statistics defined in Theorem 1.1, that is,
U={U:EU=0,EU? < o0, forall 6 € Q}.

Proof. To say that cod, ) depends or$ only throughg() is equivalent to
saying that for any two estimatods ands, with E,8; = Eyd, for all 6, we have
cov(§y, ¥) = cov(§z, ). The proof of the theorem is then easily established by
writing

(5.3) COV(31, ¥) — coV(S2, ¥) = cov(y — 82, V)

=cov(U, ¥)
and noting that therefore, cd4( v) = cov(s,, ¥) for all §; andé, if and only if
cov(U, y)=0forall U. O

Example 5.2 Hammersey-Chapman-Robbins inequality. SupposeX is dis-
tributed with densityp, = p(x, 0), and for the moment, suppose thdk, ) > 0
forall x. If 6 andd + A are two values for whicg(0) # g(6 + A), then the function

plx,0+A)
(5.4) Y(x,0)= ———— —
p(x,0)
satisfies the conditions of Theorem 5.1 since
(5.5) Eg(y)=0
and hence

cov(U, ¢) = E(yU) = Eg+a(U) — E¢(U) = Q.
In fact,
cov@, ¥) = Eg(8y) = g(6 + A) — g(0),
so that (5.1) becomes

2
(5.6) var@) > [g(6 + A) — g(6)]%/Ee [% - 1}

Since this inequality holds for al, it also holds when the right side is replaced
by its supremum oveA. The resulting lower bound is due to Hammersley (1950)
and Chapman and Robbins (1951). I

In this inequality, the assumption of a common support for the distribufigns
can be somewhat relaxed. 3{6) denotes the support ¢fy, (5.6) will be valid
providedS(6 + A) is contained inS(6). In taking the supremum oveY, attention
must then be restricted to the valuesfofor which this condition holds.

When certain regularity conditions are satisfied, a classic inequality is obtained
by letting A — 0 in (5.4). The inequality (5.6) is unchanged if (5.4) is replaced
by

Pora —Po 1
A Po

whichtendsto ({/960) pg)/ ps asA — 0, providedpy is differentiable with respect
to 6. This suggests as an alternative to (5.4)

(5.7) ¥(x.0) = =L p(x. 0)/plx.0)
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Since for anyU € U, clearly d/d0)E,(U) = 0, ¢ will satisfy (5.2), provided
Ep(U) = / Upgdu

can be differentiated with respectdounder the integral sign for all € U. To
obtain the resulting lower bound, I}, = (9py/30) so that

cov. ) = [ opj e
If differentiation under the integral sign is permitted in

/5170 du = g(0),

it then follows that

(5.8) cov@, y) = g'(9)
and hence )
59) vare) = [5'(6)]

var [% log p(X, 0):|

The assumptions required for this inequality will be stated more formally in Theo-
rem 5.15, where we will pay particular attention to requirements on the estimator.
Pitman (1979, Chapter 5) provides an interesting interpretation of the inequality
and discussion of the regularity assumptions.

The functiony defined by (5.7) is the relative rate at which the dengity
changes at. The average of the square of this rate is denoted by

2 7\ 2
(5.10) 1) = E, [i log p(X, 9)} = / (ﬁ) podit.
a0 Po

It is plausible that the greater this expectation is at a given v@uthe easier it
is to distinguish¥y from neighboring valueg, and, therefore, the more accurately
6 can be estimated &t = 6,. (Under suitable assumptions this surmise turns out
to be correct for large samples; see Chapter 6.) The quak{tilyis called the
information (or the Fisher information) that contains about the parameter

It is important to realize that(¢) depends on the particular parametrization
chosen. In fact, it = k(&) andh is differentiable, the information that contains
about¢ is
(5.11) I*(€) = 1[hE)] - [ ©)1%
When different parameterizations are considered in a single problem, the notation
1(0) is inadequate; however, it suffices for most applications.

To obtain alternative expressions () that sometimes are more convenient,
let us make the following assumptions:

(a) Qs an open interval (finite, infinite, or semi-infinite).
(b)  The distributionsP, have common support, so that
without loss of generality the sdt = {x : py(x) > 0}
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(5.12) is independent of.
(c) Foranyx in A andé in €, the derivative
Po(x) = dpg(x)/00 exists and is finite
Lemma5.3
(a) If (5.12) holds, and the derivative with respect to 6 of the left side of

(5.13) [ Py aue =1
can be obtained by differentiating under the integral sign, then
a0
and ;
(5.15) 1(0) = van [@ log pg(X)] .

(b) If, in addition, the second derivative with respect to 6 of log ps(x) exists for
all x and 6 and the second derivative with respect to 6 of theleft side of (5.13)
can be obtained by differentiating twice under the integral sign, then

2
(5.16) 1(0) = —E, [% Iogpg(X)] .

Proof.

(a) Equation (5.14) is derived by differentiating (5.13), and (5.15) follows from
(5.10) and (5.14).

(b) We have
2 9 ( ) 2
2 — Po(x) o, Pol\X
2 tog o) = B2 _ | 20 ,
a0 po(x) Pe(x)

and the result follows by taking the expectation of both sides.
O

Let us now calculaté(0) for some of the families discussed in Sections 1.4 and
1.5.

We first look at exponential families with= 1, given in Equation (1.5.1), and
derive a relationship between some unbiased estimators and information.

Theorem 5.4 Let X be distributed according to the exponential family (5.1) with
s =1, and let

(5.17) ©(6) = Eo(T),

the so-called mean-value parameter. Then, T

(5.18) MO0 = ooy
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Proof. From Equation (5.15), the amount of information ttéaicontains about
0,1(0),is
160) = van | 5109y (x)|
a0
(5.19) =var[n'(0)T(X) — B'(9)] (from (1.5.1))
= [n'(6)1?var(T).
Now, from (5.11), the informatiofi[ 7 (0)] that X contains about(0), is given by

101 e

/ 2
(5.20) = [Z{ZH var(T).

Finally, using the fact that(9) = B'(8)/1'(8) [(Problem 1.5.6)], we have

_B(6) - n'(0)r(6) _[v%6)71"*
(>21) varl) = = o _[U’Z(O)]
and substituting (5.21) into (5.20) yields (5.18). O

If we combine Equations (5.11) and (5.19), then for any differentiable function
h(6), we have
n'(6)

2
(5.22) 1[h(0)] = [h (9)} var(7).

Example5.5 Informationin agammavariable. Let X ~ Gammag, 8), where
we assume that is known. The density is given by

xa—le—x/ﬁ

1
(5.23) Po) = o
= (~1/B)x—« |09(ﬂ)h(x)

with i(x) = x*71/T'(«). In this parametrizationg(8) = —1/8, T(x) = x and
B(B) = alog(B). Thus,E(T) = af, var(T') = «f?, and the information ik about
apis I(ap) = 1/ap?.

If we are instead interested in the informationXraboutg, then we can repa-
rameterize (5.23) using(B) = —«a/B andT(x) = x/a. From (5.22), we have,
quite generally, thaif[ch(0)] = C—lzl[h(e)], so the information inX aboutp is

1(B) = a/p>. [

Table 5.1 gived [t (#)] for a number of special cases.

Qualitatively,I[z(0)] given by (5.18) behaves as one would expect. Sihig
the UMVU estimator of its expectation®), the variance of’ is a measure of the
difficulty of estimatingr (¢). Thus, the reciprocal of the variance measures the ease
with which t(6) can be estimated and, in this sense, the informaXiaontains
aboutz (6).

Example 5.6 Informationinanormal variable. Considerthe case of td&(&, o2)
distribution withe known, when the interest is in estimationgst The density is
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Table 5.1.1[z(#)] for Some Exponential Families

Distribution  Parameter(9) 1(z(9))

N(E, 62) s 1/02
N(, 0?) o? 1/204
b(p, n) p n/pq
P() A 1/x
I'(a, B) B a/p?
given by
1 1 ey
pe() = e 2

— en(S)T(x)fB(S)h(x)

with n(§) = & T(x) = x/o?, B(§) = 3£%/0?, andh(x) = /%" //2x. The
information inX abouth (&) = £2 is given by
J(£2) = n'(§) .

<[ &2
Note that we could have equivalently defing@) = £/02, T(x) = x and arrived
at the same answer. I

2
] var(T) =

Example 5.7 Information about a function of a Poisson parameter. Suppose
that X has the Poissonj distribution, so that'[A], the informationX contains
aboutr = E(X), is 1/A. Forn(A) = logA, which is an increasing function of
A, I[llog A] = A. Thus, the information irX abouta is inversely proportional to
that about log. . In particular, for large values df, it seems that the parameter
log A can be estimated quite accurately, although the converse is trie Thiis
conclusion is correct and is explained by the fact thel@panges very slowly
when is large. Hence, for largg, even a large error in the estimate ofwill
lead to only a small error in loly, whereas the situation is reversed fonear
zero where log. changes very rapidly. It is interesting to note that there exists a
function of A [namelyi (1) = v/A] whose behavior is intermediate between that of
h(X) = A andhk()) = log A, in that the amount of informatioX contains about it

is constant, independent df(Problem 5.6). I

As a second class of distributions for which to evalugt®, consider location
families with density

(5.24) f(x —0) (x,0 real-valued)

where f(x) > 0 for all x. Conditions (5.12) are satisfied provided the derivative
f'(x) of f(x) exists for all values of. It is seen thaf (9) is independent of and
given by (Problem 5.14)

oo 4 2
(5.25) I;= /_ [ff((’;))] dx.
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Table 5.2.1, for Some Standard Distributions

Distribution N(0,1) L(0,1) C(0,1) DE(0,1)

I 1 1/3 1/2 1

Table 5.2 shows, for a number of distributions (defined in Table 1.4.1).

Actually, the double exponential density does not satisfy the stated assumptions
since f’(x) does not exist at = 0. However, (5.25) is valid under the slightly
weaker assumption thgtis absolutely continuous [see (1.3.7)] which does hold
in the double exponential case. For this and the extensions below, see, for example,
Huber 1981, Section 4.4. On the other hand, it does not hold yihethe uniform
density on (1) sincef is then not continuous and hence, a fortiori, not absolutely
continuous. Itturns out that whenevgérs not absolutely continuous, itis natural to
put/ equal toco. For the uniform distribution, for example, itis easier by an order
of magnitude to estimate (see Problem 5.33) than for any of the distributions
listed in Table 5.2, and it is thus reasonable to assigh,tthe valueoc. This
should be contrasted with the fact thé{x) = O for all x # 0, 1, so that formal
application of (5.25) leads to the incorrect value 0.

When (5.24) is replaced by

1 x—0
5.26 -
(5.26) 3 (57,
the amount of information abodtbecomes (Problem 5.14)
I.
(5.27) b—-g

with I, given by (5.25).
The information about contained in independent observations is, as one would
expect, additive. This is stated formally in the following result.

Theorem 5.8 Let X and Y beindependently distributed with densities p, and g,
respectively, with respect to measures . and v satisfying (5.12) and (5.14).

If 1,(0), I5(0), and I1(9) are the information about 6 contained in X, Y, and
(X, Y), respectively, then
(5.28) 1(0) = [,(6) + I(0).

Proof. By definition,
9 9 2
I0)=E|—lo X)+—lo Y)| ,
(6) [89 9.5(X) + 10 g5 )}
and the result follows from the fact that the cross-product is zero by (5.14)

Corollary 5.9 If X3, ..., X, areiid, satisfy (5.12) and (5.14), and each has in-
formation 1(0), then the informationin X = (X3, ..., X,) isn(6).

Let us now return to the inequality (5.9), and proceed to a formal statement of
when it holds. If (5.12), and hence (5.15), holds, then the denominator of the right
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side of (5.9) can be replaced By9). The result is the following version of the
Information Inequality.

Theorem 5.10 (Thelnformation Inequality) Suppose py isafamily of densities
with dominating measure u for which (5.12) and (5.14) hold, and that 1(¢) > 0.
Let § be any statistic with

(5.29) Ey(8%) < o0

for which the derivative with respect to 6 of E,(8) exists and can be differentiated
under the integral sign, that is,

d 0

5.30 —FEy(8)= | —6 podpu.
(530) SE)= [ 500 po d
Then

9 2

[%Ee(a)}
5.31 8> —--—=—.
(5.31) vary(8) = T0)
Proof. The result follows from (5.9)and Lemma 5.3 and is seen directly by differ-
entiating (5.30) and then applying (5.1). O

If § is an estimator of (9), with
Eq(8) = g(0) +b(0)
whereb(0) is the bias o8, then (5.31) becomes

[6'(0) + &'(0)]?
5.32 ar(§) > ———> 7=
(5.32) van,(8) = 8
which provides a lower bound for the variance of any estimator in terms of its bias
andi(0).
If § = §(X) whereX = (X4, ..., X,) and if theX’s are iid, then by Corollary
5.9
[6'(6) + g'()1?
5.33 > ———>—=
(5.33) van(8) = =
where;(0) is the information abou# contained inX;. Inequalities (5.32) and
(5.33) will be useful in Chapter 5.
Unlike 1(0), which changes under reparametrization, the lower bound (5.31),
and hence the bounds (5.32) and (5.33), does not. Eet(&) with 4 differentiable.
Then,

9 0 )
%Eh(é)(a) = EEH((S) -h'(§),

and the result follows from (5.11). (See Problem 5.20.)

The lower bound (5.31) for va(s) typically is not sharp. In fact, under suitable
regularity conditions, it is attained if and only jf,(x) is an exponential family
(1.5.1) withs = 1 andT (x) = 8(x) (see Problem 5.17). However, (5.1) is based
on the Cauchy-Schwarz inequality, which has a well-known condition for equality
(see Problems 5.2 and 5.19). The bound (5.31) will be attained by an estimator if
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and only if

d
(5.34) d=a [@ log pg(x)] +b
for some constants andb (which may depend o).

Example5.11 Binomial attainment of information bound. For the binomial
distributionX ~ b(p, n), we have

5=a [i |09P9(X)} +b=a [i[x log p + (n — x)log(1 - p)l] +b
00 ap

) L A

¢ [p(l - p)} ’

with E§ = b and vars = na?/ p(1— p). This form fors is the only form of function

for which the information inequality bound (5.31) can be attained. The function
8 is an estimator only ift = p(1 — p) andb = np. This yieldss = X, E§ = np,

and var§) = np(1 — p). Thus,X is the only unbiased estimator that achieves the
information inequality bound (5.31). I

Many authors have presented general necessary and sufficient conditions for
attainment of the bound (5.31) (Wijsman 1973, Joshi 1978llév+Funk et al.,
1989). The following theorem is adapted frormiuNér-Funk et al.

Theorem 5.12 Attainment. Suppose(5.12) holds, and § isastatisticwithvar,é <
oo for all 6 € Q. Then § attains the lower bound

9 2
vard = (@E@S) /[(9)

for all 6 € Q2 if and only if there exists a continuously differentiable function ¢(6)
such that
po(x) = C(0)e* @ Wh(x)
is a density with respect to a dominating measure w(x) for suitably chosen C(0)
and h(x), i.e., pg(x) constitutes an exponential family.
Moreover, if E56 = g(0), then § and g satisfy
g'®)] o
5.35 dx)=|==| =1 +g(®
(5.3 (=[5 | 35 0am) + £
8(0) =—C'(0)/C(0)¢ ().
and 1(6) = ¢'(6)g'(0).

Note that the functiold specified in (5.35) may depend énin such a casé, is
not an estimator, and there is no estimator that attains the information bound.

Example 5.13 Poisson attainment of information bound. SupposeX is a dis-
crete random variable with probability function that is absolutely continuous with
respect tqu = counting measure, and satisfies

E; X =van(X) = A.
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If X attains the Information Inequality bound there [3/(dA)E; (X)]? /1(X) so
from Theorem 5.12'(1) = 1/ and the distribution oK must be

pi(x) = C()el®9 M h(x).
Sinceg(p) = 1 = —AC'(A)/C()), it follows that C(A) = e~*, which implies
h(x) = x!, and p; (x) is the Poisson distribution. I

Some improvements over (5.31) are available when the inequality is not attained.
These will be briefly mentioned at the end of the next section.

Theorem 5.10 restricts the information inequality to estimatosatisfying
(5.29) and (5.30). The first of these conditions imposes no serious restrictions
since any estimator satisfies (5.31) automatically. However, itis desirable to replace
(5.30) by a condition (on the densitigg) not involvings, so that (5.31) will then
hold for all §. Such conditions will be given in Theorem 5.15 below, with a more
detailed discussion of alternatives given in Note 8.6.

In reviewing the argument leading to (5.9), the conditions that were needed on
the estimatos(x) were

(@) Ey[6%(X)] <oo forall6
636)  0) EBWI= [ W dut) = g 6).

The key point is to find a way to ensure that chvf) = (3/96)E8, and hence
(5.30) holds. Consider the following argument, in which one of the steps is not
immediately justified. Fog,(x) = d log py(x)/30, write

covt. )= [ 562 [% log pf;(x)} pa(x)dx

_ . po+al(x) — po(x)
= o m, B o

(5.37) Z iiLnofS(x) [%} po(x)dx
i E0ead(0) = Ei8(X)
A—0 A

ol
= —Epé(X
b ()

Thus (5.30) will hold provided the interchange of limit and integral is valid. A
simple condition for this is given in the following lemma.
Lemma5.14 Assumethat (5.12(a)) and (5.12(b)) hold, and et § be any estimator
for which E482 < oo. Let g¢(x) = 9 log ps(x)/96 and, for somee > 0, let by bea
function that satisfies

Po+a(x) — po(x)

2
(5.38) Egb;(X) < oo and Apa(a)

< by(x) for all |A] < e.

Then E(;(]g(X) =0and

(5.39) LB (X) = ES(X)g5(X) = CO5. ).
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and thus (5.30) holds.

Proof. Since
po+a(x) — pe(x)

) A ®)

= 18()Ib(x)I,

and
EolI8(0)Ib(x)] < {Ea[8(x)1) Y Eg[b(x)?]}7? << oo,

it follows from the Dominated Convergence Theorem (Theorem 1.2.5) that the
interchange of limit and integral in (5.37) is valid. |

An immediate consequence of Lemma 5.14 is the following theorem.
Theorem 5.15 Suppose py(x) is a family of densities with dominating measure
w(x) satisfying (5.12), I(9) > 0, andthereexistsafunction by, ande > 0for which
(5.38) holds, If § is any statistic for which E4(8%) << oo, then the information
inequality (5.31) will hold.

We note that condition (5.38) is similar to what is known agaschitz condition,
which imposes a smoothness constraint on a function by bounding the left side
of (5.38) by a constant. It is satisfied for many families of densities (see Problem
5.27), including of course the exponential family. We give one illustration here.
Example5.16 Integrability. Suppose thak ~ f(x — ), where f(x — 0) is
Students distribution withm degrees of freedom. It is not immediately obvious
that this family of densities satisfies (5.14), so we cannot directly apply Theorem
5.10. We leave the general case to Problem 5.27(b), and show here that the Cauchy
family (m = 1), with densitypy(x) = satisfies (5.38). The left side of

11
| 7w 1+(x—0)2’
(5.38) is

1 1+ (x —0)? 1
‘Z(u(x—A—e)Z‘ )‘

11+ -0 -1—(x—A—0)?

N 1+ —A—0)2

|1 2A(x —0) — A?

T AL+ — A —06)2
lx — A —0] |A|

< +

T Ol+Ex—A=-0)2 1+(x—A-0)2

<2+e.

Here the last inequality follows from the facts that << ¢ and|x|/(1+x%) < 1

for all x . Condition (5.38) therefore holds withy(x) = 2 + ¢, which verifies the

information inequality (5.31) for the Cauchy case. I
As a consequence of Theorem 5.15, note

Corollary 5.17 If (5.38) holds, then (5.14) isvalid.

Proof. Puttingd(x) = 1in (5.29), we have that

d 0 0
= ﬁ(l) —/ ﬁpedﬂ = Ey [@ |09P0(X)}
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6 The Multiparameter Case and Other Extensions

In discussing the information inequality, we have so far assumedtisateal-
valued. To extend the inequalities of the preceding section to the multiparameter
case, we begin by generalizing the inequality (5.1) to one involving several func-
tionsy; (i = 1,...,r). This extension also provides a tool for sharpening the
inequality (5.31).

Theorem 6.1 For any unbiased estimator § of g(0) and any functions ;(x, 6)
with finite second moments, we have

(6.1) var@) > y'C Yy,
wherey’ = (y1---y,) and C = ||C;;|| are defined by
(6.2) vi =cov(8, Vi), Cij = cov(yy, ¥)).

Theright side of (6.1) will depend on § only through g(6) = E4(8), provided each
of the functions v; satisfies (5.2).

Proof. For any constants, ..., a,, it follows from (5.1) that
[cov(s, Za;v)]?

6.3 8) > —————,

(6.3) var@) > var@a v,

and direct calculation shows

(6.4) cov(s, Ta; ;) = Za;y; =d'y, var(Za; ;) = a'Ca.
Since (6.3) is true for any vectar, from (6.4) and (5.1) we have
7.,12
var(§) > max [a/y] =y'C 1y,
a aCa

where we use the fact (see Problem 6.2) th&ti§ anr x r matrix andp anr x 1
column vector such thak = pp’, then

/

(6.5) maxa

P .
/ ¢ = Jargest eigenvalue ap 1P
a a

=p'07'p.

O
As the first and principal application of (6.1), we shall extend the information

inequality (5.31) to the multiparameter case. ebe distributed with density
pe, 0 € 2, with respect tou whereé is vector-valued, say = (04, ..., 6,).
Suppose that

(5.12)(a) and (b) hold, and in addition
(6.6) (c)ForanyxinA,0inQ,andi =1,...,s5,
the derivativedpg(x)/06; exists and is finite.

In a generalization of (5.10), define thd@ormation matrix as thes x s matrix
(6.7) 1(0) = 111;;0)I]
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where

(6.8) 1;;(0) = Eg [8_ log ps(X) - % |09P0(X)}

If (6.6) holds and the derivative with respect to edcbf the left side of (5.13)
can be obtained by differentiating under the integral sign, one obtains, as in Lemma
5.3,

(6.9) E [a%l |ng9(X)] =0
and
0 9
(6.10) 1;;(0) = cov[a—ei log py(X), 3_0, log pg(X):| .

Being a covariance matrix(#) is positive semidefinite and positive definite unless
the @0/06;)log pe(X), i = 1,...,s, are affinely dependent (and hence, by (6.9),
linearly dependent).

If, in addition to satisfying (6.6) and (6.9), the densityalso has second deriva-
tives 82 py(x)/96;06; for all i and j, there is in generalization of (5.16), an alter-
native expression fak;; (6) which is often more convenient (Problem 6.4),

2
00,00,

Inthe multiparameter situation with= (9;, .. ., 6,), Theorem 5.8 and Corollary
5.9 continue to hold with only the obvious changes, that is, information matrices
for independent observations are additive.

To see how an information matrix changes under reparametrization, suppose
that

(6.11) L) = — [ |09P0(X):|

(612) 9[:]’1,'(.‘;:1,...,%_3), iIl,...,s,
and letJ be the matrix

6.13

619 =[5

Let the information matrix fory, ..., &) be I*(¢) = ||I;’i($)|| where

(6.14) I5(E) = [—g 10G pay(X) - - Iog Pe(é)(X)]

Then, itis seen from the chain rule for dlfferentlatmg afunction of several variables
that (Problem 6.7)

a6y 36
(6.15) I5(€) = Z Z Iu(O)— —
0&; E;
and hence that
(6.16) I"E)=J1J'.
In generalization of Theorem 5.4, let us now calculgi@ for multiparameter
exponential families.

Theorem 6.2 Let X bedistributed according to the exponential family (1.5.1) and
let



126 UNBIASEDNESS [2.6

(6.17) L =ET(X), i=1...,s,
the mean-value parametrization. Then,

(6.18) I(t)y=Cc?

where C isthe covariance matrix of (74, .. ., Ty).

Proof. Itis easiestto work with the natural parametrization (1.5.2), which is equiv-
alent. By (6.10) and (1.5.15), the informationXhabout the natural parameter

2

a
() = A | = covtr. 1y = ¢
am;0nk
Furthermore, (1.5.14) shows thgt= 9/91; A() and, hence, (6.13) shows that
J = ‘ 8l =C.
an;

Thus, from (6.16)
C=I*(n)=JI(x)J =CI(z)C,
which implies (6.18). a

Example 6.3 Multivariate normal information matrix. Let (X1, ..., X,,) have
a multivariate normal distribution with mean 0 and covariance matrix ||o;; ||,
so that by (1.4.15), the density is proportional to

e—EZni]xin/Z
where||n;;|| = -1 SinceE(X; X ;) = 0;;, we find that the information matrix of
theU[j is
(6.19) [(2)=x"1

l

Example 6.4 Exponential family information matrices. Table 6.1 giveg(6) for
three two-parameter exponential families, whefe) = I''(«)/ I'(«) andy'(«) =
dvy(a)/da are, respectively, the digamma and trigamma function (Problem 6.5).
l

Example 6.5 Information in location-scalefamilies. For the location-scale fam-
ilies with density (¥6,) f((x — 61)/62), 62 > 0, f(x) > O for all x, the elements
of the information matrix are (Problem 6.5)

£
(6.20) L= [f( )} f(y)dy
2= [y}]j(();) ] f(y)dy
and

(6.21) I = i/y[fc((y))] O d.
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Table 6.1.Three Information Matrices

N(§.0?) (e, B)
2 (o
(5 ) en= ()
B(a, B)

_ (V@ -¥@+p)  —ya+p)
(o, B) = ( —Ya+B)  Y(B)— v (a+ ﬂ)>

The covariance termh; is zero whenevey is symmetric about the origin. ||

Let us now generalize Theorems 5.10 and 5.15 to the multiparameter case in
which@ = (64, ..., ;). For convenience, we state the generalizations in one the-
orem.

Theorem 6.6 (Multiparameter I nfor mation | nequality) Supposethat (6.6) holds,
and /(#) is positive definite. Let § be any statistic for which E0(|8|2) < oo and
either
(i) Fori =1,...,5,(0/06;)Egé exists and can be obtained by differentiating
under the integral sign,
or

(ii) Thereexist functionsby),i = 1,...,s, with Eg bg’(x)2 < oo that satisfy
PO +ac, (%) — pg(x)
A

wheree; € R* isthe unit vector with 1 in the ith position and zero elsewhere.
Then, Eg(9/06;) log pg (X) = 0and

< bg’(x) for all A,

(6.22) var(8) > o'171(0)a
where o’ isthe row matrix with ith element
d
6.23 ;= —Ey[8(X)].
(6.23) @ = g Eald(X)]
Proof. If the functions y; of Theorem 6.1 are taken to be); =
(0/06;) log ps(X), (6.22) follows from (6.1) and (6.10). O

If § is an estimator of(6) andb(0) is its bias, then (6.23) reduces to
0
(6.24) a; = %[b(g) +g(0)].

Itis interesting to compare the lower bound (6.22) with the corresponding bound
when thef’s other thang; are known. By Theorem 5.15, the latter is equal to
[(3/36;)E4(8)]1%/1;:(6). This is the bound obtained by settiag= ¢; in (6.4),
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whereg; is theith unit vector. For example, if th&s other thary; are zero, then
the only nonzero element of the vectoof (6.22) isy;. Since (6.22) was obtained
by maximizing (6.4), comparing the two bounds shows

(6.25) 1:0) < 11O
(See Problem 6.10 for a different derivation.) The two sides of (6.25) are equal if
(6.26) L;;(©)=0 forall j#i,

as is seen from the definition of the inverse of a matrix, and, in fact, (6.26) is also
necessary for equality in (6.25) (Problem 6.10). In this situation, when (6.26) holds,
the parameters are said to be orthogonal. This is illustrated by the first matrix in
Table 6.1. There, the information bound for one of the parameters is independent
of whether the other parameter is known. This is not the case, however, in the
second and third situations in Table 6.1, where the value of one parameter affects
the information for another. Some implications of these results for estimation will
be taken up in Section 6.6. (Cox and Reid (1987) discuss methods for obtaining
parameter orthogonality, and some of its consequences; see also Barndorff-Nielsen
and Cox 1994.)

In a manner analogous to the one-parameter case, it can be shown that the
information inequality bound is attained onlysifx) has the form

(6.27) 8(x) = g(6) + [V2(@)'1(6) [V log py(x)],
whereE$ = g(0), Vg(0) = {(9/36:)g(0), i =1, 2,..., s}, Vlog ps(x) = {(3/36;)
logpe(x),i = 1,2,...,s}. Itis also the case, analogous to Theorem 5.12, that

if the bound is attainable then the underlying family of distributions constitutes
an exponential family (Joshi 1976, Fabian and Hannan, 19TilleMFunk et al.
1989).

The information inequalities (5.31) and (6.22) have been extended in a number
of directions, some of which are briefly sketched in the following.

(&) When the lower bound is not sharp, it can usually be improved by considering
not only the derivativeg; but also higher derivatives:

1 girtets
(6.28) Vi = " po(x).
po(x) 867 --- 965

Itisthen easy to generalize (5.31) and (5.24) to obtain a lower bound based on
any given ses of theyr's. Assume (6.6) with (c) replaced by the corresponding
assumption for all the derivatives needed for theSsetnd suppose that the
covariance matrix (0) of the given set ofs’s is positive definite. Then, (6.1)
yields theBhattacharyya inequality

(6.29) vary(8) > o' K ~1(0)a

whereo’ is the row matrix with elements

givk+i,
(6.30) ~Eg8(X) = cov(s, viy,...i,)-

363 - - - 96,
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It is also seen that equality holds in (6.29) if and only ifs a linear func-
tion of the ¥’'s in S (Problem 6.12). The problem of whether the Bhat-
tacharyya bounds become sharpas- oo has been investigated for some
one-parameter cases by Blight and Rao (1974).

(b) Adifferentkind of extension avoids the need for regularity conditions by con-
sidering differences instead of derivatives. (See Hammersley 1950, Chapman
and Robbins 1951, Kiefer 1952, Fraser and Guttman 1952, Fend 1959, Sen
and Ghosh 1976, Chatterji 1982, and Klaassen 1984, 1985.)

(c) Applications of the inequality to the sequential case in which the number of
observations is not a fixed integer but a random variable Nsajetermined
from the observations is provided by Wolfowitz (1947), Blackwell and Gir-
shick (1947), and Seth (1949). Under suitable regularity conditions, (6.23)
then continues to hold with replaced byEy(N); see also Simons 1980,
Govindarajulu and Vincze 1989, and Stefanov 1990.

(d) Other extensions include arbitrary convex loss functions (Kozek 1976);
weighted loss functions (Mikulski and Monsour 1988); to the case ghat
ands$ are vector-valued (Rao 1945, Craml946b, Seth 1949, Shemyakin
1987, and Rao 1992); to nonparametric problems (Vincze 1992); location
problems (Klaassen 1984); and density estimation (Brown and Farrell 1990).

7 Problems

Section 1

1.1 Verify (a) that (1.4) defines a probability distribution and (b) condition (1.5).

1.2 In Example 1.5, show thaf* minimizes (1.6) foi = 0, 1, and simplify the expression
for ay. [Hint: Zkp~t andZk (x — 1)p*~2 are the first and second derivativessyf< =
1/q]

1.3 Let X take on the values-1, 0, 1, 2, 3 with probabilitie (X = —1) = 2pg and
P(X =k)=prg®>*fork=0,1,2,3.

(a) Check that this is a probability distribution.
(b) Determine the LMVU estimator at, of (i) p, and (ii) pg, and decide for each
whether it is UMVU.

1.4 For a sample of size, suppose that the estimatb(x) of 7(0) has expectation
E[T(X)] = z(0) +

k=1

Ay
;7
whereq; may depend oA but not on..
(a) Show that the expectation of the jackknife estimatoof (1.3) is
a
E[T,(X)] = 1(6) = =% + O(1/n°).
(b) Show that if varT ~ c¢/n for some constant, then varT, ~ ¢’/n for some
constant’. Thus, the jackknife will reduce bias and not increase variance.

A second-order jackknife can be defined by jackknifing,, and this will result in further
bias reduction, but may not maintain a variance of the same order (Robson and Whitlock
1964; see also Thorburn 1976 and Note 8.3).
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15 (@) Any two random variableX and Y with finite second moments satisfy the
covariance inequality [cow, Y)]? < var(X) - var(Y).
(b) The inequality in part (a) is an equality if and only if there exist constatsdb
for which P(X =aY +b) = 1.
[Hint: Part (a) follows from the Schwarz inequality (Problem 1.7.20) vfith X — E(X)
andg =Y — E(Y).]
1.6 An alternative proof of the Schwarz inequality is obtained by noting that

/(f+Ag)2dP=/f2dP+2A/fgdP+A2/g2dP20 forall 2,

so that this quadratic ik has at most one root.

1.7 SupposeX is distributed on (Q1) with probability densityp, (x) = (1 —6) +6/2/x
forall0 < x < 1,0< 8 < 1. Show that there does not exist an LMVU estimato# of
[Hint: Let 8(x) = a[x Y2+ b] for ¢ < x < 1 ands(x) = 0 for 0 < x < ¢. There exist
valuesa andb, andc such thatEy(8) = 0 andE1(8) = 1 (ands is unbiased) and that
Eo(8?) is arbitrarily close to zero (Stein 1950).]

1.8 If § ands’ have finite variance, so doés— §. [Hint: Problem 1.5.]

1.9 In Example 1.9, (a) determine all unbiased estimators of zero; (b) show that no
nonconstant estimator is UMVU.

1.10 If estimators are restricted to the class of linear estimators, characterization of best
unbiased estimators is somewhat easier. Although the following is a consequence of
Theorem 1.7, it should be established without using that theorem.

Let X1 satisfy E(X) = By and varK) = I, whereB,, is known, andiy,; is
unknown. Alinear estimator is an estimator of the form’X, wherea,; is a known
vector. We are concerned with the class of estimators

D ={8(x) : 8(x) = a’x, for some known vectaot}.

(a) For a known vector, show that the estimators iR that are unbiased estimators
of ¢/ satisfya’B =¢'.

(b) LetD, ={8(x) : 6(x) =a'X, a’B =’} be the class of linear unbiased estimators of
¢'¢. Show that thévest linear unbiased estimator (BLUE) of ¢’v, the linear unbi-
ased estimator with minimum variance$i§x) = a*'x, wherea” = a’B(B'B) 1B’
anda* B = ¢ with variance vari§*) = c’c.

(c) LetDg = {8(X) : 8(X) = a’'x, a’B = 0.} be the class of linear unbiased estimators of
zero. Show that i € Do, then cov§, §*) = 0.

(d) Hence, establish the analog of Theorem 1.7 for linear estimators:
Theorem. An estimator §* € D, satisfies var(*) = minsep, var(8) if and only if
cov(@*, U) = 0, where U isany estimator in Dy.

(e) Showthatthe results here can be directly extended to the caseXf wvak, where

¥ ,«p IS @aknown matrix, by considering the transformed problem Witt s2x
andB* = 2B,

1.11 Use Theorem 1.7 to find UMVU estimators of some of #éd;) in the dose-
response model (1.6.16), with the restriction (1.6.17) (Messig and Strawderman 1993).
Let the classea andl/ be defined as in Theorem 1.7.

(@) Show that an estimatdf € I/ if and only if U(xy, x2) = a[I(xy = 0) — I(x2 = 0)]
for an arbitrary constant < co.
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(b) Using part (a) and (1.7), show that an estimatisrtUMVU for its expectation only

dI1)(x1, x2) Wherea, b, ¢, andd are arbitrary constants.
(c) Show that there does not exist a UMVU estimatomgfid;) = 1 — e~?, but the
UMVU estimator ofny(dz) = 1 — e 2 is8(x1, x2) = 1 — %[I(xl =0) +1(x; = 0)].
(d) Show that the LMVU estimator of & e7? is §(x1, xp) = 5+ 2(Tl_é,)[l(xl =
0) — I(xz = 0)].

1.12 Show that if§(X) is a UMVU estimator ofg(9), it is the unique UMVU estimator
of g(#). (Do not assume completeness, but rather use the covariance inequality and the
conditions under which it is an equality.)

1.13 If §; and$, are inA and are UMVU estimators af1(9) and g»(9), respectively,
thena,8; +a»8; is also inA and is UMVU for estimating:; g1(0) + a»g2(6), for any real
ai andaz.

1.14 Completeness df is not only sufficient but also necessary so that eg€éy that
can be estimated unbiasedly has only one unbiased estimator that is a fundtion of

1.15 SupposeXy, ..., X, are iid Poissoni().

(@) Show thafX is the UMVU estimator foi.
(b) Fors? =" (X;—X)?/(n—1), we have thaE S? = EX = ). To directly establish
that varS? > var X, prove thatE(S?|X) = X.

Note: The identity E(S2|X) = X shows how completeness can be used in calculating
conditional expectations.

116 (a) If Xy, ..., X, areiid (not necessarily normal) with vafy) = o2 < oo, show

thats = ©(X; — X)?/(n — 1) is an unbiased estimator &f.

(b) Ifthe X; take on the values 1 and 0 with probabilitigandg = 1— p, the estimator
§ of (a) depends only off = £ X; and hence is UMVU for estimating?® = pq.
Compare this result with that of Example 1.13.

1.17 If T has the binomial distributioh(p, n) with n > 3, use Method 1 to find the
UMVU estimator ofp2.

1.18 LetX,, ..., X, beiid according to the Poisson distributi®xr). Use Method 1 to
find the UMVU estimator of (a).* for any positive integek and (b)e .

1.19 LetXjy,..., X, bedistributed as in Example 1.14. Use Method 1 to find the UMVU
estimator ob* for any integek > —n.

1.20 Solve Problem 1.18(b) by Method 2, using the fact that an unbiased estimator of
e *iss =1if X; =0, ands = 0 otherwise.

1.21 In n Bernoulli trials, letX; = 1 or 0 as theth trial is a success or failure, and let
T = £ X;. Solve Problem 1.17 by Method 2, using the fact that an unbiased estimator
of p2isé = 1if X; = X, = X3 =1, ands = O otherwise.

1.22 Let X take on the values 1 and 0 with probabiliiyandg, respectively, and assume
that /4 < p < 3/4. Consider the problem of estimatipgvith loss functionZ(p, d) =
1if |d — p| = 1/4, and O otherwise. L&t* be the randomized estimator whichtigor
Y1 whenX =0 or 1 whereY, andY; are distributed a&'(—1/2, 1/2) andU(1/2, 3/2),
respectively.

(a) Show thas* is unbiased.
(b) Compare the risk function éf with that of X.
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Section 2

21 If X4,..., X, are iid asN (g, o2) with o2 known, find the UMVU estimator of (a)
£2, (b) £3, and (c)&*. [Hint: To evaluate the expectation &, write X = ¥ + &, where
Y is N(0, o2/n) and expandz (Y + £)~.]

2.2 Solve the preceding problem wheris unknown.

2.3 In Example 2.1 witho known, let§ = X¢; X; be any linear estimator df. If § is
biased, show that its risE(5 — £)? is unbounded.Hint: If ¢, = 1 +k, the risk is
> k2]

2.4 Suppose, as in Example 2.1, thdt, ..., X, are iid asN(¢, 02), with one of the
parameters known, and that the estimand is a polynomiglano. Then, the UMVU
estimator is a polynomial il or $2 = 3"(X; —&)2. The variance of any such polynomial
can be estimated if one knows the momeB(X*) andE(s*) forallk = 1,2,....To
determineE (X¥), write X = Y + &, whereY is distributed asV(0, o2/n). Show that

@
k

E)-(k = k %.kfrE Y"

(=3 (y) & e

with
(r =)@ —3)---3-1(c?/n)’?> whenr > 2 is even
E(Y")=
0 whenr is odd.

(b) As an example, consider the UMVU estimatsiy/n of o2. Show thatE(S*) =
n(n + 2)o? and var(f—f) = 2"74 and that the UMVU estimator of this variance is
284 /n%(n + 2).

2.5 In Example 2.1, when both parameters are unknown, show that the UMVU estimator
of £2 is given bys = X2 — n(j—fl) where nows? = Y (X; — X)2

2.6 (a) Determine the variance of the estimator Problem 2.5.

(b) Find the UMVU estimator of the variance in part (a).

2.7 If X is a single observation fronv (&, o2), show that no unbiased estimatbof
oexists whert is unknown. Hint: For fixedo = a, X is a complete sufficient statistic
for £, andE[8(X)] = a? for all £ impliess(x) = a® a.e.]

2.8 LetX;,i =1,...,n, beindependently distributed &« + B¢;, o2) wherea, 8, and
o2 are unknown, and thes are known constants that are not all equal. Find the UMVU
estimators ofr andg.

2.9 In Example 2.2 withm = 1, the UMVU estimator op is the indicator of the event
X, < u whethero is known or unknown.

2.10 Verify Equation (2.14), the density okg — X)/S in normal sampling. [The UMVU
estimator in (2.13) is used by Kiefer (1977) as an example of his estimated confidence
approach.]

2.11 Assuming (2.15) witlr = z, determine the UMVU estimators of and ¢ — &)/o.

2.12 Assuming (2.15) witly = £ ando?/t2 = y, show that whery is known:

(a) T’ defined in Example 2.3(iii) is a complete sufficient statistic;
(b) 6, is UMVU for &.

2.13 Show that in the preceding problem withunknown,
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(@) a UMVU estimator of does not exist;

(b) the estimato€ is unbiased under the conditions stated in Example 2iit] (i)
Problem 2.12(b) and the fact th&t is unbiased fog even wherv2/72 # y. (ii)
Condition on €y, Sy).]

2.14 For the model (2.15) find the UMVU estimator 8{X; < Y1) when (a0 = t and
(b) wheno and<t are arbitrary. Hint: Use the conditional density (2.13) &f; given
X, $2 and that oft; givenY, S2 to determine the conditional density Bf — X, given
X, Y, 82, ands2.]

215 If (X1, Y1), ..., (X,,Y,) are iid according to any bivariate distribution with finite
second moments, show th8y /(n — 1) given by (2.17) is an unbiased estimator of
cov(X;, Y;).

2.16 In asample siz&V =n +k + 1, some of the observations are missing. Assume that
(X;,Y;),i =1,...,n, areiid according to the bivariate normal distribution (2.16), and
thatUs, ..., Uy andVy, ..., V; are independen¥ (£, o) and N (1, T2), respectively.

(&) Show that the minimal sufficient statistics are complete whandn are known
but not when they are unknown.

(b) When& andn are known, find the UMVU estimators fer?, t2, andpot, and
suggest reasonable unbiased estimators for these parameters \@hen; are
unknown.

2.17 Forthe family (2.22), show that the UMVU estimatoraifvhenb is known and the
UMVU estimator ofb is known are as stated in Example 2 8iijt: Problem 6.18.]

2.18 Show that the estimators (2.23) are UMVUIifit: Problem 1.6.18.].

2.19 For the family (2.22) withb = 1, find the UMVU estimator of?(X; > u) and
of the densitye=“~) of X; atu. [Hint: Obtain the estimato¥(X ) of the density by
applying Method 2 of Section 2.1 and then the estimator of the probability by integration.
Alternatively, one can first obtain the estimator of the probabilityPdX; > u|X 1)
using the fact thak’; — Xy is ancillary and that giveX 1), X is either equal td(y) or
distributed ast (X 1), 1).]

2.20 Find the UMVU estimator ofP(X; > u) for the family (2.22) when both andb
are unknown.

221 LetX,,..., X,,andYy, ..., Y, beindependently distributed &%a, b) andE(a’, b'),
respectively.

(a) Ifa,b,a’, andb’ are completely unknowrX ), Y1), Z[X; — X], andX[Y; — Y]
jointly are sufficient and complete.
(b) Find the UMVU estimators af’ — a andd’/b.

2.22 In the preceding problem, suppose that b.
(@) Show thafX(y, Y1), andZ[X; — X ()] + Z[Y; — Y(y] are sufficient and complete.
(b) Find the UMVU estimators af and ¢’ — a)/b.

2.23 In Problem 2.21, suppose thdt= a.

(&) Show that the complete sufficient statistic of Problem 2.21(a) is still minimal suf-
ficient but no longer complete.

(b) Show that a UMVU estimator far' = a does not exist.

(c) Suggest a reasonable unbiased estimatar'fera.
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224 LetX,,..., X, beiid according to the uniform distributidii(¢ — b, &£ +b). If &, b
are both unknown, find the UMVU estimators&fb, andé /b. [Hint: Problem 1.6.30.]

2.25 LetXq,..., X,,andYy, ..., Y, beiidasU (0, ) andU (0, '), respectively. Ifi > 1,
determine the UMVU estimator &f/6’.
2.26 Verify the ML estimators given in (2.24).
2.27 In Example 2.6(b), show that
(a) The bias of the ML estimator is O whén= u.
(b) Até& = u, the ML estimator has smaller expected squared error than the UMVU
estimator.
[Hint: In (b), note that: — X is always closer to 0 thap == (u — X).]
2.28 Verify (2.26).
2.29 Under the assumptions of Lemma 2.7, show that:
(@) If b is replaced by any random variahBewhich is independent ok and not 0
with probability 1, thenR;(0) < Rs«(6).
(b) If squared error is replaced by any loss function of the fafh §) = p(d —0) and
§ is risk unbiased with respect fo, thenRs(0) < Rs«(0).-

Section 3
31 (a) In Example 3.1, show th&(X; — X)2=T(n — T)/n.
(b) Thevariance of (n—T)/n(n—1)in Example 3.1isgq/n)[(g—p)*+2pq/(n—1)].
3.2 If T is distributed a®(p, n), find an unbiased estimaté(7) of p™ (m < n) by
Method 1, that is, using (1.10)H[nt: Example 1.13.]

3.3 (a) Use the method leading to (3.2) to find the UMVU estimatd’) of P[X; +
e+ X, =k = (’;:) prg" % (m < n).

(b) For fixedr and varyingk, show that ther,(¢) are the probabilities of a hypergeo-
metric distribution.

3.4 If Y is distributed according to (3.3), use Method 1 of Section 2.1
(a) to show that the UMVU estimator @f (r < m) is

s _(m—r+y-Lm—-r+y—-2)...(m—r)
O sy D vy —2m

5

and hence in particular that the UMVU estimator ¢p11/p? andp are, respec-
tively, (m + y)/m, (m + y)(m +y + 1)/m(m + 1), and fn — 1)/(m + y — 1);

(b) to determine the UMVU estimator of vaf];

(c) to show how to calculate the UMVU estimatoof log p.

3.5 Consider the scheme in which binomial sampling is continued until at deast-
cesseand b failures have been obtained. Show how to calculate areasonable estimator of
log(p/q). [Hint: To obtain an unbiased estimator of Ipgmodify the UMVU estimator
3 of Problem 3.4(c).]

3.6 If binomial sampling is continued untit successes have been obtainedXle(i
1, ..., m) be the number of failures between thie{1)st andth success.

(@) TheX; are iid according to thgeometric distribution P(X; = x) = pg*, x
0,1,....
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(b) The statistidd = T X; is sufficient for (1, ..., X,,) and has the distribution (3.3).

3.7 Suppose that binomial sampling is continued until the number of successes equals
the number of failures.

() Thisruleis closed ip = 1/2 but not otherwise.
(b) If p=1/2 andN denotes the number of trials requirdt{,N) = oc.

3.8 Verify Equation (3.7) with the appropriate definition®f(x, y) (a) for the estimation
of p and (b) for the estimation gf‘g".

3.9 Consider sequential binomial sampling with the stopping pointd)@nd (2 y),

y =0,1,....(a) Show that this plan is closed and simple. (b) Show that() is not
complete by finding a nontrivial unbiased estimator of zero.

3.10 In Example 3.4(ii), (a) show that the plan is closed but not simple, (b) show that
(X, Y) is not complete, and (c) evaluate the unbiased estimator (37) of

3.11 Curtailed single sampling. Leta, b < n be three non-negative integers. Continue
observation until eithes successes failures, orn observations have been obtained.
Determine the UMVU estimator qf.

3.12 For any sequential binomial sampling plan, the coordinaXe¥’) of the end point
of the sample path are minimal sufficient.

3.13 Consider any closed sequential binomial sampling plan with &sgft stopping
points, and leB’ be the seBU{(xo, yo)} where o, yo) is a point notinB that has positive
probability of being reached under pl&nShow that the sufficient statistit = (X, Y) is
not complete for the sampling plan which h/sas its set of stopping pointdd{nt: For
any point, y) € B,letN(x, y)andN’(x, y) denote the number of paths tq (y) when
the set of stopping points BandB’, respectively, and eV (xo, yo) = 0, N'(xo, yo) = 1.
Then, the statistic + [N(X, Y)/N'(X, Y)] has expectation O undd’ for all values of
rl

3.14 For any sequential binomial sampling plan under which the poirtt)(is reached
with positive probability but is not a stopping point, find an unbiased estimatpg; of
depending only onX, Y). Evaluate this estimator for

(a) taking a sample of fixed size> 2;
(b) inverse binomial sampling.

3.15 Use (3.3) to determind(z, n) in (3.11) for the negative binomial distribution with
m = n, and evaluate the estimators (3.13);6fand (3.14).

3.16 Considern binomial trials with success probabilip; and let- ands be two positive
integers withr +s < n. To the boundary + y = n, add the boundary point,(s), that
is, if the number of successes in the first s trials is exactlyr, the process is stopped
and the remaining — (r + s) trials are not performed.

(@) Show that/ is an unbiased estimator of zero if and onlyUifk, n — k) = O for
k=0,1,....,r—1andk=n—s+1,n—s+2,...,n,andU(k,n —k) = ¢ U(r, s)
fork =r,...,n — s, where the's are given constantg 0.

(b) Show thas is the UMVU estimator of its expectation if and only if

Sk,n —k)=26(r,s) for k=r,....,n—s.

3.17 Generalize the preceding problem to the case that two points;) and (-, s2)
with r; +s; < n are added to the boundary. Assume that these two points are such that
all n + 1 pointsx + y = n remain boundary pointsHint: Distinguish the three cases
that the intervalsr, s1) and (2, s2) are (i) mutually exclusive, (ii) one contained in the
other, and (iii) overlapping but neither contained in the other.]
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3.18 If X has the Poisson distributiaR(6), show that 16 does not have an unbiased
estimator.

3.19 If X4, ..., X, areiid according to (3.18), the Poisson distribution truncated on the
left at 0, find the UMVU estimator of when (a)z = 1 and (b)r = 2.

3.20 LetX;,..., X, be a sample from the Poisson distribution truncated on the left at O,
i.e., with sample spac& ={1,2,3,...}.

Cla
cr

(a) Fors = Zx;, the UMVU estimator of. is (Tate and Goen 1958) = t where

Cr =Ly (Z) (—1)'k" is aSirling number of the second kind.

n!
n—1
Goi
7

(b) An alternate form of the UMVU estimator js= L (1 - =

). [Hint: Establish

the identityC? = C' = +nC" , ]

(c) The Crangr-Rao lower bound for the variance of unbiased estimatorssof (1 —
e )?/[n(1 —e* — xe7)], and it is not attained by the UMVU estimator. (It is,
however, the asymptotic variance of the ML estimator.)

3.21 Suppose thakX has the Poisson distribution truncated on the right,ato that it
has the conditional distribution &f givenY < a, whereY is distributed as?(1). Show
thati does not have an unbiased estimator.

3.22 For the negative binomial distribution truncated at zero, evaluate the estimators
(3.13) and (3.14) fom =1, 2, and 3.

3.23 If X4,..., X, areiid P(1), consider estimation af**, whereb is known.

(@) Show that* = (1 — b/n)' is the UMVU estimator ob—%*.
(b) Forb > n, describe the behavior 6f, and suggest why it might not be a reasonable
estimator.

(The probabilitye=*, for b > n, is that of an “unobservable” event, in that it can be
interpreted as the probability of no occurrence in a time interval of lehgthnumber

of such situations are described and analyzed in Lehmann (1983), where it is suggested
that, in these problems, no reasonable estimator may exist.)

324 If X,,..., X, are iid according to the logarithmic series distribution of Problem
1.5.14, evaluate the estimators (3.13) and (3.14)ferl, 2, and 3.

3.25 For the multinomial distribution of Example 3.8,

(@) showthapy’ --- p* has an unbiased estimator provided. . . , r, are nonnegative
integers withZr; < n;

(b) find the totality of functions that can be estimated unbiasedly;

(c) determine the UMVU estimator of the estimand of (a).

3.26 In Example 3.9 wherp;; = p;.+p+;, determine the variances of the two unbiased
estimatorsy = n;;/n andd; = n;.n.;/n?of p;;, and show directly that vasg) > var(;)
foralln > 1.

3.27 In Example 3.9, show that independenceiaind B implies that g+, . .., n;+) and
(n+1, . . ., n4+y) are independent with multinomial distributions as stated.

3.28 Vrify (3.20).

3.29 LetX,Y,andgbesuchthak[g(X, Y)|y]isindependentof. Then,E[ f(Y)g(X, Y)] =
E[f(Y)]E[g(X, Y)], and hencef(Y) andg(X, Y) are uncorrelated, for alf.
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3.30 In Example 3.10, show that the estimadof p;, is unbiased for the model (3.20).
[Hint: Problem 3.29.]

Section 4
4.1 Let X4, ..., X, beiid with distributionF.

(@) Characterize the totality of functioff$X, ..., X,) which are unbiased estimators
of zero for the clasg of all distributionsF having a density.

(b) Give one example of a nontrivial unbiased estimator of zero when<(i and (ii)
n=3.

4.2 Let F be the class of all univariate distribution functioAsthat have a probability
density functionf and finitemth moment.

(a) LetXy,..., X, be independently distributed with common distributibne F.
Forn > m, find the UMVU estimator o¢™ where¢ = £(F) = EX;.

(b) Show that for the case th&(X; = 1) = p, P(X; = 0) =¢, p +q = 1, the estimator
of (a) reduces to (3.2).

4.3 In the preceding problem, show thatvar: X; does not have an unbiased estimator
for anyn.

44 letX,,..., X, beiid with distributionF € F whereF is the class of all symmetric
distributions with a probability density. There exists no UMVU estimator of the center
of symmetryd of F (if unbiasedness is required only for the distributighgor which
the expectation of the estimator existdjiiit: The UMVU estimator o when F is
U@® — 1/2,6 + 1/2), which was obtained in Problem 2.24, is unbiased foFa#t F;
S0isX.]

45 If X;,..., X,, andYy, ..., Y, are independently distributed accordingit@ndG <
Fo, defined in Problem 4.1, the order statisticg) < -+ < X and¥p) < -+ <
Y,y are sufficient and completeHint: For completeness, generalize the second proof
suggested in Problem 6.33.]

4.6 Under the assumptions of the preceding problem, find the UMVU estimator of
P(X;, <Y)).

4.7 Under the assumptions of Problem 4.5,4et EX, andn = EY;. Show that?;?
possesses an unbiased estimator if and only #f 2 andn > 2.

4.8 Let (X1, Y1),...,(X,,Y,) beiid F € F, whereF is the family of all distributions
with probability density and finite second moments. Show #¢at ¥) = > (X; —
X)(¥; — Y)/(n — 1) is UMVU for cov(X, Y).

4.9 Under the assumptions of the preceding problem, find the UMVU estimator of

(@ P(X; <1y,
(b) P(X; < X;andY; <Y;),i ¥ j.

4.10 Let (X4, Y1), ..., (X,,Y,) beiidwith F € F, whereF is the family of all bivariate
densities. Show that the sufficient statisticwhich generalizes the order statistics to

the bivariate case, is completelifit: Generalize the second proof suggested in Problem
6.33. As an exponential family foX{(, Y), take the densities proportionald8®-*) where

O(x, y) = (Borx + 010) + (Bopx? + O11xy + O20y°) + - - -
O x" + -+ +0,00") — x¥ — y?]
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Section 5

5.1 Under the assumptions of Problem 1.3, determine for gacthe valueLy (p;) of
the LMVU estimator ofp at p; and compare the functiohy, (p), 0 < p < 1 with the
varianceV,, (p) of the estimator which is LMVU at (a), = 1/3 and (b)po = 1/2.

5.2 Determine the conditions under which equality holds in (5.1).

5.3 Verify 1(9) for the distributions of Table 5.1.

5.4 If X is normal with mean zero and standard deviatiometerminel (o).

5.5 Find I(p) for the negative binomial distribution.

5.6 If X is distributed asP (1), show that the information it contains aboyk is inde-
pendent ofk.

5.7 Verify the following statements, asserted by Basu (1988, Chapter 1), which illus-
trate the relationship between information, sufficiency, and ancillarity. Suppose that
we let /() = E,[—02/062log f(x|(F)] be the information inX abouté and let
J(0) = Eo[—0?/06%log g(T'|6)] be the information about contained in a statistic
T, whereg(-|9) is the density function of’. Definer(0) = 1(0) — J(0), a measure of
information lost by usind’’ instead ofX. Under suitable regularity conditions, show
that

(@) A(@) = Oforallo
(b) A(0) = 0ifand only if T is sufficient foro.
(c) If Y is ancillary but ', Y) is sufficient, then/ (9) = E4[J(6|Y)], where

82
J(01y) = Ep [—@ logh(T|y, 0)IY = y]
andhi(t|y, 0) is the conditional density df givenY = y.

(Basu’s “regularity conditions” are mainly concerned with interchange of integration
and differentiation. Assume any such interchanges are valid.)

5.8 Find a function ob for which the amount of information is independentof

(a) forthe gamma distributiofi(«, 8) with « known and withp = 8;
(b) for the binomial distributio(p, n) with 6 = p.

5.9 For inverse binomial sampling (see Example 3.2):

(a) Show thatthe best unbiased estimatqr &fgiven bys*(Y) = (m —1)/(Y +m — 1).
(b) Show that the information contained¥naboutP is I(p) = m/p?(1 — p).
(c) Show thatvat* > 1/1(p).

(The estimatos* can be interpreted as the success rate if we ignore the last trial, which
we know must be a success.)

5.10 Show that (5.13) can be differentiated by differentiating under the integral sign
whenp,(x) is given by (5.24), for each of the distributions of Table 5tint: Form the
difference quotient and apply the dominated convergence theorem.]

5.11 Verify the entries of Table 5.2.

5.12 Evaluate (5.25) wherf is the density of Studentisdistribution withv degrees of
freedom. Hint: Use the fact that

* dx _ T(1/2r(k—1/2)
/_oo (@ +x2k I (k) ]
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5.13 For the distribution with density (5.24), show th4®) is independent of .
5.14 Verify (a) formula (5.25) and (b) formula (5.27).
5.15 For the locatiorr density, calculate the information inequality bound for unbiased
estimators ob.
5.16 (a) For the scale family with density (@) f(x/6), & > 0, the amount of informa-
tion a single observatioX has abou# is
1 [yf’(y)
02 f)
(b) Show that the informatioX contains about = logé is independent of.
(c) For the Cauchy distribution C(B), 1(8) = 1/(262).
5.17 If py(x) is given by 1.5.1 withy = 1 andT (x) = §(x), show that varf(X)] attains
the lower bound (5.31) and is the only estimator to doldmnt Use (5.18) and (1.5.15).]
5.18 Show that if a given functiog () has an unbiased estimator, there exists an unbi-
ased estimatat which for all 8 values attains the lower bound (5.1) for sothgx, 0)
satisfying (5.2) if and only ifg(9) has a UMVU estimato8,. [Hint: By Theorem 5.1,
¥(x, 0) = §o(x) satisfies (5.2). For any other unbiasedov( — &, o) = 0 and hence
var(8y) = [cov(s, 80)]?/var(So), so thatyr = §, provides an attainable bound.] (Blyth
1974).
5.19 Show thatifEss = g(0), and var§) attains the information inequality bound (5.31),

then ©)
= g\ 9
8) = §(6) + 155 1)
5.20 If E48 = g(6), the information inequality lower bound isB(8) = [g'(8)]?/1(6). If
0 = h(&) whereh is differentiable, show thatB (&) = 1 B(9).

5.21 (Liu and Brown 1993) Le be an observation from the normal mixture density

2
+ 1} f)dy.

— —(1/2)(x—0)? —(1/2)(x+6)? }
po(x) = {e +e , 0 e,
() 24/ 21

where is any neighborhood of zero. Thus, the random variable eitherN (6, 1) or
N(—0, 1), each with probability 22. Show tha® = 0 is asingular point, that s, if there
exists an unbiased estimatoréit will have infinite variance af = 0.

5.22 Let X1,..., X, be a sample from the Poisson) (distribution truncated on the
left at 0, i.e., with sample spack = {1, 2, 3, ...} (see Problem 3.20). Show that the
Craner-Rao lower bound for the variance of unbiased estimatoks®of

M1l —e*)?
n(l—e*—2e?)
and is not attained by the UMVU estimator. (It is, however, the asymptotic variance of
the ML estimator.)

523 Let Xy, ..., X, be iid according to a density(x, #) which is positive for allx.

Then, the variance of any unbiased estimdtof 6 satisfies
(60 — 6)?

~ e or|”
{f—o@ p(x,@o) } !

[Hint: Direct consequence of (5.6).]

var,(8) > 0 7 bo.
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524 If X,,..., X, are iid asN (9, o%) whereos is known and is known to have one
of the values 0+1, 2, ..., the inequality of the preceding problem shows that any
unbiased estimatdrof the restricted parametérsatisfies

2
varg(9) = — 5 A 70,
whereA =6 — 6, and hence sugovar,(§) > 1/[e”/"2 —1].

5.25 Under the assumptions of the preceding problem¥felbe the integer closest 0.

(@) The estimatoX* is unbiased for the restricted parameter

(b) There exist positive constantandb such that for all sufficiently large, var, (X*) <
ae™ for all integersp.

[Hint: (b) One findsP(X* = k) = f,k ¢(t)dt, where, is the interval (k — 6 —
1/2)/n/o, (k — 6 + 1/2)/n/c), and hence

var(X*) 54:.Zlk{1— <I>[? (k— %)“

The result follows from the fact that for all > 0,1 — ®(y) < ¢(y)/y. See, for
example, Feller 1968, Chapter VII, Section 1. Note th@t) = ¢(y)/(1 — ®(y)) is

the hazard function for the standard normal distribution, so we havg) > y for

ally > 0. (1 — ®(y)/¢(y) is also known adill’s ratio (see Stuart and Ord, 1987,
Section 5.38.) Efron and Johnstone (1990) relate the hazard function to the information
inequality].

Note. The surprising results of Problems 5.23-5.25 showing a lower bound and variance
which decrease exponentially are due to Hammersley (1950), who shows that, in fact,

Further results concerning the estimation of restricted parameters and properties of
X* are given in Khan (1973), Ghosh (1974), Ghosh and Meeden (1978), and Kojima,
Morimoto, and Takeuchi (1982).

5.26 Kiefer inequality.
(a) LetX have density (with respect §0) p(x, ) which is> 0 for all x, and letA;
and A, be two distributions on the real line with finite first moments. Then, any
unbiased estimatarof 9 satisfies
[/ AdAy(A) — [ AdAy(A))?

var@) = [ 2(x, 0)p(x, 0)du(x)

where
Jo, P(x, 0+ A)[dAy(A) — dAo(D)]

vx.0)= P(x.6)

with Qp = {A 1 6 + A, Q}.

(b) If A5 and A, assign probability 1 taA = 0 and A, respectively, the inequality
reduces to (5.6) witlg(0) = 6. [Hint: Apply (5.1).] (Kiefer 1952.)

5.27 Verify directly that the following families of densities satisfy (5.38).
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(@) The exponential family of (1.5.1),
Po(x) = h(x)e" OO,

(b) The locatiorr family of Example 5.16.
(c) The logistic density of Table 1.4.1.
5.28 Extend condition (5.38) to vector-valued parameters, and show that it is satisfied by
the exponential family (1.5.1) for > 1.

5.29 Show that the assumption (5.36(b)) implies (5.38), so Theorem 5.15 is, in fact, a
corollary of Theorem 5.10.

5.30 Show that (5.38) is satisfied if either of the following is true:

(a) |0 log pg/06| is bounded.
(b) [po+al(x) — po(x)]/A — 3log ps/d6 uniformly.
531 (a) Show thatif (5.38) holds, then the family of densitiestiengly differentiable
(see Note 8.6).
(b) Show thawveak differentiability is implied by strong differentiability.

5.32 Brown and Gajek (1990) give two different sufficient conditions for (8.2) to hold,
which are given below. Show that each implies (8.2). (Note that, in the progression from
(a) to (b) the conditions become weaker, thus more widely applicable and harder to
check.)

(a) ForsomeB < oo,

82 2
By | 33 X0 (0| < B

for all 6 in a neighborhood of.
(b) If p;(x) = 8/80py(x)ly,, then

[W]Z:O

5.33 Let F be the class of all unimodal symmetric densities or, more generally, densities
symmetric around zero and satisfyifigx) < f(0) for all x. Show that

lim E
A—0 %o

. 2 _1

r}’!}]/x f(x)dx = 7
and that the minimum is attained by the unifom%(, %) distribution. Thus, the uniform
distribution has minimum variance among symmetric unimodal distributions. (See Ex-
ample 4.8.6 for large-sample properties of the scale uniform.) [Hint: The side condition
J f(x)dx = 1, together with the method of undetermined multipliers, yields an equiv-
alent problem, minimization of (x> — a?) f(x)dx, wherea is chosen to satisfy the
constraint. A Neyman-Pearson type argument will now work.]

Section 6

6.1 For any random variables, .. ., v¥,), show that the matricé$E ;¢ ;|| andC =
[lcov(y:, ¥;)|| are positive semidefinite.
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6.2 Inthis problem, we establish some facts about eigenvalues and eigenvectors of square
matrices. (For a more general treatment, see, for example, Marshall and Olkin 1979,
Chapter 20.)

We use the facts that a scakar- 0 is aneigenvalue of then x n symmetric matrix
A if there exists am x 1 vectorp, the correspondingigenvector, satisfyingAp = Ap.
If A is nonsingular, there are eigenvalues with corresponding linearly independent
eigenvectors.

(&) Show thatd = P’D, P, whereD, is a diagonal matrix of eigenvalues afand P
is andn x n matrix whose rows are the corresponding eigenvalues that satisfies
P’'P = PP’ =1, the identity matrix.

(b) Show that max=+: ‘Ar = |argest eigenvalue of.

(c) If Bis a nonsmgular symmetric matrix with eigenvector-eigenvalue represen-
tation B = Q'DgQ, then max j:;}j = largest eigenvalue ofi*, where A* =
D;?QAQ'D;"* andD,"* is a diagonal matrix whose elements are the recipro-
cals of the square roots of the eigenvalue® of

(d) For any square matricésand D, show that the eigenvalues of the mafhp are
the same as the eigenvalues of the malrig, and hence that m@)% = largest
eigenvalue oAB~1.

(e) If A =ad’,whereaisan x 1vector (A is thus arank-one matrix), then maéx(%; =
a'Bla.

[Hint: For part (b) show thap L D;‘ , Wwherey = Px, and hence the

maximum is achieved at the vectpthat is 1 at the coordinate of the largest eigenvalue
and zero everywhere else.]

6.3 An alternate proof of Theorem 6.1 uses the method of Lagrange (or undetermined)
multipliers. Show that, for fixeg, the maximum value of’y, subject to the constraint
thata’Ca = 1, is obtained by the solutions to

aii {a/y - %k[a/Ca - 1]} =0

wherex is the undetermined multiplier. (The solutionds= +C~1y/ \/y'C-1y.)
6.4 Prove (6.11) under the assumptions of the text.
6.5 Verify (a) the information matrices of Table 6.1 and (b) Equations (6.15) and (6.16).
6.6 If p(x) = (L—&)p(x —&)+(c/7)p[(x —&)/r] Whereg is the standard normal density,
find I(e, &, 7).

6.7 Verify the expressions (6.20) and (6.21).
A1 Az
Az Az

ik Iy,

6.8 Let A = (
let

) be a partitioned matrix withi,, square and nonsingular, and

_ 1 —ApASy
B_(O 242,

Show thatiA| = |A1; — A12A5F Az - |As).

6.9 (a) Let
_fab
(i)

whereq is a scalar ané a column matrix, and suppose thais positive definite.
Show tha A| < a|C| with equality holding if and only ib = 0.
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(b) More generally, if the matriX of Problem 6.8 is positive definite, show thaf <
|A11] - |A22| with equality holding if and only ifA;, = 0.
[Hint: TransformA; and the positive semidefinitelgAz‘zlA21 simultaneously to diag-
onal form.]
6.10 (a) Showthatifthe matrix is nonsingular, then for any vectey(x’ Ax)(x'A~1x) >
(x'x)2.

(b) Show that, in the notation of Theorem 6.6 and the following discussion,

[iEQS]Z /)2
6; _ ()
Li6)  1(O)s’
andifa =(0,...,0,e;,0,...0),'I(6) ta = (¢ja)?c,I1(0)e;, and hence estab-
lish (6.25).
6.11 Prove that (6.26) is necessary for equality in (6.28)nf: Problem 6.9(a).]

6.12 Prove the Bhattacharyya inequality (6.29) and show that the condition of equality
is as stated.

8 Notes

8.1 Unbiasedness and Information

The concept of unbiasedness as “lack of systematic error” in the estimator was introduced
by Gauss (1821) in his work on the theory of least squares. It has continued as a basic
assumption in the developments of this theory since then.

The amount of information that a data set contains about a parameter was introduced by
Edgeworth (1908, 1909) and was developed more systematically by Fisher (1922 and
later papers). The first version of the information inequality, and hence connections with
unbiased estimation, appears to have been given éghEt (1943). Early extensions

and rediscoveries are due to Darmois (1945), Rao (1945), andeC(aa%6b). The des-
ignation “information inequality,” which replaced the earlier “CranRao inequality,”

was proposed by Savage (1954).

8.2 UMVU Estimators

The first UMVU estimators were obtained by Aitken and Silverstone (1942) in the
situation in which the information inequality yields the same result (Problem 5.17).
UMVU estimators as unique unbiased functions of a suitable sufficient statistic were
derived in special cases by Halmos (1946) and Kolmogorov (1950) and were pointed out
as a general fact by Rao (1947). An early use of Method 1 for determining such unbiased
estimators is due to Tweedie (1947). The concept of completeness was defined, its
implications for unbiased estimation developed, and Theorem 1.7 obtained, in Lehmann
and Schef (1950, 1955, 1956).

Theorem 1.11 has been used to determine UMVU estimators in many special cases.
Some applications include those of Abbey and David (1970, exponential distribution),
Ahuja (1972, truncated Poisson), Bhattacharyya et al. (1977, censored), Bickel and
Lehmann (1969, convex), Varde and Sathe (1969, truncated exponential), Brown and
Cohen (1974, common mean), Downton (197X < Y)), Woodward and Kelley
(1977, P(X < Y)), lwase (1983, inverse Gaussian), and Kremers (1986, sum-quota
sampling).
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Figure 8.1lllustration of the information inequality

Itlcos(t, q)

8.3 Existence of Unbiased Esimators
Doss and Sethuraman (1989) show that the process of bias reduction may not always
be the wisest course. If an estimag@) does not have an unbiased estimator, and one
tries to reduce the bias in a biased estimétahey show that as the bias goes to zero,
var(§) — oo (see Problem 1.4).

This result has implications for bias-reduction procedures such as the jackknife and
the bootstrap. (For an introduction to the jackknife and the bootstrap, see Efron and
Tibshirani 1993 or Shao and Tu 1995.) In particular, Efron and Tibshirani (1993, Section
10.6) discuss some practical implications of bias reduction, where they urge caution in
its use, as large increases in standard errors can result.

Liu and Brown (1993) call a problersingular if there exists no unbiased estimator
with finite variance. More precisely, if is a family of densities, then if a problem is
singular, there will be at least one member/f called asingular point, where any
unbiased estimator of a parameter (or functional) will have infinite variance. There are
many examples of singular problems, both in parametric and nonparametric estimation,
with nonparametric density estimation being, perhaps, the best known. Two particularly
simple examples of singular problems are provided by Example 1.2 (estimatigp of 1

in a binomial problem) and Problem 5.21 (a mixture estimation problem).

8.4 Geometry of the Information Inequality
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The information inequality can be interpreted as, and a proof can be based on, the fact
that the length of the hypotenuse of a right triangle exceeds the length of each side.
For two vectorsz andb, define< 1, g >= t'q, with < ¢, >?= |¢t|?. For the triangle

in Figure 8.1, using the fact that the cosine of the angle betwegwlq is cos¢, ¢) =
t'q/t|lq| and the fact that the hypotenuse is the longest side, we have

<t,q>j|_ <t,q>
l7llg] lq1

If we define< X,Y > = E[(X — EX)(Y — EY)] for random variables and?Y,
applying the above inequality with this definition results in the covariance inequality
(5.1), which, in turn, leads to the information inequality. See Fabian and Hannan (1977)
for a rigorous development.

|| > |t| cost, q) = Itl[

8.5 Fisher Information and the Hazard Function

Efron and Johnstone (1990) investigate an identity between the Fisher information num-

ber and thénazard function, #, defined by

fo(x)

1— Fy(x)
where f, and F;, are the density and distribution function of the random varidble
respectively. The hazard functioh(x), represents the conditional survival rate given
survival up to timer and plays and important role in survival analysis. (See, for example,
Kalbfleish and Prentice 1980, Cox and Oakes 1984, Fleming and Harrington 1991.)
Efron and Johnstone show that

10)= [ 10sU R A = [ oL oalhu(w ) e,

They then interpret this identity and discuss its implications to, and connections with,
survival analysis and statistical curvature of hazard models, among other things. They
also note that this identity can be derived as a consequence of the more general result of
James (1986), who showed thab(f) is a continuous function of the random variable

X, then

var[p(X)] = E[b(X) — b(X)]?, where b(x) = E[b(X)|b(X) > x],

as long as the expectations exist.

he(x) = LirﬁnoAflP(x <X <x+tA|X=>x)=

8.6 Weak and Strong Differentiability
Research into determining necessary and sufficient conditions for the applicability of the
Information Inequality bound has a long history (see, for example, Blyth and Roberts
1972, Fabian and Hannan 1977, Ibragimov and Has’minskii 1981, Section iillérM
Funk etal. 1989, Brown and Gajek 1990). What has resulted is a condition on the density
sufficient to ensure (5.29).
The precise condition needed was presented by Fabian and Hannan (1977), who call it
weak differentiability. The functionpg.a(x)/ pe(x) is weakly differentiable at if there
is a measurable functiopsuch that

(8.1) i [0 {27 (22250 1) | - g} mto) o =0

Polx)
for all a(-) such that h%(x) ps(x) diu(x) < co. Weak differentiability is actually equiva-
lent (necessary and sufficient) to the existence of a fungtipr) such that§/d0)Eyé =
Eé&q. Hence, it can replace condition (5.38) in Theorem 5.15.
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Since weak differentiability is often difficult to verify, Brown and Gajek (1990) intro-
duce the more easily verifiable conditionstfong differentiability, which implies weak
differentiability, and thus can also replace condition (5.38) in Theorem 5.15 (Problem
5.31). The functionpg. (x)/ pe(x) is strongly differentiable at & = 6, with derivative

o (x) if

2
©.2) i, [{[a7 (2282 - 1)] - o)} o)y =

These variations of the usual definition of differentiability are well suited for the in-
formation inequality problem. In fact, consider the expression in the square brackets
in (8.1). If the limit of this expression exists, itig(x) = dlog py(x)/36. Of course,
existence of this limit does not, by itself, imply condition (8.2); such an implication
requires an integrability condition.

Brown and Gajek (1990) detail a number of easier-to-check conditions that imply
(8.2). (See Problem 5.32.) Fabian and Hannan (1977) remark that if (8.1) holds and
dlog pe(x)/06 exists, then it must be the case thafx) = 9 log ps(x)/96. However,

the existence of one does not imply the existence of the other.




CHAPTER 3

Equivariance

1 First Examples

In Section 1.1, the principle of unbiasedness was introduced as an impartiality
restriction to eliminate estimators such&¥X) = g(6p), which would give very
low risk for some parameter values at the expense of very high risk for others. As
was seen in Sections 2.2-2.4, in many important situations there exists within the
class of unbiased estimators a member that is uniformly better for any convex loss
function than any other unbiased estimator.

In the present chapter, we shall use symmetry considerations as the basis for
another such impartiality restriction with a somewhat different domain of appli-
cability.

Example 1.1 Estimating binomial p. Considem binomial trials with unknown
probabilityp (0 < p < 1) of success which we wish to estimate with loss function
L(p, d), for example L(p, d) = (d — p)?> or L(p,d) = (d — p)?/p(1— p). If X;,
i =1,...,nis 1or0 asthéth trial is a success or failure, the joint distribution of
the X’s is

P(x1, ..., x,) = pi(l— p)=d—),

Suppose now that another statistician interchanges the definition of success and
failure. For this worker, the probability of success is

(1.1) p=1-p
and the indicator of success and failure onitetrial is
(12) Xz/ = 1—X,‘.

The joint distribution of theX; is

P(eg.---ox) = p (L= py"E)

>n

and hence satisfies

1.3) Pxl,...,x))= P(x1,...,Xy).
In the new terminology, the estimated vallieof p’ is
(1.4) d=1-d,

and the loss resulting from its uselig¢p’, d’). The loss functions suggested at the
beginning of the example (and, in fact, most loss functions that we would want to
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employ in this situation) satisfy
(1.5) L(p,d)=L(p,d).

Under these circumstances, the problem of estimatingh loss function’ is said
to beinvariant under the transformations (1.1), (1.2), and (1.4). This invariance is
an expression of the complete symmetry of the estimation problem with respect
to the outcomes of success and failure.

Suppose now that in the above situation, we had decided té(uyewhere

X = (x1, ..., x,) as an estimator gb. Then, the formal identity of the primed and
unprimed problem suggests that we should use
(1.6) §X)=8(1—x1,...,1—x,)

to estimatep’ = 1 — p. On the other hand, it is natural to estimate-Ip by 1
minus the estimator gj, i.e., by

1.7) 1-5(x).
It seems desirable that these two estimators should agree and hence that
(1.8) S(X') =1—58(x).

An estimator satisfying (1.8) will be called equivariant under the transformations
(1.1), (1.2), and (1.4). Note that the standard estimaXe/n satisfies (1.8).

The arguments for (1.6) and (1.7) as estimators-ef A are of a very different
nature. The appropriateness of (1.6) depends entirely on the symmetry of the
sl,ituation. It would continue to be sulitable if it were known, for example, that

2 < p < Zbutnotif, say; < p < 3. Infact, in the latter case(X) would

typically be chosento be % forall X, and hencé(X’) would be entirely unsuitable

as an estimator of & p, which is known to be- % More generally, (1.6) would
cease to be appropriate if any prior information abpig available which is not
symmetric abou% .Incontrast, the argumentleadingto (1.7) is quite independent of
any symmetry assumptions, but simply reflects the fact tl8éxXif is a reasonable
estimator of a parametér (that is, is likely to be close té), then 1— §(X) is

reasonable as an estimator of b. I

We shall postpone giving a general definition of equivariance to the next section,
and in the remainder of the present section, we formulate this concept and explore
its implications for the special case of location problems.

LetX = (X4, ..., X,,) have joint distribution with probability density

(19) f(X_s):f(xl_s’”wxn_S)v —OO<§<OO,

where f is known anct is an unknowriocation parameter. Suppose that for the
problem of estimating with loss functionL (¢, d), we have found a satisfactory
estimators (X).

In analogy with the transformations (1.2) and (1.1) of the observafigramd
the parametep in Example 1.1, consider the transformations

(110) Xl, :X,' +a
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and
(1.12) £ =E+a.
The joint density ofX’ = (X7, ..., X) can be written as

fX' =&)=flxy & x5, — &)
so that in analogy with (1.3) we have by (1.10) and (1.11)

(1.12) f(X' — &)= f(x — &) for all x andé&.
The estimated valug’ of &’ is
(1.13) d=d+a

and the loss resulting from its uselig’, d’).
In analogy with (1.5), we requirg to satisfyL(&’, d') = L(§, d) and hence

(1.14) L(t +a,d +a) = L, d).

A loss functionL satisfies (1.14) for all values efif and only if it depends only
on the differencel — &, that is, it is of the form

(1.15) L(§.d) = p(d - &).

That (1.15) implies (1.14) is obvious. The converse follows by putting—£ in
(1.14) and lettingp(d — &) = L(0, d — §&).
We can formalize these considerations in the following definition.

Definition 1.2 A family of densitiesf (x|&), with parameteg, and a loss function
L(&, d) arelocation invariant if, respectively, f (x'|§") = f(x|&) andL(¢,d) =
L(¢’,d") wheneveg’ = £ +a andd’ = d + a. If both the densities and the loss
function are location invariant, the problem of estimatinig said to bdocation
invariant under the transformations (1.10), (1.11), and (1.13).

Asin Example 1.1, thisinvariance is an expression of symmetry. Quite generally,
symmetry in a situation can be characterized by its lack of change under certain
transformations. After a transformation, the situation looks exactly as it did before.
In the present case, the transformations in question are the shifts (1.10), (1.11), and
(1.13), which leave both the density (1.12) and the loss function (1.14) unchanged.

Suppose now that in the original (unprimed) problem, we had decided to use
8(X) as an estimator af. Then, the formal identity of the primed and unprimed
problem suggest that we should use

(1.16) S(X)=8(X1+a,..., X, +a)

to estimate’ = £ + ¢. On the other hand, it is natural to estiméate a by adding
a to the estimator of, i.e., by

(1.17) 8(X) +a.
As before, it seems desirable that these two estimators should agree and hence that

(1.18) (X1+a,...,X,+a)=8(Xq1,...,X,) +a forall a.
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Definition 1.3 An estimator satisfying (1.18) will be called equivariant under the
transformations (1.10), (1.11), and (1.13))@sation equivariant.

All the usual estimators of a location parameter are location equivariant. This
is the case, for example, for the mean, the median, or any weighted average of the
order statistics (with weights adding up to one). The ML also equivariant
since, ifé maximizesf (x — &), &€ +a maximizesf (x — & — a).

Aswasthe case in Example 1.1, the arguments for (1.16) and (1.17) as estimators
of & + a are of a very different nature. The appropriateness of (1.16) results from
the invariance of the situation under shift. It would not be suitable for an estimator
of & +a, for example, if it were known that & £ < 1. Then§(X) would typically
only take values between 0 and 1, and hef@€) would be disastrous as an
estimate off +a if a > 1. In contrast, the argument leading to (1.17) is quite
independent of any equivariance arguments, but simply reflects the fact that if
8(X) is a reasonable estimator of a paramétethens(X) + a is reasonable for
estimatings +a.

The following theorem states an important set of properties of location equiv-
ariant estimators.

Theorem 1.4 Let X be distributed with density (1.9), and let § be equivariant for
estimating & with loss function (1.15). Then, the bias, risk, and variance of § are
all constant (i.e., do not depend on £).

Proof. Note that ifX has densityf(x) (i.e.,& = 0), thenX + & has density (1.9).
Thus, the bias can be written as

b(§) = E¢[6(X)] — & = Eo[8(X +&)] — § = Eo[8(X)],

which does not depend @n
The proofs for risk and variance are analogous (Problem 1.1). O

Theorem 1.4 has an important consequence. Since the risk of any equivariant
estimator is independent &f the problem of uniformly minimizing the risk within

this class of estimators is replaced by the much simpler problem of determining
the equivariant estimator for which this constant risk is smallest.

Definition 1.5 In alocation invariant estimation problem, if a location equivariant
estimator exists which minimizes the constant risk, it is calledhth@mum risk
equivariant (MRE) estimator.

Such an estimator will typically exist, and is often unique, although in rare
cases there could be a sequence of estimators whose risks decrease to a value not
assumed. To derive an explicit expression for the MRE estimator, let us begin by
finding a representation of the most general location equivariant estimator.

Lemma 1.6 If §y is any equivariant estimator, then a necessary and sufficient
condition for § to be equivariant is that

(1.19) 8(x) = 8o(X) + u(X)

1 Some authors have called such estimaitarariant, which could suggest that the estimator remains
unchanged, rather than changing in a prescribed way. We will reserve that term for functions that
do remain unchanged, such as those satisfying (1.20).
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where u(x) is any function satisfying
(1.20) u(X+a)=u(x), forall X, a.

Proof. Assume firstthat(1.19)and (1.20) hold. Th&x+a) = So(X+a)+u(x+a) =
8o(X) +a +u(x) =8(X) +a, so thats is equivariant.
Conversely, if§ is equivariant, let

u(x) = 8(X) — 8o(x).
Then
u(x+a)=58(x+a) —do(X +a)
=8(X) +a — §o(X) — a = u(x)
so that (1.19) and (1.20) hold. O

To complete the representation, we need a characterization of the funetions
satisfying (1.20).

Lemma 1.7 A function u satisfies (1.20) if and only if it is a function of the dif-
ferencesy; =x; —x, (i =1,...,n—1),n > 2; forn = 1, ifand only if itisa
constant.

Proof. The proof is essentially the same as that of (1.15). O

Note that the functiom(-), which is invariant, is only a function of the ancillary
statistic §1, ..., y,—1) (see Section 1.6). Hence, by itself, it does not carry any
information about the parametgrThe connection between invariance and ancil-
larity is not coincidental. (See Lehmann and Scholz 1992, and Problems 2.11 and
2.12)

Combining Lemmas 1.6 and 1.7 gives the following characterization of equiv-
ariant estimators.

Theorem 1.8 If §g is any equivariant estimator, then a necessary and sufficient
condition for § to beequivariant isthat there existsa function v of n — 1 arguments
for which

(1.21) 8(x) = 80(X) — v(y) for all x.

Example 1.9 L ocation equivariant estimator sbased on oneobservation. Con-
sider the case = 1. Then, it follows from Theorem 1.8 that the only equivariant
estimators ar& + ¢ for some constant. I

We are now in a position to determine the equivariant estimator with minimum
risk.

Theorem 1.10 Let X = (X4, ..., X,) be distributed according to (1.9), let ¥; =
X;—X,(=1...,n=2and¥Y =(Yy,..., Y, 1). Supposethat theloss function
is given by (1.15) and that there exists an equivariant estimator &g of &€ with finite
risk. Assume that for each y there exists a number v(y) = v*(y) which minimizes

(1.22) Eo{p[80(X) — v(]ly}-
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Then, alocation equivariant estimator § of £ with minimumrisk existsand isgiven
by
8*(X) = 8o(X) — v*(Y).
Proof. By Theorem 1.8, the MRE estimator is found by determiningp as to
minimize
R:(8) = E¢{p[do(X) — v(Y) — &]}.
Since the risk is independent f it suffices to minimize

Ro(8) = Eolp[5a(X) — v(¥Y)]}
= / Eolp[50(X) — v)]ly) d Pofy).

The integral is minimized by minimizing the integrand, and hence (1.22), for each

y. Sincedy has finite riskEq{p[so(X)]|y} < oo (a.e.Pp), the minimization of

(21.22) is meaningful. The result now follows from the assumptions of the theorem.
O

Corollary 1.11 Under the assumptions of Theorem 1.10, supposethat p isconvex
and not monotone. Then, an MRE estimator of & exists; itisuniqueif p isstrictly
CONVEX.

Proof. Theorems 1.10 and 1.7.15. a

Corollary 1.12 Under the assumptions of Theorem 1.10:
(i) if p(d — &) = (d — §)? then
(1.23) v*(y) = Eoldo(X)IYI;
(ii) if p(d — &) = |d — &|, then v*(y) isany median of §o(X) under the conditional
distribution of X giveny.

Proof. Examples 1.7.17 and 1.7.18 a

Example 1.13 Continuation of Example 1.9. For the case = 1, if X has fi-
nite risk, the arguments of Theorem 1.10 and Corollary 1.11 show that the MRE
estimator isX — v* wherev* is any value minimizing

(1.24) Eo[p(X —v)].

In particular, the MRE estimator i§ — Eq(X) andX — medy(X) when the loss is
squared error and absolute error, respectively.

Suppose, now, thaf is symmetrically distributed abo&it Then, for any which
is convex and even, if follows from Corollary 1.7.19 that (1.24) is minimized by
v = 0, sothatX is MRE. Under the same assumptiong, if 2, the MRE estimator
is (X1 + X5)/2. (Problem 1.3). I

The existence of MRE estimators is, of course, not restricted to convex loss
functions. As an important class of nonconvex loss functions, consider the case
thatp is bounded.

Coroallary 1.14 Under the assumptionsof Example 1.13, supposethat 0 < p(z) <
M for all valuesof ¢, that p(r) — M ast — +o0, and that the density f of X is
continuous a.e. Then, an MRE estimator of & exists.



3.1] FIRST EXAMPLES 153

Proof. See Problem 1.8. |
Example 1.15 MRE under 0 — 1 loss. Suppose that

(1 ifld—¢| >k
pld—£)= {0 otherwise
Then,v will minimize (1.24), provided it maximizes
(1.25) Pof|X — v| < k}.

Suppose that the densifyis symmetric about 0. If is unimodal, thery = 0
and the MRE estimator d&f is X. On the other hand, suppose thfais U-shaped,
say f(x) is zero for|x| > ¢ > k and is strictly increasing for & x < c. Then,
there are two values af maximizing (1.25), namely = ¢ — k andv = —c +k,
hence X — c+k andX + ¢ — k are both MRE. I

Example 1.16 Normal. Let X4, ..., X,, be iid according taV(, o2), whereo
is known. If8; = X in Theorem 1.10, it follows from Basu’s theorem tlagtis
independent of and hence that(y) = v is a constant determined by minimizing
(1.24) with X in place ofX. ThusX is MRE for all convex and evenp. It is also
MRE for many nonconvex loss functions including that of Example 1.15. ||

This example has aninteresting implication concerning a “least favorable” prop-
erty of the normal distribution.

Theorem 1.17 Let F be the class of all univariate distributions F' that have a
density f (w.r.t. Lebesgue measure) and fixed finite variance, say o2 = 1. Let
X1, ..., X, beiidwith density f(x; — &), & = E(X;), and let r,(F) be therisk of
the MRE estimator of & with squared error loss. Then, r,,(F) takes on its maximum
value over F when F isnormal.

Proof. The MRE estimator in the normal caseXswith risk E(X — &)? = 1/n.
Since this is the risk oK, regardless of, the MRE estimator for any other
must have risk< 1/n, and this completes the proof. O

Forn > 3,the normal distributionis, in fact, the only one for whighF) = 1/n.
Since the MRE estimator is unique, this will follow if the normal distribution can
be shown to be the only one whose MRE estimato¥ igrom Corollary 1.12, it
is seen that the MRE estimator ¥ — Eg[X|Y] and, hence, isX if and only if
Eo[X|Y] = 0. It was proved by Kagan, Linnik, and Rao (1965, 1973) that this last
equation holds if and only if is normal.

Example 1.18 Exponential. Let X4, ..., X, be iid according to the exponential

distribution E (&, b) with b known. If §, = X (1) in Theorem 1.10, it again follows

from Basu’s theorem thaly is independent off and hence that(y) = v is

determined by minimizing

(1.26) Eo[p(X(2) — v)].

(a) If the loss is squared error, the minimizing value is Eo[ X(1)] = b/n, and
hence the MRE estimator ) — (b/n).

(b) If the loss is absolute error, the minimizing value is b(log 2)/n (Problem
1.4).
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(c) Ifthe loss function is that of Example 1.15, theis the center of the interval
I of length Z which maximizesP:=o[ X(1)¢I]. Since foré = 0, the density of
X (1) is decreasing on (@o), v = k, and the MRE estimator i&1) — .

See Problem 1.5 for another comparison. I

Example 1.19 Uniform. Let X4, ..., X,, be iid according to the uniform distri-
butionU (¢ — 1/2b, & + 1/2b), with b known, and suppose the loss functiois
convex and even. Fa@p, take [X(1) + X(,)]/2 whereXy) < --- < X, denote the
orderedX’s To findv(y) minimizing (1.22), consider the conditional distribution of
8o giveny. This distribution depends gnonly through the difference;, — X(y),

i =2,...,n. By Basu’s theorem, the paiX{1), X(»)) is independent of the ratios
Z = Xe)— Xol/ X — Xl i =2,...,n — 1 (Problem 1.6.36(b)). Therefore,
the conditional distribution afy given the differenceX ;) — X (1), which is equiva-
lent to the conditional distribution éf givenX,) — X (1) and theZ’s, depends only
on X, — X(1). However, the conditional distribution éf givenV = X(,,) — X (1) is
symmetric about 0 (whesh = 0; Problem 1.2). It follows, therefore, as in Example
1.13 that the MRE estimator &fis [X 1) + X(,)]/2, the midrange. I

When loss is squared error, the MRE estimator
(1.27) §%(X) = 80(X) — E[50(X)IY]
can be evaluated more explicitly.
Theorem 1.20 Under the assumptions of Theorem 1.15, with L(£, d) = (d — £)?,
the estimator (1.27) is given by
[ uf(er—u, ..., x, —u)du
o =y xy —u)du
and in thisform, it is known as the Pitman estimator of £.

Proof. Let §o(X) = X,. To computeEq(X,|y) (which exists by Problem 1.21),
make the change of variables

(1.28) 55 (x) =

vi=xi—x, (=21,...,n—=1); y, =x,.
The Jacobian of the transformation is 1. The joint density ofitisés therefore
Pyt s ¥a) = FOL+ Yas oo s Y1 F Vs )
and the conditional density of, giveny = (y1, ..., y,—1) IS

f(y1+ynv'~'vyn—1+ynsyn)
SO+t .oy tt,0)dt

It follows that

_Jtfatt o yemr H 2 1) dE
S fOutt .yt t)dt
This can be reexpressed in terms of #'eas

CJif(a—x . Xy — Xy 1) dE
[ flr—xa+t, .., xm1 — x, +2,1)dt

EO[Xn |y]
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or, finally, by making the change of variables- x,, — r as
Suf(er—u,...,x, —u)du
[ fa—u, .. xy —u)du
This completes the proof. a

EO[Xn |Y] = Xn

Example 1.21 (Continuation of Example 1.19). As an illustration of (1.28), let
us apply it to the situation of Example 1.19. Then

b_”ifé—gEXa)EX(n)Eé"'g
f(-xl_é:v"'ﬂxn_g):
0 otherwise

whereb is known. The Pitman estimator is therefore given by

xy+b/2 xy+b/2 -1 1
8*(x) = / udu / du = E[x(l) + X)),
X(y—b/2 X(y—b/2

which agrees with the result of Example 1.19. I

For most densities, the integrals in (1.28) are difficult to evaluate. The following
example illustrates the MRE estimator for one more case.

Example 1.22 Doubleexponential. Let X4, ..., X, be iid with double exponen-
tial distribution D E (&, 1), so that their joint density is (2") x exp(X|x; — &]).
Itis enough to evaluate the integrals in (1.28) over the set whete- - - < x,,. If
X < S < Xk+1,

n k
Sl —£=Y (6 —&)— Y (i —£)

k+1 1

n k
= Zx,- — Zx,- +(2k — n)¢.
k+1 1

The integration then leads to two sums, both in numerator and denominator of the
Pitman estimator. The resulting expression is the desired estimator. I

So far, the estimatay has been assumed to be nonrandomized. Let us now con-
sider the role of randomized estimators for equivariant estimation. Recall from the
proof of Corollary 1.7.9 that a randomized estimator can be obtained as a nonran-
domized estimata$(X, W) depending orX and an independent random variable
W with known distribution. For such an estimator, the equivariance condition
(1.18) becomes

(X +a, W)=6(X,W)+a forall a.
There is no change in Theorem 1.4, and Lemma 1.6 remains valid with (1.20)
replaced by
u(X+a,w) =ulX,w) forall x, w, anda.
The proof of Lemma 1.7 shows that this condition holds if and only if a
function only ofy andw, so that, finally, in generalization of (1.21), an estimator
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8(X, W) is equivariant if and only if it is of the form
(1.29) (X, W) = 8o(X, W) — (Y, W).

Applying the proof of Theorem 1.10 to (1.29), we see that the risk is minimized
by choosing fow(y, w) the function minimizing

EO{p[(SO(X9 U)) - U(y, U))]|y, U)}

Since the startingp can be any equivariant estimator, let it be nonrandomized,
that is, not dependent dif. SinceX andW are independent, it then follows that
the minimizingu(y, w) will not involve w, so that the MRE estimator (if it exists)
will be nonrandomized.

Suppose now thef is a sufficient statistic foE. Then,X can be represented
as (', W), whereW has a known distribution (see Section 1.6), and any estimator
8(X) can be viewed as a randomized estimator basefl.arhe above argument
then suggests that a MRE estimator can always be chosen to dep&hdrin
However, the argument does not apply since the far{dﬂ&, —00 < & < o0}
no longer needs be a location family. Let us therefore add the assumption that
T = (T, ..., T,) whereT; = T;(X) are real-valued and equivariant, that is, satisfy

(1.30) T;(x+a)=T;(x)+a forall x anda.

Under this assumption, the distributions®fdo constitute a location family. To

see this, le = X — & so thatV is distributed with density (vq, ..., v,). Then,

T;(X) = T;(V + &) = T;(V) + &, and this defines a location family. The earlier
argument therefore applies, and under assumption (1.30), an MRE estimator can
be found which depends only @h (For a general discussion of the relationship of
invariance and sufficiency, see Hall, Wijsman, and Ghosh 1965, Basu 1969, Berk
1972a, Landers and Rogge 1973, Arnold 1985, Kariya 1989, and Ramamoorthi
1990.)

InExamples 1.16, 1.18 and 1.19, the sufficient statisth(l), and X1y, X)),
respectively, satisfy (1.30), and the previous remark provides an alternative deriva-
tion for the MRE estimators in these examples.

It is interesting to compare the results of the present section with those on
unbiased estimation in Chapter 2. It was found there that when a UMVU estimator
exists, it typically minimizes the risk for all convex loss functions, but that for
bounded loss functions not even a locally minimum risk unbiased estimator can
be expected to exist. In contrast:

(a) An MRE estimator typically exists not only for convex loss functions but even
when the loss function is not so restricted.

(b) On the other hand, even for convex loss functions, the MRE estimator often
varies with the loss function.

(c) Randomized estimators need not be considered in equivariant estimation since
there are always uniformly better nonrandomized ones.

(d) Unlike UMVU estimators which are frequently inadmissible, the Pitman es-
timator is admissible under mild assumptions (Stein 1959, and Section 5.4).
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(e) The principal area of application of UMVU estimation is that of exponential
families, and these have little overlap with location families (see Section 1.5).

() For location families, UMVU estimators typically do not exist. (For specific
results in this direction, see Bondesson 1975.)

Let us next consider whether MRE estimators are unbiased.
Lemma 1.23 Let theloss function be squared error.

(@) When §(X) is any equivariant estimator with constant bias b, then §(X) — b
is equivariant, unbiased, and has smaller risk than §(X).

(b) The unique MRE estimator is unbiased.
(c) If aUMVU estimator exists and is equivariant, it is MRE.

Proof. Part (a) follows from Lemma 2.2.7; (b) and (c) are immediate consequences
of (a). a

That an MRE estimator need not be unbiased for general loss functions is seen
from Example 1.18 with absolute error as loss. Some light is thrown on the possible
failure of MRE estimators to be unbiased by considering the following decision-
theoretic definition of unbiasedness, which depends on the loss furiction

Definition 1.24 An estimators of g(0) is said to beisk-unbiased if it satisfies
(1.31) EgL[6,58(X)] < EoL[6',8(X)] forall ¢ 70,

If one interpretd.(0, d) as measuring how far the estimated valtis from the
estimandg(0), then (1.31) states that, on the averayis, at least as close to the
true valueg(0) as it is to any false valug(6’).

Example 1.25 Mean-unbiasedness. If the loss function is squared error, (1.31)
becomes

(1.32) Eo[8(X) — g(0)]? = Eo[8(X) — g(0)]> forall 6’ 6.

Suppose thak, (82) < oo and thatEy(8) € Q, for all 8, whereQ, = {g(9) : 6 €
Q}. [The latter condition is, of course, automatically satisfied wRten (— oo, 00)
andg(0) = 0, as is the case whehis a location parameter.] Then, the left side
of (1.32) is minimized by (0’) = E»8(X) (Example 1.7.17) and the condition of
risk-unbiasedness, therefore, reduces to the usual unbiasedness condition

(1.33) Ep3(X) = g(6).
I

Example 1.26 Median-unbiasedness. Ifthe loss function is absolute error, (1.31)
becomes

(1.34) Eg|8(X) — g(6")] = Eq|8(X) — g(0)| forall 6’ 76.

By Example 1.7.18, the left side of (1.34) is minimized by any mediai{ &). It
follows that (1.34) reduces to the condition

(1.35) med3(X) = g(6).
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that is,g(9) is a median o8(X), providedEy|§| < oo and2, contains a median
of §(X) for all 6. An estimators satisfying (1.35) is calledhedian-unbiased. ||

Theorem 1.27 If § is MRE for estimating & in model (1.9) with loss function
(1.15), then it is risk-unbiased.

Proof. Condition (1.31) now becomes
E¢p[8(X) — &1 > E¢p[8(X) —&] forall & 7¢,
or, if without loss of generality we pyt = 0,
Eop[8(X) — a] > Eop[8(X)] forall a.
O

That this holds is an immediate consequence of the facs (fat= §o(X) — v*(Y)
wherev*(y) minimizes (1.22).

2 ThePrinciple of Equivariance

In the present section, we shall extend the invariance considerations of the bi-
nomial situation of Example 1.1 and the location families (1.9) to the general
situation in which the probability model remains invariant under a suitable group
of transformations.

Let X be a random observable taking on values in a sample spaxeording
to a probability distribution from the family

(2.1) P={Py,0 € Q}.
Denote byC a class of 1: 1 transformatiogsof the sample space onto itself.
Definition 2.1
(i) If gisal:1 transformation of the sample space onto itself, if for éach
the distribution ofX’ = gX is again a member oP, say Py, and if as@

traverses$?, so doe®’, then theprobability model (2.1) isinvariant under the
transformatiorg.

(i) If (i) holds for each member of a class of transformatidghshen the model
(2.1) isinvariant under C.

A class of transformations that leave a probability model invariant can always
be assumed to be a group. To see thisGlet G(C) be the set of all compositions
(defined in Section 1.4) of a finite number of transformatigiis- - - ¢! with
g1,...,8m € C, where each of the exponents can be +1-drand where the
elements, ..., g, need not be distinct. Then, any elemgng G leaves (2.1)
invariant, andG is a group (Problem 2.1), the grogpnerated by C.

Example 2.2 Location family.

(a) Considerthelocation family (1.9) and the group of transformadorsX +a,
which was already discussed in (1.10) and Example 4.1. It is seen from (1.12)
that if X is distributed according to (1.9) with= &, thenX’ = X + a has the
density (1.9) withp’ = &’ = & + a4, so that the model (1.9) is preserved under
these transformations.
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(b) Suppose now that, in additiori,has the symmetry property
(2.2) f(=x)=f(x)

where—x = (—xg, ..., —x,), and consider the transformatiah= —x. The
density ofX’ is

fexi—& . —x, = &)= f—&, ... x, &)

if & = —&. Thus, model (1.9) is invariant under the transformations —x,

&’ = —&, and hence under the group consisting of this transformation and the
identity (Problem 2.2). This is not true, howeverfidoes not satisfy (1.10).

If, for example, X1, ..., X, are iid according to the exponential distribution
E(&, 1), then the variables- X1, ..., —X, no longer have an exponential
distribution. I

Let{gX, g € G} be a group of transformations of the sample space which leave
the model invariant. Ig X has the distributio®,, thend’ = g6 is a function which
maps2 onto 2, and the transformatiogy is 1: 1, provided the distributions,,

0 € Q are distinct (Problem 2.3). It is easy to see that the transformagidimsn
also form a group which will be denoted I6y(Problem 2.4). From the definition
of g0, it follows that

(23) P@(gX (S A) = ng(X € A)

where the subscript on the left side indicates the distributioX,afot that ofg X.
More generally, for a functiogr whose expectation is defined,

(2.4) Egly(eX)] = Egol (X)].

We have now generalized the transformations (1.10) and (1.11), and itremains to
consider (1.13). This last generalization is most easily introduced by an example.

Example 2.3 Two-sample location family. Let X = (X31,...,X,,) andY =
(Y1, ..., Y,) and suppose thaX( Y) has the joint density

(25 fx=&y-n=fltn—§&....xn—&Ey1 =1 ... =)

This model remains invariant under the transformations

(2.6) g(X,y) = (X+a,y+b), g&, n)=E+a,n+b).
Consider the problem of estimating
2.7) A=n-—E&.

If the transformed variables are denoted by
X =X +a, y/:y+b, ,s;:/:g+a, ;7/:;7+b,

thenA is transformed inta\’ = A + (b — a). Hence, an estimated valdewhen
expressed in the new coordinates, becomes

(2.8) d=d+b—a).
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For the problem to remain invariant, we require, analogously to (1.14), that the
loss functionL (¢, n; d) satisfies

(2.9) L[ +a,n+bid+(b—a)l= L. n;d).

Itis easy to see (Problem 2.5) that this is the case if and oilyigpends only on
the differencef — &) — d, that s, if

(2.10) L(&, n;d) = p(A — ).
Suppose, next, that instead of estimatingé, the problem is that of estimating
h(E.n) = &%+

Under the transformations (2.6, n) is transformed intog+a)? + (y + b)?. This

does not lead to an analog of (2.8) since the transformed value does not depend on
(&, n) only thoughi(&, n). Thus, the form of the function to be estimated plays a
crucial role in invariance considerations.

Now, consider the general problem of estimath{@) in model (2.1), which is
assumed to be invariant under the transformatihs ¢X, 0’ = g6, ¢ € G. The
additional assumption required is that for any gierk(g6) depends o only
throughhi(0), that is,

(2.11) h(6) = h(2) implies h(g61) = h(365).

The common value di(g#) for all 8's to whichi assigns the same value will then
be denoted by
(2.12) h(g0) = g*h(0).
If H is the set of values taken on lif6) as6 ranges over?, the transforma-
tions g* are 1: 1 fromH onto itself. [Problem 2.8(a)]. A§ ranges oveG, the
transformationg* form a groupG* (Problem 2.6).

The estimated valu of #(0) when expressed in the new coordinates becomes

(2.13) d =g"d.

Since the problems of estimatirgp) in terms of (X, 6, d) or h(0’) in terms of
(X', 6, d") represent the same physical situation expressed in a new coordinate
system, the loss function should satigf(o’, d’) = L(0, d).

This leads to the following definition.

Definition 2.4 If the probability model (2.1) is invariant undgrthe loss function
L satisfies

(2.14) L(g0,g"d) = L(0,d),

andh(0) satisfies (2.11), the problem of estimatif@@) with loss functionL is
invariant under g.

In this discussion, it was tacitly assumed that theBeif possible decisions
coincides with. This need not, however, be the case. In Chapter 2, for example,
estimators of a variance were permitted (with some misgiving) to take on negative
values. In the more general case that a subset oD, one can take the condition
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that (2.14) holds for alp as the definition okg*d. If L(9,d) = L(8, d") for all
0 impliesd = d’, as is typically the case;*d is uniquely defined by the above
condition, andg* is 1: 1 fromD onto itself [Problem 2.8(b)].

In an invariant estimation problem, dfis the estimator that we would like to
use to estimatg(0), there are two natural ways of estimatigigh (9), the estimand
h(0) expressed in the transformed system. One of these generalizes the estimators
(1.6) and (1.16), and the other the estimators (1.6) and (1.17) of the preceding
section.

1. Functional Equivariance. Quite generally, if we have decided to uX&) to
estimater (), it is natural to use

#[8(X)] as the estimator ap[x(0)],

for any functionyp. If, for example §(X) is used to estimate the lengtlof the edge

of a cube, it is natural to estimate the volu#veof the cube by §(X)]3. Hence, if

d is the estimated value &{#), theng*d should be the estimated valuegf:(6).
Applying this to¢ = g* leads to

(2.15) g"8(X) as the estimator of *1(0)
whené§(X) is used to estimati(d).

2. Formal Invariance. Invariance under transformatiogsg, andg* of the esti-
mation of(6) means that the problem of estimatia() in terms ofX, 6, and

d and that of estimating*k() in terms ofX’, 6/, andd’ are formally the same,

and should therefore be treated the same. In generalization of (1.6) and (1.16), this
means that we should use

(2.16) 8(X') = 8(gX) to estimateg*[1(0)] = h(30).

It seems desirable that these two principles should lead to the same estimator
and hence that

(2.17) 8(gX) = g*8(X).

Definition 2.5 In an invariant estimation problem, an estimat(x) is said to be
equivariant if it satisfies (2.17) for alg € G.

As was discussed in Section 1, the arguments for (2.15) and (2.16) are of a
very different nature. The appropriateness of (2.16) results from the symmetries
exhibited by the situation and represented mathematically by the invariance of the
problem under the transformatiogse G. It gives expression to the idea that if
some symmetries are present in an estimation problem, the estimators should pos-
sess the corresponding symmetries. It follows that (2.16) is no longer appropriate
if the symmetry is invalidated by asymmetric prior information; if, for examgle,
is known to be restricted to a subsedf the parameter spaég, for whichgw 7 w,
as was the case mentioned at the end of Example 1.1.1 and after Definition 1.3.
In contrast, the argument leading to (2.15) is quite independent of any symmetry
assumptions and simply reflects the fact tha(¥) is a reasonable estimator of,
say,0 theng[5(X)] is a reasonable estimator ¢{6).
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Example 2.6 Continuation of Example 2.3. In Example 2.3/(¢,n) = n — &,
and by (2.8)g*d =d + (b — a). It follows that (2.17) becomes

(2.18) S(X+a,y+b)=8(X,y)+b —a.

If $o(X) andsy(Y) are location equivariant estimatorsgoéindy, respectively, then
8(X, Y) = 85(Y) — 80(X) is an equivariant estimator gf— &. I

The following theorem generalizes Theorem 1.4 to the present situation.

Theorem 2.7 If § is an equivariant estimator in a problem which is invariant
under a transformation g, then the risk function of § satisfies

(2.19) R(g6,8) = R(0,8) forall 6.
Proof. By definition
R(g0,8) = EgoL[g0, 5(X)].
It follows from (2.4) that the right side is equal to
EgL[g0,3(gX)] = EoL[g0, 8"6(X)] = R(0, 9).
O

Looking back on Section 1, we see that the crucial fact underlying the success of
the invariance approach was the constancy of the risk function of any equivariant
estimator. Theorem 2.7 suggests the following simple condition for this property
to obtain.

A group G of transformations of a space is said tothansitive if for any two
points there is a transformation @ taking the first point into the second.

Corollary 2.8 Under the assumptions of Theorem 2.7, if G is transitive over the
parameter space €2, then the risk function of any equivariant estimator isconstant,
that is, independent of 6.

When the risk function of every equivariant estimator is constant, the best equiv-
ariant estimator (MRE) is obtained by minimizing that constant, so that a uniformly
minimum risk equivariant estimator will then typically exist. In such problems,
alternative characterizations of the best equivariant estimator can be obtained.
(See Problems 2.11 and 2.12.) Berk (1967a) and Kariya (1989) provide a rigorous
treatment, taking account of the associated measurability problems. A Bayesian
approach to the derivation of best equivariant estimators is treated in Section 4.4.

Example 2.9 Conclusion of Example 2.3. In this exampled = (&, n) andgo =

(¢ +a, n +b). This group of transformations is transitive o¥essince, given any

two points €, n) and €’, '), a andb exist such that +a = &', andn+b =n'. The

MRE estimator can now be obtained in exact analogy to Section 3.1 (Problems
1.13 and 1.14). I

The estimation problem treated in Section 1 was greatly simplified by the fact
that it was possible to dispense with randomized estimators. The corresponding
result holds quite generally wheh s transitive. If an estimatat exists which is
MRE among all nonrandomized estimators, it is then also MRE when randomiza-
tion is permitted. To see this, note that a randomized estimator can be represented
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asé’ (X, W) whereW is independent oKX and has a known distribution and that
it is equivariant if8’(g X, W) = g*8'(X, W). Its risk is again constant, and for any
0 = 0y, itis equal toE[h(W)] where

h(w) = EOO{L[(S/(Xv T,U), ‘90]}

This risk is minimized by minimizing(w) for eachw. However, by assumption,
8'(X, w) = §(X) minimizesh(w), and hence the MRE estimator can be chosento be
nonrandomized. The corresponding result need not hold @hismot transitive.

A counterexample is given in Example 5.1.8.

Definition 2.10 For a groupg of transformations of2, two pointsé;, 6, € Q

areequivalent if there exists ag € G such thatgf; = 6. The totality of points
equivalent to a given point (and hence to each other) is callemlanof G. The
groupg is transitive over if it has only one orbit.

For the most part, we will consider transitive groups; however, there are some
groups of interest that are not transitive.

Example2.11 Binomial transformation group. Let X ~ binomial@, p), 0 <
p < 1, and consider the group of transformations.

gX=n-X,

gp=1-p.
The orbits are the pairg(1 — p). The group is not transitive. I

Example 2.12 Orbits of a scale group. Let X4, ..., X,, be iid N(u, 02), both
unknown, and consider estimation®f. The model remains invariant under the
scale group

gXi=aXi,
g(u, 0% = (ap,a’s?, a=>0.

We shall now show that{i, o?) and (2, o2) lie on the same orbit if and only if
p1/01 = p2/02.

On the one hand, suppose that/o; = ua/o2. Then,uy/ w1 = o2/01 = a, say,
andu, = aps; 02 = a®o?. On the other hand, ifi; = apq ando? = a?0?, then
a2/p1 = a ando2/o? = a. Thus, the values of = ;/o can be used to label the
orbits ofg. I

The following corollary is a straightforward consequence of Theorem 2.7.

Corollary 2.13 Under the assumptions of Theorem 2.7, the risk function of any
equivariant estimator is constant on the orbits of G.

Proof. See Problem 2.15. ]

In Section 1.4group families were introduced as families of distributions gen-
erated by subjecting a random variable with a fixed distribution to a group of
transformations. Consider now a family of distributidRs= {P,, 6 € Q} which
remains invariant under a group for which G is transitive ovelQ andg; # g»
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implies g1 # 2,. Let 6y be any fixed element ak. ThenP is exactly the group
family of distributions of{g X, g € G} whenX has distributionP,.

Conversely, letP be the group family of the distributions gfX asg varies
overG, whenX has a fixed distributio®, so thatP = {P,, g € G}. Then,g can
serve as the parameteandG as the parameter space. In this notation, the starting
distribution P becomesP,, wheree is the identity transformation. Thus, a family
of distributions remains invariant under a transitive group of transformations of
the sample space if and only if it is a group family.

When an estimation problem is invariant under a group of transformations and
an MRE estimator exists, this seems the natural estimator to use—of the various
principles we shall consider, equivariance, where it applies, is perhaps the most
convincing. Yet, even this principle can run into difficulties. The following example
illustrates the possibility of a problem remaining invariant under two different
groups,G1 andG,, which lead to two different MRE estimatog ands,.

Example 2.14 Counterexample. Let the pairs K1, X») and (1, Y>) be indepen-
dent, each with a bivariate normal distribution with mean zero. Let their covariance
matrices be& = [o;;] and A% = [Ao;;], A > 0, and consider the problem of es-
timating A.

Let G, be the group of transformations

X/lza1X1+a2X2 Y1’=c(a1Y,~ +ayY?)

(220) X/Zsz2 YZ,:CbYZ.

Then, X7, X5)and (7, Y;) willagain be independentand each will have a bivariate
normal distribution with zero mean. If the covariance matrixXsf,(X5) is X', that
of (Y], Y5) is A’S’ whereA’ = ¢2A (Problem 2.16). ThusG; leaves the model
invariant.

If A(2, A) = A, (2.11) clearly holds, (2.12) and (2.13) become

(2.21) A =c2A, d =,

respectively, and a loss functidi(A, d) satisfies (2.14) providefl(c?A, ¢?d) =
L(A, d). This condition holds if and only if. is of the form

(2.22) L(A, d) = p(d/A).

[For the necessity of (2.22), see Problem 2.10.]
An estimators of A is equivariant under the above transformation if

(2.23) S(X,Y) = c?5(x, ).

We shall now show that (2.23) holds if and only if
ky?

(2.24) §(x,y) = — for some value ok a.e.
X

2

Itis enough to prove this for the reduced sample space in which the a{y(ﬂ'fyg?
1)2

is nonsingular and in which botty, andy, are# 0, since the rest of the sample
space has probability zero.
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Let G’ be the subgroup ofi; consisting of the transformations (2.20) with
b = ¢ = 1. The condition of equivariance under these transformations reduces to

(2.25) S(X,y) =8(x,y).
This is satisfied whenevérdepends only om, andy, sincex; = x; andy, = y».
To see that this condition is also necessary for (2.25), supposkdatisfies (2.25)
and let 1, x2; ¥1, y2) and {1, x2; y1, y2) be any two points in the reduced sample
space which have the same second coordinates. Then, there,;exigta, such
that
X1 = aixy +agxo; y = a1y +azyz,

that is, there existg € G’ for which g(x, y) = (X'y’), and henceé depends only
Oonxy, yz.

Consider now any’(xz, y2). To be equivariant under the full grodp;, 8’ must
satisfy
(2.26) 8'(bxa, cbys) = ¢28' (x2, v2).
Forx, = y, = 1, this condition becomes

8'(b, cb) = ¢?8'(1, 1)

and hence reduces to (2.24) with= b, y, = bc, andk = §'(1, 1). This shows that

(2.24) is necessary fdrto be equivariant; that it is sufficient is obvious.
The best equivariant estimator undgy is thusk*Y7/ X3 wherek* is a value

which minimizes

AX?Z X3
Such a minimizing value will typically exist. Suppose, for example, that the loss
islif|d — A|/A > 1/2 and zero otherwise. Thekr; is obtained by maximizing

» kYZZ N_p (L vz 3

— —1ll<=)= — < =<=]-.

"\["x2 2) "M\ T x2 T &

As k — 0 or oo, this probability tends to zero, and a maximizing value therefore

exists and can be determined from the distributiol$HfX3 whenA = 1.
Exactly the same argument applie&if is replaced by the transformatiots

X;_:bxl Yizcbyl
X/Z =a X1 taxXs YZI =c(a1Y1 + ayY?)

and leads to the MRE estimatbtY?/ X2. See Problems 2.19 and 2.20. I

In the location case, it turned out (Theorem 1.27) that an MRE estimator is
always risk-unbiased. The extension of this result to the general case requires
some assumptions.

Theorem 2.15 If G istransitive and G* commutative, then an MRE estimator is
risk-unbiased.

Proof. Let$ be MRE and, 6’ € Q. Then, by the transitivity ot there exists
g € G such thav = g6, and hence

EoL[0', 8(X)] = EoL[g "0, 8(X)] = EoL[0, g*8(X)].
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Now, if §(X) is equivariant, so ig*5(X) (Problem 2.18), and, therefore, sintis
MRE,

EgL[6, g*8(X)] = EoL[0, 6(X)].
which completes the proof. O

Transitivity of G will usually [but not always, see Example 2.14(a) below] hold
when an MRE estimator exists. On the other hand, commutativity*afposes
a severe restriction. That the theorem need not be valid if either condition fails is
shown by the following example.

Example 2.16 Counterexample. Let X be N (&, o2) with both parameters un-
known, let the estimand kigand the loss function be

(2.27) L. 0;d) = (d —§)*/o”.

(a) The problem remains invariant under the gra@up gx = x + ¢. It follows
from Section 1 thaX is MRE underG;. However,X is not risk-unbiased
(Problem 2.19). Here3 1 is the group of transformations

§(.0)=( +c 0),
which is clearly not transitive.

If the loss function is replaced by (- £)?, the problem will remain invariant
underGi; X remains equivariant but is now risk-unbiased by Example 1.25.
Transitivity of G is thus not necessary for the conclusion of Theorem 2.15.

(b) When the loss function is given by (2.27), the problem also remains invariant
under the larger grou@, : ax+c, 0 < a. SinceX is equivariant unde, and
MRE underG,, it is also MRE undelG,. However, as stated in (i) is not
risk-unbiased with respect to (1.35). He€s, is the group of transformations
g*d = ad + ¢, and this is not commutative (Problem 2.19). I

The location problem considered in Section 1 provides an important example
in which the assumptions of Theorem 2.15 are satisfied, and Theorem 1.27 is the
specialization of Theorem 2.15 to that case. The scale problem, which will be
considered in Section 3, can also provide another illustration.

We shall not attempt to generalize to the present setting the characterization of
equivariant estimators which was obtained for the location case in Theorem 1.8.
Some results in this direction, taking account also of the associated measurability
problems, can be found in Eaton (1989) or Wijsman (1990). Instead, we shall
consider in the next section some other extensions of the problem treated in Section
1.

We close this section by exhibiting a family of distributions for which there
exists no group leavin@ invariant (except the trivial group consisting of the
identity only).

Theorem 2.17 Let X be distributed according to the power series distribution
[see(2.3.9)]

(2.28) P(X =k)=c0*n(); k=0,1,..., 0<6 < oco.
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If ¢, > Ofor all k, then there does not exist a transformation gx = g(x) leaving
the family (2.28) invariant except the identity transformation g(x) = x for all x.

Proof. SupposeY = g(X) is a transformation leaving (2.28) invariant, and let
g(k) = ar andgd = . Then,Py(X = k) = P,(Y = a;) and hence

(2.29) ci6*h(6) = e n* h(p).
Replacingk by k + 1 and dividing the resulting equation by (2.29), we see that
(2.30) T g = fan e,

Ck Cay

Replacingk by k +1 in (2.30) and dividing the resulting equation by (2.30) shows
that

u2=41 js proportional tgu®+ % forall 0 < u < m
and hence that
Qp+2 — Q+1 = Qg+l — Qi

If we denote this common value hy, we get
(2.31) ay =ag+kA for k=012, ....

Invariance of the model requires the set (2.31) to be a permutation of the set
{0,1,2,...}. This implies thatA > 0 and hence thaty = 0 andA =1, i.e., that
ar = k andg is the identity. O

Example 2.11 shows that this result no longer holds if 0 for k exceeding
somekg; see Problem 2.28.

3 Location-Scale Families

The location model discussed in Section 1 provides a good introduction to the ideas
of equivariance, but it is rarely realistic. Even when it is reasonable to assume the
form of the densityf in (1.9) to be known, itis usually desirable to allow the model
to contain an unknown scale parameter. The standard normal model according to
which X4, ..., X, are iid asN(&, o) is the most common example of such a
location-scale model. In this section, we apply some of the general principles
developed in Section 2 to location-scale models, as well as some other group
models. As preparation for the analysis of these models, we begin with the case,
which is of interest also in its own right, in which the only unknown parameter is
scale parameter.

LetX = (X4, ..., X,) have ajoint probability density

(3.1) (=2

where f is known andr is an unknownscale parameter. This model remains
invariant under the transformations

Xn
—) T >0,
T

(3.2) X, =bX;, v =btr for b>0.
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The estimand of primary interest igz) = 1. Sinceh is strictly monotone,
(2.11) is vacuously satisfied. Transformations (3.2) induce the transformations

(3.3) h(zr) > b't" =b"h(r) andd =b"d,
and the loss functioi. is invariant under these transformations, provided
(3.4) L(bt,b"d) = L(z, d).
This is the case if and only if it is of the form (Problem 3.1)
d

(3.5) L(r,d)=vy (t_'> .
Examples are

d— 1" 2 d—1"
(3.6) L(z,d) = # and L(r.d)=4—"

T "

but not squared error.
An estimatoss of ¢ is equivariant under (3.2), gcale equivariant, provided

3.7) 3(bX) = b"8(X).
All the usual estimators of are scale equivariant; for example, the standard devi-

ation\/Z (X — X)z/(n — 1), the mean deviatio®x|X; — X|/n, the range, and
the maximum likelihood estimator [Problem 3.1(b)].

Since the grougs of transformationss’ = bt, b > 0, is transitive over,
the risk of any equivariant estimator is constant by Corollary 2.8, so that one can
expect an MRE estimator to exist. To derive it, we first characterize the totality of
equivariant estimators.

Theorem 3.1 Let X have density (3.1) and let §o(X) be any scale equivariant
estimator of ”. Then, if

(3.8) z,~=£(i=l,...,n—1) and z,,=x—n
Xn [ %,
andifz=(zy, ..., z,), anecessary and sufficient condition for § to satisfy (3.7) is
that there exists a function w(z) such that
So(X)
8(x) = .

Proof. Analogous to Lemma 1.6, a necessary and sufficient conditiod for
satisfy (3.7) is that it is of the form(x) = §o(x)/u(x) where (Problem 3.4)

(3.9 u(bx) =u(x) forall x andall b > 0.

It remains to show that (3.9) holds if and onlyuifdepends omx only throughz.
Note here thar is defined whern, # 0 and, hence, with probability 1. That any
function ofz satisfies (3.9) is obvious. Conversely, if (3.9) holds, then

_ X1 Xn—-1 Xn .
u(xg, ..., x)=ul{—,..., — )

9
Xy Xy x|

henceu does depend only an as was to be proved. a
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Example 3.2 Scale equivariant estimator based on one observation. Suppose
thatn = 1. Then, the most general estimator satisfying (3.7) is of the {0 (Z)
whereZ = X/|X|is+1 asX is > or < 0, so that

_[AXx" if X>0
a(x)_{BX’ if X <0,
A, B being two arbitrary constants. I

Let us now determine the MRE estimator for a general scale family.
Theorem 3.3  Let X bedistributed accordingto (3.1) and let Z begiven by (3.8).
Suppose that theloss function is given by (3.5) and that there exists an equivariant
estimator §q of " with finite risk. Assume that for each z, there exists a number
w(z) = w*(z) which minimizes

(3.10) Eafy[60(X)/w(2)]12}.

Then, an MRE estimator §* of t” exists and is given by
* _ 80(X)

(3.11) 3*(X) = ()’

The proof parallels that of Theorem 1.10.

Coroallary 3.4 Under the assumptions of Theorem 3.3, suppose that p(v) = y (e?)
is convex and not monotone. Then, an MRE estimator of t” exists; it isuniqueif p
is strictly convex.

Proof. By replacingy (w) by p(logw) [with p(—o00) = 3 (0)], the result essentially
reduces to that of Corollary 1.11. This argument requiressthad, which can be
assumed without loss of generality (Problem 3.2). O

Example 3.5 Standardized power loss. Consider the loss function

ld —t"|P P (d)
- - =y (=
T

(3.12) L(t,d)= —— =
TP

with y(v) = |v — 1|”. Then, p is strictly convex forv > 0, providedp > 1

(Problem 3.5). Under the assumptions of Theorem 3.3, if we set

619 (4)-4,

" TZr

then (Problem 3.10)

(3.14) 5*(X) = 8o(X)E1[80(X)|Z] .

Eq[83(X)1Z]

if
d d—1"
(3.15) v (—) _ld=71
T T’
then§*(X) is given by (3.11), withw*(Z) any scale median of §o(X) under the
conditional distribution o givenZ and witht = 1, that is,w*(z) satisfies

(3.16) E(X|Z2)I(X = w*(2)) = EX|2)I(X = w*(2))
(Problems 3.7 and 3.10). I
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Example 3.6 Continuation of Example 3.2. Suppose that = 1, andX > 0

with probability 1. Then, the arguments of Theorem 3.3 and Example 3.5 show
that if X" has finite risk, the MRE estimator of is X" /w* wherew* is any value
minimizing

(3.17) Ea[y (X" /w)].
In particular, the MRE estimator is
(3.18) X" EA(X")/E1(X%)

when the loss is (3.13), and it " /w*, wherew™ is any scale median of” for
t =1, when the loss is (3.15). I

Example 3.7 MRE for normal variance, known mean. Let X, ..., X, be iid
according taV (0, o) and consider the estimation@f. Forsy = X X2, it follows
from Basu'’s theorem tha, is independent of and hence thab*(z) = w* is
a constant determined by minimizing (3.17) wihx? in place of X". For the
loss function (3.13) withr = 2, the MRE estimator turns out to kEXl?/(n +2)
[Equation (2.2.26) or Problem 3.7]. I

Quite generally, when the loss function is (3.13), the MRE estimatar i
given by
Jo v f (v, .. vxg) d
fooo v =1 f(vxq, ..., vx,)do’
and in this form, it is known as tHeéitman estimator of . The proof parallels that

of Theorem 1.20 (Problem 3.16).
The loss function (3.13) satisfies

lim L(z,d) =00 but limL(z,d) = 1,
d— o0 d—0

(3.19) §5(x) =

so that it assigns much heavier penalties to overestimation than to underestimation.
An alternative to the loss function (3.13) and (3.15), firstintroduced by Stein (James
and Stein, 1961), and known 8ein’'sloss, is given by

(3.20) Ly(z, d) = (d/7") — log(d/t") — 1.

For this loss, lim . Ls(t,d) =lim,_ L,(z, d) = oo; it is thus somewhat more
evenhanded. For another justification of (3.20), see Brown 1968, 1990b and also
Dey and Srinivasan 1985.

The change in the estimator (3.14) if (3.13) is replaced by (3.20) is shown in the
following corollary.
Coroallary 3.8 Under the assumptions of Theorem 3.3, if the lossfunctionis given
by (3.20), the MRE estimator §* of " is uniquely given by

(3.21) 85 = 80(X)/ E1(60(X)|2).
Proof. Problem 3.19. a

In light of the above discussion about skewness of the loss function, it is inter-
esting to comparé® of (3.21) withs* of (3.14). Itis clear thag¥ > §* if and only
if E1(83(X)1Z) > [E1(80(X)|Z)]2, which will always be the case. Thus, results
in an estimator which is larger.
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Example 3.9 Normal scale estimation under Stein’s loss. For the situation of
Example 3.7, with- = 2, the MLE is§(x) = £ X?/n which is always larger than

8* = £X?/(n + 2), the MRE estimator unddr,(z, ). Brown (1968) explores the
loss functionL, further, and shows that it is the only scale invariant loss function
for which the UMVU estimator is also the MRE estimator. I

So far, the estimatos has been assumed to be nonrandomized. Sihis
transitive overg, it follows from the result proved in the preceding section that
randomized estimators need not be considered. It is further seen, as for the cor-
responding result in the location case, that if a sufficient statis&xists which
permits a representatidh = (71, ..., 7,) with

T;(bX) = bT;(X) forall b > 0,

then an MRE estimator can be found which depends onl¥ oltlustrations are
provided by Example 3.7 and Problem 3.12, with= (£X?)Y2 andT = Xy,
respectively. When the loss function is (3.13), it follows from the factorization
criterion that the MRE estimator (3.19) depends onlyfon

Since the group’ = bz, b > 0, is transitive and the groufl = " d is commuta-
tive, Theorem 3.3 applies and an MRE estimator is always risk-unbiased, although
the MRE estimators of Examples 3.7 and 3.9 are not unbiased in the sense of
Chapter 2. See also Problem 3.12.

Example 3.10 Risk-unbiasedness. If the loss function is (3.13), the condition of
risk-unbiasedness reduces to

(3:22) E[8°(X)] = t" E[8(X)].

Given any scale equivariant estimatip(X) of 7", there exists a value af for
which ¢§o(X) satisfies (3.22), and for this valugiy(X) has uniformly smaller risk
thando(X) unlessc = 1 (Problem 3.21).

If the loss function is (3.15), the condition of risk-unbiasedness requires that
E;|8(X)—al/a be minimized by: = 7". From Example 3.5, for this loss function,
risk-unbiasedness is equivalent to the condition that the estimfasequal to the
scale median af(X). I

Letus nowturntolocation-scale families, where the densi¥/ sf(X4, ..., X,,)
is given by
1 — n —
(3.23) —f(xl . s)
T T T

with both parameters unknown. Consider first the estimatiari @fith loss func-
tion (3.5). This problem remains invariant under the transformations

(3.24) X, =a+bX;, & =a+b§, v =bt (b>D0),
andd’ = b"d, and an estimatat of t” is equivariant under this group if
(3.25) 8(a + bX) = b"8(X).

Consider first only a change in location,
(3.26) X, =X +a,
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which takes into&’ = &£ +a but leaves unchanged. By (3.25),must then satisfy
(3.27) (X +a) =8(x),

that is, remainnvariant. By Lemma 1.7, condition (3.27) holds if and onlifs
a function only of the differenceg = x; — x,,. The joint density of the’s is

+ +
(3.28) —/ (yl Lot t,i) di
T T

/ f(y1+ 7yn71+uyu) du.
T o T T

Since this density has the structure (3.1) of a scale family, Theorem 3.3 applies
and provides the estimator that uniformly minimizes the risk among all estimators
satisfying (3.25).
It follows from Theorem 3.3 that such an MRE estimator bfs given by
So(Y)
w*(Z)
wheredo(Y) is any finite risk scale equivariant estimator f based ony =
(Y1, ..., Y, 1), whereZ = (Z4, ..., Z,_1) with
Yi Yn—l

i=1...,n—2) andZ, ;= ,
n—1 |Yn—1|

(3.29) 5(X) =

(3.30) Zi =

and wherew*(Z) is any number minimizing

(3:31) Ec=1{y[80(Y)/w(2)IZ]}.

Example3.11 MRE for normal variance, unknown mean. Let X, ..., X, be
iid according toN (&, o2) and consider the estimation of with loss function
(3.13),r = 2. By Basu’s theorem X, (X; — X)?) is independent of . If § =
2 (X; — X)?, thendy is equivariant under (3.24) and independenZofHence,
w*(2) = w* in (3.29) is a constant determined by minimizing (3.17) vaittX; —
X)? in place ofX". SinceX(X; — X)? has the distribution of, of Example 3.7
with n — 1 in place ofz, the MRE estimator for the loss function (3.13) with 2
is T(X; — X)?/(n +1). [

Example 3.12 Uniform. Let Xy, ..., X, be iid according td/ (¢ — 37, & + 37),
and consider the problem of estlmatmg/wth loss function (3. 13)r 1. By
Basu’s theorem X (1), X)) is independent of. If §¢ is the rangeR = X(,) — X (1),
it is equivariant under (3.24) and independeniofit follows from (3.18) with
r = 1 that (Problem 3.22)*(X) = [(n + 2)/n]R. I

Since the groug’ = a + b&, v’ = bt is transitive and the groug’ = b'd is
commutative, it follows (as in the pure scale case) that an MRE estimator is always
risk-unbiased.

The principle of equivariance seems to suggest that we should want to invoke
as much invariance as possible and hence use the largest@rofiransforma-
tions leaving the problem invariant. Such a group may have the disadvantage of
restricting the class of eligible estimators too much. (See, for example, Problem



3.3] LOCATION-SCALE FAMILIES 173

2.7.) To increase the number of available estimators, we may then want to restrict

attention to a subgrou@, of G. Since estimators that are equivariant unGeare

automatically also equivariant undéy, invariance unde6, alone will leave us

with a larger choice, which may enable us to obtain improved risk performance.
For estimating the scale parameter in a location-scale family, a natural subgroup

of (3.24) is obtained by setting= 0, which reduces (3.24) to the scale group

(3.32) X;=bX;, & =0b&, ' =br (b>0),

andd’ = b"d. An estimators of t” is equivariant under this group #{»X) =
b"8(X), asin (3.7). Application of Theorem 3.1 shows that the equivariant estima-
tors are of the form

= %09

(3.33) 8(x) = 00

wheredy is any scale equivariant estimator ank) is a function ofz; = X;/X,,,
i=1,...,n—1,andz, = x,/|x,|. However, we cannot now apply Theorem 3.3
to obtain the MRE estimator, because the group is no longer transitive (Example
2.14), and the risk of equivariant estimators is no longer constant.

We can, however, go further in special cases, such as in the following example.

Example 3.13 More normal variance estimation. If X;,..., X, are iid as
N(&, 72), with both parameters unknown, then it was shown in Example 3.11
that8o(x) = Z(x; — x)?/(n + 1) = §?/(n + 1) is MRE under the location-scale
group (3.24) for the loss function (3.13) with= 2.

Now consider the scale group (3.32). Of cour&gis equivariant under this
group, but so are the estimators

8(x) = p(x/s)s?

for some functiorp(-) (Problem 3.24). Stein (1964) showed thét /s) = min{(n+
1)L (n + 2)"(1 + nx?/s?)} produces a uniformly better estimator th& and
Brewster and Zidek (1974) found the best scale equivariant estimator. See Example
5.2.15 and Problem 5.2.14 for more details. I

In the location-scale family (3.23), we have so far considered only the estimation
of 7"; let us now take up the problem of estimating the location parangeféne
transformations (3.24) relating to the sample space and parameter space remain
the same, but the transformations of the decision space now betome+ bd.

A loss functionL (&, t; d) is invariant under these transformations if and only if it
is of the form :

(3.34) LE, ;d)=p <dT> .
That any such loss function is invariant is obvious. Conversely, supposé. that
is invariant and that&( z;d) and €', t’;d’) are two points withd’ — &')/t’ =
(d — &)/t. Puttingh = t//r and¢’ —a = b&,one has!’ =a +bd, & = a + bg,
andt’ = bt, henceL(¢’, t';d’) = L(§, t;d), as was to be proved.

Equivariance in the present case becomes

(3.35) 8(a+bx)=a+bs(x), b>0.
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SinceG is transitive over the parameter space, the risk of any equivariant estimator
is constant so that an MRE estimator can be expected to exist. In some special cases,
the MRE estimator reduces to that derived in Section 1 withown, as follows.

For fixedz, write

1 X Xp
(3.36) ge(xs, o %)= = f (—1—)
T T T
so that (3.23) becomes
(3'37) g‘[('xl_év'-'5-xn_§)'

Lemma 3.14 Supposethat for the location family (3.37) and loss function (3.34),
there exists an MRE estimator §* of & with respect to the transformations (1.10)
and (1.11) and that

(@) 6* isindependent of 7, and
(b) 8* satisfies (3.35).
Then §* minimizes the risk among all estimators satisfying (3.35).

Proof. Supposé is any other estimator which satisfies (3.35) and hence, afortiori,
is equivariant with respect to the transformations (1.10) and (1.11), and that the
valuert of the scale parameter is known. It follows from the assumptions afiout
that for thisz, the risk ofs* does not exceed the risk &f Since this is true for all
values ofz, the result follows. O

Example 3.15 MRE for normal mean. Let X4, ..., X,, be iid asN (&, r2), both
parameters being unknown. Then, it follows from Example 1.15&hat X for
any loss functiorp[(d — &)/7] for which p satisfies the assumptions of Example
1.15. Since (i) and (ii) of Lemma 3.14 hold for tHi%, it is the MRE estimator of

& under the transformations (3.24). I

Example 3.16 Uniform location parameter. Let X4, ..., X,, be iid asU (¢ —
%r, £+ %r). Then, analogous to Example 3.15, it follows from Example 1.19 that
[X@) + Xm]/2 is MRE for the loss functions of Example 3.15. Il

Unfortunately, the MRE estimators of Section 1 typically do not satisfy the
assumptions of Lemma 3.14. This is the case, for instance, with the estimators of
Examples 1.18 and 1.22. To derive the MRE estimator without these assumptions,
let us first characterize the totality of equivariant estimators.

Theorem 3.17 Let §o be any estimator & satisfying (3.35) and §; any estimator of
7 taking on positive values only and satisfying

(3.38) 81(a +bx) =b81(X) forall b >0 and all a.
Then, § satisfies (3.35) if and only if it is of the form
(3.39) 8(x) = do(x) — w(2)81(x)

where z is given by (3.30).
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Proof. Analogous to Lemma 1.6, it is seen tidagatisfies (3.35) if and only if it
is of the form

(3.40) 8(X) = do(x) — u(x)31(x),
where
(3.42) u(l@+bx) =u(x) forall »>0 andalla

(Problem 3.26). That (3.40) holds if and onlyuifdepends o only throughz
follows from Lemma 1.7 and Theorem 3.1.
An argument paralleling that of Theorem 1.10 now shows that the MRE esti-
mator of¢ is
8(X) = 80(X) — w*(Z)81(X)
where for eachz, w*(z) is any number minimizing

(3.42) Eo1{p[00(X) — w*(2)81(X)]Iz}.
Here, Ep 1 indicates that the expectation is evaluated at0, r = 1. a
If, in particular,

d—¢& d —£)?

(3.43) p( >:( 2)7
T T

it is easily seen thab*(z) is
(344) w*(Z) = Eo1[80(X)81(X)|Z]/E01[532_(X)|Z]
Example 3.18 Exponential. Let X4, ..., X, be iid according to the exponential

distribution E(&, 7). If 5o(X) = X(1) and$1(X) = Z[X; — X(g), it follows from
Example 1.6.24 thatg, §1) are jointly independent &f and are also independent
of each other. Then (Problem 3.25),

[30(X)81(X)]

*Z *_E _1
wOT = sroar T

and the MRE estimator df is therefore
1
§*(X) =Xy — EE[X,' - Xl

When the best location equivariant estimate is not also scale equivariant, its risk
is, of course, smaller than that of the MRE under (3.35). Some numerical values
of the increase that results from the additional requirement are given for a number
of situations by Hoaglin (1975). I

For the loss function (3.43), no risk-unbiased estimétxists, since this would
require that for alk, &', r, andt’

(3.45) 1800 — €17 < Ee [0) — €T

which is clearly impossible. Perhaps (3.45) is too strong and should be required
only whent’ = t. It then reduces to (1.32) with = (&£, 7) and g(9) = &,

and this weakened form of (3.45) reduces to the classical unbiasedness condi-
tion E¢ .[8(X)] = £&. A UMVU estimator of¢ exists in Example 3.18 (Problem
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2.2.18), but it is

5(X)=Xq) — - S[X — Xl

1
(n—1)
rather thars*(X), and the latter is not unbiased (Problem 3.27).

4 Normal Linear Models

Having developed the theory of unbiased estimation in Chapter 2 and of equivariant
estimation in the first three sections of the present chapter, we shall now apply these
results to some important classes of statistical models. One of the most widely used
bodies of statistical techniques, comprising particularly the analysis of variance,
regression, and the analysis of covariance, is formalized in terms of linear models,
which will be defined and illustrated in the following. The examples, however,
are not enough to give an idea of the full richness of the applications. For a more
complete treatment, see, for example, the classic book by £qi€#59), or Seber
(1977), Arnold (1981), Searle (1987), or Christensen (1987).

Consider the problem of investigating the effect of a number of different factors
on aresponse. Typically, each factor can occur in a number of different forms or at
a number of different levels. Factor levels can be qualitative or quantitative. Three
possibilities arise, corresponding to three broad categories of linear models:

(a) All factor levels qualitative.
(b) All factor levels quantitative.
(c) Some factors of each kind.

Example4.1 One-way layout. A simple illustration of category (a) is provided

by theone-way layout in which a single factor occurs at a number of qualitatively
different levels. For example, we may wish to study the effect on performance of
a number of different textbooks or the effect on weight loss of a number of diets.
If X;; denotes the response of thith subject receiving treatment it is often
reasonable to assume that fXig are independently distributed as

(41) X,’j:N(Ei,O'Z), j:1,...,n,~; i=1...,s.
Estimands that may be of interest greand§; — (1/s)2j.:1§j. I

Example4.2 A simple regression model. As an example of type (b), consider
the time required to memorize a list of words. If the number of words presented to
theith subject and the time it takes the subject to learn the words are denoted by
t; and X;, respectively, one might assume that for the rangesaff interest, the

X’s are independently distributed as

(4.2) X, : N(a + Bt; + yt?, 02)

wherea, 8, andy are the unknown regression coefficients, which are to be esti-
mated.

This would turn into an example of the third type if there were several groups
of subjects. One might, for example, wish to distinguish between women and men
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or to see how learning ability is influenced by the form of the word list (whether
it is handwritten, typed, or printed). The model might then become
4.3) Xij o N(o; + Biti; + yitjzjv o?)

whereX;; is the response of thgh subject in theth group. Here, the group is a
qualitative factor and the length of the list a quantitative one.

[
The generalinear model, which covers all three cases, assumes that
(4.4) X, is distributed asV(&;, 02), i=1,...,n,

where theX; are independent and;(...,,) € [[q, ans-dimensional linear
subspace of, (s < n).

Itis convenient to reduce this model to a canonical form by means of an orthog-
onal transformation
(4.5) Y =XC
where we shall us¥ to denote both the vector with componeris,(. . ., Y¥,) and
the row matrix {1, ..., Y,). If n; = E(Y;), then's and&’s are related by

(4.6) n=§&C

Where” = (771» e 77;1) andg = (Ela cee En)-
To find the distribution of th&’s, note that the joint density of4, ..., X, is

1 1 5
m eXp[—ﬁE(xi — &) :| ,
that
B0 — &)= (v — m)?
sinceC is orthogonal, and that the Jacobian of the transformation is 1. Hence, the
joint density ofYy, ..., Y, is

@ eXP[—%ZE(% - ﬂi)z] .

The Y’s are therefore independent normal wikh~ N(n;,02),i = 1,...,n. If
c; denotes theth column ofC, the desired form is obtained by choosing theo
that the firsts columnscy, ..., c; span[[. Then,
e l_[ <= & is orthogonal to the last — s columns ofC.
Q

Sincen = &C, it follows that
(47) §€H<=>77s+1:"':77n:0-

Q

In terms of theY'’s, the model (4.4) thus becomes
(4.8) Yi: N, 02, i=1,....,s, and ¥; : N(O,0?), j=s+1,...,n.

As (51, ..., &,) varies ovell . (n, ..., n,) varies unrestrictedly ovek, while
Ns+1 =+ =1y =0.
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In this canonical modelyy, ..., Y, andS? = Zj-‘sz_,-z are complete sufficient
statistics for g1, . .., 15, 02).
Theorem 4.3

(a) The UMVU estimators of X'_;A;n; (where the A's are known constants) and
o2 are £, Y; and S2/(n — s), respectively. (Here, UMVU is used in the
strong sense of Section 2.1.)

(b) Under the transformations

Yi/:Yi‘FCli(l.:l,...,S); Y}:Yj(j:s+l,...,n)

ni=m+a (i=1...,5); and d :d+2ai)»[
i=1
and with loss function L(n, d) = p(d — XA;n;) where p is convex and even,
the UMVU estimator X;_;A;Y; is also the MRE estimator of X;_;A;n;.
(¢) Under thelossfunction (d—o2)?/o*, theMRE estimator of 62isS5?/(n—s+2).
Proof.

(@) Sincexi_,A;Y; andS?/(n — s) are unbiased and are functions of the complete
sufficient statistics, they are UMVU.

(b) The condition of equivariance is that
8(Y1+C1, cee Ys + ¢y, Ys+l, cees Yn)

5
=6(Y1, ..., Y, Ys+1,-.-,Yn)+Z)wCi
i=1

and the result follows from Problem 2.27.
(c) This follows essentially from Example 3.7 (see Problem 4.3) .

O
It would be more convenient to have the estimator expressed in terms of the
original variablesXq, ..., X,, rather than the transformed variabls. .., Y,.

For this purpose, we introduce the following definition.

Let§ = (&1, ..., &,) be any vector iM[,. Then, theleast squares estimators
(LSE) €1, ..., &) of (&1, . . ., &,) are those estimators which minimiZg, (X; —
£;)? subject to the conditiod € [],.

Theorem 4.4 Under themodel (4.4), the UMVU estimator of S/, y;&; is S0, ;1.

Proof. By Theorem 4.3 (and the completeness/ef. . ., Y, andS?), it suffices

to show thathzlyié,» is a linear function of4, ..., Y,, and that it is unbiased for
XL1viéi. Now,
4.9) Y (Xi—&)P=) i—E@W)P=)_(Yi—n)+ ) Y2

i=1 i=1 i=1 j=s+l

The right side is minimized by, =Y; (i = 1,...,s),andthe left side is minimized
byé&,, ..., &,. Hence,

(Y1---¥,0---0) = (---§)C =&C
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so that .

E=(Y,---Y,0..-0)C7L
It follows that eaci‘éi and, thereforerzly,éi is a linear function offy, ..., Y.
Furthermore,

E@) = E[(Y1---Y,0---0)C] = (p1---n,0---0)C " =&.

Thus, eachf; is unbiased fok;; consequentlys?, ;£ is unbiased folE, y;&:.
O

It is interesting to note that each of the two quite different equations
X=(;---Y,)C' and ;;- =(Y;---Y,0---0)C!

leads to = (11, ...,n,0---0)C~! by taking expectations.

Let us next reinterpret the equivariance considerations of Theorem 4.3 in terms
ofthe original variables. Itis necessary first to specify the group of transformations
leaving the problem invariant. The transformationg espace defined in Theorem
4.3(b), in terms of th&X's becomeX; = X; +b;,i = 1, ..., n, but thep; are not
arbitrary since the problem remains invariant onl§/ if & +b € [],; thatis, theb;
must satisfyb = (b4, ..., b,) € [[,. Theorem 4.3(ii) thus becomes the following
corollary.

Coroallary 4.5 Under the transformations
(4.10) X'=X+b with be[].
Q

E{‘Zly,é,- is MRE for estimating X/, y;£; with the loss function p(d — X y;&;) pro-
vided p is convex and even.

To obtain the UMVU and MRE estimators af in terms of theX’s, it is only
necessary to reexpres$. From the minimization of the two sides of (4.9), it is
seen that . .

(4.11) dxi—&)P=) vi=s

i=1 j=s+1
The UMVU and MRE estimators ef? given inATheorem 4.3, in terms of thés
are therefor& (X; — £)?/(n — s) andZ(X; — &)%/(n — s + 2), respectively.

Let us now illustrate these results.

Example 4.6 Continuation of Example 4.1. Let X;; be independen¥ (¢;, 02),
j=21...,n;,i=1...,s. To find the UMVU or MRE estimator of a linear
function of theg;, it is only necessary to find the least squares estimators
Minimizing

Z Xi:(xij —§) = Z |:2(Xij — X2+ (X — Ei)z] ,

i=1 j=1 i=1 | j=1

we see that

~ 1 &
§=Xi.=—) Xi.
j=1

n; <
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From (4.11), the UMVU estimator af? in the present case is seen to be

s n;

62=3 "% (Xij — Xi.)?/(Zn; — s). I

i=1 j=1

Example 4.7 Simple linear regression. Let X; be independen (&, 02), i =
1, ...,.n, with & = «a + B1;, 1; known and not all equal. Her¢], is spanned by
the vectors (1...,1) and ¢, . .., ,) so that the dimension df[,, iss = 2. The
least squares estimators Hfare obtained by minimizing_""_;(X; — « — Bt;)?
with respect tax andp. Itis easily seen that for anyandj with #; 7 ¢;,
(4.12) ﬂ:‘g:j_si’ o = L8l
tj — 1 1 —1

and thaj andé are given by the same functions®findé; (Problem 4.4). Hence,
& andg are the best unbiased and equivariant estimatoxsasfd 8, respectively.

Note that the representation @fand 8 in terms of theg;’s is not unique. Any
two&; andg; values withy; 7 ¢; determiner andg and thus all thé’s. The reason,
of course, is that the vectorg(. . ., &,) lie in a two-dimensional linear subspace
of n-space. I

Example 4.7 is a special case of the model specified by the equation
(4.13) E=0A

wheref = (6, - - - 6;) ares unknown parameters amtdis a knowns x n matrix of
ranks, the so-calledull-rank model. In Example 4.7,

0=wﬁ)aMA=(L“1>

ety

The least squares estimators of ¢hén (4.13) are obtained by minimizing
> IXi — &)
i=1

with respect t@. The minimizing value®; are the LSEs of;, and the LSEs of
theg; are given by

(4.14) E=0A.

Theorems 4.3 and 4.4 establish that the various optimality results apply to the
estimators of the; and their linear combinations. The following theorem shows
that they also apply to the estimators of thie and their linear functions.

Theorem 4.8 Let X; ~ N(&;,02),i =1, ..., n, beindependent, and let & satisfy
(4.13) with A of rank s. Then, the least squares estimator 6 of @ isalinear function
of the & and hence has the optimality properties established in Theorems 4.3 and
4.4 and Corollary 4.5.

Proof. It need only be shown th#tis a linear function ok; then, by (4.13) and
(4.14),9 is the corresponding linear function é.f
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Assume without loss of generality that the fisstolumns ofA are linearly
independent, and form the corresponding nonsingulas submatrixA*. Then,

(61--&)=(0r---0,)A7,
so that
(61---65) = (Er---E)A,
and this completes the proof. a

Typical examples in whicl is given in terms of (4.13) are polynomial regres-
sions such as

— 2
& =a+ph+yt
or regression in more than one variable such as

§i=a+pityu

where the's andu’s are given, and, 8, andy are the unknown parameters. Or
there might be several regression lines with a common slope, say

gij:ai+ﬁtij (j:ls"'vni;i:]-s'-'va)a

and so on.

The full-rank model does not always provide the most convenient parametriza-
tion; for reasons of symmetry, it is often preferable to use the model (4.13) with
more parameters than are needed. Before discussing such models more fully, let
us illustrate the resulting difficulties on a trivial example. Supposeghat for
alli and that we pu; = A + . Such a model does not defih@ndu uniquely but
only their sum. One can then either let this ambiguity remain but restrict attention
to clearly defined functions such ast u, or one can remove the ambiguity by
placing an additional restriction onandu, suchast — A =0, =0, 0rA =0.

More generally, let us suppose that the model is given by

(4.15) £=0A

where A is at x n matrix of ranks < ¢. To define thef’s uniquely, (4.15) is
supplemented by side conditions

(4.16) 9B =0

chosen so that the set of equations (4.15) and (4.16) has a unique sél@ition
every€ € [],-

Example 4.9 Unbalanced one-way layout. Consider the one-way layout of Ex-
ample 4.1, withX;; (j = 1,...,n;;i = 1,...,s) independent normal variables
with meanst; and variance2. When the principal concern is a comparison of the
s treatments or populations, one is interested in the differences éftlaad may
represent these by means of the differences betweef #rel some mean value
W, saye; =& — p. The model then becomes

(4.17) E=puto;, i=1...,s,
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which expresses theé’s in terms ofs + 1 parameters. To specify the parameters,
an additional restriction is required, for example,

(4.18) Ta; =0.

Adding thes equations (4.17) and using (4.18), one finds
(4.19) p=xt =k

and hence

(4.20) o =& —&.

The quantitye; measures the effect of thiéh treatment. Sincé;. is the least
squares estimator ¢f, the UMVU estimators oft and thex's are
(421) /QZZX—IZZEﬁ and &i:X,'.—,EL.

Ky Sn;

When the sample sizeg are not all equal, a possible disadvantage of this
representation is that the vectors of the coefficients ofXhein the ¢; are not
orthogonal to the corresponding vector of coefficientg ¢Problem 4.7(a)]. As a
result,i is not independent of thie . Also, when they; are known to be zero, the
estimator ofu is no longer given by (4.21) (Problem 4.8).

For these reasons, the side condition (4.18) is sometimes replaced by

(4.22) Yn;o; =0,

which leads to

(4.23) M:E%?=§(N=Em)
and hence

(4.24) o =& —E&.

Although they; of (4.22) seems to be a less natural measure of the effect dfthe
treatment, the resulting UMVU estimataﬁr&indﬁ have the orthogonality property

not possessed by the estimators (4.21) [Problem 4.7(b)]. The side conditions (4.18)
and (4.22), of course, agree when thare all equal. I

The following theorem shows that the conclusion of Theorem 4.8 continues to
hold when th&’s are defined by (4.15) and (4.16) instead of (4.13).

Theorem 4.10 Let X; be independent N(&;,02),i = 1,...,n, with § € []q,
an s-dimensional linear subspace of E,. Quppose that (04, ..., 6,) are uniquely
determined by (4.15) and (4.16), where A isof rank s < ¢ and B of rank k. Then,
k =t — s, and the optimality results of Theorem 4.4 and Corollary 4.5 apply to the
parametersé, . .., 6, and their least squares estimatorsé, . . . , 4,.

Proof. Letdy, ..., 6, bethe LSEsofy, ..., 6, thatis, the values that minimize

> IX: — &©)
i=1
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subject to (4.15) and (4.16). It must be shown, as in the proof of Theorem 4.8, that

thed;’s are linear functions ofy, . .., £,, and that the,’s are the same functions
ofél, L&

Without loss of generality, suppose that #Hie are numbered so that the last
columns ofB are linearly independent. Then, one can solvedfof.s, ..., 6; in
terms oft4, ..., 6,_, obtaining the unique solution
(4.25) 0;=L;j01,...,6) for j=t—k+1, ... ¢

Substituting intcé = 6 A gives
E = (91 .. 'Ot—k)A*

for some matrixA*, with (01, . . ., 6,—) varying freely inE,_;. Since eaclj € [ ]
uniquely determineg, in particular the valué = 0 has the unique solutiah= 0,
so that §1---6,_;)A* = 0 has a unique solution. This implies that has rank
t — k. On the other hand, singeranges over a linear space of dimensiorit
follows thatr — k = s and, hence, that=1¢ — s.

The situation is now reduced to that of Theorem 4.8 \ithlinear function of
t — k = s freely varying@’s, so the earlier result applies @9, ..., 6,_. Finally,
the remaining parametefls ;+1, . . ., 6; and their LSEs are determined by (4.25),
and this completes the proof. O

Example 4.11 Two-way layout. A typical illustration of the above approach is
provided by a two-way layout. This arises in the investigation of the effect of two
factors on a response. In a medical situation, for example, one of the factors might
be the kind of treatment (e.g., surgical, nonsurgical, or no treatment at all), the
other the severity of the disease. D&t denote the response of thih subject to
which factor 1 is applied at levéland factor 2 at leveJ. We assume that th;

are independently, normally distributed with megnsand common variance?.

To avoid the complications of Example 4.9, we shall suppose that each treatment
combination {, j) is applied to the same number of subjects. If the number of
levels of the two factors is andb, respectively, the model is thus

(4.26) X;i:N(@Ej, 09, i=1....1; j=L1...,J; k=1...,m
This model is frequently parametrized by

(4.27) Eij = ta;+ Bty

with the side conditions

(4.28) Y er=>"8=>"y;=> % =0
i j i J

It is easily seen that (4.27) and (4.28) uniquely determinand thea’s, 8’s,
andy’s. Using a dot to denote averaging over the indicated subscript, we find by
averaging (4.27) over bothand j and separately ovérand over; that

§.=pn, & =puta, E;=pt+p;
and hence that
(429) m= é--’ o = éi- - sw ﬂ] = ‘i:] - S'r
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and
(4.30) Vij =& —& —&§;+&. .
I

Thus,q; is the average effect (averaged over the levels of the second factor) of
the first factor at level, andg; is the corresponding effect of the second factor at
level j. The quantityy;; can be written as

(4.31) Vi =& —&)—[& —&)+ (. — &)

Itis therefore the difference between the joint effect of the two treatments at levels
i and j, respectively, and the sum of the separate effects ;. The quantity
vij is called theinteraction of the two factors when they are at levélsind j,
respectively.

The UMVU estimators of these various effects follow immediately from Theo-
rem 4.3 and Example 4.6. This example shows that the UMVU estimatpy isf
X;; and the associated estimators of the various parameters are thus

(432) ,ljl,:X“., &i :X,'..—X“., ﬂj :XAJ'.—X.“,
and
(433) );ij :Xl'j.—Xl'..—X.j."'X... .

The UMVU estimator ob2 is

(4.34) EEE(X — Xij)%

1J(m —1)

These results for the two-way layout easily generalize to ddwotorial experi-
ments, that is, experiments concerning the joint effect of several factors, provided
the numbers of observations at the various combinations of factor levels are equal.
Theorems 4.8 and 4.10, of course, apply without this restriction, but then the situ-
ation is less simple.

Model (4.4) assumes that the random variatdegre independently normally
distributed with common unknown variane€ and meang;, which are subject
to certain linear restrictions. We shall now consider some models that retain the
linear structure but drop the assumption of normality.

(i) A very simple treatment is possible if one is willing to restrict attention to
unbiased estimators that are linear functions ofXhend to squared error loss.
Suppose we retain from (4.4) only the assumptions about the first and second
moments of theX;, namely

(4.35) E(X;)=§&, &€ l—[,

Q
var(X;) =o?, cov(X;, X;)=0 fori#j.

Thus, both the normality and independence assumptions are dropped.

Theorem 4.12 (Gauss' Theorem on L east Squares) Under assumptions (4.35),
2L,v:& of Theorem4.4is UMVU among all linear estimators of 2., y;&;.
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Proof. The estimator is still unbiased, since the expectations of ftage the same
under (4.35) as under (4.4). LE{_,c; X; be any other linear unbiased estimator
of 2Ly SinceZiZly,-é,» is UMVU in the normal case, and variances of linear
functions of theX; depend only on first and second moments, it follows that
var 7y, < var £_,¢; X;. Hence, X!, ;& is UMVU among linear unbiased
estimators. O

Corollary 4.13 Under theassumptions(4.35) andwithsgquarederror loss, X/, y; &
is MRE with respect to the transformations (4.10) among all linear equivariant
estimators of XL, y;&;.

Proof. This follows from the argument of Lemma 1.23, sirﬁ:{é_lyié,- is UMVU
and equivariant. a

Theorem 4.12, which is also called the Gauss-Markov theorem, has been ex-
tensively generalized (see, for example, Rao 1976, Harville 1976, 1981, Kariya,
1985). We shall consider some extensions of this theorem in the next section. On
the other hand, the following result, due to Shaffer (1991), shows a direction in
which the theorem does not extend. If, in (4.35), we adopt the parametrization
& =0 A for somes x n matrix A, there are some circumstances in which it is rea-
sonable to assume thatalso has a distribution (for example, if the daxa @A) are
obtained from a sample of units, rather thbeing a preset design matrix as is the
case in many experiments). The properties of the resulting least squares estimator,
however, will vary according to what is assumed about both the distributian of
and the distribution ok. Note that in the following theorem, all expectations are
over the joint distribution o andA.

Theorem 4.14 Under assumptions (4.35), with & = 6 A, the following hold.

(@) If (X, A) arejointly multivariate normal with all parameters unknown, then
the least squares estimator X y;&; isthe UMVU estimator of Xy,&;.

(b) If the distribution of A is unknown, then the least squares estimator $y;£; is
UMVU among all linear estimators of X y;&;.

(c) If E(AA’) isknown, no best linear unbiased estimator of X y;&; exists.

Proof. Part (a) follows from the fact that the least squares estimator is a function
of the complete sufficient statistic. Part (b) can be proved by showing thas &

is unconditionally unbiased then it is conditionally unbiased, and hence Theorem
4.12 applies. For this purpose, one can use a variation of Problem 1.6.33, where it
was shown that the order statistics are complete sufficient. Finally, part (c) follows
from the fact that the extra information about the varianca e&n often be used

to improve any unbiased estimator. See Problems 4.16-4.18 for details. O

The formulation of the regression problem in Theorem 4.14, in whichpthe
rows of A are sometimes referred to as “random regressors,” has other interesting
implications. IfA is ancillary, the distribution ofA and henceZ (A’ A) are known
and so we have a situation where the distribution of an ancillary statistic will
affect the properties of an estimator. This paradox was investigated by Brown
(1990a), who established some interesting relationships between ancillarity and
admissibility (see Problems 5.7.31 and 5.7.32).
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For estimatingr?, it is natural to restrict attention to unbiased quadratic (rather
than linear) estimatorg of o2. Among these, does the estimat®f/(n — s)
which is UMVU in the normal case continue to minimize the variance? Under
mild additional restrictions—for example, invariance under the transformations
(4.10) or restrictions t@'’s taking on only positive values—it turns out that this
is true in some cases (for instance, in Example 4.15 below wher} tre equal)
but not in others. For details, see Searle et al. (1992, Section 11.3).

Example4.15 Quadratic unbiased estimators. Let X;; (j = 1,...,n;;i = 1,
..., s) be independently distributed with meaFigX;;) = & and common variance
and fourth moment

o?=E(X; —&)° and B=E(X;—&)*/o",
respectively. Consider estimators @f of the form Q = %2;S? where §? =
T(X;; — X;.)?andZA;(n; — 1) = 1 so thai is an unbiased estimator ef. Then,
the variance o) is minimized (Problem 4.19) when thés are proportional to
1/(o; + 2) wherew; = [(n; — 1)/n;](8 — 3). The standard choice of the (which

is to make them equal) is, therefore, best if eithernthare equal o = 3, which
is the case when thE;; are normal.

(ii) Let us now return to the model obtained from (4.4) by dropping the as-
sumption of normality but without restricting attention to linear estimators. More
specifically, we shall assume th#, ..., X, are random variables such that

the variablesX; — &; are iid with a common distributiof’
(4.36) which has expectation zero and an otherwise unknown
probability densityf,

and such that (4.13) holds withann x n matrix of ranks. I

In Section 2.4, we found that for the cdse 6, the LSEX of  is UMVU in this
nonparametric model. To show that the corresponding result does not generally
hold whené¢ is given by (4.13), consider the two-way layout of Example 4.11 and
the estimation of

1 1 J
(4.37) O =E =YY (B — £

1J j=1 k=1
To avoid calculations, suppose thétis r,, the r-distribution with 2 degrees of
freedom. Then, the least squares estimators have infinite variance. On the other
hand, letX;; be the median of the observatiakig,, v = 1, ..., m. ThenX;; — X jx
is an unbiased estimator &f, — £;; so thats = (1/ab)S (X — X ;1) is an
unbiased estimator @f,. Furthermore, ifn > 3, thef(ij have finite variance and
so, therefore, doe& (A sum of random variables with finite variance has finite
variance.) This shows that the least squares estimators of, thee not UMVU
whenF is unknown. The same argument applies togteandy’s.

The situation is quite different for the estimation jof Let I/ be the class of
unbiased estimators @f in model (4.27) withF unknown, and let{’ be the cor-
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responding class of unbiased estimators wheruthe 8’s, andy’s are all zero.
Then, clearlyi/ c U’; furthermore, it follows from Section 2.4 thit.. uniformly
minimizes the variance withitr’. SinceX ... is a member of/{, it uniformly mini-
mizes the variance withit and, hence, is UMVU fop in model (4.27) wherF
is unknown.

For a more detailed discussion of this problem, see Anderson (1962).

(iii) Instead of assuming the densifyin (4.36) to be unknown, we may be
interested in the case in whighis known but not normal. The model then remains
invariant under the transformations

(4.38) X;:XU+Zajvyj, —00 < Y1y ..., Vs < OO.

=1
SinceE (X)) = Xa;y(0; +y;), the induced transformations in the parameter space
are given by
(439) 0}:9j+yj (j=1,...,S).
The problem of estimating; remains invariant under the transformations (4.38),
(4.39), and
(4.40) d=d+y;
for any loss function of the form(d — 6;), and an estimatadr of 9; is equivariant
with respect to these transformations if it satisfies

(4.41) S5(X) = 8(X) + ;.

Since (4.39) is transitive ovér, the risk of any equivariant estimator is constant,
and an MRE estimator &f; can be found by generalizing Theorems 1.8 and 1.10
to the present situation (see Verhagen 1961).

(iv) Important extensions to random and mixed effects models, and to general
exponential families, will be taken up in the next two sections.

5 Random and Mixed Effects Models

In many applications of linear models, the effects of the various fadtpss C, . ..

which were considered to be unknown constants in Section 3.4 are, instead, ran-
dom. One then speaks ofrandom effects model (or Model II); in contrast, the
corresponding model of Section 3.4 idixed effects model (or Model 1). If both

fixed and random effects occur, the model is said tanbed.

Example5.1 Random effects one-way layout. Suppose that, as a measure of
quality control, an auto manufacturer tests a sample of new cars, observing for
each car, the mileage achieved on a number of occasions on a gallon of gas.
SupposeX;; is the mileage of théth car on thejth occasion, at time;, with all

ther;; being selected at random and independently of each other. This would have
been modeled in Example 4.1 as

Xij=pn+a; +Uj;

where theU;; are independen¥ (0, o%). Such a model would be appropriate if
these particular cars were the object of study and a replication of the experiment
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thus consisted of a number of test runs by the same cars. However, the manufacturer
is interested in the performance of the thousands of cars to be produced that year
and, for this reason, has drawn a random sample of cars for the test. A replication
of the experiment would start by drawing a new sample. The effect aftithear

is therefore a random variable, and the model becomes

(51) X,‘j:/L+Ai+UU (jIl,...,n,-;iZl,...,s).

Here and following, the populations being sampled are assumed to be large enough
so that independence and normality of the unobservable random varigatdesl
U;; can be assumed as a reasonable approximation. Without loss of generality, one
can puttE(A;) = E(U;;) = 0 since the means can be absorbedintdhe variances
will be denoted by vai{;) = o2 and var(;;) = o2

The X;; are dependent, and their joint distribution, and hence the estimation
of 62 ando?, is greatly simplified if the model is assumed to lméanced, that
is, to satisfyn; = n for all i. In that case, in analogy with the transformation
(4.5), let each setX;y, ..., X;,) be subjected to an orthogonal transformation to
(Yi1, ..., Y:,) such thatY;; = \/n X;.. An additional orthogonal transformation
is made from Y11, ..., Y1) t0 (Z11, ..., Zs1) such thatZ;; = /s Y1, whereas
fori > 1, we putZ;; = Y;;. Unlike theX;;, theY;; andZ;; are all independent
(Problem 5.1). They are normal with means

E(Zu)=+snpu, E(Z;)=0 ifi>1lorj>1

and variances

2

var(Zi1) = o® +no?, var(Z;) =o?

for j > 1,

so that the joint density of th&’s is proportional to

1 2 2 1 2
(5.2) exp{ 207+ n0?) [(Z11— /sn ) +SA]—FS }
with
$2=3 7% =n(X;. - X% §%= Zj = Z i — Xi)%

This is a three-parameter exponential family with

" 1 1
5.3 =t e ==
(5-3) (Caler s S LR pns S~

The variance of;; is var(X;;) = o2 + o3, and we are interested in estimating the
variance components o2 ando 2. Since

Si 2 2 SZ 2
E =g+ and E|— ) =07,
(s—l) 7T (s<n—1>) 7

it follows that

52 17 2 52
(5.4) 6% = and 6%="= [ A _ —}

s—1 s(rn-—-1)
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are UMVU estimators o&2 ando3, respectively. The UMVU estimator of the
ratio iso 2 /o is

1 Kf_fz &2 + n&j
n [s(n -1 62 i| ’

whereK ;> is given by (2.2.5) witlf = s(n—1) (Problem 5.3). Typically, the only

linear subspace of thgs of interest here is the trivial one definedda,% = 0, which

corresponds t@, = n3 and to the case in which the X;; are iid asV (i, 02). ||

Example 5.2 Random effectstwo-way layout. In analogy to Example 4.11, con-
sider the random effects two-way layout.

(5.5) Xijk =+ Ai + Bj + Cij + Uiji

where the unobservable random variablesB;, C;;, andU;;; are independently
normally distributed with zero mean and with varianeéso 3, 02, ando 2, respec-
tively. We shall restrict attention to the balanced casel, ..., I, j=1,...,J
andk = 1,...n. As in the preceding example, a linear transformation leads to
independent normal variables;; with meansE(Z111) = +/1Jn p and O for all
otherZ ’s and with variances

var(Zi11) =nJoi +nlos +noZ + o2,
var(Z;11) = nJog + nog +072,
(5.6) var(Zij1) = nlos + nag +02,
var(Z;;1) :nag +o%, i, j>1,
var(Zijx) = o2, k>1

As an example in which such a model might arise, consider a reliability study of
blood counts, in which blood samples from eacly gfatients are divided inta/
subsamples of whichare sent to each dflaboratories. The study is not concerned
with these particular patients and laboratories, which, instead, are assumed to be
random samples from suitable patient and laboratory populations. From (5.5) it
follows that var;;x) = 03 + o5 +02 +o2. The terms on the right are the variance
components due to laboratories, patients, the interaction between the two, and the
subsamples from a patient.

The joint distribution of theZ; ;. constitutes a five-parameter exponential family
with the complete set of sufficient statistics (Problem 5.9)

1
52 = Z Zh =0l ) (X — X2
i=1
J
% = Z Z3,=nl Y (X — X.)%
j=2 Jj=1

1

(5.7) S&=Y"

i=2

i>1,

Jj>1

J

1
Zi=n ) Y (Xij— Xi. — X+ X))
i=1

=1

~

M- M-

T

N

n

J
z% ZZ Xijk — Xij.)%,

k=2 i=1 j=1 k=1

%]
N
11
11
A
~.
11
LY
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lel =I1JnX...

From the expectations of these statistics, one finds the UMVU estimators of the
variance components?, o2, 02, andoz to be

~2 _ S2 A2_1 Sg‘ ~2
o"=—-, Oc=— |77, a1 O y

17 =1 T =D
. 17 $3 A2 A n 1[ S2 A2 A
oﬁzﬁ[ﬁ—nog—oz}, oézﬁ[l—fl—nog—oz}.

A submodel of (5.5), which is sometimes appropriate, isatiditive model
corresponding to the absence of the interaction tefimsand hence to the as-

sumptionc? = 0. If n1 = w/var(Zi), /2 = nJo? + nok + o2, 1/n3 =

nlo2 +noZ + a2 1/ns = no2 + o2, and Yns = o2, this assumption is equiv-
alent tons = ns and thus restricts thg’s to a linear subspace. The submodel
constitutes a four-parameter exponential family, with the complete set of sufficient
statisticsZ111, $3, 55, andS”? = S2 = EEL (X — X;..— X.;.+X..)2. The UMVU
estimators of the variance componenfs o2, ando? are now easily obtained as
before (Problem 5.10).

Another submodel of (5.5) which is of interest is obtained by settiglg: 0,
thus eliminating thes; terms from (5.5) . However, this model, which corresponds
to the linear subspaocg = 14, does not arise naturally in the situations leading to
(5.5), as illustrated by the laboratory example. These situations are characterized
by acrossed design in which each of theA units (laboratories) is observed in
combination with each of thé B units (patients). On the other hand, the model
without theB terms arises naturally in the very commonly occurmeged design
illustrated in the following example. I

Example 5.3 Two nested random factors. For the two factorgl andB, suppose

that each of the units corresponding to different values (@k., different levels

of A) is itself a collection of smaller units from which the valueshére drawn.
Thus, theA units might be hospitals, schools, or farms that constitute a random
sample from a population of such units from each of which a random sample of
patients, students, or trees is drawn. On each of the latter, a number of observations
is taken (for example, a number of blood counts, grades, or weights of a sample
of apples). The resulting model [with a slight change of notation from (5.5)] may
be written as

(5.8) Xijk =+ A; + Bij + Ujy.

Here, theA’s, B’s, andU'’s are again assumed to be independent normal with
zero means and variance$, o7, and o2, respectively. In the balanced case
G=1...,1,j=1,...,J,k = 1,...,n), a linear transformation produces
independent variables with meaf$Z111) = ~/1Jn p and = 0 for all otheiZ’s

and variances

var(Zi11) = o2 + naé + Jnof i=1...,1),
var(Z;j1) =o2+no2 (j > 1),
var(Zijx) =o? (k> 1).
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The joint distribution of theZ’s constitutes a four-parameter exponential family
with the complete set of sufficient statistics

I
S3=) Zhi = Ins(Xi - XY,
i=2

J
(5.9) $5=Y 7%, =nTB(X;;. — X;.)%,
j=2
1 J n 1 J n
£ DD 7 =D 3 Y e X,
i=1 j=1 k=2 i=1 j=1 k=1

Z]_]_]_: \/IJI/ZX...,

and the UMVU estimators of the variance components can be obtained as before
(Problem 5.12). I

The models illustrated in Examples 5.2 and 5.3 extend in a natural way to more
than two factors, and in the balanced cases, the UMVU estimators of the variance
components are easily derived.

The estimation of variance components described above suffers from two serious
difficulties.

(i) The UMVU estimators of all the variance components execptan take
on negative values with probabilities as high&and even in excess of that value
(Problem 5.5-5.7) (and, correspondingly, their expected squared errors are quite
unsatisfactory; see Klotz, Milton, and Zacks 1969).

The interpretation of such negative values either as indications that the associated
components are negligible (which is sometimes formalized by estimating them to
be zero) or that the model is incorrect is not always convincing because negative
values do occur even when the model is correct and the components are positive.
An alternative possibility, here and throughout this section, is to fall back on max-
imum likelihood estimation or restricted MLE's (REML estimates) obtained by
maximizing the likelihood after first reducing the data through location invariance
(Thompson, 1962; Corbeil and Searle, 1976). Although these methods have no
small-sample justification, they are equivalent to a noninformative prior Bayesian
solution (Searle et al. 1992; see also Example 2.7). Alternatively, there is an ap-
proach due to Hartung (1981), who minimizes bias subject to non-negativity, or
Pukelsheim (1981) and Mathew (1984), who find non-negative unbiased estimates
of variance.

(if) Models as simple as those obtained in Examples 5.1-5.3 are not available
when the layout is not balanced.

The joint density of theX’s can then be obtained by noting that they are linear
functions of normal variables and thus have a joint multivariate normal distribu-
tion. To obtain it, one only need write down the covariance matrix oftseand
invert it. The result is an exponential family which typically is not complete un-
less the model is balanced. (This is illustrated for the one-way layout in Problem
5.4.) UMVU estimators cannot be expected in this case (see Pukelsheim 1981). A
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characterization of/-estimable functions permitting UMVU estimators is given
by Unni (1978). Two general methods for the estimation of variance components
have been developed in some detail; these are maximum and restricted maximum
likelihood, and the minimum norm quadratic unbiased estimation (Minque) intro-
duced by Rao (1970). Surveys of the area are given by Searle (1971b), Harville
(1977), and Kleffe (1977). More detailed introductions can be found, for exam-
ple, in the books by Rao and Kleffe (1988), Searle et al. (1992), and Burdick and
Grayhbill (1992).

So far, the models we have considered have had factors that were either all fixed
or all random. We now look at an example of a mixed model, which contains both
types of factors.

Example 5.4 Mixed effectsmodel. In Example 5.3, it was assumed that the hos-
pital, schools, or farms were obtained as a random sample from a population of
such units. Let us now suppose that it is only these particular hospitals that are
of interest (perhaps it is the set of all hospitals in the city), whereas the patients
continue to be drawn at random from these hospitals. Instead of (5.8), we shall
assume that the observations are given by

(510) Xijk =uta; +Bij+Uijk (EO[,' :0)
A transformation very similar to the earlier one (Problem 5.14) now leads to
independent normal variablé® ;. with joint density proportional to

c1)  exp|- (S~ 1=+ 55 - 5557)

2(02+nod) 202

with $2 and$? given by (5.9), and wittW;1; = +/Jn X,... This is an exponential
family with the complete set of sufficient statisti&s., S2, andS2. The UMVU
estimators ofr2 ando? are the same as in Example 5.3, whereas the UMVU
estimator ofy; is X;.. — X..., as it would be if theB’s were fixed. I

Thus far in this section, our focus has been the estimation of the variance compo-
nents in random and mixed effects models. There is, however, another important
estimation target in these models, the random effects themselves. This presents
a somewhat different problem than is considered in the rest of this book, as the
estimand is now a random variable rather than a fixed parameter. However, the
theory of UMVU estimation has a fairly straightforward extension to the present
case. We illustrate this in the following example.

Example 5.5 Best prediction of random effects. Consider, once more, the ran-
dom effects model (5.1), where the valyeof A;, the effect on gas mileage, could
itself be of interest.

Sincey; is the realized value of a random variable rather than a fixed parameter,
it is common to speak gfrediction of «; rather than estimation ef;. To avoid
identifiability problems, we will, in fact, predigi + «; rather thany;. If §(X) is a
predictor, then under squared error loss we have

E[8(X) — (u + @)]* = E[8(X) & E(u + o |X) — (1 + )]
(5.12) = E[8(X) — E(u + ;| X)]?
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+E[E(1 +oi|X) — (i + 0:)]%

As we have no control over the second term on the right side of (5.12), we only

need be concerned with minimization of the first term. (In this sense, prediction

of a random variable is the same as estimation of its conditional expected value.)
Under the normality assumptions of Example 5.1,

2 2
no - o
5.13 E(u+a;|X) = A__X;
( ) (et i fX) na§+02 ! no§+02

Assuming the variances known, we set

2 2
noy =

8(X) = §'(X)

C+
2 2 2 2
noy+to noy+o

and choose’(X) to minimize E[8'(X) — u]2. The UMVU estimator ofu is X,
and the UMVU predictor oft + «; is

2 2
(5.14) A%+ ———X.
nog +o? noi+o?

As we will see in Chapter 4, this predictor is also a Bayes estimator in a hierarchical
model (which is another way of thinking of the model (5.1); see Searle et al. 1992,
Chapter 9, and Problem 4.7.15).

Although we have assumed normality, optimality of (5.14) continues if the
distributional assumptions are relaxed, similar to (4.35). Under such relaxed as-
sumptions, (5.14) continues to be best among linear unbiased predictors (Problem
5.17). Harville (1976) has formulated and proved a Gauss-Markov-type theorem
for a general mixed model. I

6 Exponential Linear Models

The great success of the linear models described in the previous sections suggests
the desirability of extending these models beyond the normal case. A natural gen-
eralization combines a general exponential family with the structure of a linear
model and will often result in exponential linear models in terms of new param-
eters [see, for example, (5.2) and (5.3)]. However, the models in this section are
discrete and do not arise from normal theory.

Equivariance tends to play little role in the resulting models; they are therefore
somewhat out of place in this chapter. But certain analogies with normal linear
models make it convenient to present them here.

(i) Contingency Tables

Suppose that the underlying exponential family is the set of multinomial distri-
butions (1.5.4), which may be written as

(6.1) exp (Z x; log m)h(x),

i=0
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and that a linear structure is imposed on the parameterslog p;. Expositions

of the resulting theory dfog linear models can be found in the books by Agresti
(1990), Christensen (1990), Santner and Duffy (1990), and Everitt (1992). Diaconis
(1988, Chapter 9) shows how a combination of exponential family theory and group
representations lead naturally to log linear models.

The models have close formal similarities with the corresponding normal mod-
els, and a natural linear subspace of the jpgoften corresponds to a natural
restriction on thep’s. In particular, since sums of the lggs correspond to prod-
ucts of thep’s, a subspace defined by setting suitable interaction terms equal to zero
often is equivalent to certain independence properties in the multinomial model.

The exponential family (6.1) is not of full rank since th&s must add up to 1.

A full-rank form is

(6.2) |:epox,» log(p; /po):|h(x).
i=1
If we let D
(6.3) n; =log— =n; — no,
pPo

we see that arbitrary linear functions of thecorrespond to arbitrary contrasts
(i.e., functions of the differences) of the. From Example 2.3.8, it follows that
(X1,..., X;) or (Xo, X1, ..., X,) is sufficient and complete for (6.2) and hence
also for (6.1). In applications, we shall find (6.1) the more convenient form to use.

Ifthe n’s are required to satistyindependent linear restrictiodss;;n; = b;(i =
1, ..., r), theresulting distributions will form an exponential family of rank r,
and the associated minimal sufficient statistitsvill continue to be complete.
SinceE(X;/n) = p;, the probabilitiesp; are alwaysU-estimable; their UMVU
estimators can be obtained as the conditional expectations /af given T. If
pi is the UMVU estimator ofp;, a natural estimator of; is 7, = log p;, but,
of course, this is no longer unbiased. In fact, no unbiased estimatgrefists
because only polynomials of the can beU-estimable (Problem 2.3.25). When
p; is also the MLE ofp;, 7; is the MLE of ;. However, the MLEEE[ does not
always coincide with the UMVU estimatgy;. An example of this possibility with
logp; = a + Bt; (t's known; « and 8 unknown) is given by Haberman (1974,
Example 1.16, p. 29; Example 3.3, p. 60). It is a disadvantage ¢f;timgthis case
that, unIikeﬁi, they do not always satisfy the restrictions of the model, that is, for
some values of th&'’s, noa andg exist for which logp; = « + Bt;. Typically, if
pi 7 ;3[-, the difference between the two is moderate.

For estimating the;, Goodman (1970) has recommended in some cases apply-
ing the estimators not to the cell frequenciegn but to X; /n + 1/2, in order to
decrease the bias of the MLE. This procedure also avoids difficulties that may arise
when some of the cell counts are zero. (See also Bishop, Fienberg, and Holland
1975, Chapter 12.)

Example 6.1 Two-way contingency table. Consider the situation of Example
2.3.9 in whichn subjects are classified according to two characteristi@nd
B with possible outcomeds, ..., A; and By, ..., B,. If n;; is the number of
subjects with propertiea; andB;, the joint distribution of the:;; can be written
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as
n!
l‘[i.j(nij)!
Write &; = u +a; + B, + y;; as in Example 4.11, with the side conditions (4.28).
This implies no restrictions since ady numbersg;; can be represented in this
form. Thep;; must, of course, satisfy £ p;; = 1 and the;; must therefore satisfy
¥ expg;; = 1. This equation determings as a function of the’s, g's, andy’s
which are free, subject only to (4.28). The UMVU estimators ofihevere seen
in Example 2.3.9 to be;; /n. I

expXEn;;&;, &; =logp;;.

In Example 4.11 (normal two-way layout), itis sometimes reasonable to suppose
that all they;;s (the interactions) are zero. In the present situation, this corresponds
exactly to the assumption that the characteristiesd B are independent, that is,
that p;; = pi+p+; (Problem 6.1). The UMVU estimator gf;; is nown;.n.;/n?.
Example 6.2 Conditional independencein athree-way table. In Example 2.3.10,
it was assumed that the subjects are classified according to three charactéristics
B, andC and that conditionally, given outcont® the two characteristicad and
B are independent. b, = log p;jx and§; i is written as

Ejp = ol +af +af +of gt +ail +afifC
with the @’s subject to the usual restrictions and wjihdetermined by the fact
that thep;;, add up to 1, it turns out that the conditional independenc ahd
B givenC is equivalent to the vanishing of both the three-way interactig}f$
and theA, B interactionSx;}B (Problem 6.2). The UMVU estimators of the;;
in this model were obtained in Example 2.3.10. I

(i) Independent Binomial Experiments

The submodels considered in Example 5.2-5.4 and 6.1-6.2 corresponded to
natural assumptions about the variances or probabilities in question. However, in
general, the assumption of linearity in this made at the beginning of this section
is rather arbitrary and is dictated by mathematical convenience rather than by
meaningful structural assumptions. We shall now consider a particularly simple
class of problems, in which this linearity assumption is inconsistent with more
customary assumptions. Agreement with these assumptions can be obtained by
not insisting on a linear structure for the parametgrihemselves but permitting
a linear structure for a suitable function of th's.

The problems are concerned with a number of independent random vaXables
having the binomial distributions(p;, n;). Suppose th&’s have been obtained
from some unobservable variabl&s distributed independently ag(¢z;, o2) by
setting

_ 0 if Zi<u
(6.4) Xi = {1 if Z; > u.

Then
(6.5) pi = P(Z; >u):d)(§i_u)
o
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and hence
(6.6) G =u+odH(p).

Now consider a two-way layout for thé's in which the effects are additive, as
in Example 4.11. The subspace ofthe(i =1,...,a, j = 1,..., b) defining this
model is characterized by the fact that the interactions satisfy

(6.7) Yij =G — ¢ —¢;+¢. =0
which, by (6.6), implies that

1 1
(6.8) > Y(py) — 7 Z > Y(pyj) — ] Z > Y(py))
7 i

The “natural” linear subspace of the parameter space foZthehus translates

into a linear subspace in terms of the parameter$(p;;) for the X's, and the
corresponding fact by (6.6) is true quite, generally, for subspaces defined in terms
of differences of the’s. On the other hand, the joint distribution of th&s is
proportional to

(6.9) exp[Zx,- log %} h(x),

and the natural parameters of this exponential familyrare log(p;/g¢;). The
restrictions (6.8) are not linear in thgs, and the minimal sufficient statistics for
the exponential family (6.9) with the restrictions (6.8) are not complete.

It is interesting to ask whether there exists a distributtofor the underlying
variablesZ; such that a linear structure for tigewill result in a linear structure
for n; = log(p;/q;) when thep; and thez; are linked by the equation

(6.10) qi = P(Zi <u)=F(u—¢)

instead of by (6.5). Ther;; = u — F~1(g;) so that linear functions of the
correspond to linear functions of ti&1(¢;) and hence of log; /¢;), provided

(6.11) FYg)=a—blogLe.
Suppressing the subscripand puttinge = a — blog(p/q), we see that (6.11) is
equivalent to
1

(6.12) q=F(x)= [rp=c=ny2
which is the cdf of the logistic distributioh(a, b) whose density is shown in Table
2.3.1.

Inferences based on the assumption of linearitypint(p;) and log@; /q;) =
F~1(g;) with F given by (6.12) where, without loss of generality, we can take
a =0,b =1, are known agprobit andlogit analysis, respectively, and are widely
used analysis techniques. For more details and many examples, see Cox 1970,
Bishop, Fienberg, and Holland 1975, or Agresti 1990. As is shown by Cox (p. 28),
the two analyses may often be expected to give very similar results, provided the
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p’'s are not too close to 0 or 1. The probit model can also be viewed as a special
case of ahreshold model, a model in which it is only observed whether a random
variable exceeds a threshold (Finney 1971). For the calculation of the MLEs in
this model see Problem 6.4.16.

The outcomes of independent binomial experiments can be represented by a
2 x s contingency table, as in Table 3.3.1, witlkr 2 andJ = s, and the outcomes
A1 and A, corresponding to success and failure, respectively. The column totals
n+1, ..., s are simply the sample sizes and are, therefore, fixed in the present
model. In fact, this is the principal difference between the present model and that
assumed for a & J table in Example 2.3.9. The casesahdependent binomials
arises in the situation of that example, if thheubjects, instead of being drawn at
random from the population at large, are obtained by drawingubjects from
the subpopulation having propery for j =1,...,s.

A 2 x J contingency table, with fixed column totals and with the distribution
of the cell counts given by independent binomials, occurs not only in its own
right through the sampling of.4, . .., n.; subjects from categorie®,, ..., By,
respectively, but also in the multinomial situation of Example 6.1 with2, as the
conditional distribution of the cell counts given the column totals. This relationship
leads to an apparent paradox. In the conditional model, the UMVU estimator of
the probabilityp; = p1;/(p1; + p2;) of success, given that the subject isHp is
8; = nyj/n+j. Sinces; satisfies

(6.13) E(3;|Bj) = pj»

it appears also to satisf§(5;) = p; and hence to be an unbiased estimator of
p1j/(p1j + p2;j) in the original multinomial model. On the other hand, an easy
extension of the argument of Example 3.3.1 (see Problem 2.3.25) shows that,
in this model, only polynomials in thg;; can beU-estimable, and the ratio in
guestion clearly is not a polynomial.

The explanation lies in the tacit assumption made in (6.13)sthat- 0 and
in the fact tha; is not defined when.; = 0. To ensure at least one observation
in B;, one needs a sampling scheme under which an arbitrarily large number of
observations is possible. For such a schemel/Hestimability ofp1; /(p1j + p2;)
would no longer be surprising.

It is clear from the discussion leading to (6.8) that the generalization of normal
linear models to models linear in the natural parametes$an exponential family
is too special and that, instead, linear spaces in suitable functions gf sheuld
be permitted. Because in exponential families the parameters of primary interest
often are the expectatios = E(T;) [for example in (6.9), thep; = E(X;)],
generalized linear models are typically defined by restricting the parameters to
lie in a space defined by linear conditionsw#;) [or in some cases;(6;)] for a
suitablelink function v (linking the 6's with the linear space). A theory of such
models was developed Dempster (1971) and Nelder and Wedderburn (1972), who,
in particular, discuss maximum likelihood estimation of the parameters. Further
aspects are treated in Wedderburn (1976) and in Pregibon (1980). For a compre-
hensive treatment of thegeneralized linear models, see the book by McCullagh
and Nelder (1989), an essential reference on this topic; an introductory treatment
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is provided by Dobson (1990). A generalized linear interactive modeling (GLIM)
package has been developed by Baker and Nelder (1983ab). The GLIM package
has proved invaluable in implementing these methods and has been in the center
of much of the research and modeling (see, for example, Aitken et al. 1989).

7 Finite Population Models

In the location-scale models of Sections 3.1 and 3.3, and the more general linear
models of Section 4.4 and 4.5, observations are measurements that are subject to
random errors. The parameters to be estimated are the true values of the quantities
being measured, or differences and other linear functions of these values, and the
variance of the measurement errors. We shall now consider a class of problems in
which the measurements are assumed to be without error, but in which the obser-
vations are nevertheless random because the subjects (or objects) being observed
are drawn at random from a finite population.

Problems of this kind occur whenever one wishes to estimate the average in-
come, days of work lost to illness, reading level, or the proportion of a population
supporting some measure or candidate. The elements being sampled need not be
human but may be trees, food items, financial records, schools, and so on. We
shall consider here only the simplest sampling schemes. For a fuller account of
the principal methods of sampling, see, for example, Cochran (1977); a systematic
treatment of the more theoretical aspects is given by Casseld&l, and Wretman
(1977) and &rndal, Swensson, and Wretman (1992).

The prototype of the problems to be considered is the estimation of a population
average on the basis of a simple random sample from that population. In order
to draw a random sample, one needs to be able to identify the members of the
population. Telephone subscribers, for example, can conveniently be identified by
the page and position on the page, trees by their coordinates, and students in a
class by their names or by the row and number of their seat. In general, a list or
other identifying description of the members of the population is callizdree.

To represent the sampling frame, suppose Mabpulation elements are labeled
1,..., N;in addition, a valuey; (the quantity of interest) is associated with the
elementi. (This notation is somewhat misleading because, in any realization of
the model, the:r's will simply be N real numbers without identifying subscripts.)
For the purpose of estimatirig= = ,a;/N, a sample of size is drawn in order,

one element after another, without replacement. It $81gle random sample if

all N(N —1)...(N —n + 1) possible:-tuples are equally likely.

The data resulting from such a sampling process consist of thieels of the
sampled elements and the associatedhlues, in the order in which they were
drawn, say
(71) X = {(11, Yl)v RN (Ins Yn)}
where thel’s denote the labels and thes the associated values,Y, = a,,. The

unknown aspect of the situation, which as usual we shall dendieibyhe set of
populationa values of theV elements,

(7.2) 0={(1,a1),...,(N,an)}
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Inthe classic approach to sampling, the labels are discarded. Let us fora moment
follow this approach, so that what remains of the data is the setaifserved
a values:Yy, ..., ¥,. Under simple random sampling, the order statiskigg <
.-+ < ¥,y are then sufficient. To obtain UMVU estimatorszodind other functions
of the a’s, one needs to know whether this sufficient statistic is complete. The
answer depends on the parameter sgacehich we have not yet specified.

It frequently seems reasonable to assume that theé sépossible values is the
same for each of the's and does not depend on the values taken on by the other
a’s. (This would not be the case, for example, if thie were the grades obtained
by the students in a class which is being graded “on the curve.”) The parameter

space is then the s&t of all 8’s given by (7.2) with &4, ..., ay) in the Cartesian
product
(7.3) VXxVx...xV.

Here,V may, for example, be the set of all real numbers, all positive real numbers,
or all positive integers. Or it may just be the $et {0, 1} representing a situation

in which there are only two kinds of elements—those who vote yes or no, which
are satisfactory or defective, and so on.

Theorem 7.1 Ifthe parameter spaceisgiven by (7.3), theorder statistics Yy, . . .,
Y(») are complete.

Proof. Denote bys an unordered sample of elements and by¥(y(s, ),
..., Y (s, 0) its a values in increasing size. Then, the expected value of any
estimators depending only on the order statistics is

(7.4) Ey {S[Y(l), e, Y(,,)]} = ZP(S)(S[Y(;L)(S, 0),..., Y(n)(s, 0],
where the summation extends over élf}j) possible samples, and where for

simple random sampling?(s) = 1/ <IZ> for all s. We need to show that

(7.5) Eo{é[Y@),.... Y]} =0 forall 6 e Q

implies thats[y(y, ..., ym] = 0 for all yq) < --- < yg).
Letus begin by considering (7.5) for all parameter padirfte which (ay, . . ., ay)
isofthe form @, ..., a),a € V. Then, (7.5) reduces to

> P(s)s(a.....a)=0 forall a,

which impliess(a, ..., a) = 0. Next, suppose thaf — 1 elements i are equal
to a, and one is equal t6 > a. Now, (7.5) will contain two kinds of terms:
those corresponding to samples consisting @6 and those in which the sample
containsh, and (7.5) becomes

péla,...,a)+qé(a,...,a,b)=0

wherep andq are known numberg 0. Since the first term has already been shown
to be zero, it follows thaé(a, .. ., a, b) = 0. Continuing inductively, we see that
8(a,...,a,b,...,b)=0foranyka’'sandn —k b's,k=0,...,n.
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As the next stage in the induction argument, considisr of the form

(a,...,a,b,c)witha < b < ¢, thenf’s of the form @, ..., a, b, b, ¢), and so
on, showing successively théa, ..., a, b, c), 8(a,...,a,b,b,c), ... are equal
to zero. Continuing in this way, we see tlé@), . .., y;)] = 0 for all possible
(»@), - - -» Ym)), @and this proves completeness. 0

It is interesting to note the following:
(a) No use has been made of the assumption of simple random sampling, so that
the result is valid also for other sampling methods for which the probabilities
P(s) are known and positive for afl

(b) The result need not be true for other parameter spadq@&soblem 7.1).

Coroallary 7.2 On the basis of the sample values Y, ..., Y,, a UMVU estima-
tor exists for any U-estimable function of the a’s, and it is the unique unbiased
estimator §(Y1, ..., Y,) that issymmetric in itsn arguments.

Proof. The result follows from Theorem 2.1.11 and the fact that a function of
Y1, ..., ya depends only onyay, ..., yu) if and only if it is symmetric in itsn
arguments (see Section 2.4). a

Example 7.3 UMVU estimation in simple random sampling. If the sampling
method is simple random sampling and the estimarg the sample mea¥i is
clearly unbiased sincg(Y;) = a for all i (Problem 7.2). Sinc& is symmetric in

Y1, ..., Y, itis UMVU and among unbiased estimators, it minimizes the risk for
any convex loss function. The variancelbfs (Problem 7.3)

- N—-n 1
7.6 Y)= Z.2
(7.6) var(t) = 5—7 -~
where 1
(7.7) 2= NE(a,- —a)?

is thepopulation variance. To obtain an unbiased estimator3f note that (Prob-
lem 7.3)
N 2

l \ —
(7.8) E [n—_lz(y,- - Y)2:| =1

Thus, [V — 1)/N(n — )], (Y; — Y)? is unbiased forr2, and because it is
symmetric in its: arguments, it is UMVU. I

If the sampling method is sequential, the stopping rule may add an additional
complication.

Example 7.4 Sum-quota sampling. Suppose that eadh has associated with it a
costC;, a positive random variable, and sampling is continued umtilservations
aretaken, whergl_1 Ci < Q < Y] C;,with Q being a specified quota. (Note the
similarity to inverse binomial sampling, as discussed in Example 2.3.2.) Under this
sampling scheme, Pathak (1976) showed ihat = V—fl ;‘1 Y; is an unbiased
estimator of the population averagéProblem 7.4).

Note that Pathak’s estimator drops the terminal observatjowhich tends to
be upwardly biased. As a consequence, Pathak’s estimator can be improved upon.
This was done by Kremers (1986), who showed the following:
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(@) T ={(Cyq, Y1), ...,(C,,Y,)} is complete sufficient.

(b) Conditional onT, {(C;, Y1), ...,(C,-1, Y,_1)} areexchangeable (Problem
7.5).

Under these conditions, the estimator
(7.9) a=Y— (Y- 7)/(v-1)

is UMVU if v > 1, whereY],; is the mean of all of the observations thatid
have been the terminal observation; that i¥j,; is the mean of all the;’s in the
set
(7.10) cjoy): ) <@ j=1.. v}

i7]
See Problem 7.6. I

So far, we have ignored the labels. That Theorem 7.1 and Corollary 7.2 no longer
hold when the labels are included in the data is seen by the following result.

Theorem 7.5 Given any sampling scheme of fixed size n which assigns to the
sample sa known probability P(s) (which may depend on the labels but not on the
a values of the sample), given any U -estimable function g(9), and given any pre-
assigned parameter point 69 = {(1, ai10), ..., (N, ano)}, there exists an unbiased
estimator §* of g(0) with variance vary,(6*) = 0.

Proof. Leté§ be any unbiased estimator gf?), which may depend on both labels
andy values, say

8(s) = 8[(ix, y1). - - -, (ins yu)ls
and let
So(s) = 8[(i1, aiy0), - - - » (in, ai,0)]-
Note thatso depends on the labels whether or Aatoes and thus would not be
available if the labels had been discarded. Let

8%(s) = 8(s) — do(s) + g(b)-
Since
E(8) = g(0) and Ey(do) = g(bb),
it is seen thas* is unbiased for estimating(0). Whené = 6y, §* = g(6p) and is
thus a constant. Its variance is therefore zero, as was to be proved. O

To see under what circumstances the labels are likely to be helpful and when it
is reasonable to discard them, let us consider an example.

Example 7.6 Informative labels. Suppose the population is a class of several
hundred students. A random sample is drawn and each of the sampled students is
asked to provide a numerical evaluation of the instructor. (Such a procedure may be
more accurate than distributing reaction sheets to the whole class, if for the much
smaller sample it is possible to obtain a considerably higher rate of response.)
Suppose that the frame is an alphabetically arranged class list and that the label is
the number of the student on this list. Typically, one would not expect this label
to carry any useful information since the place of a name in the alphabet does not
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usually shed much light on the student’s attitude toward the instructor. (Of course,
there may be exceptional circumstances that vitiate this argument.) On the other
hand, suppose the students are seated alphabetically. In a large class, the students
sitting in front may have the advantage of hearing and seeing better, receiving more
attention from the instructor, and being less likely to read the campus newspaper
or fall asleep. Their attitude could thus be affected by the place of their name in
the alphabet, and thus the labels could carry some information. I

We shall discuss two ways of formalizing the idea that the labels can reasonably
be discarded if they appear to be unrelated to the associat@des.

(i) Invariance. Consider the transformations of the parameter and sample space
obtained by an arbitrary permutation of the labels:

(7.11) 80 ={(j(1), a1), ..., (J(N), an)},
gX = {(.](Il)v Yl)v SRR (J(In)’ Yn)}
The estimand: [or, more generally, any functioi(ay, .. ., ay) that is symmetric

in the a’s] is unchanged by these transformations, so giat = d and a loss
function L(0, d) is invariant if it depends o8 only through thes:’s (in fact, as a
symmetric function of the’s) and not the labels. [For estimatiag such a loss
function would be typically of the formp(d — a).] Sinceg*d = d, an estimatos
is equivariant if it satisfies the condition

(7.12) 8(gX)=48(X) forall gandX.

In this case, equivariance thus reduces to invariance. Condition (7.12) holds if and
only if the estimatos depends only on the observEdialues and not on the labels.
Combining this result with Corollary 7.2, we see that for &vgstimable function

h(as, ..., ay), the estimator of Corollary 7.2 uniformly minimizes the risk for any
convex loss function that does not depend on the labels among all estimators of
which are both unbiased and invariant.

The appropriateness of the principle of equivariance, which permits restricting
consideration to equivariant (in the present case, invariant) estimators, depends on
the assumption that the transformations (7.11) leave the problem invariant. This
is clearly not the case when there is a relationship between the labels and the
associated: values, for example, when low values tend to be associated with
low labels and higla values with high labels, since permutation of the labels will
destroy this relationship. Equivariance considerations therefore justify discarding
the labels if, in our judgment, the problem is symmetric in the labels, that is,
unchanged under any permutation of the labels.

(i) Randomlabels. Sometimes, it is possible to adopt a slightly different formu-
lation of the model which makes an appeal to equivariance unnecessary. Suppose
that the labels have been assigned at random, that is, so thét pdissible as-
signments are equally likely. Then, the obserwemdluesys, . .., Y, are sufficient.

To see this, note that given these values, mtgbels (1, .. ., I,,) associated with
them are equally likely, so that the conditional distributioXafiven (Y1, ..., Y,)

is independent of. In this model, the estimators of Corollary 7.2 are, therefore,
UMVU without any further restriction.
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Of course, the assumption of random labeling is legitimate only if the labels
really were assigned at random rather than in some systematic way such as alpha-
betically or first come, first labeled. In the latter cases, rather than incorporating a
very shaky assumption into the model, it seems preferable to invoke equivariance
when it comes to the analysis of the data with the implied admission that we be-
lieve the labels to be unrelated to thevalues but without denying that a hidden
relationship may exist.

Simple random sampling tends to be inefficient unless the population being
sampled is fairly homogeneous with respect todlse To see this, suppose that

ap=---=ay, =aanday,+1 = -+ = an+n, = b(N1 + N2 = N). Then (Problem
7.3)
_ N-— 1_
(7.13) var@)= N2 YAV e
N-1 n

wherey = N1/N.Onthe other hand, suppose thatthe subpopulaligusnsisting
ofthea’s andb’s, respectively, can be identified and that one observatjositaken
from each of thdl; (i = 1, 2). ThenX; =aandX, =band (N1 X1 +N,X3)/N =a
is an unbiased estimator afwith variance zero.

This suggests that rather than taking a simple random sample from a hetero-
geneous populatiofl, one should try to dividél into more homogeneous sub-
populationsIT;, calledstrata, and sample each of the strata separately. Human
populations are frequently stratified by such factors as age, gender, socioeconomic
background, severity of disease, or by administrative units such as schools, hospi-
tals, counties, voting districts, and so on.

Suppose that the populatidh has been partitioned intostratally, . . ., [T, of
sizesNy, ..., Ny and that independent simple random samples ofisiaee taken
fromeachll; (i = 1, ...,s). If a;; (j = L ..., N;) denote the: values in theth
stratum, the parameter is n@n= (64, ..., 6;), where

0; ={(L, ain), ..., (Ni, ain,); i},
and the observations ale= (X4, ..., X;), where
Xi = {(Kil3 Yil)s ey (Kini7 Yim); l}

Here,K;; is the label of thejth element drawn fronlil; andY;; is itsa value.
It is now easy to generalize the optimality results for simple random sampling
to stratified sampling.

Theorem 7.7 LettheY;; (j = 1,..., n;), ordered separately for each i, bedenoted
byYia) < -+ < Yi(,). Onthebasisof theY;; (i.e., without thelabels), these ordered
sample values are sufficient. They are also complete if the parameter space ©2; for
6; isof theform V; x --- x V; (N; factors) and the overall parameter space is
Q = Q) x --- x Q. (Note that the value sets V; may be different for different
strata.)

The proof is left to the reader (Problem 7.9).

Itfollows from Theorem 7.7 that on the basis of tfis, a UMVU estimator exists
for anyU -estimator function of the’s and that it is the unique unbiased estimator
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3(Yi1, .oy Y1n; Yo1, ..., You,;...) Which is symmetric in its firsk; arguments,
symmetric in its second set 8§ arguments, and so forth.
Example 7.8 UMVU estimation in stratified random sampling. Suppose that
we leta.. = ¥ Xa;;/N be the average of thes for the populatiorT. If a;. is the
average of the’s in I1;, Y;. is unbiased for estimating. and hence
N;Y;.

N
is an unbiased estimator @f. Sinces is symmetric for each of thesubsamples,

itis UMVU for a.. on the basis of th&’s. From (7.6) and the independence of the
Y;'s, itis seen that

(7.14) §=%

N2 Ni—n; 1
7.15 var) = — . —*L. =72
(7.15) O= 3z =1
wheret? is the population variance di;, and from (7.8), one can read off the
UMVU estimator of (7.15). I

Discarding the labels within each stratum (but not the strata labels) can again
be justified by invariance considerations if these labels appear to be unrelated to
the associated values. Permutation of the labels within each stratum then leaves
the problem invariant, and the condition of equivariance reduces to the invariance
condition (7.12). In the present situation, an estimator again satisfies (7.12) if and
only if it does not depend on the within-strata labels. The estimator (7.14), and
other estimators which are UMVU when these labels are discarded, are therefore
also UMVU invariant without this restriction.

A central problem in stratified sampling is the choice of the sample sizes
This is a design question and hence outside the scope of this book (but see Hedayat
and Sinha 1991). We only mention that a natural choipedportional allocation,
in which the sample sizes are proportional to the population siz¥s. If the t;
are known, the best possible choice in the sense of minimizing the approximate
variance
(7.16) X(N?t?/n;N?)
is the Tschuprow-Neyman allocation withn; proportional todV; t; (Problem 7.11).

Stratified sampling, in addition to providing greater precision for the same total
sample size than simple random sampling, often has the advantage of being admin-
istratively more convenient, which may mean that a larger sample size is possible
on the same budget. Administrative convenience is the principal advantage of a
third sampling method;luster sampling, which we shall consider next. The pop-
ulation is divided intoK clusters of sized/,, ..., Mg. A single random sample
of k clusters is taken and thevalues of all the elements in the sampled clusters
are obtained. The clusters might, for example, be families or city blocks. A field
worker obtaining information about one member of a family can often obtain the
same information for all the members at relatively little additional cost.

An important special case of cluster samplingyistematic sampling. Suppose
the items on a conveyor belt or the cards in a card catalog are being sampled. The
easiest way of drawing a sample in these cases and in many situations in which the
sampling is being done in the field is to take evetly element, where is some
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positive number. To inject some randomness into the process, the starting point is
chosen at random. Here, there ardusters consisting of the items labeled

(Lr+1l 2r+1, .. {2 r+2,2r+2,...},...,{r,2r,3r,...},

of which one is chosen at random, so ti&at= r andk = 1. In general, let the
elements of théth cluster bda;1, ..., aiy,} and letu; = Zﬁfla,-j be the total for
theith cluster. We shall be interested in estimating some function ef gich as

the population average. = Xu; /X M;. Of theq;;, we shall assume that the vector

of values §;1, . . ., a; ;) belongs to some s&; (which may, but need not be, of the
formV x - x V)andthat(zll,...,alMl;aZL...,aZMZ;...) e Wy x---x Wg.

The observations consist of the labels of the clusters included in the sample together
with the full set of labels and values of the elements of each such cluster:

X ={[iz; (1, ai1). (2. 41, 2). -] [izs (L aip1). (2, a,2). -] 5. )

Let us begin the reduction of the statistical problem with invariance consider-
ations. Clearly, the problem remains invariant under permutations of the labels
within each cluster, and this reduces the observation to

X' = {[il, (a,'l,l, Cey a,-l,Mll)] ) [iz, (a,-z,l, Ceey aiz,Miz)] V. }

in the sense that an estimator is invariant under these permutations if and only if it
depends orX only throughX’.

The next group is different from any we have encountered so far. Consider any
transformation taking, . . ., a;a;) iNto (a;4, .. ., ani)vi =1, ..., K,wherethe
a; ; are arbitrary, except that they must satisfy

(a) @y, .- aiy) €W,
and
M;
(b) aj; = u;.
j=1
Note that for some vectorsg, ..., a;y,), there may be no such transformations

except the identity; for others, there may be just the identity and one other, and so
on, depending on the nature @f.

It is clear that these transformations leave the problem invariant, provided both
the estimand and the loss function depend omthenly through the:’s. Since the
estimand remains unchanged, the same should then be tdjevioich, therefore,
should satisfy

(7.17) 8(gX') = 8(X')

for all these transformations. It is easy to see (Problem 7.173 thetisfies (7.17)
if and only if § depends orX’ only through the observed cluster labels, cluster
sizes, and the associated cluster totals, that is, only on

(7.18) X// = {(iis u[19 Mi1)7 ceey (ikv Mik’ Mik)}

and the order in which the clusters were drawn.
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This differs from the set of observations we would obtain in a simple random
sample from the collection

(7.19) (L, ua), ..., (K, uk)}

through the additional observations provided by the cluster sizes. For the estimation
of the population average or total, this information may be highly relevant and the
choice of estimator must depend on the relationship betwdeand ;. The
situation does, however, reduce to that of simple random sampling from (7.19)
under the additional assumption that the cluster sieare equal, sayf; = M,
whereM can be assumed to be known. This is the case, either exactly or as a very
close approximation, for systematic sampling, and also in certain applications to
industrial, commercial, or agricultural sampling—for example, when the clusters
are cartons of eggs of other packages or boxes containing a fixed number of items.
From the discussion of simple random sampling, we know that the avé&rafe

the observed values is then the UMVU invariant estimaib= Xu,; /K and hence
thatY /M is UMVU invariant for estimating:.. . The variance of the estimator is
easily obtained from (7.6) with? = X (u; — )?/K.

In stratified sampling, it is desirable to have the strata as homogeneous as possi-
ble: The more homogeneous a stratum, the smaller the sample size it requires. The
situation is just the reverse in cluster sampling, where the whole cluster will be
observed in any case. The more homogeneous a cluster, the less benefit is derived
from these observations: “If you have seen one, you have seen them all.” Thus, it
is desirable to have the clusters as heterogeneous as possible. For example, fam-
ilies, for some purposes, constitute good clusters by being both administratively
convenient and heterogeneous with respect to age and variables related to age.
The advantages of stratified sampling apply not only to the sampling of single ele-
ments but equally to the sampling of clustesatified cluster sampling consists
of drawing a simple random sample of clusters from each stratum and combining
the estimates of the strata averages or totals in the obvious way. The resulting
estimator is again UMVU invariant, provided the cluster sizes are constant within
each stratum, although they may differ from one stratum to the next. (For a more
detailed discussion of stratified cluster sampling, see, for example, Kish 1965.)

To conclude this section, we shall briefly indicate two ways in which the equiv-
ariance considerations in the present section differ from those in the rest of the
chapter.

(i) In all of the present applications, the transformations leave the estimand un-
changed rather than transforming it into a different value, and the condition of
equivariance then reduces to the invariance condiiggx) = §(X). Correspond-
ingly, the groupG is not transitive over the parameter space and a UMRE estimator
cannot be expected to exist. To obtain an optimal estimator, one has to invoke un-
biasedness in addition to invariance. (For an alternative optimality property, see
Section 5.4.)

(ii) Instead of starting with transformations of the sample space which would
then induce transformations of the parameter space, we inverted the order and
began by transforming, thereby inducing transformations &f. This does not
involve a new approach but was simply more convenient than the usual order. To
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see how to present the transformations in the usual order, let us consider the sample
space as the totality of possible samplasgether with the labels and values of
their elements. Suppose, for example, that the transformations are permutations
of the labels. Since the same elements appear in many different samples, one
must ensure that the transformatignef the samples are consistent, that is, that
the transform of an element is independent of the particular sample in which it
appears. If a transformation has this property, it will define a permutation of all
the labels in the population and hence a transformagiohd. Starting withg or

g thus leads to the same result; the latter is more convenient because it provides
the required consistency property automatically.

8 Problems

Section 1

1.1 Prove the parts of Theorem 1.4 relating to (a) risk and (b) variance.

1.2 In model (1.9), suppose that= 2 and thatf satisfiesf(—x1, —x2) = f(x2, x1)-
Show that the distribution ofX; + X;)/2 given X, — X; = y is symmetric about 0.
Note that if X; and X, are iid according to a distribution which is symmetric about 0,
the above equation holds.

1.3 If X; and X, are distributed according to (1.9) with = 2 and f satisfying the
assumptions of Problem 1.2, angbifs convex and even, then the MRE estimatog of
is (X1 + X5)/2.

1.4 Under the assumptions of Example 1.18, show thatHgY ;)] = b/n and (b)
med[Xy] = blog 2/n.

1.5 For each of the three loss functions of Example 1.18, compare the risk of the MRE
estimator to that of the UMVU estimator.

1.6 If T is a sufficient statistic for the family (1.9), show that the estimator (1.28) is a
function of T only. [Hint: Use the factorization theorem.]

1.7 LetX;(i = 1, 2, 3) be independently distributed with densjtfx; — &) and lets = X;
if X3 > 0and =X, if X3 < 0. Show that the estimatérof & has constant risk for any
invariant loss function, but is not location equivariant.

1.8 Prove Corollary 1.14.Hint: Show that (a)p(v) = Eop(X — v) - M asv — oo
and (b) thaw is continuous; (b) follows from the fact (see TSH2, Appendix Section 2)
thatif f,,n = 1,2, ...andf are probability densities such that(x) — f(x) a.e., then
J¥f. — [yf forany boundedy.]

19 LetXq,..., X, be distributed as in Example 1.19 and let the loss function be that of
Example 1.15. Determine the totality of MRE estimators and show that the midrange is
one of them.

1.10 Consider the loss function

() = —Ar ifr<0

PUO=Y Br ifr>0 (A, B=>D0).
If X isarandom variable with densifyand distribution functior¥’, show thatt p(X —v)
is minimized for any satisfyingF (v) = B/(A + B).

1.11 In Example 1.16, find the MRE estimator §fwhen the loss function is given by
Problem 1.10.
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1.12 Showthatan estimaté(X) of g(9) is risk-unbiased with respect to the loss function
of Problem 1.10 ifFy[g(0)] = B/(A + B), whereF; is the cdf of§(X) unders.

1.13 SupposeXy, ..., X,, andYy, ..., Y, have jointdensityf (x; — &, ..., x, —&; y1 —
n,...,y. —n) and consider the problem of estimating= n — &. Explain why it is
desirable for the loss functiab(&, n; d) to be of the formp(d — A) and for an estimator
8 of A to satisfys(x +a,y +b) =38(X,y) + (b — a).

1.14 Under the assumptions of the preceding problem, prove the equivalents of Theorems
1.4-1.17 and Corollaries 1.11-1.14 for estimators satisfying the restriction.

1.15 In Problem 1.13, determine the totality of estimators satisfying the restriction when
m=n=1.

1.16 In Problem 1.13, suppose tli&s andY’s are independently normally distributed
with known variances 2 andt2. Find conditions o under which the MRE estimator
isY — X.

1.17 In Problem 1.13, suppose th&s andY’s are independently distributed &%¢, 1)
and E(n, t), respectively, and that = n. Find conditions orp under which the MRE
estimator ofA is Y1y — X ().

1.18 In Problem 1.13, suppose thétandY are independent and that the loss function
is squared error. I and# are the MRE estimators ¢fandz, respectively, the MRE

estimator ofA is 7 — &.

1.19 Suppose th&’s andY’s are distributed as in Problem 1.17 but with n. Deter-
mine the MRE estimator oh when the loss is squared error.

1.20 For any densityf of X = (X, ..., X,), the probability of the seA = {x : 0 <
ff; f(X—u)du < oo} is 1. [Hint: With probability 1, the integral in question is equal
to the marginal density of = (Y1, ..., Y,_1) whereY; = X; — X,,, andP[0 < g(Y) <
oo] = 1 holds for any probability density.]

1.21 Under the assumptions of Theorem 1.10, if there exists an equivariant estdmator
of & with finite expected squared error, show that

(@) Eo(|X,] 1Y) < oo with probability 1;
(b) the setB = {x: [ |u|f(Xx — u)du < oo} has probability 1.
[Hint: (&) E|80] < oo implies E(|8o] | Y) < oo with probability 1 and hencé&[5, —
v(Y)| | Y] < oo with probability 1 for anyv(Y). (b) P(B) = 1if and only if E(| X,,| |
Y) < oo with probability 1.]

1.22 Let §, be location equivariant and Iét be the class of all functions satisfying

(1.20) and such that(X) is an unbiased estimator of zero. Thésis MRE if and only
if cov[8o, u(X)] = O for all u € U .2 (Note the analogy with Theorem 2.1.7.)

Section 2
2.1 Show that the clas§(C) is a group.

2.2 In Example 2.2(ii), show that the transformatiotis= —x together with the identity
transformation form a group.

2.3 Let{gX, g € G} be a group of transformations that leave the model (2.1) invariant.
If the distributionsPy, 6 € Q are distinct, show that the induced transformatigrase
1: 1 transformations af2. [Hint: To show thatgh; = g6, implies6é, = 6,, use the fact
that Py, (A) = Py,(A) for all A implies6; = 6.]

2 Communicated by P. Bickel.
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2.4 Under the assumptions of Problem 2.3, show that

(a) the transformationg satisfygzg: = 32 - g1 and €)1 = (g~1);
(b) the transformationg corresponding tg € G form a group.
(c) establish (2.3) and (2.4).
2.5 Show that a loss function satisfies (2.9) if and only if it is of the form (2.10).
2.6 (a) The transformationg* defined by (2.12) satisfygbg1)* = g5 - g5 and @*)~* =
(g7
(b) If G is a group leaving (2.1) invariant arief = {g*, g € G}, thenG* is a group.
2.7 Let X be distributed a®v (£, 02), —oo < £ < 00,0 < o, and leth(£, o) = o2. The
problem is invariant under the transformatians ax +c¢;0 < a, —o0 < ¢ < 0o. Show
that the only equivariant estimatordéX) = 0.
2.8 Show that:

(a) If(2.11) holds, the transformatiop$defined by (2.12) are 1 : 1 frofd onto itself.
(b) If L(®,d) = L(#,d") for all 6 impliesd = d’, theng* defined by (2.14) is unique,
andis a 1: 1 transformation frof onto itself.

2.9 If 6 is the true temperature in degrees Celsius, #hien g6 = 6 + 273 is the true
temperature in degrees Kelvin. Given an observalipm degrees Celsius:

(a) Show that an estimatéfX) is functionally equivariant if it satisfie&(x) + a =
8(x +a) for all a.

(b) Suppose our estimatord¢x) = (ax + b6y)/(a + b), wherex is the observed tem-
perature in degrees Celsidg,is a prior guess at the temperature, arahdb are
constants. Show that for a constdqts(x + K) # 8(x) + K, soé does not satisfy
the principle of functional equivariance.

(c) Showthatthe estimators of part (b) will not satisfy the principle of formal invariance.
2.10 Toillustrate the difference between functional equivariance and formal invariance,
consider the following.

To estimate the amount of electric power obtainable from a stream, one could use the
estimate

8(x) = ¢ min{100 x — 20}
wherex = stream flow in mM/sec, 100 ri/sec is the capacity of the pipe leading to the

turbine, and 20 fysec is the flow reduction necessary to avoid harming the trout. The
constant, in kilowatts /m3/sec converts the flow to a kilowatt estimate.

(a) If measurements were, instead, made in liters and wattg(xgo= 1000x and
g(p) = 10009, show that functional equivariance leads to the estimate

2(8(x)) = emin{10°, g(x) — 20, 000}.

(b) The principle of formal invariance leads to the estimiig(x)). Show that this
estimator is not a reasonable estimate of wattage.

(Communicated by L. LeCam.)

2.11 In an invariant probability model, writ& = (T, W), whereT is sufficient forg,
andW is ancillary .

(a) Ifthe group operation is transitive, show that any invariant statistic must be ancillary.
(b) What can you say about the invariance of an ancillary statistic?
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2.12 In an invariant estimation problem, writé = (T, W) whereT is sufficient for9,
andW is ancillary. If the group of transformations is transitive, show:

(a) The best equivariant estimairis the solution to mip E4[L(0, d(x))|W = w].
(b) If eis the identity element of the group(*g = ¢), thens* = §*(¢, w) can be found
by solving, for eachw, min, E.{L[e, d(T, w)]|W = w}.
2.13 For the situation of Example 2.11:

(@) Show that the class of transformations is a group.
(b) Show that equivariant estimators must satify — x) = 1 — §(x).
(c) Show that, using an invariant loss, the risk of an equivariant estimator is symmetric
aboutp = 1/2.
2.14 For the situation of Example 2.12:

(a) Show that the class of transformations is a group.

(b) Show that estimators of the forpfx /s2)s?, wherex = 1/nSx; ands? = X (x; —x)?
are equivariant, wherg is an arbitrary function.

(c) Show that, using an invariant loss function, the risk of an equivariant estimator is a
function only oft = u/o.

2.15 Prove Corollary 2.13.
216 (a) If g isthe transformation (2.20), determipe

(b) InExample 2.12, show that (2.22) is not only sufficient for (2.14) but also necessary.
2.17 (a) In Example 2.12, determine the smallest graupontaining bothG; andG,.

(b) Show that the only estimator that is invariant un@eis §(X, Y) = 0.

2.18 If §(X) is an equivariant estimator &{f) under a groug, then so i*§(X) with
g* defined by (2.12) and (2.13), providéx is commutative.

2.19 Show that:

(a) In Example 2.14(i)X is not risk-unbiased.

(b) The group of transformationrs: + ¢ of the real line (O< a, —oco < ¢ < ) is not
commutative.

2.20 In Example 2.14, determine the totality of equivariant estimatoraA ender the
smallest grougz containingG; andG..

2.21 Let6 be real-valued and strictly increasing, so that (2.11) is vacuously satisfied.
If L(6,d) is the loss resulting from estimatirgby d, suppose that the loss resulting
from estimatingd’ = h(0) by d’ = h(d) is M(6’, d’) = L[0, h~*(d’)]. Show that:

(a) If the problem of estimating with loss functionL is invariant undeiG, then so is
the problem of estimating(@) with loss functionM.

(b) If 8 is equivariant unde@ for estimating? with loss functionZ, show that:[5(X)]
is equivariant for estimating(6) with loss functionM .

(©) If § is MRE foré with L, theni[8(X)] is MRE for 4(0) with M.

2.22 If §(X) is MRE for estimating in Example 2.2(i) with loss functiop(d — &), state
an optimum property o#®) as an estimator af .
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223 LetX;;,j=1,....n;,i=1,...,s,andW be distributed according to a density of

the form
|:| | Sfilxi — ‘i:i)i| h(w)
i=1

wherex; —§; = (x;i1—&;, ..., xi,, —&;), and consider the problem of estimatthg Xc;§;
with loss functionL(&;, ..., &;d) = p(d — 6). Show that:

(a) This problem remains invariant under the transformations
X, =Xij*a, &=&+a;, 0 =0+Zacq,
d =d+ Xac;.
(b) An estimatoi of 6 is equivariant under these transformations if
S(Xy +az, ..., X +a;, w)=8(Xg, ..., X, w) + Ta;c;.

2.24 Generalize Theorem 1.4 to the situation of Problem 2.23.

2.25 If &y is any equivariant estimator 6fin Problem 2.23, and i; = (x;1 — X, , Xi2 —
Xings -+ Xin;—1 — Xin;), ShOw that the most general equivariant estimatat isf of the
form

(X1 - vy Xgy W) = 80(Xay « vy Xy W) — VY1, -, Vs, W).
2.26 (a) Generalize Theorem 1.10 and Corollary 1.12 to the situation of Problems 2.23

and 2.25. (b) Show that the MRE estimators of (a) can be chosen to be independent of
w

2.27 Suppose that the variablés; in Problem 2.23 are independently distributed as
N(&, 0?), o is known. Show that:

(a) The MRE estimator af is thenZc; X; — v*, whereX; = (X;1 +- -+ X;,,)/n;, and
wherev* minimizes (1.24) withX = X¢; X;.
(b) If p is convex and even, the MRE estimatorad c; X;.

(c) The results of (a) and (b) remain valid wheris unknown and the distribution of
W depends om (but not thet's).

2.28 Show that the transformation of Example 2.11 and the identity transformation are
the only transformations leaving the family of binomial distributions invariant.

Section 3
3.1 (a) Aloss functionL satisfies (3.4) if and only if it satisfies (3.5) for some

(b) The sample standard deviation, the mean deviation, the range, and the MLE of
all satisfy (3.7) withr = 1.

3.2 Show that if§(X) is scale invariant, so i&*(X) defined to b&(X) if §(X) > 0 and
= 0 otherwise, and the risk &f is no larger than that & for any loss function (3.5) for
which y (v) is nonincreasing foo < 0.

3.3 Show that the bias of any equivariant estimatot’oin (3.1) is proportional ta".

3.4 A necessary and sufficient condition forto satisfy (3.7) is that it is of the form
8 = 8o/u with 8o andu satisfying (3.7) and (3.9), respectively.

3.5 The functionp of Corollary 3.4 withy defined in Example 3.5 is strictly convex for
p=>1

3.6 Let X be a positive random variable. Show that:
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(a) If EX? < oo, then the value of that minimizesE(X/c — 1Y isc = EX?/EX.
(b) If Y has the gamma distribution withi(e, 1), then the value ofv minimizing
E[(Y/w) —1Pisw =a + 1.
3.7 Let X be a positive random variable.

(@) If EX < oo, then the value of that minimizesE|X/c — 1| is a solution to
EXI(X <c)=EXI(X = ¢), which is known as acale median.

(b) LetY have ay?-distribution with f degrees for freedom. Then, the minimizing
value isw = f + 2. [Hint: (b) Example 1.5.9.]

3.8 Under the assumptions of Problem 3.7(a), the set of scale medianis af interval.
If f(x) > Oforallx > 0, the scale median df is unique.

3.9 Determine the scale median &fwhen the distribution o is (a) U (0, 8) and (b)
E(O, D).
3.10 Under the assumptions of Theorem 3.3:
(@) Show that the MRE estimator under the loss (3.13) is given by (3.14).
(b) Show that the MRE estimator under the loss (3.15) is given by (3.11), wiiére
is any scale median @f(x) under the distribution oX|Z.
[Hint: Problem 3.7.]
3.11 Let Xy, ..., X, beiid according to the uniform distributiar{0, 6).
(a) Show that the complete sufficient statistig, is independent o [given by Equa-
tion (3.8)].
(b) For the loss function (3.13) with = 1, the MRE estimator of is X(,/w, with
w=mn+1)/(n+2).
(c) For the loss function (3.15) with= 1, the MRE estimator of is [2Y/¢*V] X ).
3.12 Show that the MRE estimators of Problem 3.11, parts (b) and (c), are risk-unbiased,
but not mean-unbiased.
3.13 In Example 3.7, find the MRE estimator of v&rx() when the loss function is (a)
(3.13) and (b) (3.15) with = 2.
3.14 LetX;,..., X, beiid according to the exponential distributié0, t). Determine
the MRE estimator of for the loss functions (a) (3.13) and (b) (3.15) witk 1.
3.15 Inthe preceding problem, find the MRE estimator of ¥aj(when the loss function
is (3.13) withr = 2.
3.16 Prove formula (3.19).
3.17 Let X4, ..., X, beiid each with density (Z)[1 — (x/7)], 0 < x < t. Determine
the MRE estimator (3.19) af when (a)z = 2, (b)n = 3, and (cy = 4.
3.18 In the preceding problem, find vaf() and its MRE estimator fat = 2, 3, 4 when
the loss function is (3.13) with = 2.

3.19 (a) Show that the loss functioh, of (3.20) is convex and invariant under scale
transformations.

(b) Prove Corollary 3.8.

(c) Show that for the situation of Example 3.7, if the loss functiod. js then the
UMVU estimator is also the MRE.

3.20 Let Xy, ..., X, be iid from the distributionV (6, 62).

(&) Show that this probability model is closed under scale transformations.
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(b) Show that the MLE is equivariant.

[The MRE estimator is obtainable from Theorem 3.3, but does not have a simple form.
See Eaton 1989, Robert 1991, 1994a for more details. Gleser and Healy (1976) consider
a similar problem using squared error loss.]
3.21 (a) If §, satisfies (3.7) andsy satisfies (3.22), show thas, cannot be unbiased
in the sense of satisfying(c8p) = t”.
(b) Prove the statement made in Example 3.10.
3.22 Verify the estimatos* of Example 3.12.

3.23 If Gisagroup, asubse€l, of G is asubgroup of G if Gg is a group under the group
operation ofG.

(&) Show that the scale group (3.32) is a subgroup of the location-scale group (3.24)

(b) Show that any equivariant estimatorfthat is equivariant under (3.24) is also
equivariant under (3.32); hence, in a problem that is equivariant under (3.32), the
best scale equivariant estimator is at least as good as the best location-scale equiv-
ariant estimator.

(c) Explainwhy, in general, iy is a subgroup of, one can expect equivariance under
Go to produce better estimators than equivariance ugder

3.24 For the situation of Example 3.13:

(@) Show that an estimator is equivariant if and only if it can be written in the form
o(x/5)s?.
(b) Show that the risk of an equivariant estimator is a function only/ef

325 If X4,..., X, are iid according t&E (&, t), determine the MRE estimator offor
the loss functions (a) (3.13) and (b) (3.15) witke 1 and the MRE estimator &f for
the loss function (3.43).

3.26 Show that satisfies (3.35) if and only if it satisfies (3.40) and (3.41).

3.27 Determine the bias of the estima#si(X) of Example 3.18.

3.28 Lele (1993) usesinvariance in the studymiphometrics, the quantitative analysis of
biological forms. In the analysis of a biological object, one measuresdatia specific
points calledandmarks, where each landmark is typically two- or three-dimensional .
Here we will assume that the landmark is two-dimensional (as is a picture),isa
k x 2 matrix. A model forX is

X = (M +Y) +t

whereM, is the mean form of the objedtis a fixed translation vector, aritlis a 2x 2
matrix that rotates the vectdt. The random variabl¥ .., is amatrix normal random
variable, that is, each column ¥fis distributed asv (0, ), ak-variate normal random
variable, and each row is distributed 80, X,), a bivariate normal random variable.

(@) Show thatX is a matrix normal random variable with columns distributed as
N (MT;, %) and rows distributed &%, (M, T, I'"X,I"), whererl"; is the jth column
of I and M; is theith row of M.

(b) For estimation of the shape of a biological form, the parameters of intereit,are
¥ andX,, with t andl” being nuisance parameters. Show that, even if there were
no nuisance parameteis, or X, is not identifiable.

(c) ltis usually assumed that the, (@) element of eitheE; or X, is equal to 1. Show
that this makes the model identifiable.
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(d) The form of a biological object is considered an inherent property of the form
(a baby has the same form as an adult) and should not be affected by rotations,
reflections, or translations. This is summarized by the transformation

X' =XP+b

whereP is a 2x 2 orthogonal matrix @’ P = I) andb is ak x 1 vector. (See Note
9.3 for a similar group.) Suppose we obsemandmarksXy, - - -, X,,. Define the
Euclidean distance between two matrigeandB to beD(A, B) = 3, (ai; —bi;)?,
and let then x n matrix F have (, j)th elementf;; = D(X;, X;). Show thatF is
invariant under this group, that B(X’) = F(X). (Lele (1993) notes thaf is, in
fact, maximal invariant.)

3.29 In(9.1), showthatthe grouy) = AX+binducesthegroup’ = Au+b, ¥’ = AT A'.
3.30 For the situation of Note 9.3, consider the equivariant estimation of

(@) Show that an invariant loss is of the folu, =, §) = L((n — 8)Y Z~Y(ie — §8)).
(b) The equivariant estimators are of the fon+ ¢, with ¢ = 0 yielding the MRE
estimator.

3.31 ForXy,..., X, iidasN,(u, ¥), the cross-products matrixis defined by
§={8;} = Z(xik —%)(x; — X))
k=1

wherex; = (1/n) Y-, x;,. Show that, forz = 1,

@) EftrS]= Er 3 e (X, — X)(X, — X)) = pln — 1),
(b) Ejftrs?] = E; 300, 30 (300X, — X)X, — X)) = (n — L)(np — p — 1).
[These are straightforward, although somewhat tedious, calculations involving the chi-

squared distribution. Alternatively, one can use the fact§has a Wishart distribution
(see, for example, Anderson 1984), and use the properties of that distribution.]

3.32 For the situation of Note 9.3:
(&) Show that equivariant estimators Bfare of the formeS, whereS is the cross-
products matrix and is a constant.
(b) Show that, {tr[(cS — I)'(cS — )]} is minimized byc = E;trS/E,trS2.
[Hint: For part (a), use a generalization of Theorem 3.3; see the argument leading to
(3.29), and Example 3.11.]
3.33 For the estimation ok in Note 9.3:

(@) Show that the loss function in (9.2) is invariant.

(b) Show that Stein’s los& (5, £) = tr(6X %) — log|6X % — p, where|A| is the
determinant of4, is an invariant loss with MRE estimat6y n.

(c) Show that a los4.(8, ¥) is an invariant loss if and only if it can be written as a
function of the eigenvalues ¢t 1.

[The univariate version of Stein’s loss was seen in (3.20) and Example 3.9. Stein (1956b)
and James and Stein (1961) used the multivariate version of the loss. See also Dey and
Srinivasan 1985, and Dey et al. 1987.]
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334 LetXy,..., X, andYy, ..., Y, have joint density

L (B

omth (7’.“’0"1”“.’1' ’
and consider the problem of estimatifig= (r/o)" with loss functionL(o, t;d) =
y(d/9). This problem remains invariant under the transformativps aX;, Y; = bY;,
o' =ao, v =bt,andd = (b/a) d (a, b > 0), and an estimatd¥is equivariant under
these transformations #&{ax, by) = (b/a) 8(X, y). Generalize Theorems 3.1 and 3.3,
Corollary 3.4, and (3.19) to the present situation.

3.35 Under the assumptions of the preceding problem and with loss funatief)?/62,
determine the MRE estimator 6fin the following situations:

(@) m =n =1 andX andY are independently distributed &%o, o) andI'(8, 72),
respectively ¢, 8 known).

(b) Xi,..., X, andYy, ..., Y, areindependently distributed &40, o2) andN (0, 72),
respectively.

(¢) X1,..., X, andYy, ..., Y, are independently distributed &0, o) andU (0, ),
respectively.

3.36 Generalize the results of Problem 3.34 to the case that the joint den3itaodY

IS
1 <X1_E Xm—%’,yl—ﬁ yn_n>

P pu s ey pu . ey -

3.37 Obtain the MRE estimator af = (t/o)" with the loss function of Problem 3.35
when the density of Problem 3.36 specializes to

mlﬂﬂjf(xi—5>njf()’j—’7>
omnt o T

and f is (a) normal, (b) exponential, or (c) uniform.

3.38 In the model of Problem 3.37 with = o, discuss the equivariant estimation of
A = n — & with loss function § — A)?/o? and obtain explicit results for the three
distributions of that problem.

3.39 Suppose in Problem 3.37 that an MRE estimdtoof A = n — & under the trans-
formationsX; = a + bX; and YJ/. =a+bY;, b > 0, exists when the ratio/o = c is
known and that* is independent of. Show thats* is MRE also whero andt are
completely unknown despite the fact that the induced group of transformations of the
parameter space is not transitive.

340 Let f(r) = 1 -1, be the Cauchy density, and consider the location-scale family

7 142

fz{lf(x_’u),—oo<u<oo,0<o<oo}‘

o o

(&) Show that this probability model is invariant under the transformatienl/x.

(b) f ' = p/(u?+0?) ando’ = o/(u?+02), showthat?, (X € A) = Py (X' € A);
thatis, if X has the Cauchy density with location paramet@md scale parameter
o, thenX’ has the Cauchy density with location parametgfu? + o2) and scale
parameter /(u? + o2).

(c) Explain why this group of transformations of the sample and parameter spaces does
not lead to an invariant estimation problem.
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[See McCullaugh (1992) for a full development of this model, where it is suggested that
the complex plane provides a more appropriate parameter space.]

341 Let (X;,Y:),i =1,...,n, be distributed as independent bivariate normal random
variables with meany(, 0) and covariance matrix

<011 Glz)
021022 )"
(a) Show that the probability model is invariant under the transformations

(x",¥) = (a +bx, by),

/ ’ / ’y — 2 2 2
(U, 011, 099, 025) = (a + b, b011, b012, b*027).

(b) Usingtheloss functioh (i, d) = (u—d)?/o11, show that this is an invariant estima-
tion problem, and equivariant estimators must be of the fornx + (11, u2, u3)y,
whereu; = (x; — X)?/3%, uz = (y; — )?/5% andus = Z(x; — X)(vi — 3)/5%.

(c) Show that ifs has a finite second moment, then it is unbiased for estimatirits
risk function is a function 0é11/02, andoiz/02,.

(d) Ifthe ratiooy,/02; is known, show thak — (o12/02,)Y is the MRE estimator of.

[This problem illustrates the techniqueaivariance adjustment. See Berry, 1987.]

3.42 Supposewelety, ..., X, beasample fromanexponential distributio@x |, o) =
(1/o)e=C=m/e [(x > u). The exponential distribution is useful in reliability theory, and
a parameter of interest is often a quantile, that is, a parameter of the forrho,
whereb is known. Show that, under quadratic loss, the MRE estimatqr ¢fbo is
8o = Xyt ®—-1/n)(x — X(l)), Wherex(l) =min; x;.

[Rukhin and Strawderman (1982) show tldagtis inadmissible, and exhibit a class of
improved estimators.]

Section 4

41 (a) SupposeX; : N(&, o?) with & = a + B¢;. If the first column of the matrixC
leading to the canonical form (4.7) is/{/n, ..., 1//n), find the second column
of C.

(b) If X; : N(&, 0?) with &, = o + Bt; + y£2, and the first two columns af are those
of (a), find the third column under the simplifying assumptidhs = 0, X¢? = 1.
[Note: The orthogonal polynomials that are progressively built up in this way are
frequently used to simplify regression analysis.]

4.2 Write out explicit expressions for the transformations (4.10) whgnis given by

(@)& =a +pr; and (b)s = + Br; + y12.

4.3 Use Problem 3.10 to prove (iii) of Theorem 4.3.
4.4 (a) InExample 4.7, determirig 8, and hencé; by minimizing = (X; — o — 81,)%

(b) Verify the expressions (4.12) farandg, and the corresponding expressionsdor
andB.

45 In Example 4.2, find the UMVU estimators af 8, y, ando? whenXt = 0 and

T2 =1.

4.6 Let X;; be independen¥ (&;;, %) with &, = «; + Bt,;. Find the UMVU estimators
of thew; andg.
4.7 (a) In Example 4.9, show that the vectors of the coefficients inithare not or-
thogonal to the vector of the coefficientsof
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(b) Show that the conclusion of (a) is reversed;ifind/i are replaced b@i and/fl.

4.8 In Example 4.9, find the UMVU estimator @f when thew; are known to be zero
and compare it withi.

4.9 The coefficient vectors of th¥;;, given by (4.32) fori, &;, andB,— are orthogonal
to the coefficient vectors for the; given by (4.33).

4.10 In the model defined by (4.26) and (4.27), determine the UMVU estimatars of
B;, ando2 under the assumption that the are known to zero.

411 (a) In Example 4.11, show that
XXX —p—o; — B — )/,‘j)z = 52+Si +S§ +S§ +S§
wheres? = ST B(Xj— X;;.)%, S2 = [Im(X.. — 1), 2 = JmE(X1. — X.. —;)?,
ands;, 5y are defined analogously.

(b) Use the decomposition of (a) to show that the least squares estimatgrs;of . .
are given by (4.32) and (4.33).

(c) Show that therror sum of squares S? is equal toZ Z X (X, — é,-j)z and hence in
the canonical form t@”_,,Y7.

412 (a) Show how the decomposition in Problem 4.11(a) must be modified when it is
known that they;; are zero.

(b) Use the decomposition of (a) to solve Problem 4.10.
413 LetX,'_/'k (l :l,...,I,j :1,...,J,k:1,...,K)beN(Ei_/k,O'z)With
S =puto+ Bty
whereXa; = 8, = Xy, = 0. Expressu, «;, 8, andy; in terms of thet’s and find
their UMVU estimators. Viewed as a special case of (4.4), what is the valu® of
4.14 Extend the results of the preceding problem to the model

Sk =t Bty 8 et A

251,/ :Z3i,‘ :Zsik :ZSik :Z)»jk :Z)»_/k =0.
i J i k J k

4.15 Inthe preceding problem, if it is known that this are zero, determine whether the

UMVU estimators of the remaining parameters remain unchanged.

416 (a) Show thatunder assumptions (4.35%, i# 6 A, then the least squares estimate
of § isxA(AA) L.

(b) If (X, A) is multivariate normal with all parameters unknown, show that the least
squares estimator of part (a) is a function of the complete sufficient statistic and,
hence, prove part (a) of Theorem 4.14.

4.17 A generalization of the order statistics, to vectors, is given by the following defini-
tion.

where

Definition 8.1 Thec;-order statistics of a sample of vectors are the vectors arranged
in increasing order according to thgith components.

LetX;,i =1,...,n, be aniid sample op x 1 vectors, and lek = (X;,..., X,) be a
p X n matrix.

(a) Ifthe distribution ofX; is completely unknown, show that, forapy;j =1, ..., p,
thec;-order statistics ofX, . .., X,) are complete sufficient. (That is, the vectors
X1, ..., X, are ordered according to theith coordinate.)
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(b) LetY;,, be arandom variable with unknown distribution (possibly different from

X;). Form the p — 1) x n matrix (;) and for anyj =1, ..., p, calculate the

c;-order statistics based on the cqumn{é}jf). Show that these;-order statistics

are sufficient.
[Hint: See Problem 1.6.33, and also TSH2, Chapter 4, Problem 12.]
(c) Use parts (a) and (b) to prove Theorem 4.14(b).

[Hint: Part (b) implies that only a symmetric function df (A) need be considered, and
part (a) implies that an unconditionally unbiased estimator must also be conditionally
unbiased. Theorem 4.12 then applies.]

4.18 The proof of Theorem 4.14(c) is based on two results. Establish that:

(a) Forlarge values &f, the unconditional variance of a linear unbiased estimator will
be greater than that of the least squares estimator.

(b) Foré =0, the variance oK A(AA’)~! is greater than that df A[E(AA)] L. [You
may use the fact thaf(AA")~! — [E(AA)]~! is a positive definite matrix (Mar-
shall and Olkin 1979; Shaffer 1991). This is a multivariate extension of Jensen’s
inequality.]

(c) Parts (a) and (b) imply that no best linear unbiased estimatargf; exists if
EAA’is known.

4.19 (a) Under the assumptions of Example 4.15, find the variana&.o$?2.
(b) Show that the variance of (a) is minimized by the values stated in the example.

4.20 In the linear model (4.4), a functioB¢;&; with X¢; = 0 is called acontrast. Show
that a linear functiorkd;§; is a contrast if and only if it is translation invariant, that is,
satisfiesZd; (&; + a) = d;&; for all a, and hence if and only if it is a function of the
differencess; — &;.

4.21 Determine which of the following are contrasts:

(a) The regression coefficients 8, ory of (4.2).
(b) The parameters, «;, B;, or y;; of (4.27).
(c) The parameters or «; of (4.23) and (4.24).

Section 5
5.1 In Example 5.1:
(a) Show that the joint density of thi&; is given by (5.2).

(b) Obtain the joint multivariate normal density of tig; directly by evaluating their
covariance matrix and then inverting it.

[Hint: The covariance matrix oX 14, ..., X1.;...; X1, ..., X,, has the form
¥ 0...0
0X...0
Yy =
0 0...%

where eaclE; is ann x n matrix with a values; for all diagonal elements and a
valueb; for all off-diagonal elements. For the inversionxf, see the next problem.]
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5.2 Let A = (a;;) be a nonsingular x n matrix witha;; = a anda;; = b forall i Z j.
Determine the elements @f . [Hint: Assume thatt ~* = (c;;) with ¢;; = c andc;; = d
forall i 7 j, calculater andd as the solutions of the two linear equatidng,;jc;, = 1
andXas;c;, = 0, and check the produdtC.]

5.3 Verify the UMVU estimator o2 /02 given in Example 5.1.

5.4 Obtain the joint density of th&;; in Example 5.1 in the unbalanced case in which
j=1,...,n;,withthen; notall equal, and determine a minimal set of sufficient statistics
(which depends on the number of distinct values 9f

5.5 Inthe balanced one-way layout of Example 5.1, determinePl{g? < 0) asn — oo
foro2/02=0,0.2,0.5,1, and = 3, 4, 5, 6. Hint: The limit of the probability can be
expressed as a probability fong , variable.]

5.6 Inthe preceding problem, calculate value®@ 2 < 0) for finiten. When would you
expect negative estimates to be a problem? [The probabi(iif < 0), which involves
an F random variable, can also be expressed using the incomplete beta function, whose
values are readily available through either extensive tables or computer packages. Searle
et al. (1992, Section 3.5d) look at this problem in some detail.]

5.7 The following problem shows that in Examples 5.1-5.3 every unbiased estimator of
the variance components (excep) takes on negative values. (For some related results,
see Pukelsheim 1981.)

Let X have distributionP € P and suppose thdtis a complete sufficient statistic f@r.

If g(P)is anyU-estimable function defined ovérand its UMVU estimaton(T') takes

on negative values with probability 0, then show that this is true of every unbiased
estimator ofg(P). [Hint: For any unbiased estimatéyrrecall thate(§|T) = n(T).]

5.8 Modify the car illustration of Example 5.1 so that it illustrates (5.5).

5.9 In Example 5.2, define a linear transformation of &g, leading to the joint dis-
tribution of theZ;;, stated in connection with (5.6), and verify the complete sufficient
statistics (5.7).

5.10 In Example 5.2, obtain the UMVU estimators of the variance componehts2,
ando? wheno2 = 0, and compare them to those obtained without this assumption.

511 FortheX;;, givenin (5.8), determine a transformation taking them to variablgs
with the distribution stated in Example 5.3.

5.12 In Example 5.3, obtain the UMVU estimators of the variance componentsz,
ando?.

5.13 In Example 5.3, obtain the UMVU estimators®f ando? wheno3 = 0 so that the
B terms in (5.8) drop out, and compare them with those of Problem 5.12.

5.14 In Example 5.4:

(a) Give a transformation taking the variablés, into the W;;, with density (5.11).
(b) Obtain the UMVU estimators qf, o;, 02, ando?.

5.15 A general class of models containing linear models of Types | and Il, and mixed
models as special cases assumes that the: bbservation vectoX is normally dis-
tributed with meard A as in (4.13) and with covariance matfXZ,y; V; where they’s
are the components of variance and ¥as are known symmetric positive semidefinite
n x n matrices. Show that the following models are of this type and in each case specify
they’'sandV’s: (a) (5.1); (b) (5.5); (c) (5.5) without the ternds;; (d) (5.8); (e) (5.10).
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5.16 Consider a nested three-way layout with
Xiju = pta; +bij +ciji + Uju
G=1....Lj=1...,J;k=1....K;l=1,...,n)in the versions
(@) a; = a;, bij = Bij, cijk = Yijis
(0) a; = a;, bij = Byj, ciji = Cijis
(©) ai =, bij = Bij, ciji = Ciji;
d) a; = A, bij = Bjj, cijik = Ciji;

where thex's, 8's, andy’s are unknown constants defined uniguely by the usual conven-
tions, and thed’s, B’s, C’s, andU'’s are unobservable random variables, independently
normally distributed with means zero and with varianeéss 2, o2 ando2.

In each case, transform th&;;, to independent variables;;; and obtain the UMVU
estimators of the unknown parameters.

5.17 For the situation of Example 5.5, relax the assumption of normality to only assume
thatA; andU;; have zero means and finite second moments. Show that among all linear
estimators (of the forn}_ ¢;;x;;, ¢;; known), the UMVU estimator of. + «; (the best
linear predictor) is given by (5.14).

[This is a Gauss-Markov theorem for prediction in mixed models. See Harville (1976)
for generalizations.]

Section 6

6.1 In Example 6.1, show that; = O for all i, j is equivalent top;; = p;+p+;. [Hint:
Yij = Sij — s[, — %‘, + E =0 impliESp,-_,- = a,-bj and hean)H =ca; andp+_/ = b_,‘/C for
suitableg;, b;, andc > 0.]

6.2 In Example 6.2, show that the conditional independencg, df givenC is equivalent
toa/i?¢ = «}? = 0foralli, j, andk.

6.3 In Example 6.1, show that the conditional distribution of the vecters (. ., n;;)
given the values of;+ (i = 1, ..., I) is that of/ independent vectors with multinomial
distributionM (py;, . .., psi; ni+) Wherep;; = pij/ pis.

6.4 Show that the distribution of the preceding problem also arises in Example 6.1 when
then subjects, rather than being drawn from the population at large, are randomly drawn:
ny+ from CategoryAy, .. ., n;. from CategoryA;.

6.5 An application of log linear models in genetics is throughtiaedy-Weinberg model
of mating. If a parent population contains allelésa with frequenciesp and 1— p,
then standard random mating assumptions will result in offspring with genotypes
Aa, andaa with frequencie®; = p?, 6, = 2p(1— p), andds; = (1 — p)>.

(@) Give the full multinomial model for this situation, and show how the Hardy-
Weinberg model is a non-full-rank submodel.

(b) Forasampl&,, ..., X, of n offspring, find the minimal sufficient statistic.

[See Brown (1986a) for a more detailed development of this model.]

6.6 A city has been divided intd major districts and théth district intoJ; subdistricts,
all of which have populations of roughly equal size. From the police records for a given
year, arandom sampleefobberies is obtained. Write the joint multinomial distribution
of the numbers:;; of robberies in subdistricti () for this nested two-way layout as
eTEniikij with &; = u +o; + B;; whereZ;o; = 3, 8;; = 0, and show that the assumption
Bi; = 0for alli, j is equivalent to the assumption thaf = p;./J; for all i, .
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6.7 Instead of a sample of fixed sizén the preceding problem, suppose the observations
consist of all robberies taking place within a given time period, sorthatthe value
taken on by a random variablE¥. Suppose thatv has a Poisson distribution with
unknown expectatioh and that the conditional distribution of thg givenN = n is the
distribution assumed for the; in the preceding problem. Find the UMVU estimator of
Ap;; and show that no unbiased estimapgrexists. Hint: See the following problem.]

6.8 Let N be an integer-valued random variable with distribut@{N = n) = P,(n),
n=0,..., forwhich N is complete. GivemV = n, let X have the binomial distribution
b(p, n) for n > 0, with p unknown, and leX = 0 whenn = 0. For the observations
(N, X):

(a) Show that¥, X) is complete.

(b) Determine the UMVU estimator gfE,(N).

(c) Show that no unbiased estimator of any funcg@p) exists if P;(0) > 0 for some
6.

(d) Determine the UMVU estimator of if P,(0) for all 6.

Section 7
7.1 (a) Consider a populatiofu,, ..., ay} with the parameter space defined by the
restrictiona; +- - - + ay = A (known). A simple random sample of sizes drawn
in order to estimate?. Assuming the labels to have been discarded, show that
Yy, - .., Y are not complete.
(b) Show that Theorem 7.1 need not remain valid when the parameter space is of the
formVy x Vo x - x Vy. [Hint: LetN =2,n=1,V; =(1, 2}, Vo = {3, 4}.]

7.2 If Y4,...,%, are the sample values obtained in a simple random sample afsaa
the finite population (7.2), then (@ (Y;) = a, (b) var;) = =2, and (c) covt;, ¥;) =
—12/(N - 1).

7.3 Verify equations (a) (7.6), (b) (7.8), and (c) (7.13).
7.4 For the situation of Example 7.4:

(@ Showtha®Y, ;=E[-L Y, 'Y]=a.

(b) Show that {£; — £1- 31 7}(¥; — ¥,_1)? is an unbiased estimator of va(,).

[Pathak (1976) proved (a) by first showing th&Y; = a, and then thakY;|Tp = ¥,_;.
To avoid trivialities, Pathak also assumes t@at- C; < Q for all i, j, so that at least
three observations are taken.]

7.5 Random variableX, ..., X, areexchangeable if any permutation ofXy, ..., X,
has the same distribution.

(@ If Xy,..., X, are iid, distributed as Bernoullip), show that given) | X; =
t, X1, ..., X, are exchangeable (but not independent).

(b) For the situation of Example 7.4, show that giver= {(Cy, X1), ..., (C,, X))},
thev — 1 preterminal observations are exchangeable.

The idea of exchangeability is due to deFinetti (1974), who proved a theorem that char-
acterizes the distribution of exchangeable random variables as mixtures of iid random
variables. Exchangeable random variables play a large role in Bayesian statistics; see
Bernardo and Smith 1994 (Sections 4.2 and 4.3).
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7.6 For the situation of Example 7.4, assuming that (a) and (b) hold:

(@) Show that of (7.9) is UMVUE fora.
(b) Definings?=>"1_,(Y; — ¥)/(v — 1), show that

MSp,) 2 — S2
~2 — Q2 v—1
=gz vl 7
7 v—2
is UMVUE for t2 of (7.7), whereM S, is the variance of the observations in the

set (7.10).

[Kremers (1986) uses conditional expectation arguments (Rao-Blackwellization),
and completeness, to establish these results. He also assumes thakgidbast-
vations are taken. To avoid trivialities, we can assume 3.]

7.7 In simple random sampling, with labels discarded, show that a necessary condition
for h(ay, ..., ay) to beU-estimable is thak is symmetric in itsV arguments.

7.8 Prove Theorem 7.7.

7.9 Show that the approximate variance (7.16) for stratified samplingnayithnN; /N
(proportional allocation) is never greater than the corresponding approximate variance
72/n for simple random sampling with the same total sample size.

7.10 Let V, be the exact variance (7.15) aidthe corresponding variance for simple
random sampling given by (7.6) with = Xn;, N = ¥N;, n;/n = N;/N andt? =
22((1,’_/ - H)Z/N

(8) Show that, — V,, = ;¥ [ SNy — a.)? = 2232 Nie?]
(b) Give an example in whiclk, < V,,.

7.11 The approximate variance (7.16) for stratified sampling with a total sample size
n =ny+---+ngis minimized whem; is proportional tav; ;.

7.12 Forsampling designs where the inclusion probabilities 3" ... P(s)ofincluding
theith sample valud’; is known, a frequently used estimator of the population total is
the Horvitz-Thompson (1952) estimat&y; = ), Y;/m;.

(a) Show thasyr is an unbiased estimator of the population total.
(b) The variance ofyr is given by

1 ij
w2 [ pon [ 1]
i i ity

i7j

wherer;; are thesecond-order inclusion probabilities ;; =3, .., P(s).

Note that it is necessary to know the labels in order to calcdlatethus Theorem 7.5
precludes any overall optimality properties. See Hedayat and Sinha 1991 (Chapters 2
and 3) for a thorough treatment &f ;.

7.13 Suppose that an auxiliary variable is available for each element of the population
(7.2) sothab = {(1, az, b1), ..., (N,an,by)}. If Yq, ..., Y, andZy, .. 2y d(:znote the
values ofa andb observed in a simple random sample of sizendY and Z denote
their averages, then

N —n

TNV D) (a; — a)(b; — b).

cov(Y,Z)=E(Y —a)(Z—-b)=
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7.14 Under the assumptions of Problem 7.13&if b, +- - - +by is known, an alternative
unbiased estimatar is

1Y\ n(N=-1) |- [(1&VY)-
i Y Y=Y —=)Z].
(n;Z,v>b+(n—l)N|: (n;Z;) i|

[Hint: Use the facts thak (Y1/Z1) = (1/N)X(a; /b;) and that by the preceding problem

E [izﬁ(z,- - Z)] = [izﬂ(b,- - 13)] ]
n—1 Z,‘ N-1 b,‘

7.15 In connection with cluster sampling, consider a 8étof vectors §q, ..., ay)
and the totalityG of transformations takinga, ..., ay) into (a1, ..., a;,) such that
(a1, ...,ay) € WandXqa] = Xq;. Give examples of¥ such that for any real number
aj there existy, ..., ay with (ag, ..., ay) € W and such that

(a) G consists of the identity transformation only;
(b) G consists of the identity and one other element;
(c) G is transitive ovev.

7.16 For cluster sampling with unequal cluster sizés Problem 7.14 provides an al-
ternative estimator af, with M; in place ofb;. Show that this estimator reduceslaf
by = --- = by and hence when th¥; are equal.

7.17 Show that (7.17) holds if and only éfdepends only oxX”, defined by (7.18).

9 Notes

9.1 History

The theory of equivariant estimation of location and scale parameters is due to Pitman
(1939), and the first general discussions of equivariant estimation were provided by
Peisakoff (1950) and Kiefer (1957). The concept of risk-unbiasedness (but not the term)
and its relationship to equivariance were given in Lehmann (1951).

The linear models of Section 3.4 and Theorem 4.12 are due to Gauss. The history of
both is discussed in Seal (1967); see also Stigler 1981. The generalization to exponential
linear models was introduced by Dempster (1971) and Nelder and Wedderburn (1972).

The notions ofFunctional Equivariance andFormal Invariance, discussed in Section

3.2, have been discussed by other authors sometimes using different names. Functional
Equivariance is called thBrinciple of Rational Invariance by Berger (1985, Section

6.1), Measurement Invariance by Casella and Berger (1990, Section 7.2.4) &ad
rameter Invariance by Dawid (1983). Schervish (1995, Section 6.2.2) argues that this
principle is really only a reparametrization of the problem, and has nothing to do with
invariance. This is almost in agreement with the principle of functional equivariance,
however, it is still the case that when reparameterizing one must be careful to properly
reparameterize the estimator, density, and loss function, which is part of the prescription
of an invariant problem. This type of invariance is commonly illustrated by the example
that if § measures temperature in degrees Celsius, thé5)§9 32 should be used to
measure temperature in degrees Fahrenheit (see Problems 2.9 and 2.10).

What we have calleformal Invariance was also called by that name in Casella and
Berger (1990), but was called thevariance Principle by Berger (1985) an€ontext
Invariance by Dawid (1983).
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9.2 Subgroups

The idea of improving an MRE estimator by imposing equivariance only under a sub-

group was used by Stein (1964), Brown (1968), and Brewster and Zidek (1974) to find
improved estimators of a normal variance. Stein’s 1964 proof is also discussed in detail
by Maatta and Casella (1990), who give a history of decision-theoretic variance estima-
tion. The proof of Stein (1964) contains key ideas that were further developed by Brown

(1968), and led to Brewster and Zidek (1974) finding the best equivariant estimator of
the form (2.33). [See Problem 2.14.]

9.3 General Linear Group

Thegeneral linear group (also called théull linear group) is an example of a group that
can be thought of as a multivariate extension of the location-scale groul; Let. , X,
be iid according to @-variate normal distributiotv, (., ), and defineX as thep x n
matrix (X4, ..., X,) andX as then x 1 vector (1, ..., X,). Consider the group of
transformations

X' = AX +b
(9.1) wW=Au+b, Y =ATA,

where A is a p x p nonsingular matrix an@ is a p x 1 vector. [The group of real

p x p nonsingular matrices, with matrix multiplication as the group operation is called
thegeneral linear group, denotedj!, (see Eaton 1989 for a further development). The
group (9.1) adds a location component.]

Consider now the estimation &f. (The estimation of is left to Problem 3.30.) An
invariant loss function, analogous to squared error loss, is of the form

9.2) L(Z,8)=t[=7Y6 - =) — o) =tr[ =~ Y2s2 Y2 — ]2,

where trf] is the trace of a matrix (see Eaton 1989, Example 6.2, or Olkin and Selliah
1977). It can be shown that equivariant estimators are of the éSirwhereS = (X —
IX)(X — 1X’) with 1a p x 1 vector of 1's and a constant, is theross-products matrix
(Problem 3.31). Since the group is transitive, the MRE estimator is given by the value
of ¢ that minimizes

(9.3) E;L(1,cS) = Estr(cS —I)(cS —I),
that is, the risk with = 7. Since

Etr(cS — I) (cS — I) = c®E;trS? — 2cE;trS + p,

the minimizingc is given byc = E;trS/E;trS2. Note that, forp = 1, this reduces to the

best equivariant estimator of quadratic loss in the scalar case. Other equivariant losses,
such as Stein’s loss (3.20), can be handled in a similar manner. See Problems 3.29-3.33
for details.

9.4 Finite Populations

Estimation in finite populations has, until recently, been developed largely outside the
mainstream of statistics. The books by Cassi@in8al, and Wretman (1977) andr&dal,
Swenson, and Wretman (1992) constitute important efforts at a systematic presentation
of this topic within the framework of theoretical statistics. The first steps in this direction
were taken by Neyman (1934) and by Blackwell and Girshick (1954). The need to
consider the labels as part of the data was first emphasized by Godambe (1955). Theorem
7.1 is due to Watson (1964) and Royall (1968), and Theorem 7.5 to Basu (1971).



CHAPTER 4

Aver age Risk Optimality

1 Introduction

So far, we have been concerned with finding estimators which minimize the risk
R(0, 8) at every value ob. This was possible only by restricting the class of es-
timators to be considered by an impartiality requirement such as unbiasedness or
equivariance. We shall now drop such restrictions, admitting all estimators into
competition, but shall then have to be satisfied with a weaker optimality prop-
erty than uniformly minimum risk. We shall look for estimators that make the
risk function R(6, §) small in some overall sense. Two such optimality proper-
ties will be considered: minimizing the (weighted) average risk for some suitable
non-negative weight function and minimizing the maximum risk. The second (min-
imax) approach will be taken up in Chapter 5; the present chapter is concerned
with the first of these approaches, the problem of minimizing

(1.1) r(A,d) = / R(6, 8)dA(H)
where we shall assume that the weights representeddgyd up to 1, that is,
1.2) fdA(@) =1,

so thatA is a probability distribution. An estimatérminimizing (1.1) is called a
Bayes estimator with respect toA.

The problem of determining such Bayes estimators arises in a number of dif-
ferent contexts.

(i) AsMathematical Tools

Bayes estimators play a central role in Wald’s decision theory. It is one of the
main results of this theory that in any given statistical problem, attention can be
restricted to Bayes solutions and suitable limits of Bayes solutions; given any other
procedure’, there exists a proceduséin this class such tha (0, §') < R(0, 5)

for all values of9. (In view of this result, it is not surprising that Bayes estimators
provide a tool for solving minimax problems, as will be seen in the next chapter.)

(it) Asa Way of Utilizing Past Experience

It is frequently reasonable to treat the parameétesf a statistical problem as
the realization of a random variabt& with known distribution rather than as an
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unknown constant. Suppose, for example, that we wish to estimate the probability
of a penny showing heads when spun on a flat surface. So far, we would have
considered: spins of the penny as a set @fbinomial trials with an unknown
probability p of showing heads. Suppose, however, that we have had considerable
experience with spinning pennies, experience perhaps which has provided us with
approximate values gf for a large number of similar pennies. If we believe this
experience to be relevant to the present penny, it might be reasonable to represent
this past knowledge as a probability distribution fgrthe approximate shape of
which is suggested by the earlier data.

This is not as unlike the modeling we have done in the earlier sections as it
may seem at first sight. When assuming that the random variables representing the
outcomes of our experiments have normal, Poisson, exponential distributions, and
so on, we also draw on past experience. Furthermore, we also realize that these
models are in no sense exact but, at best, represent reasonable approximations.
There is the difference that in earlier models we have assumed only the shape of
the distribution to be known but not the values of the parameters, whereas now we
extend our model to include a specification of the prior distribution. However, this
is a difference in degree rather than in kind and may be quite reasonable if the past
experience is sufficiently extensive.

A difficulty, of course, is the assumption that past experience is relevant to the
present case. Perhaps the mint has recently changed its manufacturing process,
and the present coin, although it looks like the earlier ones, has totally different
spinning properties. Similar kinds of judgment are required also for the models
considered earlier. In addition, the conclusions derived from statistical procedures
are typically applied not only to the present situation or population but also to
those in the future, and extrastatistical judgment is again required in deciding how
far such extrapolation is justified.

The choice of the prior distribution is typically made like that of the dis-
tributions P, by combining experience with convenience. When we make the
assumption that the amount of rainfall has a gamma distribution, we probably do
not do so because we really believe this to be the case but because the gamma
family is a two-parameter family which seems to fit such data reasonably well
and which is mathematically very convenient. Analogously, we can obtain a prior
distribution by starting with a flexible family that is mathematically easy to handle
and selecting a member from this family which approximates our past experience.
Such an approach, in which the model incorporates a prior distributiof for
reflect past experience, is useful in fields in which a large amount of past experi-
ence is available. It can be brought to bear, for example, in many applications in
agriculture, education, business, and medicine.

There are important differences between the modeling of the distribulipns
and that ofA. First, we typically have a number of observations frésnand can
use these to check the assumption of the form of the distribution. Such a check of
is not possible on the basis of one experiment because the vatugnaler study
represents only a single observation from this distribution. A second difference
concerns the meaning of a replication of the experiment. In the models preceding
this section, the replication would consist of drawing another set of observations
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from P, with the same value df. In the model of the present section, we would
replicate the experiment by first drawing another valliegf ® from A and then a

set of observations frorf, . It might be argued that sampling of thealues (choice

of penny, for example) may be even more haphazard and less well controlled than
the choice of subjects for an experiment of a study, which assumes these subjects
to be a random sample from the population of interest. However, it could also be
argued that the assumption of a fixed value 6$ often unrealistic. As we will

see, the Bayesian approaches of robust and hierarchical analysis attempt to address
these problems.

(iii) Asa Description of a State of Mind

A formally similar approach is adopted by the so-called Bayesian school, which
interpretsA as expressing the subjective feeling about the likelihood of different

0 values. In the presence of a large amount of previous experience, the chosen
A would often be close to that made under (i), but the subjective approach can
be applied even when little or no prior knowledge is available. In the latter case,
for example, the prior distribution then models the state of ignorance ab®ut

The subjective Bayesian uses the observatirte modify prior beliefs. After

X = x has been observed, the belief abéus expressed by the posterior (i.e.,
conditional) distribution of givenx.

Detailed discussions of this approach, which we shall not pursue here, can be
found, for example, in books by Savage (1954), Lindley (1965), de Finetti (1970,
1974), Box and Tiao (1973), Novick and Jackson (1974), Berger (1985), Bernardo
and Smith (1994), Robert (1994a) and Gelman et al. (1995).

A note on notation: In Bayesian (as in frequentist) arguments, it is important to
keep track of which variables are being conditioned on. Thus, the densitywif
be denoted b ~ f(x|0). Prior distributions will typically be denoted by or
A with their density functions being(0|1) or y (1),wherex is another parameter
(sometimes called layper parameter). From these distributions we often calculate
conditional distributions such as thatéfivenx anda, or A givenx (calledposte-
rior distributions). These typically have densities, denotedddg|x, A) or y (A|x).
We will also be interested in marginal distributions suchvds|)). To illustrate,
7 (0lx, 1) = f(x10)m (O|1)/m(x|1), wherem(x|A) = [ f(x|0)m (O|1) d6.

Itis convenient to use boldface to denote vectors, for exampidx, . . ., x,),
so we can writef (x|0) for the sample density (xy, ..., x,10).

The determination of a Bayes estimator is, in principle, quite simple. First,
consider the situation before any observations are taken. Bhbas distribution
A and the Bayes estimator g{®) is any numbet/ minimizing EL(®, d). Once
the data have been obtained and are given by the observedwalug, the prior
distributionA of © is replaced by the posterior, that is, conditional, distribution of
©® givenx and the Bayes estimator is any numBgér) minimizing the posterior
risk E{L[®, §(x)]|x}. The following is a precise statement of this result, where,
as usual, measurability considerations, are ignored.
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Theorem 1.1 Let ® have distribution A, and given ® = 6, let X have distribu-
tion Py. Suppose, in addition, the following assumptions hold for the problem of
estimating g(®) with non-negative loss function L(6, d).

(@) Thereexistsan estimator 8o with finite risk.

(b) For almost all x, there exists a value § 5 (x) minimizing

(1.3) E{L[®, §(x)]|X = x}.
Then, §,(X) is a Bayes estimator.

Proof. Let § be any estimator with finite risk. Then, (1.3) is finite a.e. sihce
non-negative. Hence,

E{L[®,8(x)]|X =x} > E{L[O,5,(x)]|1X =x} ae,
and the result follows by taking the expectation of both sides. O

[For a discussion of some measurability aspects and more detailiAed) =
o(d —0), see DeGroot and Rao 1963. Brown and Purves (1973) provide a general
treatment.]

Coroallary 1.2 Suppose the assumptions of Theorem 1.1 hold.
(@ If L@, d) =[d — g(9)]? then

(1.4) Sa(x) = E[g(O)Ix]

and, more generally, if
(1.5) L(6, d) = w(®)[d — g(O)]%,

then i

_ Jw(®)g(@)dA@lx) _ E[w(®)g(®)lx]

(1.6) 5a(x) = Tw@)dA@lx)  Ew(©)x]
(b) IfL(6, d) = |d—g(8)|,then s, (x) isany median of the conditional distribution

of ® given x.
(o) If

_[Owhen|d —0| <c¢

@7 L(©.d) = {1 when|d — 0] > ¢,

then 8, (x) is the midpoint of the interval I of length 2¢ which maximizes
P[® € I|x].

Proof. To prove part (i), note that by Theorem 1.1, the Bayes estimator is obtained
by minimizing
(1.8) E{[g(®) — 8(x)1[x}.
By assumption (a) of Theorem 1.1, there exi&éc) for which (1.8) is finite
for almost all values ok, and it then follows from Example 1.7.17 that (1.8) is
minimized by (1.4).

The proofs of the other parts are completely analogous. a
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Example 1.3 Poisson. The parametef of a Poissorf() distribution is both the
mean and the variance of the distribution. Although squared erroilg{gs §) =
(6 —8)?is often preferred for the estimation of a mean, some type of scaled squared
error loss, for exampld,; (6, 8) = (9 — 8)?/6%, may be more appropriate for the
estimation of a variance.

If X1,..., X, areiid Poissor{), andd has the gamma( b) prior distribution,
then the posterior distribution is

b
m(0|x) = Gammg a +x, ——
1+b

and the Bayes estimator undey is given by (see Problem 1.1)
E@YKX) b
E@*X) 1+b
for a — k > 0. Thus, the choice of loss function can have a large effect on the
resulting Bayes estimator. I

sk(x) = (x+a—k)

It is frequently important to know whether a Bayes solution is unique. The
following are sufficient conditions for this to be the case.

Coroallary 1.4 If thelossfunction L(0, d) issgquared error, or more generally, if it
isstrictly convexin d, a Bayes solution §,, isunique (a.e. P), where P isthe class
of distributions P,, provided

(a) theaveragerisk of 5, with respect to A isfinite, and
(b) if Q isthemarginal distribution of X given by

0(4) = / PA(X € A)IA(®D),

thena.e Q impliesa.e. P.

Proof. For squared error, if follows from Corollary 1.2 that any Bayes estimator
8 A (x) with finite risk must satisfy (1.4) except on a 8eof x values withQ(N) = 0.

For general strictly convex loss functions, the result follows by the same argument
from Problem 1.7.26. a

As an example of a case in which condition (b) does not holdXlegave the
binomial distributionb(p, n), 0 < p < 1, and suppose that assigns probability
1/2 to each of the values = 0 andp = 1. Then, any estimat&(X) of p with
8(0) = 0 ands(n) = 1 is Bayes.

On the other hand, condition (b) is satisfied when the parameter space is an
open set which is the support afand if the probabilityP, (X € A) is continuous
in 6 for any A. To see this, note thg®(N) = O implies Po(N) = 0 (a.e.A) by
(1.2.23). If there existgy with Py, (N) > 0O, there exists a neighborhoadof 6,
in which Py(N) > 0. By the support assumptioR, (w) > 0 and this contradicts
the assumption thak,(N) = 0 (a.e.A).

Three different aspects of the performance of a Bayes estimator, or of any other
estimators, may be of interest in the present model. These are (a) the Bayes risk
(2.1); (b) the risk functionk(#, §) of Section 1.1 [Equation (1.1.10)] [this is the
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frequentist risk, which is now the conditional risk &fX) given6]; and (c) the
posterior risk giverx which is defined by (1.3).
For the determination of the Bayes estimator the relevant criterion is, of course,
(a). However, consideration of (b), the conditional risk giveras a function of
6 provides an important safeguard against an inappropriate choice(Bérger
1985, Section 4.7.5). Finally, consideration of (c) is of interest primarily to the
Bayesian. From the Bayesian point of view, the posterior distributiad given
x summarizes the investigator’s belief abéun the light of the observation, and
hence the posterior risk is the only measure of risk of accuracy that is of interest.
The possibility of evaluating the risk function (b) & suggests still another
use of Bayes estimators.

(iv) Asa General Method for Generating Reasonable Estimator s

Postulating some plausible distributiongrovides a method for generating inter-
esting estimators which can then be studied in the conventional way. A difficulty
with this approach is, of course, the choice/of Methodologies have been de-
veloped to deal with this difficulty which sometimes incorporate frequentist mea-
sures to assess the choice/of These methods tend to first select not a single
prior distribution but a family of priors, often indexed by a parameter (a so-called
hyperparameter). The family should be chosen so as to balance appropriateness,
flexibility, and mathematical convenience. From it, a plausible member is selected
to obtain an estimator for consideration. The following are some examples of these
approaches, which will be discussed in Sections 4.4 and 4.5.

e Empirical Bayes. The parameters of the prior distribution are themselves esti-
mated from the data.

e Hierarchical Bayes. The parameters of the prior distribution are, in turn, mod-
eled by another distribution, sometimes called a hyperprior distribution.

e Robust Bayes. The performance of an estimator is evaluated for each member
of the prior class, with the goal of finding an estimator that performs well (is
robust) for the entire class.

Another possibility leading to a particular choice®fcorresponds to the third
interpretation (iii), in which the state of mind can be described as “ignorance.”
One would then select fak a noninformative prior which tries (in the spirit of
invariance) to treat all parameter values equitably. Such an approach was developed
by Jeffreys (1939, 1948, 1961), who, on the basis of invariance considerations,
suggests as noninformative prior f@ra density that is proportional to/[7(8)],
where|I(9)] is the determinant of the information matrix. A good account of this
approach with many applications is given by Berger (1985), Robert (1994a), and
Bernardo and Smith (1994). Note 9.6 has a further discussion.

Example 1.5 Binomial. Suppose thaX has the binomial distributiob(p, n). A
two-parameter family of prior distributions fgr which is flexible and for which

the calculation of the conditional distribution is particularly simple is the family
of beta distributions3(a, ). These densities can take on a variety of shapes (see
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Problem 1.2) and we note for later reference that the expectation and variance of
a random variablg with densityB(a, b) are (Problem 1.5.19).

4 : ab
(1.9) E(p)=—, and varp)= (@a+b2a+b+1)

To determine the Bayes estimator of a given estimand, let us first obtain
the conditional distribution (posterior distribution) pfgivenx. The joint density

of X andp is
n\ 'l@a+b) ., -1 —x+b—1
XTa 1_ n—x .
(+) T »
The conditional density o givenx is obtained by dividing by the marginal of
which is a function ofc alone (Problem 2.1). Thus, the conditional densityof
givenx has the form

(1.10) C(a, b, x)p* Y1 — pyr—>+-1,

Again, this is recognized to be a beta distribution, with parameters
(1.11) a=a+x, b =b+n-—x.

Let us now determine the Bayes estimatogp) = p when the loss function
is squared error. By (1.4), this is

! a+x

(1.12) 5A(x)=E(p|x)=a/+b/ :a+b+n'

It is interesting to compare this Bayes estimator with the usual estinXator
Before any observations are taken, the estimator from the Bayesian approach is
the expectation of the priot;/(a + b). OnceX has been observed, the standard
non-Bayesian (for example, UMVU) estimator X¢n. The estimatos, (X) =
(a + X)/(a + b +n) lies between these two. In fact,

(1.13) a+X :< a+b) a +( n )E

atb+n atb+n/)a+b atb+n/ n

is a weighted average af/(a + b), the estimator op before any observations are
taken, andX/n, the estimator without consideration of a prior.

The estimator (1.13) can be considered as a modification of the standard esti-
mator X/n in the light of the prior information aboyt expressed by (1.9) or as
a modification of the prior estimatat/(a + b) in the light of the observatioix.
From this point of view, it is interesting to notice what happens asdb — oo,
with the ratiob/a being kept fixed. Then, the estimator (1.12) tends in probability
toa/(a + b), that is, the prior information is so overwhelming that it essentially
determines the estimator. The explanation is, of course, that in this case the beta
distribution B(a, b) concentrates all its mass essentially Al + b) [the variance
in (1.9) tends toward 0], so that the valuepois taken to be essentially known and
is not influenced by. (“Don’t confuse me with the facts!”)

On the other hand, if andb are fixed, butz — oo, itis seen from (1.12) that,
essentially coincides witl /n. This is the case in which the information provided
by X overwhelms the initial information contained in the prior distribution.
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The UMVU estimatotX /n corresponds to the case= b = 0. However,B(0, 0)
is no longer a probability distribution sing%l(l/p(l — p))dp = oco. Even with
such anmproper distribution (that is, a distribution with infinite mass), it is pos-
sible formally to calculate a posterior distribution givenThis possibility will be
considered in Example 2.8. I

This may be a good time to discuss a question facing the reader of this book.
Throughout, the theory is illustrated with examples which are either completely
formal (that is, without any context) or stated in terms of some vaguely described
situation in which such an example might arise. In either case, whatis assumed is a
model and, in the present section, a prior distribution. Where do these assumptions
come from, and how should they be interpreted? “Kethave a binomial distri-
butionb(p, n) and letp be distributed according to a beta distributiBfu, b). ”

Why binomial and why beta?

The assumptions underlying the binomial distribution are (i) independence of the
n trials and (ii) constancy of the success probabijlityrroughout the series. While
in practice itis rare for either of these two assumptions to hold exactly - consecutive
trials typically exhibit some dependence and success probabilities tend to change
over time (as in Example 1.8.5) - they are often reasonable approximations and
may serve as identifications in a wide variety of situations arising in the real world.
Similarly, to a reasonable degree, approximate normality may often be satisfied
according to some version of the central limit theorem, or from past experience.

Let us next turn to the assumption of a beta priorfor his leads to an estimator
which, due to its simplicity, is highly prized for a variety of reasons. But simplicity
of the solution is of little use if the problem is based on assumptions which bear
no resemblance to reality.

Subjective Bayesians, even though perhaps unable to state their prior precisely,
will typically have an idea of its shape: It may be bimodal, unimodal (symmetric or
skewed), or it may be L- or U-shaped. In the first of these cases, a beta prior would
be inappropriate since no beta distribution has more than one mode. However, by
proper choice of the parameterandb, a beta distribution can accommodate itself
to each of the other possibilities mentioned (Problem 1.2), and thus can represent
a considerable variety of prior shapes.

The modeling of subjective priors discussed in the preceding paragraph corre-
spond to the third of the four interpretations of the Bayes formalism mentioned
at the beginning of the section. A very different approach is suggested by the
fourth interpretation, where formal priors are used simply as a method of generat-
ing a reasonable estimator. A standard choice in this case is to treat all parameter
values equally (which corresponds to a subjective prior modeling ignorance). In
the nineteenth century, the preferred choice for this purpose in the binomial case
was the uniform distribution fop over (Q 1), which is the beta distribution with
a =b =1. As an alternative, the Jeffreys prior corresponding tob = 1/2 (see
the discussion preceding Example 1.5) has the advantage of being invariant under
change of parameters (Schervisch 1995, Section 2.3.4). The prior density in this
case is proportional tgo[(1 — p)] /2, which is U-shaped. It is difficult to imagine
many real situations in which an investigator believes that it is equally likely for
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the unknownp to be close to either 0 or 1. In this case, the fourth interpretation
would therefore lead to very different priors from those of the third interpretation.

2 First Examples

In constructing Bayes estimators, as functions of the posterior density, some
choices are made (such as the choice of prior and loss function). These choices will
ultimately affect the properties of the estimators, including not only risk perfor-
mance (such as bias and admissibility) but also more fundamental considerations
(such as sufficiency). In this section, we look at a number of examples to illustrate
these points.

Example 2.1 Sequential binomial sampling. Consider a sequence of binomial
trials with a stopping rule as in Section 3.3. D&tY, andN denote, respectively,

the number of successes, the number of failures, and the total number of trials at
the moment sampling stops. The probability of any sample path isth@n- p)”

and we shall again suppose thahas the prior distributioB(a, ). What now is

the posterior distribution g given X andY (or equivalentlyX andN = X +Y)?

The calculation in Example 1.3 shows that, as in the fixed sample size case, itis the
beta distribution with parametess$ andd’ given by (1.11), so that, in particular,

the Bayes estimator qgf is given by (1.12yegardless of the stopping rule. ||

Of course, there are stopping rules which even affect Bayesian inference (for
example, "stop when the posterior probability of an event is greater than .9”).
However, if the stopping rule is a function only of the data, then the Bayes inference
will be independent of it. These so-callpper stopping rules, and other aspects
of inference under stopping rules, are discussed in detail by Berger and Wolpert
(1988, Section 4.2). See also Problem 2.2 for another illustration.

Thus, Example 2.1 illustrates a quite general feature of Bayesian inference:
The posterior distribution does not depend on the sampling rule but only on the
likelihood of the observed results.

Example 2.2 Normal mean. Let X4, ..., X, be iid asN (0, o2), with o known,
and let the estimand b@. As a prior distribution for®, we shall assume the
normal distributionV (., b2). The joint density of andX = (X4, ..., X,,) isthen
proportional to

1

(2.1) f(x,0)= exp[—glz > i — «9)2} exp[—z—b2
i=1

w—mﬂ.

To obtain the posterior distribution @|x, the joint density is divided by the
marginal density oK, so that the posterior distribution has the fotttx) f (x|0).

If C(x) is used generically to denote any functiorxafot involvingd, the posterior
density of®|x is

C(x) e—(1/2)(92[n/(rz+1/b2]+9[ni Jo2+u/b?]

1/n 1 nx/o?+ u/b?
=cwen|[ 5 (5232 [ -2 e ]
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This is recognized to be the normal density with mean

nx/o?+ u/b?

and variance
1
2.3 var@|x) = ———.
(23) ON =
When the loss is squared error, the Bayes estimatérisfgiven by (2.2) and
can be rewritten as

njo? ) 1/b?
(2.4) 3a(x) = (m) o (m> "

and by Corollary 2.7.19, this result remains true for any loss fungii@h— 0)

for which p is convex and even. This showsg to be a weighted average of the
standard estimato¥, and the meap of the prior distribution, which is the Bayes
estimator before any observations are takem As oo with u andb fixed, 8, (X)
becomes essentially the estimaforands,(X) — 6 in probability. Asb — 0,

84(X) — w in probability, as is to be expected when the prior becomes more
and more concentrated abqutAs b — oo, 8, (X) essentially coincides wit,

which again is intuitively reasonable. These results are analogous to those in the
binomial case. See Problem 2.3. I

It was seen above that is the limit of the Bayes estimators &s— occ. As
b — oo, the prior density tends to Lebesgue measure. Since the Fisher information
1(0) of alocation parameter is constant, this is actually the Jeffrey’s prior mentioned
under (iv) earlier in the section. It is easy to check that the posterior distribution
calculated from this improper prior is a proper distribution as soon as an observation
has been taken. This is not surprising; sixcis normally distributed abodtwith
variance 1, even a single observation provides a good idea of the position of

As in the binomial case, the question arises whetfiés the Bayes solution
also with respect to a proper pridr. This question is answered for both cases by
the following theorem.

Theorem 2.3 Let ® have a distribution A, and let Py, denote the conditional
distribution of X given 0. Consider the estimation of g(6) when the loss function
issguared error. Then, no unbiased estimator §(X) can be a Bayes solution unless

(2.5) E[5(X) - g(©)]*=0,
where the expectation is taken with respect to variation in both X and ©.

Proof. Suppose’(X) is a Bayes estimator and is unbiased for estimagi(t).
Sinces(X) is Bayes and the loss is squared error,

8(X) = E[g(®)1X],
with probability 1. SinceS(X) is unbiased,
E[5(X)|0] = g(0) forall 6.
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Conditioning onX and using (1.6.2) leads to
E[g(®)8(X)] = E{8(X)E[¢(©)IX]} = E[s*(X)].
Conditioning instead o®, we find
E[g(®)8(X)] = E{g(®)E[8(X)|O]} = E[¢*(O)].
It follows that
E[5(X) — g(©))? = E[§*(X)] + E[g*(®)] — 2E[5(X)g(®)] = 0,
as was to be proved. a

Let us now apply this result to the case thét) is the sample mean.
Example 2.4 Sample means. If X;,i = 1,...,n, are iid with E(X;) = ¢ and
var X; = o2 (independent o), then the risk ofX (given6) is

R, X) = E(X —0)*>=0?/n.
For any proper prior distribution o8,
E(X —0)2=0%/n70,

so (2.5) cannot be satisfied and, from Theorem 2.8 not a Bayes estimator.
This argument will apply to any distribution for which the varianceXoiis
independent o), such as theV (0, o?) distribution in Example 2.2. However, if
the variance is a function @, the situation is different.
If var X; = v(9), then (2.5) will hold only if

(2.6) /v(@)dA(@)d@ =0
for some proper prion. If v(6) > 0 (a.e.A), then (2.6) cannot hold. For example,
if X1,---, X, are iid Bernoullip) random variables, then the risk function of the

sample mead(ZX;) = ZX;/nis

E@(sx) - pp="00)

and the left side of (2.5) is therefore

1
+ | pa=pane),

The integral is zero if and only ik assigns probability 1 to the sg&, 1}. For such
a distribution,A,

81\(0):0 and 81\(1’1): 1,
and any estimator satisfying this condition is a Bayes estimator for suth a
Hence, in particularX/n is a Bayes estimator. Of course,Afis true, then the
valuesX = 1,2, ...,n—1are never observed. Thug/n is Bayes only in a rather
trivial sense. I

Extensions and discussion of other consequences of Theorem 2.3 can be found
in Bickel and Blackwell (1967), Noorbaloochi and Meeden (1983), and Bickel and
Mallows (1988). See Problem 2.4.
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The beta and normal prior distributions in the binomial and normal cases are the
so-callecconjugate families of prior distributions. These are frequently defined as
distributions with densities proportional to the densityRof It has been pointed
out by Diaconis and Ylvisaker (1979) that this definition is ambiguous; they show
that in the above examples and, more generally, in the case of exponential families,
conjugate priors can be characterized by the fact that the resulting Bayes estimators
are linear inX. They also extend the weighted-average representation (1.13) of the
Bayes estimator to general exponential families. For one parameter exponential
families, MacEachern (1993) gives an alternate characterization of conjugate priors
based on the requirement that the posterior mean lies "in between” the prior mean
and sample mean.

As another example of the use of conjugate priors, consider the estimation of a
normal variance.

Example 2.5 Normal variance, known mean. Let X4, ..., X, be iid according
to N(0, 02), so that the joint density of th&,’s is Ct"e~"=%, wherer = 1/202

andr = n/2. As conjugate prior for, we take the gamma densityg, 1/«) noting

that, by (1.5.44),

@7 E@=f mey=tE0D

()55 () ey

Writing y = Xx2, we see that the posterior densitymofiven thex;’s is
C(y)rr+gflefr(a+y)’

which isT'[r + g, 1/(a + y)]. If the loss is squared error, the Bayes estimator of
202 = 1/7 is the posterior expectation of 4, which by (2.7) is¢ +y)/(r +g — 1).
The Bayes estimator of? = 1/27 is therefore
atY
2.8 _
(2.8) n+2g—2

In the present situation, we might instead prefer to work with the scale invariant
loss function
(d —o??

(2.9) g
which leads to the Bayes estimator (Problem 2.6)
E(1/o®) _ E(r)
E(ljo%  2E(E?)’
and hence by (2.7) after some simplification to
a+Y
n+2g+2

)

(2.10)

(2.11)

Since the Fisher information far is proportional to o2 (Table 2.5.1), the
Jeffreys prior density in the present case is proportional to the improper density
1/o0, which induces forr the density (1t) dt. This corresponds to the limiting
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casax = 0, g = 0, and hence by (2.8) and (2.11) to the Bayes estimatdis— 2)
andY/(n + 2) for squared error and loss function (2.9), respectively. The first of
these has uniformly larger risk than the second which is MRE. I

We next consider two examples involving more than one parameter.

Example 2.6 Normal variance, unknown mean. Supposethatweléts, ..., X,

be iid asN (0, 2) and consider the Bayes estimatiordadindo? when the prior
assigns ta = 1/202 the distributionl’'(g, 1/«) as in Example 2.5 and takégo

be independent of with (for the sake of simplicity) the uniform improper prior
df corresponding t&@ = oo in Example 2.2. Then, the joint posterior density of
(8, t) is proportional to

(2.12) ,L,r+gfleft[a+z+n(i79)2]

wherez = X (x; — x)? andr = n/2. By integrating ou#, it is seen that the posterior
distribution ofz isI'[r + g — 1/2, 1/(« + z)] (Problem 1.12). In particular, for

a = g = 0, the Bayes estimator o2 = 1/2t is Z/(n — 3) andZ/(n + 1) for
squared error and loss function (2.9), respectively. To see that the Bayes estimator
of 0 is X regardless of the values @fandg, it is enough to notice that the posterior
density ofg is symmetric abouk (Problem 2.9; see also Problem 2.10). ||

A problem for which the theories of Chapters 2 and 3 do not lead to a satisfac-
tory solution is that of components of variance. The following example treats the
simplest case from the present point of view.

Example 2.7 Random effects one-way layout. In the model (3.5.1), suppose for
the sake of simplicity that andZ,; have been eliminated either by invariance or
by assigning tqu the uniform prior on {00, 00). In either case, this restricts the
problem to the remaining’s with joint density proportional to

1 1 s 5 1 S n 5
expl ————— 5 1K
o*0-D(02 + o 2)6-D)/2 p[ 2(02 +no?) > 202 2.2

i=2 i=1 j=2

(2.13)
The most natural noninformative prior postulateando , to be independent with
improper densities /b and Vo4, respectively. Unfortunately, however, in this
case, the posterior distribution of,(c4) continues to be improper, so that the
calculation of a posterior expectation is meaningless (Problem 2.12).

Instead, let us consider the Jeffreys priorwhich has the improper density
(1/0)(1/7) but with 72 = 62 + no2 so that the density is zero far < o. (For
a discussion of the appropriateness of this and related priors see Hill, Stone and
Springer 1965, Tiao and Tan 1965, Box and Tiao 1973, Hobert 1993, and Hobert
and Casella 1996.) The posterior distribution is then proper (Problem 2.11). The
resulting Bayes estimatéy, of o2 is obtained by Klotz, Milton, and Zacks (1969),
who compare it with the more traditional estimators discussed in Example 5.5.
Since the risk o8, is quite unsatisfactory, Portnoy (1971) replaces squared error
by the scale invariant loss functiosd ¢ 02)? /(o2 +no'2)?, and shows the resulting
estimator to be

5= L 52 52 L -1 53 + 52
A 2nla c—a-1 calc—a-1) F(R)

(2.14)
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wherec = %(sn +1),a = %(s +3), R = §2/(5% + §?), and
1 e
F(R)_./o [R+v(1—R)]C+1dv'

Portnoy’s risk calculations suggest thit is a satisfactory estimator ef? for
his loss function or equivalently for squared error loss. The estimatior?
analogous. I

Let us next examine the connection between Bayes estimation, sufficiency, and
thelikelihood function. Recallthati(;, X», ..., X,) hasdensity (x1, ..., x,|6),
the likelihood function is defined bi(0|x) = L(8|x1, ..., x,) = f(x1, ..., x,16).
If we observerl’ = t, whereT is sufficient for6, then

J(xa, .o xa0) = L(OIX) = g(t]0)(X),
where the functiork(-) does not depend ah For any prior distribution (9), the
posterior distribution is then
f(xs, .., x,0)7(0)
[ fxa, ..o, x40 (07) d6’
_LEWEO)  _ ste)m®)
[ LEX)7(0)do" [ g(t|o)m(6")do’
sorm (0|x) = w(0]t), that is, (0]x) depends omx only throught, and the posterior
distribution off is the same whether we compute it on the basis@foft. As an

illustration, in Example 2.2, rather than starting with (2.1), we could use the fact
that the sufficient statistic i& ~ N (6, 0?/n) and, starting from

w(0]X) =

(2.15)

F(E10) oc e 520 gm0,

arrive at the same posterior distribution toas before. Thus, Bayesian measures

that are computed from posterior distributions are functions of the data only through

the likelihood function and, hence, are functions of a minimal sufficient statistic.
Bayes estimators were defined in (1.1) with respect to a proper distribation

It is useful to extend this definition to the case thais a measure satisfying

(2.16) /dA(@) = o0,

a so-called improper prior. It may then still be the case that (1.3) is finite for each
x, so the Bayes estimator can formally be defined.

Example 2.8 Improper prior Bayes. For the situation of Example 1.5, where
X ~ b(p, n), the Bayes estimator under a betgf) prior is given by (1.12). For
a = b = 0, this estimator ix/n, the sample mean, but the prior densityp),

is proportional tor(p) « p~1(1 — p)~1, and hence is improper. The posterior
distribution in this case is

(Z) px—l(l _ p)n—x—l ) F(n)

(2.17) 0 <n> T — YONCED)

prl(l _ p)nfxfl

X
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which is a proper posterior distribution if & x < n — 1 with x/n the posterior
mean. Whemnx = 0 or x = n, the posterior density (2.17) is no longer proper.
However, for any estimatd(x) that satisfies(0) = 0 ands(n) = 1, the posterior
expected loss (1.3) is finite and minimizedsét) = x/n (see Problem 2.16 and
Example 2.4). Thus, even though the resulting posterior distribution is not proper
for all values ofx, §(x) = x/n can be considered a Bayes estimator. I

This example suggests the following definition.

Definition 2.9 An estimators™ (x) is ageneralized Bayes estimator with respect
to ameasure (0) (evenifitis not a proper probability distribution) if the posterior
expected lossE{L(®, §(X))|X = x}, is minimized ats = §” for all x.

As we will see, generalized Bayes estimators play an important part in point
estimation optimality, since they often may be optimal under both Bayesian and
frequentist criteria.

There is one other useful variant of a Bayes estimatamitof Bayesestimators.

Definition 2.10 A nonrandomizetiestimators(x) is alimit of Bayes estimators
if there exists a sequence of proper priatsand Bayes estimato&” such that
8™ (x) — 8(x) a.e. [with respect to the densify(x|0)] asv — oo.

Example2.11 Limit of Bayes estimators. In Example 2.8, it was seen that the
binomial estimatoX /n is Bayes with respect to an improper prior. We shall now
show that it is also a limit of Bayes estimators. This follows since

+
(2.18) lim 2% =%
Z:8a+b+n n

and the betaq, b) prior is proper ifa > 0, b > 0. I

From a Bayesian view, estimators that are limits of Bayes estimators are some-
what more desirable than generalized Bayes estimators. This is because, by con-
struction, a limit of Bayes estimators must be close to a proper Bayes estimator.
In contrast, a generalized Bayes estimator may not be close to any proper Bayes
estimator (see Problem 2.15).

3 Single-Prior Bayes

As discussed at the end of Section 1, the prior distribution is typically selected from
a flexible family of prior densities indexed by one or more parameters. Instead
of denoting the prior byA, as was done in Section 1, we shall now denote its
density byz (6]y), where the parameter can be real- or vector-valued. (Hence,
we are implicitly assuming that the priaris absolutely continuous with respect

to a dominating measure(9), which, unless specified, is taken to be Lebesgue
measure.)

1 For randomized estimators the convergence can only be in distribution. See Ferguson 1967 (Section
1.8) or Brown 1986a (Appendix).
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We can then write a Bayes model in a general form as
(3.1) X160 ~ f(x]0),
Oly ~ m(O]y).

Thus, conditionally of, X has sampling densitf(x|6), and conditionally ory, ®

has prior densityr (9|y). From this model, we calculate the posterior distribution,
w(0)x, y), from which all Bayesian answers would come. The exact manner in
which we deal with the parameter or, more generally, the prior distribution
(0]y) will lead us to different types of Bayes analyses. In this section we assume
that the functional form of the prior, and the valuejafis known so we have
one completely specified prior. (To emphasize that point, we will sometimes write

Y =0.)
Given a loss functiord (6, d), we then look for the estimator that minimizes
3.2) / L0, d(x))m(0|x, yo)do,

wherer (01x, yo) = f(x10)w (@1y0)/ | f(x|0)7 (01y0) db.
The calculation of single-prior Bayes estimators has already been illustrated in
Section 2. Here is another example.

Example 3.1 Scale uniform. For estimation in the model
X0 ~U(0,0), i=1,....,n,
1

(3.3) 5|a, b~ Gammag, b), a, b known

sufficiency allows us to work only with the density &f = max X;, which is
given byg(y|0) = ny"~1/6",0 < y < 6. We then calculate the single-prior Bayes
estimator ob under squared error loss. By (4.1.4), this is the posterior mean, given

by
(3.4) E(©ly.a.p) =l 0T do
. ,a, = .
ly [ e o do
Although the ratio of integrals is not expressible in any simple form, calculation
is not difficult. See Problem 3.1 for details. I

In general, the Bayes estimator under squared error loss is given by

_ f@f(x|9)7r(9)d9
(35 B = T e ioyn 0y o

whereX ~ f(x|0)isthe observed random variable add- 7 (0) is the parameter

of interest. While there is a certain appeal about expression (3.5), it can be difficult
to work with. It is therefore important to find conditions under which it can be
simplified. Such simplification is useful for two somewhat related purposes.

(i) Implementation

If a Bayes solution is deemed appropriate, and we want to implement it, we
must be able to calculate (3.5). Thus, we need reasonably straightforward,
and general, methods of evaluating these integrals.
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(i) Performance

By construction, a Bayes estimator minimizes the posterior expected loss and,
hence, the Bayes risk. Often, however, we are interested in its performance,
and perhaps optimality under other measures. For example, we might examine
its mean squared error (or, more generally, its risk function) in looking for
admissible or minimax estimators. We also might examine Bayesian measures
using other priors, in an investigation of Bayesian robustness.

These latter considerations tend to lead us to look for either manageable expres-
sions for or accurate approximations to the integrals in (3.5). On the other hand,
the considerations in (i) are more numerical (or computational) in nature, leading
us to algorithms that ease the computational burden. However, even this path can
involve statistical considerations, and often gives us insight into the performance
of our estimators.

A simplification of (3.5) is possible when dealing with independent prior dis-

tributions. If X; ~ f(x|6;), i = 1,---,n, are independent, and the prior is
7(01, -+ -, 0,) =[], = (6:), then the posterior mean 6f satisfies
(36) E(Q, |x1, ey X”) = E(9i|xi),

that is, the Bayes estimator éf only depends on the data through Although
the simplification provided by (3.6) may prove useful, at this level of generality it
is impossible to go further.

However, for exponential families, evaluation of (3.5) is sometimes possible
through alternate representations of Bayes estimators. Suppose the distribution of
X =(Xy, ..., X,) is given by the multiparameter exponential family (see (1.5.2)),
that is,

N
3.7 pp(X) = exp!Z niTi(x) — A(n)} h(x).

i=1
Then, we can express the Bayes estimator as a function of partial derivatives with
respect tax. The following theorem presents a general formula for the needed
posterior expectation.

Theorem 3.2 If X has density (3.7), and » has prior density 7z (y), then for j =
1,...,n,

(3.8) E (Z iy LX) |x> - % logm(x) — % log/(x),
J J

i %)
where m(x) = fp,, (X)r(n)dy isthe marginal distribution of X. Alternatively,
the posterior expectation can be expressed in matrix formas
(3.9 E (Tn) = Vlogm(x) — Vlogh(x),
where 7 = {07;/dx;}.

Proof. Noting thatd exp(}_ n; T;}/0x; = >, ni(d7T;/0x;)exp{d_n:T;}, we can
write

aT;(x) oT;
(0 280) - 5 [ S oo
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| e ] e mneomtay an

m(x)/[< )

(310 - <§h(X)> ] e Do an
J

1 0 g Ti—A()
= i h d
e | () 7(n) dn
ach() 1
h(x) m(x)
m(x)  5h(x)
m()  h(x)
where, in the third equality, we have used the fact that
T:
I:L:I e):miTih(X) = i (eEiUiTih(X)) _ ezimT, [ah(x)i| .
8)Cj 3)(]' 8Xj
In the fourth equality, we have interchanged the order of integration and differen-
tiation (justified by Theorem 1.5.8), and used the definitiom ©€). Finally, using
logarithms,E (Z n; L1 |x> can be written as (3.8). O
Although it may appear that this theorem merely shifts calculation from one
integral [the posterior of (3.5)] to another [the margingk) of (3.8)], this shift
brings advantages which will be seen throughout the remainder of this section
(and beyond). These advantages stem from the facts that the calculation of the
derivatives of logn(x) is often feasible and that, with the estimator expressed as
(3.8), risk calculations may be simplified. Theorem 3.2 simplifies further when
T, = X;.
Corollary 3.3 If X = (X3, ..., X,) hasthe density

(311) Py (X) =e ip:ln;x,-—A(T[)h(X)

and » has prior density (), the Bayes estimator of  under theloss L(y, §) =
X (n; — 8;)? isgiven by

eZM =AM p(x)m (n) dy

d d
(3.12) E(n;|X) = — logm(x) — — log A (x).
8x,~ 8x,~
Proof. Problem 3.3. O

Example 3.4 Multiple normal model. For
Xi16; ~ N(6;,0%, i=1,...,p, independent
®; ~N(u, 72, i=1,...,p, independent
whereo?, t2, andu are knowny; = 6; /0% and the Bayes estimator 6fis

E(©;|x) = 02E(n;|x) = 02 [% logm(x) — % |Ogh(x)]
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72 o?

= xX; +
o2+r2 g2zl

since
8 a v N X; —
Oy |0gm(x) = Iog <g 2(0214-12) > (i ll)z)
8)6[ 8)(,'
_ =i
O'2+‘L'2
and ) a
2 ogh( = - log (e 3£ 7Y = 2
5, 1097() = 5-—log (e x

An application of the representation (3.12) is to the comparison of the risk of the
Bayes estimator with the risk of the best unbiased estimator.

Theorem 3.5 Under the assumptions of Corollary 3.3, the risk of the Bayes esti-
mator (3.12), under the sum of squared error loss, is

R[n, E(m|X)] = R[n, —Vlogh(X)]
)4 82 P 2
(3.13) +21: E !28—&2 logm(X) + (ﬁ Iogm(X)) } .

Proof. By an application of Stein’s identity (Lemma 1.5.15; see Problem 3.4), it
is straightforward to establish that for the situation of Corollary 3.3.

E, [_% Iogh(X)} = f [% Iogh(x)} Pn(X)dx = n;.

Hence, if we writeV log #(x) = {3/0x; logh(x)},

(3.14) — E,Vlogh(X)=17.
Thus,—V logh(X) is an unbiased estimator gfwith risk
p 9 2
Rln,V10ght1= £, ) 1+ 55 0gh0) |
(3.15) = E,|n + Vlogh(X)[?,

which can also be further evaluated using Stein’s identity (see Problem 3.4). Re-
turning to (3.12), the risk of the Bayes estimator is given by

P
R[n, EqIX)]= Y [ni — E@:IX)]?

i=1
3 3 2
2 [n,- — (E)_X, logm(X) — X |Ogh(X)>]
= R[n, —Vlogh(X)]
)4

-2 E [(m + % log h(X))aiXi Iogm(X)]

i=1

p
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)4 P 2
3.16 +Y E|—Ilogm(X)| .
(316) > £ | 5y loan¥]
An application of Stein’s identity to the middle term leads to

2
| (11 55 109h0)) 75 loam 0| = - [& g ()]

which establishes (3.13). a

From (3.13), we see that if the second term is negative, then the Bayes estimator
of » will have smaller risk than the unbiased estimatdv log 2(X), (which is
best unbiased if the family is complete). We will exploit this representation (3.13)
in Chapter 5, but now just give a simple example.

Example 3.6 Continuation of Example 3.4. To evaluate the risk of the Bayes
estimator, we also calculate

82
ax2 29" ="
and hence, from (3.13),

Rln. E([X)] = R[’I, —Vlogh(X)]

2
(3.17) 02”2 ZE ( 2”2) :

The best unbiased estimatorgf= 6, /o2 is
——I h(X) = —
ax, °9 X)=

with risk R(y, —V log (X)) = p/o?. If n; = 1 for eachi, then the Bayes estimator
has smaller risk, whereas the Bayes estimator has infinite rigk asu| — oo
for anyi (Problem 3.6). I

We close this section by noting that in exponential families there is a general
expression for the conjugate prior distribution and that use of this conjugate prior
results in a simple expression for the posterior mean. For the density

(3.18) py(x) = e ADp(x), —o0 < x < o0,
the conjugate prior family is
(3.19) 7 (nlk, ) = c(k, p)e" A,

whereu can be thought of as a prior mean anid proportional to a prior variance
(see Problem 3.9).
If X4, ..., X, isasample fronp,(x) of (3.18), the posterior distribution result-
ing from (3.19) is
a(lx, k, i) o [enni—nA(n)] [ekrm—kA(n)]
(3.20) = Nni+kp)—(n+k)A(n)
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which is in the same form as (3.19) withi = (nx + ku)/(n + k) andk’ = n +k.
Thus, using Problem 3.9,
nx +ku

n+k

As EX|n = A’(n), we see that the posterior mean is a convex combination of the
sample and prior means.

(3:21) E(A'(n)Ix. k, p) =

Example 3.7 Conjugategamma. Let X4, ..., X, be iid as Gamma{, b), where
a is known. This is in the exponential family form with= —1/b and A(n) =
—alog(—n). If we use a conjugate prior distribution (3.19) fofor which

EGA()X) = E (—%’w)

_nx+kp
T on+k
The resulting Bayes estimator under squared error loss is
1[nx+k
(3.22) EMIX) = = [”x “} .
a|l nt+k

This is the Bayes estimator based on an inverted gamma prior(fee Problem
3.10). l

Using the conjugate prior (3.19) will not generally lead to simplifications in
(3.9) and is, therefore, not helpful in obtaining expressions for estimators of the
natural parameter: However, there is often more interest in estimating the mean
parameter rather than the natural parameter.

4 Equivariant Bayes

Definition 3.2.4 specified what is meant by an estimation problem being invariant
under a transformatiop of the sample space and the induced transformagons
andg* of the parameter and decision spaces, respectively. In such a situation, when
considering Bayes estimation, it is natural to select a prior distribution which is
also invariant.

Recall that a group family is a family of distributions which is invariant under
a groupG of transformations for whicl@ is transitive over the parameter space.
We shall say that a prior distributiaf for ¢ is invariant with respect taG if the
distribution ofz6 is alsoA forall g € G;thatis, ifforallg € G and all measurable
B

(4.1) Pr(g0 € B) = PA(0 € B)
or, equivalently,
4.2) A(Z71B) = A(B).

Suppose now that suchAaexists and that the Bayes soluti&nwith respect to it
is unique. By (4.1), any then satisfies

(4.3) f R(8,8)dA(0) = / R(30, 8) dA(6).
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Now

R(30.8) = Ez{L[30, 5(X)]} = Eo{L[30. 8(gX)]}
(4.9) = Eo{L[0, g* '8(gX)]}.

Here, the second equality follows from (3.2.4) (invariance of the model) and the
third from (3.2.14) (invariance of the loss). On substituting this last expression into
the right side of (4.3), we see thatsif (x) minimizes (4.3), so does the estimator

g* 18, (gx). Hence, if the Bayes estimator is unique, the two must coincide. By
(3.2.17), this appears to provg to be equivariant. However, at this point, a
technical difficulty arises. Unigueness can be asserted only up to null sets, that
is, setsN with P,(N) = 0 for all 6. Moreover, the selN may depend og. An
estimators satisfying

(4.5) s(x) = g 15(gx) forall x ¢ N,

where Py(N,) = 0 for all 6 is said to bealmost equivariant. We have therefore
proved the following result.

Theorem 4.1 Suppose that an estimation problemisinvariant under a group and
that there existsa distribution A over Q such that (4.2) holdsfor all (measurable)
subsets B of 2 and all g € G. Then, if the Bayes estimator §, is unique, it is
almost equivariant.

Example 4.2 Equivariant binomial. Suppose we are interested in estimating
p under squared error loss, wheke ~ binomial¢z, p). A common group of
transformations which leaves the problem invariant is

gX=n-2X,
gp=1-p.
For a 