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PREFACE 

 

“This book is useful for the BSTAT and BMATH Entrances conducted by Indian Statistical 

Institute and Chennai Mathematical Institute. Readers are also suggested to go through 

www.ctanujit.in and www.ctanujit.org for other online resources. Since 2013, I am involved with 

teaching for different entrance exams at ISI. I tried my best to cover several previous year’s 

papers questions asked in ISI CMI BSTAT / BMATH Entrance exams. If you have any queries 

you can mail me at tanujitisi@gmail.com.” 
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- Tanujit Chakraborty,  

Founder of Ctanujit Classes. 

Research Scholar, 

 Indian Statistical Institute, Kolkata. 

My Blog: www.ctanujit.org 
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Content of the Book:  

 

 
1. 10 Objective Problem Sets with Solutions (Total Solved Problems : 300) for all ISI BSTAT 

& BMATH Entrances.  

 

2. 10 Subjective Problem Sets with Solutions (Total Solved Problems : 100) for all ISI BSTAT 

& BMATH Entrances. 

 

3. 175 Subjective Problems with Solutions (Total Solved Problems : 175) for ISI & CMI 

Examination. 

 

4. Topic-wise Objective & Subjective Solved Problems (Total Solved Problems: 425) for ISI & 

CMI Entrances. 
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ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS 

SET – 1 

 

1. How many zeros are at the end of 

1000!  ? 

(a) 240                   (b) 248                

(c) 249                 (d) None  

Ans:- (c) The number of two’s is enough 

to  match each 5 to get a 10. 

 So, 

51⟶ 200 

52⟶ 40                       

53⟶ 8 

54⟶ 1 

∴Thus, 1000! Ends with 249 zero’s. 

[Theorem: (de Polinac's formula) 

Statement: Let p be a prime and e be the 

largest exponent of p such that pe  

divides n! , then  e=∑ [n/pi ], where i is 

running from 1 to infinity.] 

2. The product of the first 100 positive 

integers ends with  

      (a) 21 zeros    (b) 22 zeros     (c) 23 

zeros     (d) 24 zeros. 

Ans:-  51⟶ 20                                     

(d) 24  zeros . 

           52⟶ 4 

Alternatively, put p=5,n=100,thus from 

above theorem we have 

[100/5]+[100/25]=24 zeros as 

the answer. 

 

3. Let P (x) be a polynomial of degree 11 

such that P (x) = 
𝟏

𝒙+𝟏
 𝒇𝒐𝒓 𝒙 = 𝟎 (𝟏)𝟏𝟏. 

Then P (12) = ? 

(a) 0    (b) 1     (c) 
𝟏

𝟏𝟑
     (d) none of 

these 

Ans:- (a)   P (x)= 
1

𝑥+1
 

⇒ (x+1)[P (x)]-1 = c (x-0)(x-1)….(x-11) 

Putting x= -1,   0- 1= c (-1)(-2)….(-12) 

                       ⇒ c = - 
1

12!
 

∴ [P (x)](x+1)-1= - 
1

12!
(x-0)(x-1)….(x-11) 

⇒ P (12) 13-1  = - 
1

12!
   12 .11. ….2.1 

⇒ P (12) 13-1 = -1 

⇒P (12) = 0. 

4. Let s= {(𝒙𝟏, 𝒙𝟐 , 𝒙𝟑)| 0≤ 𝒙𝒊  ≤

𝟗 𝒂𝒏𝒅 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 is divisible by 3}.  

Then the number of elements in s is 

(a)   334        (b) 333        (c) 327      (d) 

336 

Ans:- (a) with each (𝑥1, 𝑥2 , 𝑥3) identify a 

three digit code, where reading zeros are 

allowed. We have a bijection between s and 

the set of all non-negative integers less than 

or equal to 999 divisible by 3.  The no. of 
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numbers between 1 and 999, inclusive, 

divisible by 3 is (
999

3
) =  333 

Also, ‘0’ is divisible by 3. Hence, the 

number of elements in s is = 333 + 1= 334. 

 

5. Let x and y be positive real number 

with x< y. Also 0 < b< a < 1.  

Define E = 𝐥𝐨𝐠𝒂 (
𝒚

𝒙
) + 𝐥𝐨𝐠𝒃 (

𝒙

𝒚
). Then E 

can’t take the value 

(a)  -2      (b) -1       (c)  -√𝟐        (d) 2 

Ans :- (d) E =log𝑎 (
𝑦

𝑥
) + log𝑏(

𝑥

𝑦
)   

= 
log  

𝑦

𝑥

log𝑎
−
log  

𝑦

𝑥

log𝑏
  = log ( 

𝑦

𝑥
) {

1

log𝑎
−

1

log𝑏
}    

= log ( 
𝑦

𝑥
) {

log𝑏−log𝑎

(log𝑎)(log𝑏)
}  

 = log ( 
𝑦

𝑥
) .

log(
𝑏

𝑎
)

(log𝑎)(log𝑏)
    

= - log ( 
𝑦

𝑥
) .

log(
𝑎

𝑏
)

(log𝑎)(log𝑏)
 

Log 0< a < 1, 0< b <1    ∴ log𝑎 and log𝑏 are 

both negative. 

Also 
𝑦

𝑥
> 1 and 

𝑎

𝑏
> 1 . Thus log ( 

𝑦

𝑥
)  and 

log ( 
𝑎

𝑏
)  are both positive. Finally E turns 

out to be a negative value. So, E can’t take 

the value ‘2’. 

6. Let S be the set of all 3- digits 

numbers. Such that  

(i) The digits in each number are 

all from the set {1, 2, 3, …., 9} 

(ii) Exactly one digit in each 

number is even 

The sum of all number in S is 

(a) 96100       (b) 133200       (c) 66600       

(d) 99800 

Ans:-  (b) The sum of the digits in unit place 

of all the numbers in s will be same as the 

sum in tens or hundreds place. The only 

even digit can have any of the three 

positions,  

i.e.  3𝑐1 ways. 

And the digit itself has 4 choices (2, 4, 6 or 

8). The other two digits can be filled in 5× 4 

= 20 ways. 

Then the number of numbers in S = 240. 

Number of numbers containing the even 

digits in units place = 4 × 5 × 4 = 80 

The other 160 numbers have digits 1, 3, 5, 7 

or 9 in unit place, with each digit appearing 

  
160

5
 = 32 times. Sum in units place = 32 (1+ 

3+ 5+ 7+ 9) + 20 (2+ 4+ 6+ 8)  

= 32.52 +  20 × 2 ×
4×5

2
 = 32× 25 + 20 ×

20 = 1200 

∴ Sum of all numbers= 1200 (1+ 10 +102) = 

1200× 111 = 133200. 

 

7. Let y = 
𝒙

𝒙𝟐+𝟏
 , Then 𝒚𝟒(𝟏)is equals 

(a) 4          (b) -3         (c) 3          (d) -4 

Ans:-  (b) Simply differentiating would be 

tedious,  
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So we take advantage of ‘i’ the square root 

of ‘-1’ 

y = 
𝑥

𝑥2+1
= 

1

2
 {

1

(𝑥−𝑖)
+ 

1

(𝑥+𝑖)
} 

𝑑4𝑦

𝑑𝑥4
  =  

1

2
 {

4!

(𝑥−𝑖)5
+ 

4!

(𝑥−𝑖)5
} 

Note that, 
𝑑𝑛

𝑑𝑥𝑛
 {

1

𝑥+𝑎
} =  

(−1)𝑛 𝑛!

(𝑥+𝑎)𝑛+1
 

So, 𝑦4(𝑥) =  
4!

2
{

1!

(𝑥−𝑖)5
+

1!

(𝑥−𝑖)5
} Then  

𝑦4(1) = 12 {
1!

(𝑥−𝑖)5
+

1!

(𝑥−𝑖)5
} = 12 {

1−𝑖

(−2𝑖)3
+

1−𝑖

(2𝑖)3
 } = 12 {

1−𝑖

8𝑖
+
1−𝑖

8𝑖
} = 12 (-

1

8
−
1

8
) = -3. 

 

8. A real 2× 2 matrix. M such that  

𝑴𝟐 = (
−𝟏 𝟎
𝟎 −𝟏−∊

) 

(a) exists for all ∊ > 0                                          

(b) does not exist for any ∊> 0 

(c) exists for same ∊> 0                                       

(d) none of the above 

Ans:- (b) since 𝑀2 is an diagonal matrix, so 

M= [
𝑖 0

0 √1−∊
],  

So, M is not a real matrix, for any values of 

∊. M is a non –real matrix. 

9. The value of (
𝟏+𝒊√𝟑

𝟐
)
𝟐𝟎𝟎𝟖

 is 

(a) 
𝟏+𝒊√𝟑

𝟐
                  (b) 

𝟏−𝒊√𝟑

𝟐
                    

(c) 
−𝟏−𝒊√𝟑

𝟐
                  (d) 

−𝟏+𝒊√𝟑

𝟐
 

Ans:- (c) A = (
1+𝑖√3

2
), 𝐴2 =

−1+𝑖√3

2
, 𝐴4 =

 
−1−𝑖√3

2
= −𝐴 

∴ 𝐴2008 = (𝐴4)502 = 𝐴4 =
−1−𝑖√3

2
. 

 

10. Let f(x) be the function f(x)= 

{
𝒙𝑷

(𝒔𝒊𝒏𝒙)𝒒
  𝒊𝒇 𝒙 > 0

𝟎          𝒊𝒇 𝒙 = 𝟎
 

Then f(x) is continuous at x= 0 if 

(a) p > q                (b) p > 0              (c) 

q > 0                  (d) p < q 

Ans:- (b) |f(x) - f(0)| = |
𝑥𝑃

(𝑠𝑖𝑛𝑥)𝑞
− 0| ≤ |𝑥𝑃| <

 ∊  

Whenever |x-0| < ∊
1

𝑝=  𝛿  if p > 0. 

So, f(x)is continuous for p > 0 at x= 0. 

 

11. The limit 𝐥𝐢𝐦
𝒙→∞

𝐥𝐨𝐠 (𝟏 −
𝟏

𝒏𝟐
)𝒏 equals 

(a) 𝒆−𝟏                  (b) 𝒆−
𝟏

𝟐                    

(c) 𝒆−𝟐                  (d)    1 

Ans:- (d) L = (1 −
1

𝑛2
)𝑛 

 𝑙𝑜𝑔𝐿 = 𝑛𝑙𝑜𝑔(1 −
1

𝑛2
) 

 lim
𝑥→∞

𝑙𝑜𝑔𝐿 = lim
𝑥→∞

[−𝑛{
1

𝑛2
+

1

2𝑛4
+

⋯∞}]  = 0 

∴L = 𝑒0 = 1. 

12. The minimum value of the function 

f(x, y)= 𝟒𝒙𝟐 + 𝟗𝒚𝟐 − 𝟏𝟐𝒙 − 𝟏𝟐𝒚 + 𝟏𝟒 

is 

(a) 1                (b)  3                 (c)  14                    

(d) none 
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Ans:- (a) f(x, y) =  4𝑥2 + 9𝑦2 − 12𝑥 −

12𝑦 + 14 

                          = (4𝑥2 − 12𝑥 + 9)+( 9𝑦2 −

12𝑦 + 4)+1 

                          = (2𝑥 − 3)2 + (3𝑦 − 2)2 +

1  ≥ 1 

So, minimum value of f(x, y) is 1. 

13.  From a group of 20 persons, 

belonging to an association, A 

president, a secretary and there 

members are to be elected for the 

executive committee. The number of 

ways this can be done is 

(a) 30000                 (b) 310080                     

(c) 300080               (d) none 

Ans:- (b) 20𝑐1 × 19𝑐1 × 18𝑐3  𝑜𝑟 
20!

1!1!3!15!
 = 

310080 

14. The 𝐥𝐢𝐦
𝒙⟶𝟎

𝐜𝐨𝐬 𝒙−𝐬𝐞𝐜𝒙

𝒙𝟐(𝟏+𝒙)
   is  

(a) -1                   (b) 1                    (c) 0                   

(d) does not exist 

Ans:- (a) lim
𝑥⟶0

cos𝑥−sec𝑥

𝑥2(1+𝑥)
  = lim

𝑥⟶0

−sin2 𝑥

cos𝑥 (𝑥2)(𝑥+1)
 

= - lim
𝑥⟶0

1

cos𝑥
(
sin𝑥

𝑥
)2.

1

(𝑥+1)
  = -1. 1. 1  = - 1. 

15. Let R = 
𝟒𝟖𝟓𝟐− 𝟒𝟔𝟓𝟐

𝟗𝟔𝟐𝟔+ 𝟗𝟐𝟐𝟔
. Then R satisfies 

(a) R < 1                (b) 𝟐𝟑𝟐𝟔< R < 𝟐𝟒𝟐𝟔           

(c) 1 < R < 𝟐𝟑𝟐𝟔                   (d) R > 

𝟐𝟒𝟐𝟔  

Ans:- (b) R= 
(2.24)52− (2.23)52

(4.24)26+ (4.23)26
 = 

252(2452−2352)

426(2426+ 2326)
  

= 
252

252
 .
(2426+ 2326)(2426− 2326)

2426+ 2326
  

                                              = 2426 − 2326 

< 2426 

Also, R= 2426 − 2326 = (1 + 23)26 − 2326 

= 2326+ 26𝑐1 . 23
25+ 26𝑐2  . 23

24 + …+ 1 −

 2326 

= 26. 2325+26𝑐2  . 23
24 + …+ 1 >26. 2325 

> 23. 2325 = 2326 

∴ 2326 < R < 2426 

16.  A function f is said to be odd if f (-x)= 

-f (x) ∀ 𝒙. Which of the following is not 

odd? 

(a) f (x+ y)= f(x)+ f(y) ∀ 𝒙, 𝒚 

(b)  f (x)= 
𝒙𝒆
𝒙
𝟐⁄

𝟏+ 𝒆𝒙
 

(c) f (x) = x - [x] 

(d) f (x) = 𝒙𝟐 𝐬𝐢𝐧𝒙 + 𝒙𝟑 𝐜𝐨𝐬 𝒙 

Ans:- (c) f (x+ y)= f(x)+ f(y) ∀ 𝑥, 𝑦 

Let x = y = 0 

⇒ f (0) = f (0) + f (0) 

∴ f (0)= 0 

Replacing y with –x , we have 

f (x- x) = f(x) + f (-x) 

⇒ f (0) = f(x) + f (-x) 

⇒ f(x) + f (-x) = 0 

⇒ f (-x) = -f(x) 

Thus f is odd. 

Again for f (x) =  
𝑥𝑒

𝑥
2⁄

1+ 𝑒𝑥
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f(-x)= 
(−𝑥)(𝑒−

𝑥
2⁄ )

1+ 𝑒−𝑥
  = 

(−𝑥)(𝑒−
𝑥
2⁄ ) .𝑒𝑥

1+ 𝑒𝑥
 = - 

𝑥𝑒
𝑥
2⁄

1+ 𝑒𝑥
 = 

-f (x) 

∴ f is odd. 

 f (x) = x- [x] is not odd. 

Counter example:- 

f (-2.3) = -2.3 – [-2.3] =-2.3 – (-3) = 3- 2.3 = 

0.7 

f (2.3) = 2.3 – [2.3] = 2.3 -2 =0.3 

∴ f(2.3) ≠ f(-2.3) 

Thus f is not odd 

f (x) = 𝑥2 sin 𝑥 + 𝑥3 cos 𝑥 

f(-x) = -𝑥2 sin 𝑥 − 𝑥3 cos 𝑥 = -f(x) 

∴ f is odd here. 

17. Consider the polynomial 𝒙𝟓 + 𝒂𝒙𝟒 +

𝒃𝒙𝟑 + 𝒄𝒙𝟐 + 𝒅𝒙 + 𝟒. If (1+2i) and (3-

2i) are two roots of this polynomial 

then the value of a is 

(a) -524/65               (b) 524/65                 

(c) -1/65                      (d)  1/65  

Ans:- (a) The polynomial has 5 roots. Since 

complex root occur in pairs, so there is one 

real root taking it as m. 

So, m, 1+2i, 1-2i, 3+2i, 3-2i are the five 

roots. 

Sum of the roots= −
𝑎

1
= 8 +𝑚. 

Product of the roots= (1+4)(9+4)m= 65 

m=
4

65
  

∴ m = 
4

65
. 

∴ a= −8 −  
4

65
= −

524

65
. 

18. In a special version of chess, a rook 

moves either horizontally or vertically 

on the chess board. The number of 

ways to place 8 rooks of different 

colors on a 8×8 chess board such that 

no rook lies on the path of the other 

rook at the start of the game is 

(a) 8×⎿𝟖        (b)⎿8 × ⎿𝟖         (c) 

𝟐𝟖 ×⎿𝟖         (d) 𝟐𝟖 × (64
8
) 

Ans:- The first rook can be placed in any 

row in 8 ways &  in any column in 8 ways. 

So, it has 82 ways to be disposed off. Since 

no other rook can be placed in the path of 

the first rook, a second rook can be placed in 

72 ways for there now remains only 7 rows 

and 7 columns. Counting in this manner, the 

number of ways = 82. 72. 62…12 = (8!)2 

19. The differential equation of all the 

ellipses centered at the origin is 

(a) 𝒚𝟐 + 𝒙(𝒚′)𝟐 − 𝒚𝒚′ =  𝟎                   

(b) x y y″+ 𝒙(𝒚′)𝟐 − 𝒚𝒚′ = 𝟎 

(c) y y″+ 𝒙(𝒚′)𝟐 − 𝒙𝒚′ = 𝟎                   

(d) none 

Ans:- (d)  
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1, after differentiating 

w.r.t x, we get 

 ⤇ 
2𝑥

𝑎2
+
2𝑦𝑦′

𝑏2
= 0 ⤇ 

𝑦𝑦′

𝑏2
= −

𝑥

𝑎2
 

⤇
(𝑦′)2

𝑏2
+
𝑦(𝑦″)

𝑏2
= −

1

𝑎2
 

⤇(𝑦′)2 + 𝑦(𝑦″)2 = −
𝑏2

𝑎2
. 
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20. If f(x)= x+ sinx, then find  
𝟐

𝝅𝟐
. ∫ (𝒇−𝟏(𝒙) + 𝒔𝒊𝒏𝒙)𝒅𝒙
𝟐𝝅

𝝅
  

(a) 2                      (b) 3                        

(c) 6                       (d) 9 

Ans:- (b) Let x= f(t) ⇒ dx= f′(t)dt 

⇒ ∫ 𝑓−1(𝑥)𝑑𝑥 = ∫ 𝑡 
2𝜋

𝜋

2𝜋

𝜋
f ′(t)dt =

 (t [f(t)])2π
π
− ∫  

2𝜋

𝜋
𝑓(t)dt = (4𝜋2 − 𝜋2) −

∫  
2𝜋

𝜋
𝑓(t)dt 

I= ∫ (𝑓−1(𝑥) +
2𝜋

𝜋

𝑠𝑖𝑛𝑥)𝑑𝑥 =∫ 𝑓−1(𝑥)𝑑𝑥 + ∫ 𝑠𝑖𝑛𝑥𝑑𝑥
2𝜋

𝜋

2𝜋

𝜋
 

= 3𝜋2 − ∫  
2𝜋

𝜋
𝑓(t)dt + ∫ 𝑠𝑖𝑛𝑥𝑑𝑥

2𝜋

𝜋
  

= 3𝜋2 − ∫ (𝑓(𝑥) − 𝑠𝑖𝑛𝑥)𝑑𝑥
2𝜋

𝜋
 

= 3𝜋2 − ∫ 𝑥𝑑𝑥 = 
2𝜋

𝜋
3𝜋2 −

1

2
(4𝜋2 − 𝜋2) 

=
3

2
𝜋2  

⇒
2

𝜋2
𝐼 = 3. 

21. Let P= (a, b), Q= (c, d) and 0 < a < b < 

c < d, L≡(a, 0), M≡(c, 0), R lies on x-axis 

such that PR + RQ is minimum, then R 

divides LM 

(a) Internally in the ratio a: b                              

(b) internally in the ratio b: c 

(c) internally in the ratio b: d                               

(d) internally in the ratio d: b  

Ans:-  (c) Let R = (𝛼, 0). PR+RQ is least 

⟹ PQR should be the path of light 

⟹ 𝛥 PRL and QRM are similar 

⟹ 
𝐿𝑅

𝑅𝑀
=

𝑃𝐿

𝑄𝑀
⟹

𝛼−𝑎

𝑐−𝛼
=

𝑏

𝑑
 

⟹ 𝛼d- 𝛼d= bc –𝛼b 

⟹ 𝛼= 
𝑎𝑑+𝑏𝑐

𝑏+𝑑
 

⟹ R divides LM internally in the ratio b : d       

(as 
𝑏

𝑑
> 0) 

22. A point (1, 1) undergoes reflection in 

the x-axis and then the co-ordinate axes 

are roated through an angle of  
𝝅

𝟒
 in 

anticlockwise direction. The final position 

of the point in the new co-ordinate system 

is- 

(a) (0, √𝟐)                         (b) (0, −√𝟐)                       

(c) −√𝟐, 𝟎                      (d) none of these 

Ans:-  . (b) Image of (1, 1) in the x-axis is 

(1, -1). If (x, y) be the co-ordinates of any 

point and (x’ , y’) be its new co-ordinates, 

then x’ = x cos 𝜃+ y sin 𝜃, 

y’= y cos𝜃 – x sin 𝜃, where 𝜃 is the angle 

through which the axes have been roated. 

Here 𝜃= 
𝜋

4
, x= 1, y= -1 

∴ x’= 0, y’= -√2  

23. If a, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌 and b, 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒌  

from two A.P. with common difference m 

and n respectively, then the locus of point 

(x, y) where x= 
∑ 𝒙𝟏
𝒌
𝒊=𝟏

𝒌
𝒊𝒔 𝒂𝒏𝒅 𝒚 =

∑ 𝒚𝟏
𝒌
𝒊=𝟏

𝒌
 is 

(a) (x-a)m= (y-b)n                                                         

(b) (x-m) a= (y-n) b 

(c)(x-n)a = (y-m)b                                                         

(d) (x-a) n-(y-b) m 
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Ans:- (d) 

X=   

𝑘

2
(𝑥1+𝑥𝑘)

𝑘
=
𝑥1+𝑥𝑘

2
=
𝑎+𝑚+𝑎 𝑚𝑘

2
   

𝑜𝑟, 𝑥 = 𝑎 +
(𝑘+1)𝑚

2
  

or,  2(x-a)= (k+1)m     ……………..(1) 

Similarly, 

2(y-b)= (k+ 1)n ……………….(2) 

We have to eliminate k 

From (1) and (2) 

𝑥−𝑎

𝑦−𝑏
=
𝑚

𝑛
  

or,  (x- a)n = (y -b)m 

24. The remainder on dividing 𝟏𝟐𝟑𝟒𝟓𝟔𝟕 +

𝟖𝟗𝟏𝟎𝟏𝟏 by 12 is  

(a) 1                               (b) 7                                

(c) 9                              (d) none 

Ans:- ( c) 1234≡1 (mod 3)⇒ 1234567 ≡

1 (𝑚𝑜𝑑 3)𝑎𝑛𝑑 89 ≡  −1(𝑚𝑜𝑑3) 

⇒ 891011 ≡ −1 (𝑚𝑜𝑑 3) 

∴ 1234567 + 891011 ≡ 0 (𝑚𝑜𝑑 3) 

Here 1234 is even, so 1234567 ≡

0(𝑚𝑜𝑑 4)𝑎𝑛𝑑 89 ≡ 1 (𝑚𝑜𝑑 4) 

⇒ 891011 ≡ 1 (𝑚𝑜𝑑 4) 

Thus 1234567 + 891011 ≡ 1 (𝑚𝑜𝑑 4) 

Hence it is 9 (mod 12) 

25. The sum of the series 1+
𝟑

𝟒
+
𝟑.𝟓

𝟒.𝟖
+

𝟑.𝟓.𝟕

𝟒.𝟖.𝟏𝟐
+⋯  is  

(a) 𝒆𝟐                       (b)  3                     

(c) √𝟓                      (d)   √𝟖 

Ans. (d) √8 =  2
3

2 = (
1

2
)−

3

2 = (1 −
1

2
)−

3

2   

= 1+ (
1

2
) (

3

2
) +

(−
3

2
)(−

3

2
−1)

2!
(−

1

2
)2 +⋯ 

= 1+
3

4
+
3.5

4.8
+

3.5.7

4.8.12
+⋯   

26. If f(x) = cos x+ cos ax is a periodic 

function, then a is necessarily 

(a) an integer   (b) a rational number     

(c) an irrational number     (d) an event 

number 

Ans. (b) Period of cos x= 2𝜋 and period of 

cos ax= 
2𝜋

|𝑎|
 

Period of f(x) = L.C.M. of 
2𝜋

1
 𝑎𝑛𝑑 

2𝜋

|𝑎|
=

𝐿.𝐶.𝑀.𝑜𝑓 2𝜋 𝑎𝑛𝑑 2𝜋

𝐻.𝐶.𝐹.𝑜𝑓 1 𝑎𝑛𝑑 |𝑎|
 

Since k= H.C.F. of 1 and |a| 

∴ 
1

𝑘
= an integer= m (say) and 

|𝑎|

𝑘
= an integer 

= n (say) 

∴ |a|=
𝑛

𝑚
⟹ 𝑎 = ±

𝑛

𝑚
= a rational number. 

27. Let f : R⟶ R defined by f(x)= 𝒙𝟑 +

𝒙𝟐 + 𝟏𝟎𝟎𝒙 + 𝟓𝐬𝐢𝐧 𝒙, then f is  

(a) many-one onto        (b) many-one into       

(c) one-one onto          (d) one-one into 

Ans. (c) 

𝑓(𝑥) =  𝑥3 + 𝑥2 + 100𝑥 + 5 sin x 

∴ f’(x)= 3𝑥2 + 2𝑥 + 100 + 5 cos 𝑥 

= 3𝑥2 + 2𝑥 + 94 + (6 + 5 𝑐𝑜𝑠𝑥) >  0 
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∴ f is an increasing function and 

consequently a one –one function. 

Clearly f(−∞)=−∞ , f(∞)=∞ and f(x) is 

continuous, therefore range f= R= co 

domain f. Hence f is onto. 

28. Let f(x) =  
𝒔𝒊𝒏𝟏𝟎𝟏𝒙

[
𝒙

𝝅
]+
𝟏

𝟐

, where [x] denotes 

the integral part of x is 

(a) an odd function                                                      

(b) an even function  

(c) neither odd nor even function                               

(d) both odd and even function 

Ans. (a) when x= n𝜋, n 𝜖 I, sin x = 0 and 

[
𝑥

𝜋
] +

1

2
≠ 0 

∴ f(x) = 0 

∴ when x = n𝜋, f(x)= 0 and f(-x)= 0 

∴ f(-x)= f(x) 

When x ≠ 𝑛𝜋, 𝑛 𝜖 𝐼,
𝑥

𝜋
≠ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  

∴ [
𝑥

𝜋
] + [−

𝑥

𝜋
] =  −1 ∴ [−

𝑥

𝜋
] = −1 − [

𝑥

𝜋
] 

⟹ [−
𝑥

𝜋
] +

1

2
=  − [

𝑥

𝜋
] −

1

2
=  − ([

𝑥

𝜋
] +

1

2
) 

Now 𝑓(−𝑥) =
𝑠𝑖𝑛101(−𝑥)

[−
𝑥

𝜋
]+
1

2

=
−sin𝑥

−([
𝑥

𝜋
]+
1

2
)
=

sin𝑥

[
𝑥

𝜋
]+
1

2

= 𝑓(𝑥)  

Hence in all cases f(-x)= f(x) 

 

 

29 . If k be the value of x at which the 

function  

f(x) =∫ 𝒕(𝒆𝒕 − 𝟏)(𝒕 − 𝟏)(𝒕 − 𝟐)𝟑(𝒕 −
𝒙

−𝟏

𝟑)𝟓 𝒅𝒕 has maximum value and sinx + 

cosecx = k, then for n ∊N, 𝒔𝒊𝒏𝒏𝒙 +

𝒄𝒐𝒔𝒆𝒄𝒏𝒙 = … 

(a) 2                                  (b) -2                                  

(c) 
𝝅

𝟐
                                  (d) 𝜋 

Ans. (a) f’(x) = 𝑥(𝑒𝑥 − 1)(𝑥 − 1)(𝑥 −

2)3(𝑥 − 3)5 

By Sign Rule we get 

f(x) has max. at x = 2 

∴ k = 2 

Now sin x + cosec x = k ⟹ sin x + cosec x 

= 2 

⟹(sin 𝑥 − 1)2 = 0 ⟹ sin 𝑥 = 1 

∴ cosec x = 1 

Hence 𝑠𝑖𝑛𝑛𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑛𝑥 = 2 

30. If f(x+ y) = f(x) + f(y) – xy – 1for all x, 

y ∊R and f(1)=1, then the number of 

solutions of f(n)= n, n ∊N is 

(a) 0                       (b) 1                           (c) 

2                              (d) more than 2 

Ans. (b) 

Given f(x+ y)= f(x)+f(y) - xy - 1  ∀ 𝑥, 𝑦, 𝜖 𝑅 

……………(1) 

f(1)= 1 ……………..(2) 

f(2) = f(1+1)= f(1)+f(-1)-1-1= 0 

f(3 )= f(2+1)= f(2)+f(1)-2.1-1= -2 
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f(n+1) = f(n) +f(1) – n – 1 = f(n)- n< f(n) 

Thus f(1) > f(2) > f(3)> …and f(1)= 1 

∴f(1)= 1 and f(n)< 1, for n> 1 

Hence f(n)= n, n 𝜖 N has only one solution 

n= 1 

 

ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

SET – 2 

 

1. 𝒂𝟏 = 𝒂𝟐 = 𝟏, 𝒂𝟑 = −𝟏, 𝒂𝒏 =

𝒂𝒏−𝟏 . 𝒂𝒏−𝟑. The value of 𝒂𝟏𝟗𝟔𝟒 is 

(a) 1                           (b) -1                               

(c) 0                           (d) none            

Ans:- (b) 𝑎1 = 𝑎2 = 1, 𝑎3 = 𝑎4 = 𝑎5 =

 −1, 𝑎6 = 1, 𝑎7 = −1 

+1,+1, −1,−1,−1, 1, −1  ⏟                , 

1, 1, −1,−1, −1, 1, −1,⏟               ………… 

Since 1964= (7×280)+4= 7×280 +4. Thus 

we have 𝑎1964= -1. 

2. If a, b are positive real variables 

whose sum is a constant 𝜆, then the 

minimum value of   √(𝟏 + 
𝟏

𝒂
) (𝟏 + 

𝟏

𝒃
) 

is 

(a) 𝜆 - 
𝟏

𝝀
                       (b) 𝜆 + 

𝟐

𝝀
                          

(c) 1+ 
𝟐

𝝀
                      (d) none 

Ans:- (c) 𝐸2 = 1 +
1

𝑎
+ 

1

𝑏
+

1

𝑎𝑏
= 

𝑎+𝑏+1

𝑎𝑏
+

1 = 1 + 
𝜆+1

𝑎𝑏
 , it will be minimum when ab 

is maximum. Now we know that if sum of 

two quantities is constant, then their product 

is maximum when the quantities are equal. 

 ∴ a+ b = 𝜆 ⇒a = b = 
𝜆

2
 

∴ 𝐸2 = 1 + 
𝜆+1

𝜆2

4

= (
𝜆+2

𝜆
)2     ⇒ E = 1+ 

2

𝜆
, 

which is the required result. 

Alternative: (c) √(1 + 
1

𝑎
) (1 + 

1

𝑏
) will 

minimum when a and b will take the 

maximum value. 

a+b = 𝜆, then the max. Value of a and b is 

a= b=
𝜆

2
, 

Putting these, we get,   √(1 + 
1

𝑎
) (1 + 

1

𝑏
) 

min = √(1 +
2

𝜆
) (1 + 

2

𝜆
) = 1+ 

2

𝜆
. 

 

3. The number of pairs of integers (m, n) 

satisfying 𝒎𝟐 +  𝒎𝒏 + 𝒏𝟐 = 1 is 

(a) 8                             (b) 6                             

(c) 4                                    (d) 2 

Ans:- (b) Consider  𝑚2 +  𝑚𝑛 + 𝑛2 − 1 

The equation is symmetric in m and n, we 

make the substitution  

u = m + n and v= m- n 

So that 𝑢2 + 𝑣2 = 2 (𝑚2 + 𝑛2), 𝑢2 −

 𝑣2 = 4𝑚𝑛 
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Multiplying the given equation by 4, we 

have 

4𝑚2 + 4𝑚𝑛 + 4𝑛2 = 4 

⇒ 4 (𝑚2 + 𝑛2) + 4mn = 4 

⇒ 2 (𝑢2 + 𝑣2) + 𝑢2 − 𝑣2 = 4 

⇒3𝑢2 + 𝑣2 = 4 

Set 𝑢2 = 𝑥, 𝑣2 = 𝑦 with x, y ≥ 0, then we 

get  3x+ y= 4 

The ordered pairs (x, y) satisfying the above 

equation in integers are (0, 4) and (1, 1).  

We have, 

𝑢2= 0 and  𝑢2 = 1  &   𝑣2 = 4, and 𝑣2 = 1 

I.e. u= 0, v= 2; u=0, v= -2; 

u=1, v= 1; u =1, v= -1; 

u =-1, v =1; u = -1, v= -1; 

Giving 6 ordered pair solutions (m, n) viz (1, 

-1), (-1, 1), (1, 0), (0, 1), (0, -1), (-1, 0) 

4. The sum of the digits of the number  

𝟏𝟎𝟎𝟏𝟑 − 𝟐𝟔, written in decimal 

notation is  

(a) 227                          (b) 218                      

(c)228                           (d) 219 

Ans:- (a) 1026 − 26  = 100… . .0⏟      − 26   

              = 999… .974⏟       

                with 24  9’s 

∴ The sum of the digits = 24 × 9 + 7 + 4 = 

227. 

5. The great common divisor (gcd) of 

𝟐𝟐
𝟐𝟐
+ 𝟏 𝒂𝒏𝒅 𝟐𝟐

𝟐𝟐𝟐
+ 𝟏 is  

(a)   1                      (b)   𝟐𝟐
𝟐𝟐
+ 𝟏                       

(c) 𝟐𝟐
𝟏𝟏
− 𝟏                        (d)  

𝟐𝟐
𝟐𝟏
− 𝟏 

Ans:- (a) let 𝐹𝑛 = 2
2𝑛 + 1 , with m > n 

  𝐹𝑛 − 2 =  2
2𝑛 + 1 − 2  = 22

𝑛
− 1 = 

(22
𝑛−1
)2 − 1  = (22

𝑛−1
+ 1)( 22

𝑛−1
− 1) 

                = (22
𝑛−1

+ 1) (22
𝑛−2

−

1)( 22
𝑛−2

+ 1)  =( 22
𝑚
+ 1) (22

𝑚
− 1)  

(22
𝑚−𝑛−1

+ 1) 

                = 𝜆 𝐹𝑚 ;       Now, 𝐹𝑛 − λ 𝐹𝑚=2 

Let d | 𝐹𝑛 and d |𝐹𝑚 then d|2. Then d= 1 or 2. 

But 𝐹𝑚  & 𝐹𝑛 are both odd, hence gcd = 1. 

6.  The number of real roots of the 

equation 1+ 
𝒙

𝟏
+
𝒙𝟐

𝟐
+
𝒙𝟑

𝟑
+⋯+

𝒙𝟕

𝟕
 = 0  

(without factorial) is 

 (a) 7                          (b) 5                                   

(c) 3                                          (d) 1  

Ans:- (d) let f has a minimum at x = 𝑥0 , 

where then f′(𝑥0) = 0       

 f (x)= 1+ 
𝑥

1
+
𝑥2

2
+
𝑥3

3
+⋯+

𝑥6

6
 ; 

⇒ 1+  𝑥0 + 𝑥0
2 + 𝑥0

3 + 𝑥0
4 + 𝑥0

5= 0 

⇒ 
𝑥0
6−1

𝑥0−1
 = 0 

⇒ 
(𝑥0

3−1)(𝑥0
3+1)

𝑥0−1
 = 0 

⇒ (𝑥0
2 + 𝑥0 +  1)( 𝑥0

2 − 𝑥0 +  1)( 𝑥0 +

 1)= 0 
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Which has a real root 𝑥0 = -1 

But, f (-1)= 1-1 + (
1

2
−
1

3
)+ (

1

4
−
1

5
) +

1

6
 > 0 

The f (x)> 0 and hence f has no real zeros. 

Now let, g (x)= 1+ 
𝑥

1
+
𝑥2

2
+
𝑥3

3
+⋯+

𝑥7

7
 

An odd degree polynomial has at least one 

real root. 

If our polynomial g has more than one zero, 

say 𝑥1, 𝑥2 

Then by Role’s theorem in (𝑥1, 𝑥2) we have 

‘𝑥3’ such that g′ (𝑥3) = 0 

⇒ 1+ 𝑥3 + 𝑥3
2 +⋯+ 𝑥3

6 = 0 

But this has no real zeros. Hence the given 

polynomial has exactly one real zero. 

7. Number of roots between –𝜋 and 𝜋 of 

the equation   
𝟐

𝟑
𝐬𝐢𝐧𝒙. 𝒙= 1 is 

(a) 1                           (b) 2                            

(c) 3                                 (d) 4 

Ans:- (d)  sin 𝑥 =  
3

2𝑥
 

Now, draw the curve of y= sin 𝑥 and y = 
3

2𝑥
 

or  xy = 3 2⁄  

∴ there are 4 real roots. (Draw the graph 

yourself) 

8. The number 𝒂𝟕𝟑𝟖𝟗𝒃, a, b are digits, is 

divisible by 72 , Then a+ b equals 

(a) 10                         (b) 9                           

(c) 11                            (d) 12 

Ans:- (b) 72 = 8× 9, and 8 and 9 are co 

prime. As the number 𝑎7389𝑏 is divisible by 

72, it is divisible by 9 and 8 both. For 

divisibility by 8, the last three digits must be 

divisible by 8. 

i.e. 800+ 90+b |8. 

so (b+2)| 8 ;  ∴ b = 6 

For divisibility by 9, the sum of the digits A 

+ 7 +3 +8+ 9 +b should be divisible by 9. 

i.e. a+ 7+ 3+ 8+ 9+ 6≡ 0 (mod 9) 

⇒ a+ 6 ≡ 0 (mod 9) 

⇒ a ≡ -6(mod 9) 

⇒ a ≡ 3 (mod 9) 

∴ a= 3 only. Hence a+ b= 9 

9. 3 balls are distributed to 3 boxes at 

random. Number of way in which we 

set at most 1 box empty is   (a)  20             

(b) 6              (c) 24                 (d) none 

Ans:-  (c) zero box empty + 1 box empty 

= 3 balls in 3 boxes + {3C1 × 3 balls in 2 

boxes} 

= 3! + 3× (3)2 = 24. 

 

10. The value of 𝐌𝐚𝐱
𝒂
𝑰 (𝒂),𝒘𝒉𝒆𝒓𝒆 𝑰(𝒂) =

 ∫ 𝒆−|𝒙|𝒅𝒙
𝒂+𝟏

𝒂−𝟏
 is 

(a) ea                    (b) 2- 𝒆𝒂−𝟏 − 𝒆𝒂+𝟏             

(c) 𝒆𝒂−𝟏 − 𝒆𝒂+𝟏                 (d) none 

Ans:- (b)  𝐼 (𝑎) =  ∫ 𝑒−|𝑥|𝑑𝑥
𝑎

𝑎−1
+

∫ 𝑒−|𝑥|𝑑𝑥
𝑎+1

𝑎
 

Let 0< a< 1 , then ∫ 𝑒−|𝑥|𝑑𝑥
𝑎

𝑎−1
= ∫ 𝑒𝑥𝑑𝑥

0

𝑎−1
 

+∫ 𝑒−𝑥𝑑𝑥
𝑎−1

0
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= 1- 𝑒𝑎−1 − (𝑒−𝑎 − 1) 

And, ∫ 𝑒−|𝑥|𝑑𝑥
𝑎+1

𝑎
 = 𝑒−𝑎 − 𝑒−𝑎−1 

∴ I (a) = 2 - (𝑒𝑎−1 + 𝑒−𝑎−1) 

∴ 
𝑑

𝑑𝑥
 𝐼 (𝑎) = 0 

⇒ 𝑒𝑎−1 = 𝑒−𝑎+1 

⇒ a= 0 

Also, -1 < a < 0 ; ∫ 𝑒𝑥𝑑𝑥
𝑎

𝑎−1
= 𝑒𝑎 − 𝑒𝑎−1 

And ∫ 𝑒−|𝑥|𝑑𝑥
𝑎+1

𝑎
= ∫ 𝑒𝑥𝑑𝑥 +

0

𝑎
∫ 𝑒−𝑥𝑑𝑥
𝑎+1

0
 

= (1- 𝑒𝑎) – (𝑒𝑎+1 − 1) 

= 2 -𝑒𝑎 − 𝑒𝑎+1  

∴ I (a) = 2- 𝑒𝑎−1 − 𝑒𝑎+1 

∴ I(a) is maximum at a = 0. 

11. The value of ∏ (𝟏 −
𝟏

𝒏𝟐
)∞

𝒏=𝟐  is 

(a) 1                   ( b) 0                     (c) ½                  

(d) none 

Ans:- (c)  ∏ (1 −
1

𝑛2
)∞

𝑛=2  =∏ (1 +∞
𝑛=2

1

𝑛
) (1 −

1

𝑛
) = ∏

𝑛+1

𝑛
 .
𝑛−1

𝑛
∞
𝑛=2  

= (
2+1

2
 . 
2−1

2
) (
3+1

3
 .
3−1

3
)……… = 

3

2
.
1

2
.
4

3
.
2

3
……. = 

1

2
 . 

12. 𝒄𝒐𝒔𝟖𝜽 − 𝒔𝒊𝒏𝟖𝜽= 1. Number of roots 

are there in between [0, 2𝜋] is 

(a) 1                        (b) 2                    (c) 

3                           (d) 0 

Ans:- (c) Note that , 𝑐𝑜𝑠8𝜃 = 1 + 𝑠𝑖𝑛8𝜃  is 

possible only if, 

𝑐𝑜𝑠8𝜃 = 1 𝑎𝑛𝑑 𝑠𝑖𝑛8𝜃  =0 

∴ 𝜃= 0, 𝜋, 2𝜋 

Hence 3 roots are three between [0, 2𝜋] 

13. If 𝒖𝒏 = 
𝟏

𝟏.𝒏
+

𝟏

𝟐(𝒏−𝟏)
+

𝟏

𝟑 (𝒏−𝟐)
+

 … . . +
𝟏

(𝒏−𝟏)
 ; Then 𝐥𝐢𝐦

𝒏⟶∞
𝒖𝒏 equals 

(a) 0                    (b) 1                          

(c) ∞                  (d) π 

Ans:- (a)  𝑢𝑛 = 
1

(𝑛+1)
 [(1 +

1

𝑛
) +

(
1

2
+

1

𝑛−1
) + (

1

3
+

1

𝑛−2
) + ⋯+ (

1

𝑛
+ 1)] 

               = 
1

(𝑛+1)
 2 (1 + 

1

2
+⋯+

1

𝑛
) 

∴ lim
𝑛⟶∞

𝑢𝑛 = 2 lim
𝑛⟶∞

1+ 
1

2
+
1

3
+⋯+

1

𝑛

𝑛
. lim
𝑛⟶∞

𝑛

𝑛+1
 = 

2. 0.1= 0. 

14. If x+ (
𝟏

𝒙
) = -1, The value of 𝒙𝟗𝟗 + (

𝟏

𝒙𝟗𝟗
)  

is 

(a) 1                        (b) 2                        

(c) 0                       (d) none 

Ans:- (b) If 𝑎𝑛 = 𝑥
𝑛 +

1

𝑥𝑛
  

Then, 𝑎𝑛+1 = 𝑎𝑛. 𝑎1 − 𝑎𝑛−1 𝑓𝑜𝑟 𝑛 ≥ 1 

𝑎0 = 2 , 𝑎2 = −𝑎1 − 𝑎0 = −1, 𝑎3 = 2, 𝑎4
= −1, 𝑎5 = 2, 𝑎1 = −1 ;  𝑎𝑛
= −1, 𝑎𝑛−1 = −1.    

𝑠𝑜 , 𝑎99 = 2 

Or , ∴𝑎𝑛+1 = 𝑥
99 +

1

𝑥99
= (𝑥98 +

1

𝑥98
) (𝑥 +

1

𝑥
) − (𝑥97 +

1

𝑥97
) 

= - 𝑎𝑛 − 𝑎𝑛−1 = +1 + 1 = 2 

15. Consider the equation of the form𝒙𝟐 +

𝒃𝒙 + 𝒄 = 𝟎. The number of such, 

equations that have real roots and 
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have coefficients b and c in the set {1, 

2, 3, 4, 5,6} , (b may be equal to c) is 

(a) 16                       (b) 19                     

(c) 21                               (d) none 

Ans:- (b) Let 𝑥2 + 𝑏𝑥 + 𝑐 = 0 has real 

roots, then 𝑏2 − 4𝑐 ≥ 0, and also , s= {1, 2, 

3, 4, 5, 6}. 

Now 𝑠1 = {4, 8, 12, 16, 20, 24}= set of 

possible values of 4c. 

Thus the number of equations will be same 

as the number of pairs of elements (𝑎1, 𝑎2),  

𝑎1∊ s, 𝑎2∊𝑠1 such that 

𝑎1
2 − 4𝑎2 ≥ 0, i.e. 1+ 2+ 4+ 6+6 = 19 

16. If f: R ⟶R, satisfies f(x +y)= 

f(x)+f(y)∀ 𝒙, 𝒚 ∊ ℝ and f(1)=7, 

then∑ 𝒇(𝒓)𝒏
𝒓=𝟏  is 

(a) 
𝟕 (𝒏+𝟏)

𝟐
                          (b) 7n (n+1)                          

(c)  
𝟕 𝒏(𝒏+𝟏)

𝟐
                          (d)none 

Ans:- (c) putting x= 1, y=0, then f(1)= 

f(1)+f(0) 

⇒f(0)=0, ⇒ f(1)=7 

Again , putting x=1, y=1, then f(2)= 2f(1)= 

14, similarly, 

f(3)=21 and so on. 

∑ 𝑓(𝑟)𝑛
𝑟=1 = 7 {1+ 2+ 3+…..+ n}= 

7 𝑛(𝑛+1)

2
. 

17. Let f(0)= 1, 𝐥𝐭
𝒙→∞

𝒇″(𝒙) = 𝟒 𝒂𝒏𝒅 𝒇(𝒙) ≥

𝒇(𝟏). Let f(x) is polynomial ∀  x∊ℝ. 

The value of  f(2) is  

(a) 4                               (b) 0                                

(c) 1                             (d) none 

Ans:- (c)  𝑓″(𝑥) = 4 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

⇒ f(x)= 2𝑥2 + 𝑎𝑥 + 𝑏 

f(0)= 1   ⇒ b= 1 

f(1)= 3+ a 

f(x) ≥f(1) ⇒ f′(1)=0 

⇒ 4+ a= 0 

⇒ a = -4 

∴ f(x)= 2𝑥2 + 4𝑥 + 1 

∴ f(2)= 1. 

18. Let 
𝟏−𝟑𝑷

𝟐
,
𝟏+𝟒𝑷

𝟑
,
𝟏+𝑷

𝟔
 are the 

probabilities of 3 mutually exclusive 

and exhaustive events, then the set of 

all values of P is  

(a) [-1/4, 1/3]                         (b) (0, 1)                     

(c) (0, ∞)                            (d) none 

Ans:-  (a)  
1−3𝑃

2
≥ 0,

1+4𝑃

3
≥ 0,

1+𝑃

6
≥ 0  and 

1 − 3𝑃

2
+ 
1 + 4𝑃

3
+
1 + 𝑃

6
= 1 

⇒−
1

4
≤ 𝑃 ≤

1

3
 ⇒ 𝑃 ∊ [−

1

4
,
1

3
] 

19.  If √𝟓𝒙 − 𝒙𝟐 − 𝟔 +
𝝅

𝟐
∫ 𝒅𝒕 >
𝒙

𝟎

𝑥 ∫ 𝐬𝐢𝐧𝟐 𝒕𝒅𝒕
𝝅

𝟎
, then x ∊  

(a) (2, 3)                   (b) (-∞, 𝟐) ∪ (𝟑,∞)                       

(c) (5/2 , 3)                         (d) none 

Ans:- (a) √5𝑥 − 𝑥2 − 6 +
𝜋𝑥

2
>

𝑥 {
1

2
∫ (1 − 𝑐𝑜𝑠2𝑡)𝑑𝑡
𝜋

0
} 

⤇ √5𝑥 − 𝑥2 − 6 +
𝜋𝑥

2
> 𝑥 {

1

2
(𝑡 −

1

2
sin 2𝑡) 𝜋

0
} 
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⤇√5𝑥 − 𝑥2 − 6 +
𝜋𝑥

2
>
𝜋𝑥

2
 

⤇ √5𝑥 − 𝑥2 − 6 > 0 

⤇𝑥2 − 5𝑥 + 6 < 0, 

⤇ (x-2)(x-3)< 0, i.e. , x ∊ (2, 3). 

20. If f(x)= (𝟒 + 𝒙)𝒏, n ∊ N and 𝒇𝒓(𝟎) 

represents the 𝒓𝒕𝒉 derivative of f(x) at 

x= o, then the value of ∑
𝒇𝒓(𝟎)

𝒓!
= ∞

𝒓=𝟎  

(a) 𝟐𝒏                      (b) 𝒆𝒏                 (c) 

𝟓𝒏                          (d) none 

Ans:- (c) f′(x)= n (4 + 𝑥)𝑛−1 

f″(x)= n (n-1) (4 + 𝑥)𝑛−2 

𝑓𝑟(𝑥)= n (n-1)….. (n- r+1) . (4 + 𝑥)𝑛−𝑟, r 

≤ 𝑛 

𝑓𝑟(0)= 
𝑛!

(𝑛−𝑟)!
. 4𝑛−𝑟, r ≤ 𝑛 

= 0, r >𝑛 

∴∑
𝑓𝑟(0)

𝑟!
= ∞

𝑟=0 ∑ (𝑛
𝑟
).𝑛

𝑟=0 4𝑛−𝑟 = (1 + 4)𝑛 =

 5𝑛 . 

21. The two lines r⃗ = a⃗ + 𝜆(b⃗ +c⃗) and r⃗ 

= b⃗ + 𝜇(c⃗ +a⃗) intersects at a point, 

where 𝜆 and 𝜇 are scalars, then 

(a) a⃗, b⃗ and c⃗ are non-coplanar                                        

(b) |a⃗| = |b⃗| = |c⃗|  

(c) a⃗.c⃗ = b⃗.c⃗                                                                        

(d) 𝜆(b⃗×c⃗) + 𝜇(c⃗×a⃗)=c⃗ 

Ans. (c) 

The two lines intersect 

∴ a⃗ + 𝜆(b⃗ × 𝑐) = 𝑏⃗⃗ + 𝜇(𝑐 × 𝑎⃗) 

Taking dot product with c⃗ on both sides, we 

get 

a⃗. c⃗ = b⃗ .c⃗  

22.  Let f(x)= 

{
𝒙|𝒙|;                         𝒙 ≤ −𝟏

[𝒙 + 𝟏] + [𝟏 − 𝒙]; −𝟏 < 𝑥 < 1
−𝒙 |𝒙|;                        𝒙 ≥ 𝟏

 

Then the value of ∫ 𝒇(𝒙)𝒅𝒙
𝟐

−𝟐
 is 

(a) - 
𝟖

𝟑
                         (b) - 

𝟕

𝟑
                    

(c) 
𝟕

𝟑
                         (d) none 

Ans:- (a) f(x) = 

{
 
 

 
 
−𝑥2 ,                     𝑥 ≤ −1
1  ,               − 1 < 𝑥 < 0
2  ,                           𝑥 = 0
1  ,                     0 < 𝑥 < 1

𝑥2  ,                       𝑥 ≥ 1

 

∴ f(x) is an even function, i.e. ∫ 𝑓(𝑥)𝑑𝑥
2

−2
=

2∫ 𝑓(𝑥)𝑑𝑥
2

0
 

= 2 {∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥
2

1

1

0
} 

= 2 (1 −
𝑥3

3
)
2
1 = −

8

3
 . 

23.  Area bounded by y = g(x), x-axis and 

the lines x= - 2,  

Where g (x)= 

{
𝐦𝐚𝐱{ 𝒇(𝒕):−𝟐 ≤ 𝒕 ≤ 𝒙},       𝒘𝒉𝒆𝒓𝒆 − 𝟐 ≤ 𝒙 < 0;

𝐦𝐢𝐧{ 𝒇(𝒕): 𝟎 ≤ 𝒕 ≤ 𝒙},             𝒘𝒉𝒆𝒓𝒆 𝟎 ≤ 𝒙 ≤ 𝟑
 

And f(x)= 𝒙𝟐 − |𝒙|, is equal to 

(a) 
𝟏𝟏𝟑

𝟐𝟒
                            (b) 

𝟏𝟏𝟏

𝟐𝟒
                             

(c) 
𝟏𝟏𝟕

𝟐𝟒
                             (d) none 
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Ans:- (a) g(x)= 

{

2  ;                      −2 ≤ 𝑥 < 0

𝑥2 − 𝑥 ;                0 ≤ 𝑥 ≤
1

2

−
1

4
 ;                      

1

2
< 𝑥 ≤ 3

 

∴ Required area = ∫ 2𝑑𝑥 + ∫ (𝑥 −
1

2
0

0

−2

𝑥2)𝑑𝑥 + ∫ (
1

4
) 𝑑𝑥

3
1

2

 = 
113

24
𝑢𝑛𝑖𝑡2 

 

24.  Total number of positive integral 

values of n such that the equations 

𝐜𝐨𝐬−𝟏 𝒙 + (𝐬𝐢𝐧−𝟏 𝒚)𝟐 =

 
𝒏𝝅𝟐

𝟒
 𝒂𝒏𝒅 (𝐬𝐢𝐧−𝟏 𝒚)𝟐 − 𝐜𝐨𝐬−𝟏 𝒙 =

𝝅𝟐

𝟏𝟔
  

are constant, is equal to 

(a) 1                           (b) 2                           

(c)  3                              (d) none 

Ans:- (a) Here 2 (sin−1 𝑦)2 =  
4𝑛+1

16
𝜋2 

⤇ 0 ≤
4𝑛+1

16
𝜋2 ≤ 

𝜋2

4
, 

⤇ -
1

4
≤ 𝑛 ≤

7

4
. 

Also. 2(cos−1 𝑥)= 
4𝑛−1

16
𝜋2 

⤇0≤
4𝑛−1

16
𝜋2 ≤ 𝜋, 

⤇
1

4
≤ 𝑛 ≤

8

𝜋
+ 1. 

Hence, the least positive integral value of n 

is 1. 

25.  Radius of bigger circle touching the 

circle 𝒙𝟐 + 𝒚𝟐 − 𝟒𝒙 − 𝟒𝒚 + 𝟒 = 𝟎 and 

both the  

co-ordinate axis is 

(a) 3+2√𝟐                         (b) 2(3+2√𝟐)                     

(c)  3- 2√𝟐                          (d)  none 

Ans:- (b) Let (h, h) be the centre of the 

required circle. 

∴∠COD= ∠CBE=
𝜋

4
 , CB= h+ 2 AND BD= 

h- 2. 

∴
 h− 2

h+ 2
= 𝑐𝑜𝑠

𝜋

4
=

1

√2
, 

⤇ h= 
  2(√2+1)

(√2−1)
= 2(3 + 2√2) . 

26.  Tangents and normal drawn to 

parabola at A (𝒂𝒕𝟐, 𝟐𝒂𝒕), 𝒕 ≠ 𝟎 meet 

the X- axis at point B and D, 

respectively. If the rectangle ABCD is 

(a) y-2a= 0                      (b) y+ 2a= 0                      

(c) x-2a= 0                        (d) none 

Ans:- (c)  Evolution of tangent & normal at 

A are 𝑦𝑡 = 𝑋 + 𝑎𝑡2, 𝑦 = −𝑡𝑥 + 2𝑎𝑡 + 𝑎𝑡3. 

∴ B = (-𝑎𝑡2, 0) and D= (2a+ 𝑎𝑡2, 0) 

Suppose ABCD is rectangle, 

Then midpoints of BD and AC will be 

coincident, 

  ∴ h+𝑎𝑡2 = 2𝑎 + 𝑎𝑡2 − 𝑎𝑡2 𝑎𝑛𝑑 𝑘 +

2𝑎𝑡 = 0 

i.e. h= 2a, k= -2at. 

Hence, the locus is X= 2a, i.e. X-2a=0. 

27.  The series ∑ (
𝟏

𝒌(𝒌−𝟏)
)∞

𝒌=𝟐  converges to 

(a) -1                   (b) 1                       (c)  

0                         (d) does not 

converges 

Ans:- (b) 𝑠𝑛 = ∑
1

𝑘(𝑘−1)

∞
𝑘=2 = ∑ (

1

(𝑘−1)
−𝑛

𝑘=2

1

𝑘
) = (1 −

1

𝑛
) 
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∴ lim
𝑛→∞

𝑠𝑛 = lim (1 −
1

𝑛
) = 1

𝑛→∞

. 

 

28.  The limit 𝐥𝐢𝐦
𝒙→∞

 (
𝟑𝒙−𝟏

𝟑𝒙+𝟏
)𝟒𝒙 equaqls 

(a) 1                      (b) 0                       (c) 

𝒆−
𝟖

𝟑                          (d) 𝒆
𝟒

𝟗 

Ans:- (c) lim
𝑥→∞

{(
1−

1

3𝑥

1+
1

3𝑥

)𝑥}4 = (
𝑒
−
1
3

𝑒
1
3

)4 = 𝑒−
8

3 

[since  lim
𝑥→∞

(1 +
𝑘

𝑥
)𝑥 = 𝑒𝑘]. 

 

29.  𝐥𝐢𝐦
𝒙→∞

𝟏

𝒏
(
𝒏

𝒏+𝟏
+

𝒏

𝒏+𝟐
+⋯+

𝒏

𝟐𝒏
) equals 

(a) ∞                      (b)  0                     (c) 

𝐥𝐨𝐠𝒆 𝟐                      (d) 1 

Ans:- (c) lim
𝑥→∞

1

𝑛
(
1

1+
1

𝑛

+
1

1+
2

𝑛

+⋯+
1

1+
𝑛

𝑛

) 

= ∫
1

1+𝑥
𝑑𝑥 = [log (1 + 𝑥)] 1

0

1

0
= log𝑒 2. 

 

30. Let k be an integer greater than 1. 

Then 𝐥𝐢𝐦
𝒏→∞

[
𝒏

𝒏+𝟏
+

𝒏

𝒏+𝟐
+⋯ ] is 

(a) 𝐥𝐨𝐠𝒆 𝒌                       (b)  (k-1) 𝐥𝐨𝐠𝒆 𝒌                       

(c) 0                               (d) ∞ 

Ans:- (a) lim
𝑛→∞

[∑
1

𝑛+𝑟

𝑛(𝑘−1)  
𝑟=1 ] =

 ∫
𝑑𝑥

1+𝑥
= log (1 + 𝑥)] 𝑘−1

0

𝑘−1

0
= log𝑒 𝑘 . 

  

 

 

ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

1. Number of solutions are possible in 

0≤ 𝒙 ≤ 𝟗𝟗 for the equation  

|𝟑 − 𝟑𝒙| + |𝟏 − 𝟑𝒙| = 𝟏 − 𝟑𝒙 −
𝟑−𝒙

𝟒
 is  

(a) 1                   (b) 0               (c) 2                      

(d) none 

Ans:- (b) LHS= |3 − 3𝑥| + |3𝑥 − 1| ≥

 |(3 − 3𝑥) + (3𝑥 − 1)| ≥ 2 

But RHS= 1 - (3𝑥 +
3−𝑥

4
) 

=1- {(3
𝑥

2 +
3
−
𝑥
2

2
) - 2. 3

𝑥

2.
3
−
𝑥
2

2
 } 

= 2 - (3
𝑥

2 +
3
−
𝑥
2

2
)2 < 2 

∴ given equation has no solution  for any 

real x. 

2.  If f(x) = 𝐥𝐨𝐠𝒆(𝟔 − |𝒙
𝟐 + 𝒙 − 𝟔|), then 

domain of f(x) has how many integral 

values of x? 

(a) 5                          (b) 4                         

(c) infinite                         (d) none 

of these 

Ans:- (b) f(x) is defined only when 6 −

|𝑥2 + 𝑥 − 6| > 0 

i.e. |𝑥2 + 𝑥 − 6| < 6 

⇒ -6 < 𝑥2 + 𝑥 − 6 < 6 

SET – 3 



 Challenging Mathematical Problems  

21 
 

⇒ 𝑥2 + 𝑥 > 0  and 𝑥2 + 𝑥 − 12 < 0 

⇒ x (x+1)>0  and (x+4)(x-3)< 0 

⇒ (x< -1 or x > 0) and (-4 < x < 3) 

⇒ x ∊ (-4, -1) ∪(0, 3)  ⇒ x= -3, -2, 1, 2 as 

integral values. 

3.  The sum of the real solution of  2|𝒙|𝟐+ 

51= |1+ 20x| is 

(a) 5                      (b) 0                        

(c) 24                         (d) none of 

these 

Ans:- (d) 2𝑥2 + 51 =  ±(1 + 20𝑥) 

⇒ 𝑥2 − 10𝑥 + 25 = 0 𝑜𝑟 𝑥2 + 10𝑥 + 26 =

0 

⇒ (𝑥 − 5)2 = 0  𝑜𝑟(𝑥 + 5)2 + 1 =

0(impossible) 

⇒ x= 5, 5  

∴ Sum of the real solution = 5+ 5= 10. 

4.  The solution set of ||x- 1|-1| + x ≤ 𝟐 is 

(a) (−∞,𝟐]                (b) [0, 1)                   

(c) [0, 2)                       (d) [1, 2) 

Ans:- (a) (i) If x < 0, then |1- x- 1|+x ≤ 2 

⇒ |x|+x ≤ 2 

⇒ -x +x ≤ 2 

⇒ 0 ≤ 2 (true) 

∴ x < 0 

(ii) If 0 ≤ 𝑥 ≤ 1, then |1- x- 1|+x ≤

2 

⇒ |x|+x ≤ 2 

⇒ 2x ≤ 2 

⇒ x ≤ 1, ∴0 ≤ 𝑥 < 1 

(iii) If 1 ≤ 𝑥 < 2, then |x-1 -1|+x ≤ 2 

⇒ |x-2|+x ≤ 2 

⇒ 2- x +x ≤ 2 

⇒ 2 ≤ 2 (true) 

(iv) If x ≥ 2, then |x-1 -1|+x ≤ 2 

⇒ x-2 +x  ≤ 2 

⇒ x  ≤ 2 

∴ x=2 [∵ x≥ 2] 

∴ Required solution set is 

(−∞, 2]    

5.  If domain of f(x)= √
𝟏

|𝒙−𝟏|+[𝒙]
   be (a, b), 

then  ([ .] denotes greatest integer 

function) 

(a) a= 1, b=∞              (b) a= -∞, b= 0                  

(c) a= -∞, b= 1               (d) none of 

these 

Ans:- (c) we must have, |x-1|> [x]…….(1) 

∴ x-1 < [x]≤ x, i.e. [x]> x – 1……….(2) 

∴ on combining (1) and (2), we have |x -1|> 

x -1 

This is true only if x-1< 0, i.e. if x < 1, i.e. if 

x ∊ (-∞, 1) 

 ∴𝐷𝑓 = (−∞,1) ⇒ a = −∞, b= 1 

6.  If there are 4 distinct solutions of ||x -

2012| + 𝐥𝐨𝐠𝟐 𝒂| = 3, then a ∊ 

(a) (−∞,−𝟔)              (b) (−∞,
𝟏

𝟖
)                  

(c) (−∞,−
𝟏

𝟖
)                   (d) none of 

these 

Ans:- (b) we have | x -2012|+log2 𝑎 = ±3 

⇒ | x -2012| = -log2 𝑎+ 3, -log2 𝑎 − 3 

∴ If there are 4 distinct solutions of the 

above equation, then we  must have 
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 -log2 𝑎+ 3> 0 and -log2 𝑎 − 3 > 0 

i.e. log2 𝑎 < 3 and log2 𝑎 < -3 ⇒ a < 2−3 

∴ a ∊ (−∞,
1

8
)   

7.  The number of value of k for which 

the equation 𝒙𝟑 − 𝟑𝒙 + 𝒌 = 𝟎 has two 

distinct roots lying in the interval (0, 

1) are 

(a) 3          (b) 2        (c) infinitely many       

(d) no value of k satisfies the 

requirement 

Ans:- (d) Let there be a value of k for which 

𝑥3 − 3𝑥 + 𝑘 = 0 has two distinct roots 

between 0 and 1. Let, a, b are two distinct 

roots of 𝑥3 − 3𝑥 + 𝑘 = 0 lying between 0 

and 1 such that a < b 

Let f (a)= f(b)= 0. Since between any two 

roots of a polynomial f(x) there exist at least 

one roots of its derivative f′(x). 

Therefore, f′(x) = 3𝑥3 − 3 has at least one 

root between a and b 

But f′(x) =0 has two roots equal to ± 1 

which don’t lie between 0 and 1 for any 

value of k. 

 

8.  If 
𝒅𝒚

𝒅𝒙
= 𝒇(𝒙) + ∫ 𝒇(𝒙)𝒅𝒙

𝟏

𝟎
 then the 

equation of the curve y=f(x) passing 

through (0, 1) is 

(a) f(x)= 
𝟐𝒆𝒙−𝒆+𝟏

𝟑−𝒆
           (b) f(x)= 

𝟑𝒆𝒙−𝟐𝒆+𝟏

𝟐(𝒙−𝒆)
          (c) f(x)= 

𝒆𝒙−𝟐𝒆+𝟏

𝒆+𝟏
             

(d) none of these 

Ans:- (a) f″(x)= f′(x) 

⇒ 
f″(x)

f′(x)
= 1 

On integrating f′(x) = c 𝑒𝑥 

Which gives f(x)= c 𝑒𝑥+D 

But f(0) = 1 ⇒ c+ D = 1 

∴ f(x)= c 𝑒𝑥 + 1 − 𝑐 

So, f′(x)= c 𝑒𝑥 putting it in f′(x)= 

f(x)+ ∫ 𝑓(𝑥)𝑑𝑥
1

0
  

⇒ c 𝑒𝑥= c 𝑒𝑥 + 1 − 𝑐 + ∫ (c 𝑒𝑥 + 1 −
1

0

𝑐)𝑑𝑥 

⇒ c = 
2

3−𝑒
. So, f(x)= 

2𝑒𝑥−𝑒+1

3−𝑒
 

9.  A staircase has 10 steps, a person can 

go up the steps one at a time, or any 

combination of 1’s and 2’s . The 

number of ways in which the person 

can go up the stairs is 

(a) 89                       (b) 144                      

(c) 132                       (d) 211 

Ans:- (a) 

x+ 2y= 10, where x is the number of times  

he takes single steps, and y is the number 

times he takes two steps 

 Case Total no. of ways 

1 

2 

3 

4 

5 

6 

X=0, y=5 

X=2, y= 4 

X=4, y=3 

X=6, y=2 

X=8, y=1 

X=10, y=0 

5! /5!=1 

6! /2! 4! =15 

7! /3!4!= 35 

8! /2! 6!= 28 

9! /8! = 9 

10! /10! =1 

 

∴ P= 89 
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10.  The remainder when 𝟏𝟔𝟗𝟎𝟐𝟔𝟎𝟖 +

𝟐𝟔𝟎𝟖𝟏𝟔𝟗𝟎 is divided by 7 is 

(a) 1                       (b) 2                     (c) 

3                          (d) none 

Ans:- (a) 1690= 7× 241 + 3;               

2608=  7 ×372 +4 

Let s =16902608 + 26081690  

         = (7 × 241 + 3)2608 + (7 × 372 +

4)1690 

          = a number multiple of 7+32608 +

41690 

Let s′= 32608 + 41690  

Clearly remainder in s and s′ will be same 

when divided by 7. 

s′= 3× 33×867 + 4 × 43×563 

= 3× 27867 +  4 × 64563 

= 3(28 − 1)867 + 4 (63 + 1)563 

= 3[multiple of 7- 1]+ 4[ multiple of 7+ 1] 

= multiple of 7+ 1 

∴ Hence remainder is 1. 

11.  The value of ∑ ∑ ∑
𝟏

𝟑𝒊𝟑𝒋𝟑𝒌

(𝒊 ≠𝒋≠𝒌)

∞
𝒌=𝟎

∞
𝒋=𝟎

∞
𝒊=𝟎  is 

(a) 80/207                    (b) 81/208                  

(c) 1/208                       (d) none 

Ans:- (b) Let us first of all find the sum 

without any restriction i, j, k. 

 ∑ ∑ ∑
1

3𝑖3𝑗3𝑘
= (∑

1

3𝑖
)∞

𝑖=0

3
=
27

8

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0  

For the requirement sum we have to remove 

the cases when i= j= k or when any two of 

them are equal and not equal to other 

variable (say, i= j≠ 𝑘). 

Case –I:- when i= j= k 

In this case ∑ ∑ ∑
1

3𝑖3𝑗3𝑘
=∞

𝑘=0
∞
𝑗=0

∞
𝑖=0

∑
1

3𝑖
∞
𝑖=0 =

27

16
 

Case – II:- i= j≠ 𝑘 

In this case, ∑ ∑ ∑
1

3𝑖3𝑗3𝑘
=∞

𝑘=0
∞
𝑗=0

∞
𝑖=0

(∑
1

32𝑖
)∞

𝑖=0 (∑
1

3𝑘
)∞

𝑘=0  

= ∑
1

32𝑖
(
3

2
−

1

3𝑖
)∞

𝑖=0  

= 
3

2
.
9

8
−
27

26
= 

135

8.26
 

Hence required sum =
27

8
−
27

26
− (

135

8.26
) . 3= 

81

208
 

12.  The solution of the differential 

equation f(x) 
𝒅𝒚

 𝒅𝒙
+ 𝒇′(𝒙)𝒚 = 𝟏 is given 

by f(x) = 

(a) yx + c                     (b) 
𝒙+𝒄

𝒚
                  

(c) yc                    (d) none 

Ans:- (b)  f(x)dy +f′(x)ydx = dx 

i.e. d (f(x), y) = d (x) 

Integrating we get, y. f(x) = x+ c 

or, f(x) =  
𝑥+𝑐

𝑦
  

13.  If  ∫ 𝒇(𝒙)𝒔𝒊𝒏𝒕𝒅𝒕
𝒙

𝟎
 = constant, 0 < x < 

2𝜋 and f(𝜋)= 2 Then find the value of 

f(
𝝅

𝟐
) 

(a) 2                   (b) 4                    (c)  6                      

(d) 8 



 Challenging Mathematical Problems  

24 
 

Ans:- (b) Differentiable both sides, we get 

f′(x) (1- cosx)+ f(x)sinx= 0 

⇒ ∫
f′(x)

f(x)
𝑑𝑥 = ∫

𝑠𝑖𝑛𝑥

1−𝑐𝑜𝑠𝑥
𝑑𝑥 

⇒ ln(f (x)| = -2ln sin
𝑥

2
+ 𝑙𝑛𝑐 

⇒ f (x)= 
𝑐

(sin
𝑥

2
)2

 ⇒ f(𝜋)=2 ⇒ c=2:   f(
𝜋

2
)=4 

14.  For a ∊ R if |x+ a-3| + |x- 2a|= |2x –a -

3| is three for all x ∊R, then exhaustive 

set of a is 

(a) a ∊ [-4, 4]                  (b) a ∊ [-3, 2]                 

(c) a ∊ {-2, 2}                 (d) a ∊ {1} 

Ans:- (d) |x|+ |y| = |x+y| 

⇒ xy ≥ 0, therefore (x- (3- a)) (x- 2a)≥

0 ∀ 𝑥 ∊ 𝑅 

⇒ 𝑥2 −  𝑥(3 + 𝑎) +  2𝑎(3 − 𝑎) ≥ 0 ∀ 𝑥 ∊

𝑅 

⇒(𝑎 + 3)2 − 8𝑎(3 − 𝑎) ≤ 0 ⇒

 (𝑎 − 1)2 ≤ 0 ⇒ 𝑎 = 1 which is true  ∀ 𝑥 ∊

𝑅 

 

15.  If A is skew–symmetric matrix, then 

B = (I- A) (𝑰 + 𝑨)−𝟏 is (where I is the 

identity matrix of the same order as 

A) 

(a)   idempotent matrix      (b)  

symmetric matrix      (c)orthogonal 

matrix        (d) none 

Ans:- (c) B= (I- A) (𝐼 + 𝐴)−1 

⇒ 𝐵𝑇 = (𝐼 + 𝐴𝑇)−1(𝐼 + 𝐴𝑇) = (𝐼 −

𝐴)−1(I+ A) 

𝐵 𝐵𝑡= I as (I- A) (I+ A)= (I+ A) (I-A) 

16.  If f(x)= max (
𝟏

𝝅
𝐜𝐨𝐬−𝟏(𝒄𝒐𝒔𝝅𝒙), {𝒙}) 

and g (x) min 

(
𝟏

𝝅
𝐜𝐨𝐬−𝟏(𝒄𝒐𝒔𝝅𝒙) , {𝒙}) (where { .} 

represents fractional part of x). Then 

find the value of ∫ 𝒇(𝒙)𝒅𝒙/
𝟐

𝟏

∫ 𝒈(𝒙)𝒅𝒙
𝟐

𝟏
 is 

(a) 1                     (b) 3                    (c) 5                          

(d) 7 

Ans:- (b) 

⇒∫ 𝑓(𝑥)𝑑𝑥 =  
3

4
   𝑎𝑛𝑑    ∫ 𝑔(𝑥)𝑑𝑥 =  

1

4

2

1

2

1
 

⇒ Ratio = 3 

17. If sin (sinx +cosx)= cos (cosx- sinx) 

and largest possible value of sinx is 
𝝅

𝒌
,  

then the value of k is      

 (a) 2                          (b) 3                       

(c) 4                       (d) none 

Ans:- (c)  sin (sinx +cosx)= cos (cosx- sinx) 

cos (cosx- sinx) = cos (
𝜋

2
− (𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥)) 

∴𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 = 2𝑛𝜋 ± (
𝜋

2
− (𝑠𝑖𝑛𝑥 +

𝑐𝑜𝑠𝑥)) 

Taking + ve sign 

𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 = 2𝑛𝜋 +
𝜋

2
− 𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥  

𝑐𝑜𝑠𝑥= 𝑛𝜋 +
𝜋

4
 , for n= 0, 𝑐𝑜𝑠𝑥 =  

𝜋

4
 , which 

is the only possible value  

⇒ 𝑠𝑖𝑛𝑥 =  
√16− 𝜋2

4
 ………………..(i) 

Taking –ve sign 

𝑠𝑖𝑛𝑥 =  
𝜋

4
 ……………..(ii) 
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From (i) & (ii) , we get  
𝜋

4
 as the largest 

value. Hence k= 4. 

18.  The number of solution(s) of the 

equation  𝒛𝟐 −  𝒛 − |𝒛|𝟐 − 
𝟔𝟒

|𝒛|𝟓
=  𝟎 is / 

are 

(a) 0                  (b) 1                   (c) 2                       

(d)  3 

Ans:- (b)  z = 2 is the only solution. 

So there is only one solution of the given 

equation. 

19. If function f(x) = cos(nx)×sin(
𝟓𝒙

𝒏
), 

satisfies f(x+ 3𝜋)= f(x), then find the 

number of integral value of n                              

(a) 8                    (b) 9                     (c) 10                       

(d) 11 

Ans:- (a)  f(x+ 𝜆) = f(x) 

⇒ cosn(x+ 𝜆) sin(
5(x+ λ)

𝑛
) =

cos(𝑛𝑥) sin(
5𝑥

𝑛
) 

At x = 0, cos(n𝜆)sin (
5𝜆

𝑛
)= 0  

If cos(n𝜆)= 0, n𝜆= r𝜋+
 𝜋

2
, r ∊ I 

n (3𝜋)= r𝜋+
𝜋

2
 (∵𝜆= 3𝜋) 

(3n- r)= ½ [not possible] 

∴ cosn𝜆 ≠ 0 ∴ sin (
5𝜆

𝑛
)= 0 ⇒ 

5𝜆

𝑛
=

𝑃𝜋(𝑃 ∊ 𝐼) ⇒ 𝑛 = 
15

𝑃
 

For P= ±1,±3,±5,±15 

n=±15,±5,±3, ±1 

20.  Let a, b, c be any real numbers such 

that 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟏 then the 

quantity  

ab +bc+ ca satisfies the conditions 

(a) ab+ bc+ ac = constant 

(b) - ½ ≤ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟏 

(c)  - ¼  ≤ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟏  

(d) -1 ≤ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤
𝟏

𝟐
 

Ans:- (a) (𝑎 + 𝑏 + 𝑐)2 ≥ 0 

⇒ 𝑎2 + 𝑏2 + 𝑐2 ≥ −2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) 

⇒ 
1

2
≥ −(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)  ⇒ (𝑎𝑏 + 𝑏𝑐 +

𝑐𝑎) ≥ −
1

2
 

21. The maximum value of xyz for +ve x, 

y, z subject to condition that xy + yz+ 

zx= 12 is 

(a) 9                  (b) 6                     (c)  8                      

(d) none 

Ans:-   (c)   
xy + yz+ zx

3
≥ (xy . yz.  zx)

1
3⁄  

⇒ (xyz)≤ 8 

22. Let  a, b, c are 3 positive real numbers 

such that a+ b+ c= 2, then the value of 

 
𝒂

𝟏−𝒂
.
𝒃

𝟏−𝒃
.
𝒄

𝟏−𝒄
 is always 

(a) > 8                          (b) < 8                      

(c) 8                         (d) none 

Ans:- (a) Let 1- a= x, 1- b= y, 1- c = z 

3- (a+ b+ c) = x+ y+ z = 1(∵ a+ b+ c= 2) 

Now, 
1−𝑥

𝑥
.
1−𝑦

𝑦
.
1−𝑧

𝑧
 

= 
𝑦+𝑧

𝑥
.
𝑧+𝑥

𝑦
.
𝑦+𝑥

𝑧
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= (
𝑦+𝑧

2
) (

𝑧+𝑥

2
) (

𝑦+𝑥

2
) .

8

𝑥𝑦𝑧
>

 √𝑦𝑧 √𝑧𝑥 √𝑧𝑦 .
8

𝑥𝑦𝑧
 (By AM> GM 

inequality) 

⇒ 
𝑎

1−𝑎
.
𝑏

1−𝑏
.
𝑐

1−𝑐
> 8  

23. Let  a+ b +c = 1 then the value of the 

quantity is always √𝟒𝒂 + 𝟏 +

√𝟒𝒃 + 𝟏 + √𝟒𝒄 + 𝟏  

(a) equals 21                        (b) ≤ 21                           

(c) > 21                   (d) none 

Ans:-  (b) 4a+ 4b+ 4c = 4 

⇒(4a+ 1)+ (4b+ 1)+ (4c +1) = 7 

Applying c-s inequality:-  𝑎1 = √4𝑎 + 1,

𝑎2 = √4𝑏 + 1, 𝑎3 = √4𝑐 + 1   & 𝑏𝑖 =1 

∴ (∑ 𝑎𝑖 .1)
3
𝑖=1

2
≤ (∑ 𝑎𝑖

23
𝑖=1 )(∑ 13

𝑖=1 ) ; 

where 𝑎𝑖=𝑎1, 𝑎2, 𝑎3 

⇒ (√4𝑎 + 1 + √4𝑏 + 1 + √4𝑐 + 1)2 ≤

(4𝑎 + 1 + 4𝑏 + 1 + 4𝑐 + 1) × (1 + 1 + 1) 

= 3 × 7 = 21 

24. If f(x)is a polynomial function 

satisfying f(x)f(
𝟏

𝒙
)= f(x)+ f(

𝟏

𝒙
) and 

f(3)=28 then f(4) is 

(a) 28                             (b) 65                             

(c) 78                             (d) none 

Ans:- (c) The given functional equation is 

satisfied by f(x)= ± 𝑥𝑛 + 1 

f(3)= +33 + 1 = 28 

Hence, n= 3 

So, f(4)= 43 + 1 = 65. 

25.  If 2x+ 4y= 1, then prove that the 

quantity  𝒙𝟐 + 𝒚𝟐 is always greater 

than equal to 

(a) 1/20                              (b) 5/64                       

(c) 1                         (d) none 

Ans:- (a) Maximize 𝑥2 + 𝑦2 subject to 2x+ 

4y -1=0 by 

Method of Lagrange multiplier⟶ 

F= 𝑥2 + 𝑦2 + 𝜆(2𝑥 + 4𝑦 − 1) 

𝜕𝐹

𝜕𝑥
= 2𝑥 + 2𝜆 = 0  ;

𝜕𝐹

𝜕𝑦
= 2𝑦 + 2𝜆 = 0    

∴ x= -𝜆      ∴ y= -2𝜆 

2x+ 4y = 1     𝑥𝑚𝑎𝑥 = +
1

10
, 𝑦𝑚𝑎𝑥 =

1

5
 

⇒ 𝜆= 
−1

10
 ; 

∴ 𝑥2 + 𝑦2 ≥ 
1

100
+

4

100
= 

5

100
=

1

20
. 

26.  If a, b, c are positive real numbers ∋ 

a+ b+ c= 1. The value of 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 

is always 

(a) ½                        (b) 1/3                        

(c) ¼                        (d) none 

Ans:-  (b) Using C-S inequality, 

(∑ 𝑥𝑖𝑦𝑖) 
3
𝑖=1

2
≤ (∑𝑥𝑖

2
)(∑𝑦𝑖

2
)   Taking 

𝑦𝑖 = 1 & xi = a, b, c. 

⇒(𝑎 + 𝑏 + 𝑐)2 ≤ (𝑎2 + 𝑏2 + 𝑐2). 3 

⇒ 𝑎2 + 𝑏2 + 𝑐2 ≥
1

3
 

27. If a, b, c , x are real numbers such that 

abc≠ 𝟎 𝒂𝒏𝒅 
𝒙𝒃+(𝟏−𝒙)𝒄

𝒂
= 

𝒙𝒄+(𝟏−𝒙)𝒂

𝒃
=

 
𝒙𝒂+(𝟏−𝒙)𝒃

𝒄
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Then prove that a+ b+ c equals to 

(a) 1                           (b) 2                             

(c) 0                           (d) none 

Ans:-  (c)  
𝑥𝑏+(1−𝑥)𝑐

𝑎
= 

𝑥𝑐+(1−𝑥)𝑎

𝑏
=

 
𝑥𝑎+(1−𝑥)𝑏

𝑐
= 1 

∴ x= 
𝑎−𝑐

𝑏−𝑐
, 𝑥 =  

𝑏−𝑎

𝑐−𝑎
, 𝑥 =  

𝑐−𝑏

𝑎−𝑏
 

The solutions are : a= b= c or a+ b+ c= 0. 

 

28.  If f : R ⟶R is given by f(x)= 
𝟒𝒙

𝟒𝒙+𝟐
 ∀ 𝒙 ∈ 𝑹, check f(x)+f(1-x)= 1. 

Hence the value of f(
𝟏

𝟏𝟗𝟗𝟕
) +  𝒇 (

𝟐

𝟏𝟗𝟗𝟕
) +

⋯+ 𝒇(
𝟏𝟗𝟗𝟔

𝟏𝟗𝟗𝟕
) is 

(a) 998                       (b) 1996                           

(c) 1997                      (d) none 

Ans:- (a) f(1- x)=  
41−𝑥

4−𝑥+1+2
= 

4/4𝑥

4/4𝑥+2
= f(x)+ 

f(1- x)= 1. 

Now, putting x = 
1

1997
 , 

2

1997
 ,

3

1997
, … . ,

998

1997
 

So, f(
1

1997
) +  𝑓 (

2

1997
) + ⋯+ 𝑓(

1996

1997
) 

= (1 + 1 +⋯+ 1)⏟           

           998 terms 

= 998 

29.  If gcd (a, b)=1, then gcd (a+b, a-b) is 

(a) a or b                  (b) 1 or 2                  

(c) 1 or 3                    (d) none 

Ans:- (b) let d = gcd (a+ b, a- b)then 

d | (a+ b) and d |(a -b). 

∴ d | (a +b+ a -b) , ⇒ d| 2a and 

∴ d | (a +b- a +b) , ⇒ d| 2b 

Thus d |(2a, 2b), ⇒ d|2(a,b) 

Hence d= 1 or 2, because gcd(a, b)= 1 

30.  The  number of solution (positive 

integers) of the equation 3x+ 5y = 1008 

is  

(a) 61                   (b) 67                     

(c)79                     (d) none 

Ans:- (b) x, y ∊ ℕ, then 3 |5y ⇒ 3|y, y = 3k 

∀ 𝑘 ∊ ℕ 

Thus 3x + 15k = 1008 

⇒ x + 5k= 336  ⇒ 5k ≤ 335  ⇒ k ≤ 67 

 

ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

SET – 4 

 

1. If 𝑺𝒏denotes the sum of first n terms of 

an A.P. whose   

(a) P∑ 𝒓𝒏
𝒓=𝟏                   (b) n∑ 𝒑𝒏

𝒑=𝟏                       

(c) a∑ 𝒓
𝒑
𝒓=𝟏                            (d) none of 

these 

Ans. (d) 

𝑆𝑛𝑥

𝑆𝑥
=

𝑛𝑥

2
[2𝑎+(𝑛𝑥−1)𝑑]
𝑥

2
[2𝑎+(𝑥−1)𝑑]

  =
𝑛[2𝑎−1]+𝑛𝑥𝑑

(2𝑎−𝑑)+𝑥𝑑
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For   
𝑆𝑛𝑥

𝑆𝑥
   to be independent of x 

2a - d= 0 

∴ 2a= d 

Now, 𝑆𝑝 =
𝑝

2
[2𝑎 + (𝑝 − 1)𝑑] = 𝑝2𝑎 

 

2. if 𝒂𝒏= ∫
𝐬𝐢𝐧 (𝟐𝒏−𝟏)

𝒔𝒊𝒏𝒙

𝝅

𝟎
 dx,  then 

𝒂𝟏,𝒂𝟐,𝒂𝟑,……..are in 

(a) A.P. and H.P.                                                       

(b) A.P. and G.P. but not in H.P. 

(c) G.P. and H.P.                                                       

(d) A.P., G.P. and H.P. 

Ans. (b) 

𝑎𝑛+1 − 𝑎𝑛

= ∫
sin(2𝑛 + 1)𝑥 − sin (2𝑛 − 1)𝑥

sin 𝑥

𝜋

0

𝑑𝑥

=  ∫
2 cos 2𝑛𝑥. 𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥

𝜋

0

𝑑𝑥 = [
2 sin 2𝑛𝑥

2𝑛
]
𝜋

0

= 0 

∴𝑎𝑛+1 = 𝑎𝑛 ⟹ 𝑎1 = 𝑎2 = 𝑎3 = ⋯                

Also 𝑎1 = 𝜋 ≠ 0 

Hence 𝑎1, 𝑎2, … 𝑎𝑛 are in A.P. and G.P. but 

not in H.P. (Equal numbers cannot be in 

H.P) 

 

3. If a, b, c are proper fractions and are in 

H.P. and x=∑ 𝒂𝒏∞
𝒏=𝟏 , y=∑ 𝒃𝒏∞

𝒏=𝟏 , 

z=∑ 𝒄𝒏∞
𝒏=𝟏 ,  

then x, y, z are in 

 (a) A.P.                 (b) G.P.                   (c) 

H.P.                             (d) none of these 

Ans. (c) 

X = 
𝑎

1−𝑎
⟹ 𝑎 =

𝑥

1−𝑥
  

Similarly, b = 
𝑦

1−𝑦
, 𝑐 =  

𝑧

1−𝑧
 

Now, a, b, c are in H.P. 

⟹
1+𝑥

𝑥
,
1+𝑦

𝑦
,
1+𝑧

𝑧
 are in A.P. 

⟹
1

𝑥
 , 
1

𝑦
,
1

𝑧
 are in A.P. 

⟹ x, y, z are in H.P. 

4. If a, b, c be the 𝒑𝒕𝒉,𝒒𝒕𝒉 and 𝒓𝒕𝒉 terms 

respectively of an A.P. and G.P. both, 

then the product of the roots of equation 

𝒂𝒃 𝒃𝒄𝒄𝒂𝒙𝟐 – 𝒂𝒃𝒄𝒙 + 𝒂𝒄𝒃𝒂𝒄𝒃=0 is equal to 

(a) -1                      (b) 1                        (c) 2                             

(d) (b-c)(c-a)(a-b) 

Ans. (b) 

a= x+ (p- 1)d, b= x+ (q-1)d, c= x+ (r-1)d 

a=𝑚𝑛𝑝−1, 𝑏 =  𝑚𝑛𝑞−1, 𝑐 =  𝑚𝑛𝑟−1  

∴ Product of roots = 

(𝑚𝑛𝑝−1)(𝑟−𝑞)𝑑, (𝑚𝑛𝑞−1)(𝑝−𝑟)𝑑 , (𝑚𝑛𝑟−1)(𝑞−𝑝)𝑑 =

 𝑚0. 𝑛0= 1. 

5. If a, b, c, be the 𝒑𝒕𝒉,𝒒𝒕𝒉 and 𝒓𝒕𝒉 terms 

respectively of a G.P. then the equation- 

𝒂𝒒𝒃𝒓𝒄𝒑𝒙𝟐 + pqrx + 𝒂𝒓𝒃𝒏𝒄𝒒 = 0 has 

(a) both roots zero                                                     

(b) at least one root zero 

(c) no root zero                                                          

(d) both roots unity 
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Ans. (c)  

Product of roots= 𝑎𝑟−𝑞𝑏𝑝−𝑟𝑐𝑞−𝑝 = 1 ≠ 0 

⟹ no root is equal to zero. 

6. If (𝒓)𝒏denotes the number rrr….. (n 

digits), where r=1, 2, 3,…9 and a=(𝟔)𝒏, 

b=(𝟖)𝒏, c=(𝟒)𝟐𝒏, then  

(a) 𝒂𝟐+b+c=0                                                                   

(b) 𝒂𝟐+b-c=0 

(c)  𝒂𝟐+b-2c=0                                                                  

(d) 𝒂𝟐+b-9c=0 

Ans. (b) 

A = (6)𝑛 = 6 6 6…6(𝑛 𝑑𝑖𝑔𝑖𝑡𝑠) =  6 × 1 +

6 × 10 + 6 × 102 +⋯6 × 10𝑛−1 

= 
6

9
(10𝑛 − 1) =

2

3
(10𝑛 − 1) 

b= 
8

9
(10𝑛 − 1), 𝑐 =  

4

9
(102𝑛 − 1) 

Now 𝑎2 + 𝑏= 
4

9
(10𝑛 − 1)2 +

8

9
(10𝑛 −

1) =  
4

9
(10𝑛 − 1)2(10𝑛 − 1 + 2) =

 
4

9
(102𝑛 − 1) = 𝑐 

 

7. Let a=1 1 1.....1(55 digits), 

b=1+10+𝟏𝟎𝟐+…𝟏𝟎𝟒, 

c=1+𝟏𝟎𝟓+𝟏𝟎𝟏𝟎+𝟏𝟎𝟏𝟓+…+𝟏𝟎𝟓𝟎, then  

(a) a=b+c                        (b) a=bc                       

(c) b=ac                          (d) c=ab 

Ans. (b) 

a= 1+ 10+ 102 +⋯+ 1054 = 
1055

10−1
=

1055−1

105−1
.
105−1

10−1
= 𝑏𝑐 

 

8. If ∑ 𝒕𝒓
𝒏
𝒓=𝟏  = ∑ ∑ ∑ 𝟐

𝒋
𝒊=𝟏

𝒌
𝒋=𝟏

𝒏
𝒌=𝟏 , then 

∑  
𝟏

𝒕𝒓

𝒏
𝒓=𝟏  = 

(a) 
𝒏+𝟏

𝒏
                         (b) 

𝒏

𝒏+𝟏
                             

(c) 
𝒏−𝟏

𝒏
                             (d) 

𝒏

𝒏−𝟏
 

Ans. (b) 

∑ ∑ ∑ 2
𝑗
𝑖=1

ℎ
𝑗=1

𝑛
𝑘=1 = ∑ ∑ 2𝑗𝑘

𝑗=1
𝑛
𝑘=1 = 

2∑ ∑ 𝑗 = 2∑
𝑘(𝑘+1)

2
= 𝑛

𝑘=1
𝑘
𝑗=1

𝑛
𝑘=1 ∑ 𝑘2𝑛

𝑘=1 +

∑ 𝑘𝑛
𝑘=1  

=
𝑛(𝑛+1)(2𝑛+1)

6
+
𝑛(𝑛+1)

2
= 

𝑛(𝑛+1)(𝑛+2)

3
 

∴ 𝑆𝑛 = 
𝑛(𝑛+1)(𝑛+2)

3
 

⟹ 𝑡𝑟= 𝑆𝑟 − 𝑆𝑟−1 = 
𝑟(𝑟+1)(𝑟+2)

3
−

(𝑟−1)𝑟(𝑟+1)

3
= 𝑟(𝑟 + 1) 

1

𝑡𝑟
= 

1

𝑟(𝑟+1)
=
1

𝑟
−

1

𝑟+1
  ∴ ∑

1

𝑡𝑟

𝑛
𝑟=1 = 1 −

1

𝑛+1
=

𝑛

𝑛+1
 

9. If a=∑
𝟏

𝒓𝟒
∞
𝒓=𝟏 ,  then ∑

𝟏

(𝟐𝒓−𝟏)𝟒
 ∞

𝒓=𝟏 = 

(a) 
𝟏𝟔

𝟏𝟓
a                     (b) 

𝒂

𝟐
                        

(c) 
𝟏𝟓

𝟏𝟔
a                              (d) 

𝟏𝟒

𝟏𝟓
a 

Ans. (c) 

∑
1

(2𝑟−1)4
=∞

𝑟=1
1

14
+

1

34
+

1

54
+⋯+ 𝑡𝑜 ∞  

= (
1

14
+

1

24
+

1

34
+⋯+ 𝑡𝑜 ∞) −

(
1

24
+

1

44
+

1

64
+⋯+ 𝑡𝑜 ∞) 
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= a-
1

24
(
1

14
+

1

24
+

1

34
+⋯+ 𝑡𝑜 ∞) = 𝑎 −

𝑎

16
=
15

16
𝑎 

10. If 𝒂𝟏,𝒂𝟐,𝒂𝟑,…are in G.P. having 

common ratio r such that 

∑ 𝒂𝟐𝒌−𝟏
𝒏
𝒌=𝟏 =∑ 𝒂𝟐𝒌+𝟐

𝒏
𝒌=𝟏 ≠ 𝟎, then number 

of possible values of r is 

(a) 1                            (b) 2                              

(c) 3                              (d) none of these 

Ans. (c) 

Given 𝑎1 + 𝑎3 + 𝑎5 +⋯+ 𝑎2𝑛−1 = 𝑎
4 +

𝑎6 + 𝑎8 +⋯+ 𝑎2𝑛+2 

= 𝑟3(𝑎1 + 𝑎3 + 𝑎5 +⋯+ 𝑎2𝑛−1) 

⟹𝑟3 = 1 ⟹ 𝑟 = 1,𝜔,𝜔2 

11. If 𝒙𝟐- x + a - 3= 0 has at least one 

negative value of x,then complete set of 

values of ‘a’ is 

(a) (−∞,𝟏)                       (b) (−∞,𝟐)                      

(c) (−∞,𝟑)                    (d) none 

Ans. (c)  𝑥2- x +a - 3= 0 has at least one 

negative root and for real roots, 

1- 4(a - 3) ≥ 0 

⇒ a ≤
13

4
  

⇒ a ∊ (−∞,
13

4
) 

 Now, both root will be non-negative of D ≥

0,⇒ 𝑎 − 3 ≥ 0 ⇒ 𝑎 ≥ 3 

∴   a ∊ (3,
13

4
) 

∴ a ∊ (−∞,
13

4
)∪ a ∊ (3,

13

4
) 

∴(−∞, 3)    

12. Let 𝛼, 𝛽 are the roots of the equation 

𝒙𝟐+ax +b=0, then maximum value of the 

expression - (𝒙𝟐+ax +b) - (
𝜶−𝜷

𝟐
)𝟐 will be 

(a) 
𝟏

𝟒
(𝒂𝟐 − 𝟒𝒃)                    (b)  0                        

(c) 1                              (d) none 

Ans. (b) let z= - (𝑥2-ax +b) 

Now, 𝑧𝑚𝑎𝑥. = −
𝐷

4𝑎
= −

𝑎2−4𝑏

4
=
4𝑏−𝑎2

4
=

 +(
𝛼−𝛽

2
)2  

∴Thus the maximum value of the given 

equation is 0. 

13. Let P (x) = 𝒙𝟐+bx +c, where b and c 

are integers and P(x) is a factor of  

both  𝒙𝟒 + 𝟔𝒙𝟐 + 𝟐𝟓 𝒂𝒏𝒅 𝟑𝒙𝟒 + 𝟒𝒙𝟐 +

𝟐𝟖𝒙 + 𝟓, then P(1) is  

(a) 4                              (b) 8                          

(c) 24                              (d) none 

Ans. (a) ∴ P(x) is a factor of 3 (𝑥4 + 6𝑥2 +

25)- (3𝑥4 + 4𝑥2 + 28𝑥 + 5)= 14(𝑥2 −

2𝑥 + 5) 

∴ P(x) = 𝑥2 − 2𝑥 + 5 

⇒ P(1)= 4. 

14. The value of a for which (𝒂𝟐 − 𝟏)𝒙𝟐 +

𝟐(𝒂 − 𝟏)𝒙 + 𝟐 > 0 ∀ 𝑥 are 

(a) a≥ 𝟏                        (b) a≤ 𝟏                        

(c) a > - 3                           (d) none 

Ans. (d) we know, 𝑃𝑥2 + 𝑞𝑥 + 𝑐 > 0 if P > 

0, and 𝑞2 − 4𝑃𝑐 < 0, 

∴ (𝑎2 − 1)𝑥2 + 2(𝑎 − 1)𝑥 + 2 > 0 ∀ 𝑥 
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Now, 𝑎2 − 1 > 0 and 4 (𝑎 − 1)2 −

8(𝑎2 − 1) ≤ 0 

⇒ 𝑎2 − 1 ≥ 0 and -4(a-1)(a+3) ≤ 0 

⇒ a ≤ −1 or a ≥ 1 𝑎𝑛𝑑 𝑎 ≤ −3 𝑜𝑟 𝑎 ≥ 1 

i.e., 𝑎 ≤ −3 𝑜𝑟 𝑎 ≥ 1. 

 

 

15. The sum of real roots of the equation 

𝒙𝟐 − 𝟐𝟐𝟎𝟎𝟕. 𝒙 + |𝒙 − 𝟐𝟐𝟎𝟎𝟔| +

𝟐(𝟐𝟒𝟎𝟏𝟏 − 𝟏) = 𝟎 is 

(a) 𝟐𝟐𝟎𝟎𝟔                  (b) 𝟐𝟐𝟎𝟎𝟕                     

(c) 𝟐𝟐𝟎𝟎𝟔+𝟐𝟐𝟎𝟎𝟕                       (d) 

none 

Ans. (b) ∴ (𝑥 − 22006)2 + |𝑥 − 22006| −

2 = 0 

⇒ |𝑥 − 22006|2+ |𝑥 − 22006| − 2=0 ⇒ x= 

22006+1, 22006 -1. 

∴The sum of real roots are =22007 

16. Consider an expression 𝒙𝟐 + 𝒚𝟐 +

𝟐𝒙 + 𝒚= constant. If for two constants 𝛼, 

𝛽, the conditions x> 𝛼 and x > 𝛽 imply the 

same limits for the value of y, then 𝛼 +𝛽 is 

(a) -2                       (b) -4                       

(c) 1                          (d) none 

Ans. (a)  𝑥2 + 𝑦2 + 2𝑥 + 𝑦 = 𝑘 

⇒ (𝑥 + 1)2 + (𝑦 +
1

2
)2 = 𝑘 +

5

4
 

⇒ x= -1±√(𝑘 +
5

4
)2 − (𝑦 +

1

2
)2 

Now, the two values of x corresponds to 𝛼 

and 𝛽 as y takes the same limits of values. 

Hence 𝛼 +𝛽= -2. 

17. 
𝒂𝟒+𝒃𝟒

𝒂𝟐+𝒃𝟐
+
𝒃𝟒+𝒄𝟒

𝒃𝟐+𝒄𝟐
+
𝒄𝟒+𝒂𝟒

𝒄𝟐+𝒂𝟐
≥ 

(a) a+ b+ c                      (b) 𝒂𝟐 + 𝒃𝟐 +

𝒄𝟐                        (c) ab+ bc+ ca                 

(d) none 

Ans. (b) (𝑎2 − 𝑏2)2 ≥ 0 

⇒ 𝑎4 + 𝑏4 ≥ 2𝑎2. 𝑏2  

⇒2𝑎4 + 2𝑏4 ≥ 𝑎4 + 𝑏4 + 2𝑎2. 𝑏2 =

(𝑎2 + 𝑏2)2  

⇒ 
𝑎4+𝑏4

𝑎2+𝑏2
≥
𝑎2+𝑏2

2
 …………….(1) 

Similarly, 
𝑏4+𝑐4

𝑏2+𝑐2
≥
𝑏2+𝑐2

2
 ……………(2) 

And, 
𝑐4+𝑎4

𝑐2+𝑎2
≥
𝑐2+𝑎2

2
 ……………………(3) 

(1)+(2)+(3) implies 

𝑎4+𝑏4

𝑎2+𝑏2
+
𝑏4+𝑐4

𝑏2+𝑐2
+
𝑐4+𝑎4

𝑐2+𝑎2
≥ 𝑎2 + 𝑏2 + 𝑐2 . 

18.  Let m > 1, n ∊ℕ, then 𝟏𝒎 + 𝟐𝒎 +

𝟐𝟐𝒎 + 𝟐𝟑𝒎 +⋯+ 𝟐𝒏𝒎−𝒎> 

(a) 𝒏𝟏−𝒎                           (b) (𝟏 −𝒎)𝒏                      

(c) 𝒏𝟏−𝒎(𝟐𝒏−𝟏)                       (d) none 

Ans. (c) 
1𝑚+2𝑚+22𝑚+23𝑚+⋯+(2𝑛−1)𝑚

𝑛
>

(
1+2+4+⋯+2𝑛−1

𝑛
)𝑚 

[∵ m> 0 and AM of mth power > mth power 

of AM] 

⇒ 1𝑚 + 2𝑚 + 22𝑚 + 23𝑚 +⋯+

(2𝑛−1)𝑚 > 𝑛(
2𝑛−1

𝑛
)𝑚 > 𝑛1−𝑚(2𝑛−1)𝑚 
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19. Let  𝒙𝟐 + 𝒚𝟐 = 𝒄𝟐, then the least value 

of 𝒙−𝟐 + 𝒚−𝟐 is 

(a) c                     (b) 𝒄𝟐                         

(c) 𝒄𝟑                          (d) none 

Ans. (d) Let z= 𝑥−2 + 𝑦−2 = 
𝑥2+𝑦2

𝑥2𝑦2
=

𝑐2

𝑥2𝑦2
 

and 

It will be minimum when 𝑥2𝑦2 will be 

maximum. 

As 𝑥2 + 𝑦2 = 𝑐2, then 𝑥2𝑦2 is maximum 

when 𝑥2 = 𝑦2 =
𝑐2

2
 

∴ 𝑧𝑚𝑖𝑛. = 
𝑐2

𝑐4

4

=
4

𝑐2
. 

20. 𝒏𝒏(
𝒏+𝟏

𝟐
)𝟐𝒏 > 

(a) n!                   (b) (𝒏!)𝟐                       

(c) (𝒏!)𝟑                          (d) none. 

Ans. (c) 
13+23+⋯+𝑛3

𝑛
> (13. 23. … . 𝑛3)

1

𝑛    

[∵AM> GM] 

⇒ 
𝑛(𝑛+1)2

4
> {(𝑛!)3}

1

𝑛 

⇒ 𝑛𝑛(
𝑛+1

2
)2𝑛 > {(𝑛!)3}. 

 

21. If 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … . , 𝒂𝒏 are non- negative 

and  𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … . , 𝒂𝒏 = 𝟏,  

then (1+𝒂𝟏)(1+𝒂𝟐) …(1+𝒂𝒏)≥ 

(a) 𝟐𝒏                        (b) 𝟑𝒏                    

(c) 𝟒𝒏                      (d) none 

Ans. (a) (
1+𝑎𝑖

2
) ≥ √𝑎𝑖, where i= 1(1)n.  

(AM ≥ GM) 

Putting the all I value and then multiplies the 

in equations, 

(1+𝑎1)(1+𝑎2) … (1+𝑎𝑛)≥

2𝑛√𝑎1, 𝑎2, 𝑎3, … . , 𝑎𝑛  

⇒ (1+𝑎1)(1+𝑎2) … (1+𝑎𝑛)≥

2𝑛(∵𝑎1, 𝑎2, 𝑎3, … . , 𝑎𝑛 = 1) 

 

22. If 𝒂𝟏, … . , 𝒂𝒏 are positive real nos. 

whose product is a fixed number c, then 

the minimum value of 𝒂𝟏 + 𝒂𝟐 +⋯+

𝒂𝒏−𝟏 + 𝟐𝒂𝒏 is 

(a) 𝒏(𝟐𝒄)
𝟏

𝒏                  (b) (𝒏 + 𝟏)𝒄
𝟏

𝒏                       

(c) 𝟐𝒏𝒄
𝟏

𝒏                           (d) done 

Ans. (a) AM ≥ GM 

So, LHS ≥ 𝑛(𝑎1…2𝑎𝑛)
1

𝑛 = 𝑛(2𝑐)
1

𝑛 

 

23. If f(x) = ∫
𝒆𝐜𝐨𝐬 𝒕

𝒆𝐜𝐨𝐬 𝒕+𝒆−𝐜𝐨𝐬 𝒕

𝒙

𝟎
𝒅𝒕, then 2f(𝜋) = 

(a) 0                      (b) 𝜋                      (c) –𝜋                           

(d) none of these 

Ans. (b) 

𝑓(𝜋) =  ∫
𝑒cos 𝑡

𝑒cos 𝑡+𝑒−cos 𝑡

𝜋

0
𝑑𝑡……….(1) 

 𝑓(𝜋) =  ∫
𝑒−cos 𝑡

𝑒−cos𝑡+𝑒cos 𝑡

𝜋

0
𝑑𝑡 …………(2) 

[ since cos (𝜋-t)= - cost] 

∴ 2f(𝜋)= ∫ 𝑑𝑡 =  𝜋
𝜋

0
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24. Let [x] denotes the greatest integer 

less than or equal to x, then ∫ 𝒔𝒊𝒏𝒙
𝝅

𝟒
𝟎

𝒅(𝒙 −

[𝒙])=  

(a) ½                    (b) 1 - 
𝟏

√𝟐
                    

(c) 1                      (d) none of these 

Ans. (b) ∫ sin 𝑥 𝑑(𝑥 − [𝑥])
𝜋/4

0
=

 ∫ sin 𝑥 𝑑𝑥
𝜋/4

0
 =−[cos 𝑥]

𝜋

4
0
= − [

1

√2
− 1] =

 1 −
1

√2
  

[∵ 0 < x <
𝜋

4
∴ [𝑥] = 0] 

25. Let g(x) = ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
, 𝒘𝒉𝒆𝒓𝒆

𝟏

𝟐
≤

𝒇(𝒕) ≤ 𝟏, 𝒕 ∈ [𝟎, 𝟏]𝒂𝒏𝒅𝟎 ≤ 𝒇(𝒕) ≤
𝟏

𝟐
 𝒇𝒐𝒓 𝒕 ∈ (𝟏, 𝟐]. Then   (a) −

𝟑

𝟐
≤ 𝒈(𝟐) <

𝟏

𝟐
        (b) 𝟎 ≤ 𝒈(𝟐) < 2        (c) 

𝟑

𝟐
< 𝑔(𝟐) ≤

𝟓

𝟐
         (d) 2 < g(2 )< 4 

Ans. (b) 𝑔(2) =  ∫ 𝑓(𝑡)
2

0
𝑑𝑡 =  ∫ 𝑓(𝑡)

1

0
𝑑𝑡 +

∫ 𝑓(𝑡)
2

1
𝑑𝑡 𝑎𝑠

1

2
≤ 𝑓(𝑡) ≤ 1 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 1, 

 ∴ ∫
1

2
𝑑𝑡

1

0

≤ ∫ 𝑓(𝑡)𝑑𝑡
1

0

≤ ∫ 1 𝑑𝑡
1

0

  

                                                      𝑜𝑟,
1

2
≤

∫ 𝑓(𝑡)𝑑𝑡
1

0
≤ 1 ………. (1) 

𝑎𝑠 0 ≤  𝑓(𝑡) ≤
1

2
 𝑓𝑜𝑟 1 < 𝑡 ≤ 2,  

∴ ∫ 0
2

1

 𝑑𝑡 ≤  ∫ 𝑓(𝑡)
2

1

𝑑𝑡 ≤  ∫
1

2
𝑑𝑡

2

1

  

                                                       𝑜𝑟, 0 ≤

∫ 𝑓(𝑡)
2

1
𝑑𝑡 ≤

1

2
 ……………. (2) 

(1) + (2) ⟹ 
1

2
≤ 𝑔(2) ≤

3

2
 

∴  g(2) satisfies the inequality 0≤ 𝑔(2) < 2. 

26. The tangent at point P of a curve 

meets the y- axis at B, the line through P 

parallel to y-axis meets the x-axis at A. If 

the area of 𝛥AOB is constant, the curve is 

a 

(a) parabola                 (b) hyperbola                

(c) ellipse                   (d) circle 

Ans. (b) 

Let P= (x, y) 

Equation of tangent to the curve at P(x, y) is 

Y- y = 
𝑑𝑦

𝑑𝑥
(𝑋 − 𝑥) 

When X= 0, Y= y – x 
𝑑𝑦

𝑑𝑥
 

∴B≡ (0, 𝑦 − 𝑥
𝑑𝑦

𝑑𝑥
) 

Area of 𝛥AOB ant=k 

∴
1

2
𝑥 (𝑦 − 𝑥

𝑑𝑦

𝑑𝑥
) ⟹ 𝑥𝑦 −

𝑥2𝑑𝑦

𝑑𝑥
= ±2𝑘 ⟹

𝑥2𝑑𝑦

𝑑𝑥
− 𝑥𝑦 = ±2𝑘 = 𝑐 ⟹

𝑑𝑦

𝑑𝑥
+ 𝑦 (−

1

𝑥
) =

2

𝑥2
  

𝐼. 𝐹. =  𝑒− log𝑥 =
1

𝑥
  

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑦,
1

𝑥
=  ∫

𝐶

𝑥3
𝑑𝑥 + 𝑎  

𝑜𝑟 𝑦 = 𝑥 (−
𝐶

2𝑥2
) + 𝑎𝑥  

𝑜𝑟 2𝑥𝑦 =  −𝐶 + 2𝑎𝑥2  
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𝑜𝑟 2𝑎𝑥2 −  2𝑥𝑦 − 𝐶 = 0 ………….(1) 

Here h= -1, a= a, b= 0 

∴ ℎ2> ab.             Hence curve (1) is a 

hyperbola 

27. The function f(k) = 
𝒅

𝒅𝒌
∫

𝒅𝒙

𝟏−𝐜𝐨𝐬 𝒌.𝐜𝐨𝐬 𝒌

𝒌

𝟎
  

satisfies the differentiable equation 

(a) 
𝒅𝒇

𝒅𝒌
+ 𝟐𝒇(𝒌). 𝐜𝐨𝐭 𝒌 = 𝟎                                                    

(b) 
𝒅𝒇

𝒅𝒌
+ 𝟐𝒇(𝒙). 𝐜𝐨𝐬 𝒌 = 𝟎  

(c) 
𝒅𝒇

𝒅𝒌
− 𝟐𝒇(𝒌). 𝒄𝒐𝒔𝟐𝒌 = 0                                                    

(d) none of these 

Ans. (a)                                      𝑓(𝑥) =
1

1−cos𝑘 cot𝑘
= 𝑐𝑜𝑠𝑒𝑐2𝑘 

𝑑𝑓

𝑑𝑘
= 2 𝑐𝑜𝑠𝑒𝑐 𝑘 (– 𝑐𝑜𝑠𝑒𝑐 𝑘 cot 𝑘)

=  −2𝑓(𝑘) cot 𝑘   

𝑜𝑟
𝑑𝑓

𝑑𝑘
+ 2𝑓(𝑘)𝑐𝑜𝑡𝑘 = 0 

28. The largest value of ‘c’ such that there 

exists a differentiable function f(x) for –c< 

x < c that satisfies the equation 𝒚𝟏 = 𝟏 +

𝒚𝟐 with f(0)= 0 is 

(a) 1                           (b) 𝜋                         

(c) 
𝝅

𝟑
                              (d) 

𝝅

𝟐
 

Ans. (d)      
𝑑𝑦

𝑑𝑥
= 1 + 𝑦2  ⟹ tan−1 𝑦 =  𝑥 +

𝑘 

∵ f(x) satisfies the equation 

∴tan−1𝑓(𝑥) = 𝑥 + 𝑘 

Now, f(0)= 0= k= 0 

⟹ x= tan−1𝑓(𝑥)   ∴ −
𝜋

2
< 𝑥 <  

𝜋

2
  

29. If y= (x) and  
𝟐+𝐬𝐢𝐧𝒙

𝒚+𝟏
(
𝒅𝒚

𝒅𝒙
) =

−𝐜𝐨𝐬 𝒙, 𝒚(𝟎) = 𝟏,     𝒚 (
𝝅

𝟐
) equals: 

(a) 1/3                   (b) 2/3                    (c) -

1/3                      (d) 1 

Ans. (a) Given, 
2+sin𝑥 

𝑦+1

𝑑𝑦

𝑑𝑥
= − cos 𝑥  

………..(1)   &           𝑦(0) =

1 ………….(2) 

(1) ⟹ ∫
𝑑𝑦

𝑦 + 1
= −∫

cos 𝑥

2 + sin 𝑥
𝑑𝑥  

⟹ log(𝑦 + 1) =  − log(2 + sin 𝑥) + log 𝑐  

⟹ 𝑦 + 1 =
𝑐

2 + sin 𝑥
  

                                                    ⟹𝑦 =
𝑐

2+sin𝑥
−

1 …………..(3) 

𝐴𝑙𝑠𝑜 𝑔𝑖𝑣𝑒𝑛 𝑦(0) = 1 ⟹ 1 =
𝑐

2
− 1 ⟹ 𝑐

= 4 

∴ 𝑓𝑟𝑜𝑚 (3), 𝑦(𝑥) =
2 − sin 𝑥

2 + sin 𝑥
  

∴ 𝑦 = (
𝜋

2
) =

2 − 1

2 + 1
=
1

3
 

 

30. If 𝒍𝟏 𝒂𝒏𝒅 𝒍𝟐 are the side length of two 

variables squares 𝒔𝟏 𝒂𝒏𝒅 𝒔𝟐, respectively. 

If 𝒍𝟏 = 𝒍𝟐 + 𝒍𝟐
𝟑 + 𝟔, then the rate of 

change of the area of 𝒔𝟐 with respect to 

rate of change of the area  of 𝒔𝟏 when 

𝒍𝟐 = 𝟏 is 

(a) 3/2                           (b) 2/3                              

(c) 4/3                            (d) none 
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Ans. (d) Let ∆1 𝑎𝑛𝑑 ∆2 be the area of the 

sequences 𝑠1 𝑎𝑛𝑑 𝑠2, 

∆1=𝑙1
2 𝑎𝑛𝑑 ∆2= 𝑙2

2  

∴ 
𝑑∆1

𝑑𝑙1
= 2𝑙1 𝑎𝑛𝑑 

𝑑∆2

𝑑𝑙2
= 2𝑙2. 

⤇ 
𝑑∆2

𝑑∆1
=
𝑙2

𝑙1
.
𝑑𝑙2

𝑑𝑙1
=
𝑙2

𝑙1
.

1

1+3𝑙2
  

When𝑙2 = 1, 𝑙1 = 8 , 𝑡ℎ𝑒𝑛 
𝑑∆2

𝑑∆1
=

1

32
. 

 

ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

1. If 𝒂𝒏=∫
𝒔𝒊𝒏𝟐𝒏𝒙

𝒔𝒊𝒏𝟐𝒙

𝝅

𝟐
𝟎

𝒅𝒙, then 

[

𝒂𝟏 𝒂𝟓𝟏 𝒂𝟏𝟎𝟏
𝒂𝟐 𝒂𝟓𝟐 𝒂𝟏𝟎𝟐
𝒂𝟑 𝒂𝟓𝟑 𝒂𝟏𝟎𝟑

] = 

(a) 1                       (b) 0                        

(c) -1                  (d) none of these 

Ans. (b) 𝑎𝑛+2 + 𝑎𝑛 − 2𝑎𝑛+1 = 0  

⟹ 𝑎1, 𝑎2, 𝑎3, … 𝑎𝑟𝑒 𝑖𝑛 𝐴. 𝑃. 

∴ 𝑎1 + 𝑎101 = 2𝑎1 + 2𝑎1 + 100𝑑 =

2(𝑎1 + 50𝑑) = 2𝑎51 

𝑎2 + 𝑎102 = 2𝑎52, 𝑎3 + 𝑎103 = 2𝑎53  

2. If 𝒕𝒓=𝟐
𝒓 𝟑⁄ +𝟐−𝒓 𝟑⁄ , then 

∑ 𝒕𝒓
𝟑 −𝟏𝟎𝟎

𝒓=𝟏 𝟑∑ 𝒕𝒓
𝟏𝟎𝟎
𝒓=𝟏  +1 = 

(a) 
𝟐𝟏𝟎𝟏+𝟏

𝟐𝟏𝟎𝟎
                       (b)  

𝟐𝟏𝟎𝟏−𝟏

𝟐𝟏𝟎𝟎
                       

(c) 
𝟐𝟐𝟎𝟏−𝟏

𝟐𝟏𝟎𝟎
                           (d) None of these 

Ans. (c) 

𝑡𝑟
3 = 2𝑟 + 2−𝑟 + 3𝑡𝑟  

∴∑ 𝑡𝑟
3100

𝑟=1 = ∑ 2𝑟100
𝑟=1 + ∑

1

2𝑟
+ 3∑ 𝑡𝑟

100
𝑟=1

100
𝑟=1  

= 2(2100 − 1 +
1

2
(1−

1

2100
)

1−
1

2

+ 3∑ 𝑡𝑟
100
𝑟=1 =

 2101 − 2 + 1 −
1

2100
+ 3∑ 𝑡𝑟

100
𝑟=1  

=  
2201−1

2100
− 1 + 3∑ 𝑡𝑟

100
𝑟=1  

3. If ∑ 𝒓𝒏
𝒓=𝟏 .r! = 100! - 1, then n equals 

(a) 100                              (b) 101                           

(c) 99                            (d) none of these 

Ans. (c) 

𝑡𝑟= r. r != (r+1 -1)r!= (r+1)! –r! 

∴∑ 𝑡𝑟
𝑛
𝑟=1 = (𝑛 + 1)! − 1! = (𝑛 + 1)! − 1 

 

4. If m = ∑ 𝒂𝒓∝
𝒓=𝟎 , n=∑ 𝒃𝒓 ∝

𝒓=𝟎  where 

0<a<1,0<b<1,then the quadratic equation 

whose  

roots are a and b is 

(a) mn𝒙𝟐+(m+n-2mn)x+mn-m-n+1=0                       

(b) mn𝒙𝟐+(2mn-m-n)x+mn-m-n+1=0 

(c) mn𝒙𝟐+(2mn+m+n)x+mn+m+n+1=0                    

(d) mn𝒙𝟐-(2mn+m+n)x+mn+m+n+1=0 

Ans. (a) 

m = 
1

1−𝑎
⟹ 𝑎 =

𝑚−1

𝑚
, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑏 =  

𝑛−1

𝑛
. 

SET – 5 
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Required quadratic equation is 

𝑥2 − (𝑎 + 𝑏)𝑥 + 𝑎𝑏 = 0  

or, 𝑥2 − (
𝑚−1

𝑚
+
𝑛−1

𝑛
) 𝑥+

(𝑚−1)(𝑛−1)

𝑚𝑛
= 0 

or,  mn𝑥2 − (2𝑚𝑛 −𝑚 − 𝑛)𝑥 + 𝑚𝑛 −𝑚 −

𝑛 + 1 = 0 

5. If ∑ 𝒓𝟒𝒏
𝒓=𝟏  = 𝒂𝒏, then ∑ 𝒓𝟒𝒏

𝒓=𝟏 (𝟐𝒓 −

𝟏)𝟒= 

(a) 𝒂𝟐𝒏+𝒂𝒏                     (b) 𝒂𝟐𝒏-𝒂𝒏                  

(c) 𝒂𝟐𝒏-16𝒂𝒏                    (d)𝒂𝟐𝒏+16𝒃𝒏 

Ans. (c) ∑ (2𝑟 − 1)4𝑛
𝑟=1 = 14 + 34 + 54 +

⋯+ (2𝑛 − 1)4 

= [14 + 24 + 34 +⋯+ (2𝑛)4] − [24 +

44 + 64 +⋯+ (2𝑛)4]  

= 𝑎2𝑛 − 2
4(14 + 24 + 34 +⋯+ 𝑛4) =

𝑎2𝑛 − 16𝑎𝑛.   

6. If positive numbers a, b, c be in H.P., 

then equation 𝒙𝟐 − 𝒌𝒙 + 𝟐𝒃𝟏𝟎𝟏 − 𝒂𝟏𝟎𝟏 =

𝟎 (𝒌 ∊ 𝑹) has 

(a) both roots positive                                      

(b) both roots negative  

(c) one positive and one negative root             

(d) both roots imaginary. 

Ans. (c) 

a, b, c are in H.P. 

⟹H.M. of a and c= b⟹√𝑎𝑐 > b  (∵G.M. > 

H.M.) 

Since A .M. > G.M. 

∴ 
𝑎101+𝑐101

2
> (√𝑎𝑐)101 > 𝑏101 [∵ √𝑎𝑐 >

𝑏] 

⟹2𝑏101 − 𝑎101 − 𝑐101 < 0 

Let f(x)= 𝑥2 − 𝑘𝑥+2𝑏101 − 𝑎101-𝑐101 

Then f(−∞) = ∞ > 0, 𝑓(0) = 2𝑏101 −

𝑎101 − 𝑐101 < 0, 𝑓(∞) =  ∞ > 0. 

Hence equation f(x)= 0 has one root in (-

∞, 0)and other in(0,∞). 

7. If the sum of the series ∑ 𝒓𝒏∝
𝒏=𝟎 , |r|<1, is 

s, then sum of the series ∑ 𝒓𝟐𝒏 ∝
𝒏=𝟎 is  

(a) 𝒔𝟐                       (b) 
𝟐𝒔

𝒔𝟐−𝟏
                      

(c)
𝒔𝟐

𝟐𝒔+𝟏
                          (d)

𝒔𝟐

𝟐𝒔−𝟏
 

Ans. (d) 

s= ∑ 𝑟𝑛∞
𝑛=0 = 1 + 𝑟 + 𝑟2 + 𝑟3 +⋯𝑡𝑜 ∞ =

 
1

1−𝑟
 

∴ r=1- 
 1

𝑠
=
𝑠−1

𝑠
 

∑ 𝑟2𝑛∞
𝑛=0 =

1

1−𝑟2
=

1

1−
(𝑠−1)2

𝑠2

= 
𝑠2

2𝑠−1
  

8. The limit of the product √𝟓
𝟐

,√𝟓
𝟒

,…. √𝟓
𝟐𝒏

  

as n→∞ is   

(a) 
𝟏

𝟓
                               (b) 𝐥𝐨𝐠𝟏𝟎 𝟓                           

(c) 1                             (d) 5 

Ans. (d) Required limit= 

Lt
𝑛→∞

5
1

2. 5
1

4. 5
1

8… . 5
1

2𝑛 = Lt
𝑛→∞

5
1

2
+
1

4
+
1

8
+⋯+

1

2𝑛 =

5
1

2

1−
1

2

= 5  

9. If numbers p, q, r are in A.P. , then 

𝒎𝟕𝒑, 𝒎𝟕𝒒, 𝒎𝟕𝒓 (m>0) are in  
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(a) A.P.                    (b) G.P.                    

(c) H.P.                       (d)none of 

these 

Ans. (b) 
𝑚7𝑞

𝑚7𝑝 = 𝑚
7(𝑞−𝑝),

𝑚7𝑟

𝑚7𝑞 = 𝑚
7(𝑟−𝑞)  

∴ q- p= r- q 

∴ 𝑚7𝑝, 𝑚7𝑞 ,𝑚7𝑟 are in G.P. 

10. Let n be a positive integer and 

(𝟏 + 𝒙 + 𝒙𝟐)𝒏 = 𝒂𝟎 + 𝒂𝟏𝒙 +⋯+ 𝒂𝟐𝒏𝒙
𝟐𝒏, 

then the value of 𝒂𝟎
𝟐 − 𝒂𝟏

𝟐 +

𝒂𝟐
𝟐… . . +𝒂𝟐𝒏

𝟐 is 

(a) 0                                  (b) 𝒂𝟎                                  

(c) 𝒂𝒏                                     (d) 𝒂𝟐𝒏 

Ans. (c) Replacing x by (- 1/x), we get 

(1 −
1

𝑥
+
1

𝑥2
)𝑛 = 𝑎0 −

𝑎1
𝑥
+
𝑎2
𝑥2
+⋯

− 𝑎2𝑛−1.
1

𝑥2𝑛−1
+
𝑎2𝑛
𝑥2𝑛

 

or, (1 − 𝑥 + 𝑥2)𝑛 = 𝑎0𝑥
2𝑛 − 𝑎1𝑥

2𝑛−1 +

𝑎2𝑥
2𝑛−2 +⋯+ 𝑎2𝑛 ……………….(1) 

And given (1 + 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 +

⋯+ 𝑎2𝑛𝑥
2𝑛…………………(2) 

Multiplying corresponding sides of (1) and 

(2), we have 

(1 + 𝑥2 + 𝑥4)𝑛 = (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +

⋯+ 𝑎2𝑛𝑥
2𝑛) × (𝑎0𝑥

2𝑛 − 𝑎1𝑥
2𝑛−1 +

𝑎2𝑥
2𝑛−2 +⋯+ 𝑎2𝑛 ) …….. (3) 

(1 + 𝑥2 + 𝑥4)𝑛 = (𝑎0 + 𝑎1𝑥
2 + 𝑎2𝑥

4 +

⋯+ 𝑎𝑛𝑥
𝑛 +⋯+ 𝑎2𝑛𝑥

4𝑛) ……………..(4) 

Equating coefficient of 𝑥2𝑛 on both sides of 

(3) and (4) 

𝑎0
2 − 𝑎1

2 + 𝑎2
2… . . +𝑎2𝑛

2= 𝑎𝑛. 

11. The set of all real number x such that 

||3-x|-|x+2||=5 is 

(a) [3, ∞)               (b) (-∞,−𝟐]             

(c) (-∞,−𝟐] ∪[3, ∞)             (d) (-

∞,−𝟑]   ∪[2, ∞) 

Ans. (c) (||3 − x| − |x + 2||)2 = 25 

⤇(3 − x)2 + (x + 2)2 − 2|3-x||x+2|= 25 

⤇ x2 − 𝑥 − |−x2 + 𝑥 + 6| = 6 

So, it is clear that −x2 + 𝑥 + 6 < 0  , 

 i.e. −x2 + 𝑥 + 6 ≥ 0 

(x-3)(x+2)≥ 0. So, x ≤ −2 & 𝑥 ≥ 3 

∴x ∊ (-∞,−2] ∪[3, ∞). 

12. The differential equation of the system 

of circle touch the y – axis at the origin is 

(a) 𝒙𝟐 + 𝒚𝟐 − 𝟐𝒙𝒚
𝒅𝒚

𝒅𝒙
= 0                                       

(b) 𝒙𝟐 + 𝒚𝟐 + 𝟐𝒙𝒚
𝒅𝒚

𝒅𝒙
=0  

(c) 𝒙𝟐 − 𝒚𝟐 − 𝟐𝒙𝒚
𝒅𝒚

𝒅𝒙
 = 0                                       

(d) 𝒙𝟐 − 𝒚𝟐 + 𝟐𝒙𝒚
𝒅𝒚

𝒅𝒙
= 𝟎 

Ans. (d) 𝑥2 + 𝑦2 − 2𝑎𝑥= 0 

2x+2y
𝑑𝑦

𝑑𝑥
− 2𝑎=0 

⤇2(x+ y
𝑑𝑦

𝑑𝑥
)=2 (

𝑥2+𝑦2

2𝑥
) 

⤇2𝑥2 + 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2 

⤇𝑥2 − 𝑦2 + 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 0. 

13. Let y(x) be a non-trivial solution of the 

second order liner differential equation 
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𝒅𝟐𝒚

𝒅𝒙𝟐
+ 𝟐𝒄

𝒅𝒚

𝒅𝒙
+ 𝒌𝒚 = 𝟎,𝒘𝒉𝒆𝒓𝒆 𝒄 < 0, 𝑘 >

0, 𝒄𝟐 − 𝒌. Then  

(a) |y(x)|⟶∞ 𝒂𝒔 𝒙 → ∞                                              

(b) |y(x)|⟶𝟎 𝒂𝒔 𝒙 → ∞      

(c) 𝐥𝐢𝐦
𝒙→±∞

|𝐲(𝐱)| exists & is finite                           

(d) none 

Ans. (a) 𝑚2 + 2𝑐𝑚 + 𝑘 = 0 

∴ m = 
−2𝑐±√4𝑐2−4𝑘

2
=
−2𝑐±√4 ( 𝑐2−𝑘)

2
=

−2𝑐±2𝑎

2
   [∵ 𝑐2 − 𝑘 = 𝑎2 =  𝑐2 − 𝑘] 

=  
−𝑐−𝑎

2
,
−𝑐+𝑎

2
 

The general solution of the given L.D.E. is y 

= 𝑐1𝑒
𝑚1𝑥 + 𝑐2𝑒

𝑚2𝑥 = 𝑐1𝑒
−(
𝑐+𝑎

2
)𝑥 +

𝑐2𝑒
−(
𝑐−𝑎

2
)𝑥

 

So, |y(x)|⟶∞ 𝑎𝑠 𝑥 → ∞  

14. Let y be a function of x satisfying  
𝒅𝒚

𝒅𝒙
= 𝟐𝒙𝟑√𝒚 − 𝟒𝒙𝒚. If y(0)= o and then 

y(1)equals 

(a) 
𝟏

𝟒𝒆𝟐
                      (b) 1/e                     

(c) 𝒆𝟏/𝟐                         (d) 𝒆𝟑/𝟐 

Ans. (a) 
𝑑𝑦

𝑑𝑥
(4𝑥)𝑦=2√𝑦𝑥3 (Bernoulli’s 

Equation) 

Putting√𝑦 = 𝑧, the equation reduces to  

𝑑𝑧

𝑑𝑥
+ (2𝑥)𝑧= 𝑥3(linear in z) 

∴ I. F.= e∫2𝑥𝑑𝑥 = 𝑒𝑥
2
 

Multiplying and integrating 

z𝑒𝑥
2
= ∫𝑥3𝑒𝑥

2
𝑑𝑥   (put 𝑥2 = 𝑢) 

= 
1

2
(𝑥2 − 1)𝑒𝑥

2
+ 𝑐 

∴ General solution is given by:- √𝑦 =
1

2
(𝑥2 − 1) + 𝑐𝑒−𝑥

2
 

Since y(0)=0, so, c= 
1

2
 

∴y(1)= (
1

2𝑒
)2 =

1

4𝑒2
. 

15. Let 𝒙𝒊 are non -ve reals and s= 𝒙𝟏 +

𝒙𝟐 +⋯+ 𝒙𝒏, 𝒕𝒉𝒆𝒏 𝒙𝟏𝒙𝟐 + 𝒙𝟐𝒙𝟑 + …+

𝒙𝒏−𝟏𝒙𝒏 ≤  

(a) 
𝒔𝟐

𝟐
                           (b) 

𝒔𝟐

𝟑
                          

(c) 
𝒔𝟐

𝟒
                            (d) none 

Ans. (c) (𝑥1 + 𝑥3 + 𝑥5 +⋯)(𝑥2 + 𝑥4 +

𝑥6 +⋯)≥  𝑥1𝑥2 + 𝑥2𝑥3 + …+ 𝑥𝑛−1𝑥𝑛 

As when expanding LHS, we must get RHS 

and many additional non- negative terms 

since 𝑥𝑖 ≠ 0. 

Thus maximum achieved by taking 𝑥1 =

𝑥, 𝑥2 = 𝑠 − 𝑎 and all other terms 0, but 

x(s-x) ≤ 
𝑠2

4
 with equality when x = 

𝑠

2
 (using 

AM ≥ GM ) 

16. For any positive reals x, y, z and a is 

the arithmetic mean of x, y, z then 𝒙𝒙𝒚𝒚𝒛𝒛  

is 

(a) ≥ (𝒙𝒚𝒛)𝒂                 (b) < (𝒙𝒚𝒛)𝒂                 

(c) >(𝒙𝒚𝒛)𝒂                  (d) none 

Ans. (a) Let ≥ 𝑦 ≥ 𝑧 , then 𝑥𝑥𝑦𝑦 ≥ 𝑥𝑦𝑦𝑥, 

as (
𝑥

𝑦
) 𝑥 ≥ (

𝑥

𝑦
) 𝑦 is obviously true. 
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Similarly, 𝑦𝑦𝑧𝑧 ≥ 𝑦𝑧𝑧𝑦𝑎𝑛𝑑𝑧𝑧𝑥𝑥 ≥ 𝑧𝑥𝑥𝑧 

Multiplying all these, (𝑥𝑥𝑦𝑦𝑧𝑧)2 ≥

 𝑥𝑦+𝑧. 𝑦𝑧+𝑥. 𝑧𝑥+𝑦 

⇒𝑥𝑥𝑦𝑦𝑧𝑧 × (𝑥𝑥𝑦𝑦𝑧𝑧)2 ≥

 𝑥𝑥+𝑦+𝑧. 𝑦𝑥+𝑦+𝑧. 𝑧𝑥+𝑦+𝑧 

⇒ (𝑥𝑥𝑦𝑦𝑧𝑧)3 ≥ (𝑥𝑦𝑧)3𝑎 

⇒ 𝑥𝑥𝑦𝑦𝑧𝑧 ≥ (𝑥𝑦𝑧)𝑎 

17.  The number of integers between 1 

and 567 are divisible by either 3 or 5, is 

(a) 200                     (b)  250                        

(c) 300                          (d) none 

Ans. (d)  Let z= {1, 2, 3, …., 566, 567} 

P = {x ∊ 
𝑧

3
 𝑑𝑒𝑣𝑖𝑑𝑒𝑠 𝑥} and  

Q = { x ∊ 
𝑧

5
 𝑑𝑒𝑣𝑖𝑑𝑒𝑠 𝑥 } 

Here, |P|= 189 [∵ 567= 189× 3] 

And |Q|= 113 [∵ 567= 113× 5 + 2] 

P ∩ 𝑄= set of multiple of both 3 and 5, 

| P ∩ 𝑄 |=37; |P ∪ 𝑄|= 189+ 113- 37= 265. 

18.  Sets A and B have 3 and 6 elements 

respectively.  The minimum number of 

elements          in A ∪B is 

(a) 3                               (b) 6                                  

(c) 9                                (d) none 

Ans. (b) n(A ∪ B)≥ max {𝑛 (𝐴), 𝑛 (𝐵)} 

Thus n (A ∪ B)≥ max {3, 6} = 6. 

19. A has n elements. How many (B, C) 

are such that ≠ 𝑩 ⊆ 𝑪 ⊆ 𝑨 ? 

(a)𝟐𝒏                        (b) 𝟑𝒏                        

(c) 𝟒𝒏                       (d) none 

Ans. (b) There are (𝑛
𝑚
) choices for a subject 

B with m elements. 

Then each of the remaining n-m elements 

can be in C or not, so there are 2𝑛−𝑚 

choices for C 

Thus the total no of pairs (B, C) is 

∑2𝑛−𝑚 . 𝑛𝑐𝑚 = ∑2
𝑚 . 𝑛𝑐𝑚= (1 + 2)𝑛 = 3𝑛 

(from binomial theorem) [∵𝑛𝑐𝑚 = 𝑛𝑐𝑛−𝑚  ] 

20. The value of the integral 

∫
|
𝟐[𝒙]

𝟑𝒙−[𝒙]
|

𝟐[𝒙]

𝟑𝒙−[𝒙]

𝟎

−𝟏𝟎
 dx, where [.] denotes greatest 

integer function is 

(a) 0                          (b) 10                              

(c) -10                                    (d) none of 

these 

Ans. (d) 

Let 𝑓(𝑥) =  
|
2[𝑥]

3𝑥−[𝑥]
|

2[𝑥]

3𝑥−[𝑥]

 

Clearly f is not defined if x= 0 and when 

3x= [x] 

So in (-10, 0), f is not defined at x= −
1

3
 . 

When x∊(−10,−
1

3
) 

[x] < 0 and 3x- [x]< 0 

So, 
[𝑥]

3𝑥−[𝑥]
> 0 ⟹ 𝑓(𝑥) = 1 

When x ∊ (−
1

3
, 0) 

[x] < 0 and 3x- [y] > 0⟹ f(x)= -1 
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∫ 𝑓(𝑥)
0

−10

𝑑𝑥 =  ∫ 𝑑𝑥
−1/3

−10

+∫ (−1)
0

−1/3

𝑑𝑥

= [𝑥]
−
1
3

−10
− (𝑥)

0

−
1
3

= (−
1

3
+ 10) − (0 +

1

3
)

=  10 −
2

3
 

21. The equation ∫ (𝒂|𝐬𝐢𝐧 𝒙| +
𝒃𝐬𝐢𝐧 𝒙

𝟏+𝐜𝐨𝐬𝒙
+

𝝅

𝟒

−
𝝅

𝟒

𝒄)𝒅𝒙= 0 gives a relation between  

(a) a, b and c                  (b) a and b                   

(c) b and c                    (d) a and c 

Ans. (d) I = 2a∫ |sin 𝑥|
𝜋

4
0

𝑑𝑥 + 0 +

∫ 𝑐 𝑑𝑥
𝜋

4

−
𝜋

4

= 2𝑎 ∫ 𝑠𝑖𝑛𝑥
𝜋

4
0

𝑑𝑥 + 𝑐.
𝜋

2
 

= −2𝑎[𝑐𝑜𝑠𝑥]

𝜋
4
0
+
𝜋

2
𝑐

= −2𝑎 (
1

√2
− 1) +

𝜋

2
𝑐 

22. Let f(x) = max. {2- x, 2, 1+ x} then 

∫ 𝒇(𝒙)
𝟏

−𝟏
𝒅𝒙= 

(a) 0                          (b) 2                         (c) 

9/2                                (d) none of these 

Ans. (c) ∴ f(x) = 2-x,    x≤ 0 

                        = 2,       0≤x≤1 

                        = 1+ x,  x ≥1 

I= ∫ 𝑓(𝑥)
1

−1
𝑑𝑥 =  ∫ 𝑓(𝑥)𝑑𝑥

0

−1
+

∫ 𝑓(𝑥)𝑑𝑥
1

0
= ∫ (2 − 𝑥)𝑑𝑥

0

−1
+ ∫ 2 𝑑𝑥

1

0
 

= [2𝑥 −
𝑥2

2
]
0

−1
+ 2[𝑥]

1

0

= 0 − (−2 −
1

2
) + 2(1 − 0)

=
9

2
 

23. Let f(x) be a continuous function such 

that f(a-x)+f(x)=0 for all x ∊[0, a].  

Then ∫
𝒅𝒙

𝟏+𝒆𝒇(𝒙)

𝒂

𝟎
 equals 

(a) a                     (b) a/2                       (c) ½ 

f(a)                            (d) none of these 

Ans. (b) Given, f(a- x)= - f(x) 

Now 2I= ∫
𝑑𝑥

1+𝑒𝑓(𝑥)
𝑎

0
+ ∫

𝑑𝑥

1+𝑒𝑓(𝑎−𝑥)
𝑎

0
=

∫
𝑑𝑥

1+𝑒𝑓(𝑥)
𝑎

0
+ ∫

𝑑𝑥

1+𝑒−𝑓(𝑥)
𝑎

0
= ∫ 𝑑𝑥

𝑎

0
= 𝑎  

∴ 𝐼 =
𝑎

2
 

24. Let f(x) be an integrable odd function 

in [-5, 5] such that f(10+ x)= f(x), 

then ∫ 𝐟(𝐭)𝐝𝐭
𝟏𝟎+𝐱

𝐱
 equals 

(a) 0                            (b) 2∫ 𝐟(𝐱)𝐝𝐱
𝟓

𝐱
                    

(c) > 0                      (d) none of these 

Ans. (a) Let y= ∫ 𝑓(𝑡)
𝑥+10

𝑥
𝑑𝑡…… (1) 

Then, 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥 + 10). 1 − 𝑓(𝑥) = 0  [∵ 

f(10+x)= f(x)] 

∴ y is independent of x. 

Putting x= -5 in (1), we get 

y= ∫ 𝑓(𝑡)
5

−5
𝑑𝑡 = 0 …………. (2) 
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Since y is independent of x, therefore y has 

same value for all x. 

∴∫ 𝑓(𝑥)
𝑥+10

𝑥
𝑑𝑥= 0 

25. If  ∫ 𝒙𝒆𝒙
𝟐𝟏

𝟎
𝒅𝒙 = 𝒌∫ 𝒆𝒙

𝟐𝟏

𝟎
𝒅𝒙, then 

(a) k > 1                          (b)  0 < k < 1                                

(c) k=1                          (d) none 

Ans. (b) Here 0 < x < 1 

⟹0< x𝑒𝑥
2
< 𝑒𝑥

2
⟹ 0 < ∫ 𝑥𝑒𝑥

2
𝑑𝑥

1

0
<

 ∫ 𝑒𝑥
2
𝑑𝑥

1

0
⟹ 0 < 𝑘 ∫ 𝑒𝑥

2
𝑑𝑥

1

0
< ∫ 𝑒𝑥

2
𝑑𝑥

1

0
 

⟹ 0 < 𝑘

< 1                                 [𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 ∫ 𝑒𝑥
2
𝑑𝑥

1

0

] 

26. Consider the parabola 3𝒚𝟐 − 𝟒𝒚 −

𝟔𝒙 + 𝟖=0. The points on the axis of this 

parabola from where 3 distinct normals 

can be drawn are given by 

(a) (
𝟐

𝟑
, 𝒉) ,𝒘𝒉𝒆𝒓𝒆 𝒉 >  

𝟐𝟗

𝟏𝟖
                                         

(b) (𝒉,
𝟏

𝟑
) ,𝒘𝒉𝒆𝒓𝒆 𝒉 >  

𝟏𝟗

𝟏𝟖
    

(c) (𝒉,
𝟐

𝟑
) , 𝒘𝒉𝒆𝒓𝒆 𝒉 >  

𝟐𝟗

𝟏𝟖
                                           

(d) none of these 

Ans. (c) 

Given parabola is (𝑦 −
2

3
)
2

= 2(𝑥 −
10

9
) 

Let X= 𝑥 −
10

9
, 𝑌 = 𝑦 −

2

3
 

∴𝑌2 = 2𝑥 becomes the equation of parabola 

with reference to the new origin. 

Hence equation of normal will be 

Y= mX – m- 𝑥 −
𝑚3

2
 

  [∵ three normals are drawn from point on 

the axis (H, 0) (say)] 

∴ H= 1 +
𝑚2

2
  ⟹ m= ±√2𝐻 − 1 

For m to be real, H > ½  

⟹ ℎ −
10

9
>
1

2
⟹ ℎ >

29

18
 

[where h is the abscissa w.r.t. the previous 

co-ordinate system] 

Hence the points are given by 

(ℎ,
2

3
) , 𝑤ℎ𝑒𝑟𝑒 ℎ >

29

18
. 

27. A (𝒙𝟏, 𝒚𝟏) and B (𝒙𝟐, 𝒚𝟐) are any two 

points on the parabola y= c𝒙𝟐 + 𝒃𝒙 + 𝒂. 

If P(𝒙𝟑, 𝒚𝟑) be the point on the arc AB 

where the tangent is parallel to the chord 

AB, then 

(a) 𝒙𝟐 is the A.M. between 𝒙𝟏𝒂𝒏𝒅 𝒙𝟑         

(b) 𝒙𝟐 is the G.M. between 𝒙𝟏𝒂𝒏𝒅 𝒙𝟑 

(c) 𝒙𝟐 is the H.M. between 𝒙𝟏𝒂𝒏𝒅 𝒙𝟑         

(d) none of these 

Ans. (d) Slope of tangent at p= 
𝑑𝑦

𝑑𝑥
𝑎𝑡 (𝑥3, 𝑦3) = 2𝑎𝑥3 + 𝑏 =

𝑦2−𝑦1

𝑥2−𝑥1
                

[given]……….(A) 

∵ A and B lie on the parabola, 

∴𝑦1 = 𝑎𝑥1
2 + 𝑏𝑥1 + 𝑐 ………………(1) 

And 𝑦2 = 𝑎𝑥2
2 + 𝑏𝑥2 + 𝑐 ……………..(2) 

∴ 𝑦1 − 𝑦2 = [𝑎(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) +

𝑏](𝑥1 − 𝑥2) 

∴ 
𝑦2−𝑦1

𝑥2−𝑥1
= 𝑎 (𝑥1 + 𝑥2) +  𝑏 
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∴ From (A), a(𝑥1 + 𝑥2) + 𝑏 = 2𝑎𝑥3 +  𝑏 

⟹ 
𝑥1+𝑥2

2
= 𝑥3  

28. Let P (𝛼,β) be any point on parabola 

𝒚𝟐 = 𝟒𝒙(𝟎 ≤ 𝜷 ≤ 𝟐). M is the foot of 

perpendicular from the focus S to the 

tangent at P, then the maximum value of 

area of 

(a) 1                           (b) 2                         (c) 
𝝅

𝟑
                             (d) 

𝝅

𝟔
   

Ans. (a) Let 𝛼= 𝑡2, 𝛽 = 2𝑡 

∴ 0≤ 2t ≤ 2  ⟹ 0≤ t ≤ 1 

Equation of tangent at (𝑡2, 2𝑡) 𝑖𝑠 𝑦𝑡 = 𝑥 +

𝑡2 

If S be the focus, then S ≡(1, 0) 

SM= 
|1+𝑡2|

√1+𝑡2
= √1 + 𝑡2 

PS= √(𝑡2 − 1)2 + 4𝑡2 = (𝑡2 + 1) 

PM= √𝑃𝑆2 − 𝑆𝑀2 = 𝑡 √𝑡2 + 1 

Area of 𝛥 PMS= ½ .PM.SM= ½ 

.t√𝑡2 + 1. √𝑡2 + 1 

=
𝑡(𝑡2+1)

2
  

Which is an increasing function hence its 

maximum value occurs at t= 1 

∴ Maximum area= 1 sq. unit. 

 

29. The point A on the parabola 𝒚𝟐 = 𝟒𝒙 

for which |AC-AB | is maximum, where 

B≡ (𝟎, 𝒂) 𝒂𝒏𝒅 𝑪 ≡ (−𝒂, 𝟎) is 

(a) (a, 2a)                 (b) (4a, 4a)                   

(c) (a- 2a)                      (d) none of 

these 

Ans. (a) 

For any three points A, B, and C 

|AC - AB|≤ BC 

∴ required point A will be on the 

intersection of BC and the parabola. 

∴ A≡ (a, 2a) [∵ AB ia tangent to the 

parabola] 

 

30. Let f : R ⟶R be a function defined by 

f(x)=
𝒆|𝒙|−𝒆−𝒙

𝒆𝒙+𝒆−𝒙
 , then 

(a) ‘f’ is one-one and onto                                          

(b) ‘f’ is one-one but not onto  

(c) ‘f’ is not one-one but onto                                    

(d) ‘f’ is neither one-one nor onto  

Ans. (d) 

𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑥 ≥ 0 = 0, 𝑥 ≤ 0 

Since f(x)= 0, for all x ≤ 0 

∴ f(x) is a many –one function 

Let y= 
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
, 𝑥 ≥ 0 

⟹ 
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
=

1

𝑦
 

⟹
𝑒𝑥

𝑒−𝑥
=
1+𝑦

1−𝑦
 

⟹𝑒2𝑥 =
1+𝑦

1−𝑦
 ⟹ 𝑥 =

1

2
log

1+𝑦

1−𝑦
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𝑦 =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=
𝑒2𝑥 − 1

𝑒2𝑥 + 1
, 𝑥 ≥ 0  

Clearly 𝑒2𝑥 ≥ 1 𝑓𝑜𝑟 𝑥 ≥ 0 

∴y≥ 0 for x ≥ 0 

∴ Range f = [0, ∞) ≠ co domain f. 

Hence f is not onto. 

Thus f is a many-one into mapping. 

 

ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

1. If x ∊={1, 2, 3,……, 9}and 

fn(x)=xxx……x (n digits),then  

𝒇𝒏
𝟐(3)+𝒇𝒏(2) = 

(a) 2𝒇𝟐𝒏(1)                                                               

(b) 𝒇𝒏
𝟐(1) 

(c) 𝒇𝟐𝒏(1)                                                                   

(d)−𝒇𝟐𝒏(4) 

Ans. (c) 

𝑓𝑛(𝑥) = 𝑥. 1 + 𝑥. 10
2 + 𝑥. 103 +

⋯𝑥. 10𝑛−1 = 𝑥
(10𝑛−1)

10−1
=
𝑥

9
(10𝑛 − 1)  

∴𝑓𝑛
2(3) + 𝑓𝑛(2) = [

3

9
(10𝑛 − 1)]

2

+

2

9
(10𝑛 − 1) =

1

9
(10𝑛 − 1)(10𝑛 − 1 + 2) =

10𝑛−1

9
 = 𝑓2𝑛(1) 

2. If 𝒂𝒊∊R-{0}, i=1, 2, 3, 4 and x ∊ R and 

(∑ 𝒂𝒊
𝟐𝟑

𝒊=𝟏 )𝒙𝟐 - 2x(∑ 𝒂𝒊
𝟑
𝒊=𝟏 𝒂𝒊+1) + ∑ 𝒂𝒊

𝟐𝟒
𝒊=𝟐  ≥ 

0, 

Then 𝒂𝟏,𝒂𝟐,𝒂𝟑,𝒂𝟒 are in 

(a) A.P.                            (b) G.P.                         

(c) H.P.                           (d) none of these 

Ans. (b) Given quadratic expression≥ 0   ∴ 

D ≤ 0 

⟹(∑ 𝑎𝑖𝑎𝑖 + 1
3
𝑖=1 )2 −

(∑ 𝑎𝑖
23

𝑖=1 )(∑ 𝑎𝑖
24

𝑖=1 ) ≤ 0 

⟹(𝑎1𝑎2 + 𝑎2𝑎3 + 𝑎3𝑎4)
2 − (𝑎1

2 + 𝑎2
2 +

𝑎3
2)(𝑎2

2 + 𝑎3
2 + 𝑎4

2) ≤ 0 

⟹(𝑎2
2 − 𝑎1𝑎3)

2 + (𝑎3
2 − 𝑎2𝑎4)

2 +

(𝑎2𝑎3 − 𝑎1𝑎4)
2 = 0 

⟹(𝑎2
2 − 𝑎1𝑎3)

2 = 0, (𝑎3
2 − 𝑎2𝑎4)

2 =

0, (𝑎2𝑎3 − 𝑎1𝑎4)
2 = 0 

⟹
𝑎2

𝑎1
=
𝑎3

𝑎2
=
𝑎4

𝑎3
 

3. Let a = 
𝟏

𝒏!
 + ∑

𝒓

(𝒓+𝟏)!

𝒏−𝟏
𝒓=𝟏 , b = 

𝟏

𝒎!
 + 

∑
𝒓

(𝒓+𝟏)!

𝒎−𝟏
𝒓=𝟏   then a+b equaals 

(a) 0                         (b) 1                       (c)2                                  

(d) none of these 

Ans. (c) 

𝑟

(𝑟+1)!
=
𝑟+1−1

(𝑟+1)!
=

1

𝑟!
−

1

(𝑟+1)!
  

∴ ∑
𝑟

(𝑟+1)!
= 1 −

1

𝑛!
 𝑛−1

𝑟=1 ⟹ 𝑎 = 1 

Similarly, 
1

𝑚!
+ ∑

𝑟

(𝑟+1)!
= 1𝑚

𝑟=1  

∴ a= 1, b=1 ⟹a+ b= 2 

SET – 6 
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4. If ∑ [
𝟏

𝟑

𝒌
𝒏=𝟏 +

𝒏

𝟗𝟎
] =21, where [x] denotes 

the integral part of x, then k= 

(a) 84                               (b) 80                             

(c) 85                      (d) none of these 

Ans. (b) 

21= ∑ [
1

3
+

𝑛

90
] , 𝑤ℎ𝑒𝑟𝑒 𝑚 = 𝑘!𝑘

𝑛=1  

= [
1

3
+

1

90
] + [

1

3
+

2

90
] + ⋯+ [

1

3
+
59

90
] +

[
1

3
+
60

90
] + [

1

3
+
61

90
] + ⋯+ [

1

3
+

𝑘

90
] 

= (0 + 0 +⋯𝑡𝑜 59 𝑡𝑒𝑟𝑚𝑠).+(1 + 1 +

⋯𝑡𝑜 (𝑘 − 59)𝑡𝑒𝑟𝑚𝑠)  

∴ 21= k- 59⟹ k= 80. 

5.  Let f: R→R such that f(x) is 

continuous and attains only rational value 

at all real x      and f(3)=4. If  

𝒂𝟏,𝒂𝟐,𝒂𝟑,𝒂𝟒,𝒂𝟓 are in H.P., then 

∑ 𝒂𝒓
𝟒
𝒓=𝟏 𝒂𝒓+𝟏= 

(a) f(5).𝒂𝟏𝒂𝟓             (b) f(3).𝒂𝟒𝒂𝟓                 

(c) f(3).𝒂𝟏𝒂𝟐                     (d) f(2).𝒂𝟏𝒂𝟑  

Ans. (a) 

Since f(x) is continuous and attains only 

rational values 

∴ f(x)= constant= 4 

∴ f(2) = f(3) = f(5) = 4 

Since 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 are in H.P. 

∴  𝑎1 𝑎2 + 𝑎2𝑎3 + 𝑎3 𝑎4 + 𝑎4 𝑎5 =

4𝑎1 𝑎5 = 𝑓(5). 𝑎1 𝑎5 

6.  If three successive terms of a G.P. with 

common ratio r >1 from the sides of a 

triangle and [r] denotes the integral part 

of x, then [r] + [-r]= 

(a) 0                             (b) 1                            

(c) -1                                 (d) none 

Ans. (b) 

Since root of equation 

F(x)= 𝑥2 + 2(𝑎 − 3)𝑥 + 9 = 0 lie between-

6 and 1 

∴(i) D≥ 0  (ii) f(-6)> 0   (iii) f(1) > 0   (iv) -

6 <
𝛼+𝛽

2
  (v) 1 > 

𝛼+𝛽

2
 

Hence 6 ≤ 𝛼 <
27

4
 

∴|a| =6 

𝑎3 = 2 + 3𝑑 = 2 + 3.  
6−2

21
= 2 +

4

7
=
18

7
  

1

ℎ18
=
1

2
+ 18. (

1

6
−
1

2

21
) =

1

2
−
2

7
=

3

14
  

∴ 𝑎3ℎ18 =
18

7
.
14

3
= 12 

7. If 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓 are in H.P. then 
𝟏

𝒙𝟏𝒙𝟓
(∑ 𝒙𝒌

𝟒
𝒌=𝟏  𝒙𝒌+𝟏) is a root of equation 

(a) 𝒙𝟐 − 𝟑𝒙 + 𝟐 = 𝟎                                                   

(b) 𝒙𝟐 − 𝟓𝒙 − 𝟒 = 𝟎  

(c) 𝒙𝟐 − 𝟗𝒙 + 𝟐𝟎 = 𝟎                                                 

(d)  𝒙𝟐 − 𝟔𝒙 − 𝟖 = 𝟎 

Ans.(c) 

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5  are in H.P. 

∴∑ 𝑥𝑘𝑥𝑘+1
4
𝑘=1 = 𝑥1𝑥2 + 𝑥2 𝑥3 + 𝑥3𝑥4 +

𝑥4 𝑥5 = 4𝑥1𝑥5 
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∴
1

𝑥1𝑥5
∑ 𝑥𝑘𝑥𝑘+1
4
𝑘=1 = 4 

Clearly, 4 is a root of equation 

𝑥2 − 9𝑥 + 20 =0. 

8. Let f : (0, ∞)⟶R and F(x)= ∫ 𝒇(𝒕)
𝒙

𝟎
𝒅𝒕 

If F(𝒙𝟐) =  𝒙𝟐(𝟏 + 𝒙), 𝒕𝒉𝒆𝒏 𝒇(𝟒) = 

(a) 5/4                                  (b) 7                                    

(c) 4                                     (d) 2 

Ans. (c) 

Given, F(x)= ∫ 𝑓(𝑡)
𝑥

0
𝑑𝑡 ………(1) 

𝐹(𝑥2) =  𝑥2(1 + 𝑥) ………..(2) 

From (1), F’(x)= f(x) 

∴ f(4)= F’(4)…………..(3) 

From (1), 

F’(𝑥2).2x= 2x+ 3𝑥2 

⟹ F’(𝑥2) =
2+3𝑥

2
 [∵ 0 < 𝑥 <  ∞ ∴ 𝑥 ≠ 0] 

⟹ 𝐹′(4) =
2+6

2
= 4 [Putting x= 2] 

∴ from (3), f(4)= 4 

9. If n > 1 then ∫
𝒅𝒙

(𝒙+√𝟏+𝒙𝟐) 𝒏
 

∞

𝟎
= 

(a) 
𝒏

𝒏𝟐−𝟏
                               (b) 

𝒏𝟐−𝟏

𝒏
                             

(c) −
𝒏

𝒏𝟐−𝟏
                             (d) 

𝟏−𝒏𝟐

𝒏
 

Ans. (a) 

Put z= x+√1 + 𝑥2  

∴ z- x= √1 + 𝑥2  

=> 𝑧2 + 𝑥2 − 2𝑧𝑥 = 1 + 𝑥2 => 𝑥 =
𝑧2−1

2𝑧
 

∴ 𝑑𝑥 =
1

2

[𝑧. 2𝑧 − (𝑧2 − 1). 1]

𝑧2
𝑑𝑧

=
𝑧2 + 1

2𝑧2
𝑑𝑧 

When x= 0, z= 1 and when x= ∞, 𝑧 = ∞ 

∴ I= ∫
1

𝑧𝑛

∞

1

𝑧2+1

2𝑧2
𝑑𝑧 =

1

2
∫ (𝑧−𝑛 +
∞

1

𝑧−𝑛−2) 𝑑𝑧 =
1

2
[
𝑧−𝑛+1

−𝑛+1
+
𝑧−𝑛−1

−𝑛−1
]∞
1

 

=
1

2
[0 − (

1

1 − 𝑛
−

1

1 + 𝑛
)] 

=
1

2
(−

2𝑛

1 + 𝑛2
) =

𝑛

𝑛2 − 1
  

10. If f(x)= ae2x+ bex +cx satisfies the 

conditions f(0)= -1, f’(log 2)= 28, 

 ∫ [𝒇(𝒙) − 𝒄𝒙]𝒅𝒙
𝐥𝐨𝐠 𝟒

𝟎
=
𝟑𝟗

𝟐
, then 

(a) a= 5, b=6, c= 3            (b) a= 5, b= - 6, 

c= 0            (c) a= -5, b=6, c= 3           (d) 

none 

Ans. (b) 

Given f(x)= 𝑎𝑒2𝑥 + 𝑏𝑒𝑥 + 𝑐𝑥 ……(1) 

𝑔𝑖𝑣𝑒𝑛, 𝑓(0) =  −1 ⟹ 𝑎 + 𝑏 =  −1…..(2) 

f’(x)= 2 𝑎𝑒2𝑥 + 𝑏𝑒𝑥 + 𝑐𝑥 

∴f’ (log 2)= 𝑎𝑒log𝑒 4 + 𝑏𝑒log𝑒 2 + 𝑐 

Given 8a+ 2b+c= 28……….(3) 

Given, ∫ (𝑎𝑒2𝑥 + 𝑏𝑒𝑥)
log4

0
𝑑𝑥 =

39

2
  

⟹ [
𝑎

2
𝑒2𝑥 + 𝑏𝑒𝑥]

log 4

0
=
39

2
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⟹ 
𝑎

2
𝑒log16 + 𝑏𝑒log4 − (

𝑎

2
+ 𝑏) =

39

2
 

⟹ 15a + 6b= 39……….(4) 

Thus a= 5, b= -6, c= 0 

11. Let  
𝒅

𝒅𝒙
𝒇(𝒙) =  

𝒆𝐬𝐢𝐧 𝒙

𝒙
, 𝒙 >

0.  𝐼𝑓 ∫
𝟐𝒆𝐬𝐢𝐧 𝒙

𝟐

𝒙

𝟒

𝟏
𝒅𝒙 = 𝒇(𝒌) −  𝒇(𝟏),  

then one of the possible value of k is 

(a) -4                                (b) 0                           

(c) 2                                      (d) 16 

Ans. (d) 

Given, 
𝑑

𝑑𝑥
(𝑓(𝑥)) =

𝑒sin 𝑥

𝑥
, 𝑥 > 0  

𝑛𝑜𝑤 𝐼 =  ∫
2𝑒𝑠𝑖𝑛𝑥

2

𝑥

4

1
𝑑𝑥 [put z= 𝑥2, 𝑑𝑧 =

2𝑥 𝑑𝑥] 

∴ I= ∫
2𝑒𝑠𝑖𝑛𝑥

2

𝑥2

4

1
𝑑𝑥 =  ∫

𝑒sin𝑧

𝑧

16

1
𝑑𝑧 =

[𝑓(𝑧)] 16
1
= 𝑓(16) − 𝑓(1) 

∴ f(k)= f(16) 

∴ one possible value of k= 16 

12. All the values of a for which ∫ [𝒂𝟐 +
𝟐

𝟏

(𝟒 − 𝟒𝒂)𝒙 + 𝟒𝒙𝟑] 𝒅𝒙 ≤ 𝟏𝟐 are given by 

(a) a= 3                     (b) a ≤ 𝟒                          

(c) 0≤ 𝒂 ≤ 𝟑                     (d) none 

of these 

Ans. (a) 

 ∫ [𝑎2 + (4 − 4𝑎)𝑥 + 4𝑥3]
2

1

𝑑𝑥

= 𝑎2[𝑥]
2

1
+ (2 − 2𝑎)[𝑥2]

2

1

+ [𝑥4]
2

1
 

= 𝑎2 + (2 − 2𝑎)3 + 15 , 𝐺𝑖𝑣𝑒𝑛, 𝑎2 − 6𝑎

+ 21 ≤ 12 

⟹ 𝑎2 − 6𝑎 + 9 ≤ 0 ⟹ (𝑎 − 3)2 ≤ 0

⟹ (𝑎 − 3)2 = 0 ⟹ 𝑎 = 3 

13. 𝐋𝐭
𝒏→∞

∑
(𝟐𝒓)𝒌

𝒏𝒌+𝟏
𝒏
𝒓=𝟏 , 𝒌 ≠ −𝟏, is equal to  

(a) 
𝟐𝒌

𝒌−𝟏
                               (b) 

𝟐𝒌

𝒌
                               

(c) 
𝟏

𝒌−𝟏
                               (d) 

𝟐𝒌

𝒌+𝟏
 

Ans. (d) Reqd. limit = Lt
𝑛→∞

∑
(2𝑟)𝑘

𝑛𝑘+1
𝑛
𝑟=1  

= Lt
𝑛→∞

2𝑘∑
𝑟𝑘

𝑛𝑘. 𝑛

𝑛

𝑟=1

= Lt
𝑛→∞

2𝑘∑(
𝑟

𝑛
)
𝑘

𝑛

𝑟=1

=
1

𝑛

=  2𝑘∫ 𝑥𝑘𝑑𝑥
1

0

= 2𝑘. [
𝑥𝑘+1

𝑘 + 1
]
1

0
=

2𝑘

𝑘 + 1
  

14. 𝐋𝐭
𝒏→∞

{
𝒏!

(𝒌𝒏)𝒏
}  
𝟏

𝒏, 𝒌 ≠ 𝟎, is equal to 

(a) 
𝒌

𝒆
                              (b) 

𝒆

𝒌
                                

(c) 
𝟏

𝒌𝒆
                             (d) none of these 

Ans. (c) 

Let P= Lt
𝑛→∞

1

𝑘
(
𝑛!

𝑛𝑛
)
1/𝑛

=
1

𝑘
Lt
𝑛→∞

(
𝑛!

𝑛𝑛
)
1/𝑛

=
1

𝑘𝑒
 

15. 𝐋𝐭
𝒏→∞

∑ √𝒏

(√𝒓 (𝟑√𝒓+𝟒√𝒏)𝟐
𝒏
𝒓=𝟏 = 
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(a) 
𝟏

𝟕
                              (b) 

𝟏

𝟏𝟎
                                   

(c) 
𝟏

𝟏𝟒
                             (d) none of these 

Ans. (c) 

Required  limit 

= Lt
𝑛→∞

∑ √𝑛

√𝑟.𝑛(3√
𝑟

𝑛
+4)

2
𝑛
𝑟=1 =

 Lt
𝑛→∞

∑
1

√
𝑟

𝑛
 (3+√

𝑟

𝑛
+4)

2
𝑛
𝑟=1 .

1

𝑛
 

= ∫
1

√𝑥 (3√𝑥 + 4)2

1

0

𝑑𝑥 

Put z= 3√𝑥 + 4, then dz= 
3

2√𝑥
 𝑑𝑥 

When x= 0, z= 4, when x= 1, z= 7 

∴Reqd. limit= 
2

3
∫

𝑑𝑧

𝑧2

7

4
=
2

3
[−

1

𝑧
] 7
4
=

 −
2

3
[
1

7
−
1

4
] =  −

2

3
(−

3

28
) =

1

14
 

16. If f(x) = excosx.sin x, |x|≤ 𝟐 =

𝟐, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 𝒕𝒉𝒆𝒏 ∫ 𝒇(𝒙)𝒅𝒙
𝟑

𝟐
 is equal to 

(a) 0                                 (b) 1                                  

(c) 2                                    (d) 3 

Ans. (c) 

∫ 𝑓(𝑥)
3

−2

𝑑𝑥 =  ∫ 𝑓(𝑥)
2

−2

𝑑𝑥 + ∫ 𝑓(𝑥)
3

2

𝑑𝑥

=  ∫ 𝑒cos𝑥. sin 𝑥 
2

−2

𝑑𝑥

+ ∫ 2 𝑑𝑥 = 0 + 2(3 − 2),
3

2

 

= 2   

[∵𝑒cos𝑥. sin 𝑥  𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 2] 

18. The area of the region enclosed by the 

curves y= xex and y= xe –x and the line x= 

1, is 

(a) 1/e                         (b) 1- 1/e                            

(c) 2/e                                     (d) 1- 2/e 

Ans. (c) 

y=x𝑒𝑥 …….(1) 

y= x𝑒−𝑥……(2) 

equating y from (1) and (2) we get 

x𝑒𝑥 = 𝑥𝑒−𝑥 ⟹ 𝑥(𝑒𝑥 − 𝑒−𝑥) = 0 

⟹x= 0 

∴ Required area= 

∫ (𝑦1 − 𝑦2)
1

0

𝑑𝑥 =  ∫ (𝑥𝑒𝑥 − 𝑥𝑒−𝑥)
1

0

𝑑𝑥

= [𝑥𝑒𝑥 − 𝑒𝑥—𝑥𝑒−𝑥

− 𝑒−𝑥)
1

0
 

= (𝑒 − 𝑒) − (0 − 𝑒0)

+ [(𝑒−1 + 𝑒−1) − (0 + 1)]

=
2

𝑒
 

19. The area bounded by y = xe|x| and the 

lines |x|=1,  y= 0 is 

(a) 1                            (b) 2                                   

(c) 4                                         (d) 6 

Ans. (b) 

For x ≥ 0, curve is y= x𝑒𝑥……..(1) 

 

For curve (1), 
𝑑𝑦

𝑑𝑥
= 𝑒𝑥(1 + 𝑥) >  0 

∴ y is increasing. 
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𝑑2𝑦

𝑑𝑥2
= 𝑒𝑥(2 + 𝑥) > 0 

∴ curve is convex downward. 

For x ≤ 0, y= x𝑒−𝑥 

∴
𝑑𝑦

𝑑𝑥
= 𝑒−𝑥(1 − 𝑥) >  0 

∴ y is increasing 

𝑑2𝑦

𝑑𝑥2
= 𝑒−𝑥 − 𝑒−𝑥(1 − 𝑥) > 0

=  −𝑒−𝑥(2 − 𝑥) < 0 

∴ curve is concave downward. 

Required area = 2∫ 𝑥𝑒𝑥𝑥
1

0
𝑑𝑥 =

2[𝑥𝑒𝑥 − 𝑒𝑥] 1
0
= 2[(𝑒 − 𝑒) − (0 − 𝑒0)] = 2 

20. A bag contains unlimited number of 

white, red, black, and blue balls. The 

number of ways of selecting 10 balls so 

that there is at least one ball of each color 

is 

(a) 180                    (b0 270                           

(c) 192                                  (d) none 

Ans. (d) Number of ways= coefficient of 

𝑋10𝑖𝑛 (𝑋 + 𝑋2 + 𝑋3 +⋯)4 

= coefficient of 𝑋10𝑖𝑛 𝑋4(1 − 𝑋)−4 

= coefficient of 𝑋6𝑖𝑛  (1 − 𝑋)−4 

= 
(6+1)(6+2)(6+3)

1.2.3
  [∵coefficient of 𝑥𝑟𝑖𝑛(1 −

𝑋)−4 =
(𝑟+1)(𝑟+2)(𝑟+3)

1.2.3
] 

= 
7×8×9

1×2×3
 = 84. 

21. The number of ways of selecting r 

balls with replacement out of n balls 

numbered  

1, 2, 3, …., 100 such that  the largest 

numbered selected is 10 is 271, then r= 

(a) 3                               (b) 4                            

(c) 5                                  (d) none 

Ans. (a) from the given condition, we can 

write 

10𝑟 − 9𝑟= 271, 

Applying Trial and error method:- 

r= 1,     10-9= 1 

r =2,      102 − 92= 19 

r = 3,      103 − 93 = 271 

∴ r= 3. 

22. N men and n women sit along a line 

alternatively in x ways and along a circle 

in y ways such that x= 10y, then the 

number of ways in which n men can sit at 

a round table so that all shall not have 

same neighbors is  

(a) 6                              (b) 12                              

(c) 36                                     (d) 

none 

Ans. (b) 
𝑥

𝑦
=

2.⎿𝑛⎿𝑛

⎿𝑛−1 ⎿𝑛
= 2𝑛 

⇒  x = 2ny = 10y  ⇒ n = 5 

Hence the required number = 
1

2
×⎿4= 12. 

23. A contest consists of predicting the 

result (win, draw or defeat) of 10 

matches. The number of ways in which 

one entry contains at least 6 incorrect 

results is 
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(a) ∑ 𝟏𝟎𝒄𝒓 . 𝟑
𝒓𝟏𝟎

𝒓=𝟔                        (b) 

∑ 𝟏𝟎𝒄𝒓 . 𝟐
𝒓𝟓

𝒓=𝟏                  (c) 

∑ 𝟏𝟎𝒄𝒓
𝟏𝟎
𝒓=𝟔               (d) none 

Ans. (d) Since total number of ways 

predicting the results of one match is 3 , so 

results of 10 match is 310, now number of 

ways that the result of one match is correct 

is 1 and also number of ways to predict 

wrongly of one match is 2 . 

No. of ways to predict wrongly exactly r 

matches =10𝑐𝑟 . 2
𝑟 110−𝑟 

∴ The required number is 310 −

∑ 10𝑐𝑟 . 2
𝑟4

𝑟=1  

 

24. Let 1 to 20 are placed in any around a 

circle. Then the sum of some 3 

consecutive numbers must be at least  

(a) 30                          (b) 31                        

(c) 32                             (d) none 

Ans. (c) Suppose 𝑥1, 𝑥2, … . , 𝑥20 be the 

numbers placed around the circle. Now the 

mean of the 20 sums of 3 consecutive 

numbers such as (𝑥1 + 𝑥2 + 𝑥3), (𝑥2 + 𝑥3 +

𝑥4), …..,  

(𝑥19 + 𝑥20 + 𝑥21), (𝑥20 + 𝑥1 + 𝑥2) is 
1

20
{3(𝑥1 + 𝑥2 +⋯+ 𝑥20)} =

3×20×21

2×20
 = 

31.5 

Thus from Pigon hole principle that at least 

one of the sums must be ≥ 32. 

25. The number of different seven–digit 

numbers can be written using only there 

digits 1, 2, 3 under the condition that the 

digit 2 occurs twice in each number is 

(a) 512                          (b) 640                         

(c) 672                               (d) none 

Ans. (c) We have to put 2 twice in each 

numbers, so any 2 out of the 7 places can be 

chosen in 7𝑐2 ways. The remaining 5 places 

can be filled with the other two numbers in 

25 ways. 

The required numbers of numbers are 7𝑐2 ×

25= 672. 

 

26. The value of {∑ (𝒌
𝒊
)( 𝑴−𝒌
𝟏𝟎𝟎−𝒊

)(
𝑴−𝒌

𝟏𝟎𝟎−𝒊
)} /𝟏𝟎𝟎

𝒊=𝟎

 ( 𝑴
𝟏𝟎𝟎
), where M - k > 100, k >100, is 

(a) 
𝒌

𝑴
                               (b) 

𝑴

𝒌
                                  

(c) 
𝒌

𝑴𝟐
                                    (d) none 

Ans. (a) {∑ (𝑘
𝑖
)( 𝑀−𝑘
100−𝑖

)(
𝑀−𝑘

100−𝑖
)}/ ( 𝑀

100
)100

𝑖=0  

= (
𝑘

𝑀−100
)∑ [

(𝑘𝑖)(
𝑀−𝑘
100−𝑖)

( 𝑀100)
−∑

𝑖(𝑘𝑖)(
𝑀−𝑘
100−𝑖)

(𝑀−100)( 𝑀100)

100
𝑖=0 ]100

𝑖=0  

= 
𝑘

𝑀−100
.
 ( 𝑀100)

 ( 𝑀100)
−

𝑘

𝑀
.100 ( 𝑀100)

(𝑀−100) ( 𝑀100)
 = 

𝑘

𝑀
. 

 

27. Let n be an odd positive integer. If 

𝒊𝟏, 𝒊𝟐, … . , 𝒊𝒏 is a permutation of 1, 2, 3, 

…., n.  

Then (1-𝒊𝟏)(2-𝒊𝟐)….(n-𝒊𝒏)is 

(a) Odd                         (b) even                          

(c) prime                     (d) none 

Ans. (b) since n is odd, let n= 2m+ 1, where 

m is a non-negative integer.  
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Then set s ={1, 2, …, n} contains m+ 1 odd 

nos, namely 2, 4, …, 2m. 

This is also true for the 

permutation 𝑖1, 𝑖2, … . , 𝑖𝑛 of s.  

Consider m+ 1 numbers1 − 𝑖1, 3 − 𝑖3, …. n 

- 𝑖𝑛 which are of the from r - 𝑖𝑟, where r is 

odd. 

Since 𝑖5 is even for only m values of s, by 

P.H.P. , one of the m+ 1 , numbers, 

𝑖1, 𝑖2, … . , 𝑖𝑛, say it is odd, where t is also 

odd. Hence t-𝑖𝑡 is even and the product (1-

𝑖1)(2-𝑖2)….(n-𝑖𝑛) is even. 

28. The value of  ∑ 𝐬𝐢𝐧−𝟏
√𝒏−√𝒏−𝟏

√𝒏(𝒏+𝟏)
=∞

𝒏=𝟏  

(a) 
𝝅

𝟒
                               (b) 

𝝅

𝟐
                               

(c) - 
𝝅

𝟐
                                      (d) 

𝝅

𝟑
 

Ans. (b) 𝑡𝑛 = sin
−1 (

√𝑛−√𝑛−1

√𝑛(𝑛+1)
)  

∴𝑡𝑛 = sin
−1 1

√𝑛
− sin−1

1

√𝑛+1
 

∴𝑆𝑛 = sin
−1(1) − sin−1

1

√𝑛+1
 

∴ 𝑆∞ = Lt
𝑛→∞

𝑆𝑛 = sin
−1(1) − sin−1(0) 

29. The number of ways to give 16 

different things to 3 persons, according as 

A< B < C       so that B gets 1 more than A 

and C get 2 more than B, is 

(a) 4!5!7!                     (b) 
𝟒!𝟓!𝟕!    

𝟏𝟔!
                         

(c) 
𝟏𝟔!    

𝟒!𝟓!𝟕!    
                           (d) none 

Ans. (c) Here x+ y +z=16, x= y+1, y= z+2 

∴x=4, y=5, z= 7 

∴ Required number of ways = 16𝑐4 ×

12𝑐5 × 7𝑐7 =
16!    

4!5!7!    
  

30. For how many positive integers n less 

than 17,⎿n+⎿n+1+⎿n+2 is an integral 

multiple of 49?           (a) 4                              

(b) 5                              (c) 6                               

(d) none 

Ans. (b) ⎿n+⎿n+1+⎿n+2= 

⎿n{1+(n+1)+(n+2)(n+1)}= ⎿n(𝑛 + 2)2 

Since 49 divides (𝑛 + 2)2⎿n, so either 7 

devides (n+2) or 49 divides ⎿n. Thus n=5, 

12, 14, 15, 16, i.e. number of integers are 5. 

ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

SET – 7 

 

1. Let x, y, z be different from 1 satisfying 

x+ y +z = 2007, 

Then the value of 
𝟏

𝟏−𝒙
+ 

𝟏

𝟏−𝒚
+ 

𝟏

𝟏−𝒛
 is 

(a) 0        (b) 1        (c) 2008        (d) 
𝟏

𝟐𝟎𝟎𝟖
 

Ans:- (a)  
1

1−𝑥
+ 

1

1−𝑦
+ 

1

1−𝑧
 

= 
3−2(𝑥+𝑦+𝑧)+ (𝑥𝑦+𝑦𝑧+𝑧𝑥)

(1−𝑥)(1−𝑦)(1−𝑧)
  = 

3−2×2007+4011

(1−𝑥)(1−𝑦)(1−𝑧)
 = 

0 

2. In a 𝛥ABC, if r= 𝒓𝟐 + 𝒓𝟑 +

𝒓𝟏, 𝒂𝒏𝒅 𝒂𝒏𝒈𝒍𝒆(𝐴) >
𝝅

𝟑
 𝒕𝒉𝒆𝒏 𝒕𝒉𝒆 𝒓𝒂𝒏𝒈𝒆 𝒐𝒇 

𝒔

𝒂
  is equal to 

(a) (½, 2)                      (b) (½, ∞)                       

(c) (½, 3)                                   (d) (3, ∞) 
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Ans. (a) 

𝑟 =  𝑟2 + 𝑟3 − 𝑟1 

 
Δ

s
=

Δ

s−b
+

Δ

s−c
−

Δ

s−a
 

⟹
1

s
+

1

s − a
=

1

s − b
+

1

s − c
 

⟹
2s − a

2s − b − c
=

s(s − a)

(s − b)(s − c)
 

⟹
2s − a

a
=  cot2

A

2
 ⟹

s

a

=
1

2
(cot2

A

2
+ 1)  ⟹

s

a

∊ (
1

2
, 2) 

 

3. If 𝒂𝟏, 𝒂𝟐, … . , 𝒂𝒏 are positive real nos, 

then  
𝒂𝟏

𝒂𝟐
+
𝒂𝟐

𝒂𝟑
+⋯+

𝒂𝒏−𝟏

𝒂𝒏
+
𝒂𝒏

𝒂𝟏
 is always  

i) ≥ 𝒏     ii) ≤ 𝒏       iii) 𝒏
𝟏
𝒏⁄       iv) none of 

these. 

Ans:- AM ≥ GM gives 

𝑎1

𝑎2
+⋯+

𝑎𝑛−1

𝑎𝑛
+
𝑎𝑛

𝑎1
 ≥ 𝑛√

𝑎1

𝑎2
. … .

𝑎𝑛−1

𝑎𝑛
.
𝑎𝑛

𝑎1
 = 1 

∴ 
𝑎1

𝑎2
+⋯+

𝑎𝑛−1

𝑎𝑛
+
𝑎𝑛

𝑎1
 ≥ 𝑛 

4. The maximum possible value of x𝒚𝟐𝒛𝟑 

subject to the condition xyz ≥ 𝟎 and  

x+y+z = 3 is 

i) 1               ii) 𝟏 𝟖⁄            iii) 𝟏 𝟒⁄          iv) 

𝟐𝟕
𝟏𝟔⁄  

Ans:- x+ y+ z = 3 

⇒ x. 
2𝑦

2
+ 3.

𝑧

3
= 3 

Applying AM ≥ GM, 

So,   
𝑥+2.

2𝑦

2
+3.

𝑧

3

1+2+3
 ≥ 6√𝑥(

𝑦

2
)2(

𝑧

3
)3 

 ⇒ (
3

6
)6  ≥  

x𝑦2𝑧3

22.33
     

⇒ x𝑦2𝑧3 ≤
27

16
.  

5. If y(t) is a solution of (1+t)
𝒅𝒚

𝒅𝒕
− 𝒕𝒚 = 𝟏 

and y(t) then y(1) equals 

(a) ½          (b) e + ½        (c) e+ ½            

(d)- ½  

Ans:- (d) 
𝑑𝑦

𝑑𝑡
−

𝑡

1+𝑡
𝑦 =

1

1+𝑡
   

∴I.F. = 𝑒−∫
𝑡

1+𝑡
𝑑𝑡 = 𝑒−(𝑡−log (1+𝑡)) =

𝑒−𝑡. (1 + 𝑡) 

Multiplying and integrating 

y𝑒−𝑡. (1 + 𝑡) = ∫ 𝑒−𝑡. (1 + 𝑡)
𝑑𝑡

(1+𝑡)
= 𝑒−𝑡 +

𝑐 

When y(0) = -1, ⤇ c= 0. 

∴y𝑒−𝑡. (1 + 𝑡) = −𝑒−𝑡 

∴y= −
1

1+𝑡
             ∴y(1)= - ½. 

 

6. If the quadratic equation 𝒙𝟐 + 𝒂𝒙 +

𝒃 + 𝟏 = 𝟎 has non- zero 

Integer solutions, then 

a) 𝒂𝟐 + 𝒃𝟐 is a prime number 

b) 𝒂𝒃 is prime number 

c) Both a) and b) 
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d) Neither a) nor b) 

Ans:- (d) 𝛼+𝛽= -a, 𝛼𝛽= (b+ 1) 

∴ 𝑎2 + 𝑏2 = (α + β)2 + (αβ − 1)2 

= (𝛼2 + 1)( 𝛽2 + 1) 

 

7. Let u = (√𝟓 − 𝟐)
𝟏
𝟑⁄ − (√𝟓 + 𝟐)

𝟏
𝟑⁄  and 

v= (√𝟏𝟖𝟗 − 𝟖)
𝟏
𝟑⁄ − (√𝟏𝟖𝟗 + 𝟖)

𝟏
𝟑⁄ , 

Then for each positive integer n, 𝒖𝒏 +

𝒗𝒏+𝟏 = ? 

(a) -1                         (b) 0                           

(c) 1                           (d) 2  

Ans:- (b) 𝑢3 = (√5 − 2) − (√5 + 2) −

3(√5 − 2)
1
3⁄ (√5 + 2)

1
3⁄ . (𝑢) 

i.e. 𝑢3 = −4 − 3𝑢 

⇒ (u-1)( 𝑢2 − 𝑢 + 4)= 0 

𝑢2 − 𝑢 + 4 is always +ve. So, u= 1 

Similarly 𝑣3 + 15𝑣 + 16 = 0 

⇒ (v +1)( 𝑣2 − 𝑣 + 16)= 0 

⇒ v= -1 

So, for each n, 𝑢𝑛 + 𝑣𝑛+1 = 0 

 

8. The number of real values of x 

satisfying the equation 

𝒙. 𝟐
𝟏
𝒙⁄ +

𝟏

𝒙
. 𝟐𝒙= 4 is / are 

(a) 1                           (b) 2                          

(c) 3                                   (d)4 

Ans:- (a) if x < 0, LHS = -ve but RHS= +ve 

If x = 0, LHS= not defined. 

If x > 0, use AM ≥ GM inequality 

𝑥. 2
1
𝑥⁄ +

1

𝑥
. 2𝑥 ≥ 2√2

1
𝑥⁄ +𝑥  ≥ 2. √22 =4 

⇒ 𝑥. 2
1
𝑥⁄ = 

1

𝑥
. 2𝑥 ; so, x= 1. 

 

9. Let f (x) and g (x) be functions, which 

take integers as arguments. Let                                 

f (x+ y) = f (x) + f (y) + 8 for all integers x 

and y. Let f (x) = x for all negative 

numbers x and let g(8)=17,  then f (0)=? 

(a)  8                     (b) 9                   (c) 

17                           (d) 72 

Ans:- (c) put x = -8, y= 8 in the given 

functional equation. 

 

10. Let x = [
𝟐𝟎𝟎𝟕.𝟐𝟎𝟎𝟔.𝟐𝟎𝟎𝟒.𝟐𝟎𝟎𝟑

𝟏

𝟑
× (𝟐𝟎𝟎𝟓)𝟒

], where [x] 

denotes the greatest integer integer less 

than or equal to x. then 
((𝒙+𝟏).𝒙𝟐)+𝟏

(𝒙𝟐+𝟏)
 is 

(a) 80                               (b) 80.2                        

(c) 80.5                           (d) 81  

Ans:- (b) x= [3.
2007

2005
.
2006

2005
.
2004

2005
.
2003

2005
] 

= [3(1+
2

2005
)(1+

1

2005
 )(1-

1

2005
)(1-

2

2005
)] 

= [3(1-
4

(2005)2
)( 1-

1

(2005)2
)] 

⇒ x=2. 



 Challenging Mathematical Problems  

53 
 

11. A graph defined in polar co – 

ordinates by r (𝜃) = cos 𝜃+
𝟏

𝟐
. The smallest 

x –co- ordinates of any point on this 

graph is  

(a) 1/16                    (b) -1/16                   

(c) 1/8                      (d) -1/8 

Ans:- (b) x =r cos𝜃 

= cos2 𝜃 +
1

2
𝑐𝑜𝑠𝜃 

= (𝑐𝑜𝑠𝜃 +
1

4
)2 = 1/16 

12. A monic polynomial is one in which 

the coefficient of the highest order term is 

1. The monic polynomial P(x) (with 

integer coefficient) of least degree that 

satisfies P (√𝟐 + √𝟓)= 0 is 

(a) 𝒙𝟒 − 𝒙𝟑 − 𝟏𝟒𝒙𝟐 + 𝟗=0                                 

(b) 𝒙𝟒 − 𝟏𝟒𝒙𝟐 + 𝟗= 0 

(c) 𝒙𝟒 + 𝒙𝟑 − 𝟏𝟒𝒙𝟐 + 𝟗=0                                   

(d) 𝒙𝟒 + 𝟏𝟒𝒙𝟐 − 𝟗 

ANS:- (b) Let x=√2 + √5 . Squaring, 𝑥2 =

7 + 2√10 

⇒ 𝑥2 − 7 = 2√10. Squaring again, 𝑥4 −

14𝑥2 + 9= 0 

13. The number of distinct real roots of 

the equation 𝒙𝟒 + 𝟖𝒙𝟐 + 𝟏𝟔 = 𝟒𝒙𝟐 −

𝟏𝟐𝒙 + 𝟗 is 

(a) 1                        (b) 2                              

(c) 3                                    (d) 4 

Ans:- (a) (𝑥2 + 4)2 = (2𝑥 − 3)2    ⇒ 𝑥2 +

4 = ±(2𝑥 − 3) 

Giving x2 – 2x + 7 = 0 and x2 +2x +1 = 0. 

Solving x = - 1 only one real root. 

14. If in an isosceles triangle with base ‘a’, 

vertical angle 20° and lateral side of each 

wih length ‘b’ is given then the value of 

𝒂𝟑 + 𝒃𝟑 equals 

(a) 3ab                             (b) 3a𝒃𝟐                     

(c) 3𝒂𝟐𝒃                             (d) 3 

Ans:- (b) sin 10° = 
𝑎

2𝑏
 ⇒ sin 30° =

3 𝑠𝑖𝑛10° − 4𝑠𝑖𝑛310° 

⇒ 
1

2
=
3𝑎

2𝑏
−
4𝑎3

8𝑏3
 

⇒ 1 = 
3𝑎

𝑏
−
4𝑎3

8𝑏3
 

⇒ 𝑎3 + 𝑏3 = 3𝑎𝑏2. 

15. If 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒂𝒃 = 𝟎, then the 

point of concurrency of family of lies ax+ 

by+ c= 0 lies on the line 

(a) y= x                         (b) y = x+ 1                       

(c) y = -x                             (d)3x= y 

Ans:- (c) (𝑎 − 𝑏)2 − 𝑐2 = 0 

⇒ (a-b -c)(a- b+ c)=0 

If a- b= c ⇒ ax + by+ (a-b)=0 

⇒ a (x+1)+b(y-1)=0⇒ x=-1 , y= 1 

If a-b = -c ⇒ ax+ by+ (b-a) =0 

⇒ a (x- 1)+ b(y +1)=0 

⇒ x=1, y= -1. 

16. The value of k for which the 

inequality k𝐜𝐨𝐬𝟐 𝒙 − 𝒌𝒄𝒐𝒔𝒙 + 𝟏 ≥ 𝟎 ∀ 𝒙 ∊

(−∞,∞)holds is 
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(a) k < - 
𝟏

𝟐
                     (b) k > 4                    

(c) −
𝟏

𝟐
≤ 𝒌 ≤ 𝟒                       (d) 

𝟏

𝟐
≤ 𝒌 ≤ 𝟓 

Ans:- (c) kcos2 𝑥 − 𝑘𝑐𝑜𝑠𝑥 + 1 ≥ 0 ∀ 𝑥 ∊

(−∞,∞) 

⇒ k (cos2 𝑥 − 𝑐𝑜𝑠𝑥) +1 ≥ 0…………(i) 

But cos2 𝑥 − 𝑐𝑜𝑠𝑥 =  (𝑐𝑜𝑠𝑥 −
1

2
)2 −

1

4
 

⇒ −
1

4
≤ cos2 𝑥 − 𝑐𝑜𝑠𝑥 ≤ 2 

From (i) we get 2k+1 ≥ 0 ⇒ 𝑘 ≥ −
1

2
 

⇒ −
𝑘

4
+ 1 ≥ 0 

⇒ k ≤ 4 

⇒ −
1

2
≤ 𝑘 ≤ 4 

17. The remainder obtained when 1! +2! 

+3!+….+ 95! is divided by 15, is 

(a)  3                              (b) 5                               

(c) 7                                   (d) none 

Ans. (a) here 1! +2! +3! +4! = 33 and n! is 

divisible by 15 where n ≥ 5. 

The remainder is same as the remainder 

obtained by dividing 33 with 15, i.e., 3. 

 

18. The value of 𝐋𝐭
𝒙→𝟎

𝒆𝒕𝒂𝒏𝒙−𝒆𝒙

𝒕𝒂𝒏𝒙−𝒙
 is 

(a) 0                             (b) 1                                 

(c) e                                  (d) none 

Ans. (b) Lt
𝑥→0

𝑒tan𝑥−𝑒𝑥

tan𝑥− 𝑥
= Lt

𝑥→0
𝑒𝑥 (

𝑒tan𝑥−1

tan𝑥− 𝑥
) =

 𝑒0. log𝑒 𝑒 = 1 

 

19. Total number of solutions of sinx = 
|𝒙|

𝟏𝟎
 

is  

(a) 0 ;  (b) 3 ;  (c) 4 ;  (d) none 

Ans. (d) Two graphs meet exactly 6 times, 

hence, it has 6 solutions. Draw graph 

yourself. 

20. A rigid body is spinning about a fixed 

point (3, -2, -1) with angular velocity of 4 

rad/sec.,     the axis of rotation being in 

the direction of (1, 2, -2), then the velocity 

of the particle at the point (4, 1, 1) is 

(a) 4/3 (1, -4, 10)           (b) 4/3 (4, -10, 1)                

(c) 4/3 (10, -4, 1)                  (d) 4/3(10, 4, 1) 

Ans:-  (c) 

𝜔⃗ = 4(
𝑖̂+2𝑗̂−2𝑘̂

√1+4+4
) =

4

3
(𝑖̂ + 2𝑗̂ − 2𝑘̂) 

r⃗ = O⃗P- O⃗A 

= (4î+ĵ+k̂)-(3î-2ĵ-k̂)= î+3ĵ+ 2k̂ 

v̂= 𝜔 ̂× 𝑟 =
4

3
( î + 2ĵ −  2k̂) × ( î + 3ĵ +

 2k̂) =
4

3
(10𝑖̂ −  4𝑗̂ + 𝑘̂) 

21. A particle has an angular speed of 3 

rad /sec and the axis of rotation passes 

through the point (1, 2, 2) and (1, 2, -2), 

then the velocity of the particle at the 

point P(3, 6, 4) is 

(a) 
𝟑

√𝟏𝟕
(22, 8, -2)       (b) 

𝟑

√𝟏𝟕
(𝟐𝟐, 𝟎, 𝟐)        

(c) 
𝟑

√𝟏𝟕
(𝟐𝟐,−𝟖,−𝟐)           (d) 

𝟑

√𝟏𝟕
(𝟐𝟐,−𝟖, 𝟐) 

Ans:- (c) 
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O⃗A= î + ĵ +  2k̂ 

O⃗B =î + 2ĵ −  2k̂  

∴ A⃗B= ĵ-4k̂ 

⟹ | A⃗B |= √17 

AP⃗= (3î+6ĵ+4k̂)- (î+ĵ+2k̂) 

= 2î+5ĵ+2k̂ 

∴𝜔⃗ = 
3

√17
(ĵ-4k̂) 

v⃗= 𝜔 ̂× 𝑟= 
3

√17
(ĵ-4k̂)× (2î + 5ĵ + 2k̂) =

3

√17
 (22î − 8ĵ − 2k̂) 

22. In a group of equal number of boys 

and girls, 20% girls and 35% boys are 

graduate. If a member of the group is 

selected at random, then the probability 

of this member not being a graduate is 

(a) 
𝟏𝟏

𝟒𝟎
                       (b) 

𝟗

𝟐𝟎
                       (c) 

𝟏𝟏

𝟐𝟎
                                (d) 

𝟐𝟗

𝟒𝟎
 

Ans. (d) Let A and B denotes the events that 

the member selected at random is a boy and 

a girl respectively. Let E denotes the event 

that the member selected is a graduate. 

Reqd. prob. 

=1- [P(A).P(E/A)+P(B).P(E/B)] 

=1- [
1

2
.
35

100
+
1

2
.
20

100
=

55

200
] = (1 −

11

40
) =

29

40
 

23. for any two events A and B in a 

sample space  

(a) P (A/B)≥
𝑷(𝑨)+𝑷(𝑩)−𝟏

𝑷(𝑩)
, 𝑷(𝑩) ≠ 𝟎 is 

always true. 

(b) P (A∩B̅) = P (A)- P(A∩B) does not 

hold 

(c) P (A∪B) =1-P (A̅).P(B̅) if A and B are 

independent 

(d) P (A∪B) =1-P (A̅).P(B̅) if A and B are 

disjoint 

Ans. (c) 

P(A/B͞)+P(A͞/B͞)= 1, 

∴ P(A͞+B͞)= 1-P(A/B͞) 

1 − 𝑃(𝐴 ∪ 𝐵)

𝑃(𝐵 )
=
𝑃(𝐴 ∪ 𝐵)′

𝑃(𝐵′)

=
𝑃(𝐴′ ∩ 𝐵′)

𝑃(𝐵′)
= 𝑃 (

𝐴′

𝐵′
) 

24. one hundred identical coins, each with 

probability P, of showing up heads are 

tossed. If 0 < P < 1 and the probability of 

heads showing on 50 coins is equal to that 

of the heads showing on 51 coins, then p= 

(a) 
𝟏

𝟐
                            (b) 

𝟒𝟗

𝟏𝟎𝟏
                             

(c) 
𝟓𝟎

𝟏𝟎𝟏
                         (d) 

𝟓𝟏

𝟏𝟎𝟏
 

Ans. (d) 

Here n= 100, p= p, q= 1-p 

Given, p(50) = p(51) 

⟹100𝐶50𝑝
50(1 − 𝑝)50 = 100𝐶51𝑝

51(1 −

𝑝)49 

⟹
100!

50! 50!
(1 − 𝑝) =

100!

51! 49!
𝑝

⟹ 51(1 − 𝑝) = 50𝑝 ⟹ 𝑝

=
51

101
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25. A box contains 24 identical balls of 

which 12 are white and 12 are black. The 

balls are drawn at random from the box 

one at a time with replacement. The 

probability that a white ball is drawn for 

the  4th time on the 7th draw is 

(a) 
𝟓

𝟔𝟒
                               (b) 

𝟐𝟕

𝟑𝟐
                              

(c) 
𝟓

𝟑𝟐
                                       (d) 

𝟏

𝟐
 

Ans. (c) Probability of drawing a white ball 

in any draw=
12

24
=
1

2
 

A white ball will be drawn for the 4th time 

on the 7th draw ball is drawn in the 7th draw 

and 3 white balls are drawn in the first 6 

draws. 

∴ Required probability = 6𝐶3𝑝
3𝑞3. 𝑝 =

20. (
1

2
)
3

. (
1

2
)
3

.
1

2
=

5

32
 

26. If [x]denotes the integral part of x, 

then the domain of the function 

f(x)= 𝐬𝐢𝐧−𝟏[𝟐𝒙𝟐 − 𝟑] + 𝐥𝐨𝐠𝟐{𝐥𝐨𝐠𝟏/𝟐(𝒙
𝟐 −

𝟓𝒙 + 𝟓)} is 

(a) (−√
𝟓

𝟐
 , −𝟏)         (b) (𝟏,√

𝟓

𝟐
)           

(c) (−√
𝟓

𝟐
 , −𝟏) ∪ (𝟏,√

𝟓

𝟐
)           (d) 

none of these 

Ans. (d) 

For f(x) to be defined 

(i) [2𝑥2 − 3]= -1, 0, 1 

⟹ -1 ≤ 2𝑥2 − 3 < 2 ⟹2 ≤2𝑥2 < 5 

⟹ 1≤ 𝑥2 <
5

2
 

⟹ {
1 ≤ 𝑥2 ⟹ 𝑥 ≤ −1 𝑜𝑟 𝑥 ≥ 1

𝑥2 <
5

2
⟹ −√

5

2
< 𝑥 < √

5

2

 

⟹ −√
5

2
< 𝑥 ≤ −1 𝑜𝑟 1 ≤ 𝑥 <  √

5

2
 

………..(A) 

(ii) 𝑥2 − 5𝑥 + 5 > 0 ⟹ 𝑥 <
5−√5

2
 𝑜𝑟 𝑥 >

5+√5

2
  …….(B) 

(iii) log1
2

(𝑥2 − 5𝑥 + 5) > 0 

⟹ 𝑥2 − 5𝑥 + 5 < (
1

2
)
0

  

⟹ 𝑥2 − 5𝑥 + 5 < 1 ⟹ 𝑥2 − 5𝑥 +

4 < 0 

⟹ 1< x< 4 ……………(C) 

From (A), (B) and (C), 1 ≤ x < 
5−√5

2
 

 

27. If f(x)= 𝐋𝐭
𝒎→∞

𝐋𝐭
𝒏→∞

𝒄𝒐𝒔𝟐𝒎𝒏!𝝅𝒙, then 

range of f(x)is 

(a) [0, 1]                      (b) [0, 1]                         

(c) (0, 1)                            (d) {0} 

Ans. (b) 

When x is rational say p/q , then n! x𝜋 is a 

multiple of 𝜋 and 𝑐𝑜𝑠2𝑛! 𝑥𝜋 = 1 

∴ Lt
𝑚→∞

𝑐𝑜𝑠2𝑚 𝑛! 𝑥𝜋 = Lt
𝑚→∞

1𝑚 = 1    ∴ f(x)= 

1 

When x is irrational, 

n! x𝜋 ≠a multiple of 𝜋  

∴𝑐𝑜𝑠2𝑛! 𝑥𝜋 ≠ 1 
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∴ 0≤ 𝑐𝑜𝑠2𝑛! 𝑥𝜋 < 1 

∴ Lt
𝑚→∞

𝑐𝑜𝑠2𝑚 𝑛! 𝑥𝜋 =

 Lt
𝑚→∞

(𝑐𝑜𝑠2𝑛! 𝑥𝜋)𝑚 = 0 

Thus f(x) = 0, when x is rational 

                = 1, when x is irrational  

∴ Range f= {0, 1} 

28. The normal at any point P (𝒕𝟐, 𝟐𝒕) on 

the parabola  𝒚𝟐 = 𝟒𝒙 meets the curve 

again at Q, the area of 𝛥POQ, O being the 

origin is 
𝒌

|𝒕|
(𝟏 + 𝒕𝟐)(𝟐 + 𝒕𝟐) then 

(a) k > 2                         (b) k=2                       

(c) k < 2                            (d) k= 1 

Ans. (b) Given P ≡ (𝑡2, 2𝑡) 

Given parabola is 𝑦2 = 4𝑥 ……….. (1) 

Here a= 1. 

Let Q=( 𝑡1
2, 2𝑡1) 

Since normal at P meet the curve again at Q. 

∴ 𝑡1 = −𝑡 −
2

𝑡
=
𝑡2+2

𝑡
 ………… (2) 

Now O≡ (0, 0), P≡ (𝑡2, 2𝑡), Q=( 𝑡1
2, 2𝑡1) 

Given, 

𝑘

|𝑡|
(1 + 𝑡2)(2 + 𝑡2) = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝛥𝑃𝑂𝑄  

=
1

2
|𝑡2. 2𝑡1 − 2𝑡. 𝑡1

2|  = |𝑡2𝑡1 − 𝑡𝑡1
2| =

 |−𝑡2 (
𝑡2+2

2
) − 𝑡

(𝑡2+2)
2

𝑡2
|  

= (𝑡2 + 2) |𝑡 +
(𝑡2+2)

𝑡
|  =  (𝑡2 + 2) |𝑡 +

(𝑡2+2)

𝑡
| = (𝑡2 + 2)2 

(1+𝑡)2

|𝑡|
   

∴ k= 2 

29. If {x} denotes the fractional part of x, 

then {
𝟑𝟐𝟎𝟎

𝟖
} = 

(a) 
𝟏

𝟖
                        (b) 

𝟑

𝟖
                             

(c) 
𝟓

𝟖
                        (d) none  

Ans. (d) 

3200

8
=
9100

8
=
(1 + 8)100

8

=
1 + 100𝐶18 + 100𝐶18

2 +⋯+ 8100

8

=
1

8
+ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

∴ {
3200

8
} =

1

8
 

30. Which of the following function does 

not obey mean value theorem in [0, 1] 

(a) f(x)= 
𝟏

𝟐
 - x,  x < ½; f(x)=(

𝟏

𝟐
− 𝒙)

𝟐

, 𝒙 ≥
𝟏

𝟐
                

(b) f(x) = 
𝐬𝐢𝐧 𝒙

𝒙
, 𝒙 ≠ 𝟎; 𝒇(𝒙) = 𝟏, 𝒙 = 𝟎  

(c) f(x)= x |x|                                                                   

(d) f(x)= |x| 

Ans. (a) Let f(x) = 𝑥3 − 3𝑥 + 𝑘 

Then f’(x) = 3(𝑥2 − 1) < 0 𝑖𝑛 (0, 1) 

⟹ f’(x) has no root in (0, 1) 

But f(x) = 0 has two distinct roots 𝛼and 𝛽 in 

(0, 1) 

⟹ f’(x)= 0 has at least one root in (𝛼, 𝛽). 

 



 Challenging Mathematical Problems  

58 
 

ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

1. If [x] denotes the integral part of x, 

then 𝐋𝐭
𝒙→𝟎

𝐬𝐢𝐧 [𝒄𝒐𝒔𝒙]

𝟏+[𝒄𝒐𝒔𝒙]
= 

(a) 0                 (b) 1                 (c) 
𝐬𝐢𝐧𝟏

𝟐
                            

(d) does not exist 

Ans. (a) Lt
𝑥→0−0

[cos 𝑥] = 0 

[∵ when x ⟶0- 0, 0 < cosx < 1 ] and 

Lt
𝑥→0+0

[cos 𝑥] = 0   

[∵ when x ⟶0+ 0, 0 < cosx < 1 ] 

∴ Lt
𝑥→0−0

sin [cos𝑥]

1+[cos𝑥]
=
sin0

1+0
=

0 Lt
𝑥→0+0

sin [cos𝑥]

1+[cos𝑥]
=
sin0

1+0
= 0   

∴Required limit = 0 

2. Let f(x)= 𝐋𝐭
𝒏→∞

∑
𝒙

(𝒓𝒙+𝟏){(𝒓+𝟏)𝒙+𝟏)}

𝒏−𝟏
𝒓=𝟎  then  

(a) f(x) is continuous but not 

differentiable at x= 0  

(b) f(x) is both continuous and 

differentiable at x=  0  

(c) f(x) is neither continuous nor 

differentiable at x=0  

(d) f(x) is a periodic function 

Ans. (c) 

𝑡𝑟+1 =
𝑥

(𝑟𝑥 + 1){(𝑟 + 1)𝑥 + 1}

=
(𝑟 + 1)𝑥 + 1 − (𝑟𝑥 + 1)

(𝑟𝑥 + 1)[(𝑟 + 1)𝑥 + 1]
 

=
1

(𝑟𝑥 + 1)
−

1

(𝑟 + 1)𝑥 + 1
 

∴ 𝑆𝑛 = ∑ 𝑡𝑟+1

𝑛−1

𝑟=0

1

𝑛𝑥 + 1
= 1, 𝑥 ≠ 0 = 0, 𝑥

= 0 

∴ Lt
𝑛→∞

𝑆𝑛 = Lt
𝑛→∞

(1 −
1

𝑛𝑥+1
) 

Thus, f(x)= {
1, 𝑥 ≠ 0
0, 𝑥 = 0

 

∴ Lt
𝑥→0
𝑓(𝑥) = 1 𝑎𝑛𝑑 𝑓(0) = 0 

Hence f(x) is neither continuous nor 

differentiable at x= 0 

Clearly f(x) is not a periodic function. 

3. Let f(x)= 𝐋𝐭
𝒏→∞

𝐥𝐨𝐠(𝟐+𝒙)−𝒙𝟐𝒏𝒔𝒊𝒏𝒙

𝟏+𝒙𝟐𝒏
 then f(x) is 

discontinuous at 

(a) x= 1 only                (b) x=-1 only                    

(c) x= -1, 1 only                       (d) no point 

Ans. (c) 

Lt
𝑛→∞

𝑋2𝑛 = Lt
𝑛→∞

(𝑥2)𝑛

= {
∞,                𝑥2 > 1

0, 0 ≤ 𝑥2 < 1

1,                 𝑥2 = 1

=  {
∞,      𝑥 <  −1 𝑜𝑟 𝑥 > 1
0,            − 1 < 𝑥 < 1
1,                     𝑥 =  ±1

 

SET – 8 
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∴ 𝑓(𝑥)

=  {

−𝑠𝑖𝑛𝑥,                      𝑥 <  −1 𝑜𝑟 𝑥 > 1
log(2 + 𝑥),                      − 1 < 𝑥 < 1

log(2 + 𝑥) − 𝑠𝑖𝑛𝑥

2
,                𝑥 =  ±1

 

Lt
𝑥→1+0

𝑓(𝑥) =  −𝑠𝑖𝑛1, Lt
𝑥→1−0

𝑓(𝑥)

= 𝑙𝑜𝑔3, Lt
𝑥→1+0

𝑓(𝑥)

=  Lt
𝑥→−1

log(2 + 𝑥) = 0, 

 Lt
𝑥→1−0

𝑓(𝑥) =  Lt
𝑥→−1

(− sin 𝑥) =  𝑠𝑖𝑛1 

Clearly f(x) is discontinuous only at two 

points x= -1, 1 

4. The function f(x) = max {(1-x), (1+x), 2} 

is, where x ∊(-∞,∞) 

(a) discontinuous at all points                                

(b) differentiable at all points  

(c) differentiable at all points except -1 

and 1      (d) continuous at all points 

except -1 and 1 

Ans. (c) 

We draw the graph of y= 1- x, y= 1+ x and y 

= 2 

f(x)= max.{1-x, 1+x, 2} 

∴ f(x)= 1- x, x ≤ -1= 2, -1≤ x≤ 2 = 1+x, x ≥ 

2 

From graph it is clear that f(x) is continuous 

at all x and differentiable at all x except x= -

1 and x= 1 

 

 

5. If f(x) = p |sin x|+𝒒𝒆|𝒙| +

𝒓|𝒙|𝟑 𝒂𝒏𝒅 𝒇(𝒙) is differentiable at x=0, 

then 

(a) p= q= r=0                                                       

(b) p=0, q=0, r== any real number  

(c) q=0, r=0, p is any real number                    

(d) r=0, p=0, q is any real number 

Ans. (b) 

At x= 0, 

L.H. derivative of p |sin x|= - p 

R.H. derivative of p |sin x|= p 

∴ For p |sin x| to be differentiable at x= 0, p= 

- p or p= 0 

At x= 0, L.H. derivative of q𝑒|𝑥|= q 

For q𝑒|𝑥|to be differentiable at x= 0, -q = q 

or q= 0 

d.c. of  r |𝑥|3 at x= 0 is 0 

∴ for f(x) to be differentiable at x= 0, p= 0, 

q= 0and r may be any real number. 

Second method: 

f’(0- 0)= Lt
ℎ→0−0

𝑓(ℎ)−𝑓(0)

ℎ
=

Lt
ℎ→0−0

𝑝|sinℎ|+𝑞𝑒|ℎ|+𝑟|ℎ|3−𝑞

ℎ
 

= Lt
ℎ→0−0

−𝑝 sin ℎ +  𝑞𝑒ℎ − 𝑟ℎ3 − 𝑞

ℎ

= Lt
ℎ→0−0

{−𝑝
𝑠𝑖𝑛ℎ

ℎ

−
𝑞(𝑒ℎ − 1)

−ℎ
− 𝑟ℎ2}

=  −𝑝 − 𝑞   
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Similarly, f’ (0+0)= p+q 

Since f(x) is differentiable at x= 0 

∴ f’(0- 0) = f’(0+ 0)⟹ - p- q= p+ q 

⟹ p+ q= 0 

Here r may be any real number. 

 

6. Let f(x)= 𝒙𝟑 − 𝒙𝟐 + 𝒙 + 𝟏,   

𝒈(𝒙) = 𝒎𝒂𝒙. {𝒇(𝒕), 𝟎 ≤ 𝒕 ≤ 𝒙}, 𝟎 ≤ 𝒙 ≤ 𝟏 

 = 𝟑 − 𝒙, 𝟏 < 𝑥 ≤ 2 

then in [0, 2] the points where g(x) is not 

differentiable is (are) 

(a) 1                         (2) 2                            

(c) 1 and 2                               (d) none of 

these 

Ans. (a) 𝑓(𝑡) =  𝑡3 − 𝑡2 + 𝑡 + 1 

∴ f’ (t)= 3𝑡2 − 2𝑡 + 1 > 0 

∴ f(t) is an increasing function. 

Since 0≤ t ≤ x 

∴ max f(t)= f(x)= 𝑥3 − 𝑥2 + 𝑥 + 1 

Thus g(x)= 𝑥3 − 𝑥2 + 𝑥 + 1, 0 ≤ 𝑥 ≤ 1= 3- 

x, 1 < x ≤ 2  

The only doubtful point for differentiability 

of g(x) in [0, 2] is x = 1 

Clearly,  Lt
𝑥→1+0

𝑔(𝑥) = 13 − 12 + 1 + 1 =

2  

Lt
𝑥→1+0

𝑔(𝑥) =  Lt
𝑥→1
(3 − 𝑥) = 2 𝑎𝑛𝑑 𝑔(1)

= 2 

∴ g(x) is continuous at x= 1 

Also g’ (x)= 3𝑥2 − 2𝑥 + 1, 0 ≤ 𝑥 < 1 =

 −1, 1 < 𝑥 ≤ 2 

∴ g’(1-0)= 3. 12 − 2.1 + 1 = 2 and 

g’(1+0)= -1 

Hence g(x) is not differentiable at x= 1. 

7. If [x] denotes the integral part of x and 

f(x)= [x]{
𝒔𝒊𝒏

𝝅

[𝒙+𝟏]
+𝐬𝐢𝐧𝝅[𝒙+𝟏]

𝟏+[𝒙]
},  then 

(a) f(x) is continuous in R                            

(b) f(x) is continuous  but not 

differentiable in R  

(c) f"(x) exists for all x in R                         

(d) f(x) is discontinuous at all integer 

points in R 

Ans. (d) 

Sin 𝜋 [x+ 1]= 0 

Also [x+ 1]= [x]+ 1 

∴ f(x)= 
[𝑥]

1+[𝑥]
sin

𝜋

[𝑥]+1
 𝑎𝑡 𝑥 = 𝑛, 𝑛 ∊

𝐼, 𝑓(𝑥) =
𝑛

1+𝑛
sin

𝜋

𝑛+1
 𝑓𝑜𝑟 𝑛 − 1 < 𝑥 <

𝑛, [𝑥] = 𝑛 − 1 

∴ f(x)= 
𝑛−1

𝑛
sin

𝜋

4
   

𝐻𝑒𝑛𝑐𝑒 Lt
𝑥→𝑛−0

𝑓(𝑥)
𝑛 − 1

𝑛
sin
𝜋

4
 , 

∴ f(n)= 
𝑛

1+𝑛
sin

𝜋

𝑛+1
 

∴ f(x) is discontinuous at all n ∊ I 
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8. Let f(x) = 
[𝒕𝒂𝒏𝟐𝒙]−𝟏

𝒕𝒂𝒏𝟐𝒙−𝟏
, 𝒙 ≠ 𝒏𝝅 ±

𝝅

𝟒
= 𝟎, 𝒙 =

𝒏𝝅 ±
𝝅

𝟒
 then f(x) is 

(a) continuous at all x      (b) continuous at 

x= 
𝝅

𝟒
       (c) discontinuous at x= 

𝝅

𝟒
          (d) 

none 

Ans. (c) 

Since tan x is not defined at 

X= (2n+1) 
𝜋

2
, 𝑛 ∊

𝐼, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑓(𝑥)𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥 =

(2𝑛 + 1)
𝜋

2
, 𝑛 ∊ 𝐼 

Now f (
𝜋

4
) =  0 

Lt
𝑥→
𝜋
4
−0
𝑓(𝑥) = Lt

𝑥→
𝜋
4
−0

[𝑡𝑎𝑛2𝑥] − 1

𝑡𝑎𝑛2𝑥 − 1

= Lt
𝑥→

𝜋
4
−0

0 − 1

𝑡𝑎𝑛2𝑥 − 1
=  ∞   

Hence f(x) is discontinuous at x= 
𝜋

4
 

 

9. Let f(x)= ∫ 𝒕 𝒔𝒊𝒏
𝟏

𝒕
𝒅𝒕

𝒙

𝟎
, then the number 

of points of discontinuity of f(x) in (0, 𝜋) is 

(a) 0                          (b) 1                           

(c) 2                          (d) more than 2 

Ans. (a) 

𝑓(𝑥) =  ∫ 𝑡 sin
1

𝑡
𝑑𝑡

𝑥

0

 

∴ f’(x)= x sin 
1

𝑥
 

Clearly f’(x) is a finite number at all x in (0, 

𝜋). 

∴ f(x) is differentiable and hence continuous 

at all x in (0, 𝜋) 

10. if [x] denotes the integral part of x and 

in (0, 𝜋), we define 

f(x)= [
𝟐(𝒔𝒊𝒏𝒙−𝒔𝒊𝒏𝒏𝒙)+|𝒔𝒊𝒏𝒙−𝒔𝒊𝒏𝒏𝒙|

𝟐(𝒔𝒊𝒏𝒙−𝒔𝒊𝒏𝒏𝒙)−|𝒔𝒊𝒏𝒙−𝒔𝒊𝒏𝒏𝒙|
] = 𝟑, 𝒙 =

 
𝝅

𝟐
𝒙 ≠

𝝅

𝟐
 then for n > 1 

(a) f(x) is continuous but not 

differentiable at x= 
𝝅

𝟐
  

(b) both continuous and differentiable 

at x= 
𝝅

𝟐
  

(c) (c) neither continuous nor 

differentiable at x= 
𝝅

𝟐
  

(d)  𝐋𝐭
𝒙→

𝝅

𝟐

𝒇(𝒙) 𝒆𝒙𝒊𝒔𝒕 𝒃𝒖𝒕 𝐋𝐭
𝒙→

𝝅

𝟐

𝒇(𝒙) ≠

𝒇(
𝝅

𝟐
)  

Ans. (b) 

For 0 < 𝑥 <  
𝜋

2
 𝑜𝑟 

𝜋

2
< 𝑥 <  𝜋 0 < sin 𝑥 <

1  

∴ for n > 1, sin x > 𝑠𝑖𝑛4𝑥 

∴ f(x)=[
3(sin𝑥−𝑠𝑖𝑛4𝑥)

sin𝑥−𝑠𝑖𝑛𝑛𝑥
] =  3, 𝑥 ≠

𝜋

2
= 3, 𝑥 =

 
𝜋

2
 

Thus in (0, 𝜋) , f(x) = 3 

Hence f(x)is continuous and differentiable at 

x= 
𝜋

2
 

11. If[x] denotes the integral part of x and 

f(x) = [n+ psin x], 0< x < 𝜋, n∊I and p is a 

prime number, then the number of points 

where f(x) is not differentiable is  

(a) p-1                        (b) p                          

(c) 2p-1                                  (d) 2p +1 
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Ans. (c) [x] is not differentiable at integral 

points. 

Also [n+ p sin x]= n+ [p sin x] 

∴ [p sin x] is not differentiable, where p sin 

x is an integer. But p is prime and 0 < sin x 

≤1 [∵ 0 < x < 𝜋] 

∴ p sin x is an integer only when 

Sinx =  
𝑟

𝑝
, where 0< r ≤ p and r ∊ N 

For r= p, sin x= 1 ⟹ x= 
𝜋

2
 in (0, 𝜋) 

For 0 < r < p, sin x= 
𝑟

𝑝
 

∴ x= sin−1
𝑟

𝑝
 𝑜𝑟 𝜋 − sin−1

𝑟

𝑝
 

Number of such values of x= p- 1+p- 1= 2p 

-2 

∴ Total number of points where f(x) is not 

differentiable 

= 1+ 2p – 2= 2p – 1 

12. If  
𝒔𝒆𝒄𝟒𝜽

𝒂
+
𝒕𝒂𝒏𝟒𝜽

𝒃
=

𝟏

𝒂+𝒃
, 𝒕𝒉𝒆𝒏 

(a) |b|=|a|                        (b) |b|≤ |𝒂|                         

(c) |b|≥ |𝒂|                       (d) none of these  

Ans. (b) 

𝑠𝑒𝑐4𝜃

𝑎
+
𝑡𝑎𝑛4𝜃

𝑏
=

1

𝑎 + 𝑏
=  
𝑠𝑒𝑐2𝜃 − 𝑡𝑎𝑛2𝜃

𝑎 + 𝑏
 

⟹ 
𝑠𝑒𝑐2𝜃

𝑎(𝑎+𝑏)
[(𝑎 + 𝑏)𝑠𝑒𝑐2𝜃 − 𝑎] +

𝑡𝑎𝑛2𝜃

(𝑎+𝑏)𝑏
[(𝑎 + 𝑏)𝑡𝑎𝑛2𝜃 + 𝑏] = 0 

⟹ a𝑡𝑎𝑛2𝜃 + 𝑏𝑠𝑒𝑐2𝜃 = 0 

⟹𝑠𝑖𝑛2𝜃 =  −
𝑏

𝑎
 𝑖𝑠 𝑛𝑜𝑛-negative and ≤ 1⟹ 

|
𝑏

𝑎
| ≤ 1 

13. If c be a positive constant and |f(y)-

f(x)|≤ 𝒄(𝒚 − 𝒙)𝟐 for all real x and y, then 

(a) f(x)= 0 for all x        (b) f(x)= x for all x        

(c) f’(x)= 0 for all x          (d) f’(x)= c for all 

x 

Ans. (c) 

Given, |f(y)- f(x)| ≤𝑐(𝑦 − 𝑥)2, 𝑐 > 0 

⟹|f(y)- f(x)| ≤𝑐|𝑦 − 𝑥|2⟹ |
𝑓(𝑦)−𝑓(𝑥)

𝑦−𝑥
| ≤

𝑐|𝑦 − 𝑥| ⟹ Lt
𝑦→𝑥

|
𝑓(𝑦)−𝑓(𝑥)

𝑦−𝑥
| ≤ Lt  𝑐|𝑦 − 𝑥|

𝑦→𝑥
 

⟹ |𝑓′(𝑥)| ≤ 0 

⟹|𝑓′(𝑥)| ≤ 0 for all real x 

⟹ f’(x)= 0∀x∊ R 

14. Let f(t)in t. then 
𝒅

𝒅𝒙
{∫ 𝒇(𝒕)𝒅𝒕
𝒙𝟑

𝒙𝟐
} 

(a) has a value 0 when x= 0                            

(b) has a value 0 when x=1 , x= 4/9  

(c) has a value 𝟗𝒆𝟐 − 𝟒𝒆 when x=e               

(d) has a differential coefficient 27e -8 

when x= e 

Ans. (c) 
𝑑

𝑑𝑥
∫ 𝑓(𝑡)
𝑥3

𝑥2
𝑑𝑡 = 𝑓(𝑥3). 3𝑥2 −

𝑓(𝑥2). 2𝑥 

= 𝑙𝑜𝑔𝑥3. 3𝑥2 − log 𝑥2 . 2𝑥

= 9𝑥2 𝑙𝑜𝑔𝑥 − 4𝑥 𝑙𝑜𝑔𝑥

= 𝑥 𝑙𝑜𝑔𝑥(9𝑥 − 4) 
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𝑙𝑒𝑡 𝑧 = 𝑥 log 𝑥 (9𝑥 − 4)𝑡ℎ𝑒𝑛
𝑑𝑧

𝑑𝑥
= (1 + log 𝑥)(9𝑥 − 4)

+ 9𝑥 log 𝑥  

𝑎𝑡 𝑥 = 𝑒,         
𝑑𝑧

𝑑𝑥
= 2(9𝑒 − 4) + 9𝑒

= 27𝑒 − 8 

15. If a, 𝜶𝟏, 𝜶𝟐, …𝜶𝟐𝒏−𝟏, 𝒃 𝒂𝒓𝒆 𝒊𝒏 𝑨. 𝑷., 

 𝒂, 𝜷𝟏, 𝜷𝟐, …𝜷𝟐𝒏−𝟏, 𝒃   are in G.P. and a, 

𝜸𝟏, 𝜸𝟐, … 𝜸𝟐𝒏−𝟏, 𝒃 are in H.P., where a, b 

are positive, then the equation 

 𝜶𝒏𝒙
𝟐 −𝜷𝒏𝒙 + 𝜸𝒏 = 𝟎 has 

(a) real and equal roots                                                 

(b) real and unequal roots  

(c) imaginary roots                                                        

(d) roots which are in A.P. 

Ans. (c) 

The middle terms of the A.P., G.P. and H.P. 

are 𝛼𝑛, 𝛽𝑛 𝑎𝑛𝑑 𝛾𝑛 respectively 

∴ 𝛼𝑛= A.M. of a and b, 

𝛽𝑛= G.M. of a and b, 

𝛾𝑛= H.M. of a and b, 

∵ AH=𝐺2 

∴ 𝛼𝑛𝛾𝑛 = 𝛽𝑛
2
  

Now, discreminant of given equation 

=𝛽𝑛
2 − 4𝛼𝑛𝛾𝑛 = −3𝛼𝑛𝛾𝑛 < 0      (∵𝛼𝑛, 𝛾𝑛 

are positive) 

 

 

16. If 𝒂𝒏 = the digit at units place in the 

number 1! +2! +3! +…+n! for n≥ 4,  

then 𝒂𝟒, 𝒂𝟓, 𝒂𝟔, … are in  

(a) A.P. only          (b) G.P. only           (c) 

A.P. and G.P. only           (d) A.P., G.P., 

and H.P. 

Ans.(c) 

1 ! +2 ! +3 ! +4! = 33 

The digits at units place in each of 5 !, 6 !,… 

is 0 

∴𝑎4 = 𝑎5 = 𝑎6 = ⋯ = 3 

Clearly 𝑎4, 𝑎5, 𝑎6, … are in A.P. and G.P. but 

not in H.P. as they are equal. 

17. Let p, q, r ∊ 𝑹+ and 27pqr ≥

(𝒑 + 𝒒 + 𝒓)𝟑 and 3p +4q +5r = 12 then 

𝒑𝟑 + 𝒒𝟒 + 𝒓𝟓 is equal to 

(a) 3                      (b) 6                        (c) 2                                 

(d) none of these. 

Ans. (c) 

1 ! +2 ! +3 ! +4! = 33 

The digits at units place in each of 5 !, 6 !,… 

is 0 

∴𝑎4 = 𝑎5 = 𝑎6 = ⋯ = 3 

Clearly 𝑎4, 𝑎5, 𝑎6, … are in A.P. and G.P. but 

not in H.P. as they are equal. 

18. If (2+ x)(2+𝒙𝟐)(𝟐 + 𝒙𝟑)… (𝟐 + 𝒙𝟏𝟎𝟎) = 

∑ 𝒙𝒓𝒏
𝒓=𝟎 , then n equals 

(a) 2550                         (b) 5050                      

(c) 𝟐𝟖                           (d) none of these. 
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Ans. (b) 𝑥𝑛 = 𝑥1+2+3+⋯+100 = 𝑥
100×101

2 =

𝑥5050  

⟹ n= 5050 

19. If p, q, r, s ∊ R, then equation (𝒙𝟐 +

𝒑𝒙 + 𝟑𝒒)(- 𝒙𝟐 + 𝒓𝒙 + 𝒒)(- 𝒙𝟐 + 𝒔𝒙 − 𝟐𝒒)= 

0 has 

(a) 6 real roots                                                       

(b) at least two real roots   

(c) 2 real and 4 imaginary roots                          

(d) 4 real and 2 imaginary roots. 

Ans. (b) 

𝐷1 + 𝐷2 + 𝐷3 = 𝑝
2 − 12𝑞 + 𝑟2 + 4𝑞 +

𝑠2 + 8𝑞 = 𝑝2 + 𝑟2 + 𝑠2 ≥ 0  

⟹ at least one of 𝐷1, 𝐷2, 𝐷3 ≥ 0 

20. If a, b, c, d, are four non-zero real 

numbers such that (𝒅 + 𝒂 − 𝒃)𝟐 +

(𝒅 + 𝒃 − 𝒄)𝟐= 0 and roots of the equation 

a(b-c) 𝒙𝟐 + b(c-a)x + c(a-b)= 0 and real 

and equal, then a, b, c 

(a) are equal     (b) are not equal    (c) are 

zero      (d) none of the above 

Ans. (a) Equation 𝑎(𝑏 − 𝑐)𝑥2 +

𝑏(𝑐 − 𝑎)𝑥 + 𝑐(𝑎 − 𝑏)= 0 has equal roots 

⟹ b= 
2𝑎𝑐

𝑎+𝑐
                   …….(1) 

(𝑑 + 𝑎 − 𝑏)2 + (𝑑 + 𝑏 − 𝑐)2 =0 

⟹ a-b = b- c = -d   ⟹ 2b= a+ c                    

……(2) 

⟹ 
4𝑎𝑐

𝑎+𝑐
 = a +c    ⟹ (𝑎 − 𝑐)2 = 0⟹ a= c 

From (2), b= a 

Thus a= b= c. 

21. If p, q be non zero real numbers and 

f(x)≠ 0 in [0, 2] and ∫ 𝒇(𝒙). (𝒙𝟐 + 𝒑𝒙 +
𝟏

𝟎

𝒒)𝒅𝒙 = ∫ 𝒇(𝒙). (𝒙𝟐 + 𝒑𝒙 + 𝒒)𝒅𝒙
𝟐

𝟎
= 𝟎  

then equation 𝒙𝟐 + 𝒑𝒙 + 𝒒= 0 has 

(a) two imaginary roots                                            

(b) no root in (0, 2)   

(c) one root in (0,1) and other in (1,2)                    

(d) one root in (-∞, 𝟎) and other in (2,∞) 

Ans. (c) 

Let F(x) = ∫𝑓(𝑥)(𝑥2 + 𝑝𝑥 + 𝑞)𝑑𝑥, 

Then according to question 

F(1) –F(0) = 0, F(2) – F(1) = 0 

∴ F(0) = F(1) and F(1)= F(2) 

Hence, equation F’(x)= 0 i.e. equation  

f(x). (𝑥2 + 𝑝𝑥 + 𝑞) = 0  

i.e., equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 has at least 

one root (here exactly one root) in (0, 1) and 

exactly one root in (1, 2). 

22. If a, b, c, ∊ R, a ≠ 0 and (𝒃 − 𝟏)𝟐 <

4𝒂𝒄, then the number of roots of the 

system of equation (in three unknowns 

𝒙𝟏, 𝒙𝟐, 𝒙𝟑) 

𝒂𝒙𝟏
𝟐 + 𝒃𝒙𝟏 + 𝒄 = 𝒙𝟐  

𝒂𝒙𝟐
𝟐 + 𝒃𝒙𝟐 + 𝒄 = 𝒙𝟑     

𝒂𝒙𝟑
𝟐 + 𝒃𝒙𝟑 + 𝒄 = 𝟏       is 

(a)  0                   (b)  1                        (c)  

2                               (d) 3 

Ans. (a) Let f(x) = 𝑎𝑥2 + (𝑏 − 1)𝑥+c 
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Given system of equation is equivalent 

𝑡𝑜
𝑓(𝑥1)=𝑥2−𝑥1 
𝑓(𝑥2)=𝑥3−𝑥2
𝑓(𝑥3)=𝑥1−𝑥3

}    

⟹ 𝑓(𝑥1) + 𝑓(𝑥2) + 𝑓(𝑥3) = 0 

∴ 𝑎𝑓(𝑥1) + 𝑎𝑓(𝑥2) + 𝑎𝑓(𝑥3) = 0  (not 

possible) 

As (𝑏 − 1)2 − 4𝑎𝑐 < 0. 

∴ 𝑎𝑓(𝑥1), 𝑎𝑓(𝑥2), 𝑎𝑓(𝑥3) > 0. 

Hence given system of equation has no real 

root. 

23. If α, 𝛽 are the roots of the equation 

𝒙𝟐-ax +b= 0 and 𝑨𝒏 = 𝜶
𝒏 + 𝜷𝒏 then 

which of the following is true? 

(a) 𝑨𝒏+𝟏 = 𝒂𝑨𝒏 + 𝒃𝑨𝒏−𝟏                                  

(b) 𝑨𝒏+𝟏 = 𝒃𝑨𝒏 + 𝒂𝑨𝒏−𝟏  

(c) 𝑨𝒏+𝟏 = 𝒂𝑨𝒏 − 𝒃𝑨𝒏−𝟏                                  

(d) 𝑨𝒏+𝟏 = 𝒃𝑨𝒏 − 𝒂𝑨𝒏−𝟏 

Ans.(a) 

𝛼 +𝛽= a, 𝛼𝛽= b 

Given, 𝐴𝑛 = 𝛼
𝑛 + 𝛽𝑛 

Now, 𝐴𝑛+1 = 𝛼
𝑛+1 + 𝛽𝑛+1 

= (𝛼𝑛 + 𝛽𝑛)( 𝛼 +𝛽)-𝛼𝛽(𝛼𝑛−1 + 𝛽𝑛−1) 

= a𝐴𝑛 + 𝑏𝐴𝑛−1 

24. If x satisfies |x-1|+|x-2|+|x-3|≥ 6, then  

(a) 0≤ 𝒙 ≤ 𝟒            (b) 𝒙 ≤ −𝟐 𝒐𝒓 𝒙 ≥ 𝟒           

(c)  𝒙 ≤ 𝟎 𝒐𝒓 𝒙 ≥ 𝟒           (d) 𝒙 ≥ 𝟎    

Ans. (c) 

For x ≤ 1,−3𝑥 + 6 ≥ 6 ⟹ 𝑥 ≤ 0    

……(A) 

For 1≤ 𝑥 ≤ 2,−𝑥 + 4 ≥ 6⟹ x≤ −2 

(not acceptable as 1≤ 𝑥 ≤ 2) 

For x≥ 3, 3𝑥 − 6 ≥ 6 ⟹ 𝑥 ≥ 4    

………(B) 

From (A) and (B) all positive value of x are 

given by x≤ 0 𝑜𝑟 𝑥 ≥ 4  

 

25. 𝟐𝒔𝒊𝒏𝒙 + 𝟐𝒄𝒐𝒔𝒙 ≥ 𝟐𝟏 −
𝟏

√𝟐
  

(a) only for x ≥0              (b) only for x≤ 0          

(c) for all real x           (d) only for x ≠0 

Ans. (c) 

Since A.M. ≥ G.M 

∴
2sin 𝑥+2cos𝑥

2
≥ √2sin𝑥. 2cos𝑥 =

2(
1

2
)(sin𝑥+cos𝑥) = 2

(
1

√2
) sin(𝑥+

𝜋

4
)
 

⟹ 2sin𝑥 + 2cos𝑥 ≥ 2
1+

1

√2
sin(𝑥+

𝜋
4
)
 ≥ 2

1−
1

√2 

[∵ least value of sin (𝑥 +
𝜋

4
) =  −1] 

26. How many different nine digit 

numbers can be formed from the number 

223355888 by rearranging its digits so 

that the odd digits occupy even positions? 

(a) 16                                 (b) 36                               

(c) 60                                   (d) 180 

Ans.  (c) 

Number of digits= 9 
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Number of odd digits = 4, number of even 

digits= 5 

Number of even places= 4 

Odd digits can be arranged in even paces in 
|4̲ 

|2̲|2̲
 ways. Even digits can be arranged in 

remaining 5 places in 
|5̲ 

|2̲|3̲
 ways 

∴ Required number = 
|4̲ 

|2̲|2̲
.
|5̲ 

|2̲|3̲
= 60  

 

27. For 2≤ 𝒓 ≤ 𝒏, (𝒏
𝒓
) + 𝟐( 𝒏

𝒓−𝟏
) + ( 𝒏

𝒓−𝟐
) = 

(a) (𝒏+𝟏
𝒓−𝟏
)                      (b) 2(𝒏+𝟏

𝒓+𝟏
)                          

(c) 2(𝒏+𝟐
𝒓
)                           (d) (𝒏+𝟐

𝒓
)   

Ans. (d) 

(𝑛
𝑟
) 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑛𝐶𝑟  

Now 𝑛𝐶𝑟 + 2𝑛𝐶𝑟−1 + 𝑛𝐶𝑟−2 

= (𝑛𝐶𝑟 + 𝑛𝐶𝑟−1) + (𝑛𝐶𝑟−1 + 𝑛𝐶𝑟−2)   

= 𝑛 + 1𝐶𝑟 + 𝑛 + 1𝐶𝑟−1 = 𝑛 + 2𝐶𝑟  

28. If ∑ 𝐬𝐢𝐧−𝟏𝑿𝒊
𝟏𝟎
𝒊=𝟏 = 𝟓𝝅, 𝒕𝒉𝒆𝒏∑ 𝑿𝒊

𝟐𝟏𝟎
𝒊=𝟏  =  

(a) 0                            (b) 5                              

(c) 10                                 (d) none of these 

Ans. (c) 

∑sin−1 𝑥𝑖

10

𝑖=1

= 5𝜋 = 10.
𝜋

2
 

⟹ sin−1 𝑥𝑖 =
𝜋

2
, ∀𝑖 ⟹ 𝑥𝑖 = 1   ∀    𝑖    ⟹ 

∑ 𝑥𝑖
210

𝑖=1 = 1 

 

29. Range of f(x) = 𝒔𝒊𝒏𝟐𝟎𝒙 + 𝒄𝒐𝒔𝟒𝟖𝒙 is  

(a) [0, 1]                      (b) (0, 1)                        

(c) (0, ∞)                             (d) none of 

these 

Ans. (b) 

0 ≤ 𝑠𝑖𝑛2𝑥 ≤ 1 ⟹ 𝑠𝑖𝑛20𝑥 ≤  𝑠𝑖𝑛2𝑥 

Thus 0 ≤ 𝑠𝑖𝑛20𝑥 ≤  𝑠𝑖𝑛2𝑥  ………. (1) 

Again 0 ≤ 𝑐𝑜𝑠48𝑥 ≤  𝑐𝑜𝑠2𝑥  ………..(2) 

[∵

𝑠𝑖𝑛20𝑥 𝑎𝑛𝑑 𝑐𝑜𝑠48𝑥 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑧𝑒𝑟𝑜 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒

] 

⟹ 0 <  f(x) ≤ 1.  Hence range of f(x) = (0, 

1) 

30.  Let x, y, z = 105, where x, y, z ∊N. 

Then number of ordered triplets (x, y, z) 

satisfying the given equation is: 

(a) 15                             (b) 27                        

(c) 6                              (d) none of these  

Ans. (b) 

105= 3× 5 × 7 

When no 1 is taken as a solution, number of 

solutions= |3̲ = 6 

When only 1’ s taken, number of solutions= 

3𝐶2 . |3̲ = 18 

When two 1’s are taken, number of solutions 

= 3𝐶1 .
|3̲

|2̲
= 3 

∴ Reqd. number= 6+18+3 =27 
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ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

1. If f(x) = (𝒑𝜶 − 𝜶𝟐 − 𝟐)𝒙 −

∫ (𝒄𝒐𝒔𝟒 𝒕 + 𝒔𝒊𝒏𝟐𝒕 − 𝟐)
𝒙

𝟎
𝒅𝒕 is a decreasing 

function of x for all x ∊R and 𝛼∊ R, where 

𝛼 being independent of x, then  

(a) p∊ (-∞,𝟏)                   (b) p∊ (-1, √𝟑)                        

(c) p∊ (1, ∞)              (d) none of these 

Ans. (b) Given, 𝑓(𝑥) = (𝑝𝛼 − 𝛼2 − 2)𝑥 −

∫ (𝑐𝑜𝑠4𝑡 + 𝑠𝑖𝑛2𝑡 − 2)
𝑥

0
𝑑𝑡 ……….(1) 

∴𝑓′(𝑥) = 𝑝𝛼 − 𝛼2 − 2 − (𝑐𝑜𝑠4𝑥 +

𝑠𝑖𝑛2𝑥 − 2) =  −𝛼2 + 𝑝𝛼 − (𝑐𝑜𝑠4𝑥 +

𝑠𝑖𝑛2𝑥) 

= −𝛼2 + 𝑝𝛼 − (𝑐𝑜𝑠4𝑥 + 𝑐𝑜𝑠2𝑥 + 1) 

= −𝛼2 + 𝑝𝛼 − [(𝑐𝑜𝑠2𝑥 −
1

2
)
2

+
3

4
]

= −𝛼2 + 𝑝𝛼 −
3

4

− (𝑐𝑜𝑠2𝑥 −
1

2
)
2

  

Clearly f’(x) ≤ −𝛼2 + 𝑝𝛼 −
3

4
[∵

𝑀𝑖𝑛. 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (𝑐𝑜𝑠2𝑥 −
1

2
)
2

= 0] 

For f(x) to be decreasing for all real x, i.e., 

f’(x) ≤ 0 

∴ −𝛼2 + 𝑝𝛼 −
3

4
≤ 0 ⟹4𝛼2 − 4𝑝𝛼 + 3 ≥

0, ∀ 𝛼 ∊ 𝑅 

∴ D ≤ 0⟹ 16𝑝2 − 48 ≤ 0 ⟹ −√3 ≤ 𝑝 ≤

√3 

 

2. Consider the following statements S 

and R. S: both sinx and cosx are 

decreasing function in (
𝝅

𝟐
, 𝝅)  & R: If a 

differentiable function decreases in (a, b) 

then its derivative also decreases in (a, b). 

Which of the following are true? 

(a) both S and R are wrong                                       

(b) S is correct and R is wrong 

(c) both S and R are correct but R is not 

the correct expiation for S  

(d) S is correct and R is the correct 

explanation for S                  

Ans. (b) From the trend of value of sin x and 

cos x we know sin x and cosx decrease in 
𝜋

2
< 𝑥 <  𝜋. So, the statement S is correct.  

The statement R is incorrect cos x is a 

differentiable function which decreases in 

(
𝜋

2
, 𝜋) but its d.c.  – sin x is increasing in  

(
𝜋

2
, 𝜋) 

 

3. If f(x)= ∫ 𝒆−𝒕
𝟐𝒙𝟐+𝟏

𝒙𝟐
𝒅𝒕, then the interval 

in which f(x) is increasing is 

(a) (0, ∞)                       (b) (-∞,𝟎)                      

(c) [-2, 2]                       (d) none of these 

Ans. (b) 

SET – 9 
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𝑓(𝑥) =  ∫ 𝑒−𝑡
2

𝑥2+1

𝑥2
𝑑𝑡 𝑓′(𝑥)

=  𝑒−(𝑥
2+1)

2

. 2𝑥 − 𝑒−𝑥
4
. 2𝑥

=
2𝑥

𝑒(𝑥
2+1)2

[1

− 𝑒−𝑥
4+(𝑥2+1)

2

] 

=
2𝑥

𝑒(𝑥
2+1)2

[1 − 𝑒2𝑥
2+1]

=
2(𝑒2𝑥

2+1 − 1)

𝑒(𝑥
2+1)2

(−𝑥)  

But 𝑒2𝑥
2+1 > 1 

∴ f’(x)> 0 in (-∞, 0) and hence f(x) is 

increasing in (-∞, 0) 

 

4. The value of ∫
(𝒕−|𝒕|)𝟐

𝟏+𝒕𝟐

𝒙

𝟎
𝒅𝒕 is equal to 

(a) 4(x-𝐭𝐚𝐧−𝟏 𝒙) if x < 0          (b) 0 if > 0         

(c) 𝐥𝐨𝐠(𝟏 + 𝒙𝟐) if x > 0           (d) none of 

these 

Ans. (a) 

𝐼 = ∫
(𝑡 − |𝑡|)2

1 + 𝑡2
𝑑𝑡

𝑥

0

  

𝐶𝑎𝑠𝑒 𝐼: 𝑥 > 0 , 𝑡ℎ𝑒𝑛 0 < 𝑡 < 𝑥, |𝑡| = 𝑡 

∴ I= ∫
(𝑡−𝑡)2

1+𝑡2
𝑑𝑡

𝑥

0
= 0 

Case II: x < 0, then x < t< 0⟹ |t|= -t 

∴ I= ∫
(𝑡+𝑡)2

1+𝑡2
𝑑𝑡

𝑥

0
= ∫

4𝑡2

1+𝑡2
𝑑𝑡

𝑥

0
=

4∫ (1 −
1

1+𝑡2
)𝑑𝑡

𝑥

0
= 4[𝑡 − tan−1 𝑡] 𝑥

0
 

= 4(𝑥 − tan−1 𝑥) 

5. If ∫
𝒙𝟐−𝟐

(𝒙𝟒+𝟓𝒙𝟐+𝟒) 𝐭𝐚𝐧−𝟏(
𝒙𝟐+𝟐

𝒙
)
𝒅𝒙 =

𝒍𝒐𝒈|𝒇(𝒛)| + 𝒄, then 

(a) f(z) = 𝐭𝐚𝐧−𝟏 𝒛 ,𝒘𝒉𝒆𝒓𝒆 𝒛 =  √𝒙 + 𝟐           

(b) f(z) = 𝐭𝐚𝐧−𝟏 𝒛 ,𝒘𝒉𝒆𝒓𝒆 𝒛 = 𝒙 +
𝟐

𝒙
  

(c) f(z)= 𝐬𝐢𝐧−𝟏 𝒛 , 𝒘𝒉𝒆𝒓𝒆 𝒛 =  
𝒙+𝟐

𝒙
                    

(d) none of these 

Ans. (b) 

I= ∫
𝑥2−2

(𝑥4+5𝑥2+4) tan−1(
𝑥2+2

𝑥
)
𝑑𝑥 

Dividing numerator & denominator by 𝑥2 

we have 

= ∫
1−

2

𝑥2

(𝑥2+5+
4

𝑥2
) tan−1(𝑥+

2

𝑥
)
𝑑𝑥 =

 ∫
1−

2

𝑥2

[(𝑥+
2

𝑥
) 2+1] tan−1(𝑥+

2

𝑥
)
𝑑𝑥  

𝑙𝑒𝑡 tan−1 (𝑥 +
2

𝑥
) = 𝑢  

⟹
1

1+ (𝑥 +
2
𝑥) 

2
. (1 −

2

𝑥2
) =  𝑑𝑥 = 𝑑𝑢  

𝑁𝑜𝑤 𝐼 =  ∫
1

𝑢
𝑑𝑢 = log |𝑢| + 𝑐

= 𝑙𝑜𝑔 |tan−1 (𝑥 +
2

𝑥
)|

= tan−1 𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑧

= (𝑥 +
2

𝑥
) 

6. ∫𝒙 𝐥𝐨𝐠 (𝟏 +
𝟏

𝒙
)𝒅𝒙 = 𝒇(𝒙) 𝐥𝐨𝐠(𝒙 + 𝟏) +

𝒈(𝒙)𝒙𝟐 + 𝑳𝒙 + 𝒄, then 

(a) L= 1                      (b) f(x) = 
𝟏

𝟐
𝒙𝟐                        

(c) g(x) = log x                 (d) none of these 
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Ans. (d) 

I= ∫𝑥 log (1 +
1

𝑥
)   𝑑𝑥 = ∫ 𝑥 𝑙𝑜𝑔 (𝑥 +

1)𝑑𝑥 − ∫ 𝑥 𝑙𝑜𝑔 𝑥 𝑑𝑥 

=
𝑥2

2
log(𝑥 + 1) −

1

2
∫
𝑥2

1+𝑥
𝑑𝑥 −

𝑥2

2
𝑙𝑜𝑔𝑥 +

1

2
∫𝑥 𝑑𝑥 =

𝑥2

2
log(𝑥 + 1) −

𝑥2

2
𝑙𝑜𝑔𝑥 −

1

2
∫ (𝑥 − 1 +

1

𝑥+1
)𝑑𝑥 +

1

2
∫𝑥 𝑑𝑥  

=
𝑥2

2
log(𝑥 + 1) −

𝑥2

2
log 𝑥 −

1

2
log(𝑥 + 1)

+
𝑥

2
+ 𝑐  

𝑓(𝑥) =
𝑥2

2
−
1

2
, 𝑔(𝑥) =  −

1

2
log 𝑥  

𝐿 =
1

2
. 

7. ∫
𝒅𝒙

(𝒙−𝟏)
𝟑
𝟒(𝒙+𝟐)

𝟓
𝟒

=  

(a) 
𝟒

𝟑
(
𝒙−𝟏

𝒙+𝟐
)

𝟏

𝟒
+ 𝒄                  (b) 

𝟒

𝟑
√
𝒙−𝟏

𝒙+𝟐
+ 𝒄                 

(c) (
𝒙+𝟐

𝒙−𝟏
)

𝟏

𝟒
+ 𝒄              (d) none of these 

Ans. (a) 

𝐼 =  ∫
𝑑𝑥

(𝑥 − 1)2 (
𝑥 + 2
𝑥 − 1)

5
4

  

𝑝𝑢𝑡 𝑧 =
𝑥 + 2

𝑥 − 1
, 𝑡ℎ𝑒𝑛  

𝑑𝑥 =
(𝑥 − 1). 1 − (𝑥 − 2). 1

(𝑥 − 1)2
𝑑𝑥

=  −
3

(𝑥 − 1)2
𝑑𝑥  

𝑁𝑜𝑤 𝐼 =
1

3
∫𝑧−5/4 𝑑𝑧 =

4

3
𝑧−1/4 + 𝐶

=
4

3
. (
𝑥 − 1

𝑥 + 2
)
1/4

+ 𝐶 

 

8. ∫𝒆𝒙
𝟏+𝒏.𝒙𝒏−𝟏−𝒙𝟐𝒏

(𝟏−𝒙𝒏)√𝟏−𝒙𝟐𝒏
 𝒅𝒙= 

(a) 
𝒆𝒙√𝟏−𝒙𝟐𝒏

𝟏−𝒙𝟐𝒏
+ 𝒄                (b) 

𝒆𝒙√𝟏−𝒙𝒏

𝟏−𝒙𝒏
+ 𝒄                 

(c) 
𝒆𝒙√𝟏−𝒙𝟐𝒏

𝟏−𝒙𝒏
+ 𝒄                (d) none of these 

Ans. (c) 

I= ∫ 𝑒𝑥 [
1−𝑥2𝑛+𝑛𝑥𝑛−1

(1−𝑥𝑛)√1−𝑥2𝑛
] 𝑑𝑥 =  ∫ 𝑒𝑥 [

√1−𝑥2𝑛

1−𝑥𝑛
+

𝑛𝑥𝑛−1

(1−𝑥𝑛)2
√
1−𝑥𝑛

1+𝑥𝑛
] 𝑑𝑥 =  ∫ 𝑒𝑥 {𝑓(𝑥) +

𝑓′(𝑥)]𝑑𝑥,  

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) = √
1 − 𝑥2𝑛

1 − 𝑥𝑛
= 𝑒𝑥𝑓(𝑥) + 𝐶

= 𝑒𝑥
1 − 𝑥2𝑛

1 − 𝑥𝑛
+ 𝐶   

9. ∫
(𝒙+𝟏)

𝒙(𝟏+𝒙𝒆𝒙)𝟐
𝒅𝒙 = 𝒍𝒐𝒈|−𝒇(𝒙)| + 𝒇(𝒙) +

𝒄 𝒕𝒉𝒆𝒏 𝒇(𝒙) = 

(a) 
𝟏

𝒙+𝒆𝒙
                       (b) 

𝟏

𝒙+𝒙𝒆𝒙
                         

(c) 
𝟏

(𝟏+𝒙𝒆𝒙)𝟐
                            (d) none of 

these 

Ans. (b) 

Put z= x𝑒𝑥, then dz = (𝑒𝑥 + 𝑥𝑒𝑥) dx 

I= ∫
𝑑𝑧

𝑧(1+𝑧)2
= ∫ [

1

𝑧
−

1

1+𝑧
−

1

(1+𝑧)2
] 𝑑𝑧 =

log
𝑧

1+𝑧
+

1

1+𝑧
+ 𝐶 = 𝑙𝑜𝑔 |

𝑥𝑒𝑥

1+𝑥𝑒𝑥
| +

1

1+𝑥𝑒𝑥
+ 𝑐 
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= log |1 −
1

1 + 𝑥𝑒𝑥
| +

1

1 + 𝑥𝑒𝑥
+ 𝐶 

 

10. If 𝑰𝒏 = ∫
𝐬𝐢𝐧(𝟐𝒏−𝟏)𝒙

𝒔𝒊𝒏𝒙

𝝅

𝟐
𝟎

𝒅𝒙, 𝒂𝒏𝒅 𝒂𝒏 =

∫ (
𝐬𝐢𝐧𝒏𝜽

𝐬𝐢𝐧𝜽
) 𝟐

𝝅

𝟐
𝟎

𝒅𝜽, 𝒕𝒉𝒆𝒏 𝒂𝒏+𝟏 − 𝒂𝒏= 

(a) 𝑰𝒏                             (b) 2𝑰𝒏                               

(c) 𝑰𝒏 + 𝟏                                (d) 0 

Ans. (c) 𝑎𝑛+1 − 𝑎𝑛 =

 ∫
𝑠𝑖𝑛2(𝑛+1)𝑥−𝑠𝑖𝑛2𝑛𝑥

𝑠𝑖𝑛2𝑥

𝜋

2
0

𝑑𝑥 

= ∫
sin(2𝑛 + 1) 𝑥𝑠𝑖𝑛 𝑥

𝑠𝑖𝑛2𝑥

𝜋
2

0

𝑑𝑥

=  ∫
sin(2𝑛 + 1)𝑥

sin 𝑥

𝜋
2

0

𝑑𝑥

=  𝐼𝑛+1 

11. If n ≠ 𝟏, ∫ (𝒕𝒂𝒏𝒏𝒙 + 𝒕𝒂𝒏𝒏−𝟐𝒙)
𝝅

𝟒
𝟎

𝒅(𝒙 −

[𝒙])= 

(a) 
𝟏

𝒏−𝟏
                                (b) 

𝟏

𝒏+𝟏
                           

(c) 
𝟏

𝒏
                                  (d) 

𝟐

𝒏−𝟏
 

Ans. (a) 

Let 𝐼𝑛 = ∫ (𝑡𝑎𝑛
𝑛𝑥 + 𝑡𝑎𝑛𝑛−2𝑥)

𝜋

4
0

𝑑(𝑥 − [𝑥]) 

ℎ𝑒𝑟𝑒 0 < 𝑥 <
𝜋

4
∴ [𝑥] = 0 ∴ 𝑥 − [𝑥] = 𝑥  

𝑛𝑜𝑤 𝐼𝑛 = ∫ 𝑡𝑎𝑛𝑛−2𝑥𝑠𝑒𝑐2𝑥

𝜋
4

0

𝑑𝑥

=  ∫ 𝑧𝑛−2
1

0

𝑑𝑧, 𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑧

= tan 𝑥 

= [
𝑧𝑛−1

𝑛−1
] 1
0
=

1

𝑛−1
  

12. If f(𝛼)= f(𝛽) and n ∊N, then the value 

of  ∫ (𝒈(𝒇(𝒙)))
′′

𝒈′(𝒇(𝒙)). 𝒇′(𝒙)
𝜷

𝜶
𝒅𝒙 = 

(a) 1                          (b) 0                               

(c) 
𝜷𝒏+𝟏−𝜶𝒏+𝟏

𝒏+𝟏
                         (d) none of 

these 

Ans. (b) 

Put z = g(f(x)), then dz = g’(f(x)) f’(x) dx 

= ∫ 𝑧𝑛𝑑𝑧 =
𝑧𝑛+1

𝑛+1
  

𝐼 =
1

𝑛+1
[{𝑔(𝑓(𝑥))]

𝑛+1
] 𝛽
𝛼
=

1

𝑛+1
[[{𝑔(𝑓(𝛼))]

𝑛+1
− [{𝑔(𝑓(𝛽))]

𝑛+1
] =  0 

[∵ f(𝛼)= f(𝛽)] 

 

13. Let [x] denotes the integral part of a 

real number x and {x} = x- [x], then 

solution of 4{x}= x+ [x] are   

(a) ±
𝟐

𝟑
, 𝟎                         (b) ±

𝟒

𝟑
, 𝟎                                

(c) 0, 
𝟓

𝟑
                                   (d) ±𝟐,𝟎 

Ans. (c) 

4{x}= x+ [x]= [x]+ {x} +[x] 

⟹ {x}= 
2

3
[𝑥]                   …….(1) 

Since 0 ≤ {𝑥} < 1 

∴ 0≤
2

3
[𝑥] < 1 ⟹ 0 ≤ [𝑥] <

3

2
 

Hence [x]= 0, 1 

∴{x}= 0, 
2

3
     [from (1)] 

∴ x= [x]+ {x}= 0, 
5

3
 



 Challenging Mathematical Problems  

71 
 

14. The maximum number of real roots of 

the equation 𝒙𝟐𝒏 − 𝟏= 0 (n ∊N) is 

(a) 2                                      (b) 3                                

(c) n                                     (d) 2n 

Ans. (a) 

𝑥2𝑛 − 1 = 0 ⟹ 𝑥2𝑛 = 1 = cos 0 + 𝑖 sin 0  

∴ 𝑥 = cos
2𝑟𝜋

2𝑛
+ 𝑖 sin

2𝑟𝜋

2𝑛
= cos

𝑟𝜋

𝑛
+

 𝑖 sin
𝑟𝜋

𝑛
, 𝑟 = 0, 1, … . , (2𝑛 − 1) 

x will be real only when sin 
𝑟𝜋

𝑛 
 = 0 

or 
𝑟𝜋

𝑛
= 𝑚𝜋 

or r = mn = a multiple of n 

But, r= 0, 1, 2,, …, 2n- 1 

∴ r = 0, n 

∴ 𝑥2𝑛 − 1 = 0 has only two real root 1, -1. 

Second method: Let f(x) = 𝑥2𝑛 − 1 

Then, f’(x) = 2𝑛𝑥2𝑛−1 

Sign scheme for f’(x) is 

Hence graph, of y= f(x) will either intersect 

x –axis at two points or touch x-axis or will 

not interest x-axis or will not interest x-axis. 

Therefore eqn. f(x)= 0 has two distinct real 

roots or two equal real roots or no real root. 

15. The roots of equation 𝟕 𝐥𝐨𝐠𝟕(𝒙
𝟐−𝟒𝒙+𝟓) 

are 

(a) 4, 5                            (b) 2, -3                              

(c) 2, 3                            (d) 3, 5 

Ans. (c) 

Given, 𝑥2 − 4𝑥 + 5 = 𝑥 − 1 

⟹ 𝑥2 − 5𝑥 + 6 = 0⟹ x= 2, 3 

16. Equation 
𝒂𝟐

𝒙−𝜶
+

𝒃𝟐

𝒙−𝜷
+

𝒄𝟐

𝒙−𝜸
= 𝒎−𝒏𝟐𝒙 

(a, b, c, m, n ∊ r) has necessarily 

(a) all the roots real                                                

(b) all the roots imaginary    

(c) two real and two imaginary roots                    

(d) two rational and two irrational roots 

Ans.(a) 

Let p + iq be a root of given equation, then 

𝑎2

𝑝−𝛼+𝑖𝑞
+

𝑏2

𝑝−𝛽+𝑖𝑞
+

𝑐2

𝑝−𝛾+𝑖𝑞
= 𝑚 − 𝑛2(𝑝 +

𝑖𝑞)  

⟹
𝑎2[𝑝−𝛼−𝑖𝑞]

(𝑝−𝛼)2+𝑞2
+
𝑏2[(𝑝−𝛽)−𝑖𝑞]

(𝑝−𝛽)2+𝑞2
+
𝑐2[(𝑝−𝛾)−𝑖𝑞]

(𝑝−𝛾)2+𝑞2
=

𝑚 − 𝑛2𝑝 − 𝑖𝑛2𝑞 

Equating imaginary parts we get 

𝑞 [{
𝑎2

(𝑝−𝛼)2+𝑞2
+

𝑏2

(𝑝−𝛽)2+𝑞2
+

𝑐2

(𝑝−𝛾)2+𝑞2
} +

𝑛2] =  0  

∴ q= 0. 

Hence p +iq= p= a real number. 

17. If a, b, c ∊ { 1, 2, 3, 4, 5}, the number 

of equations of the form 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 =

𝟎 which have real roots is  

(a) 25                               (b) 26                             

(c) 207                                (d) 24 

Ans. (d) 

For real roots ac ≤
𝑏2

4
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B 𝑏2

4
 

Possible value 

of ac such that 

ac ≤
𝑏2

4
 

No. of 

possible pairs 

(a, c) 

2 1 1 1 

3 2.25 1.2 3 

4 4 1, 2, 3, 4 8 

5 6.25 1, 2, 3, 4, 5, 6 12 

                                Total 24 

 

Value of ac Possible pairs (a, c) 

1 (1, 1) 

2 (1, 2), (2, 1) 

3 (1, 3), (3, 1) 

4 (1, 4), (4, 1), (2, 2) 

5 (1, 5), (5, 1) 

6 (2, 3), (3, 2) 

 Hence number of quadratic equations 

having real roots = 24 

18. If x, 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … , 𝒂𝒏 ∊ 𝑹 𝒂𝒏𝒅 (𝒙 −

𝒂𝟏 + 𝒂𝟐)𝟐 + (𝒙 − 𝒂𝟐 + 𝒂𝟑)
𝟐 +⋯ 

+(𝒙 − 𝒂𝒏−𝟏 + 𝒂𝒏)
𝟐 = 0, 

then 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … , 𝒂𝒏  are in 

(a) A.P.  (b) G.P.  (c) H.P.   (d) none of 

these. 

Ans. (a) (𝑥 − 𝑎1 + 𝑎2)
2 + (𝑥 − 𝑎2 +

𝑎3)
2 +⋯+ (𝑥 − 𝑎𝑛−1 + 𝑎𝑛)

2 = 0 

⟹𝑎1 − 𝑎2 = 𝑎2 − 𝑎3 = ⋯ = 𝑎𝑛−1 −

𝑎𝑛 = 𝑥 

⟹ 𝑎1, 𝑎2, 𝑎3, … . 𝑎𝑛 are in A.P. with 

common difference x. 

19. Let f(x) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 and g(x) = 

af(x) + bf′(x) + cf″(x) If f(x) > 0 for all x , 

then the sufficient condition for g(x) to be 

> 0 v x is 

(a) c > 0                                 (b) b > 0                           

(c) b< 0                       (d) c < 0 

Ans. (d) 

g(x)= 𝑎(𝑎𝑥2 + 𝑏𝑥 + 𝑐) + 𝑏(2𝑎𝑥 + 𝑏) +

𝑐 + 2𝑎 = 𝑎2𝑥2 + 3𝑎𝑏𝑥 + 𝑏2 + 3𝑎𝑐 

discriminant of its corresponding equation , 

D = 9𝑎2𝑏2 − 12𝑎3𝑐 

= 9𝑎2𝑏2 − 36𝑎3𝑐 + 24𝑎3𝑐  

= 9𝑎2(𝑏2 − 4𝑎𝑐) + 24𝑎3𝑐             ……(1) 

Since f(x)> 0, ∀ 𝑥 ∊ 𝑅 

∴ a > 0 and 𝑏2 − 4𝑎𝑐< 0 

For g(x)> 0 ∀ 𝑥 ∊ 𝑅, 𝑎2 > 0 𝑎𝑛𝑑 𝐷 < 0 

But from (1), D < 0 when c < 0 

20. The constant term of the quadratic 

expression ∑ (𝒙 −
𝟏

𝒌+𝟏
) (𝒙 −𝒏

𝒌=𝟏

𝟏

𝒌
) 𝒂𝒔 𝒏 ⟶ ∞ is 

(a) -1                                   (b) 0                                   

(c) 1                              (d) none of these 

Ans. (c) Constant term  

c = 
1

1.2
+

1

2.3
+⋯+

1

𝑛(𝑛+1)
= 1 −

1

𝑛+1
   

lim
𝑛→∞

𝑐 =  lim
𝑛→∞

(1 −
1

𝑛 + 1
) = 1 

21. If 𝜽𝒊 ∊ [𝟎,
𝝅

𝟔
] , 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓 and 

𝒔𝒊𝒏𝜽𝟏𝒛
𝟒 + 𝒔𝒊𝒏𝜽𝟐𝒛

𝟑 + 𝒔𝒊𝒏𝜽𝟑𝒛
𝟐 +

𝒔𝒊𝒏𝜽𝟒𝒛 + 𝒔𝒊𝒏𝜽𝟓 = 𝟐 then z satisfies 

(a) |z|> 
𝟑

𝟒
   (b) |z|< 

𝟏

𝟐
    (c)  

𝟏

𝟐
< |z|< 

𝟑

𝟒
    (d) 

none of these 
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Ans.(a) 

Since 0≤ 𝜃𝑖 , ≤
𝜋

6
 

∴ 0≤ 𝑠𝑖𝑛𝜃𝑖 , ≤
1

2
 

From given condition 

|2|= |𝑠𝑖𝑛𝜃5 + 𝑧𝑠𝑖𝑛𝜃4 + 𝑧
2𝑠𝑖𝑛𝜃3 +

𝑧3𝑠𝑖𝑛𝜃2 + 𝑧
4𝑠𝑖𝑛𝜃1| 

⟹ 2≤ |𝑠𝑖𝑛𝜃5| + |𝑧||𝑠𝑖𝑛𝜃4| +

|𝑧|2|𝑠𝑖𝑛𝜃3|+|𝑧|
3|𝑠𝑖𝑛𝜃2|+|𝑧|

4|𝑠𝑖𝑛𝜃1| ≤
1

2
+

1

2
|𝑧| +

1

2
|𝑧|2 +

1

2
|𝑧|3 +

1

2
|𝑧|4| <

1

2
|𝑧| +

|𝑧|2 +⋯  𝑡𝑜 ∞ ….(1) 

When|𝑧| < 1, from (1), 

2 < 
1

2
.

1

1−|𝑧|
 

∴ 1 − |𝑧| <
1

4
⟹ |𝑧| >

3

4
 

When |z|> 1, clearly |𝑧| >
3

4
  

Thus |𝑧| > 1, 𝑐𝑙𝑒𝑎𝑟𝑙𝑦 |𝑧| >
3

4
 

22. Number of solutions of  𝟑|𝒙| = |𝟐 −

|𝒙|| is 

(a) 0                                         (b) 2                                      

(c) 4                              (d) infinite 

Ans. (b) 

Given equation is 

(
1

3
)
𝑥

= 2 − 𝑥,   − ∞ < 𝑥 ≤  −2  

         = 2+ x,     -2 ≤ 𝑥 ≤ 0 

3𝑥 = 2 − 𝑥, 0 ≤ 𝑥 ≤ 2     

      = x – 2,  2≤ 𝑥 < ∞ 

At x = 2, 3𝑥 − 𝑥 + 2 = 9  

For x >2, 3𝑥 − 𝑥 + 2 > 9 

(As 3𝑥 − 𝑥 + 2 is an increasing function for 

x > 2) 

For x= -2, (
1

3
)
𝑥

+ 2 + 𝑥 = 9 

For x < -2, (
1

3
)
𝑥

+ 2 + 𝑥 < 9 

[as (
1

3
)
𝑥

+ 2 + 𝑥 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔] 

Hence given equation has only two solutions 

-2 and 2. 

23. The number of real roots of the 

equation (𝟗 + 𝒔𝒊𝒏𝒙)
𝟏

𝟏−𝒙 + (𝟏𝟎 +

𝒔𝒊𝒏𝒙)
𝟏

𝟏−𝒙  = (𝟏𝟏 + 𝒔𝒊𝒏𝒙)
𝟏

𝟏−𝒙  for x ∊ (0, 1) 

is  

(a) exactly one                        (b) at least 

one                   (c) at most one         (d)  

none of these 

Ans. (a) 

Given eqn. is f(x) = 1,  

where f(x) = (1 +
1

10+sin𝑥
)

1

1−𝑥
−

(1 −
1

10+sin𝑥
)

1

1−𝑥
 

Clearly 

f(0)= 
1

5
< 1 𝑎𝑛𝑑 𝑓(1 − 0) =  ∞ 

Also f(x) is an increasing function 

∴ f(x)= 1 only for one value of x. 
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24. If 0 < 𝛼r < 1 for r= 1, 2, 3, …, k and m 

be the number of real solutions of 

equation 

∑ (𝒂𝒓)
𝒙𝒌

𝒓=𝟏 = 𝟏 & n be the number of real 

solution of equation  ∑ (𝒙 − 𝒂𝒓)
𝟏𝟎𝟏𝒌

𝒓=𝟏 =

𝟎, then  

(a) m= n                       (b) m ≤ n                        

(c) m ≥ n                         (d) m > n 

Ans. (b) 

Let 𝛼 be a root of eqn. 

𝑎1
𝑥 + 𝑎2

𝑥 +⋯+ 𝑎𝑘
𝑥 = 1             

…………….(1) 

Then when x < 𝛼, L.H.S. of (1)> 1 

And when x > 𝛼, L.H.S. of (1)< 1 

Hence, eqn. (1) cannot have more than one 

root. 

∴ 𝑚 ≤ 1 

Let f(x) = (𝑥 − 𝑎1)
101 + (𝑥 − 𝑎2)

101 +⋯+

(𝑥 − 𝑎𝑛)
101 

∴ f’(x) > 0 ⟹ f(x) is an increasing function 

Also f(−∞) = −∞ < 0 𝑎𝑛𝑑 𝑓(∞) = ∞ >

0 

∴ f(x) = 0 has exactly one real root 

∴ n= 1   

Hence m ≤ 𝑛. 

25. If m be number of integral solutions of 

equation 𝟐𝒙𝟐 − 𝟑𝒙𝒚 − 𝟗𝒚𝟐 − 𝟏𝟏 = 𝟎 and 

n be the number of real solutions of 

equation 𝒙𝟑 − [𝒙] − 𝟑= 0, then m =  

(a) n                                (b) 2n                                 

(c) n/2                                (d)   3n 

Ans. (b) 

Given, 2𝑥2 − 3𝑥𝑦 − 9𝑦2 − 11 = 0 

⟹ (2x +3y)(x- 3y)= 11 

∴
2𝑥 + 3𝑦 = 1
𝑥 − 3𝑦 = 11

} ,
2𝑥 + 3𝑦 = 11
𝑥 − 3𝑦 = 1

} 

2𝑥 + 3𝑦 =  −1
𝑥 − 3𝑦 = −11

} ,
2𝑥 + 3𝑦 = −11
𝑥 − 3𝑦 = −1

}  

∴ x= 4, y= 1, x= -4, y= -1 

∴ m= 2 

Again, given 

𝑥3 − [𝑥] − 3 = 0 ⟹𝑥3 − (𝑥 − 𝛼) − 3 = 0, 

Where 𝛼= {x}= x-[x] 

⟹𝑥3 − 𝑥 = 3 − 𝛼. But 0≤ 𝛼 < 1 

∴ 2 < 𝑥3 − 𝑥 ≤ 3 

For x ≥ 2, 

𝑥3 − 𝑥 = 𝑥(𝑥2 − 1) ≥ 2(22 − 1) = 6  

For x≤ −1, 𝑥3 − 𝑥 =  𝑥(𝑥2 − 1) < 0  

For -1 < x< 0, 𝑥3 − 𝑥 < 1 < 2 

For 0 < x ≤ 1, 𝑥3 − 𝑥 < 𝑥3 < 1 < 2 

For x= 0, 𝑥3 − 𝑥 = 0 < 2 

∴1 < x< 2           ∴ [x]=1 

∴Given equation becomes 

𝑥3 − 4= 0⟹x= 4
1

3 

∴ n= 1 
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Thus m= 2, n=1 

26. If [x] denotes the integral part of x 

and k = 𝒔𝒊𝒏−𝟏
𝟏+𝒕𝟐

𝟐𝒕
> 0, then integral 

value of 𝛼 for which the equation (x-

[k])(x+𝛼) - 1 = 0 has integral roots is  

(a) 1                            (b) 2                              

(c) 4                                   (d) none of these 

Ans. (d) 

For sin−1
1+𝑡2

2𝑡
 𝑡𝑜 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑, |

1+𝑡2

2𝑡
| ≤ 1 

⟹ 
1+𝑡2

2𝑡
< 1 

⟹ 1+ |𝑡|2 ≤ 2|𝑡| 

⟹ (1+ |𝑡|)2 ≤ 0 

⟹ (1+ |𝑡|)2 = 0 ⟹ |𝑡| = 1 

⟹ t= ±1 

∴ k= sin−1 1 =
𝜋

2
          (∵k> 0) 

∴ [k] = [
𝜋

2
]= 1 

Given equation is (x-1)(x-𝛼)-1= 0 

⟹ (x- 1)(x+ 𝛼)= 1               ……. (1) 

We have to find integral value of 𝛼 for 

which equation (1) has integral roots. 

∴ x and 𝛼 are integers. 

From (1), (i) x- 1 = 1⟹ x= 2 

X+ 𝛼= 1⟹ 𝛼= 1- x= -1 

(ii) x- 1 = -1⟹ x= 0 

X+ 𝛼= -1 ⟹ 𝛼= -1 

 

27. If [x] denotes the integral part of x 

and m= [
|𝒙|

𝟏+𝒙𝟐
] , 𝒏 =

𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒍 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 
𝟏

𝟐−𝒔𝒊𝒏𝟑𝒙
 , then  

(a) m≠ n                         (b) m > n                         

(c) m + n = 0                          (d) 𝒏𝒎 = 𝟎 

Ans. (a) 

0 ≤
|𝑥|

1+𝑥2
< 1 ;  

∴ m= [
|𝑥|

1+𝑥2
] =  0 

Again 1≤ 2 − sin 3𝑥 ≤ 3 

∴
1

3
≤

1

2−sin3𝑥
≤ 1 

∴ n= integral value of 
1

2−sin3𝑥
= 1 

∴m≠ n is the correct choice. 

 

28. If 1 lies between the roots of equation 

𝒚𝟐 −𝒎𝒚 + 𝟏 = 𝟎 and [x] denotes the 

integral part of x, then [(
𝟒|𝒙|

𝒙𝟐+𝟏𝟔
)
𝒎

] = 

(a) 1                         (b) 0                           (c) 

undefined                                   (c) 2  

Ans. (b) 

Since 1 lies between the roots of equation 

𝑦2 −𝑚𝑦 + 1 = 0,  

∴ f(1)< 0 

⟹ 2-m < 0 ⟹ m > 2                      …… (1) 

Let y= 
4|𝑥|

𝑥2+16
= 

4|𝑥|

|𝑥|2+16
=

4𝑧

𝑧2+16
, where z= |x| 
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∴ y𝑧2 − 4𝑧 + 16𝑦 = 0 

Since z is real,  

∴ 16- 64𝑦2 ≥ 0 ⟹ −
1

2
≤ 𝑦 ≤

1

2
 

∴ 0≤ 𝑦 ≤
1

2
   [∵ y > 0] 

∴0≤ 𝑦𝑚 ≤
1

2𝑚
< 1 

∴ [𝑦𝑚] = 0                               …….. (2) 

29. Equation sin x + 2sin 2x +3 sin 3x = 
𝟖

𝝅
 

has at least one root in 

(a) (𝝅,
𝟑𝝅

𝟐
)                           (b) (𝟎,

𝝅

𝟐
)                           

(c) (
𝝅

𝟐
, 𝝅)                           (d) none of these 

Ans. (b) 

Let f(x) = 
8

𝜋
𝑥 + cos 𝑥 + cos 2𝑥 + cos 3𝑥  

𝑡ℎ𝑒𝑛 𝑓′(𝑥) =
8

𝜋
𝑥 − 𝑠𝑖𝑛𝑥 − 2sin 2𝑥

− 3 sin 3𝑥  

f(x) is continuous and differentiable at every 

point 

Also f(0)= f(
𝜋

2
)   ∴ By Rolle’s theorem 

f’(c)= 0 for at least one c in (0,
𝜋

2
) 

30. Let f(x) and g(x) be differentiable 

functions for 0≤ 𝒙 ≤ 𝟏 such that f(0) = 2, 

g(0)= 0, f(1)= 6.Let there exist a real 

number c in (0, 1) such that f’(c)= 2g’(c), 

then g(1)= 

(a) 1                                  (b) 2                                      

(c) -2                                   (d) -1 

Ans. (b) 

Let 𝜙(x)= f(x)+Ag(x) 

Then 𝜙’(x)= f’(x)+ Ag’(x) 

Choosing A such that φ(0)= 𝜙(1), 

We have A= - 
𝑓(1)−𝑓(0)

𝒈(𝟏)−𝒈(𝟎)
 

for this value of A using Rolle’s theorem for 

𝜙(x) in (0, 1), we have 

𝜙’(c)= 0  for some c ∊ (0, 1) 

⟹
𝑓′(𝑐)

𝑔′(𝑐)
=  −𝐴 =

𝑓(1) − 𝑓(0)

𝑔(1) − 𝑔(0)

=
6 − 2

𝑔(1) − 0
⟹ 2 =

4

𝑔(1)

⟹ 𝑔(1) = 2 

 

ISI B.STAT/B.MATH 

OBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

1. Let  

f(x) = cosx(sinx + √𝒔𝒊𝒏𝟐𝒙 + 𝒔𝒊𝒏𝟐𝜽),  

where ‘𝜃’ is a given constant,  

then maximum value of f(x) is 

(a) √𝟏 + 𝐜𝐨𝐬𝟐 𝜽            (b) √𝟏 + 𝐬𝐢𝐧𝟐 𝜽              

(c) |cos𝜃|                      (d) none 

Ans. (b) {𝑓(𝑥)𝑠𝑒𝑐𝑥 − 𝑠𝑖𝑛𝑥}2 = 𝑠𝑖𝑛2𝑥 +

𝑠𝑖𝑛2𝜃, 

⤇ 𝑓2(𝑥)(1 + 𝑡𝑎𝑛2𝑥) − 2𝑓(𝑥𝑡𝑎𝑛𝑥) =

𝑠𝑖𝑛2𝜃 

SET – 10 
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⤇ 𝑓2(𝑥)𝑡𝑎𝑛2𝑥 − 2𝑓(𝑥𝑡𝑎𝑛𝑥) + 𝑓2(𝑥) −

𝑠𝑖𝑛2𝜃 = 0 

⤇4𝑓2(𝑥) ≥ 4𝑓2(𝑥){ 𝑓2(𝑥) − 𝑠𝑖𝑛2𝜃} 

⤇𝑓2(𝑥) ≤ 1 + 𝑠𝑖𝑛2𝜃 

i.e. |f(x)|≤ √1 + 𝑠𝑖𝑛2𝜃. 

 

2. 𝐥𝐢𝐦
𝒏→∞

𝟏+√𝟐+𝟑√𝟑+⋯+𝒏√𝒏

𝒏
  

(a) equals 0                          (b) equals 1                     

(c) equals ∞                   (d) none 

Ans. (b) Cauchy’s First limit theorem:-  

If lim
𝑛→∞

𝑢𝑛 = 𝑙, 𝑡ℎ𝑒𝑛 lim
𝑛→∞

𝑢1+𝑢2+⋯+𝑢𝑛

𝑛
= 𝑙 . 

Here lim
𝑛→∞

𝑢𝑛 = lim
𝑛→∞

𝑛
1

𝑛 =

1, 𝑠𝑜, 𝑏𝑦  Cauchy’s first limit theorem  

lim
𝑛→∞

𝑢1+𝑢2+⋯+𝑢𝑛

𝑛
= 

lim
𝑛→∞

1+√2+3√3+⋯+𝑛√𝑛

𝑛
= 1. 

3. If 0 < x < 1, then the sum of the infinite 

series 
𝟏

𝟐
𝒙𝟐 +

𝟐

𝟑
𝒙𝟑 +

𝟑

𝟒
𝒙𝟒 +⋯ is 

(a) 𝐥𝐨𝐠
𝟏+𝒙

𝟏−𝒙
        (b) 

𝒙

𝟏−𝒙
+ 𝐥𝐨𝐠(𝟏 + 𝒙)       

(c) 
𝟏

𝟏−𝒙
+ 𝐥𝐨𝐠(𝟏 − 𝒙)        (d) 

𝒙

𝟏−𝒙
+

𝐥𝐨𝐠(𝟏 − 𝒙) 

Ans. (b) 
1

2
𝑥2 +

2

3
𝑥3 +

3

4
𝑥4 +⋯ 

= (1-
1

2
) 𝑥2+ (1-

1

3
) 𝑥3+ (1-

1

4
)𝑥4+…. 

= {𝑥2+𝑥3+𝑥4+….  }-{
1

2
𝑥2 +

1

3
𝑥3 +

1

4
𝑥4 +

⋯} 

= {1+x+𝑥2+….}-{x+
1

2
𝑥2 +

1

3
𝑥3+…}-1 

= 
1

1−𝑥
+ log(1 − 𝑥)-1 

= 
𝑥

1−𝑥
+ log(1 − 𝑥) 

 

4. The polar equation r= acos𝜃 represents 

(a) a spiral                      (b) a parabola                        

(c) a circle                       (d) none 

Ans. (c) 𝑟2 = 𝑎𝑟𝑐𝑜𝑠𝜃    

∴ 𝑥2 + 𝑦2 = 𝑎𝑥   (since r = 𝑥2 + 𝑦2, 𝑥 =

𝑎𝑐𝑜𝑠𝜃  ) 

∴𝑥2 + 𝑎𝑥 + 𝑦2 = 0 

∴(x+
𝑎

2
)2 + 𝑦2 =

𝑎

4

2
  

This is a circle of radius 
𝑎

2
 and centre (-

𝑎

2
, 0). 

5. If f(x) = 𝐋𝐭
𝒊→∞

(𝟏+𝒔𝒊𝒏𝝅𝒙)𝒕−𝟏

(𝟏+𝒔𝒊𝒏𝝅𝒙)𝒕+𝟏
, then range of 

f(x) is 

(a) {-1, 1}                   (b)  {0, 1}                   

(c) {-1, 1}                      (d) {-1, 0, 1} 

Ans. (d) 

f(x)= Lt
𝑡→∞

(1+sin𝜋𝑥)𝑡−1

(1+sin𝜋𝑥)𝑡+1
=

 

{
 
 

 
 
1−

1

(1+sin𝜋𝑥)𝑡

1+(
1

1+sin𝜋𝑥
)
𝑡,           sin 𝜋𝑥 > 0

0−1

0+1
,                       sin 𝜋𝑥 < 0

1−1

1+1
,                        sin 𝜋𝑥 = 0

      = 

{
1,             sin 𝜋𝑥 > 0
−1,          𝑠𝑖𝑛𝜋𝑥 < 0
0,             𝑠𝑖𝑛𝜋𝑥 = 0

 

∴ Range f= {-1, 0, 1} 
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6. If f: (𝟎,
𝝅

𝒏
) → 𝑹, 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒃𝒚 𝒇(𝒙) =

∑ [𝟏 + 𝐬𝐢𝐧 𝒌𝒙]𝒏
𝒌=𝟏 , where [x] denotes the 

integral part of x, then range of f(x) is 

(a) {n-1, n+1}              (b) {n-1, n, n+1}                

(c) {n, n+1}                    (d) none of these 

Ans. (c) 

f(x )= ∑ (1 + [sin 𝑘𝑥])𝑛
𝑘=1 = 𝑛 + [sin 𝑥] +

[sin 2𝑥] + …+ [sin 𝑛𝑥] …….(1) 

case 1: when kx ≠
𝜋

2
 for k= 1, 2, 3, …, n 

since 0 < kx < 𝜋 and kx ≠
𝜋

2
 

∴ 0 < sin kx < 1, for k= 1, 2, …., n 

∴ [sin kx]= 0, for k= 1, 2, 3, …., n 

∴ from (1), f(x)= n 

When exactly one of x, 2x, 3x, …, nx is 
𝜋

2
. 

Here not more than one of x, 2x, 3x, …, nx 

can be 
𝜋

2
.  

In this case one of sin x, sin2x, …, sinmnx is 

1 and other lie between 0 and 1 

∴ From (1), f(x)= n+1 

Hence range of f= {n, n+ 1} 

7. If f(x) = 𝐋𝐭
𝒏→∞

𝒙

𝒙+𝟏
+

𝒙

(𝒙+𝟏)(𝟐𝒙+𝟏)
+

𝒙

(𝟐𝒙+𝟏)(𝟑𝒙+𝟏)
+⋯+ to n terms, then range 

of f(x) is 

(a) {0, 1}                (b) {-1, 0}              (c) 

{-1, 1}                  (d) none of these 

Ans. (a) 

𝑆𝑛 = (1 −
1

1+𝑥
) + (

1

1+𝑥
−

1

1+2𝑥
) +

(
1

1+2𝑥
−

1

1+3𝑥
) + ⋯+ (

1

1+(𝑛−1)𝑥
−

1

1+𝑛𝑥
)  

      = 1 −
1

1 + 𝑛𝑥
  

𝑏𝑢𝑡 Lt
𝑛→∞

𝑛𝑥 =  ∞, 𝑥 > 0 =  −∞, 𝑥 < 0 =

0, 𝑥 = 0   

∴𝑓(𝑥) = Lt
𝑛→∞

𝑆𝑛 = 1,𝑤ℎ𝑒𝑛 𝑥 ≠ 0 

            = 0,                  𝑤ℎ𝑒𝑛  𝑥 = 0   

       Hence range f= {0, 1} 

8. Period of f(x) = sin 
𝝅𝒙

(𝒏−𝟏)!
+ 𝐜𝐨𝐬

𝝅𝒙

𝒏!
  is 

(a) n !                          (b) 2 (n!)                           

(c) 2 (n-1)!                      (d) none of these 

Ans. (b) sin
𝜋𝑥

(𝑛−1)!
 is a periodic function with 

period 2𝜋+ 
𝜋

(𝑛−1)!
= 2(𝑛 − 1)! 

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 cos
𝜋𝑥

𝑛!
= 2𝜋 +

𝜋

𝑛!
= 2𝑛! 

𝐿. 𝐶.𝑀. 𝑜𝑓 2(𝑛 − 1)! 𝑎𝑛𝑑 2(𝑛!)𝑖𝑠 2(𝑛!) 

∴ 𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑓(𝑥)𝑖𝑠 2(𝑛!) 

9. Period of the function cos {(x+3)-[x+3]}, 

where [x] denotes the integral part of x is 

(a) 1                         (b) 2                        (c) 

𝜋                                  (d) 2𝜋 

Ans. (a) 

x- [x] is a periodic function with period 1. 

∴ (x+ 3)- [x+ 3] is a periodic function with 

period 1. 



 Challenging Mathematical Problems  

79 
 

∴ cos {(x+ 3)}- [x+ 3]] is a periodic function 

with period 1. 

 

10. If f(x) = 𝟐𝒔𝒊𝒏
𝟑𝝅𝒙+𝒙−[𝒙], where [x] 

denotes the integral part of x is a periodic 

function with period 

(a) 1                          (b) 2                          (c) 

𝜋                                       (d) none of these 

Ans. (b) 

Period of x- [x] is 1 and period of 𝑠𝑖𝑛3𝜋𝑥 is 

2. 

L.C.M. of 1 and 2 is 2 

∴ f(x) is a periodic function with period 2. 

 

11. If f(x)= cos x+ cos ax is a periodic 

function, then a is necessarily 

(a) an integer   (b) a rational number     

(c) an irrational number     (d) an event 

number 

Ans. (b) Period of cos x= 2𝜋 and period of 

cos ax= 
2𝜋

|𝑎|
 

Period of f(x) = L.C.M. of 
2𝜋

1
 𝑎𝑛𝑑 

2𝜋

|𝑎|
=

𝐿.𝐶.𝑀.𝑜𝑓 2𝜋 𝑎𝑛𝑑 2𝜋

𝐻.𝐶.𝐹.𝑜𝑓 1 𝑎𝑛𝑑 |𝑎|
 

Since k= H.C.F. of 1 and |a| 

∴ 
1

𝑘
= an integer= m (say) and 

|𝑎|

𝑘
= an integer 

= n (say) 

∴ |a|=
𝑛

𝑚
⟹ 𝑎 = ±

𝑛

𝑚
= a rational number. 

12. If f is an increasing function and g is a 

decreasing function such that g(f(x)) 

exists, then  

(a) g(f(x)) is an increasing function                                

(b) g(f(x)) is an decreasing  

(c) nothing can be said                                                     

(d) g(f(x)) is a constant function 

Ans. (b) 

f’ (x)> 0 (∵ f(x) is an increasing function) 

g’(x)< 0  

(∵g(x) is a decreasing function) 

(g(f(x)))’= g’ (f(x)).f’(x) < 0 

∴g(f(x)) is a decreasing function. 

 

13. f: R⟶ R, f(x)=x|x| is 

(a) one-one and onto                                                          

(b) one-one but not onto  

(c) not one-one but onto                                                    

(d) neither one-one nor onto 

Ans. (a) 

𝑓(𝑥) =  {
−𝑥2, 𝑥 ≤ 0

𝑥2, 𝑥 ≥ 0
 

∴  𝑓′(𝑥) = {
−2𝑥2, 𝑥 ≤ 0
2𝑥, 𝑥 ≥ 0

  

∴ f’(x)=>0 ∴ f(x) is an increasing function 

and consequently it is a one –one function. 

Also f(−∞)= -∞, f(∞)=∞,  Hence range f= 

R 
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14. Let f(r) = 1+ 
𝟏

𝟐
 +
𝟏

𝟑
+⋯+

𝟏

𝒓
, 𝒕𝒉𝒆𝒏 ∑ 𝒇(𝒊)𝒏

𝒊=𝟏 = 

(a) (n+1) f(n)-(n- 1)           (b) (n+ 1) f(n)- n        

(c) n f(n)- (n-1)          (d) (n-1) f(n) 

Ans. (b) 

f(1)+ f(2)+ …+f(n)= 1+ (1 +
1

2
) +

(1 +
1

2
+
1

3
) + ⋯(1 +

1

2
+
1

3
+⋯+

1

𝑛
) 

= 𝑛 +
(𝑛 − 1)

2
+
(𝑛 − 2)

3
+⋯

+
[𝑛 − (𝑛 − 1)]

𝑛
 

= 𝑛 (1 +
1

2
+
1

3
+⋯+

1

𝑛
)

− (
1

2
+
2

3
+⋯+

𝑛 − 1

𝑛
) 

= 𝑛𝑓(𝑛) − [(1 −
1

2
) + (1 −

1

3
) +⋯

+ (1 −
1

𝑛
)] 

= 𝑛𝑓(𝑛) − (𝑛 − 1) + 𝑓(𝑛) − 1

= (𝑛 + 1)𝑓(𝑛) − 𝑛 

15. The period of f(x) = 𝒆𝐬𝐢𝐧{𝒙} +

𝐬𝐢𝐧 (
𝝅

𝟐
[𝒙]) is ([.]) and {.} are the greatest 

integer function and fraction function 

(a) 1                                  (b) 4                               

(c) 2                                   (d) not periodic 

Ans. (b) 

Period of {x} i.e. x- [x] is 1 and period of 

sin (
𝜋

2
[𝑥])  𝑖𝑠 4 

L.C.M. of 1 and 4 is 4 

∴ Period of f(x) is 4 

16. If f(x) = (𝒂 − 𝒙𝒏)𝟏/𝒏, x > 0 and g(x)> x 

⋁x ∊R, then for all x > 0 

(a) g(g(x))= f(f(x))         (b)  g(g(x))>2 

f(f(x))          (c) g(g(x))< f(f(x))       (d) 

g(g(x))> f(f(x)) 

Ans. (d) 

f(x)= (𝑎 − 𝑥𝑛)1/𝑛, 𝑥 > 0 

∴ f(f(x))= f(y), where y= f(x)=  (1 − 𝑦𝑛)
1

𝑛 =

{1 − (𝑎 − 𝑥𝑛)} 
1

𝑛 =  𝑥, 𝑥 >  0 

Given, g(x)-> 0 ∀ x 𝜖 R 

∴ g(g(x))-g(x)> 0 ∀ x 𝜖 R 

[Putting g(x) in place of x] 

Adding we get, g(g(x))-x> 0 

⟹ g(g(x))> x ⟹g(g(x))> f(f(x)), x > 0 

[∵ f(f(x))= x, x > 0] 

17. Given, y= sgn(x), then 

(a) |x|= x sgn(x)                                                            

(b) sgn(sgn(x)) = sgn(x)  

(c) x= |x|sgn(x)                                                             

(d) all of (a), (b), (c) 

Ans. (d) 

𝑓(𝑥) = 𝑠𝑔𝑛(𝑥) =  {
1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

 

𝑥 𝑠𝑔𝑛 (𝑥) =  {
𝑥, 𝑥 > 0
0, 𝑥 = 0
−𝑥, 𝑥 < 0

=  |𝑥| 
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𝑠𝑔𝑛 (𝑠𝑔𝑛(𝑥)) =  {

𝑠𝑔𝑛(1), 𝑥 > 0

𝑠𝑔𝑛(0), 𝑥 = 0

𝑠𝑔𝑛(−1), 𝑥 < 0

=  {
1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

= 𝑠𝑔𝑛(𝑥) 

|𝑥|𝑠𝑔𝑛(𝑥) =  {
𝑥, 𝑥 > 0
0, 𝑥 = 0
𝑥, 𝑥 < 0

= 𝑥, ∀ 𝑥 𝜖 𝑅 

18. For positive real numbers 

𝒂𝟏, 𝒂𝟐, …… . 𝒂𝟏𝟎𝟎, let P= ∑ 𝒂𝒊
𝟏𝟎𝟎
𝒊=𝟏  𝒂𝒏𝒅 𝒒 =

 ∑ 𝒂𝒊𝒂𝒋𝟏≤𝒊≤𝒋≤𝟏𝟎𝟎  , then 

(a) q =
𝑷𝟐

𝟐
                           (b) 𝒒𝟐 ≤

𝑷𝟐

𝟐
                       

(c) q < 
𝑷𝟐

𝟐
                             (d) none 

Ans. (c) 𝑎1 + 𝑎2 +⋯… .+𝑎100 = P, 

𝑃2= (𝑎1 + 𝑎2 +⋯… .+𝑎100)
2= ∑ 𝑎𝑖

100
𝑖=1

2
+

2∑ 𝑎𝑖𝑎𝑗
100
𝑖<𝑗  

∴ 𝑃2- 2q  ≥ 0 [∵∑ 𝑎𝑖
100
𝑖=1

2
≥ 0] 

∴ q ≤
𝑃2

2
   . 

19. Number of integral terms in the 

expansion of (√𝟔 + √𝟕)𝟑𝟐= 

(a) 15                                    (b) 17                                  

(c) 19                            (d) none 

Ans. (b) (√6 + √7)32 =

 ∑ 32𝑐𝑟
32
𝑟=0 . 6

𝑟

2. 7
32−𝑟

2  

For integral terms 
𝑟

2
 and 

32−𝑟

2
 both are 

integers and w is in turn possible if 
𝑟

2
 is an 

integer. 

∴ r = 0, 2, 4,…, 32 means r can take 17 

different values. 

 

20. Let P is an odd prime and n= 1+p!, 

then total number of prime in the list n+1, 

n+2, n+3, ……, n+p-1 is equal to 

(a) P- 3                           (b) P- 5                          

(c) 0                                   (d) none 

Ans. (c) ∵ n= 1+p! 

∴ n+ r= (r+1)+p! 

If 1 ≤ 𝑟 ≤ 𝑝 − 1, 𝑡ℎ𝑒𝑛 2 ≤ 𝑟 + 1 ≤ 𝑝 and 

clearly, 

(n+ r) is divisible by r+1. ∴ n+ r can’t be a 

prime 

Hence, there is no prime in the given list. 

 

21. Let f : (0, +∞) → 𝑹 𝒂𝒏𝒅 𝑭(𝒙) =

∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
 𝒊𝒇 𝑭(𝒙𝟐) = 𝒙𝟐(𝟏 + 𝒙), then f(4) 

equals 

(a) 5/4                                 (b) 7                                  

(c) 4                                       (d) 2 

Ans. (c) 

We have, f(𝑥2)= ∫ 𝑓(𝑡)
𝑥2

0
 𝑑𝑡 =  𝑥2 + 𝑥3 

Differentiating both sides, we get; 

f(𝑥2).2𝑥 = 2𝑥 + 3𝑥2 

⟹ f(𝑥2)= 1+(3/2)x 

⟹ f(4)= 1+3/2(2)= 4 

 

22. The equation of a curve is y= f(x). The 

tangents at (𝛼, f(𝛼)), (𝛽,f(𝛽)) and (𝛾, f(𝛾)) 
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make angles 
𝝅

𝟔
,
𝝅

𝟑
,
𝝅

𝟒
 respectively with the 

positive direction of the x- axis. Then the 

value of 

∫ 𝒇′(𝒙). 𝒇′′(𝒙)𝒅𝒙
𝜸

𝜷
+ ∫ 𝒇′′(𝒙)𝒅𝒙

𝜸

𝜶
 is equal 

to 

(a) −
𝟏

√𝟑
                           (b) 

𝟏

√𝟑
                                

(c) 0                             (d) none of 

these 

Ans. (a) 

Given, 𝑓′(𝛼) =
1

√3
, 𝑓′(𝛽) =  √3, 𝑓′(𝛾) = 1 

Now ∫ 𝑓′(𝑥)𝑓′′(𝑥)
𝛾

0
𝑑𝑥 + ∫ 𝑓′′(𝑥)

𝛾

𝛼
 𝑑𝑥 =

[
1

2
(𝑓′(𝑥))

2
] 𝛾
𝛽
+ [𝑓′(𝑥)] 𝛾

𝛼
=
1

2
(𝑓′(𝑦))

2
−

1

2
{𝑓′(𝛽)}2 + 𝑓′(𝛾) − 𝑓′(𝛼) =

1

2
(1 − 3) +

1 −
1

√3
= −

1

√3
 

 

23. A rod of length 10ft sides with ends on 

the co-ordinates axes. If the end on x-axis 

moves with constant velocity of 2ft/ 

minute, then the magnitude of the velocity 

of the middle point at the instant the rod 

makes an angle of 30° with x-axis is 

(a) 2ft / sec                    (b) 3 ft / sec                        

(c) √𝟑 ft / sec                     (d) none of these 

Ans. (a) 

Let AB be the position of rod at any time t 

and p be its middle point. 

Let OA= x, OB= y, then P ≡ (
𝑥

2
,
𝑦

2
) 

𝑥2 + 𝑦2 =  102 

                                                                    

∴2𝑥
𝑑𝑥

𝑑𝑡
+ 2𝑦

𝑑𝑦

𝑑𝑡
= 0 

𝑑𝑦

𝑑𝑡
=  −

𝑥

𝑦

𝑑𝑥

𝑑𝑡
=  −

𝑥

𝑦
. 2  

𝑤ℎ𝑒𝑛 𝜃 = 30°,
𝑥

𝑦
= cot 30° =  √3 

∴
𝑑𝑦

𝑑𝑡
=  −2√3𝑓𝑡/𝑠𝑒𝑐 

𝑛𝑜𝑤 𝑉 =  √(
1

2

𝑑𝑥

𝑑𝑡
)
2

+ (
1

2

𝑑𝑦

𝑑𝑡
)
2

=
1

2
√22 + 12 = 2 𝑓𝑡/𝑠𝑒𝑐 

 

24. Two persons are moving on the curve  

𝒙𝟑 + 𝒚𝟑 = 𝒂𝟑. When the position of first 

and second persons are (𝛼, 𝛽) and (𝛾, 𝛿) 

the second persons is in the direction of 

the instantaneous motion, then  

(a) 
𝜸

𝜶
+
𝜹

𝜷
+ 𝟏 = 𝟎              (b) 

𝜶

𝜸
+
𝜷

𝜹
− 𝟏 =

𝟎               (c) 𝛼𝛾 +𝛽𝛿 = 1               (d) none 

of these 

Ans. (a) 

Given curve is 𝑥3 + 𝑦3 = 𝑎3……….(1) 

Let P≡ (𝛼, 𝛽), 𝑄 ≡ (𝛾, 𝛿) 

Since P and Q lie on(1) 

∴𝛼3 + 𝛽3 = 𝑎2 𝑎𝑛𝑑 𝛾3 + 𝛿3 = 𝑎2 

 𝛼3 − 𝛾3 = 𝛿3 − 𝛽3……………(2) 

From(1), 
𝑑𝑦

𝑑𝑥
= −

𝑥2

𝑦2
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Equation of tangent at P(𝛼, 𝛽) 𝑖𝑠 𝑦 −  𝛽 =
𝛼2

𝛽2
(𝑥 − 𝛼)…………(3) 

According to question, (3) passes through 

Q ∴ 𝛼2(𝛼 − 𝛾) = 𝛽2(𝛿 − 𝛽) ……(4) 

𝛼2 + 𝛾2 +𝛼𝛾

𝛼2
=
𝛽2 + 𝛿2 + 𝛽𝛽

𝛽2

⟹ 1+
𝛾2

𝛼2
+
𝛾

𝛼

= 1 +
𝛿2

𝛽2
+
𝛿

𝛽
 

⟹ (
𝛾

𝛼
)
2

− (
𝛿

𝛽
)
2

= (
𝛾

𝛼
−
𝛿

𝛽
) ⟹ 

𝛾

𝛼
−
𝛿

𝛽
+ 1

= 0[∵
𝛾

𝛼
≠
𝛿

𝛽
] 

25. The triangle formed by the tangents to 

the curve f(x) = 𝒙𝟐 + 𝒃𝒙 − 𝒃 at the point 

(1, 1) and the co-ordinate on the first 

quadrant. If its area is 2 then the value of 

b is 

(a) -1                                     (b) 3                                   

(c) -3                                    (d) 1 

Ans. (c) 
𝑑𝑦

𝑑𝑥
= 2𝑥 + 𝑏 

∴ The equation of the tangent at (1, 1) is 

y-1= (2+b)(x-1)  

or (2+b)x- y= 1+ b 

∴ OA= 
1+𝑏

2+𝑏
 𝑎𝑛𝑑 𝑂𝐵 = −(1 + 𝑏) 

Since 𝛥 AOB lies in the first quadrant, 

∴ 
1+𝑏

2+𝑏
> 0𝑎𝑛𝑑 1 + 𝑏 < 0 

∴1+b < 0, 2+b < 0⟹ b < -2………..(1) 

Now, area (𝛥AOB)= 2 

∴ 2= 
1

2
 .
1+𝑏

2+𝑏
{−(1 + 𝑏)} 

or, 4(2+b)+ (1 + 𝑏)2 = 0 

or,  𝑏2 + 6𝑏 + 9 = 0 

Or (𝑏 + 3)2 = 0 

∴ b= -3 > 1 

 

26. If 2a+ 3b +6c = 0, then equation 𝒂𝒙𝟐 +

𝒃𝒙 + 𝒄 = 𝟎 has at least one root in  

(a) (-1, 1)                       (b) (1, 2)                        

(c) (-1, 0)                          (d) (2, 3) 

Ans. (a) 

Let f’(x) = a𝑥2 + 𝑏𝑥 + 𝑐, then 

f(x) = 
𝑎𝑥3

3
+
𝑏𝑥2

2
+ 𝑐𝑥 =

2𝑎𝑥3+3𝑏𝑥2+6𝑐𝑥

6
   

𝑓(1) =
2𝑎 + 3𝑏 + 6𝑐

6
= 0, 𝑓(0) = 0 

∴ f(0)= f(1)   ∴ there exists 𝛼, 0< 𝛼 < 1 such 

that f’ (𝛼)= 0 

i.e., equation a𝑥2 + 𝑏𝑥 + 𝑐 = 0 has at least 

one root in (0, 1). 

 

27. If ur denotes the number of one–one 

functions from 

{𝒙𝟏, 𝒙𝟐, … , 𝒙𝒓} 𝒕𝒐 {𝒚𝟏, 𝒚𝟐, … , 𝒚𝒓} such that 

f(𝒙𝒊) ≠ 𝒚𝒊, for i= 1, 2, 3, …, r then 𝒖𝟒 = 

(a) 9                                  (b) 44                             

(c) 265                             (d) none of these 

Ans. (a) 
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𝑢𝑟 = number of ways of putting  

𝑥1, 𝑥2, … , 𝑥𝑟 in r corresponding place so that 

no 𝑥1 is put in the corresponding place 

= |r̲(
1

|2̲̲̲
̲̲̲
̲̲̲
̲̲̲

̲
−

1

|3̲̲̲
̲̲̲
̲̲̲
̲
+⋯+

(−1)𝑟

|𝑟̲̲̲
) 

∴𝑢𝑟 = |4̲

(

 
 
 
1

|2̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲

̲
−

1

|3̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲

̲
+

1

|4̲̲̲
̲̲̲
̲
̲

)

 
 
 

=  12 − 4 + 1 

 

28. Number of positive unequal integral 

solutions of equation x+ y+ z = 6 is 

(a) 4!                                 (b) 3!                               

(c) 6!                                    (d) 2×4! 

Ans. (b) 

Given x+ y+ z = 6 …….(1) 

x, y, z ∊ N and are unequal. 

⟹ x, y, z ∊ {1, 2, 3} and are unequal 

∴ Required number of solutions= 3! = 6 

 

29. The plain containing the two straight 

lines r⃗= a⃗+ 𝜆b⃗ and r⃗= b⃗+ 𝜇a⃗ is  

(a) [r⃗   a⃗   b⃗] = 0                                                              

(b) [r⃗    a⃗    a⃗ × 𝒃⃗] = 0  

(c) [r⃗    b⃗     a⃗ × 𝒃⃗] = 0                                                   

(d) none 

Ans. (a) 

Given lines are r⃗ = a⃗ + 𝜆b⃗ …………..(1) 

r⃗ = b⃗ + 𝜇a⃗ ……………..(2) 

lines (1) and (2) intersect at (a⃗ + b⃗ ) 

Then the plane passes through (a⃗ + b⃗ ) 

Also, line (1) is parallel to b⃗ and line (2) is 

parallel to a⃗ ⟹ (a⃗ ×b⃗ ) is normal to plane 

containing these lines. 

∴ Eqn. of reqd. plane is 

[r⃗ - (a⃗ +b⃗ )].(a⃗ ×b⃗ ) = 0 

r⃗(a⃗ ×b⃗ ) - (a⃗ +b⃗ ). (a⃗ ×b⃗) = 0 

⟹ [r⃗ a⃗ b⃗] = 0 

 

30. Let a⃗= 2î + ĵ - 2k̂ and b⃗= î + ĵ . If c⃗ is 

a vector such that a⃗.c⃗ = |c⃗|, |c⃗-a⃗| = 2√𝟐 

and     angle between | (a⃗× 𝒃⃗) × 𝒄⃗| = 

(a) 2/3                              (b) 1/3                           

(c) 3/2                                (d) 1 

 Ans. (c) 

Given a⃗ = 2 î+ ĵ- 2 k̂ 

b⃗= î+ ĵ 

a⃗ .c⃗=|c⃗|……………(1) 

|c⃗-a⃗|= 2√2 …………….(2) 

Angle between (a⃗ ×b⃗ ) and c⃗= 
𝜋

6
 

Now,  

 |(a⃗ ×b⃗ )× 𝑐⃗|= |a⃗ ×b⃗ ||c⃗|sin 
𝜋

6
=

3

2
|𝑐⃗|……(3) 



 Challenging Mathematical Problems  

85 
 

From (3), |𝑐 − 𝑎⃗|2 = 8 

⟹(𝑐 − 𝑎⃗).( 𝑐 − 𝑎⃗)= 8 

⟹|𝑐|2 + |𝑎⃗|2 − 2𝑎⃗. 𝑐 = 8 

⟹ |𝑐|2 + 9 − 2|𝑐| = 8 (from (1)) 

∴  |𝑐| = 1 

From (3), |(a⃗ ×b⃗ )× 𝑐⃗ | =  
3

2
 . 

 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS 

 

 

Q1. How many natural numbers less than 

𝟏𝟎𝟖 are there, whose sum of digits equals 7? 

Solution:- 

We need to count the no. of solutions of 𝑥1 +

𝑥2 +⋯+ 𝑥8 = 7 

Which satisfies 0 ≤ 𝑥𝑖 ≤ 7, i= 1, 2, 3, …, 8   

……………….(1) 

The number of solution of (1) is= coefficient of 

𝑥7 in (1 + 𝑥 + 𝑥2 +⋯+ 𝑥7)8 

= 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥7 𝑖𝑛 (1 − 𝑥8)8 (1 − 𝑥)8 

= coefficient of 𝑥7 in (1 − 8𝑥8)(1 + 8𝑐1𝑥 +

4𝑐2𝑥
2 +  10𝑐3𝑘 +⋯) 

= 14𝑐7 

= 3432.   (𝐴𝑛𝑠) 

 

Q2. Find the number of positive integers 

less than or equal to 6300 which are not 

divisible by 3, 5 and 7. 

Solution:- S= {1, 2, 3, …, 6300} 

Let A: Set of integers divisible by 3 

       B: Set of integers divisible by 5 

        C: Set of integers divisible by 7 

We are to find:- n(s) – n(A∪ B∪ C) = n(S) – 

[n(A)+n(B) +n(C) – n(A ∩ B)- n(B ∩ C)- 

n(A ∩ C)+ n(A∩ B∩ C)] 

= 6300 − {[
6300

3
] + [

6300

5
] + [

6300

7
] −

 [
6300

3×5
] − [

6300

5×7
] − [

6300

3×7
] + [

6300

3×5×7
]} 

𝑖. 𝑒. , 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶)𝑐 = 2880. 

 

Q3. If c is a real number with 0 < c < 1, then 

show that the values taken by the function 

 y = 
𝒙𝟐+𝟐𝒙+𝒄

𝒙𝟐+𝟒𝒙+𝟑𝒄
 , as x varies over real numbers, 

range over all real numbers. 

Solution:- 

𝑦 =
𝑥2 + 2𝑥 + 𝑐

𝑥2 + 4𝑥 + 3𝑐
;  

⟾ 𝑥2𝑦 + 4𝑥𝑦 + 3𝑐𝑦 =  𝑥2 + 2𝑥 + 𝑐 

⟾ (𝑦 − 1)𝑥2 + 2𝑥(2𝑦 − 1) + 𝑐(3𝑦 − 1)

= 0   [∵ 𝑥 𝑖𝑠 𝑟𝑒𝑎𝑙] 

∴ {2(2𝑦 − 1)}2 − 4(𝑦 − 1). 𝑐(3𝑦 − 1) ≥ 0 

⟾ 𝑐 ≤
(2𝑦 − 1)2

(𝑦 − 1)(3𝑦 − 1)
    ∵ 0 < 𝑐 < 1, 

𝑆𝑜,
1

3
< 𝑦 < 1. 

SET – 1 
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Q4. Let X = {0, 1, 2, 3, …, 99}. For a, b in X, 

we define a * b to be the remainder obtained 

by dividing the product ab by 100. For 

example, 9*18 = 62 and 7*5 = 35. Let x be an 

element in X. An element y in X is called the 

inverse and write down their inverses. 

Solution:- x*y = 1, ⟹ xy = 100k +1 for x = {0, 

1, 2, …, 99} 

(1) For x = 1, y = 1, x * y = 100k + where x 

= c 

∴ Inverse of 1 is 1. 

(2) There is no integral multiple of 2, 4, 5, 6 

having 1 at unit place, ⟹ 2, 4, 5, 6 have 

no inverse. 

(3) 3 and 7 can have inverses 

(i) For x= 3 , 3 y = 1 i.e. 3y = 100k +1 

The least k satisfying is 2, i.e. 3y = 201, y = 67 

and the next k satisfying is 5, i.e. 3y = 167 but 

167 ∉ X. 

∴ 3 has only inverse = 67. 

(ii) For x = 7, y = 1, i.e. 7y = 100k +1 

The least k satisfying is Ʒ, i.e. 7y = 301, y 43 

The next k satisfying is ID, i.e. 7y = 1001, y = 

143 but 143 ∉ X. 

∴ 7 has only inverse = 43. 

 

Q5. Evaluate 𝐥𝐢𝐦
𝒏→∞

  {
𝟏

𝒏+𝟏
+

𝟏

𝒏+𝟐
+ …+

𝟏

𝒏+𝒏
}. 

Solution:- 

  Lt
𝑛 →∞

 
1

𝑛
[
1

1+
1

𝑛

+
1

1+
2

𝑛

+⋯+
1

1+
𝑛

𝑛

] 

= lt
𝑛 →∞

 
1

𝑛
 ∑

1

1 +
𝑟
𝑛

𝑛

𝑟=1

= ∫
𝑑𝑥

1 + 𝑥

1

0

= [log𝑒(1 + 𝑥)]
1

0
=  log𝑒 2. 

Q6. Tangents are drawn to a given circle 

from a point on a given straight line, which 

does not meet the given circle. Prove that the 

locus of the mid-point of the chord joining the 

two points of contact of the tangents with 

circle is a circle. 

Solution:-   Slope of OM = k/h    [taking centre 

(0, 0)] 

∴Slope of AB = - h/k .      [∵ AB ⏊ OM] 

∴ Equation of AB, whose slope is –h/k and 

which passes through the point (h, k) is y –k = 
ℎ

𝑘
(𝑥 − ℎ) 

or, ℎ𝑥 + 𝑘𝑦 =  ℎ2 + 𝑘2 ………… (1) 

And equation of AP, the tangent is 𝑥𝑥1 + 𝑦𝑦1 =

 𝑎2 ………… (2) 

 

∴ From (1) and (2) , we have, 

𝑥1
ℎ
=
𝑦1
𝑘
=

𝑎2

ℎ2 + 𝑘2
 

∴ 𝑥1 =
ℎ𝑎2

ℎ2+𝑘2
, 𝑦1 = 

𝑘𝑎2

ℎ2+𝑘2
. 

∴ Put these values of 𝑥1 𝑎𝑛𝑑 𝑦1 𝑖𝑛 𝑙𝑥1 +𝑚𝑦1 +

𝑛 = 0 

We get, 𝑙.
ℎ𝑎2

ℎ2+𝑘2
+𝑚.

𝑘𝑎2

ℎ2+𝑘2
+ 𝑛 = 0 

⟾ 𝑙ℎ𝑎2 +𝑚𝑘𝑎2 + 𝑛(ℎ2 + 𝑘2) = 0 
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⟾ ℎ2 + 𝑘2 +
𝑙𝑎2

𝑛
ℎ +

𝑚𝑎2

𝑛
𝑘 = 0, i.e. the 

required focus of M. 

So, the equation of the circle is 𝑥2 + 𝑦2 +
𝑙𝑎2

𝑛
𝑥 +

𝑚𝑎2

𝑛
𝑦 = 0. 

Q7. Draw the graph (on plain paper) of f(x) = 

min {|x| - 1, |x -1|- 1, |x- 2| - 1}. 

Solution:-  y  = │x│ -1  

                      = {
𝑥 − 1,𝑤ℎ𝑒𝑛 𝑥 ≥ 0
−𝑥 − 1,𝑤ℎ𝑒𝑛 𝑥 < 0

 

Z  = │x -1│ -1  

    = {
𝑥 − 1 − 1,𝑤ℎ𝑒𝑛 𝑥 ≥ 1
−𝑥 + 1 − 1,𝑤ℎ𝑒𝑛 𝑥 < 1

 

W  = │x- 2│-1 

     = {
𝑥 − 2 − 1,𝑤ℎ𝑒𝑛 𝑥 ≥ 2
−𝑥 + 2 − 1,𝑤ℎ𝑒𝑛 𝑥 < 2

 

 

 

Q8. Let {𝑪𝒏} be an infinite sequence of circles 

lying in the positive quadrant of the XY –

plane, with strictly decreasing radii and 

satisfying the following conditions. Each 𝑪𝒏 

touches both X-axis and the Y-axis. Further, 

for all n ≥ 1, the circle 𝑪𝒏+𝟏 touches the circle 

𝑪𝒏 externally. If 𝑪𝟏 has radius 10cm, then 

show that the sum of the areas of all these 

circles is 
𝟐𝟓𝝅

𝟑√𝟐−𝟒
sq. cm. 

Solution:-                                           𝑂𝑂1 =

𝑅1√2  ∴ 𝑂𝑃2 = 𝑅1√2 − 𝑅1 

∴ 𝑂𝑄 = 𝑅1√2 + 𝑅1 = 𝑅1(√2 + 1) 

∴  𝑅1 =
𝑂𝑄

√2 + 1
, 𝑛𝑜𝑤, 𝑂𝑃 =  𝑅2(√2 + 1), 𝑅2

=
𝑂𝑃

√2
=  𝑅1

√2 − 1

√2 + 1
 

∴ 𝑅3 = 𝑅2
√2−1

√2+1
= 𝑅1 (

√2−1

√2+1
)
2

 

 ∴ 𝐴𝑟𝑒𝑎 =  𝜋(𝑅1
2 + 𝑅2

2 +⋯+∝) 

 = 𝜋 {𝑅1
2 + 𝑅1

2 (
√2−1

√2+1
)
2

+ 𝑅1
2 (

√2−1

√2+1
)
4

+

⋯+∝} 

   = 𝜋𝑅1
2 {1 + (

√2−1

√2+1
)
2

+ (
√2−1

√2+1
)
4

+⋯+∝} 

    = 𝜋𝑅1
2 {

1

1−(
√2−1

√2+1
)
2} = 𝜋𝑅1

2 (
3+2√2

4√2
) =

 𝜋𝑅1
2 (

3√2+4

8
) 

     =
𝜋

8
 𝑅1

2 (
18−16

3√2−4
) =

𝜋

4
. 100.

1

3√2−4
  𝑠𝑞. 𝑐𝑚  [∵

𝑅1 = 10𝑐𝑚. ] 

    =
25𝜋

3√2−4
𝑠𝑞. 𝑐𝑚 [𝑝𝑟𝑜𝑣𝑒𝑑] 

 

 

 

Q9. Consider the system of equations x + y = 

2, ax + y = b. Find conditions on a and b 

under which 
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(i) the system has exactly one solution; 

(ii) the system has no solution; 

(iii) The system has more than one solution. 

Solution:- 

𝛥= |
1 1
𝑎 1

| = 1 − 𝑎; 𝛥1 = |
2 1
𝑏 𝑎

| = 2𝑎 −

𝑏 ; 𝛥2 = |
1 2
𝑎 𝑏

| = 𝑏 − 2𝑎. 

(i) For exactly one solution, 𝛥≠ 0 i.e. 1 

–a ≠ 0 ⟾ a ≠ 1. 

(ii) For no solution, 𝛥 = 0, i.e. a = 1, 

𝛥1 ≠ 0, 𝛥2 ≠ 0. i.e. 2a ≠ b. 

(iii) For more than one solution, 𝛥=  

𝛥1 = 𝛥2 = 0, a = 1, b = 2. 

 

Q10. Let {𝒙𝒏} b e a sequence such that 𝒙𝟏 =

𝟐,  𝒙𝟐 = 𝟏 𝒂𝒏𝒅 𝟐𝒙𝒏 − 𝟑𝒙𝒏−𝟏 + 𝒙𝒏−𝟐 = 𝟎 

For n > 2.  Find an expression for 𝒙𝒏 . 

Solution:-  𝑥1 = 2, 𝑥2 = 1, 2𝑥𝑛 − 3𝑥𝑛−1 +

𝑥𝑛−2 = 0. 

Let, 𝑥𝑛 = 𝑘𝑎
𝑛, ∴ 2𝑘𝑎𝑛 − 3𝑘𝑎𝑛−1 + 𝑘𝑎𝑛−2 = 0 

or, 2𝑎2 − 3𝑎 + 1 = 0 

or, (2a- 1)(a- 1) = 0 

or, 𝑎1 =
1

2
, 𝑎2 = 1. 

∴𝑥1 = 𝑘1𝑎1
𝑛 + 𝑘2𝑎2

𝑛 = 𝑘1 (
1

2
)
𝑛
+ 𝑘2(1)

𝑛. 

Again, 𝑥1 = 2 = 𝑘1 (
1

2
) ≠ 𝑘2(1)

1 =
𝑘1

2
+

𝑘2 …………… (1) 

And     𝑥2 = 1 =  𝑘2 (
1

2
)
2
+ 𝑘2(1)

1 =
𝑘1

4
+ 𝑘2   

…………. (2) 

From (1) And (2), we get 𝑘1 = 4, 𝑘2 = 0.  

∴𝑥𝑛 = 4(
1

2
)
𝑛
=

1

2𝑛−2
. 

 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

SET – 2 

 

Q1. A vessel contains x gallons of wine 

and another contains y gallons of water. 

From each vessel z gallons are taken out 

and transferred to the other. From the 

resulting mixture in each vessel, z gallons 

are again take out and transferred to the 

other. If after the second transfer, the 

quantity of wine in each vessel remains 

the same as it was after the first transfer, 

then show that z (x + y) = x y. 

  Hints:-  
𝑥−𝑧

𝑥
=

𝑧

𝑦
   ⇰ 𝑥𝑦 − 𝑧𝑦 = 𝑧𝑥  ⇰𝑥𝑦 =

𝑧(𝑥 + 𝑦) [Proved] 

 

Q2. Suppose k, n are integers  ≥ 1. Show that 

(k. n)! is divisible by (𝒌!)𝒏. 

Solution: We write the numbers from 1 to kn in 

k rows of n numbers each as follows: 

1,  2,  3,  ….,  n 

n+1,  n+2 , n+3, ….., 2n 

2n + 1, 2n +2,  2n +3,…….., 3n 

⁞ 

kn – n+1, kn – n+2, kn –n + 3, ……, kn  
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Since each row has n consecutive positive 

integers, the product of the numbers in each row 

is divisible by n!. The product of all the numbers 

(kn)! Is divisible by (𝑛!)𝑘 . 

Q3. All the permutations of the letters a, b, c, 

d, e are written down and arranged in 

alphabetical order as in a dictionary. Thus 

the arrangement abcde is in the first position 

and abced is in the second position. What is 

the position of the arrangement debac? 

Solution:- 

Words starting with ‘a’ ⟶ 4! 

″              ″               ″     ‘b’ ⟶ 4! 

″ ″ ″       ‘c’ ⟶ 4! 

″ ″ ″          ‘d’ ⟶ 3! + 3! + 3! + 3! 

(i.e. da ⟶ 3!, db ⟶ 3!, dc ⟶ 3!, de ⟶ 3!) 

Total no. of words before debac including it is =  

3 × 4! + 3 × 3! + 3 = 93. 

Q4. (i) Determine m so that the equation 𝒙𝟒 −

 (𝟑𝒎+ 𝟐)𝒙𝟐 +𝒎𝟐 = 𝟎 has four real roots in 

arithmetic progression. 

(ii)Let a and b be two real numbers. If the 

roots of the equation 𝒙𝟐 − 𝒂𝒙 − 𝒃 = 𝟎 have 

absolute value less than one, show that each 

of the following conditions holds: 

(i) |b| < 1,  (ii) a+ b <1   and (iii) b  - a <1. 

Solution:- 

(i) 𝑥4 − (3𝑚 + 1)𝑥2 +𝑚2 = 0 

Let four roots 

be 𝛼 - 3𝛽, 𝛼 – 

𝛽, 𝛼+ 𝛽, 𝛼+ 

3𝛽. 

So, sum of roots = coefficient of x = 0 

∴ 𝛼 = 0. 

So, roots are -3𝛽, -𝛽, 𝛽, 3𝛽. 

∴ −3𝛽2 + 3𝛽2 − 9𝛽2 − 𝛽2 − 3𝛽2 + 3𝛽2 =

 −(3𝑚 + 1) 

⟾−10𝛽2 = −(3𝑚 + 1) 

∴ 𝛽2 =
3𝑚 + 1

10
. 

Also, 9𝛽4 = 𝑚2 

∴ 9 (
3𝑚 + 1

10
)
2

=  𝑚2 

⟾ 9𝑚+ 3 = ±10𝑚 ⟾ 𝑚 = 3,−
3

19
. 

(ii)𝑥2 − 𝑎𝑥 − 𝑏 = 0 

Let roots be 𝛼, 𝛽, ∣𝛼∣ <1, ∣𝛽∣ <1, 

∴∣𝛼 +𝛽∣ ≤ ∣𝛼∣ + ∣𝛽∣ <2, as ∣𝛼∣ <2, or ∣𝛼∣ ∣𝛽∣ <1 

Or, ∣𝛼𝛽∣ <1 

∴ ∣b∣ <1 

Again, ab <2, ∣b∣ -∣a∣ <1, and ∣b∣ -∣a∣ ≤∣ b- a∣ 

∴ b –a <1 and b+ a< 1. 

 

Q5. Let a and b be real numbers such that the 

equations 2x + 3y = 4 and ax – by = 7 have 

exactly one solution. Then, show that the 

equations 12x – 8y = 9 and bx + ay = 0 also 

have exactly one solution. 

Solution:- 

2𝑥 + 3𝑦 = 4
𝑎𝑥 − 𝑏𝑦 = 7

} ________________ (i) 

 A B C D E F 

A × 0 ② 0 ② ② 

B 2 × 2 2 0 2 

C 0 0 × 2⃞ 2⃞ 0 

D 2 0 0 × 2 2 

E 0 2 0 0 × 2 

F 0 0 2 0 0 × 
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∴ 𝛥1 = |
2 3
𝑎 −𝑏

| ≠ 0, since 

it has only one solution. 

⟾ - (3a+2b) ≠ 0⟾ (3a+2b) 

≠0. 

12𝑥 − 8𝑦 = 7
𝑏𝑥 + 𝑎𝑦 = 0

} __________ 

(ii) 

∴  𝛥2 = |
12 −8
𝑏 𝑎

| = 4(3𝑎 + 2𝑏), since 

(3a+2b) ≠0, 

So, 𝛥2≠0; So, the equations in (ii) has only one 

solution. 

Q6. In a competition, six teams A, B, C, D, E, 

F play each other in the preliminary round –

called round robin tournament. Each game 

ends either in a win or a loss. The winner is 

awared two points while the loser is awared 

zero points. After the round robin 

tournament, the three teams with the highest 

scores move to the final round. Based on the 

following information, find the score of each 

team at the end of the round robin 

tournament. 

(i) In the game between E and F, team E won. 

(ii) After each team had played four games, 

team A had 6 points, team B had 8 points and 

team C had 4 points. The remaining matches 

yet to be played were 

(i)Between A and D; 

(ii)Between B and E; and 

(iii)Between C and F. 

(iv)The teams D, E and F had won their 

games against A, B and C respectively. 

(v)Teams A, B and D had moved to the final 

round of the tournament. 

Solution:- 

Steps:- 

1. First use (i) then (iii) 

2. Since after 4 games, B had 8 pts. And B 

lost to E later, so B had won against A, 

C, D, F. 

3. Since A had 6 pts. After 4 games and A 

had lost to B had D, so A won against C, 

E and F. 

4. C had 4 pts. After 4 games. So, C won 

against D and E. 

5. Since A, B and D moved to final round 

and total 4 pts, so D must have won the 

games against E and F. 

 

Q7. If A = ∫
𝒄𝒐𝒔𝒙

(𝒙+𝟐)𝟐
𝝅

𝟎
𝒅𝒙,  

𝒕𝒉𝒆𝒏 𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 ∫  
𝒔𝒊𝒏𝒙 𝒄𝒐𝒔𝒙

(𝒙+𝟏)

𝝅/𝟐

𝟎
𝒅𝒙 =

𝟏

𝟐
(
𝟏

𝟐
+

𝟏

𝝅+𝟐
−𝑨). 

Solution:- 

∫
𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥

(𝑥 + 1)

𝜋
2

0

𝑑𝑥 

=
1

2
∫

𝑠𝑖𝑛2𝑥

(𝑥 + 1)

𝜋
2

0

𝑑𝑥 

=
1

2
∫

𝑠𝑖𝑛𝑧
𝑧
2 + 1

𝜋

0

.
𝑑𝑧

2
                             

=
1

2
∫

𝑠𝑖𝑛𝑧 𝑑𝑧

𝑧 + 2

𝜋

0

= −
1

2
.∫

𝑐𝑜𝑠𝑧

(𝑧 + 2)2

𝜋
2

0

𝑑𝑧 

=
1

2
(
1

𝜋 + 2
+
1

2
) −

1

2
𝐴 

=
1

2
(
1

2
+

1

𝜋 + 2
− 𝐴) 

Final 

score 

6 

8 

4 

6 

4 

2 
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Q8. If a, b and c are the lengths of the sides of 

a triangle ABC and if 𝒑𝟏, 𝒑𝟐 𝒂𝒏𝒅 𝒑𝟑 are the 

lengths of the perpendiculars drawn from the 

circumcentre onto the sides BC, CA and AB 

respectively, then show that 

𝒂

𝒑𝟏
+
𝒃

𝒑𝟐
+
𝒄

𝒑𝟑
=

𝒂𝒃𝒄

𝟒𝒑𝟏𝒑𝟐𝒑𝟑
. 

 

Solution:- As 𝑃1, 𝑃2, 𝑃3 are the lengths of the 

perpendiculars drawn from the circum centre O 

to the sides of length a, b, c respectively, then 

from the diagram. D, E, F are the mid points of 

BC, CA, AB respectively. 

Hence , in 𝛥BOD and 𝛥COD,  

 ⦟BDO =⦟CDO, BD = DC & OD is common. 

∴ 𝛥BOD ≡ 𝛥COD. 

 

 

Similarly, 𝛥COE ≡  

𝛥AOE and 𝛥AOF ≡  

𝛥BOF, 

⟾ ⦟BOD = ⦟COD= 𝜃, say 

⦟COE = ⦟AOE= 𝜙, say 

⦟ AOF = ⦟BOF= 𝜓, say. 

∴ ⦟BOD +⦟COD +⦟COE +⦟AOE +⦟AOF 

+⦟BOF = 2(𝜃+ 𝜙+ 𝜓) = 2𝛱 

∴𝜃+ 𝜙= 𝛱-𝜓  

⟾ tan (𝜃+ 𝜙)= tan (𝛱- 𝜓)= - tan 𝜓. 

Hence we can show, tan 𝜃+ tan 𝜙 +tan 𝜓 = 

tan𝜃tan𝜓tan𝜙 

i.e.,  
𝑎

2𝑝1
+

𝑏

2𝑝2
+

𝑐

2𝑝3
=

𝑎𝑏𝑐

8𝑝1𝑝2𝑝3
         𝑜𝑟,

𝑎

𝑝1
+

𝑏

𝑝2
+

𝑐

𝑝3
=

𝑎𝑏𝑐

4𝑝1𝑝2𝑝3
. 

Q9. (a) Study the derivatives of the function 

f(x) = 
𝒙+𝟏

(𝒙−𝟏)(𝒙−𝟕)
 to make conclusions about the 

behavior of the function as x ranges over all 

possible values for which the above formula 

for f(x) is meaningful. 

(b) Use the information obtained in (a) to 

draw a rough sketch of the graph of f(x) on 

plain paper.  

Solution:- f(x) = 
𝑥+1

(𝑥−1)(𝑥−7)
= −

1

3
.
1

𝑥+1
+
4

3
.
1

𝑥−7
. 

(a) f’(x) = 
1

3
.

1

(𝑥+1)2
−
4

3
.

1

(𝑥−7)2
 

For,  0 ≤ 𝑥 < −1, 𝑓 ′(𝑥)𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒;  

For, -∞ < x < 0, 𝑓 ′(𝑥) is negative; 

For, 0 < x <7, 𝑓 ′(𝑥) is 

negative; 

For, 7< x < ∞, 𝑓 ′(𝑥) is 

negative. 

(b) 

x 0 𝜋

2
 

z 0 𝜋 
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Q10. Show that there is exactly one value of x 

which satisfies the equation 

𝟐𝒄𝒐𝒔𝟐(𝒙𝟑 + 𝒙) =  𝟐𝒙 + 𝟐−𝒙. 

 

Solution:-  -1 ≤ 𝑐𝑜𝑠2(𝑥3 + 𝑥) ≤ 1  implying 

−2 ≤ 2𝑐𝑜𝑠2(𝑥3 + 𝑥) ≤ 2 

By AM ≥ GM inequality we have 2𝑥 + 2−𝑥 ≥ 2 

So 2𝑐𝑜𝑠2(𝑥3 + 𝑥) =  2𝑥 + 2−𝑥 = 2 satisfies 

when x = 0. 

So there is only one value of x = 0 which satisfy 

the given equation. 

 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

SET – 3 

 

Q1. Let P(x) =  𝒙𝒏 + 𝒂𝒏−𝟏𝒙
𝒏−𝟏 +

 𝒂𝒏−𝟐𝒙
𝒏−𝟐 +⋯+ 𝒂𝟏𝒙 + 𝒂𝟎 be a polynomial 

with integer coefficients, such that, P(0) and 

P(1) are odd integers. Show that:  

(a) P(x) does not have any even integer roots. 

(b) P(x) does not have any odd integer roots. 

Solution:- 

P(0) = 𝑎0= odd, P(1) = 1+ 𝑎𝑛−1 + 𝑎𝑛−2 +⋯+

𝑎0 = 𝑜𝑑𝑑 

(a) Case-I:- 

If x = 2m, then  

P(x) = 𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 +⋯+ 𝑎0= odd, as all 

the term containing x will be even but 𝑎0 = odd. 

⟹ x = 2m cannot be a root of the equation P(x) 

= 0 [proved] 

(b) Case-II:- 

If x = 2m+ 1 

𝑝𝑥 = 𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎0 = 𝑥
𝑛 +

𝑎𝑛−1(𝑒𝑣𝑒𝑛 + 1) + 𝑎𝑛−2(𝑒𝑣𝑒𝑛 + 1) +⋯+

𝑎1(𝑒𝑣𝑒𝑛 + 1)𝑎0 = 𝑥
𝑛 + 𝑎0 + (𝑎𝑛−1𝑒𝑣𝑒𝑛 +

 𝑎𝑛−2𝑒𝑣𝑒𝑛 +⋯+ 𝑎1𝑒𝑣𝑒𝑛) + (𝑎1 + 𝑏2 +⋯+

𝑎𝑛−1) =  𝑥
𝑛 + (𝑎𝑛−1𝑒𝑣𝑒𝑛 + 𝑎𝑛−2𝑒𝑣𝑒𝑛 +⋯+

𝑎1𝑒𝑣𝑒𝑛) + (𝑎0 + 𝑎1 +⋯+ 𝑎𝑛−1)  

= odd ⟹ x = (2m +1) cannot be a root of the 

equation P(x) = 0 [proved.] 

Q2. Let 𝒂𝟎 𝒂𝒏𝒅 𝒃𝟎 be any two positive 

integers. Define 𝒂𝒏, 𝒃𝒏 for n ≥ 1 using the 

relations 𝒂𝒏 = 𝒂𝒏−𝟏 + 𝟐𝒃𝒏−𝟏, 𝒃𝒏 = 𝒂𝒏−𝟏 +

𝒃𝒏−𝟏 𝒂𝒏𝒅 𝒍𝒆𝒕 𝒄𝒏 =
𝒂𝒏

𝒃𝒏
, for n= 0, 1, 2, … 

(a) Write (√𝟐 − 𝒄𝒏−𝟏) 𝒊𝒏 𝒕𝒆𝒓𝒎𝒔 𝒐𝒇 (√𝟐 −

𝒄𝒏). 

(b) Show that |√𝟐 − 𝒄𝒏+𝟏| < 
𝟏

𝟏+√𝟐
 |√𝟐 − 𝒄𝒏|. 

(c) Show that   𝐥𝐢𝐦
𝒏→∞

𝒄𝒏 = √𝟐 . 

Solution:- 
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𝑎𝑛 = 𝑎𝑛−1 + 2𝑏𝑛−1, 𝑏𝑛 = 𝑎𝑛−1 + 𝑏𝑛−1, 𝑐𝑛

=
𝑎𝑛
𝑏𝑛
. 

(a) √2 − 𝑐𝑛−1 = √2 −
𝑎𝑛−1

𝑏𝑛+1
 

= √2 −
𝑎𝑛 + 2𝑏𝑛
𝑎𝑛 + 𝑏𝑛

= √2 −

𝑎𝑛
𝑏𝑛
+ 2

𝑎𝑛
𝑏𝑛
+ 1

 

= √2 +
𝑐𝑛+2
𝑐𝑛−1

 

=
√2𝑐𝑛 + √2 − 𝑐𝑛 − 2

𝑐𝑛+1
 

=
(√2 − 1)𝑐𝑛 − √2(√2 − 1)

𝑐𝑛 + 1
 

=
(√2 − 1)(𝑐𝑛 − √2)

(𝑐𝑛+1)
. 

 

(b) 
│√2−𝑐𝑛+1│

│√2−𝑐𝑛│
=  │

1−√2

𝑐𝑛+1
│ =

1

(1+√2)(𝑐𝑛+1)
<

1

1+√2
 

⟾ │√2 − 𝑐𝑛 + 1│< 
1

1+√2
│√2 − 𝑐𝑛│ 

 

(c) lt
𝑛 →∞

  
𝑐𝑛−√2

𝑐𝑛+1+√2
= lt

𝑛 →∞
  
𝑐𝑛+1

1−√2
= 1. 

 

 

Q3. Let ABC be any triangle, right –angled at 

A, with D any point on the side AB. The line 

DE is drawn parallel to BC to meet the side 

AC at the point E. F is the foot of the 

perpendicular drawn from E to BC. If AD= 

𝒙𝟏, Db = 𝒙𝟐, BF = 𝒙𝟑, EF = 𝒙𝟒 and AE = 𝒙𝟓, 

then show that 

𝒙𝟏
𝒙𝟓
+
𝒙𝟐
𝒙𝟓
=
𝒙𝟏𝒙𝟑 + 𝒙𝟒𝒙𝟓
𝒙𝟑𝒙𝟓 − 𝒙𝟏𝒙𝟒

. 

Solution:- 

LHS = 
𝑥1

𝑥5
+
𝑥2

𝑥5
 =

𝑥1+𝑥2

𝑥5
 = 𝑡𝑎𝑛𝜃 = tan(𝜙 + 𝑐) =

𝑡𝑎𝑛𝑐+𝑡𝑎𝑛𝜙

1−𝑡𝑎𝑛𝑐 𝑡𝑎𝑛𝜙
  

=

𝑥1
𝑥5
+
𝑥4
𝑥3

1 −
𝑥1
𝑥5
.
𝑥4
𝑥3

  

 

=
𝑥1𝑥3 + 𝑥4𝑥5
𝑥3𝑥5 − 𝑥1𝑥4

. 

 

  

Q4. Let [x] denote the largest integer less than 

or equal to x. For example, [𝟒
𝟏

𝟐
] = 𝟒; [𝟒] = 𝟒. 

Draw a rough sketch of the graphs of the 

following functions on plain paper: 

(i) f(x) = [x] ; 

(ii) g(x) = x – [x];  

(iii) h(x)= 
𝟏

[𝒙]
. 

Solution:- (i)  

x y 

[0, 1) 

[1, 2) 

[2, 3) 

[3, 4) 

⁞ 

0 

1 

2 

3 

⁞ 
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(ii) g(x) = x – [x] = {x}. 

X g(x) 

0 
1

4
  
1

2
  
3

4
  

1  

1
1

4
 

1
1

2
 

⁞ 

0  
1

4
  
1

2
  
3

4
  

0 
1

4
  

½  

⁞ 

 

 

 

(iii) h(x) = 
1

[𝑥]
 

x h(x) 

1 

1
1

4
 

1
1

2
 

1
3

4
 

2 

2
1

2
 

1 

1 

1 

1 
1

2
  
1

2
  

2
3

4
 

3 

1

2
  
1

3
  

 

 

Q5. Show that the area of the bounded region 

enclosed between the curves 

 𝒚𝟑 = 𝒙𝟐 𝒂𝒏𝒅 𝒚 = 𝟐 − 𝒙𝟐,   𝒊𝒔   𝟐
𝟐

𝟏𝟓
. 

Solution:-  𝑦3 = 𝑥2 …………. (i)                                 

y = 2−𝑥2 …………… (ii) 

⟾ y = 2 - 𝑦3 

⟾(y -1) (𝑦2 + 𝑦 + 2) = 0 

∴y = 1, y = ½ (-1±√3) 

∴ x =  ±1, since y is real & equal to 1. Point of 

intersection of the two curves are (1, 1) and (-1 , 

1). 

 

∴ Area of shaded region = ∫ (𝑦1 − 𝑦2)𝑑𝑥
1

−1
 =

 ∫ [2 − 𝑥2 − 𝑥
2

3] 𝑑𝑥
1

−1
 = 2

2

15
 𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠. 
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Q6. We say that a sequence {𝒂𝒏} has 

property P, if there exists a positive 

integer m such that 𝒂𝒏 ≤1 for every n ≥ 

m. For each of the following sequences, 

determine whether it has the property P 

or not.  [Do not use any result on limits.] 

(𝒊)    𝒂𝒏 = {
𝟎. 𝟗 +

𝟐𝟎𝟎

𝒏
   𝒊𝒇 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏

𝟏

𝒏
        𝒊𝒇 𝒏 𝒊𝒔 𝒐𝒅𝒅

   

(𝒊𝒊)        𝒂𝒏 = {
𝟏 +

𝐜𝐨𝐬
𝒏𝝅

𝟐

𝒏
      𝒊𝒇 𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏

𝟏

𝒏
     𝒊𝒇 𝒏 𝒊𝒔 𝒐𝒅𝒅.

  

Solution:- (i) For every even number n ≥ 

2000, 𝑎𝑛 ≤ 1 

And for every odd positive integer, 𝑎𝑛 ≤ 1. 

Here, {𝑎𝑛} is a decreasing sequence and 

𝑎2000 = 0.9 +
200

2000
= 1. 

∴ 𝑎𝑛 satisfies property P. 

(ii) Let n = 4k (even) 

i.e., 𝑎4𝑘 = 1 +
1

4𝑘
cos (

4𝑘𝜋

2
) = 1 +

1

4𝑘
cos(2𝑘𝜋) = 1 +

1

4𝑘
> 1. 

[∵ cos (2k𝜋) = 1] So, here 𝑎𝑛 does not 

satisfy P. 

Q7. Suppose that the roots 𝒙𝟐 + 𝒑𝒙 + 𝒒 = 𝟎 

are rational numbers and p, q are integers. 

Then show that the roots are integers. 

Solution:- 

The roots of the equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 are x 

= 
−𝑝±√𝑝2−4𝑞

2
. 

As roots are rational, hence D is a perfect 

square. 

i.e. 𝑝2 − 4𝑞 = 𝑘2, where k ∊ I. 

or, 𝑝2 = 𝑘2 +  4𝑞. 

Now, when p = even, 𝑘2 + 4𝑞 = even. 

⤇ 𝑘2= even, so k = even. 

 ⤇ x = 
−𝑒𝑣𝑒𝑛 ±𝑒𝑣𝑒𝑛

2
 = integer ………………… 

(i) 

Again when p = odd, 𝑘2 + 4𝑞 = odd 

⤇ 𝑘2= odd, so k= odd. 

⤇ x =
−𝑜𝑑𝑑 ±𝑜𝑑𝑑

2
 = integer …………………….. 

(ii) 

Hence the proof is complete. 

Q8. Consider the set S of all integers between 

and including 1000 and 99999. Call two 

integers x and y in S to be in the same 

equivalence class if the digits appearing in x 

and y are the same. For example, if x = 1010, 

y= 1000 and z = 1201, then x and y are in the 

same equivalence class, but y and z are not. 

Find the number of distinct equivalence 

classes that can be formed out of S. 

Solution:- 

If ‘a’ is a member of some equivalence class 

then it’s distinct digit determine the equivalence 

class completing. Hence, no. of equivalence 

classes are the number of ways in which ‘i’ 

integers can be selected from {1, 2, 3, …, 9} for 

2 ≤ i ≤ 5 and {1, 2, 3, …, 9} for i = 1. 

Now, this can be done in 9 + ∑ (10
𝑖
)5

𝑖=2 =

∑ (10
𝑖
)5

𝑖=1 − 1.  
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Q9. For x > 0, show that  
𝒙𝒏−𝟏

𝒙−𝟏
 ≥ 𝒏𝒙

𝒏−𝟏

𝟐 , 

where n is a positive integer. 

Solution:- 

Let us take the sequence of numbers as 

{𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥0} 

Applying AM ≥ GM inequality:- 

1

𝑛
(𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥0) ≥ √𝑥(𝑛−1)+(𝑛−2)+⋯+0

𝑛
 

𝑜𝑟,
1

𝑛
.
𝑥𝑛 − 1

𝑥 − 1
≥ {𝑥

𝑛(𝑛−1)
2 }

1
𝑛

 

𝑜𝑟,
𝑥𝑛 − 1

𝑥 − 1
≥ 𝑛𝑥

𝑛−1
2 . 

 

Q10. Show that 
𝟑

𝟏 .𝟐 .𝟒
+

𝟒

𝟐.𝟑.𝟓
+

𝟓

𝟑.𝟒.𝟔
+⋯+

𝒏+𝟐

𝒏(𝒏+𝟏)(𝒏+𝟑)
=
𝟏

𝟔
[
𝟐𝟗

𝟔
−

𝟒

𝒏+𝟏
−

𝟏

𝒏+𝟐
−

𝟏

𝒏+𝟑
]. 

Solution:-                  𝑡𝑛 =
𝑛+2

𝑛(𝑛+1)(𝑛+3)
 

=
1

6
[
1

𝑛 + 1
−

1

𝑛 + 2
] +

1

6
[
1

𝑛 + 2
−

1

𝑛 + 3
]

+
2

3
[
1

𝑛
−

1

𝑛 + 1
] 

𝑆𝑜, 𝑆 =  ∑ 𝑇𝑛
𝑛
𝑛=1 =

1

6
∑ (

1

𝑛+1
−

1

𝑛+2
)𝑛

𝑛=1 +

1

6
∑ (

1

𝑛+2
−

1

𝑛+3
)𝑛

𝑛=1 +
2

3
∑ (

1

𝑛
−

1

𝑛+1
)𝑛

𝑛=1 .  

=
1

6
(
1

2
−

1

𝑛 + 1
) +

1

6
(
1

3
−

1

𝑛 + 3
)

+
2

3
(1 −

1

𝑛 + 1
) 

=
1

6
[
29

6
−

4

𝑛 + 1
−

1

𝑛 + 2

−
1

𝑛 + 3
]       (𝑝𝑟𝑜𝑣𝑒𝑑) 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

Q1. If f(x) is a real-valued function of a real 

variable x, such that 2f(x) + 3 f(-x) = 15 – 4x 

for all x, find the function f(x). 

Solution:-  

2f(x) + 3f(-x) = 15 – 4x 

Put x = -x , 2f(-x) + 3f(x) = 15 + 4x 

______________________________________ 

Solving, we get, f(x) = 3 + 4x 

 

Q2. Show that there is exactly one value of x 

which satisfies the equation 

𝟐𝒄𝒐𝒔𝟐(𝒙𝟑 + 𝒙) =  𝟐𝒙 + 𝟐−𝒙. 

Solution:- 

We know 𝑐𝑜𝑠2(𝑥3 + 𝑥) ≤ 1. 

2𝑥 + 2−𝑥

2
≥ √2𝑥 . 2−𝑥 

⟾ 2𝑥 + 2−𝑥 ≥ 2 

2𝑐𝑜𝑠2(𝑥3 + 𝑥) = 2𝑥 + 2−𝑥 

∴ 𝑐𝑜𝑠2(𝑥3 + 𝑥) = 1 

For x = 0, the equation is satisfied. 

 

 

Q3. There are 1000 doors 𝑫𝟏, 𝑫𝟐, … , 𝑫𝟏𝟎𝟎𝟎 

and 1000 persons 𝑷𝟏, 𝑷𝟐, … , 𝑷𝟏𝟎𝟎𝟎. Initially 

SET – 4 
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all the doors were closed. Person 𝑷𝟏 goes and 

opens all the doors. Then person 𝑷𝟐 closes 

doors 𝑫𝟐, 𝑫𝟒, … , 𝑫𝟏𝟎𝟎𝟎 and leaves the odd-

numbered doors open. Next, 𝑷𝟑 changes the 

state of every third door, that is, 

𝑫𝟑, 𝑫𝟔, … , 𝑫𝟗𝟗𝟗. (For instance, 𝑷𝟑 closes the 

open door 𝑫𝟑 and opens the closed door 𝑫𝟔, 

and so on.) Similarly, 𝑷𝒎 changes the state of 

the doors 𝑫𝒎, 𝑫𝟐𝒎, 𝑫𝟑𝒎, … , 𝑫𝒏𝒎, … while 

leaving the other doors untouched. Finally, 

𝑷𝟏𝟎𝟎𝟎 opens 𝑫𝟏𝟎𝟎𝟎 if it were closed and closes 

it if it were open. At the end, how many doors 

remain open? 

Solution:- By the problem, the persons 𝑃𝑚 will 

change the state of the door 𝐷𝑛, where m│ n i.e. 

m is one of the factors of n. 

At first, all the doors were closed and we are to 

determine the no. of doors remaining open, i.e. 

we are to determine the no. of doors whose 

states are finally changed. 

Now, for the door 𝐷𝑛, n will either have even or 

odd no. of factors. 

It is obvious, for even no. of factors, state of 

doors remain same, so whenever no. of fact (n) 

odd, state of Or𝐷𝑛 changes. 

⟹ (n) = 2k +1, k ∊ 𝐼+ ⟹ 𝜎(𝑛) = (2𝑝 +

1)(2𝑞 + 1) × …(2𝑟 + 1)… . ;⟹ 𝑛 =

 𝑎2𝑝 𝑏2𝑞 𝑐2𝑟…. For prime a, b, c ….. 

⟹Square numbered door remains open. 

∴No. of doors remaining open = (√1000) =  31 

Q4. Find the maximum and minimum values 

of the function f(x) =  𝒙𝟐 − 𝒙 𝒔𝒊𝒏𝒙, in the 

closed interval [𝟎,
𝝅

𝟐
]. 

Solution:- 

f(x) = 𝑥2 − 𝑥 𝑠𝑖𝑛𝑥 

∴f(0) = 0 and f’(x) = 2x –sin x –x cos x 

= (x –sin x) + x (1 –cos x) 

In the interval [0, 
𝛱

2
], 𝑥 − 𝑠𝑖𝑛𝑥 ≥ 0 𝑎𝑛𝑑 1 −

𝑐𝑜𝑠𝑥 ≥ 0. 

∴ f’(x)≥ 0 ∴ f(x) is an increasing function of x 

in[0, 
𝛱

2
] 

It’s min value will be f(0) = 0, maximum value 

will be 𝑓 (
𝛱

2
) =

𝛱2

4
−
𝛱

2
. 

Q5. Let A and B be two fixed points 3 cm 

apart. 

(a) Let P be any point not collinear with A 

and B, such that PA = 2PB. The tangent at p 

to the circle passing through the points P, A 

and B meets the extended line AB at the point 

K. Find the lengths of the segments KB and 

KP. 

(b) Hence or otherwise, prove that the locus 

of all points P in the plane such that PA = 

2PB is a circle. 

 Solution:- 

(a) AB = 2a = 3 cm, let P(h, k) be the co-

ordinate of P and PA = 2PB 

 

∴(ℎ + 𝑎)2 + 𝑘2 = 4{(ℎ − 𝑎)2 + 𝑘2} 

⟾ 3ℎ2 + 3𝑘2 − 10ℎ𝑎 + 3𝑎2 = 0 

 

Locus of P is 𝑥2 + 𝑦2 −
10

3
𝑎𝑥 + 𝑎2 = 0 

⟾ (𝑥 −
5

3
𝑎)
2
+ 𝑦2 = (

4𝑎

3
)
2
 which is a circle 

with centre at (
5

3
𝑎, 0) 𝑎𝑛𝑑 𝑟𝑎𝑑𝑖𝑢𝑠 =

4𝑎

3
. 

∴ Co-ordinates of K are (
5𝑎

3
, 0)& 𝐾𝑃 =

4𝑎

3
. 
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∴ KB = OK - OB= 
5𝑎

3
− 𝑎 =

2𝑎

3
=
2

3
×
3

2
= 1𝑐𝑚. 

 

 

Q6. Sketch, on plain paper, the regions 

represented on the plane by the following:  

(i) |y|= sin x;  

(ii) |x| - |y| ≥ 1. 

Solution:- 

(i) y = sin x, when y > 0……………… [case -I] 

       = 0, when y = 0 …………………..[case -II] 

       = -sin x, when y < 0 ……………..[case -III] 

 [case -I]                                                                         

[case -II]                              

 

 

For all n = 0, ±1,±2,±3,….. 

(ii)│x│- │y│ ≥ 1. 

There are four cases:- (I) x – y ≥ 1 when x > 1, y 

> 0 

                                            (II) x + y ≥ 1 when x 

≥ 1, y < 0 

                                             (III) –x –y ≥ 1 when 

x < 0, y > 0 

                                             (IV) –x + y ≥ 1 

when x< 0, y <0 

Graph of (i):- 

 

 

Q7. Show that the larger of the two areas into 

which the circle 𝒙𝟐 + 𝒚𝟐 = 𝟔𝟒 is divided by 

the curve 𝒚𝟐 = 𝟏𝟐𝒙 𝒊𝒔
𝟏𝟔

𝟑
(𝟖𝝅 − √𝟑). 

Solution:-    𝑥2 + 𝑦2 = 64 ……………… (i)                                 

𝑦2 = 12𝑥 ……………….. (ii) 

 

⟾ 64 −𝑥2 = 12𝑥   ⟾ (x - 4) (x + 16) = 0   ∴ x 

= - 16, 4  

But x = -16 is not possible as radius of a circle is 

√64 units. 

 

Area of the shaded region is  

X (4n +1)
𝜋

2
 N𝜋+(−1)𝑛

𝜋

6
  

y 1 ½  

X (4n +1)
𝜋

2
 N𝜋+(−1)𝑛

𝜋

6
  

y -1 - ½   
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= 2∫ (𝑦1 − 𝑦2)𝑑𝑥 +
64𝜋

2
,   𝑤ℎ𝑒𝑟𝑒 𝑦1 =

4

0

 √64 − 𝑥2, 𝑦2 = 2√3𝑥 

= 2∫ (√64 − 𝑥2 − 2√3𝑥)𝑑𝑥 + 32𝜋 
4

0

 

= 2 [
𝑥 − √64 − 𝑥2

2

+
64

2
sin−1 (

𝑥

8
) − 2√3.

𝑥
3
2

3
2

]
4

0

+ 32𝜋 

=
16

3
(8𝜋 − √3)𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠. 

 

 

 

Q8. Let  𝒙𝒏 =
𝟏

𝟐
.
𝟑

𝟒
.
𝟓

𝟔
… . .

𝟐𝒏−𝟏

𝟐𝒏
. Then show 

that 𝒙𝒏 ≤
𝟏

√𝟑𝒏+𝟏
, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 = 𝟏, 𝟐, 𝟑, … 

Solution:-  𝑥𝑛 =
1

2
 .
3

4
.
5

6
… . .

2𝑛−1

2𝑛
  =

1.2.3.4….(2𝑛−1)(2𝑛)

(2.2….𝑡𝑜 2𝑛 𝑡𝑖𝑚𝑒𝑠)(1.2.3…𝑛)2
=

(2𝑛)!

22𝑛.(𝑛!)2
 

We need to show that 
(2𝑛)!

22𝑛.(𝑛!)2
≤

1

√3𝑛+1
∀ 𝑛 ∈

ℕ. 

By induction, P(1) is true. 

Let P(m) is true, i.e., 
(2𝑚)!

22𝑚.(𝑚!)2
≤

1

√3𝑚+1
, 

P(m+ 1) =  
(2𝑚+2)!

22𝑚+2.[(𝑚+1)!]2
 =

(2𝑚)!(2𝑚+1)(2𝑚+2)

4.22𝑚 (𝑚!)2(𝑚+1)2
 

= 
(2𝑚)!

4.22𝑚 (𝑚!)2
.
(2𝑚+1)

2(𝑚+1)
≤

1

√3𝑚+1
.
2𝑚+1

2(𝑚+1)
.

1

√3𝑚+4
 ; [𝑠ℎ𝑜𝑤 𝑖𝑡]   

∴ P(m+1) is true. 

So, by induction  𝑥𝑛 ≤
1

√3𝑛+1
∀ 𝑛 ∈ ℕ. 

Q9. Show that if n is any odd integer greater 

than 1, then 𝒏𝟓 − 𝒏 is divisible by 80. 

Solution:- 

Take n = 2k + 1, 

For n = 3, 35 − 3 = 240 ⃒ 80. 

Now, P(n) =𝑛5 − 𝑛 = (2𝑘 + 1)5 − (2𝑘 + 1) 

= {(2𝑘 − 1) + 2}5 − (2𝑘 − 1) + 2 

= (2𝑘 − 1)5 + 5𝐶1(2𝑘 − 1)
4. 2

+ 5𝐶2(2𝑘 − 1)
3. 22

+ 5𝐶3(2𝑘 − 1)
2. 23

+ 5𝐶4 . (2𝑘 − 1). 2 + 2
5

− (2𝑘 − 1) + 2 

= {(2𝑘 − 1)5 − (2𝑘 − 1)} + 10(2𝑘 − 1)4

+
5.4

2.1
× 4(2𝑘 − 1)

+
5.4

2.1
. 8(2𝑘)2 + 5

× 16(2𝑘 − 1) + 30 

≡ 𝑀𝑢𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 80 + 10(16𝑘4 − 24𝑘2 + 16𝑘) 

≡ 𝑀𝑢𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 80 + 80(2𝑘4 − 3𝑘2 + 2𝑘) 

∴ (2𝑘 − 1)5 − (2𝑘 − 1) is divisible by 80. 
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∴ By induction method, for all odd integer n,  

𝑛5 − 𝑛 is divisible by 80. 

Q10. If any one pair among the straight lines 

ax + by = a + b, bx – (a+ b)y = - a, (a+ b)x –ay 

= b intersect, then show that the three 

straight lines are concurrent. 

Solution:- 

Let 1st two lines intersect. 

ax + by = a + b _____________ (i) × 𝑏   

bx – (a+ b)y = - a ___________ (ii)× 𝑎 

𝑎𝑏𝑥 + 𝑏2𝑦 = 𝑎𝑏 + 𝑏2 

𝑎𝑏𝑥 − 𝑎(𝑎 + 𝑏)𝑦 =  −𝑎2 

     −            +             +     

                                                                  

__________________________________ 

𝑦 = 1. 

∴ x = 
𝑎+𝑏−𝑏𝑦

𝑎
= 1. 

In the third line, (a+ b) x – ay = LHS = b = RHS. 

So, there straight lines are concurrent. 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

Q1. If a and b are positive real numbers such 

that a + b = 1, prove that 

(𝒂 +
𝟏

𝒂
)
𝟐

+ (𝒃 +
𝟏

𝒃
)
𝟐

 ≥
𝟐𝟓

𝟐
. 

Solution:- 

Let S = (𝑎 +
1

𝑎
)
2
+ (𝑏 +

1

𝑏
)
2
 

= 𝑎2 + 𝑏2 +
(𝑎2 + 𝑏2)

𝑎2𝑏2
+ 4 

= 𝑆1 + 𝑆2 + 4. 

𝑆1 = 𝑎
2 + 𝑏2 ≥

1

2
[(𝑎 − 𝑏)2  ≥ 0

⟾ 𝑎2 + 𝑏2 − 2𝑎𝑏 ≥ 0

⟾ (𝑎 + 𝑏)2 ≥ 4𝑎𝑏 ⟾ 4𝑎𝑏 

≤ 1                ⟾ 𝑎𝑏

≤
1

4
    𝑎2 + 𝑏2 ≥ 1 − 2(

1

4
)

=
1

2
] 

𝑆2 =
𝑎2 + 𝑏2

𝑎2𝑏2
, 𝑎2𝑏2 ≤

1

16
 

∴
1

𝑎2𝑏2
≥ 16. 

∴𝑆2 ≥ 8 

∴𝑆1 + 𝑆2 ≥
1

2
+ 8 

∴ S ≥ 
1

2
+ 8 + 4 =

25

2
. 

 

Q2. Suppose that P(x) is a polynomial of 

degree n such that 

P(k) = 
𝒌

𝒌+𝟏
 for k= 0, 1, …, n. 

Find the value of P(n + 1). 

Solution:- 

Given that, P(x) is a polynomial of degree n 

such that  

P(k) = 
𝑘

𝑘+1
∀ 𝑘 = 0, 1, …… , 𝑛 

Let, Q(x) = (x +1) P(x) –x 

SET – 5 
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The polynomial Q(x) vanishes for k = 0, 1, …., 

n 

i.e. (x+ 1) P(x) –x = a(x) (x-1) (x- 2) … (x- n) 

Putting x = -1, 1 = a(1) (-2) (-3) …. (-1 -n) 

⟹1 = a (−1)𝑛+1(𝑛 + 1)1 ⟹ 𝑎 =
1

(−1)𝑛+1
.

1

(𝑛+1)!
 

𝑃(𝑥) =
𝑎𝑥(𝑥 − 1)(𝑥 − 2)… (𝑥 − 𝑛) + 𝑥

(𝑥 + 1)
 

=
(−1)𝑛+1𝑥(𝑥 − 1)(𝑥 − 2)… (𝑥 − 𝑛)

(𝑛 + 1)!
+ 𝑥 

∴ P(n+ 1)= (−1)𝑛+1
{(𝑛+1)𝑛(𝑛−1)…3.2.1}+𝑥+1

(𝑛+1)!

(𝑛+2)

 

= (−1)𝑛+1

(𝑛 + 1)
(𝑛 + 1)!

+ (𝑛 + 1)

(𝑛 + 2)

=
(−1)𝑛+1 + 𝑛 + 1

(𝑛 + 2)
 

∴ P(n+ 1) = {
1

𝑛
   𝑓𝑜𝑟 𝑛 = 𝑜𝑑𝑑

𝑛 + 2   𝑓𝑜𝑟 𝑛 = 𝑒𝑣𝑒𝑛
 

 

 

Q3. Suppose 𝒙𝟏 = 𝐭𝐚𝐧
−𝟏 𝟐 > 𝒙𝟐 > 𝒙𝟑 > ⋯ 

are positive real numbers satisfying 

𝐬𝐢𝐧(𝒙𝒏+𝟏 − 𝒙𝒏) + 𝟐
−(𝒏+𝟏)𝒔𝒊𝒏𝒙𝒏 𝒔𝒊𝒏𝒙𝒏+𝟏 =

𝟎 𝒇𝒐𝒓 𝒏 ≥ 𝟏. Find  

𝒄𝒐𝒕𝒙𝒏. 𝑨𝒍𝒔𝒐, 𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝐥𝐢𝐦
𝒏→∞

𝒙𝒏 =
𝝅

𝟒
. 

Solution:- 

𝑠𝑖𝑛𝑥𝑛+1 cos 𝑥𝑛 − 𝑐𝑜𝑠𝑥𝑛 − cos𝑥𝑛+1 sin 𝑥𝑛+2
− (𝑛 + 1) sin 𝑥𝑛 sin 𝑥𝑛+1 = 0 

⟾ sin𝑥𝑛+1 {cos 𝑥𝑛+2 − (𝑛 + 1) sin 𝑥𝑛}

= cos 𝑥𝑛+1 sin 𝑥𝑛 

⟾cot𝑥𝑛+1 = cot 𝑥𝑛+2 − (𝑛 − 1)  [dividing 

bysin 𝑥𝑛+1 + sin 𝑥𝑛 ] 

∴cot 𝑥𝑛 = cot 𝑥𝑛−1 + 2
−𝑛 =  cot 𝑥𝑛−2 +

2−(𝑛−1) + 2−𝑛 = ⋯…………………. 

= cot 𝑥1 + 2
−2 + 2−3 +⋯+ 2−𝑛 

= 2−1 + 2−2 + 2−3 +⋯+ 2−𝑛 

= 1 − (
1

2
)
𝑛

  [∵  tan−1 2 =  𝑥1] 

∴cot 𝑥𝑛 =  1 − (
1

2
)
𝑛
. 

lt
𝑛 →∞

cot 𝑥𝑛 = 1.⟾ cot ( lt
𝑛 →∞

𝑥𝑛) = 1 

⟾ lt
𝑛 →∞

𝑥𝑛 =
𝛱

4
. 

Q4. Consider the circle of radius 1 with its 

centre at the point (0, 1). From this initial 

position, the circle is rolled along the positive 

x-axis without slipping. Find the locus of the 

point P on the circumference of the circle 

which is on the origin at the initial position of 

the circle. 

Solution:- 

Let ‘P’ be the point on the circle NP, let the line 

OMX on which the circle rolls is X-axis and the 

point ‘O’ is origin. Radius of circle is one unit, 

 

Let P= (x, y) and ⦟PCM= 𝜃, where 𝜃 is the 

angle through which the circle turns as the point 

P tracts out of the locus. 
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∴ OM = PM͡ = 1.𝜃 = 𝜃, let PL ⏊OX, x= OL= 

OM-LM = 𝜃- sin 𝜃. 

Y = PL= NM = CM – CN = 1- cos 𝜃. 

Q5. Sketch, on plain paper, the graph of y = 

𝒙𝟐+𝟏

𝒙𝟐−𝟏
. 

Solution:- 

y = 
𝑥2+1

𝑥2−1
=
(𝑥2−1)2+2

𝑥2−1
 

∴ y = 1+ 
2

 𝑥2−1
 ∴

𝑑𝑦

𝑑𝑥
= −

4𝑥

(𝑥2−1)2
 

For,  −∞ ≤ 𝑥 < −1, 𝑦 ′𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒.  

For, -1 < x ≤ 0, y’ is positive 

For, 0 ≤ x <1, y’ is negative 

For, 1< x ≤ ∞, y’ is negative. 

 

Q6. Find the area of the region in the xy-

plane, bounded by the graphs of 

 y = 𝒙𝟐, 𝒙 + 𝒚 = 𝟐 𝒂𝒏𝒅 𝒚 = −√𝒙. 

Solution:- 

y = 𝑥2 ……………. (i)                 x + y = 2 

………………… (ii) 

y = −√𝑥 ………….. (iii) 

So, 𝑥4 = 𝑥, or, x (𝑥3 − 1)= 0, so, x = 0, 1,  

from (i) & (ii) 

And, (2 − 𝑥)2 = 𝑥, or 𝑥2 − 5𝑥 + 4 = 0 or, x 

= 1, 4,  from (ii) & (iii) 

So, point of intersection is x = 1. 

 

Area of the shaded region is               = 

│∫ (𝑦2 − 𝑦1)𝑑𝑥
1

0
│, 𝑤ℎ𝑒𝑟𝑒 𝑦

1
= −√𝑥,  𝑦2 =

 𝑥2 

                                                                 =

│∫ (−√𝑥− 𝑥2)𝑑𝑥
1

0
│ = 1 𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠. 

Q7. Let x and n be positive integers such 

that 𝟏 + 𝒙 + 𝒙𝟐 +⋯+ 𝒙𝒏−𝟏 is a prime 

number. Then show that n is a prime 

number. 

Solution:- 

P= 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑛−1 =
𝑥𝑛−1

𝑥−1
 

If P is prime, then x – 1 = 1 ⤇ x = 2. 

∴ P= 
2𝑛−1

2−1
= 2𝑛 − 1 is a prime. 

Let n is not a prime, then n = pq [p, q are 

+ve integers] 

So, 2𝑛 − 1 is divided by both 2𝑝 − 1 and 

2𝑞 − 1 

i.e., 2𝑛 − 1 is not a prime. 
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But we know 2𝑛 − 1 is prime, so, by 

contradiction n is also prime. 

Q8. Show that for every positive integer n, 7 

divides  𝟑𝟐𝒏+𝟏 + 𝟐𝒏+𝟐. 

Solution:-  32𝑛+1 + 2𝑛+2 = 3. 32𝑛 +  4. 2𝑛 =

3(2 + 7)𝑛 +  4. 2𝑛 

= 3[2𝑛 + 𝑛𝑐1 . 2
𝑛−1. 7 + ⋯+ 7𝑛] + 4. 2𝑛                                                                                                                 

= 7. 2𝑛 +  3.7. 𝑛𝐶1 . 2
𝑛−1 +⋯+ 3. 7𝑛 

= 7(2𝑛 + 3. 𝑛𝐶1 . 2
𝑛−1 +⋯+ 3. 7𝑛−1)  ≡

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 7. 

Q9. If a, b, c are positive numbers, then show 

that 

𝒃𝟐 + 𝒄𝟐

𝒃 + 𝒄
+
𝒄𝟐 + 𝒂𝟐

𝒄 + 𝒂
+
𝒂𝟐 + 𝒃𝟐

𝒂 + 𝒃
≥ 𝒂 + 𝒃 + 𝒄. 

Solution:- 

𝑏2 + 𝑐2 ≥
(𝑏 + 𝑐)2

2
 

𝑏2 + 𝑐2

𝑏 + 𝑐
≥
𝑏 + 𝑐

2
 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,
𝑐2 + 𝑎2

𝑐 + 𝑎
≥
𝑐 + 𝑎

2
 &
𝑎2 + 𝑏2

𝑎 + 𝑏

≥
𝑎 + 𝑏

2
. 

𝐴𝑑𝑑𝑖𝑛𝑔,𝑤𝑒 𝑔𝑒𝑡 
𝑏2 + 𝑐2

𝑏 + 𝑐
+
𝑐2 + 𝑎2

𝑐 + 𝑎
+
𝑎2 + 𝑏2

𝑎 + 𝑏
≥ 𝑎 + 𝑏 + 𝑐  

 

Q10. Out of a circular sheet of paper of 

radius a, a sector with central angle 𝜃 is cut 

out and folded into the shape of a conical 

funnel. Show that the volume of the funnel is 

maximum when 𝜃 equals 2𝜋√
𝟐

𝟑
.   

Solution:- 

Perimeter of the marked region of the circle = 

2𝜋a –a (2𝜋 -𝜃) = a𝜃 

Perimeter of the base of the cone = 2𝜋r 

∴ 2𝜋r = a𝜃 ⟹r = 
𝑎𝜃

2𝜋
 

Volume of the cone = V = 
1

3
𝜋𝑟2ℎ 

=
1

3
𝜋.
𝑎2𝜃2

4𝜋2
√𝑎2 −

𝑎2𝜃2

4𝜋2
 

=
𝑎3

24𝜋2
𝜃2√4𝜋2 − 𝜃2 

∴
𝑑𝑣

𝑑𝜃
=

𝑎3

24𝜋2
(2𝜃√4𝜋2 − 𝜃2 −

𝜃3

√4𝜋2 − 𝜃2
)  

For V to be max or min, 
𝑑𝑣

𝑑𝜃
= 0 

∴ 2𝜃 = √4𝜋2 − 𝜃2 −
𝜃3

√4𝜋2−𝜃2
= 0 

⟹8𝜋2 − 2𝜃2 − 𝜃2 = 0 

(∵ 𝜃 ≠ 0) 

∴ 𝜃 = 2𝜋 √
2

3
 

[
𝑑2𝑣

𝑑𝜃2
]
𝜃=2π √

2
3
 

= 
𝑎3

24𝜋2
[2√4𝜋2 − 𝜃2

−
1

2

4𝜃

√4𝜋2 − 𝜃2
−

3𝜃2

√4𝜋2 − 𝜃2

+ 
2𝜃4

(4𝜋2 − 𝜃2)
3
2

 ]

𝜃=2π √
2
3

 

∴ The volume of the funnel is max. when 𝜃 

equals 2𝜋 √
2

3
 [proved] 

 



 Challenging Mathematical Problems  

104 
 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

Q1. Show that if n >2, then (𝒏!)𝟐 > 𝒏𝒏. 

Solution:- 

2 (n- 2) > n -2 ⤇ 2n – 4+ 2 > n ⤇ 2(n- 1) > n   

………….. (i) 

3 (n- 3) > n -3 ⤇ 3n – 9 > n- 3 ⤇ 3 (n- 2) > n 

…………… (ii) 

Similarly, we have      4 (n- 3) > n 

……………… (iv) 

                                     5 (n- 4) > n …………….. 

(v) 

                                     ⁞ 

Multiplying all these up to (n- 2) terms, we get 

 [1.2.3.… . . (𝑛 − 1)]2 > 𝑛𝑛−2 

⤇ [(𝑛 − 1)!]2 >
𝑛𝑛

𝑛2
 

⤇ [𝑛!]2 > 𝑛𝑛. 

Q2. Show that for all real x, the expression 

𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 (where a, b, c are real constants 

with a > 0), has the minimum value  
(𝟒𝒂𝒄−𝒃𝟐)

𝟒𝒂
. 

Also find the value of x for which this 

minimum value is attained. 

Solution;- 

Let P = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

=
1

4𝑎
[4𝑎2𝑥2 +  4𝑎𝑏𝑥 + 4𝑎𝑐] 

=
1

4𝑎
[(2𝑎𝑥)2 + 4𝑎𝑥𝑏 + 𝑏2] +

1

4𝑎
[4𝑎𝑐 − 𝑏2] 

=
(2𝑎𝑥 + 𝑏)2

4𝑎
+
1

4𝑎
[4𝑎𝑐 − 𝑏2]  

P is minimum when (2ax + b) = 0, i.e. x = −
𝑏

2𝑎
, 

and 𝑃𝑚𝑖𝑛 =
4𝑎𝑐−𝑏2

4𝑎
. 

 

Q3. A pair of complex numbers 𝒛𝟏, 𝒛𝟐 is said 

to have property P if for every complex 

number z, we can find real numbers r and s 

such that z = r 𝒛𝟏 + 𝒔𝒛𝟐. Show that a pair 

𝒛𝟏, 𝒛𝟐 has property P if and only if the points 

𝒛𝟏, 𝒛𝟐 and 0 on the complex plane are not 

collinear. 

Solution:- 

Now, 𝑧1 = 𝑎 + 𝑖𝑏, 𝑧2 = 𝑥 + 𝑖𝑦, 0 = 0 + 𝑖. 0 

And let 𝑧1, 𝑧2, 0 be collinear then 

│

0 0 1
𝑎 𝑏 1
𝑥 𝑦 1

 │ = 0⟾
𝑎

𝑏

𝑥

𝑦
= 𝑘(𝑠𝑎𝑦) 

∴ 𝑧1 = 𝑏𝑘 + 𝑖𝑏 = 𝑏(𝑘 + 𝑖), 𝑧2 = 𝑦(𝑘 + 𝑖) 

So, ∃ some real ‘r’ or‘s’ such that z = r𝑧1 +

𝑠𝑧2 = 𝑟𝑏(𝑘 + 𝑖) + 𝑠𝑦(𝑘 + 𝑖) = (𝑟𝑏 + 𝑠𝑦)(𝑘 +

𝑖), 

Which does not hold good. 

So, 𝑧1, 𝑧2 and 0 should not be collinear. 

Q4. In a club of 80 members, 10 members 

play none of the games Tennis, 

Badminton and Cricket. 30 members play 

exactly one of these three games and 30 

members play exactly two of these games. 

45 members play at least one of the games 

among Tennis and Badminton. Determine 

the number of Cricket playing members. 

SET – 6 



 Challenging Mathematical Problems  

105 
 

Solution:- 

Let n(U) = Number of elements in universal 

set = 80 

n(NM) = Number of non-playing members 

= 10 

n(PM) = Number of playing members= 80-

10= 70. 

Given that number of members playing 

exactly one of the three games = 𝑡1 + 𝑏1 +

𝑐1= 30. 

Number of members playing exactly two of 

these three games = tb + bc + ct = 

30.Number of members playing there games 

= 10. 

∴ No. of members playing cricket=𝑐1 +

 𝑡𝑐 + 𝑡𝑏𝑐 + 𝑏𝑐 

= 25 + 12 + 10  

= 47 . 

 

Q5. Each pair in a group of 20 persons is 

classified by the existence of kinship relation 

and friendship relation between them. The 

following table of data is obtained from such 

a classification. 

KINSHIP AND FRIENDSHIP RELATION AMONG 20 PERSONS 

Friendship→ 

Kinship  ↓ 

Yes No 

Yes 

No 

27 

3 

31 

129 

Determine (with justifications) whether each 

of the following statements is supported by 

the above data:  

(i) Most of the friends are kin. 

(ii) Most of the kin are friends. 

Solution:- 

 

     Friend 

Kin 

Yes No. Total 

Yes 27 31 58 

No. 3 129 132 

Total 30 160 190 

1. Most of the friends are kin because 3 of 

30 friends are not kin. 

2. Most of the friends are kin, which is not 

true. 

 

Q6. Evaluate 𝐥𝐢𝐦
𝒏→∞

  {(𝟏 +
𝟏

𝟐𝒏
) (𝟏 +

𝟑

𝟐𝒏
) (𝟏 +

𝟓

𝟐𝒏
)…(𝟏 +

𝟐𝒏−𝟏

𝟐𝒏
)}

𝟏

𝟐𝒏
. 

Solution:- 

Let p = lt
𝑛 →∞

 {(1
1

2𝑛
) (1 +

3

2𝑛
)… . (1 +

2𝑛−1

2𝑛
)}

1

2𝑛
 

log 𝑃 = lt
𝑛 →∞

1

2𝑛
{𝑙𝑜𝑔 (1 +

1

2𝑛
) + log (1 +

3

2𝑛
)

+⋯+ log (1 +
2𝑛 − 1

2𝑛
)} 

=
1

2
lt

𝑛 →∞
 
1

𝑛
∑ log (1 +

2𝑟 − 1

2𝑟
)

𝑛

𝑟=1

 

=
1

2
lt

𝑛 →∞

1

𝑛
 ∑ log (1 +

𝑟

𝑛
−
1

2𝑛
)

𝑛

𝑟=1

 

=
1

2
lt

𝑛 →∞

1

𝑛
∑ log (1 +

𝑟

𝑛
)

𝑛

𝑟=1

, 𝑠𝑖𝑛𝑐𝑒 lt
𝑛 →∞

1

2𝑛
= 0. 

=
1

2
∫ log(1 + 𝑥)
1

0

𝑑𝑥 

=
1

2
[𝑥 log(1 + 𝑥) − 𝑥 + log(1 + 𝑥)]

1

0
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= log (
4

𝑒
)

1
2
 

∴ 𝑃 = (
4

𝑒
)

1
2
=
2

√𝑒
 . 

Q7. The circles 𝑪𝟏, 𝑪𝟐 𝒂𝒏𝒅 𝑪𝟑 with radii 1, 2 

and 3, respectively, touch each other 

externally. The centres of 𝑪𝟏 𝒂𝒏𝒅 𝑪𝟐 lie on 

the x-axis, while 𝑪𝟑 touches them from the 

top. Find the ordinate of the centre of the 

circle that lies in the region enclosed by the 

circles 𝑪𝟏, 𝑪𝟐 𝒂𝒏𝒅 𝑪𝟑 and touches all of them. 

Solution:- 

 

For simplicity, centre of  𝐶1 ≡ (0, 0);   𝐶2 ≡

(3, 0);    𝐶3 ≡ (0, 4) 

Let (x, y) be the co-ordinates of the centre of the 

circle touching 𝐶1, 𝐶2 𝑎𝑛𝑑 𝐶3  and let r be its 

radius. 

Then, (𝑟 + 1)2 = 𝑥2 + 𝑦2………………. (1) 

(𝑟 + 2)2 = (𝑥 − 3)2 + 𝑦2 ………………… (2) 

(𝑟 + 3)2 = 𝑥2 + (𝑦 − 4)2 ……………………. 

(3) 

Solving these there equations, we will get the 

following equation:-  

23𝑥2 − 90𝑥 + 63 = 0 

∴ 𝑥 =
90 ± √902 − 4.23.63

2.23
=
21

23
 𝑜𝑟, 3 

By the diagram, x can’t be 3, so, 𝑥 =
21

23
, ∴ 𝑦 =

20

23
. 

∴ Required centre of the circle is (
21

23
,
20

23
). 

Q8. Using calculus, sketch the graph of the 

following function on a plain paper:  f(x) =  

𝟓−𝟑𝒙𝟐

𝟏− 𝒙𝟐
. 

Solution:- f(x) = 
5−3𝑥2

1−𝑥2
 =

3(1−𝑥2)+2

1−𝑥2
 = 3 +

2

1−𝑥2
 

∴ 𝑓 ′(𝑥) =
4𝑥

(1 − 𝑥2)2
,  

For,  −∞ < 𝑥 < −1, 𝑓 ′(𝑥)𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒;  

For, -1 < x ≤ 0, 𝑓 ′(𝑥) is negative; 

For, 0 < x <1, 𝑓 ′(𝑥) is positive; 

For, 1< x <∞, 𝑓 ′(𝑥) is positive; 

x -3 3 -2 2 0 -
1

2
 1

2
 

f(x) 2
3

4
 2

3

4
 2

1

3
 2

1

3
 5 17

3
 

17

3
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Q9. Let ABC be an isosceles triangle with AB 

= BC = 1 cm and ⦟A = 30°. Find the volume 

of the solid obtained by resolving the triangle 

about the line AB. 

 Solution:-  Here   AB = BC = 1 

BD = BC Cos 60° = 1.
1

2
=
1

2
 

CD = BC Sin 60° = 1.
√3

2
=
√3

2
 

∴AD = AB+ BD = 1+
1

2
=
3

2
 

∴ Required volume  =  
1

3
𝜋.
3

4
 

∴ (
3

2
−
1

2
) 𝑠𝑞. 𝑢𝑛𝑖𝑡 =

1

3
.
3𝜋

4
𝑠𝑞. 𝑢𝑛𝑖𝑡 =

𝜋

4
𝑠𝑞. 𝑢𝑛𝑖𝑡. 

 

Q10. (a) Prove that, for any odd integer n, 𝒏𝟒 

when divided by 16 always leaves remainder 

1. 

(b) Hence or otherwise show that we cannot 

find integers 𝒏𝟏, 𝒏𝟐, … , 𝒏𝟖  such that𝒏𝟏
𝟒 +

𝒏𝟐
𝟒 +⋯+ 𝒏𝟖

𝟒 = 𝟏𝟗𝟗𝟑. 

Solution 

(a) Let n = 2a + 1 

𝑛4 = (2𝑎 + 1)4 

= (4𝑎2 + 4𝑎 + 1)2 

= [4𝑎(𝑎 + 1) + 1]2 

= 16𝑎2(𝑎 + 1)2 + 8𝑎(𝑎 + 1) + 1 

= 16[𝑎(𝑎 + 1)]2 + 8𝑎(𝑎 + 1) + 1 

Now, a (a+ 1) is divisible by 2. 

∴𝑛4 ≡ 1 (𝑚𝑜𝑑 16). 

(b)Solution:- 

Now, 𝑛1
4 ≡ 1(𝑚𝑜𝑑 16) 

𝑛2
4 ≡ 1 (𝑚𝑜𝑑 16)  

⁞     ⁞ 

𝑛8
4 ≡ 1 (𝑚𝑜𝑑 16)  

________________________ 

𝑛1
4 + 𝑛2

4 +⋯+ 𝑛8
4 ≡ 8 (𝑚𝑜𝑑 16)  

But 1993 ≡ 9 (mod 16) 

So, the value of 𝑛1
4 + 𝑛2

4 +⋯+ 𝑛8
4 can’t be 

1993. 

 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

Q1. Let x be a positive number, A sequence 

{𝒙𝒏} of real numbers is defined as follows:  

𝒙𝟏 =
𝟏

𝟐
(𝒙 +

𝟓

𝒙
) , 𝒙𝟐 =

𝟏

𝟐
(𝒙𝟏 +

𝟓

𝒙𝟏
) ,…, and in 

general, 

𝒙𝒏+𝟏 =
𝟏

𝟐
(𝒙𝒏 +

𝟓

𝒙𝒏
)  𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 ≥ 𝟏. 

(a) Show that, for all n ≥ 1, 
𝒙𝒏−√𝟓

𝒙𝒏+√𝟓
= (

𝒙−√𝟓

𝒙+√𝟓
)
𝟐𝒏

. 

(b) Hence find 𝐥𝐢𝐦
𝒏→∞

𝒙𝒏. 

Solution:- 

SET – 7 
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(a) 𝑥𝑛 =
1

2
(𝑥𝑛−1 +

5

𝑥𝑛−1
) =

√5

2
(
𝑥𝑛−1

√5
+

√5

𝑥𝑛−1
) 

⟾
𝑥𝑛

√5
=
1

2
(
𝑥𝑛−1

√5
+
√5

𝑥𝑛−1
). 

By componendo-dividend, we get- 

𝑥𝑛 − √5

𝑥𝑛 + √5
=

1
2(
𝑥𝑛−1
√5

+
√5
𝑥𝑛−1

) − 1

1
2(
𝑥𝑛−1
√5

+
√5
𝑥𝑛−1

) + 1

=
𝑥𝑛−1

2 + √5 − 2√5 𝑥𝑛−1

𝑥𝑛−1
2 + √5 + 2√5 𝑥𝑛−1

 

= (
𝑥𝑛−1 − √5

𝑥𝑛−1 + √5
)

2

= (
𝑥𝑛−2 − √5

𝑥𝑛−2 + √5
)

22

= ⋯

= (
𝑥1 − √5

𝑥1 + √5
)

2𝑛−1

 

= (
𝑥 − √5

𝑥 + √5
)

2𝑛

 (𝑝𝑟𝑜𝑣𝑒𝑑) 

(b)Since x is a positive number, 𝑥 − √5 < 𝑥 +

√5 

⟾ 
𝑥−√5

𝑥+√5
< 1 

∴(
𝑥−√5

𝑥+√5
)
2𝑛

⟶ 0 𝑎𝑠 𝑛 → ∞. 

⟾ 
𝑥−√5

𝑥+√5
⟶ 0 ⟾ 𝑥 − √5 ⟶ 0 

∴ lt
𝑛 →∞

𝑥𝑛 = √5. 

Q2. Draw the region of points (x, y) in the 

plane, which satisfy |y| ≤|x| ≤ 1. 

Solution:-   

 

Q3. Sketch on plain paper, the graph of the 

function y =  sin(𝒙𝟐), in the range 0 ≤ x ≤ 

√𝟒𝝅. 

Solution:-  

Taking different values of x, we get different y. 

x 0   √𝜋/4   √𝜋/2   √𝜋   √3𝜋/2   √2𝜋  

 √5𝜋/2   √3𝜋   √7𝜋/2   √4𝜋 

y  0   1/√2    1         0        -1           0         1           

0           -1           0    

 

 

 

Q4. If n is a positive integer greater than 1 

such that 3n + 1 is perfect square, then show 

that n + 1 is the sum of three perfect squares. 

Solution:- 

As 3n + 1 is a perfect square, so let 

3n + 1 = 𝑎2 

⤇ a is not a multiple of 3. 
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⤇ a may be of the form either 3k + 1 or 3k + 2, 

k ∊ I. 

Taking a = 3k + 1,   3n + 1= (3k +  1)2 =

9𝑘2 + 6𝑘 + 1 ; 

Or, n = 3𝑘2 + 2𝑘 

Or, n + 1 = 3𝑘2 + 2𝑘 + 1 =  𝑘2 + 𝑘2 +

(𝑘 + 1)2 

i.e. , sum of three perfect squares. 

Taking a = 3k + 2, 3n + 1= (3k +  2)2 = 9𝑘2 +

6𝑘 + 4;  

Or, n =3𝑘2 + 4𝑘 + 1 

Or, n + 1= 3𝑘2 + 4𝑘 + 2 =  𝑘2 + (𝑘 + 1)2 +

(𝑘 + 1)2 

i.e. sum of 3 perfect squares.    [Proved] 

 

Q5. Let x = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏), y = 

(𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏) , where 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 

, 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏  are real numbers. We write 

x > y, if for some k, 1 ≤  k ≤ (n- 1), 𝒙𝟏 =

𝒚𝟏,  𝒙𝟐 = 𝒚𝟐, … , 𝒙𝒌 = 𝒚𝒌, but 𝒙𝒌+𝟏 >

 𝒚𝒌+𝟏. Show that for u = (𝒖𝟏, … , 𝒖𝒏), 

v=(𝒗𝟏, … , 𝒗𝒏), w = (𝒘𝟏, … ,𝒘𝒏) and z = 

(𝒛𝟏, … , 𝒛𝒏), if u > v and w > z, then (u +w) 

> (v +z). 

Solution:- u > v 

& 𝑢1 = 𝑣1 

𝑢2 = 𝑣2  

⁞ 

𝑢𝑘 = 𝑣𝑘  

But 𝑢𝑘+1 > 𝑣𝑘+1 

Again w > z 

& 𝑤1 = 𝑧1 

𝑤2 = 𝑧2  

⁞ 

𝑤𝑘 > 𝑧𝑘  

But 𝑤𝑘+1 = 𝑧𝑘+1 

So, 𝑢𝑘 + 𝑤𝑘 = 𝑣𝑘 + 𝑧𝑘  ⤇ (u+ w)k = (v+ 

z)k 

But 𝑢𝑘+1 + 𝑤𝑘+1 > 𝑣𝑘+1 + 𝑧𝑘+1. 

So, u + w > v + z. 

Q6. Consider the set of points S = {(x, y): x, y 

are non-negative integers ≤ n}. 

Find the number of squares that can be 

formed with vertices belonging to S and sides 

parallel to the axes. 

Solution:- 

The number of squares with sides of unit length 

= 𝑛 × 𝑛 = 𝑛2. 

The number of squares with sides of length 2 

units is = (𝑛 − 1) × (𝑛 − 1) =  (𝑛 − 1)2 and so 

on. 

∴ Total number of squares = 𝑛2 + (𝑛 − 1)2 +

⋯+ 22 + 12 =
𝑛(𝑛+1)(2𝑛+1)

6
. 

Q7.  If  
𝐬𝐢𝐧𝟒𝐱

𝐚
+
𝐜𝐨𝐬𝟒𝐱

𝐛
=

𝟏

𝐚+𝐛
, then show that 

𝐬𝐢𝐧𝟔𝐱

𝐚𝟐
+
𝐜𝐨𝐬𝟔𝐱

𝐛𝟐
=

𝟏

(𝐚+𝐛)𝟐
. 

Solution:- 

𝑠𝑖𝑛4𝑥

𝑎
+
𝑐𝑜𝑠4𝑥

𝑏
=

1

𝑎 + 𝑏
,  
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𝑜𝑟,
𝑠𝑖𝑛4𝑥

𝑎
+
(1 − 𝑠𝑖𝑛2𝑥)2

𝑏
=

1

𝑎 + 𝑏

′

 

𝑜𝑟, (𝑎 + 𝑏)2𝑠𝑖𝑛4𝑥 − 2𝑎𝑠𝑖𝑛2𝑥(𝑎 + 𝑏)

+ 𝑎2 = 0 

∴ {(𝑎 + 𝑏)𝑠𝑖𝑛2𝑥 − 𝑎}2 = 0 

∴ 𝑠𝑖𝑛2𝑥 =
𝑎

𝑎 + 𝑏
 ∴  𝑐𝑜𝑠2𝑥 = 1 −

𝑎

𝑎 + 𝑏

=
𝑏

𝑎 + 𝑏
; 

∴
𝑠𝑖𝑛6𝑥

𝑎2
+
𝑐𝑜𝑠6𝑥

𝑏2
=

𝑎3

(𝑎 + 𝑏)3

𝑎2

+
𝑏3

(𝑎 + 𝑏)3

𝑏2

=
1

(𝑎 + 𝑏)2
. 

 

Q8. Suppose there are k terms playing a 

round robin tournament; that is, each team 

plays against all the other teams and no game 

ends in a draw. Suppose the ith team loses 𝒍𝒊 

games and wins 𝒘𝒊 games. Show that 

∑𝒍𝒊
𝟐

𝒌

𝒊=𝟏

= ∑𝒘𝒊
𝟐

𝒌

𝒊=𝟏

. 

Solution:-  

By the problem, every team will play k -1 

matches. As the i-th team loses 𝑙𝑖  & 𝑤𝑖𝑛𝑠 𝑤𝑖 

matches, they play a total of 𝑙𝑖 +𝑤𝑖 matches, as 

no match ends in draw. 

∴ 𝑙𝑖 +𝑤𝑖 = 𝑘 − 1 …………. (1) 

Obviously, total no. of wins in the tournament  

= total no. of loses in the tournament 

⟹ ∑ 𝑙𝑖
𝑘
𝑖=1 = ∑ 𝑤𝑖

𝑘
𝑖=1  …………… (2) 

Now, ∑ 𝑙𝑖
2𝑘

𝑖=1 = ∑ 𝑤𝑖
2𝑘

𝑖=1 =  ∑ (𝑙𝑖
2 −𝑤𝑖

2)𝑘
𝑖=1  

=∑(𝑙𝑖 +𝑤𝑖)(𝑙𝑖 −𝑤𝑖)

𝑘

𝑖=1

= ∑(𝑘 − 1)(𝑙𝑖

𝑘

𝑖=1

−𝑤𝑖)  [𝑓𝑟𝑜𝑚 (1)] 

= (𝑘 − 1){∑ 𝑙𝑖
𝑘
𝑖=1 −} = (𝑘 − 1). 0 [𝑓𝑟𝑜𝑚 (2)] 

= 0 

⟹∑𝑙𝑖
2

𝑘

𝑖=1

= ∑𝑤𝑖
2

𝑘

𝑖=1

 (𝑝𝑟𝑜𝑣𝑒𝑑)  

 

Q9. Let 𝑷𝟏, 𝑷𝟐, … , 𝑷𝒏 be polynomials in x, 

each having all integer coefficients, such that 

𝑷𝟏 = 𝑷𝟏
𝟐 + 𝑷𝟐

𝟐 +⋯+ 𝑷𝒏
𝟐. Assume that 𝑷𝟏 

is not the zero polynomial. Show that 𝑷𝟏 =

𝟏 𝒂𝒏𝒅 𝑷𝟐 = 𝑷𝟑 = ⋯ = 𝑷𝒏 = 𝟎. 

Solution:- 

According to the question, 𝑝1 = 𝑝1
2 + 𝑝2

2 +

𝑝3
2 +⋯+ 𝑝𝑛

2 

This is possible when the degree of 𝑝1 is0. 

𝑝1
2 ≥ 𝑝1 ,   

𝑝2
2+𝑝3

2+⋯+𝑝𝑛
2

𝑝1
2+𝑝2

2+⋯+𝑝𝑛
2  ≥ 0          given that    

𝑝1
2 + 𝑝2

2 + 𝑝3
2 +⋯+ 𝑝𝑛

2 = 𝑝1, 𝑝1
2 = 𝑝1, ∵

 𝑝1 ≠ 0 ∴  𝑝1 = 1  

And 𝑝2
2 + 𝑝3

2 +⋯+ 𝑝𝑛
2 = 0 

i.e., 𝑝2 = 𝑝3 = ⋯𝑝𝑛= 0 [Proved] 

 

Q10. Let P(x) = 𝒙𝟒 + 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅, 

where a, b, c, and d are integers. The sums of 

the pairs of roots of P(x) are given by 1, 2, 5, 

6, 9 and 10 find P( ½ ). 

Solution:- 
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P(x) = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑, now sum of 

the roots= -a  

⟹ 𝛼+ 𝛽+ 𝛾+ 𝛿= -a 

Again, 𝛼 + 𝛽 = +1, 𝛾 + 𝛿 =10, 𝛼 + 𝛾 = 2, 𝛼 +𝛿 = 

6, 𝛽 + 𝛾= 5, 𝛽 +𝛿 = 9, Adding, 3(𝛼+ 𝛽+ 𝛾+ 𝛿) = 

33 

⟹ 𝛼 + 𝛽 +𝛾 + 𝛿 = 11 

⟹ a = -11 

Solving, the equations, 

𝛼 = -1 [Note: (𝛼+ 𝛾) and (𝛼+ 𝛿) both should be 

either 

𝛽 = 2 even or both should be odd, else a, b, c, d 

𝛾 = 3 will not be integers.] 

𝛿 = 7 

We know, 𝛼𝛽 +𝛽𝛾 + 𝛾𝛿 +𝛿𝛼 +𝛼𝛾 +𝛽𝛿 = b 

𝛼𝛽𝛾+ 𝛽𝛾𝛿+ 𝛾𝛿𝛼+ 𝛼𝛽𝛿 = -c 

𝛼𝛽 𝛾𝛿 = d 

Putting the values of 𝛼, 𝛽, 𝛾, 𝛿, b = 29, c = -1, d 

= -42, a = -11. 

∴ a, b, c, d any integers. 

∴P(x) = 𝑥4 − 4𝑥3 + 29𝑥2 − 𝑥 − 42 and, 

𝑃(1/2)_=
585

16
 

 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

Q1. Sketch the set A ∩ B in the Argand Plane, 

where A = {z: |
𝒛+𝟏

𝒛−𝟏
| ≤ 1} and B= {z: |z| - Re z ≤ 

1}. 

Solution:- 

Let z = x + iy, then ∣
𝑧+1

𝑧−1
∣ ≤ 1, 

⟾ ∣z+1∣ ≤ ∣z- 1∣, 

⟾ (𝑥 + 1 + 𝑖𝑦)2 ≤ (𝑥 + 𝑖𝑦 − 1)2  ⟾ 4𝑥 ≤ 0  

⟾ 𝑥 ≤ 0. 

A = {z : x ≤ 0} ………………….. (i) 

Also, ∣z∣ - Re(z) ≤ 1 

⟾ √𝑥2 + 𝑦2  ≤ 𝑥 + 1   ⟾ 𝑥2 + 𝑦2 ≤ 𝑥2 +

2𝑥 + 1   ⟾ 𝑦2 ≤ 2𝑥 + 1 = 2 (𝑥 +
1

2
) 

∴𝑦2 =  2 (𝑥 +
1

2
) is a parabola, having its vertex 

at (−
1

2
, 0) and axis on X-axis. 

 

 

Q2. A function f from a set A into a set B is 

rule which assigns to each element x in A, a 

unique (one and only one) element (denoted 

by f(x)) in B. A function f from A into B is 

called an onto function, if for each element y 

in B there is some element x in A, such that 

f(x) = y. now suppose that A = {1, 2, …, n} 

SET – 8 
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and B = {1, 2, 3}. Determine the total number 

of onto functions from A into B. 

Solution:-  

Number of onto functions from {1, 2, 3, …, n} 

to {1, 2} is 2𝑛 − 2. 

Here, A = {1, 2, 3, …, n}, B = {1, 2, 3}, for each 

i ∊ A have 3 possibilities, so total no. of f(n) 

from A to B is 3𝑛. 

But there are (3
2
)(2𝑛 − 2)𝑓(𝑛) image consist of 

2 points and 3 f(n) whose image is singleton. 

Hence, total number of onto functions f(n) from 

A to B is {3𝑛 − (3
2
)(2𝑛 − 2) − 3}. 

Q3. Let D=𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐, where a and b are 

successive positive integers and c = ab. Prove 

that √𝑫 is an odd positive integer. 

Solution:- 

Let a = 2n 

b = 2n + 1 

c = 2n (2n +1) 

= 4𝑛2 + 2𝑛 

D = 𝑎2 + 𝑏2 + 𝑐2 

∴ D = 16 𝑛4 +  16𝑛3 + 12𝑛2 + 4𝑛 + 1 

D- 1 = 2(8𝑛4 + 8𝑛3 + 6𝑛2 + 2𝑛) 

∴ D – 1 is an even number. 

∴ D is an odd number. 

So, √𝐷 is an odd number. 

 Also, D = 16 𝑛4 +  16𝑛3 + 12𝑛2 + 4𝑛 + 1 

= (4𝑛2 +  2𝑛 + 1)2 

∴ √𝐷= 4𝑛2 +  2𝑛 + 1 

= 2(2𝑛2 + 𝑛) + 1 

∴√𝐷 is an odd positive number. 

Q4. Show that a necessary and sufficient 

condition for the line ax + by +c = 0, where a, 

b, c are non-zero real numbers, to pass 

through the first quadrant is either ac < 0 or 

bc < 0. 

Solution:- 

ax + by +c = 0 

⟾ y = −
𝑎𝑥+𝑐

𝑏
 >0. 

∴  
𝑎𝑥+𝑐

𝑏
< 0⟾

𝑎𝑐𝑥2+𝑐2

𝑏𝑐
< 0. 

There will be at least one point on the line for 

which x > 0 and y >0 [∵ If passes through the 1st 

quadrant] 

(i) If 𝑎𝑐𝑥2 + 𝑐2 > 0, then bc <0, now, 

x>0, 𝑐2 > 0. 

∴ ac > 0. 

 

(ii) If  𝑎𝑐𝑥 + 𝑐2 < 0, then bc >0, now, x 

>0, 𝑐2 > 0. 

∴The necessary and sufficient conditions for the 

line to pass through the 1st quadrant is either ac 

>0 or, bc >0. 

Q5. The sum of squares of the digits of a 

three digits positive number is 146, while the 

sum of the two digits in the unit’s and the 

ten’s place is 4 times the digit in the 

hundred’s place. Further, when the number 

is written in the reverse order, it is increased 

by 297. Find the number. 

Solution:- 

Let the no. be (xyz), i.e. N = 100x + 10y +z 

Given 𝑥2 + 𝑦2 + 𝑧2 = 146,  .................. (i) 
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4x = y + z ………………………………… (ii) 

100z + 10y + x = 100x +10y + z + 297 

⟾ z –x = 3 …………………. (iii) 

Solving (i), (ii) and (iii), we have x = 4, y= 9, z 

= 7. 

So, the number is 497. 

 

Q6. Show that there is at least one real value 

of x for which √𝒙
𝟑

+ √𝒙 = 𝟏. 

Solution:- 

Let y = 1- √𝑥 …………… (i) 

And 𝑦0 = √𝑥
3

 ……………. (ii) 

For function (i) x = 0, y= 1; x = 1, y =0; x= 
1

4
, 𝑦 =

1

2
; 

This is a continuous function curve which 

decreases from 1 to 0 

For function (ii) x = 0, 𝑦0 = 0; x = 1, 𝑦0 = 1; 

x= 
1

8
, 𝑦0 =

1

2
; 

This is also a continuous function curve and it 

increases from 0 to 1 in the interval 0 ≤ x ≤ 1. 

Hence, they must meet each other, i.e. their 

value will be some at some points between 0 ≤ x 

≤ 1. 

Hence, the given equation has only one real root. 

Q7. Suppose S = {0, 1} with the following 

addition and multiplication rules:  

0 + 0= 1 +1 = 0     0.0= 0.1 = 1.0 = 0 

0 + 1 = 1+ 0 = 1   1. 1 = 1 

A system of polynomials is defined with 

coefficients in S. The sum and product of two 

polynomials in the system are the usual sum 

and product, respectively, where for the 

addition and multiplication of coefficients the 

above mentioned rules apply. For example, in 

the system, 

(𝒙 + 𝟏). (𝒙𝟐 + 𝒙 + 𝟏)

=  𝒙𝟑 + (𝟏 + 𝟏)𝒙𝟐 + (𝟏 + 𝟏)𝒙

+ 𝟏 = 𝒙𝟑 + 𝟎𝒙𝟐 + 𝟎𝒙 + 𝟏

= 𝒙𝟑 + 𝟏. 

Show that in this system 𝒙𝟑 + 𝒙 + 𝟏 =

(𝒂𝒙 + 𝒃). (𝒄𝒙𝟐 + 𝒅𝒙 + 𝒆) 𝒄𝒂𝒏′𝒕 𝒉𝒐𝒍𝒅. 

Where a, b, c, d and e are elements of S. 

Solution:- 

Let us try to write, 

𝑥3 + 𝑥 + 1 = (𝑎𝑥 + 𝑏)(𝑐𝑥2 + 𝑑𝑥 + 𝑒)

= 𝑎𝑐𝑥3 + (𝑏𝑐 + 𝑎𝑑)𝑥2

+ (𝑏𝑑 + 𝑎𝑒)𝑥 + 𝑏𝑒; 

⟹ 𝑎𝑐 = 1, 𝑏𝑐 + 𝑎𝑑 = 0, 𝑏𝑑 + 𝑎𝑒 = 1, 𝑏𝑒 = 1 

∵ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∊ 𝑠, as we have assumed. 

∴ From the given rule, a = 1, c= 1, b = 1, e= 1 

∴ bc+ ad = 0, substituting the rules, 

1+ d= 0  ⟹ d = 1 (∵ 1+ 1 = 0) 

Again, bd +ac = 1, substituting the values, 

1+ 1= 1, but, by the rule 1+ 1 = 0, which 

contradicts over assumption. 

⟹ 𝑥3 + 𝑥 + 1 cannot be factorial in this 

system. 

 

Q8. Show that ∫ |
𝐬𝐢𝐧𝒏𝒙

𝒙
|

𝝅/𝟐

𝟎
𝒅𝒙 ≥

𝟐

𝝅
 (𝟏 +

𝟏

𝟐
+

⋯+
𝟏

𝒏
). 

Solution:- 
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∫ │
sinℎ𝑥

𝑥
│𝑑𝑥

𝜋

0
, as x ranges from [0, 𝜋], so  

Let us put nx = z    ∴ ndx = dz  

I = ∫ │
𝑠𝑖𝑛𝑧

𝑧/𝑛
│

𝑛𝜋

0

𝑑𝑧

𝑛
= ∫ │

𝑠𝑖𝑛𝑧

𝑧
│

𝑛𝜋

0
𝑑𝑧 =

 ∫ │
𝑠𝑖𝑛𝑧

𝑧
│

𝜋

0
𝑑𝑧 + ∫ │

𝑠𝑖𝑛𝑧

𝑧
│

2𝜋

𝜋
𝑑𝑧 +⋯+

 ∫ │
𝑠𝑖𝑛𝑧

𝑧
│

𝜋

(𝑛−1)𝜋
𝑑𝑧 

Now, ∫ │
𝑠𝑖𝑛𝑧

𝑧
│

𝜋

0
𝑑𝑧 = ∫

𝑠𝑖𝑛𝑧

𝑧

𝜋

0
𝑑𝑧 ≥

∫
𝑠𝑖𝑛𝑧

𝜋

𝜋

0
𝑑𝑧 =

1

𝜋
∫ 𝑠𝑖𝑛𝑧
𝜋

0
𝑑𝑧  

Now, ∫ │
𝑠𝑖𝑛𝑧

𝑧
│

2𝜋

𝜋
𝑑𝑧 = ∫ │

−𝑠𝑖𝑛𝑦

𝜋+𝑦
│𝑑𝑦

𝜋

0
 , where 

𝜋 + y = z, 

= ∫
𝑠𝑖𝑛𝑦

𝜋+𝑦
𝑑𝑦

𝜋

0
≥

1

2𝜋
∫ 𝑠𝑖𝑛𝑦 𝑑𝑦
𝜋

0
=

2

2𝜋
 

Proceeding in this way, ∫ │
𝑠𝑖𝑛𝑧

𝑧
│𝑑𝑧

3𝜋

2𝜋
≥

2

3𝜋
, … . , ∫ │

𝑠𝑖𝑛𝑧

𝑧
│

𝑛𝜋

(𝑛−1)𝜋
≥

2

𝑛𝜋
 

∴𝐼 ≥
2

𝜋
+

2

2𝜋
+

2

3𝜋
+⋯+

2

𝑛𝜋
=
2

𝜋
(1 +

1

2
+⋯+

1

𝑛
). 

 

Q9. Inside an equilateral triangle ABC, an 

arbitrary point P is taken from which the 

perpendiculars PD, PE and PF are dropped 

onto the sides BC, CA and AB, respectively. 

Show that the ratio 
𝑷𝑫+𝑷𝑬+𝑷𝑭

𝑩𝑫+𝑪𝑬+𝑨𝑭
 does not depend 

upon the chice of the point P and find its 

value. 

Solution:- We have (i) AB = BC = CA & ⦟ B 

=⦟C =⦟A = 60° 

[∵ 𝛥ABC is equilateral] 

 

(ii) PD⏊ BC, PE ⏊ AC, PF ⏊AB. 

So, from (i) ⦟PAF = ⦟PAE = 30°, 

⦟PCE = ⦟PCD = 30°, ⦟PBD= ⦟PBF= 30°. 

∴In 𝛥PAF, 
𝑃𝐹

𝐴𝐹
= tan30 ° =

1

√3
   𝑜𝑟, 𝑃𝐹 =

𝐴𝐹

√3
. 

Similarly, for 𝛥PBD, we get PD = 
1

√3
𝐵𝐷, 𝑎𝑛𝑑 for 𝛥PCE, we get PE= 

1

√3
𝐶𝐸. 

∴ 
𝑃𝐷+𝑃𝐸+𝑃𝐹

𝐵𝐷+𝐶𝐸+𝐴𝐹
=

1

√3
(𝐵𝐷+𝐶𝐸+𝐴𝐹)

𝐵𝐷+𝐶𝐸+𝐴𝐹
=

1

√3
. 

As each of the PD, PE, PF can be represented 

w.r.t. BD, CE, AF respectively, so the specified 

ratio does not depend upon the choice of the 

point P. 

Q10. AB is a chord of a circle C. 

(a) Find a point P on the circumference of C 

such that PA. PB is the maximum. 

(b) Find a point P on the circumference of C 

which maximizes PA+ PB. 

Solution:- (a) Let PA = x and PB = y 

∴ PA.PB = xy = (
𝑥+𝑦

2
)
2
− (

𝑥−𝑦

2
)
2
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xy is maximum when x = y. 

i.e.  PA = PB ⟾𝛥PAB will be an isosceles one. 

Position of P:- 

P will be the point of intersection of the 

perpendicular bisector of AB and the circles. 

(b)
𝐴𝑃

sin𝐵
=

𝐵𝑃

sin𝐴
=

𝐴𝐵

sin𝑃
 

AP = 
𝐴𝑃

sin𝑃
× sin𝐵 ;𝐵𝑃 =

𝐴𝐵

sin𝑃
× sin𝐴 ;  

∴ AP + BP = 
𝐴𝐵

sin𝑃
× (sin𝐴 + sin𝐵) =

𝐴𝐵

sin𝑃
× 2 sin

𝐴+𝐵

2
cos

𝐴−𝐵

2
 =

𝐴𝐵

sin𝑃
. 2 cos

𝑃

2
cos

𝐴−𝐵

2
. 

∵ AB = constant, ⦟P = constant, 

∴AP + BP = maximum when   cos
𝐴−𝐵

2
= 

maximum =1.  

⟾
𝐴−𝐵

2
= 0⟾ 𝐴 = 𝐵 ⟾ 𝑃𝐴 = 𝑃𝐵. 

⟾ P lies on the point of intersection of the 

bisector of AB. 

 

ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

Q1. Let PQ be a line segment of a fixed length 

l with its two ends P and Q sliding along the 

X- axis an Y-axis respectively. Complete the 

rectangle OPRQ where O is the origin. Show 

that the locus of the foot of perpendicular 

drawn O is the origin. Show that the locus of 

the foot of the perpendicular drawn from R 

on PQ is given by  𝒙𝟐/𝟑 + 𝒚𝟐/𝟑 = 𝑳𝟐/𝟑. 

Solution:-  

 

Equation of PQ:  
𝑥

𝑎
+
𝑦

𝑏
= 1. 

 ∴ bx +ay – ab = 0 ……………. (1) 

As PQ = L, so, 𝑎2 + 𝑏2 = 𝐿2……………. 

(2) 

Equation of the line through R(a, b) and 

perpendicular to PQ is  

y-b = 
𝑎

𝑏
(𝑥 − 𝑎) 

𝑜𝑟, 𝑎𝑥 − 𝑏𝑦 − (𝑎2 − 𝑏2) = 0 …………… 

(3) 

Both the lines PQ & RS meet at point S, 

whose locus we are to find, the variables 

being a, b, which are connected by 𝑎2 +

𝑏2 = 𝐿2. 

Solving (1) and (3), we have 

𝑥

−𝑎3 + 𝑎𝑏2 − 𝑎𝑏2
=

𝑦

−𝑎2𝑏 + 𝑎2𝑏 − 𝑏3

=
1

−𝑏2 − 𝑎2
 

⟾
𝑥

−𝑎3
=

𝑦

−𝑏3
= −

1

𝑏2 + 𝑎2
=
1

𝐿2
; 

⟾ 𝑎 = (𝐿2𝑥)
1
3& 𝑏 =  (𝐿2𝑦)

1
3; 

SET – 9 
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⟾ 𝑎 = (𝐿2𝑥)
1
3& 𝑏 =  (𝐿2𝑦)

1
3;  

∵  𝑎2 + 𝑏2 = 𝐿2 

∴ (𝐿2𝑥)
2
3 + (𝐿2𝑦)

2
3 = (𝐿2)

2
3  

∴  𝑥
2

3 + 𝑦
2

3 = 𝐿
2

3  which is the required locus 

of S. 

Q2. Let [x] denote the largest (positive, 

negative or zero) less than or equal to x. Let 

y= f(x)= [x]+ √𝒙 − [𝒙] be defined for all real 

numbers x. 

(i) Sketch on plain paper, the graph of the 

function f(x) in the range -5 ≤ x ≤ 5. 

(ii) Show that, given any real number 𝒚𝟎, 

there is a real number 𝒙𝟎, such that 𝒚𝟎 =

𝒇(𝒙𝟎 ). 

Solution:-  y = f(x) = [x] + √𝑥 − [𝑥] = [x] + 

√{𝑥} 

(i) We know 0 ≤ {x} < 1 

⟾√{𝑥} ≥ {𝑥} 

⟾[x] + √{𝑥}≥ [x] + {x} 

⟾ f(x) ≥ x 

‘=’ holds when x takes integral values. 

 

 

(ii) Again, y = f(x) = [x] + √{𝑥} 

As 0 ≤ {x} < 1, hence √{𝑥} is always real, 

⟾ f(x) is always real. 

⟾ there is a  𝑥0, ∀ 𝑦0 ∊ ℝ &𝑥0 ∊ ℝ, ∋ 𝑦0 =

𝑓(𝑥0)  

Q3. A troop 5 metres long starts 

marching. A soldier at the end of the file 

steps out and starts marching forward at 

a higher speed. On reaching the head of 

the column, he immediately turns around 

and marches back at the same speed. As 

soon as he reaches the end of the file, the 

troop stops marching, and it is found that 

the troop has moved by exactly 5 metres. 

What distance has the soldier travelled? 

Solution:- Let Vel. Of troop = 𝑉𝑡 

Vel. Of soldier = 𝑉𝑠 

Now, distance travelled by troop, when the 

soldier reached that point = x m. 

∴ Time taken = 
𝑥

𝑉𝑡
=
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
. 

So, distance traveled by soldier = length of 

troop + x = x+ 5 

∴ Time taken = 
𝑥+5

𝑉𝑠
. 

Given that 
𝑥

𝑉𝑡
=
𝑥+5

𝑉𝑠
 ⤇

𝑉𝑠

𝑉𝑡
=
𝑥+5

𝑥
 

…………….(i) 

Again, the soldier retreated x units. 

∴ Time taken by him to retreat = 
𝑥

𝑉𝑠
 

The troop travelled = {10 – (5+ x)}m = (5- 

x)m. 
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∴ Time taken by them to travel= 
5−𝑥

𝑉𝑡
 

So, by the question, we have 
𝑥

𝑉𝑠
=
5−𝑥

𝑉𝑡
  

⤇
𝑉𝑠

𝑉𝑡
=

𝑥

5−𝑥
 ……………. (ii) 

Equating (i) and (ii), we have 

 
𝑥+5

𝑥
=

𝑥

5−𝑥
 

⤇ x =  
5

√2
. 

∴ The soldier travelled = 5+ x+ x= (5+ 5√2) 

m. 

Q4. Given m identical symbols, say H’s, show 

that the number of ways in which you can 

distribute them in k boxes marked 1, 2, …, k, 

so that no box goes empty is (𝒎−𝟏
𝒌−𝟏

) . 

Solution:-  

(a) Put 1 ball in each box, so we have m-x 

identical balls to be distributed in k boxes. 

Let, the jth box got i j balls out of (m - k) balls, 

where j = 1, 2, 3, …, k; 0 ≤ i, j ≤ m- k. 

So, we need to find the no. of solutions of the 

equation 𝑖1 + 𝑖2 +⋯+ 𝑖𝑘 = 𝑚 − 𝑘, where each 

i j is non-negative integers. 

 ∴ Total number f solutions = coefficient of 

𝑥𝑚−1 in (1 − 𝑥)−𝑘 

= (
𝑚 − 1

𝑘 − 1
). 

Q5. Show that for every positive integer n, √𝒏 

is either an integer or an irrational number. 

Solution:- 

When ‘n’ is perfect square, 

Then  √𝑛 is an integer. 

When ‘n’ is not a perfect square, then let 

√𝑛 is a rational number= 
𝑝

𝑞
, where gcd (p, q)= 1. 

i.e. n = 
𝑝2

𝑞2
 

∵p and q are relatively prime to each 

other, 𝑝2 𝑎𝑛𝑑 𝑞2 should be relatively prime to 

each other and 
𝑝2

𝑞2
 can’t be an integer. Hence, √𝑛 

is not a rational number. 

Q6. Show that 𝟐𝟐𝒏 − 𝟑𝒏 − 𝟏 is divisible by 9 

for all n ≥ 1. 

Solution:- 

22𝑛 − 3𝑛 − 1 = 4𝑛 −  3𝑛 − 1

= (1 + 3)𝑛 − 3𝑛 − 1 

= {1 + 3𝑛 + 9. 𝑛𝑐2 +⋯+ 3
𝑛} − 3𝑛 − 1 

= 9(𝑛𝑐2 + 3. 𝑛𝑐3 +⋯+ 3
𝑛−2) 

i.e., 22𝑛 − 3𝑛 − 1  is divisible by 9 ∀ 𝑛 ≥ 1. 

Q7. Find the set of all values of m such that y 

= 
𝒙𝟐−𝒙

𝟏−𝒎𝒙
 can take all real values. 

Solution:- 

𝑦 =
𝑥2 − 𝑥

1 −𝑚𝑥
 

⟾ 𝑦−𝑚𝑥𝑦 = 𝑥2 − 𝑥 

⟾ 𝑥2 + (𝑚𝑦 − 1)𝑥 − 𝑦 = 0 

∴ (𝑚𝑦 − 1)2 + 4𝑦 ≥ 0   [∵ 𝑥 𝑖𝑠 𝑟𝑒𝑎𝑙] 

⟾𝑚2𝑦2 + (4 − 2𝑚)𝑦 + 1 ≥ 0 

∴ (4 − 2𝑚)2 − 4𝑚2 ≥ 0     [∵ 𝑦 𝑖𝑠 𝑟𝑒𝑎𝑙] 

⟾ (2 −𝑚)2 −𝑚2 ≥ 0 

⟾ 2− 2𝑚 ≥ 0 ⟾ 𝑚 ≤ 1. 
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Q8. If A, B, C are the angles of a triangle, 

then show that sin A + sin B - cos C ≤ 
𝟑

𝟐
. 

Solution:- 

Sin A + sin B –sin C = Sin A + sin B-sin 

(
𝛱

2
− 𝑐) 

= sin𝐴 + sin𝐵 + sin (𝐶 −
𝛱

2
) 

= sin𝐴 + sin𝐵 + sin𝐷 , 𝐷 = 𝐶 −
𝛱

2
.  

𝑁𝑜𝑤, 𝐴 + 𝐵 + 𝐶 =  𝛱; ∴ 𝐴 + 𝐵 + 𝐶 −
𝛱

2

= 𝐴 + 𝐵 + 𝐷 =
𝛱

2
. 

Let, f(x)= sin x, we plot its graph such that 

taking the abscissa A, B, D as 𝐴 + 𝐵 + 𝐷 =
𝛱

2
, 

or, plotting in the interval [0,
𝛱

2
] 

∴ Centroid of 𝛥PQR≡G≡ 

(
𝐴+𝐵+𝐷

3
,
sin𝐴+sin𝐵+sin𝐷

3
) 

We take a point f(x) = sin x, such that it is of the 

same abscissa that of G, but of greater ordinate. 

∴ M ≡ (
𝐴+𝐵+𝐷

3
, 𝑠𝑖𝑛

𝐴+𝐵+𝐷

3
) 

∴ Ordinate of G < ordinate of M, 

⟾
sin𝐴+sin𝐵+sin𝐷

3
< 𝑠𝑖𝑛

𝐴+𝐵+𝐷

3
 , 

Or, sin𝐴 + sin𝐵 + sin𝐷 <
3

2
. 

When A, B, D are not distinct, i.e., A= B=D= 
𝛱

6
, 

equality holds. ⟾ sin𝐴 + sin𝐵 + sin𝐷 ≤
3

2
, sin𝐴 + sin𝐵 − cos𝐶 ≤

3

2
. 

 

Q9. Let X be a point on a straight line 

segment AB such that AB.BX = A𝑿𝟐. Let C 

be a point on the circle with centre at A and 

radius AB such that BC = AX. Show that the 

angle BAC= 36°. 

Solution:- Let, a = radius of the circle, 

AX = x = BC. Since, AB. BX =  A𝑋2 , 

⟾ a (a -x) = 𝑥2⟾𝑎2 − 𝑎𝑥 − 𝑥2 = 0, 

⟾ (
𝑥

𝑎
)
2
+
𝑥

𝑎
− 1 = 0, 

∴
𝑥

𝑎
=
−1+√5

2
. 

Now, x = BC = 2a sin
𝜃

2
 ∴ sin

𝜃

2
=

𝑥

2𝑎
=
−1+√5

4
=

sin18° 

⟾
𝜃

2
=  18°⟾ 𝜃 = 36° 

⟾⦟BAC= 36°. 

 

Q10. Let a, b, c, d be positive real numbers 

such that abcd = 1. Show that (1+ a)(1+ b)(1+ 

c)(1+ d)≥ 16. 

Solution:-  
1+𝑎

2
≥ √𝑎,

1+𝑏

2
≥ √𝑏,

1+𝑐

2
≥ √𝑐,

1+𝑑

2
≥ √𝑑.  

Multiplying corresponding sides of the above 

inequalities, we have, 

(1+ a) (1+ b) (1+c) (1+d) ≥ 16 √𝑎𝑏𝑐𝑑 ≥ 16. 
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ISI B.STAT & B.MATH 

SUBJECTIVE QUESTIONS & 

SOLUTIONS  

 

 

Q1. For a real number x, let [x] denote the 

largest integer less than or equal to x and <x> 

denote x – [x]. Find all the solutions of the 

equations 13[x] +25 <x> = 271. 

Solution:- 

13 [x] + 25 〈x〉 = 271 

or, 〈x〉 = 
271−13[𝑥]

25
, 

We know 0 ≤ 〈x〉 <1, 

⟾ 0 ≤  
271−13[𝑥]

25
< 1 

⟾ 13[x] - 271 > -25 

⟾ [x] > 18. 9 

The nearest integers in this interval are 19 and 

20. 

Putting [x] = 19, 〈x〉 = 
271−13×19

25
= 0.96 

Putting [x] =n 20, 〈x〉 = 
271−13×20

25
= 0.44 

∴ x = 19.96, 20.44 (Answer) 

Q2. Consider the function f(t) = 𝒆−
𝟏

𝒕 . 𝒕 > 0. 

Let for each positive integer n, 𝒑𝒏 be the 

polynomial such that 
𝒅𝒏

𝒅𝒕𝒏
𝒇(𝒕) = 𝑷𝒏 (

𝟏

𝒕
) 𝒆−

𝟏

𝒕  for 

all t > 0. Show that 

𝑷𝒏+𝟏(𝒙) =  𝒙
𝟐 (𝑷𝒏(𝒙) −

𝒅

𝒅𝒙
𝑷𝒏(𝒙)). 

Solution:-  f(t) = 𝑒−1/𝑡, 𝑡 > 0 

𝑑𝑛

𝑑𝑡𝑛
= (𝑓(𝑡)) =  𝑃𝑛 (

1

𝑡
) 𝑒−

1
𝑡 ; 

𝑑𝑛+1

𝑑𝑡𝑛+1
𝑓(𝑡) =

𝑑

𝑑𝑡
{𝑃𝑛 (

1

𝑡
)} . 𝑒−

1
𝑡

+ 𝑒−
1
𝑡 (
1

𝑡2
) . 𝑃 (

1

𝑡
) 

𝑁𝑜𝑤, 𝑃𝑛+1 (
1

𝑡
) =  𝑒

1
𝑡 .
𝑑𝑛+1

𝑑𝑡𝑛+1
. 𝑓(𝑡) 

= 𝑒
1
𝑡 [
𝑑

𝑑𝑡
{𝑃𝑛 (

1

𝑡
)} . 𝑒

−
1
𝑡 + 𝑒−

1
𝑡 (
1

𝑡2
)𝑃𝑛 (

1

𝑡
)] 

=
𝑑

𝑑𝑡
[𝑃𝑛 (

1

𝑡
)] +

1

𝑡2
𝑃𝑛 (

1

𝑡
).   

Let us put 
1

𝑡
 = x, 𝑃𝑛+1(𝑥) =

𝑑

𝑑𝑥
{𝑃𝑛(𝑥)} /

𝑑𝑡

𝑑𝑥
+

𝑥2. 

∴ 𝑃𝑛(𝑥) = 𝑥
2 𝑃𝑛(𝑥) − 𝑥

2 𝑑

𝑑𝑥
{𝑃𝑛(𝑥)}  =

𝑥2 (𝑃𝑛(𝑥) −
𝑑

𝑑𝑥
𝑃𝑛(𝑥)). 

Q3. Study the derivative of the function f(x) =  

𝒙𝟑 − 𝟑𝒙𝟐 + 𝟒, and roughly sketch the graph 

of f(x), on plain paper. 

Solution:- 𝑓(𝑥) =  𝑥3 − 3𝑥2 + 4  

𝑓 ′(𝑥) = 3𝑥2 − 6𝑥 = 3𝑥(𝑥 − 2)  

f’(x) > 0 for -∞ ,x < 0 

f’(x) < 0 for 0< x < 2 

f’(x) > 0 for 2 < x< ∞ 

x -2 -1 0 1 2 3 

f(x) -16 0 4 2 0 4 

 

SET – 10 
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Q4. Study the derivative of the function 

f(x) = 𝐥𝐨𝐠𝒆 𝒙 − (𝒙 − 𝟏), 𝒇𝒐𝒓 𝒙 > 0, and 

roughly sketch the graph of f(x), on plain 

paper. 

Solution:- 

𝑓(𝑥) =  log𝑒 𝑥 − (𝑥 − 1), 𝑓𝑜𝑟 𝑥 > 0. 

𝑓 ′(𝑥) =
1

𝑥
− 1 =

1 − 𝑥

𝑥
; 

𝑓 ′(𝑥) > 0 𝑓𝑜𝑟 0 < 𝑥 < 1  

𝑓 ′(𝑥) < 0 𝑓𝑜𝑟 1 < 𝑥 < ∞ 

x 0.5 1 2 3 

f(x) 0.2 0 -0.7 -1.5 

 

 

 

Q5. (i) Find the number of all possible 

ordered k- tuples of non-negative integers 

(𝒏𝟏, 𝒏𝟐, … , 𝒏𝒌) such that ∑ 𝒏𝒊
𝒌
𝒊=𝟏 = 𝟏𝟎𝟎. 

(ii) Show that the number of all possible 

ordered 4- tuples of non-negative integers 

(𝒏𝟏, 𝒏𝟐, 𝒏𝟑, 𝒏𝟒) such that ∑ 𝒏𝒊
𝟒
𝒊=𝟏 ≤

𝟏𝟎𝟎 𝒊𝒔 (𝟏𝟎𝟎
𝟒
). 

Solution:- 

(i) Let S = {𝑛1, 𝑛2, … , 𝑛𝑘} be a set with k distinct 

elements. Given 𝑛𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝑛𝑖
𝑘
𝑖=1 = 100. 

So, total number of all possible ordered k –

tuples of such kinds are = (𝑘−1+100
100

). 

(ii)Here k = 4, and ∑ 𝑛𝑖
𝑘
𝑖=1 ≤ 100 

So, no. of such possible cases are = (4−1+101
4

) =

(104
4
). 

Q6. Let P be the fixed point (3, 4) and Q the 

point (x, √𝟐𝟓 − 𝒙𝟐). If M(x) is the slope of the 

line PQ, find 𝐥𝐢𝐦
𝒙→𝟑

𝑴(𝒙).  

Solution:- 

P(3, 4); Q (x, √25 − 𝑥2) 

 Slope, M(x)= 
𝑦1−𝑦2

𝑥1− 𝑥2
=
√25−𝑥2−4

𝑥−3
 

Now, lim
𝑥→3

𝑀(𝑥) = lim
𝑥→3

 
√25−𝑥2−4

𝑥−3
 

= −
3

4
   [Do yourself applying L’Hospital Rule] 

Q7. Solve 𝟔𝒙𝟐 − 𝟐𝟓𝒙 + 𝟏𝟐 +
𝟐𝟓

𝒙
+

𝟔

𝒙𝟐
= 𝟎. 

Solution:- 

 6𝑥2 − 25𝑥 + 12 +
25

𝑥
+

6

𝑥2
= 0; 

⟾ 6𝑥2 +  12 +
6

𝑥2
− 25𝑥 +

25

𝑥
= 0 
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⟾ 6𝑥2 − 12 +
6

𝑥2
− 25𝑥 +

25

𝑥
+ 24 = 0 

⟾ 6(𝑥 −
1

𝑥
)
2

− 25(𝑥 −
1

𝑥
) + 24 = 0 

Let, 𝑥 −
1

𝑥
= 𝑦; so, 6𝑦2 − 25𝑦 + 24 = 0 

⟾ y = 
25±√625−576

2×6
=
8

3
  𝑜𝑟

3

2
. 

When y = 
8

3
, 𝑥 = 3 𝑜𝑟

1

3
, 

For y = 
3

2
, 𝑥 = 2 𝑜𝑟 −

1

2
. 

 

Q8. (i) In the identity 

𝒏!

𝒙(𝒙 + 𝟏)(𝒙 + 𝟐)… (𝒙 + 𝒏)

=  ∑
𝑨𝒌
𝒙 + 𝒌

𝒏

𝒌=𝟎

, 

Prove that 𝑨𝒌 = (−𝟏)
𝒌(𝒏
𝒌
) . 

(ii) Deduce that:(𝒏
𝟎
) 

𝟏

𝟏.𝟐
− (𝒏

𝟏
) 

𝟏

𝟐.𝟑
+

(𝒏
𝟐
)  

𝟏

𝟑.𝟒
− …+ (−𝟏)𝒏(𝒏

𝒏
) 

𝟏

(𝒏+𝟏)(𝒏+𝟐)
=

𝟏

𝒏+𝟐
  

Solution:- 

(i) From n! = ∑ 𝐴𝑘
𝑛
𝑘=0 (𝑥 + 1)(𝑥 +

2)… (𝑥 + 𝑘 − 1)(𝑥 + 𝑘 + 1)… (𝑥 + 𝑛) 

Putting x = - k, 

n! = ∑ (−1)−𝑘𝑛
𝑘=0  𝐴𝑘 . 𝑘! (𝑛 − 𝑘)! 

⤇ 𝐴𝑘 = (−1)
𝑘 (𝑛

𝑘
).  

(ii)Considering (1 + 𝑥)𝑛 = 𝑛𝑐0 + 𝑛𝑐1𝑥 +

 𝑛𝑐2𝑥
2 +⋯+ 𝑛𝑐𝑛𝑥

𝑛. 

Integrating w.r.t.x, we have 

(1 + 𝑥)𝑛+1

𝑛 + 1
=  𝑛𝑐0𝑥 +

𝑛𝑐1𝑥
2

2
+⋯

+
𝑛𝑐𝑛𝑥

𝑛+1

𝑛 + 1
+  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Putting x = 0, then constant = 
1

𝑛+1
. 

So, 
(1+𝑥)𝑛+1

𝑛+1
= 𝑛𝑐0𝑥 +

𝑛𝑐1𝑥
2

2
+⋯+

𝑛𝑐𝑛𝑥
𝑛+1

𝑛+1
+

1

𝑛+1
. 

(1 + 𝑥)𝑛+2

(𝑛 + 1)(𝑛 + 2)

=
𝑛𝑐0𝑥

2

1.2
+
𝑛𝑐1𝑥

3

2.3
+ …

+ 
𝑛𝑐𝑛𝑥

𝑛+2

(𝑛 + 1)(𝑛 + 2)
+

𝑥

𝑛 + 1

+  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . 

Putting x= 0, then constant = 
1

(𝑛+1)(𝑛+2)
. 

So, 
(1+𝑥)𝑛+2

(𝑛+1)(𝑛+2)
=
𝑛𝑐0𝑥

2

1.2
+
𝑛𝑐1𝑥

3

2.3
+ …+

 
𝑛𝑐𝑛𝑥

𝑛+2

(𝑛+1)(𝑛+2)
+

𝑥

𝑛+1
+

1

(𝑛+1) (𝑛+2)
.  

Putting x= -1, we get 

0 = 
𝑛𝑐0

1.2
−
𝑛𝑐1

2.3
+
𝑛𝑐2

3.4
…+ (−1)𝑛

𝑛𝑐𝑛
(𝑛+1)(𝑛+2)

−

1

(𝑛+1)
+

1

(𝑛+1)(𝑛+2)
. 

So, (𝑛
0
)
1

1.2
− (𝑛

1
)
1

2.3
+ (𝑛

2
)
1

3.4
+⋯+

(−1)𝑛(𝑛
𝑛
)

1

(𝑛+1)(𝑛+2)
 = 

1

𝑛+2
.  (Proved) 

 

Q9.  A regular five pointed star is inscribed in 

a circle of radius r. Show that the area of the 

region inside the star is 
𝟏𝟎𝒓𝟐 𝐭𝐚𝐧(

𝝅

𝟏𝟎
)

𝟑−𝒕𝒂𝒏𝟐(
𝝅

𝟏𝟎
)
. 

Solution:- 
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Suppose, O be the centre of the circle which lies 

in the star and whereas ⦟MOL = 𝜃, so, ⦟LAM =  
𝜃

2
. 

Here 5. R. 𝜃 = 2𝜋r 

∴ 𝜃 =  
2𝜋

5
 

From 𝛥OAL, 

⦟AOL = 2 
𝜋

5
⟹

1

2
=
𝜋

5
. 

⦟LAO= 
1

2
⦟𝐴𝑂𝐿 =

𝜋

10
 

⦟OLA = 𝜋- (⦟AOL+⦟LAO) 

= 𝜋- (
𝜋

5
+

𝜋

10
) =

7𝜋

10
 

Let, AL = a, OL = b & OA= R (given) 

∴ From 𝛥 OAL, we have, 
𝑎

sin
𝜋

5

=
𝑏

sin
𝜋

10

=
𝑅

sin
7𝜋

10

 

∴ a = R
sin

𝜋

5

sin
7𝜋

10

 & 𝑏 = 𝑅
sin

𝜋

10

sin
7𝜋

10

 

Thus area of 𝛥AOL = 
1

2
𝑎𝑏 sin

7𝜋

10
=
1

2
𝑅2 

sin
𝜋
5
sin

𝜋
10

𝑠𝑖𝑛27
𝜋
10

× sin7
𝜋

10

=
1

2
𝑅22 sin

𝜋

10
cos

𝜋

10
sin

𝜋

10
 

[∵ sin
7𝜋

10
= sin 3

𝜋

10
] =

𝑅2𝑠𝑖𝑛2
𝜋
10 cos

𝜋
10

3 sin
𝜋
10 − 4 sin

3𝜋
10

=
𝑅2 tan

𝜋
10

3 − 𝑡𝑎𝑛2
𝜋
10

 

[Dividing 𝑁𝑟  & 𝐷𝑟 by sin
𝜋

10
𝑐𝑜𝑠2

𝜋

10
] 

Hence, required area of the star = 
10𝑅2 tan

𝜋

10

3−𝑡𝑎𝑛2
𝜋

10

 

[proved] 

Q10. For the following function f study its 

derivatives and use them to sketch its graph 

on plain paper: 

  f(x) = 
𝒙−𝟏

𝒙+𝟏
+
𝒙+𝟏

𝒙−𝟏
 for x ≠ -1, 1. 

Solution:- f(x) = 
𝑥−1

𝑥+1
+
𝑥+1

𝑥−1
 [𝑓𝑜𝑟 𝑥 ≠ 1, 𝑥 ≠

−1] =
2(𝑥2+1)

(𝑥2−1)
= 2 +

4

𝑥2−1
.   ∴ 𝑓 ′(𝑥) =

−8𝑥

(𝑥2−1)2
. 

For,  −∞ < 𝑥 < −1, 𝑓 ′(𝑥)𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒;  

For, -1 < x < 0, 𝑓 ′(𝑥) is positive; 

For, 0 < x <1, 𝑓 ′(𝑥) is negative; 

For, 1< x < ∞, 𝑓 ′(𝑥) is negative. 

 

x -3 -2 0 - ½  ½  2 3 

f(x) 2
1

2
 3

1

3
 -

2 
-3
1

3
 3

1

3
 3

1

3
 2 
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PROBLEMS WITH SOLUTIONS FOR 

I.S.I. / C.M.I. ENTRANCE TESTS 

 

1. Prove that for all natural numbers n ≥ 3 

there exist odd natural numbers 𝒙𝒏, 𝒚𝒏 

such that 𝟕𝒙𝒏
𝟐 + 𝒚𝒏

𝟐 = 𝟐𝒏. 

Sol: For n = 3, we have 𝑥3 = 𝑦3 = 1. Now 

suppose that for a given natural number n we 

have odd natural numbers 𝑥𝑛, 𝑦𝑛 such that 

7𝑥𝑛
2 + 𝑦𝑛

2  = 2𝑛 we shall exhibit a pair (X, Y) 

such that 7𝑋2 + 𝑌2 = 2𝑛 we shall exhibit a pair 

(X, Y) such that 7𝑥𝑛
2 + 𝑦𝑛

2 = 2𝑛+1. In fact, 

7 (
𝑥𝑛 ± 𝑦𝑛
2

)
2

+ (
7𝑥𝑛 ± 𝑦𝑛

2
)
2

=  2(7𝑥𝑛
2 + 𝑦𝑛

2)

=  2𝑛+1 

One of 
(𝑥𝑛+ 𝑦𝑛)

2
 𝑎𝑛𝑑

│𝑥𝑛−𝑦𝑛│

2
 is odd (as their 

sum is the larger of 𝑥𝑛 𝑎𝑛𝑑 𝑦𝑛 which is odd), 

giving the desired pair. 

2. The circles 𝒌𝟏 𝒂𝒏𝒅 𝒌𝟐 with respective 

centers 𝑶𝟏𝒂𝒏𝒅 𝑶𝟐 are externally tangent 

at the point C, while the circle k with 

center O is externally tangent 𝒌𝟏 𝒂𝒏𝒅 𝒌𝟐. 

Let l be the common tangent of 𝒌𝟏 𝒂𝒏𝒅 𝒌𝟐 

at the point C and let AB be the diameter 

of k perpendicular o l. Assume that O and 

A lie on the same side of l. Show that that 

the lines 𝑨𝑶𝟐, 𝑩𝑶𝟏, 𝒍 have a common 

point. 

Sol.: Let 𝑟, 𝑟1, 𝑟2 be the respective radii of 

𝑘, 𝑘1, 𝑘2. Also let M and N be the intersections 

of AC and BC with k. Since AMB is a right 

triangle, the triangle AMO is isosceles and  

∠𝐴𝑀𝑂 =  ∠𝑂𝐴𝑀 =  ∠𝑂1𝐶𝑀 =  ∠𝐶𝑀𝑂1 

Therefore 𝑂,𝑁, 𝑂1 are collinear and AM / MC = 

OM / M𝑂1 = 𝑟/𝑟1 

Similarly O, N, 𝑂2 are collinear and BN / NC = 

OM / N𝑂2 = 𝑟 /𝑟2. 

Let P be the intersection of l with AB; the lines 

AN, BM, CP concur at the orthocenter of ABC, 

so by Ceva’s theorem. 

AP / PB = (AM / MC) (CN / NB)= 𝑟2 /𝑟1. Now let 

𝐷1 𝑎𝑛𝑑 𝐷2 be the intersections of l with 

𝐵𝑂1 𝑎𝑛𝑑 𝐴𝑂2. Then 
𝐶𝐷1

𝐷1𝑃
=
𝑂1𝐶

𝑃𝐵
=

𝑟1

𝑃𝐵
, 𝑎𝑛𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦

𝐶𝐷2

𝐷2𝑃
=

𝑟2

𝑃𝐴
. Thus 

𝐶𝐷1

𝐷1𝑃
=

 
𝐶𝐷2

𝐷2𝑃
 𝑎𝑛𝑑 𝐷1 = 𝐷2, and so 𝐴𝑂2, 𝐵𝑂1, 𝑙 have a 

common point. 

3. Let a, b, c be real numbers and let M be 

the maximum of the function 𝒚 =  │𝟒𝒙𝟑 +

𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄│ in the interval │-1, 1│. 

Show that M ≥ 1 and find all cases where 

equality occurs. 

Sol.: a = 0, b = -3, c = 0, where M = 1, with the 

maximum achieved at -1, -1/2, ½ , 1. On the 

other hand, if M < 1 for some choice of a, b, c, 

then 

(4𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐) − (4𝑥3 + 3𝑥) 

Must be positive at -1, negative -1/2, positive at 

½, and negative at 1, which is impossible for a 

quadratic function. Thus M ≥ 1, and the same 

argument shows that equality only occurs for 

(a, b, c) = (0, -3, 0). (Note: this is a particular 

case of the minimum deviation property of 

Chebyshev polynomials).  

4. The real numbers 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏(𝒏 ≥ 𝟑) 

from an arithmetic progression. There 

exists a permutation 

𝒂𝒊𝟏, 𝒂𝒊𝟐, … , 𝒂𝒊𝒏 𝒐𝒇 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 which is a 

geometric progression. Find the numbers 

𝒂𝟏, 𝒂𝟐, … 𝒂𝒏 if they are all different and the 

largest of them as equal to 1996. 
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Sol.:  Let 𝑎1 < 𝑎2 < −< 𝑎𝑛 = 1996 and let q 

be the ratio of the geometric progression 

𝑎𝑖1………𝑎𝑖𝑛 ; clearly q≠ 0 ± 1. By reversing 

the geometric progression if needed, we may 

assume |q| > 1, and so |𝑎𝑖1|< |𝑎𝑖2| < −|𝑎𝑖𝑛|. 

Note that either all of the terms are positive, or 

they alternate in sign; in the latter case, the 

terms of either sign form a geometric 

progression by themselves. 

There cannot be three positive terms, or else 

we would have a three term geometric 

progression a, b, c which is also an arithmetic 

progression, violating the AM –GM inequality. 

Similarly, there cannot be three negative terms, 

so there are at most two terms of each sign and 

n ≤4. 

If n = 4, we have 𝑎1 < 𝑎2 < 0 < 𝑎3 <

𝑎4𝑎𝑛𝑑 2𝑎2 = 𝑎2 + 𝑎3, 2𝑎3 = 𝑎2 + 𝑎4. In this 

case, q < -1 and the geometric progression is 

either 𝑎3, 𝑎2, 𝑎4, 𝑎1 𝑜𝑟 𝑎2, 𝑎3, 𝑎1, 𝑎4. Suppose 

the former occurs (the argument in similar in 

the latter case): then 

2𝑎3𝑞 =  𝑎3𝑞
3 + 𝑎3 𝑎𝑛𝑑 2𝑎3 + 𝑎3𝑞

3 + 𝑎3𝑞
2, 

giving q =1, a contradiction. 

We deduce n = 3 and consider two possibilities. 

If 𝑎1 < 𝑎2 < 0 < 𝑎3 = 1996, 𝑡ℎ𝑒𝑛 2𝑎2 =

𝑎2𝑞
2 + 𝑎2𝑞,  so 𝑞2 + 𝑞 − 2 = 0 𝑎𝑛𝑑 𝑞 =  −2, 

yielding (𝑎1, 𝑎2, 𝑎3) = (−3992,−998, 1996). If 

𝑎1 < 0 < 𝑎2 < 𝑎3 = 1996, then  

2𝑎2 = 𝑎2𝑞 + 𝑎2𝑞
2, so again q = -2, yielding  

(𝑎1, 𝑎2, 𝑎3) = (−998, 499, 1996). 

5. Find all prime numbers p, q for which pq 

divides (𝟓𝒑 − 𝟐𝒑)(𝟓𝒒 − 𝟐𝒒). 

Sol.: If p│5𝑝 − 2𝑝, 𝑡ℎ𝑒𝑛𝑝│5 -2 by Fermat’s 

theorem, 

So p = 3, suppose p, q ≠3; then p│5𝑞 − 2𝑞 

and q│5𝑝 − 2𝑝. Without lose of generality 

assume p >q, so that (p, q -1) = 1. Then if a is 

an integer such that 2a ≡5 (mod q), then the 

order of a mod q divides p as well as q -1, a 

contradiction. 

Hence one of p, q is equal to 3. If q ≠ 3, then 

q│53 − 23 = 9.13. so q = 13, and similarly p 

∊(3, 13). 

Thus the solutions are (p, q) = (3, 3), (3, 13), 

(13, 3). 

6. Find the side length of the smallest 

equilateral triangle in which three dises of 

radii 2, 3, 4 can be placed without overlap. 

Sol.: A short computation shows that dises of 

radii 3 and 4 can be fit into two corners of an 

equilateral triangle of side 11√3 so as to just 

touch, and that a disc of radius 2 easily fits into 

the third corner without overlap. On the other 

hand, if the discs of radii 3 and 4 fit into an 

equilateral triangle without overlap, there exists 

a line separating them (e.g. a tangent to one 

perpendicular to their line of centers) dividing 

the triangle into a triangle and a (possibly 

degenerate) convex quadrilateral. Within each 

piece, the disc can be moved into one of the 

corners of the original triangle. Thus the two 

discs fit into the corners without overlap, so the 

side length of the triangle must be at least 

11√3. 

7. The equilateral ABCD is inscribed in a 

circle. The lines AB and CD meet at E, while 

the diagonals AC and BD meet at F. The 

circumcircles of the triangles AFD and BFC 

meet again at H. Prove that ∠EHF= 90°. 

Sol.: (We use directed angles modulo 𝜋.) Let O 

be the circumcenter of ABCD; then ∠AHB= 

∠AHF+∠FHB=∠ADF+∠FCB= 2∠ADB= 
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∠AOB, so O lies on the circumcircle of AHB, 

and similarly on the circumcircle of CHD. The 

radical axes of the circumcircles of AHB, CHD 

and ABCD concur; these lines are AB, CD and 

HO, so E, H, O are collinear. Now note that 

∠OHF = ∠OHC+∠CHF= ∠ODC+∠CBF = 
𝜋

2
−

∠𝐶𝐴𝐷 + ∠𝐶𝐵𝐷. 𝑆𝑜 ∠𝐸𝐻𝐹 =  ∠𝑂𝐻𝐹 = 
𝜋

2
 as 

desired. (Compare IMO 1985/5.) 

8. A 𝟕 × 𝟕 chessboard is given with its four 

corners deleted. 

(a) What is the smallest number of 

squares which can be colored black so 

that an uncolored 5 squares (Greek) 

cross cannot be found? 

(b) Prove that an integer can be written in 

each square such that the sum of the 

integers in each 5 squares cross is 

negative while the sum of the 

numbers in all squares of the board is 

positive. 

Sol.: The 7 squares  

(2, 5), (3, 2), (3, 3), (4, 6), (5, 4), (6, 2), (6, 5) 

 suffice, so we need only show that 6 or fewer 

will not suffice. The crosses centered at  

(2, 2), (2, 6), (3, 4), (5, 2), (5, 6), (6, 4)  

are disjoint, so one square must be colored in 

each, hence 5 or fewer squares do not suffice. 

Suppose exactly 6 squares are colored. Then 

none of the squares (1, 3), (1, 4), (7, 2) can be 

colored; by a series of similar arguments, no 

square on the perimeter can be colored. 

Similarly, (4, 3) and (4, 5) are not covered, and 

by a similar argument, neither is (3, 4) or (5, 4). 

Thus the center square (4, 4) must be covered. 

Now the crosses centered at  

(2, 6), (3, 3), (5, 2), (5, 6), (6, 4)  

are disjoint and none contains the center 

square, so each contains one colored 

square. In particular, (2, 2) and (2, 4) are not 

colored. Replacing (3, 3) with (2, 3) in the 

list shows that (3, 2) and (3, 4) are not 

colored. Similar symmetric arguments now 

show that no squares beside the center 

square can be covered, a contradiction. 

Thus 7 squares are needed. 

(a) Write -5 in the 7 squares listed above 

and 1 in the remaining squares. Then 

clearly each cross has a negative sum, 

but the total of all of the numbers is 5 

(−7) + (45 -7) = 3. 

9. If 𝛼, 𝛽, 𝛾 are the roots of 𝒙𝟑 − 𝒙 − 𝟏 = 𝟎, 

compute 
𝟏−𝜶

𝟏+𝜶
+
𝟏−𝜷

𝟏+𝜷
+
𝟏−𝜸

𝟏+𝜸
. 

Sol.: The given quantity equals 

2 (
1

𝛼 + 1
+

1

𝛽 + 1
+

1

𝛾 + 1
) − 3. 

Since 𝑃(𝑥) = 𝑥3 − 𝑥 − 1 has roots 𝛼, 𝛽, 𝛾, the 

polynomial 𝑃(𝑥 − 1) =  𝑥3 − 3𝑥2 + 2𝑥 − 1 

has roots 𝛼+1, 𝛽+1, 𝛾+1. 

By a standard formula, the sum of the 

reciprocals of the roots of 𝑥3 + 𝑐2𝑥
2 + 𝑐1𝑥 +

𝑐0 𝑖𝑠 − 𝑐1/𝑐0, so the given expression equals 

2(2)-3= 1. 

10. Find all real solution to the following 

system of equations: 

𝟒𝒙𝟐

𝟏 + 𝟒𝒙𝟐
= 𝒚

𝟒𝒚𝟐

𝟏 + 𝟒𝒚𝟐
= 𝒛

𝟒𝒛𝟐

𝟏 + 𝟒𝒛𝟐
= 𝒙.

 

Sol.: Define 𝑓(𝑥) =
4𝑥2

(1+4𝑥2)
 ; the range of f is [0, 

1), so x, y, z must lie in that interval. If one of x, 

y, z is zero, then all three are, so assume they 
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are nonzero. Then 
𝑓(𝑥)

𝑥
=

4𝑥

(1+4𝑥2)
 is at least 1 

but the AM –GM inequality, with equality for x 

= ½ . Therefore x ≤y ≤ z ≤ x, and so equality 

holds everywhere, implying x = y = z = ½ . Thus 

the solutions are (x, y, z) = (0, 0, 0), (½ , ½ , ½ ). 

11. Let f(n) be the number of permutations 

𝒂𝟏, … , 𝒂𝒏 of the integers 1, …, n such that 

(i) 𝒂𝟏 = 𝟏; 

(ii) │𝒂𝒊 − 𝒂𝒊+𝟏│ ≤ 𝟐, 𝒊 = 𝟏,… , 𝒏 − 𝟏. 

Determine whether f(1996) is divisible by 

3. 

Sol.: Let g(n) be the number of permutations of 

the desired form with 𝑎𝑛 = 𝑛. Then either 

𝑎𝑛−1 = 𝑛 − 1 𝑜𝑟 𝑎𝑛−1 = 𝑛 − 2; in the latter 

case we must have 𝑎𝑛−2 = 𝑛 − 1 𝑎𝑛𝑑 𝑎𝑛−3 =

𝑛 − 3. Hence g(n) = g(n-1) + g(n -3) for n ≥4. In 

particular, the values of g(n) modulo 3 are g(1) = 

1, 1, 1, 2, 0, 1, 0, 0….. repeating with period 8. 

Now let h(n) = f(n) – g(n); h(n) counts 

permutations of the desired from where n 

occurs in the middle, sandwiched between n-1 

and n -2. Removing n leaves an acceptable 

permutation, and any acceptable permutation 

on n -1 symbols can be so produced except 

those ending in n -4, n -2, n -3, n -1. Hence h(n) 

= h(n -1)+ g(n -1) –g(n -4) = h(n -1)+ g(n -2); one 

checks that h(n) modulo 3 repeats with period 

24. 

Since 1996 ≡ 4 (mod 24), we have f(1996) ≡ 

f(4) = 4(mod 3), so f(1996) is not divisible by 3. 

12. Let ∆ABC be an isosceles triangles with AB 

= AC. Suppose that the angle bisector of 

∠B meets AC at D and that BC = BD + AD. 

Determine ∠A. 

Sol.: Let 𝛼 =∠A, 𝛽=
(𝜋−𝛼)

4
 and assume AB = 1. 

Then by the Law of Sines, 

𝐵𝐶 =
sin𝛼

sin2𝛽
, 𝐵𝐷 =

sin𝛼

sin 3𝛽
, 𝐴𝐷 =

sin𝛽

sin3𝛽
. 

Thus we are seeking a solution to the equation 

sin(𝜋 − 4𝛽) sin3𝛽 = (sin(𝜋 − 4𝛽) +

sin𝛽) sin2𝛽. 

Using the sum-to-product formula, we rewrite 

this as  

cos𝛽 − cos 7𝛽 = cos2𝛽 − cos6𝛽 + cos𝛽

− cos 3𝛽. 

Cancelling cos𝛽, we have cos 3𝛽 − cos 7𝛽 =

cos 2𝛽 − cos 6𝛽, which implies 

sin2𝛽 sin 5𝛽 = sin 2𝛽 sin4𝛽. 

Now sin5𝛽 = sin 4𝛽 , 𝑠𝑜 9𝛽 =  𝜋 𝑎𝑛𝑑 𝛽 =
𝜋

9
. 

13. Let 𝒓𝟏, 𝒓𝟐, … , 𝒓𝒎 be a given set of positive 

rational numbers whose sum is 1. Define 

the function f by 𝒇(𝒏) = 𝒏 −

∑ ⎿⌊𝒓𝒌𝒏⌋⏌
𝒎
𝒌=𝟏  for each positive integer n. 

Determine the minimum and 

maximum values of f(n). 

Sol.: Of course ⎿⌊𝑟𝑘𝑛⌋⏌ ≤ 𝑟𝑘𝑛, 𝑠𝑜 𝑓(𝑛) ≥ 0, 

with equality for n = 0, so 0 is the minimum 

value. On the other hand, we have 𝑟𝑘𝑛 −

⎿⌊𝑟𝑘𝑛⌋⏌ < 1, 𝑠𝑜 𝑓(𝑛) ≤ 𝑚 − 1. 

Here equality holds for n = t- 1 if t is the least 

common denominator of the 𝑟𝑘 . 

14. Let H be the orthocenter of acute triangle 

ABC. The tangents from A to the circle with 

diameter BC touch the circle at P and Q. 

Prove that P, Q, H are collinear. 

Sol.: The line PQ is the polar of A with respect to 

the circle, so it suffices to show that A lies on 

the pole of H. 

Let D and E be the feet of the altitudes from A 

and B, respectively; these also lie on the circle, 
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and H = AD ∩BE. The polar of the line AD is the 

intersection of the tangents AA and DD, and the 

polar of the line BE is the intersection of 

tangents BB and EE. The collinearity of these 

two intersections with C = AE ∩ BD follows from 

applying Pascal’s theorem to the cyclic 

hexagons AABDDE and ABBDEE. (An elementary 

solution with vectors is also possible and not 

difficult.) 

15. Find the smallest positive integer K such 

that every K-element subset of (1, 2, …, 50) 

contains two distinct elements a, b such 

that a+b divides ab.  

Sol.: The minimal value is k = 39. Suppose a, b∊S 

are such that a + b divides ab. Let c = gcd (a, b) 

and put a = c𝑎1, 𝑏 = 𝑐𝑏1, so that 𝑎1 𝑎𝑛𝑑 𝑏1are 

relatively prime.  Then c(𝑎1 +

𝑏1)𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑐
2𝑎1𝑏1, 𝑠𝑜 𝑎1 + 𝑏1 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑐𝑎1𝑏1. 

Since 𝑎1 𝑎𝑛𝑑 𝑏1 have no common factor, 

neither do 𝑎1 𝑎𝑛𝑑 𝑎1 + 𝑏1, 𝑜𝑟 𝑏1𝑎𝑛𝑑 𝑎1 + 𝑏1.In 

short, 𝑎1 + 𝑏1 divides c. 

Since S ⊆ {1,… , 50}, we have a +b ≤99, so 

c(𝑎1 + 𝑏1) ≤ 99, which implies 𝑎1 + 𝑏1 ≤ 9, on 

the other hand, of course 𝑎1 + 𝑏1 ≥ 3. An 

exhaustive search produces 23 pairs, a, b 

satisfying the conditions. 

𝑎1 + 𝑏1 = 3   (6, 3), (12, 6), (18, 9), (24, 12), (30, 

15), (36, 18), (42, 21), (48, 24) 

𝑎1 + 𝑏1 = 4   (12, 4), (24, 8), (36, 12), (48, 16) 

𝑎1 + 𝑏1 = 5   (20, 5), (40, 10), (15, 10), (30, 20), 

(45, 30) 

𝑎1 + 𝑏1 = 6   (30, 6) 

𝑎1 + 𝑏1 = 7   (42, 7), (35, 14), (28, 21) 

𝑎1 + 𝑏1 = 8  (40, 24) 

𝑎1 + 𝑏1 = 9   (45, 36) 

Let M = {6, 12, 15, 18, 20, 21, 24, 35, 40, 42, 45, 

48} and T = {1, …, 50} –M. Since each pair listed 

above contains an element of M, T does not 

have the desire property. Hence we must take k 

≥│T│+1 = 39. On the other hand, from the 

23 pairs mentioned above we can select 12 

pairs which are mutually disjoint: 

(6, 3), (12, 4), (20, 5), (42, 7), (24, 8), (18, 9), 

(40, 10), (35, 14), (30, 15), (48, 16), (28, 21), 

(45, 36). 

Any 39-element subset must contain both 

elements of one of these pairs. We conclude 

the desired minimal number is k = 39. 

16. Eight singers participate in an art festival 

where m songs are performed. Each song is 

performed by 4 singers, and each pair of 

singers performs together in the same 

number of songs. Find the smallest m for 

which this is possible. 

Sol.: Let r be the number of songs each pair of 

singers performs together, so that 

𝑚(
4

2
) = 𝑟 (

8

2
) 

And so m = 
14𝑟

3
; in particular, m ≥14. However, 

m = 14 is indeed possible, using the 

arrangement 

{1, 2, 3, 4}  {5, 6, 7, 8}  {1, 2, 5, 6}  {3, 4, 7, 8} 

{3, 4, 5, 6}  {1, 3, 5, 7}  {2, 4, 6, 8}  {1, 3, 6, 8} 

{2, 4, 5, 7}  {1, 4, 5, 8}  {2, 3, 6, 7}  {1, 4, 6, 7} 

{1, 2, 7, 8}  {2, 3, 5, 8} 
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17. In triangle ABC, ∠𝑪 = 𝟗𝟎°, ∠𝑨 =

𝟑𝟎° 𝒂𝒏𝒅 𝑩𝑪 = 𝟏.Find the minimum of the 

length of the longest side of a triangle 

inscribed in ABC (that is, one such that 

each side of ABC contains a different 

vertex of the triangle).  

Sol.: We first find the minimum side length of 

an equilateral triangle inscribed in ABC. Let D be 

a point on BC and put x = BD. Then take points 

E, F on CA, AB, respectively, such that CE = 

√3𝑥

2
 𝑎𝑛𝑑 𝐵𝐹 = 1 −

𝑥

2
. A calculation using the 

Law of Cosines shows that 

𝐷𝐹2 = 𝐷𝐸2 = 𝐸𝐹2 =
7

4
𝑥2 − 2𝑥 + 1

=
7

4
(𝑥 −

4

7
)
2

+
3

7
 

Hence the triangle DEF is equilateral, and its 

minimum possible side length is √
3

7
. 

We know argue that the minimum possible 

longest side must occur for some equilateral 

triangle. Starting with an arbitrary triangle, first 

suppose it is not isosceles. Then we can side 

one of the endpoints of the longest side so as to 

decrease its length; we do so until there are two 

longest sides, say DE and EF. We now fix D, 

move E so as to decrease DE and move F at the 

same time so as to decrease EF; we do so until 

all three sides become equal in length. (It is fine 

if the vertices move onto the extensions of the 

sides, since the bound above applies in that 

case as well.) 

Hence the minimum is indeed √
3

7
, as desired. 

18. Prove that if a sequence {𝑮(𝒏)}𝒏=𝟎
∞  of 

integers satisfies 

G(0) = 0,  

G(n) = 𝒏 − 𝑮{𝑮(𝒏)}           (n= 1, 2, 3, 

….)  

then  

(a) 𝑮(𝒌) ≥ 𝑮(𝒌 − 𝟏) for any positive 

integer k; 

(b) No integer k exists such that G(k -

1) = G(k) = G(k +1). 

Sol.:  

(a) We show by induction that 𝐺(𝑛) −

𝐺(𝑛 − 1) ∊ {0, 1} for all n. If this holds 

up to n, then 

𝐺(𝑛 + 1) − 𝐺(𝑛)

= 1 + 𝐺(𝐺(𝑛 − 1))

− 𝐺(𝐺(𝑛)). 

𝐼𝑓 𝐺(𝑛 − 1) =  𝐺(𝑛), 𝑡ℎ𝑒𝑛 𝐺(𝑛 + 1) −

𝐺(𝑛) = 1; otherwise, 𝐺(𝑛 −

1)𝑎𝑛𝑑 𝐺(𝑛) are consecutive integers 

not greater than n, so 𝐺(𝐺(𝑛)) −

𝐺(𝐺(𝑛 − 1)) ∊ {0, 1}, again completing 

the induction. 

(b) Suppose that G(k -1)= G(k) = G(k+1)+A 

for some k, A. Then 

A= G(k+ 1)= k +1 –G(g(k))= k+1-G(A) 

And similarly A = k –G(A) (replacing k +1 

with k above), a contradiction. 

Note: It can be shown that G(n) = ⌊𝑛𝜔⌋ 

for 𝜔 = 
(√5−1)

2
. 

 

19. Let ABC be an acute triangle with altitudes 

AP, BQ, CR. Show that for any point P in 

the interior of the triangle PQR, there 

exists a tetrahedron ABCD such that P is 

the point of the face ABC at the greatest 

distance (measured along the surface  of 

the tetrahedron) from D. 

Sol.: We first note that if S is the circumcircle 

of an acute triangle KLM, then for any point X 

≠S inside the triangle, we have 

min{𝑋𝐾, 𝑋𝐿, 𝑋𝑀} < 𝑆𝐾 = 𝑆𝐿 = 𝑆𝑀, 
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Since the discs centered at K, L, M whose 

bounding circles pass through S cover the entire 

triangle. 

Fix a point V in the interior of the triangle PQR, 

we first assume the desired tetrahedron exists 

and determine some of its properties. Rotate 

the faces ABD, BCD, CAD around their common 

edges with face ABC into the plane ABC, so that 

the images 𝐷1, 𝐷2, 𝐷3 of D lie outside of triangle 

ABC. We shall choose D so that triangle 𝐷1𝐷2𝐷3 

is acute, contains triangle ABC and has 

circumcenter V; this suffies by the above 

observation. 

In other words, we need a point D such that AV 

is the perpendicular bisector of 𝐷1𝐷3, BV that of 

𝐷1𝐷2, and CV that of 𝐷2𝐷3. We thus need 

∠𝐷1𝐷2𝐷3 =  𝜋 − ∠𝐵𝑉𝐶 and so on. Since V lies 

inside PQR, the angle BVC is acute, and so 

∠𝐷1𝐷2𝐷3 is fixed and acute. We may then 

construct an arbitrary triangle 𝐷1′𝐷2′𝐷3′ 

similar to the unknown triangle 𝐷1𝐷2𝐷3 let V’ 

be its circumcenter, and construct points A’, 

B’, C’ on the rays from V through the 

midpoints of 

𝐷3′𝐷1′, 𝐷1′𝐷2′, 𝐷2′𝐷3′,respectively, so that 

triangle A’B’C’ and ABC are similar. We can 

also ensure that the entire triangle A’B’C’ lies 

inside 𝐷1′𝐷2′𝐷3′. Then folding up the hexagon 

𝐴′𝐷1′𝐵′𝐷2′𝐶′𝐷3′ along the edges of triangle 

A’B’C’ produces a tetrahedron similar to the 

required tetrahedron. 

 

20. An acute angle XCY and points A and B on 

the rays CX and CY, respectively, are given 

such that │CX│< │CA│= │CB│< │CY│. 

Show how to construct a line meeting the 

ray CX and the segments AB, BC at the 

points K, L, M, respectively, such that 

KA.YB = XA.MB= LA.LB ≠ 0 

Sol.: Suppose K, L, M have already been 

constructed. The triangle ALK and BYL are 

similar because  

∠LAK = ∠YBL and 
𝐾𝐴

𝐿𝐴
=
𝐿𝐵

𝑌𝐵
.Hence ∠ALK = ∠BYL. 

Similarly, from the similar triangles ALX and 

BML we get ∠AXL = ∠MLB. We also have ∠MLB 

= ∠ALK since M, L, K are collinear, we conclude 

∠LYB = ∠AXL.  

Now ∠XLY = ∠XLB + ∠BLY = ∠XAL +∠AXL + 

∠ABM -∠LYB = 2∠ABC 

We are construct the desired line as follows 

draw the arc of points L such that ∠XLY = 

2∠ABC, and let L be its intersection with AB. 

Then construct M on BC such that ∠BLM = 

∠AXL, and let K be the intersection of LM with 

CA. 

21. For which integers k does there exist a 

function f : N →Z such that 

(a) f(1995) = 1996, and 

(b) f(xy) = f(x) + f(y) + kf(gcd(x, y))for 

all x, y ∊ N? 

Sol.: Such f exists for k = 0 and k = -1. First 

take x = y in (b) to get 𝑓(𝑥2) = (𝑘 + 2)𝑓(𝑥). 

Applying this twice, we get 

𝑓(𝑥4) = (𝑘 + 2)𝑓(𝑥2) = (𝑘 + 2)2𝑓(𝑥). 

On the other hand, 

𝑓(𝑥4) = 𝑓(𝑥) + 𝑓(𝑥3) + 𝑘𝑓(𝑥)

= (𝑘 + 1)𝑓(𝑥) + 𝑓(𝑥3) 

= (𝑘 + 1)𝑓(𝑥) + 𝑓(𝑥) + 𝑓(𝑥2) + 𝑘𝑓(𝑥) 

= (2𝑘 + 2)𝑓(𝑥) + 𝑓(𝑥2) = (3𝑘 + 4)𝑓(𝑥). 

Setting x = 1995 so that f(x) ≠ 0, we deduce 

(𝑘 + 2)2 = 3𝑘 + 4, which has roots k = 0, -1. 

For k = 0, an example is given by 

𝑓(𝑝1
𝑒1 …𝑝𝑛

𝑒𝑛) =  𝑒1𝑔(𝑝1) +⋯+ 𝑒𝑛𝑔(𝑝𝑛). 
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Where g(5) = 1996 and g(p) = 0 for all 

primes p ≠5 for k = 1, as example is given by 

𝑓(𝑝1
𝑒1 …𝑝𝑛

𝑒𝑛) =  𝑔(𝑝1) + ⋯+ 𝑔(𝑝𝑛) 

22. A triangle ABC and points K, L, M on the 

sides AB, BC, CA respectively, are given 

such that 
𝑨𝑲

𝑨𝑩
=
𝑩𝑳

𝑩𝑪
=
𝑪𝑴

𝑪𝑨
=
𝟏

𝟑
 

Show that if the circumcircles of the 

triangles of the triangles AKM, BLK, 

CML are congruent, then so are the in 

circles of these triangles. 

Sol.: We will show that ABC is equilateral, so 

that AKM, BLK, CML are congruent and hence 

have the same in radius. 

Let R be the common circumradius;  then 

KL = 2R sin A, LM = 2R sin B, MK = 2R sin C, 

So the triangles KLM and ABC are similar. 

Now we compare areas: 

[AKM] = [BLK] = [CLM] = 
2

9
[ABC], 

So, [KLM] = 
1

3
[ABC] and the coefficient of 

similarity between KLM and ABC must be √
1

3
. 

By the law of cosines applied to ABC and 

AKM. 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos𝐴 

1

3
𝑎2 = (

2𝑝

3
)
2

+ (
𝑐

3
)
2

− 2
2𝑏

3

𝑐

3
cos𝐴. 

From these we deduce 𝑎2 = 2𝑏2 − 𝑐2, and 

similarly 𝑏2 = 2𝑐2 − 𝑎2, 𝑎2 = 2𝑎2 − 𝑏2. 

Combining these gives 𝑎2 =  𝑏2 = 𝑐2, so ABC 

is equilateral, as desired. 

 

23. Let ABC be a triangle and construct 

squares ABED, BCGF, ACHI externally on 

the sides of ABC. Show that the points D, E, 

F, G, H, I are concyclic if and only if ABC is 

equilateral or isosceles right. 

Sol.: Suppose D, E, F, G, H, I are concyclic; the 

perpendicular bisectors of DE, FG, HI coincide 

with those of AB, BC, CA respectively, so the 

center of the circle must be the circumcenter 

O of ABC. By equating the distances OD and 

OF, we find 

(cos𝐵 + 2 sin𝐵)2 + 𝑠𝑖𝑛2𝐵

= (cos𝐶 + 2 sin𝐶)2 = 𝑠𝑖𝑛2𝐶 

Expanding this end cancelling like terms, we 

determine 𝑠𝑖𝑛2𝐵 + sin𝐵 cos𝐵 =  𝑠𝑖𝑛2𝐶 +

sin𝐶 cos𝐶. 

Now note that 

2(𝑠𝑖𝑛2𝜃 + sin 𝜃 cos 𝜃) = 1 − cos 2𝜃 + sin 𝜃 

= 1 + √2 sin (2𝜃 −
𝜋

4
). 

Thus we either have B = C or 2𝐵 −
𝜋

4
+ 2𝐶 −

𝜋

4
 

= 𝜋, 𝑜𝑟 𝐵 + 𝐶 =
3𝜋

4
. 

In particular, two of the angles must be equal, 

say A and B, and we either have A = B = C, so 

the triangle is equilateral, or 𝐵 + (𝜋 − 2𝐵) =
3𝜋

4
, in which case A = B = 

𝜋

4
 and the triangle is 

isosceles right. 

24. Let a, b be positive integers with a odd. 

Define the sequence {𝒖𝒏} as follows: 𝒖𝟎 =

𝒃 & n ∊ ℕ. 

𝒖𝒏+𝟏 = {

𝟏

𝟐
𝒖𝒏        𝒊𝒇 𝒖𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏

𝒖𝒏 + 𝒂                    𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

(a) Show that 𝒖𝒏 ≤ 𝒂 for some n ∊ℕ. 

(b) Show that the sequence {𝒖𝒏} is 

periodic from some point onwards. 
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Sol:  

(a) Suppose 𝑢𝑛 > 𝑎, if 𝑢𝑛 is even, 𝑢𝑛+1 =
𝑢𝑛

2
< 𝑢𝑛; if 𝑢𝑛is odd, 𝑢𝑛+2 =

(𝑢𝑛+𝑎)

2
<

𝑢𝑛. Hence for each term greater than 

a, there is a smaller subsequent term. 

These form a decreasing subsequence 

which must eventually terminate, 

which only occurs once 𝑢𝑛 ≤ 𝑎. 

(b) If 𝑢𝑚 ≤ 𝑎, then for all n ≥ m, either 

𝑢𝑛 ≤ 𝑎, 𝑜𝑟, 𝑢𝑛 is even and 𝑢𝑛 ≤ 2𝑎, by 

induction on n. In particular, 𝑢𝑛 ≤

2𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 𝑛, and so some value 

of 𝑢𝑛 eventually repeats, leading to a 

periodic sequence. 

 

25. (a) Find the minimum value of 𝒙𝒙 for x a 

positive real number. 

(b) If x and y are positive real numbers, 

show that 𝒙𝒙 + 𝒚𝒙 > 1. 

Sol.:  

(a) Since 𝑥𝑥 = 𝑒𝑥𝑙𝑜𝑔 𝑥 𝑎𝑛𝑑 𝑒𝑥 is an 

increasing function of x, it suffices to 

determine the minimum of x log x. 

This is easily done by setting its 

derivative 1+ log x to zero, yielding 

 𝑥 =
1

𝑒
. The second derivative 

1

𝑥
 is 

positive for x > 0, so the function is 

everywhere convex, and the unique 

extremum is needed a global 

minimum. Hence 𝑥𝑥 has minimum 

value 𝑒−1/𝑒. 

(b) If x ≥ 1, then 𝑥𝑦 ≥ 1 for y > 0, so we 

may assume 0< x, y<1. Without loss 

of generality, assume x ≤y; now note 

that the function 𝑓(𝑥) =  𝑥𝑥 + 𝑦𝑥 has 

derivative 𝑓′(𝑥) =  𝑥𝑥 log 𝑥 + 𝑦𝑥−1. 

Since 𝑦𝑥 ≥ 𝑥𝑥 ≥ 𝑥𝑦 𝑓𝑜𝑟 𝑥 ≤

𝑦 𝑎𝑛𝑑
1

𝑥
≥ − log 𝑥, we see that 

𝑓′(𝑥) > 0 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝑦 and so the 

minimum of f occurs with x = 0, in 

which case f(x) = 1; since x > 0, we 

have strict inequality. 

26. Starting at (1, 1), a stone is moved in the 

coordinate plane according to the 

following rules: 

(i) From any point (a, b), the stone 

can move to (2a, b) or (a, 2b). 

(ii) From any point (a, b), the stone 

can move to (a –b, b) if a > b, or to 

(a, b –a) if a < b. 

For which positive integers x, y can 

the stone be moved to (x, y)? 

Sol.: It is necessary and sufficient that gcd(x, 

y) = 2𝑥 for some nonnegative integer s. We 

show necessity by nothing that gcd(p, q) = 

gcd(p, q –p), so an odd common divisor can 

never be introduced, and nothing that initially 

gcd(1, 1)= 1. 

As for sufficiency, suppose gcd(x, y) = 2𝑥. Of 

those pairs (p, q) from which (x, y) can be 

reached, choose one to minimize p +q. 

Neither p and q can be even, else one of 

(
𝑝

2
, 𝑞)  𝑜𝑟 (𝑝,

𝑞

2
) is an admissible pair. If p > q, 

then (p, q) is reachable from (
(𝑝+𝑞)

2
, 𝑞), a 

contradiction; similarly p < q is impossible. 

Hence p = q, but gcd(p, q) is a power of 2 and 

neither p nor q is even. We conclude p =q = 

1, and so (x, y) is indeed reachable. 

27. Suppose S is a union of finitely many 

disjoint subintervals of [0, 1] such that no 

two point in S have distance 
𝟏

𝟏𝟎
. Show that 

the total length of the intervals comprising 

S is at most 
𝟏

𝟐
. 

Sol.: Cut the given segment into 5 segments of 

length 
1

5
. Let AB be one of these segments and 

M its midpoint. 
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Translate each point of AM by the vector MB. 

No colored point can have a colored image, so 

all of the colored intervals of AB can be placed 

in MB without overlap, and their total length 

therefore does not exceed 
1

10
.  Applying this 

reasoning to each of the 5 segments gives the 

desired result. 

28. Prove that every integer k > 1 has a 

multiple less than 𝒌𝟒 whose decimal 

expansion has at most four distinct digits. 

Sol.: Let n be the integer such that 2𝑛−1 ≤ 𝑘 ≤

2𝑛. For n ≤6 the result is immediate, so 

assume n > 6. 

Let S be the set of nonnegative integers less 

than 10𝑛 whose decimal digits are all 0s or 1s. 

Since │S│ = 2𝑛 > 𝑘, we can find two 

elements a < b of S which are congruent 

modulo, k, and b − a only has the digits 8, 9, 0, 

1 in its decimal representation. On the other 

hand, 

𝑏 − 𝑎 ≤ 𝑏 ≤ 1 + 10 +⋯+ 10𝑛−1 < 10𝑛

< 16𝑛−1 ≤ 𝑘4, 

Hence b – a is the desired multiple. 

29. Let ABC be ab acute triangle, AD, BE, CZ its 

altitudes and H its orthocenter. Let AI, A𝛩 

be the internal and external bisectors of 

angle A. Let M, N be the midpoints of BC, 

AH, respectively. Prove that 

(a) MN is perpendicular EZ; 

(b) If MN cuts the segment AI, A𝛩 at 

the points K, L, then KZ = AH. 

Sol.:  

(a) The circle with diameter AH passes 

through Z and E, and so ZN = ZE. On 

the other hand, MN is a diameter of 

the nine-point circle of ABC, and Z and 

E lie on that circle, so ZN = ZE implies 

that ZE ⊥MN. 

(b) As determined in (a), MN is the 

perpendicular bisector of segment ZE. 

The angle bisector AI of ∠EAZ passes 

through the midpoint of the minor arc 

EZ, which clearly lies on MN; 

therefore this midpoint is k. By 

similar reasoning, L is the midpoint of 

the major are EZ. Thus KL is also a 

diameter of circle EAZ, so KL = MN. 

30. Given 81 natural numbers whose prime 

divisors belong to the set {2, 3, 5}, prove 

there exist 4 numbers whose product is 

the fourth power of an integer. 

Sol.: It suffices to take 25 such numbers. To 

each number, associate the triple (𝑥2, 𝑥3, 𝑥5) 

recording the parity of the exponents of 2, 3 

and 5 in its prime factorization. Two numbers 

have the same triple if and only if their 

product is a perfect square. As long as there 

are 9 numbers left, we can select two whose 

product is a square, in so doing, we obtain 9 

such pairs. Repeating the process with the 

square roots of the products of the pairs, we 

obtain four numbers whose product is a 

fourth power.  

31. Prove the following inequality for positive 

real numbers x, y, z: 

(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) (
𝟏

(𝒙 + 𝒚)𝟐
+

𝟏

(𝒚 + 𝒛)𝟐

+
𝟏

(𝒛 + 𝒙)𝟐
) ≥

𝟗

𝟒
. 

Sol.: After clearing denominators, the given 

inequality becomes 

∑ 4𝑥5𝑦 − 𝑥4𝑦2 − 3𝑥3𝑦3 + 𝑥4𝑦𝑧 − 2𝑥3𝑦2𝑧

𝑠𝑦𝑚

+ 𝑥2𝑦2𝑧2 ≥ 0 

Where the symmetric sum runs over all six 

permutations of x, y, z. (In particular, this 
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means the coefficient of 𝑥3𝑦3 in the final 

expression is -6, and that 𝑥2𝑦2𝑧2 is 6.) 

Recall Schur’s inequality: 

𝑥(𝑥 − 𝑦)(𝑥 − 𝑧) + 𝑦(𝑦 − 𝑧)(𝑦 − 𝑥)

+ 𝑧(𝑧 − 𝑥)(𝑧 − 𝑦) ≥ 0 

Multiplying by 2xyz and collecting symmetric 

terms, we get 

∑ 𝑥4𝑦𝑧 − 2𝑥3𝑦2𝑧

𝑠𝑦𝑚

+ 𝑥2𝑦2𝑧2 ≥ 0 

On the other hand, 

∑(𝑥5𝑦 − 𝑥4𝑦2) + 3(𝑥5 − 𝑥3𝑦3)

𝑠𝑦𝑚

≥ 0 

By two applications of AM-GM; combining the 

last two displayed inequalities gives the 

desired result. 

32. Prove that for every pair m, k of natural 

numbers, m has a unique representation in 

the from 

𝒎 = (
𝒂𝒌
𝒌
) + (

𝒂𝒌−𝟏
𝒌 − 𝟏

) +⋯+ (
𝒂𝒕
𝒕
) 

                                                                                                    

where 𝒂𝒌 > 𝒂𝒌−𝟏 > ⋯ > 𝒂𝒕 ≥ 𝒕 ≥ 𝟏. 

Sol.: We first show uniqueness. Suppose m is 

represented by two sequences 𝑎𝑘 , … , 𝑎𝑡 and 

𝑏𝑘 , … . , 𝑏𝑡. Find the first position in which they 

differ, without loss of generally, assume this 

position is k and that 𝑎𝑘 > 𝑏𝑘. Then 

𝑚 ≤ (
𝑏𝑘
𝑘
) + (

𝑏𝑘−1
𝑘 − 1

) +⋯+ (
𝑏𝑘 − 𝑘 + 1

1
) <

(
𝑏𝑘 + 1
1

) ≤ 𝑚, a contradiction. 

To show existence, apply the greedy 

algorithm: find the largest 𝑎𝑘 such that 

(
𝑎𝑘
𝑚
) ≤ 𝑚, and apply the same algorithm with 

m and k replaced by 𝑚 − (𝑎𝑘
𝑘
) 𝑎𝑛𝑑 𝑘 − 1. 

We need only make sure that the sequence 

obtained is indeed decreasing, but this 

follows because by assumption, 𝑚 <

(𝑎𝑘+1
𝑚
), 𝑎𝑛𝑑 𝑠𝑜 𝑚 − (𝑎𝑘

𝑘
) < ( 𝑎𝑘

𝑘−1
). 

33. Let P(x) be a polynomial with rational 

coefficients such that 𝑷−𝟏(𝑸) ⊆ 𝑸. Show 

that P is linear. 

Sol: By a suitable variable substitution and 

constant factor, we may assume P(x) is monic 

and has integer coefficients; let P(0)= 𝑐0. If p 

is a sufficiently large prime, the equation 

P(x)= p +𝑐0 has a single real root, which by 

assumption is rational and which we may also 

assume is positive (since P has positive 

leading coefficient). However, by the rational 

root theorem, the only rational roots of P(x) –

p - 𝑐0 can be ±1 𝑎𝑛𝑑 ± 𝑝. Since the root must 

be positive and cannot be 1 for large p, we 

have P(p) –p -𝑐0 = 0 for infinitely many p, so 

P(x) = x +𝑐0 is linear. 

34. For each positive integer n, find the 

greatest common divisor of n! +1 and 

(n+1)!. 

Sol: If n + 1 is composite, then each prime 

divisor of (n+ 1)! is a prime less than n, 

which also divides n! and so does not divide 

n! +1. Hence f(n) = 1. If n +1 is prime, the 

same argument shows that f(n) is a power of 

n +1, and in fact n +1 │n! +1 by Wilson’s 

theorem. However, (𝑛 + 1)2 does not divide 

(n +1)!, and thus f(n) = n +1. 

 

35. For each positive integer n, let S(n) be the 

sum of the digits in the decimal expansion 

of n. Prove that for all n,  

𝑺(𝟐𝒏) ≤ 𝟐𝑺(𝒏) ≤ 𝟏𝟎𝑺(𝟐𝒏) & show 

that there exists n such that S(n) = 

1996S(3n). 
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Solution: It is clear that S(a +b) ≤ S(a) + 

S(b), with equality if and only if there are no 

carries in the addition of a and b. Therefore 

S(2n) ≤ 2S(n). Similarly S(2n) ≤ 5S(10n) = 

5S(n). An example with S(n) = 1996S(3n) is 

133 … 35 (with 5968 threes). 

36. Let F be +the midpoint of side BC of 

triangle ABC. Construct isosceles right 

triangles ABD and ACE externally on sides 

AB and AC with the right angles at D and E, 

respectively. Show that DEF is an isosceles 

right triangle. 

Solution: Identifying A, B, C with numbers on 

the complex plane, we have F = 
(𝐵+𝐶)

2
, 𝐷 =

𝐵 + (𝐴 − 𝐵)𝑟, 𝐸 = 𝐴 + (𝐶 − 𝐴)𝑟, 𝑤ℎ𝑒𝑟𝑒 𝑟 =
(1+𝑖)

2
. 𝑇ℎ𝑒𝑛 𝐸 − 𝐹 =

𝐴(1−𝐼)

2
−
𝐵

2
+
𝐶𝑖

2
 𝑎𝑛𝑑 𝐷 −

𝐹 =
𝐴(1+𝑖)

2
−
𝐵𝑖

2
−
𝐶

2
; in particular, 𝐷 − 𝐹 =

𝑖(𝐸 − 𝐹) and so DEF is an isosceles right 

triangle. 

 

37. Show, with proof, how to dissect a square 

into at most five pieces in such a way that 

the pieces can be reassembled to from 

three squares no two of which have the 

same area. 

Solution: We dissect a 7 × 7 square into a 2 ×

2 square A, a 3 × 3 square B, and three pieces 

C, D, E which from a 6 × 6 square, as shown 

below. 

𝐶
𝐶
𝐶
𝐶
𝐶
𝐶
𝐸

𝐶
𝐶
𝐶
𝐶
𝐶
𝐶
𝐸

𝐶
𝐶
𝐶
𝐶
𝐶
𝐶
𝐸

𝐶
𝐶
𝐶
𝐶
𝐶
𝐶
𝐸

𝐶
𝐶
𝐶
𝐶
𝐵
𝐵
𝐵

𝐴
𝐴
𝐷
𝐷
𝐵
𝐵
𝐵

𝐴
𝐴
𝐷
𝐷
𝐵
𝐵
𝐵

 

38. Let 𝑭𝒏 denote the Fibonacci sequence, so 

that 𝑭𝟎 = 𝑭𝟏 = 𝟏 and 𝑭𝒏+𝟐 = 𝑭𝒏+𝟏 + 𝑭𝒏 

for n ≥0. Prove that  

(i) The statement “𝑭𝒏+𝒌 − 𝑭𝒏 is 

divisible by 10 for all positive 

integers n” is true if k = 60 and 

false or any positive integer k 

< 60; 

(ii) The statement “𝑭𝒏+𝒕 − 𝑭𝒏 is 

divisible by 100 for all positive 

integers n” is true if t = 300 

and false or any positive 

integer t<300. 

Solution: A direct computation shows that the 

Fibonacci sequence has period 3 modulo 2 

and 20 modulo 5(compute terms until the 

initial terms 0, 1 repeat, at which time the 

entire sequence repeats), yielding (a). As for 

(b), one computes that the period mod 4 is 6. 

The period mod 25 turns out to be 100, which 

is awfully many terms to compute by hand, 

but knowing that the period must be a 

multiple of 20 helps, and verifying the 

recurrence 𝐹𝑛+8 = 𝑡𝐹𝑛+4 + 𝐹𝑛, where t is an 

integer congruent to 2 modulo 5, shows that 

the period divides 100, finally, an explicit 

computation shows that the period is not 20. 

39. Prove that for all positive integers n, 

𝟐𝟏/𝟐. 𝟒𝟏/𝟒… . (𝟐𝒏)𝟏/𝟐
𝒏
< 4. 

Solution: It is sufficient to show  

∑
𝑛

2𝑛

𝑥

𝑛=1

= 2; 

∑
𝑛

2𝑛

𝑥

𝑛=1

= ∑∑
1

2𝑘

𝑥

𝑛=1

𝑥

𝑛=1

= ∑
1

2𝑛−1

𝑥

𝑛=1

= 2. 

40. Let p be a prime number and a, n positive 

integers. 

Prove that if 𝟐𝒑 + 𝟑𝒑 = 𝒂𝒏, then n = 

1. 
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Solution: If p = 2, we have 22 + 32 = 13  and 

n = 1. If p > 2, then p is odd, so 5 divides 2𝑝 +

3𝑝 and so 5 divides a. Now if n > 1, then 25 

divides 𝑎𝑛 and 5 divides 
2𝑝+3𝑝

2+3
= 2𝑝−1 −

2𝑝−2. 3 +⋯+ 3𝑝−1 ≡ 𝑝2𝑝−1 (mod 5), a 

contradiction if p ≠ 5. Finally, if p = 5, then 

25 + 35 = 753 is not a perfect power, so n = 1 

again. 

41. Let ABC be an acute triangle and let D, E, F 

be the feet of the altitudes from A, B, C 

respectively. Let P, Q, R be the feet of the 

perpendiculars from A, B, C to EF, FD, DE, 

respectively. Prove that the lines AP, BQ, 

CR are concurrent. 

Solution: It is a routine exercise to show that 

each of AP, BQ, CR passes through the 

circumcenter of ABC, so they all concur. 

42. On a 𝟓 × 𝟗 rectangular chessboard, the 

following game is played. Initially a 

number of discs are randomly placed on 

some of the squares, no square containing 

more than one disc. A turn consists of 

moving  all of the discs subject to the 

following rules: 

(i) Each disc may be moved one 

square up, down left, or right; 

(ii) If a disc moves up or down on one 

turn, it must move left or right on 

the next turn, and vice versa; 

(iii) At the end of each turn, no square 

can contain two or more discs. 

The game stops if it becomes 

impossible to complete another 

turn. Prove that if initially 33 discs 

are placed on the board, the game 

must eventually stop. Prove also 

that it is possible to place 32 discs 

on the board so that the game can 

continue forever. 

Solution: If 32 discs are placed in an 8 × 4 

rectangle, they can all move up, left, down, 

right, up, etc. To show that a game with 33 

discs must stop, label the board as shown: 

1
2
1
2
1

2
3
2
3
2

1
2
1
2
1

2
3
2
3
2

1
2
1
2
1

2
3
2
3
2

1
2
1
2
1

2
3
2
3
2

1
2
1
2
1

 

Note that a disc on 1 goes to a 3 after two 

moves, a disc on 2 goes to a 1 or 3 

immediately. And a disc on 3 goes to a 2 

immediately. Thus if k disc start on 1 and k > 

8, the game stops because there are not 

enough 3s to accommodate these disc. Thus 

we assume k ≤8, in which case there are at 

most 16 squares on 1 or 3 at the start, and so 

at least 17 on 2. Of these 17, at most 8 can 

move onto 3 after one move, so at least 9 end 

up on 1; these discs will not all be able to 

move onto 3 two moves later, so the game 

will stop. 

43. Among triangles with one side of a given 

length l and with given area S, determine 

all of those for which the product of the 

lengths of the three altitudes is maximum. 

Solution: Let A, B be two fixed points with AB 

= l, and vary C along a line parallel to AB at 

distance 
2𝑆

𝑙
. The product of the altitudes of 

ABC is 8𝑆3 divided by the lengths of the three 

sides, so it suffices to minimize AC, BC, or 

equivalently to maximize sin𝐶. Let D be the 

intersection of the perpendicular bisector of 

AB with the line through C. If ∠D is not acute, 

the optimal triangles are clearly those with a 

right angle at C. 

Suppose ∠D is acute and C ≠ D, and assume C 

is on the same side of the perpendicular 

bisector of AB as B: we show ∠D ≥ ∠C, and so 

the optimal triangle is ABD. The triangles DAC 
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and DBC have equal base and height, so equal 

altitude. However, AC > BC since ∠CAB > 

∠CBA, so sin∠𝐷𝐴𝐶 > sin∠𝐷𝐵𝐶, and since the 

former is acute, we have ∠DAC < ∠DBC. 

Adding ∠CAB + ∠ABD to both sides, we get 

∠DAB + ∠DBA < ∠CAB + ∠CBA, and so ∠ADB 

> ∠ACB, as claimed. 

44. Prove that the equation 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐 + 𝟑 

has infinitely many integer solutions (a, b, 

c). 

Sol.: let a be any odd number, let b = 
(𝑎2−5)

2
 𝑎𝑛𝑑 𝑐 =

(𝑎2−1)

2
. Then 

𝑐2 − 𝑏2 = (𝑐 + 𝑏)(𝑐 − 𝑏) =  𝑎2 − 3. 

45. Let A and B be opposite vertices of a cube 

of edge length 1. Find the radius of the 

sphere with center interior to the cube, 

tangent to the three faces meeting at A and 

tangent to the three edges meeting at B. 

Solution: Introduce coordinates so that A = 

(0, 0, 0), B = (1, 1, 1) and the edges are 

parallel to the coordinate axes. If r is the 

radius of the sphere, then (r, r, r) is its center, 

and (r, 1, 1) is the point of tangency of one of 

the edges at B. Therefore 𝑟2 = 2(1 −

𝑟)2, 𝑔𝑖𝑣𝑖𝑛𝑔 𝑟2 − 4𝑟 + 2 = 0 and so r = 2 − √2 

(the other root puts the center outside of the 

cube). 

 

46. Given an alphabet with three letters a, b, c 

find the number of words of n letters 

which contain an even number of a’s. 

Solution: If there are 2k occurrences of a, 

these can occur in ( 𝑛
2𝑘
) places, and the 

remaining positions can be filled in 2𝑛−2𝑘 

ways. So the answer is  

∑(
𝑛

2𝑘
)2𝑛−2𝑘

𝑘

. 

To compute this, note that 

(1 + 𝑥)𝑛 + (1 − 𝑥)𝑛 = 2∑(
𝑛

2𝑘
) 𝑥2𝑘

𝑘

. 

So the answer is  

1

2
2𝑛 [(1 +

1

2
)
𝑛

+ (1 −
1

2
)
𝑛

] =
1

2
(3𝑛 + 1). 

47. What is the minimum number of squares 

that one needs to draw on a white sheet in 

order to obtain a complete grid with n 

squares on a side? 

Solution: It suffices to draw 2n -1 squares: 

in terms of coordinates, we draw a square 

with opposite corners (0, 0) and (i, i) for 

1 ≤ i ≤ n and a square with opposite 

corners (i, i) and (n, n) for 1 ≤ i≤ n -1. 

To show this many squares are necessary, 

note that the segments from (0, i) to (1, i) 

and from (n -1, i) to (n, i) for 0 < i < n all 

must lie on different squares, so surely 2n 

-2 squares are needed. If it were possible 

to obtain the complete grid with 2n -2 

squares, each of these segments would lie 

on one of the squares, and the same 

would hold for the segments from (i, 0) to 

(i, 1) and from (i, n-1) to (i, n) for 0 < I < 

n. Each of the aforementioned horizontal 

segments shares a square with only two 

of the vertical segments, so the only 

possible arrangements are the one we 

gave above without the square with 

corners (0, 0) and (n, n), and the 90° 

rotation of this arrangement, both of 

which are insufficient. Hence 2n -1 

squares are necessary. 

48. Consider a triangulation of the plane, i.e. a 

covering of the plane with triangles such 
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that no two triangles have overlapping 

interiors, and no vertex lies in the interior 

of an edge of another triangle. Let A, B, C 

be three vertices of the triangulation and 

let 𝜽 be the smallest angle of the triangle 

∆ABC. Suppose no vertices of the 

triangulation lie inside the circumcircle of 

∆ABC. Prove there is a triangle 𝜎 in the 

triangulation such that 𝜎 ∩ ∆ABC ≠ 𝜃 and 

every angle of 𝜎 is greater than 𝜃. 

Sol.: We may assume 𝜃 = ∠A. The case where 

ABC belongs to the triangulation is easy, so 

assume this is not the case. If BC is an edge of 

the triangulation, one of the two triangles 

bounded by BC has common interior points 

with ABC, and this triangle satisfies the 

desired condition. Otherwise, there is a 

triangle BEF in the triangulation whose 

interior intersects BC. Since EF crosses BC at 

an interior point, ∠BEF < ∠BAF < ∠BAC, so 

triangle BEF satisfies the desired condition. 

 

49. Let m and n be positive integers with 

gcd(m, n) = 1. Compute gcd(𝟓𝒎 +

𝟕𝒎, 𝟓𝒏 + 𝟕𝒏). 

Sol.: Let 𝑠𝑛 = 5
𝑛 + 7𝑛. 𝐼𝑓 𝑛 ≥ 2𝑚 , note that 

𝑠𝑛 = 𝑠𝑚𝑠𝑛−𝑚 − 5
𝑚7𝑚𝑠𝑛−2𝑚, 

So gcd(𝑠𝑚, 𝑠𝑛) = gcd(𝑠𝑚, 𝑠𝑛−2𝑚)… similarly, 

if m < n < 2m, we have gcd(𝑠𝑚, 𝑠𝑛)= 

gcd(𝑠𝑚, 𝑠𝑛−2𝑚). Thus by the Euclidean 

algorithm, we conclude that if m + n is even, 

then gcd(𝑠𝑚, 𝑠𝑛) = gcd(𝑠1, 𝑠2) = 12, and if m 

+ n is odd, then gcd(𝑠𝑚, 𝑠𝑛) = gcd(𝑠0, 𝑠1) = 2. 

50. Let x > 1 be a real number which is not an 

integer. For n = 1, 2, 3, …., let 𝒂𝒏 =

 ⎿⌊𝒙𝒏+𝟏⌋⏌ − 𝒙⎿⌊𝒙𝒏⌋. Prove that the 

sequence {𝒂𝒏} is not periodic. 

Solution: Assume, on the contrary, that there 

exist p > 0 such that 𝑎𝑝+𝑛 = 𝑎𝑛 for every n. 

Since ⌊𝑥𝑛⌋ ⟶ ∞ 𝑎𝑠 𝑛 → ∞,we have 

⎿⌊𝑥𝑛+𝑝⌋⏌ −⎿⌊𝑥𝑛⌋⏌ > 0 for some n; then 

setting 𝑎𝑛+𝑝 = 𝑎𝑛 and solving for x, we get  

𝑥 =
⌊𝑥𝑛+𝑝+1⌋  − ⌊𝑥𝑛+1⌋

⌊𝑥𝑛+𝑝⌋  − ⌊𝑥𝑛⌋
 

And so x is rational. 

Put y = 𝑥𝑝 and  

𝑏𝑚 = ∑𝑥𝑝−𝑘−1𝑎𝑚𝑝+𝑘

𝑝−1

𝑘=0

= ⎿⌊𝑥𝑚+𝑝⌋ − 𝑥𝑝⎿⌊𝑥𝑚𝑟⌋⏌

=  ⎿⌊𝑦𝑚+1⌋ − 𝑦⎿⌊𝑦𝑚⌋⏌.  

Since 𝑎𝑝+𝑛 = 𝑎𝑝, we have 𝑏𝑚+1 = 𝑏𝑚, and y 

is also rational number which is not an 

integer. Now put 𝑐𝑚 =  ⎿⌊𝑦
𝑚+1 −

𝑦𝑚⌋⏌; 𝑡ℎ𝑒𝑛 𝑐𝑚+1 = 𝑦𝑐𝑚 = 𝑦
𝑚𝑐1. This means 

𝑐𝑚 cannot be an integer for large m, a 

contradiction. 

51. Let 𝜃 be the maximum of the six angles 

between the edges of a regular 

tetrahedron and a given plane. Find the 

minimum value of 𝜃 over all positions of 

the plane. 

Sol.: Assume the edges of the tetrahedron 𝛤  

= ABCD have length l. If we place the 

tetrahedron so that AC and BC are parallel to 

the horizontal plane H. We obtain 𝜃 = 45°, 

and we shall show this is the minimum angle. 

Let a, b, c, d be the projections of A, B, C, D to 

the horizontal plane H, and 𝑙1, … , 𝑙6 the 

projection of the edges 𝐿1, … , 𝐿6. Since the 

angle between 𝐿1 and H has cosine l, it 

suffices to consider the shortest 𝑙𝑖. 

If a, b, c, d from a convex quadrilateral with 

largest angle at a, then one of ab or ad is at 
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most 
1

√2
 since bd ≤ 1. Otherwise, it is easily 

shown that one of the 𝑙1 originating from the 

vertex inside the convex hull has length at 

most  
1

√3
. 

52. Let q be a real number with 
(𝟏+√𝟓)

𝟐
< 𝑞 <

2. For a number n with binary 

representation  

n = 𝟐𝒌 + 𝒂𝒌−𝟏. 𝟐
𝒌−𝟏 +⋯+ 𝒂𝟏. 𝟐 + 𝒂𝟎 

with 𝒂𝟏 ∈ {𝟎, 𝟏}, we define 𝑷𝒏 as follows 

𝒑𝒏 = 𝒒𝒌 + 𝒂𝒌−𝟏𝒒
𝒌−𝟏 +⋯+ 𝒂𝟏𝒒 + 𝒂𝟎. 

Prove that there exist infinitely many positive 

integers k for which there does not exist a 

positive integer l such that 𝒑𝟐𝒌 < 𝒑𝟏 < 𝒑𝟐𝒌+𝟏. 

Solution: Define the sequence 𝑎𝑛 as follows: 

𝑎2𝑚 = ∑22𝑘
𝑚

𝑘=0

, 𝑎2𝑚+1 = ∑22𝑘+1
𝑚

𝑘=0

. 

We will show that k = 𝑎𝑛 satisfies the given 

condition by induction on n. The case n = 0, 1 

follow by noting  1 < q < q +1 <𝑞2 < 𝑞2 +

1 < 𝑞2 + 𝑞 < 𝑞2 + 𝑞 + 1 

and 𝑝1 ≥ 𝑞
𝑝 ≥ 𝑞3 > 𝑞2 + 𝑞 = 𝑃6 𝑓𝑜𝑟 1 ≥ 8. 

Now suppose n ≥ 2, assume the induction 

hypothesis, and suppose by way of 

contradiction that there exist l such that 

𝑝2𝑎𝑛 < 𝑝1 < 𝑝2𝑎𝑛+1 . The argument falls into 

six cases, which we summarize in a table. The 

first column gives the conditions of the case, 

the second gives a lower bound of 𝑝2𝑎𝑛 , the 

third is always equal to 𝑝1, and the fourth 

gives an upper bound for 𝑝2𝑎𝑛+1; from these a 

contradiction to the induction hypothesis will 

become evident.  

n even, 𝑙 = 2𝑟 + 1𝑞𝑝2𝑎𝑛−1 + 1𝑞𝑝𝑟 +

1 𝑞𝑝2𝑎𝑛−1 + 1 

n even, 𝑙 = 4𝑟          𝑞2𝑝2𝑎𝑛−2𝑞
2𝑝𝑟. 𝑞

2𝑝2𝑎𝑛−1 +

1 

n even, 𝑙 = 4𝑟 + 2𝑞2𝑝2𝑎𝑛−2 + 𝑞𝑞
2𝑝𝑟 +

𝑞𝑞2𝑝2𝑎𝑛−1 + 𝑞 

n odd, 𝑙 = 2𝑟 𝑞𝑝2𝑎𝑛−1  𝑞𝑝𝑟        𝑞𝑝2𝑎𝑛−1−1 

n even, 𝑙 = 4𝑟 + 1       𝑞2𝑝2𝑎𝑛−2 + 1  𝑞
2𝑝𝑟 +

1 𝑞2𝑝2𝑎𝑛−2+1 + 1 

n even, 𝑙 = 4𝑟 + 3 𝑞2𝑝2𝑎𝑛−2 + 𝑞 + 1𝑞
2𝑝𝑟 +

𝑞 + 1𝑞2𝑝2𝑎𝑛−2+1 + 𝑞 + 1 

53. Find all pairs (n, r), with n a positive 

integer and r a real number, for which the 

polynomial (𝒙 + 𝟏)𝒏 − 𝒓 is divisible by 

𝟐𝒙𝟐 + 𝟐𝒙 + 𝟏. 

Sol.: Let t = 
(−1+𝑖)

2
 be one of the roots of 2𝑥2 +

2𝑥 + 1; then (𝑥 + 1)𝑛 − 𝑟 is divisible by 

2𝑥2 + 2𝑥 + 1 for r real if and only if 

(𝑡 + 1)𝑛 = 𝑟. Since the argument of t + 1 is 
𝜋

4
, 

this is possible if and only if n = 4m, in which 

case (𝑡 + 1)4𝑚 = (−4)4. Hence (4𝑚, (−4)𝑚) 

are the only solutions. 

54. Let ABC be a triangle and P a point inside it 

such that ∠PBC = ∠PCA < ∠PAB. The line 

PB cuts the circumcircle of ABC at B and E, 

and the line CE cuts the circumcircle of 

APE at E and F. Show that the ratio of the 

area of the quadrilateral APEF to the area 

of the triangle ABP does not depend on the 

choice of P. 

Sol.: Note that ∠AEP = ∠AEB = ∠ACB = 

∠CBP,  so the lines AE and CP are parallel. 

Thus [APE] = [ACE] and [APEF][ACF]. Now 

note that ∠AFC = 𝜋- ∠EPA = ∠APB and ∠ACF 

= ∠ACE = ∠ABE. Therefore triangles ACF and 

ABP are similar and 
[𝐴𝐶𝐹]

[𝐴𝐵]
= (

𝐴𝐶

𝐴𝐵
)
2

 

independent of the choice of p. 
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55. Let ABCD be a tetrahedron with ∠BAC = 

∠ACD  and ∠ABD = ∠BDC. Show that 

edges AB and CD have the same length. 

Sol.: Assume AB ≠ CD. Draw the plane 

through AC bisecting the dihedral angle 

formed by the planes ABC and ACD, then 

draw a line l in that plane perpendicular to AC 

through the midpoint O to AC. Now let B’ and 

D’ be the images of B and D, respectively, 

under the half-turn around the line l; by 

assumption, B’ ≠ D and D’ ≠ B; since ∠BAC = 

∠ACD, B’ lies on CD and D’ lies on AB. Now 

note that the quadrilateral BB’D’D has total 

angular sum 2𝜋. However, a non-polar 

quadrilateral always has total angular sum 

less than 2𝜋 (divide it into two triangles, 

which each have angular sum 𝜋, and apply the 

spherical triangle inequality) ∠ABC + ∠CBD 

> ∠ABD, so the lines AB and CD are coplanar. 

Contradicting the assumption that ABCD is a 

tetrahedron. 

56. For a natural number k, let p(k) denote the 

smallest prime number which does not 

divide k. If p(k) > 2, define q(k) to be the 

product of all primes less than p(k), 

otherwise let q(k)= 1. Consider the 

sequence. 𝒙𝟎 = 𝟏,    𝒙𝒏+𝟏 =
𝒙𝒏𝒑(𝒙𝒏)

𝒒(𝒙𝒏)
   𝒏 =

𝟎, 𝟏, 𝟐, … 

Determine all natural numbers n such 

that 𝒙𝒏 = 𝟏𝟏𝟏𝟏𝟏𝟏. 

Sol.: An easy induction shows that if 

𝑝0, 𝑝1, …, are the primes in increasing order 

an n has base 2 representations  𝑐0 + 2𝑐1 +

4𝑐2 +⋯, then 𝑥𝑛 = 𝑝0
𝑐0𝑝1

𝑐1 … in particular, 

111111 = 3.7.11.13.37 = 

𝑝1𝑝3𝑝4𝑝5𝑝10, 𝑠𝑜 𝑥𝑛 = 111111 if and only if n 

= 210 + 25 + 24 + 23 + 21 = 1082. 

57. Find the greatest positive integer n for 

which there exist n nonnegative integers 

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏, not all zero, such that for any 

sequence 𝝐𝟏, 𝝐𝟐, … , 𝝐𝒏, of elements of {-1, 

0, 1}, not all zero, 𝒏𝟑 does not divide 

𝝐𝟏𝒙𝟏 + 𝝐𝟐𝒙𝟐 +⋯+ 𝝐𝒏𝒙𝒏. 

Solution: The statement holds for n = 9 by 

choosing 1, 2, 22, … , 28, since in that case 

│𝜖1 +⋯+ 𝜖𝑔2
8│ ≤ 1 + 2 +⋯+ 28 < 93. 

However, if n = 10, then 210 > 103, so by the 

pigeonhole principle, there are two subsets A 

and B of {𝑥1, … , 𝑥10} whose sums are 

congruent modulo 103. Let 𝜖1 = 1 if 𝑥𝑖 occurs 

in A but not in B, -1 if 𝑥𝑖 occurs in B but not in 

A, and 0 otherwise; then ∑ 𝜖𝑖𝑥𝑖 is divisible by 

𝑛3. 

58. Let x, y be real numbers. Show that if the 

set  

{𝐜𝐨𝐬(𝒏𝝅𝒙) + 𝐜𝐨𝐬(𝒏𝝅𝒚)│𝒏 ∈ 𝑵} 

Is finite, then x, y ∈ Q. 

Sol.: Let 𝑎𝑛 = cos𝑛𝜋𝑥  𝑎𝑛𝑑 𝑏𝑛 = sin𝑛𝜋𝑥. 

Then  

(𝑎𝑛 + 𝑏𝑛)
2 + (𝑎𝑛 − 𝑏𝑛)

2 = 2(𝑎𝑛
2 + 𝑏𝑛

2)

=  2 + (𝑎2𝑛 + 𝑏2𝑛). 

If {𝑎𝑛 + 𝑏𝑛} is finite, it follows that {𝑎𝑛 − 𝑏𝑛} 

is also a finite set, and hence that {𝑎𝑛} is 

finite, since  

𝑎𝑛 =
1

2
[(𝑎𝑛 + 𝑏𝑛)(𝑎𝑛 − 𝑏𝑛)]. 

And similarly {𝑏𝑛} is finite. In particular, 

𝑎𝑚 = 𝑎𝑛 for some m < n, and so (n –m)𝜋x is 

an integral multiple of 𝜋. We conclude x and y 

are both rational.  

59. Let ABCD be a cyclic quadratilateral and 

let M be the set of incenters and excenters 

of the triangles BCD, CDA, DAB, ABC (for a 

total of 16 points). Show that there exist 

two sets of parallel lines K and L, each 
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consisting of four lines, such that any line 

of K ∪ L contains exactly four points M. 

Solution: Let T be the midpoint of the arc 

AB of the circumcircle of ABC, I the 

incenter of ABC, and 𝐼𝐵 , 𝐼𝐶  the excenters of 

ABC opposite B and C, respectively. We 

first show TI = TA = TB = T𝐼𝑐. Note that 

∠TAI = ∠TAB + ∠BAI = 
(∠𝐶+∠𝐴)

2
=

 ∠𝐼𝐶𝐴 + ∠𝐼𝐴𝐶 = ∠𝑇𝐴𝐼 

So TI = TA, and similarly TI = TB. 

Moreover, in the right triangle 

𝐴𝐼𝐶𝐼, ∠𝐴𝐼𝐶𝑇 =
𝜋

2
− ∠𝐴𝐼𝑇 =

𝜋

2
− ∠𝑇𝐴𝐼 

=  ∠𝑇𝐴𝐼𝐶 , 𝑠𝑜 𝑇𝐴 = 𝑇𝐼𝐶𝑎𝑙𝑠𝑜 

We next show that the midpoint U of 𝐼𝐵𝐼𝐶  

is also the midpoint of the arc BAC. Note 

that the line 𝐼𝐵𝐼𝐶 bisects the exterior 

angles of ABC at A, so the line 𝐼𝐵𝐼𝐶passes 

through the midpoint V of the arc BAC. 

Considering the right triangles 

𝐼𝐵𝐵𝐼𝐶  𝑎𝑛𝑑 𝐼𝐵𝐶𝐼𝐶 , we note BU = 
(𝐼𝐵𝐼𝐶)

2
=

𝐶𝑈, so U lies on the perpendicular 

bisector of BC, which suffices to show U = 

V. (Note that 𝐼𝐵 𝑎𝑛𝑑 𝐼𝐶  lie on the same 

side of BC as A, so the same is true of U). 

Let E, F, G, H be the midpoints of the arcs 

AB, BC, CD, DA. Let 𝐼𝐴, 𝐼𝐵, 𝐼𝐶 , 𝐼𝐷 be the 

incenters of the triangles BCD, CDA, DAB, 

ABC, respectively. Let 𝐴𝐵, 𝐴𝐶 , 𝐴𝐷 be the 

excenters of BCD opposite B, C, D, 

respectively, and so on. 

By the first observation, 𝐼𝐶𝐼𝐷𝐶𝐷𝐷𝐶  is a 

rectangle with center E, and the 

diagonals, which contain the points C and 

D, have length 2EA = 2EB. Similarly, we 

obtain rectangle centered at F, G, H. 

Now consider the excenters of the from 

𝑋𝑌 where X and Y are opposite vertices in 

ABCD. We shall prove the claim with K = 

{𝐵𝐶𝐶𝐵, 𝐼𝐶𝐼𝐵, 𝐼𝐷𝐼𝐴, 𝐴𝐷𝐷𝐴}, L = 

{𝐴𝐵𝐵𝐴, 𝐼𝐴𝐼𝐵, 𝐼𝐶𝐼𝐷, 𝐶𝐷 𝐷𝐶}. 

Consider the rectangle 𝐵𝐶𝐼𝐷𝐵𝐴𝑃, where P 

is an unknown point. From the second 

observation above, the midpoint K of 

diagonal 𝐵𝐴𝐵𝐶  is the midpoint of arc CDA, 

so it lies on the internal bisector BK of 

triangle ABC. Again by the first 

observation, we conclude M = 𝐷𝐴, 

so𝐷𝐴 lies on the lines 𝐵𝐶𝐶𝐵 and 𝐵𝐴𝐴𝐵, and 

so on, proving the claim. 

60. Let n ≥ 3 be an integer and 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏−𝟏 

nonnegative integers such that  

𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏−𝟏 = 𝒏 

𝒙𝟏 + 𝟐𝒙𝟐 +⋯+ (𝒏 − 𝟏)𝒙𝒏−𝟏
= 𝟐𝒏 − 𝟐. 

Find the minimum of the sum 

𝑭(𝒙𝟏, … , 𝒙𝒏−𝟏) =  ∑𝒌𝒙𝒌

𝒏−𝟏

𝒌=𝟏

(𝟐𝒏 − 𝒌). 

Sol.: The desired sum can be written as  

2𝑛(2𝑛 − 2) −∑𝑘2𝑥𝑘

𝑛−1

𝑘=1

. 

Now note  

∑ 𝑘2𝑥𝑘

𝑛−1

𝑘=1

= ∑ 𝑥𝑘

𝑛−1

𝑘=1

+ (𝑘 − 1)(𝑘 + 1)𝑥𝑘

≤ 𝑛 + 𝑛 

∑ 𝑛 − 1

𝑘=1

(𝑘 − 1)𝑥𝑘 = 𝑛 + 𝑛(2𝑛 − 2 − 𝑛)

=  𝑛2 − 𝑛. 

Hence the quantity in question is at most  
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2𝑛(2𝑛 − 2) − (𝑛2 − 𝑛) = 3𝑛2 − 3𝑛, with 

equality for 𝑥1 = 𝑛 − 1, 𝑥2 = ⋯ = 𝑥𝑛−2 =

0, 𝑥𝑛−1 = 1. 

61. Let n, r be positive integers and A a set of 

lattice points in the plane, such that any 

open disc of radius r contains a point of A. 

Show that for any coloring of the points of 

A using n colors, there exist four points of 

the same color which are the vertices of a 

rectangle. 

Sol.: Consider a square of side length L = 

4n𝑟2 with side parallel to the coordinate axes. 

One can draw (2𝑛𝑟2) = 4𝑛2𝑟2 disjoint disks 

of radius r inside the square, hence such a 

square contains at least 4𝑛2𝑟2 points of A. 

The lattice point in A lie on L -1 = 4n𝑟2 − 1 

vertical lines; by the pigeonhole principle, 

some vertical line contains n +1 points of A. 

Again by the pigeonhole principle, two of 

these points are colored in the same color.  

Now consider an infinite horizontal strip 

made of ribbons of side length L; some two of 

them have two points in the same position in 

the same color, and these four points from the 

vertices of a rectangle. 

62. Find all prime numbers p, q for which the 

congruence 𝜶𝟑𝒑𝒒 ≡ 𝜶(𝒎𝒐𝒅 𝟑𝒑𝒒) holds 

for all integers 𝛼. 

Sol.: Without loss of generality assume p ≤ q; 

the unique solution will be (11, 17), for which 

one many check the congruence using the 

Chinese Remainder Theorem. 

We first have 23𝑝𝑞 ≡ 2(𝑚𝑜𝑑 3), which means 

p and q are odd. In addition, if 𝛼 is a primitive 

root mod p, then 𝛼3𝑝𝑞−1 ≡ 1 (𝑚𝑜𝑑 𝑝) implies 

that p -1 divides 3pq -1 as well as 3pq -1- 

3q(p -1) = 3q -1, and conversely that q -1 

divides 3p -1. If p = q, we now deduce p = q = 

3, but 427 ≡ 1(mod 27), so this fails. Hence p 

< q. 

Since p and q are odd primes, q ≥ p +2, so 
(3𝑝−1)

(𝑞−1)
< 3. Since this quantity is an integer, 

and it is clearly greater than 1, it must be 2. 

That is, 2q = 3p +1. On the other hand, p -1 

divides 3q -1= 
(9𝑝+1)

2
 as well as (9p +1) –(9p 

-9) = 10. Hence p = 11, q = 17. 

63. Let n ≥ 3 be an integer and p ≥ 2n -3 a 

prime. Let M be a set of n points in the 

plane, no three collinear, and let f: M ⟶{0, 

1, …, p -1} be a function such that: 

(i) Only one point of M maps to 0, 

and 

(ii) If A, B, C are distinct points in 

M and k is the circumcircle of 

the triangle ABC, then 

∑ 𝒇(𝑷)

𝑷 ∈𝑴∩𝒌

≡ 𝟎(𝒎𝒐𝒅 𝑷). 

Show that all of the points of M lie on a 

circle. 

Solution: Let X be the point mapping to 0. We 

first show that if every circle through X and 

two points of M contains a third point of M, 

then all of the points of M lie on a circle. 

Indeed, consider an inversion with center at 

X. Then the image of M – {X} has the property 

that the line through any two of its points 

contains a third point; it is a standard result 

that this means the points are collinear. 

(Otherwise, find a triangle ABC minimizing 

the length of the altitude AH; there is another 

point N on BC, but then either ABN OR CAN 

has a shorter altitude than AH, contradiction). 

Now suppose the points of M do not lie on a 

circle. By the above, there exists a circle 

passing through M and only two points A, B of 

M. Let f(A) = i, so that by the hypothesis, f(B) 



 Challenging Mathematical Problems  

142 
 

= p –i. Let a be the number so circles passing 

through X, A and at least one other point of M, 

let b be the number of circles passing through 

X, B and at least one other point of M, and let 

S be the sum of f(P) over all P in M. By adding 

the relations obtained from the circles 

through X and A, we get S + (a -1) i ≡ 0 (mod 

p), and similarly, S + (b -1) (p –i) ≡ 0 (mod 

p). Therefore a + b -2 ≡ 0 (mod p) ; since a + 

b ≤2n +4 < p, we have a + b = 2 and so a = b 

= 1, contradicting the assumption that the 

points do not all lie on a circle. 

64. Let x, y, z be real numbers. Prove that the 

following conditions are equivalent. 

(i) x, y, z > 0 and 
𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
≤ 𝟏. 

(ii) For every quadrilateral with 

sides a, b, c, d, 𝒂𝟐𝒙 + 𝒃𝟐𝒚 +

𝒄𝟐𝒛 > 𝒅𝟐. 

Sol.: To show (i) implies (ii), note that  

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧

≥ (𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧) (
1

𝑥
+
1

𝑦

+
1

𝑧
) ≥  (𝑎 + 𝑏 + 𝑐)2 > 𝑑2. 

Using Cauchy-Schwarz after the first 

inequality.  

To show (i) implies (ii), first note that if x ≤ 0, 

we may take a quadrilateral of sides a = n, b 

= 1, c = 1, d = n and get y + z >𝑛2(1 − 𝑥), a 

contradiction for large n. Thus x > 0 and 

similarly y > 0, z > 0. Now use a quadrilateral 

of sides 
1

𝑥
,
1

𝑦
,
1

𝑧
 𝑎𝑛𝑑

1

𝑥
+
1

𝑦
+
1

𝑧
−
1

𝑛
, where n is 

large. We then get 
𝑥

𝑥2
+

𝑦

𝑦2
+

𝑧

𝑧2
> (

1

𝑥
+
1

𝑦
+
1

𝑧
−

1

𝑛
)
2

 

Since this holds for all n, we may take the 

limit as n⟶∞ and get 

1

𝑥
+
1

𝑦
+
1

𝑧
≥ (

1

𝑥
+
1

𝑦
+
1

𝑧
−
1

𝑛
)
2

 

And hence 
1

𝑥
+
1

𝑦
+
1

𝑧
≤ 1. 

65. Let n be a positive integer and D a set of n 

concentric circles in the plane. Prove that 

if the function f : D ⟶D satisfies 

d(f(A), f(B)) ≥ d(A, B) for all A, B, 𝜖, D, 

then d(f(A), f(B)) = d(A, B) for every 

A, B, 𝜖D. 

Sol.: Label the circles 𝐷1, … , 𝐷𝑛 in increasing 

order of radius, and let 𝑟1 denote the radius 

𝐷𝑖. Clearly the maximum of d(A, B) occurs 

when A and B are antipodal points on D. Let 

ABCD be the vertices of a square inscribed in 

𝐷𝑛; then f(A) and f(C) are antipodal, as are 

f(B) and f(D). In addition, each of the minor 

arcs f(A) f(B) and f(B) f(C) must be at least a 

quarter arc, thus f(B) bisects one of the 

semicircles bounded by f(A) and f(C), and 

f(D) bisects the other. Now if P is any point on 

the minor arc AB, then the arcs f(P) f(A) and 

f(P) f(B), which are at least as long as the arc 

PA and PB, and up to the quarter arc f(P) f(B). 

We conclude f is isometric on 𝐷𝑛. 

Since f is clearly injective and is now bijective 

on 𝐷𝑛𝑓 maps 𝐷1𝑈… .𝑈𝐷𝑛−1 into itself. Thus 

we many repeat the argument to show that f 

is isometric on each 𝐷𝑖. To conclude, it 

suffices to show that distances between 

adjacent circles, say 𝐷1 and 𝐷2, are preserved. 

This is easy; choose a square ABCD on 𝐷1 and 

A’, B’, C’, D’ be the points on 𝐷2 closet to A, B, 

C, D, respectively. Then A’B’C’D’ also from a 

square, and the distance from A to C’ is the 

maximum between any point on 𝐷1 and any 

point on 𝐷3. Hence the eight points maintain 

their relative position under f, which suffices 

to prove isometry.  
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66. Let n ≥ 3 be an integer and X ⊆ {1, 2, …, 

𝒏𝟑} a set of 3𝒏𝟐 elements. Prove that one 

can find the distinct numbers 𝒂𝟏, … , 𝒂𝟗 in 

X such that the system 

𝒂𝟏𝒙 + 𝒂𝟐𝒚 + 𝒂𝟑𝒛 = 𝟎 

𝒂𝟒𝒙 + 𝒂𝟓𝒚 + 𝒂𝟔𝒛 = 𝟎 

𝒂𝟕𝒙 + 𝒂𝟖𝒚 + 𝒂𝟗𝒛 = 𝟎 

Has a solution (𝒙𝟎, 𝒚𝟎, 𝒛𝟎) in nonzero 

integers. 

Sol.: Label the elements of X in increasing 

order 𝑥1 < ⋯ < 𝑎3𝑛2 ,  and put 

𝑋1 = {𝑥1, … , 𝑥𝑛2}, 𝑋2 = {𝑥𝑛2+1, … . , 𝑥2𝑛2}, 𝑋3
= {𝑥𝑛2+1, … , 𝑥3𝑛2},  

Define the function f: 𝑋1 × 𝑋2 × 𝑋3 → 𝑋 × 𝑋 

as follows: f(a, b, c) = (b –a, c –b). 

The domain of f contains 𝑛6 elements. The 

range of f, on the other hand, is contained in 

the subset of X × 𝑋 of pairs whose sum is at 

most 𝑛3, a set of cardinality. 

∑ 𝑘

𝑛3−1

𝑘=1

=
𝑛3(𝑛3 − 1)

2
<
𝑛6

2
. 

By the pigeonhole principle, some three 

triples (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) (i = 1, 2, 3) map to the same 

pair, in which case x =𝑏1 − 𝑐1, 𝑦 =  𝑐1 −

𝑎1, 𝑧 =  𝑎1 − 𝑏1 is a solution in nonzero 

integers. Note that 𝑎𝑖 , cannot equal 𝑏𝑗 since 𝑋1 

and 𝑋2 and so on, and that 𝑎1 = 𝑎2 implies 

that the triple (𝑎1, 𝑏1, 𝑐1) and (𝑎2, 𝑏2, 𝑐2) are 

identical, a contradiction. Hence the nine 

numbers chosen are indeed distinct. 

 

67. Which are there more of among the 

natural numbers from 1 to 1000000, 

inclusive: numbers that can be 

represented as the sum of a perfect square 

and a (positive) perfect cube, 

or numbers that cannot be? 

Sol.:   There are more numbers that not of this 

form. Let n = 𝑘2 +𝑚3, where k, m, n ∈ N and 

n ≤ 1000000. Clearly k ≤ 1000 and m ≤ 100. 

Therefore there cannot be more numbers in 

the desired from than the 1000000 pairs (k, 

m). 

68. Let x, y, p, n, k be natural numbers such 

that 

𝒙𝒏 + 𝒚𝒏 = 𝒑𝒌. 

Prove that if n > 1 is odd, and p is an odd 

prime, then n is a power of p. 

Sol.: Let m = gcd(x, y). Then x = m𝑥1, 𝑦 =

𝑚𝑦1 and by virtue of the given equation, 

𝑚𝑛(𝑥1
𝑛 + 𝑦1

𝑛) = 𝑝𝑘, and so m = 𝑝𝛼 for some 

nonnegative integer 𝛼. It follows that 𝑥1
𝑛 +

𝑦1
𝑛 = 𝑝𝑘−𝑛

𝛼
.          (1) 

Since n is odd, 

𝑥1
𝑛 + 𝑦1

𝑛

𝑥1 + 𝑦1
= 𝑥1

𝑛−1 − 𝑥1
𝑛−2𝑦1

+ 𝑥1
𝑛−3𝑦1

2 −⋯

− 𝑥1𝑦1
𝑛−2 + 𝑦1

𝑛−1,  

Let A denote the right side of the equation. By 

the condition p > 2, it follows that at least one 

of 𝑥1, 𝑦1 is greater than 1, so since n > 1. A > 

1. 

From (1) it follows that A(𝑥1 + 𝑦1) =  𝑝
𝑘−𝑛𝛼, 

so since 𝑥1 + 𝑦1 > 1, A >1, both of these 

numbers are divisible by p, moreover, 𝑥1 +

𝑦1 = 𝑝
𝛽 for some natural number 𝛽.  

 

Thus  

𝐴 = 𝑥1
𝑛−1 − 𝑥1

𝑛−2(𝑝𝛽 − 𝑥1) + ⋯

− 𝑥1(𝑝
𝛽 − 𝑥1)

𝑛−2

+ (𝑝𝛽 − 𝑥1)
𝑛−1

= 𝑛𝑥1
𝑛−1 +𝐵𝑝. 
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Since A is divisible by p and 𝑥1 is relatively 

prime to p, it follows that n is divisible by p. 

Let n = pq. Then 𝑥𝑝𝑞 + 𝑦𝑝𝑞 = 𝑝𝑘  𝑜𝑟 (𝑥𝑝)𝑞 +

(𝑦𝑝)𝑞 = 𝑝𝑘. If q > 1, then by the same 

argument, p divides q. If q =1, then n = p. 

Repeating this argument, we deduce that n = 

𝑝𝑙  for some natural number l. 

 

69. In the Duma there are 1600 delegates, who 

have formed 16000 committees of 80 

persons each. Prove that one can find two 

committees having no fewer than four 

common members. 

Sol.: Suppose any two committees have at 

most three common members. Have two 

deputies count the possible ways to choose a 

chairman for each of three sessions of the 

Duma. The first deputy assumes that any 

deputy can chair any session, and so gets 

16003 possible choices. The second deputy 

makes the additional restriction that all of the 

chairmen belong to a single committee. Each 

of the 16000 committees yields 803 choices, 

but this is an over count; each of the 16000 
(16000−1)

2
 pairs of committees give at most 33 

overlapping choices. Since the first deputy 

counts no fewer possibilities than the second, 

we have the inequality 

16003 ≥ 16000. 803 −
16000.15999

2
33. 

However, 

1600. 803 −
16000.15999

2
33

> 16000. 803

−
16000.15999

2

42

2
 

=
16000. 43

4
+ 213. 106 − 212. 106 > 212. 106

= 16003. 

We have a contradiction. 

70. Show that in the arithmetic progression 

with first term 1 and ratio 729, there are 

infinitely many powers of 10. 

Sol.: We will show that for all natural 

numbers n, 1081𝑛 − 1 is divisible by 729. In 

fact, 1081𝑛 − 1 = (1081)𝑛 − 1𝑛 =

(1081 − 1). 𝐴, 𝑎𝑛𝑑  

1081𝑛 − 1 = 9…9⏟  
81

 

= 9…9⏟  
9

… 10…01⏟    
8

10…01⏟    
8

… 10…01⏟    
8

 

= 9 1…9⏟  
9

…10…01⏟    
8

10…01⏟    
8

…10…01⏟    
8

 

The second and third factors are composed of 

9 units, so the sum of their digits is divisible 

by 9, that is, each is a multiple of 9. Hence 

1081𝑛 − 1 is divisible by 93 = 729, as is 

1081𝑛 − 1 for any n. 

71. Two piles of coins lie on a table. It is 

known that the sum of the weights of the 

coins in the two piles are equal, and for 

any natural number k, not exceeding the 

number of coins in either pile, the sum of 

the weights of the k heaviest coins in the 

first pile is not more than that of the 

second pile. Show that for any natural 

number x, if each coin (in either pile) of 

weight not less than x is replaced by a coin 

of weight x, the first pile will not be lighter 

than the second. 

Sol.: Let the first pile have n coins of weights   

𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛, and let the second pile 

have m coins of weights 𝑦1 ≥ 𝑦2 ≥ ⋯ ≥

 𝑦𝑚, 𝑤ℎ𝑒𝑟𝑒 𝑥1 ≥ ⋯ ≥ 𝑥𝑠 ≥ 𝑥 ≥ 𝑥𝑠+1 k and 

𝑦1 ≥ ⋯ ≥ 𝑦𝑡 ≥ 𝑥 ≥ 𝑦𝑡+1 ≥ ⋯ ≥ 𝑦𝑚. (If there 

are no coins of weight greater than x, the 

result is clear). We need to show that 𝑥𝑠 +
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𝑥𝑠+1 +⋯+ 𝑥𝑛 ≥ 𝑥𝑡 + 𝑦𝑡+1 +⋯+ 𝑦𝑚. Since 

𝑥1 +⋯+ 𝑥𝑛 = 𝑦1 +⋯+ 𝑦𝑚 = 𝐴, this 

inequality can be equivalently written 𝑥𝑠 +

(𝐴 − 𝑥1 −⋯− 𝑥𝑚) ≥ 𝑥𝑡 + (𝐴 − 𝑦1 −⋯− 𝑦𝑡), 

which in turn can be rewritten  

𝑥1 +⋯+ 𝑥𝑠 + 𝑥(𝑡 − 𝑠) ≤ 𝑦1 +⋯+ 𝑦𝑡 , 

This is what we will prove, 

If t ≥ s, then 

𝑥1 +⋯+ 𝑥𝑠 + 𝑥(𝑡 − 𝑠)

= (𝑥1 +⋯+ 𝑥𝑠)

+ (𝑥 +⋯+ 𝑥)⏟        
𝑡−𝑠

≤ (𝑦1 +⋯+ 𝑦𝑠)

+ (𝑦𝑠+1 +⋯+ 𝑦𝑡), 

Since 𝑥1 +⋯+ 𝑥𝑠 ≤ 𝑦1 +⋯+ 𝑦𝑠 (from the 

given condition) and 𝑦𝑠+1 ≥ ⋯ ≥ 𝑦𝑡 ≥ 𝑥. 

If t < s, then 𝑥1 + …+ 𝑥𝑠 + 𝑥(𝑡 − 𝑠) ≤  𝑦1 +

⋯+ 𝑦𝑡 is equivalent to  

𝑥1 +⋯+ 𝑥𝑠 ≤ 𝑦1 +⋯+ 𝑦𝑡 + (𝑥 +⋯+ 𝑥)⏟        
𝑡−𝑠

 

The latter inequality follows from the fact 

that  

𝑥1 +⋯+ 𝑥𝑠 ≤ 𝑦1 +⋯+ 𝑦𝑠
= (𝑦1 +⋯+ 𝑦𝑡)

+ (𝑦𝑡+1 +⋯+ 𝑦𝑠)𝑎𝑛𝑑 𝑦𝑠 ≤ ⋯

≤ 𝑦𝑡+1 ≤ 𝑥. 

 

72. Can a 𝟓 × 𝟕 checkerboard be covered by 

L’s (figures formed from a 𝟐 × 𝟐 square by 

removing one of its four 𝟏 × 𝟏 corners), 

not crossing its borders, in several layers 

so that each square of the board is covered 

by the same number of L’s? 

Sol.: No such covering exists. Suppose we are 

given a covering of a 5 × 7 checkerboard with 

L’s such that every cell is covered by exactly k 

L’s. Number the rows 1,…, 5 and the columns 

1, …, 7, and consider the 12 squares lying at 

the intersections of odd numbered rows with 

odd numbered columns. Each of these cells is 

covered by k L’s, so at least 12k L’s must be 

used in total. But these cover 3. 12k > 35k 

cells in total, a contradiction. 

73. Points E and F are given are given on side 

BC of convex quadrilateral ABCD (with E 

closer than F to B). It is known that ∠BAE 

= ∠CDF and ∠EAF = ∠FDE. Prove that 

∠FAC = ∠EDB. 

Solution: By the equality of angles EAF and 

FDE, the quadrilateral AEFD is cyclic. 

Therefore ∠AEF + ∠FDA = 180°. By the 

equality of angles BAE and CDF we have 

∠ADC + ∠ABC = ∠FDA +∠CDF +∠AEF -∠BAE 

= 180° 

Hence the quadrilateral ABCD is cyclic, so 

∠BAC = ∠BDC. It follows that ∠FAC = ∠EBD. 

74. Find all natural numbers n, such that there 

exist relatively prime integers x and y and 

an integer k >1 satisfying the equation 

𝟑𝒏 = 𝒙𝒌 + 𝒚𝒌. 

 

Sol.: The only solution is n = 2. 

Let 3𝑛 = 𝑥𝑘 + 𝑦𝑘, where x, y are relatively 

prime integers with x > y, k > 1, and n a 

natural number. Clearly neither x nor y is a 

multiple of 3. Therefore, if k is even𝑥𝑘𝑎𝑛𝑑 𝑦𝑘 

are congruent to 1 mod 3, so their sum is 

congruent to 2 mod 3, and so is not a power 

of 3. 

If k is odd and k > 1, then 3𝑛 = (𝑥 +

𝑦)(𝑥𝑘−1 −⋯+ 𝑦𝑘−1). Thus x + y = 3𝑚 for 

some m ≥ 1. We will show that n ≥ 2m. Since 
3

𝑘
 (see the solution to Russia 3), by putting 
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𝑥1 = 𝑥
𝑘/3 𝑎𝑛𝑑 𝑦1 = 𝑦

𝑘/3 we may assume k = 

3. 

Then 𝑥3 + 𝑦3 = 3𝑚 and x + y = 3𝑛. To prove 

the inequality n ≥ 2m, it suffices to show that 

𝑥3 + 𝑦3 ≥ (𝑥 + 𝑦)2, or 𝑥2 − 𝑥𝑦 + 𝑦2 ≥ 𝑥 +

𝑦. Since x ≥ y +1, 𝑥2 − 𝑥 = 𝑥(𝑥 − 1) ≥

𝑥𝑦, 𝑎𝑛𝑑 (𝑥2 − 𝑥 + 𝑥𝑦) + (𝑦2 − 𝑦) ≥

𝑦(𝑦 − 1) ≥ 0, and the inequality n ≥ 2m 

follows. 

From the identity (𝑥 + 𝑦)3 − (𝑥3 + 𝑦3) =

3𝑥𝑦(𝑥 + 𝑦) it follows that 32𝑚−1 − 3𝑛−𝑚−1 =

𝑥𝑦. 

But 2m -1 ≥ 1, and n –m -1 ≥n -2m ≥0. If 

strict inequality occurs in either place in the 

last inequality, then 32𝑚−1 − 3𝑛−𝑚−1 is 

divisible by 3 while xy is not. Hence n –m -1 = 

n -2m = 0, and so m = 1, n = 2 and 32 = 23 +

13. 

Note: The inequality 𝑥2 − 𝑥𝑦 + 𝑦2 ≥ 𝑥 + 𝑦 

can alternatively be shown by nothing that 

𝑥2 − 𝑥𝑦 + 𝑦2 − 𝑥 − 𝑦 = (𝑥 − 𝑦)2 +

(𝑥 − 1)(𝑦 − 1) − 1 ≥ 0,  

Since (𝑥 − 𝑦)2 ≥ 1. 

 

75. Show that if the integers 𝒂𝟏, … , 𝒂𝒎 are 

nonzero and for each k = 0, 1, …, m(n < m 

-1),  

𝒂𝟏 + 𝒂𝟐𝟐
𝒌 + 𝒂𝟑𝟑

𝒌 +⋯+ 𝒂𝒎𝒎
𝒌 = 𝟎, 

Then the sequences 𝒂𝟏, … , 𝒂𝒎 contains at least 

n + 1 pairs of consecutive terms having 

opposite sings. 

Solution: We many assume 𝑎𝑚 > 0, since 

otherwise we may multiply each of the 

numbers by -1. Consider the sequence 

𝑏1, … , 𝑏𝑚, where 𝑏𝑖 = ∑ 𝑐𝑗𝑖
𝑗𝑛

𝑗=0  for an 

arbitrary sequence of real numbers 𝑐0, … , 𝑐𝑛. 

From the given condition, 

∑𝑎𝑖𝑏𝑖

𝑚

𝑖=1

= ∑𝑎𝑖

𝑚

𝑖=1

∑𝑐𝑗𝑖
𝑗

𝑛

𝑗=0

= ∑𝑐𝑖

𝑛

𝑗=0

∑𝑎𝑖𝑖
𝑗

𝑛

𝑗=1

= 0. 

Suppose now that the sequence 𝑎1, … , 𝑎𝑚 has 

k pairs of neighbors that differ in sign, where 

k < n +1, and let 𝑖1, … , 𝑖𝑘 be the indices of the 

first members of these pairs. 

Let 𝑏𝑖 = 𝑓(𝑖) = (𝑖 − 𝑥1)(𝑖 − 𝑥2)… (𝑖 − 𝑥𝑘), 

where 𝑥𝑘 = 𝑖𝑘 +
1

2
(𝑖 = 1, 2, … , 𝑘). The 

function f changes sign only at the points 

𝑥1, … , 𝑥𝑘, and so 𝑏1 𝑎𝑛𝑑 𝑏𝑖+1 have different 

signs if and only one of the 𝑥𝑙 falls between 

them, which means i = 𝑖𝑙 . We deduce that the 

sequences 𝑎1, … , 𝑎𝑚 𝑎𝑛𝑑 𝑏1, … , 𝑏𝑚 have the 

same pairs of neighbors of opposite sign. 

Since 𝑎𝑚 𝑎𝑛𝑑 𝑏𝑚 are positive, we have that 

𝑎𝑖  𝑎𝑛𝑑 𝑏𝑖 have the same sign for i = 1, …., m, 

so ∑ 𝑎𝑖𝑏𝑖
𝑚
𝑖=1 >0, a contradiction. 

 

76. At the vertices of a cube are written eight 

pair wise district natural numbers, and on 

each of its edges is written the greatest 

common divisor of the numbers at the end 

points of the edge. Can the sum of the 

numbers written at the vertices be the 

same as the sum of the numbers written at 

the edges? 

Sol.: This is not possible. Note that if a and b 

are natural numbers with a > b, then gcd(a, 

b) ≤ b and gcd(a, b) ≤
𝑎

2
.It follows that if a ≠ b, 

then gcd(a, b)≤
(𝑎+𝑏)

3
 . Adding 12 such 

inequalities, corresponding to the 12 edges, 

we find that the desired condition is only 

possible if gcd(a, b) = 
(𝑎+𝑏)

3
 in each case. But 

in this case the larger of a and b is twice the 

smaller; suppose a = 2b. Consider the 
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numbers c and d assigned to the vertices of 

the other end points of the other two edges 

coming out of the vertex labeled a. Each of 

these is either half of or twice a. If at least one 

is less a, it equals b; otherwise, both are equal. 

Either option contradicts the assumption that 

the numbers are distinct. 

77. Three sergeants and several solders serve 

in a platoon. The sergeants take turns on 

duty. The commander has given the 

following orders: 

(a) Each day, at least one task must be 

issued to a soldier. 

(b) No soldier may have more than 

two tasks or receive more than one 

tasks in a single day. 

(c) The lists of soldiers receiving tasks 

for two different days must not be 

the same. 

(d) The first sergent violating any of 

these orders will be jailed. 

 

Can at least one of the sergeants, 

without conspiring with the others, 

give tasks according to these rules and 

avoid being jailed? 

Sol.: The sergeants who goes third can avoid 

going to jail. We call a sequence of duties by 

the first, second and third sergeants in 

succession a round. To avoid going to jail, the 

third sergeant on the last day of each round 

gives tasks to precisely those soldiers who 

received one task over the previous two days. 

(Such soldiers exist by the third condition). 

With this strategy, at the end of each cycle 

each soldier will have received either two 

tasks or none, and the number of the latter 

will have decreased. It will end up, at some 

point, that all of the soldiers have received 

two tasks, and the first sergeant will go to jail. 

78. Can the number obtained by written the 

numbers from 1 to n in order (n >1) be 

the same when read left-to-right and right-

to left? 

Sol.: This is not possible. Suppose N = 123 

…321 is an m digit symmetric number, 

formed by writing the numbers from 1 to n in 

succession. Clearly m >18. Also let A and B be 

the numbers formed from the first and last k 

digits, respectively, of N, where k = ⌊𝑚/2⌋⎿ . 

Then if 10𝑝 is the largest power of 10 dividing 

A, then n> 2. 10𝑝+1, that is, n has at most p 

+2 digits. Moreover, A and B must contain the 

fragments 

99…9⏟  
𝑝

100…01⏟      
𝑝

 𝑎𝑛𝑑 100…0⏟    
𝑝

199…9⏟    
𝑝

 

Respectively, which is impossible. 

79. Do there exist three natural numbers 

greater than 1, such that the square of 

each, minus one, is divisible by each of the 

others? 

Sol.: Such integers do not exist. Suppose a ≥ b 

≥ c satisfy the desired condition. Since 𝑎2 −

1is divisible by b, the numbers a and b are 

relatively prime. Hence the number 𝑐2 − 1, 

which is divisible by a and b, must be a 

multiple of ab, so in particular 𝑐2 − 1 ≥

𝑎𝑏. 𝐵𝑢𝑡 𝑎 ≥ 𝑐 𝑎𝑛𝑑 𝑏 ≥ 𝑐, 𝑠𝑜 𝑎𝑏 ≥  𝑐2, a 

contradiction. 

80. In isosceles triangle ABC (AB = BC) one 

draws the angle bisector CD. The 

perpendicular to CD through the center of 

the circumcircle of ABC intersects BC at E. 

The parallel to CD through E meets AB at 

F. Show that BE = FD. 

Solution: We use directed angles modulo 𝜋. 

Let O be the circumcircle of ABC, and K the 

intersection of BO and CD. From the equality 

of the acute angles BOE and DCA having 
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perpendicular sides, it follows that ∠BOE = 

∠KCE (CD being an angle bisector), which 

means the points K, O, E, C lie on a circle. 

From this it follows that ∠OKE = ∠OCE; but 

∠OCE = ∠OBE, so OB = OC, and hence ∠BKE 

= ∠KBE, or in other words BE = KE. 

Moreover, ∠BKE = ∠KBE = ∠KBA, and so KE 

∥ AB. Consequently, FEKD is a parallelogram 

and DF = KE. Therefore, DF = KE = BE as 

desired. 

81. Does there exist a finite set M of nonzero 

real numbers, such that for any natural 

number n a polynomial of degree no less 

than n with coefficients in M, all of whose 

roots are real and belong M? 

Solution: Such a set does not exist. Suppose 

on the contrary that M = {𝑎1, 𝑎1, … , 𝑎𝑛} 

satisfies the desired property. Let m = min 

{│𝑎1│, …,  │𝑎𝑛│} and M = max {│𝑎1│, …,  

│𝑎𝑛│}; the condition implies M ≥ m > 0. 

Consider the polynomial P(x) = 𝑏𝑘𝑥
𝑘 +⋯+

𝑏1𝑥 + b0 all of whose coefficients b0, … , bk are 

roots x1, … . , xk lie in M. By Vieta’s theorem. 

−
𝑏𝑘−1
bk

= 𝑥1 +⋯𝑥𝑘 

𝑥1𝑥2 + 𝑥1𝑥3 +⋯+ 𝑥𝑘−1𝑥𝑘 =
𝑏𝑘−2
𝑏𝑘

 

And so  

𝑥1
2 +⋯+ 𝑥𝑘

2 =
𝑏𝑘−1

2

𝑏𝑘
2 − 2

𝑏𝑘−2
𝑏𝑘

. 

It follows that 

𝑘𝑚2 ≤ 𝑥1
2 +⋯+ 𝑥𝑘

2 =  
𝑏𝑘−1

2

𝑏𝑘
2 − 2

𝑏𝑘−2
𝑏𝑘

≤
𝑀2

𝑚2
+ 2

𝑀

𝑚
. 

Hence 𝑘 ≤
𝑀2

𝑚4 +
2𝑀

𝑚3, contradiction the fact that 

P may have arbitrarily large degree. 

82. The natural numbers a and b are such that 
𝒂+𝟏

𝒃
+
𝒃+𝟏

𝒂
 

is an integer. Show that the greatest common 

divisor of a and b is not greater than √𝒂 + 𝒃. 

Solution: Let d = gcd(a, b) and put  a = 

md and b = nd.  Then we have 
(𝑚𝑑+1)

𝑛𝑑
+

(𝑛𝑑+1)

𝑚𝑑
=
(𝑚2𝑑+𝑚+𝑛2𝑑+𝑛)

𝑚𝑛𝑑
 is an integer, so 

that in particular, d divides 𝑚2𝑑 +𝑚 +

𝑛2𝑑 + 𝑛 and also m + n. However, this 

means d ≤ m + n, and so d ≤ 

√𝑑(𝑚 + 𝑛) =  √𝑎 + 𝑏 . 

83. Let G be the centroid of the triangle ABC. 

Prove that if AB + GC = AC + GB, then ABC 

is isosceles. 

Sol.: Let a, b, c, be the lengths of sides BC, CA, 

AB, respectively. By Stewart’s theorem and 

the fact that G trisects each median (on the 

side further from the vertex), we deduce 

9𝐺𝐵2 = 2𝑎2 + 2𝑐2 − 𝑏2, 9𝐺𝐶2

=  2𝑎2 + 2𝑏2 − 𝑐2. 

Now assume b > c. Assuming AB + GC = AC + 

GB, we have 

3(𝑏 − 𝑐) =  √2𝑎2 + 2𝑏2 − 𝑐2

−√2𝑎2 + 2𝑐2 − 𝑏2 

=
3(𝑏2 − 𝑐2)

√2𝑎2 + 2𝑏2 − 𝑐2 + √2𝑎2 + 2𝑐2 − 𝑏2
 

<
3(𝑏2 − 𝑐2)

√2 (𝑏 − 𝑐)2 + 2𝑏2 − 𝑐2 + √2 (𝑏 − 𝑐)2 + 2𝑐2 − 𝑏2
 

Since 𝑎2 > (𝑏 − 𝑐)2 by the triangle inequality. 

However,  
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2 (𝑏 − 𝑐)2 + 2𝑏2 − 𝑐2 = (2𝑏 − 𝑐)2, so we 

have  

3(𝑏 − 𝑐) <
3(𝑏2−𝑐2)

2𝑏−𝑐+│2𝑐−𝑏│
.  

If b ≤2c then the two sides are equal, a 

contradiction. If b ≤ 2c we get 9(𝑏 − 𝑐)2 <

3(𝑏2 − 𝑐2); upon dividing off 3(b –c) and 

rearranging, we get 2b < 4c, again a 

contradiction. Thus we cannot have b > c or 

similarly b < c, so b = c. 

84. Find all real solutions of the equation 

√𝒙𝟐 − 𝒑 + 𝟐√𝒙𝟐 − 𝟏 = 𝒙 

For each real value of p. 

Sol.: Squaring both sides, we get  

𝑥2 = 5𝑥2 − 4 − 𝑝 + 4√(𝑥2 − 𝑝)(𝑥2 − 1  

Isolating the radical and squaring again, we 

get 

16(𝑥2 − 𝑝)(𝑥2 − 1) =  (4𝑥2 − 𝑝 − 4)2,  

Which reduces to (16 − 8𝑝)𝑥2 = 𝑝2 − 8𝑝 +

16. Since x ≥ 0(it is the sum of two square 

roots), we have x = 
│𝑝−4│

√16−8𝑝
  

If a solution exists. We need only determine 

when this value actually satisfies. Certainly 

we need p ≤ 2. In that case plugging in our 

claimed value of x and multiplying through by 

√16 − 8𝑝 gives │3p -4│+2│p│ = 4 –p. 

If p ≥ 
4

3
 this becomes 6p = 8, or p = 

4

3
; if 0 ≤ p 

≤ 
4

3
 this holds identically; if p ≤ 0 this 

becomes 4p = 0, or p = 0. We conclude there 

exists a solution if and only if 0≤ 𝑝 ≤ 4/3, in 

which case it is the solution given above. 

85. At port Aventura there are 16 secret 

agents. Each agent is watching one or 

more other agents, but no two agents are 

both watching each other. Moreover, any 

10 agents can be ordered so that the first a 

watching the second, the second is 

watching the third, etc. , and the last is 

watching the first. Show that any 11 agents 

can also be so ordered. 

Sol.:  We say two agents are partners if 

neither watches the other. First note that 

each agent watches at least 7 others; if an 

agent were watching 6 or fewer others, we 

could take away 6 agents and leave a group of 

10 which could not be arranged in a circle. 

Similarly, each agent is watched by at least 7 

others. Hence each agent is allied with at 

most one other. 

Given a group of 11 agents, there must be one 

agent x who is not allied with any of the 

others in the group (since allies come in 

pairs). Remove that agent and arrange the 

other 10 in a circle. The Removed agent 

watches at least one of the other 10 and is 

watched by at least one. Thus there exists a 

pair, u, v of agents with u watching v, u 

watching x and x watching v (move around 

the circle until the direction of the arrow to x 

changes); thus x can be spliced into the loop 

between u and v. 

86. Let  ∏ (𝟏 + 𝒏𝒙𝟑
𝒏
)𝟏𝟗𝟗𝟔

𝒏=𝟏 = 𝟏 + 𝒂𝟏𝒙
𝒌𝟏 +

𝒂𝟐𝒙
𝒌𝟐 +⋯+ 𝒂𝒎𝒙

𝒌𝒎 ,  

where 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒎 are nonzero and 𝒌𝟏 <

𝒌𝟐 < ⋯ < 𝒌𝒎. Find 𝒂𝟏𝟗𝟗𝟔. 

Sol.: Note that 𝑘𝑖 is the number obtained by 

writing i in base 2 and reading the result as a 

number in base 3, and 𝑎𝑖  is the sum of the 

exponents of the powers of 3 used. In 

particular, 1996 = 210 + 29 + 28 + 27 + 26 +

23 + 22, 𝑠𝑜 𝑎1996 = 10 + 9 + 8 + 6 + 6 + 3 +

2 = 45. 
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87. In a parallelogram ABCD with ∠A <𝟗𝟎°, 

the circle with diameter AC meets the lines 

CB and CD again at E and F, respectively, 

and the tangent to this circle at A meets BD 

at P. Show that P, F, E are collinear. 

Sol.: Without loss of generality, suppose B, D, 

P occur in that order along BD. Let G and H be 

the second intersection of AD and AB with the 

circle. By Menelaos’s theorem, it suffices to 

show that 

𝐶𝐸. 𝐵𝑃. 𝐷𝐹

𝐸𝐵. 𝑃𝐷. 𝐹𝐶
= 1 

Find note that 

𝐵𝑃

𝐴𝐵

𝐴𝐷

𝐷𝑃
=
sin∠𝐵𝐴𝑃 sin∠𝐴𝑃𝐷

sin∠𝐴𝑃𝐵 sin∠𝐷𝐴𝑃
=
sin∠𝐵𝐴𝑃

sin∠𝐷𝐴𝑃
  

Since AP is tangent to the circle, ∠BAP = 

∠HAP  

= 𝜋 - ∠HCA = 𝜋 -∠FCA; similarly, ∠DAP = 

∠GCA = ∠EAC. We conclude 

𝐵𝑃

𝐴𝐵

𝐴𝐷

𝐷𝑃
=
sin∠𝐹𝐴𝐶

sin∠𝐸𝐴𝐶
=
𝐹𝐶

𝐸𝐶
  

Finally we note that 
𝐷𝐹

𝐵𝐸
=
𝐷𝐴

𝐴𝐵
 because the right 

triangles AFD and AED have the same angles 

at B and D and are thus similar. This prove 

the claim. 

88. Given  real number s 0 =  𝒙𝟏 < 𝒙𝟐 < ⋯ <

𝒙𝟐𝒏 < 𝒙𝟐𝒏+𝟏 = 𝟏 with 𝒙𝒊+𝟏 − 𝒙𝒊 ≤ 𝒉 for 1 

≤ i ≤ 2n, show that 
𝟏−𝒉

𝟐
<

∑ 𝒙𝟐𝒊
𝒏
𝒊=𝟏 (𝒙𝟐𝒊+𝟏 − 𝒙𝟐𝒊−𝟏) <

𝟏+𝒉

𝟐
. 

Sol.: The different between the middle 

quantity and 
1

2
 is the difference between the 

sum of the areas of the rectangles bounded by 

the lines x = 𝑥2𝑖−1, 𝑥 =  𝑥2𝑖+1, 𝑦 = 0, 𝑦 =  𝑥2𝑖 

and the triangle bounded by the lines y = 0, x 

= 1, x = y. The area contained in the 

rectangles but not the triangle is a union of 

triangles of total base less than 1 and height 

at most h, as is the area contained in the 

triangle but not the rectangles. Hence the sum 

differs from 
1

2
 but at most 

ℎ

2
, as desired. 

89. In a convex quadrilateral ABCD, triangles 

ABC and ADC have the same area. Let E be 

the intersection of AC and BD, and let the 

parallels through E to the lines AD, DC, CB, 

BA meet AB, BC, CD, DA at K, L, M, N, 

respectively. Compute the ratio of the 

areas of the quadrilaterals KLMN and 

ABCD. 

Solution: The triangles EKL and DAC are 

homothetic, so the ratio of their areas equals 

(
𝐸𝐾

𝐴𝐷
) (

𝐸𝐿

𝐶𝐷
) = (

𝐵𝐸

𝐵𝐷
)
2
=
1

4
, since B  and D are 

equidistant from the line AC. Similarly the 

ratio of the areas of EMN and BCA is 
1

4
, so the 

union of the triangles EKL and EMN has area 
1

4
 

that of ABCD. 

As for triangle EKN, its base KN is parallel to 

BD and half as long, so its area is one-fourth 

that of ABD. Similarly EML has area one-

fourth that of BCD, and so the union of the 

two triangles EKN and EML has area one 

fourth that of ABCD, and so the quadrilateral 

KLMN has area one-half that of ABCD. 

90. Find the maximum number of pair wise 

disjoint sets of the from 𝑺𝒂,𝒃 =

{𝒏𝟐 + 𝒂𝒏+ 𝒃:𝒏 ∈ 𝒁}𝒘𝒊𝒕𝒉 𝒂, 𝒃 ∈ 𝒁. 

Solution: Only two such sets are possible, for 

example, with (a, b) = (0, 0) and (0, 2) (since 

2 is not a difference of squares). There is no 

loss of generality in assuming a ∈ {0, 1} by a 

suitable shift of n, and the sets generated by 

(0, a) and (1, b) have the common value 

(𝑎 − 𝑏)2 + 𝑎 =  (𝑎 − 𝑏)2 + (𝑎 − 𝑏) + 𝑏.Thus 

we have a = 0 or a = 1 universally. 
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First suppose a = 0. If b –c ≠ 2 (mod 4), then 

(0, b) and (0, c) gives a common value 

because b –c is a difference of squares, clearly 

this precludes having three disjoint sets. Now 

suppose a = 1. If b –c is even, we can find x, y 

such that b –c = (x +y +1) (x –y), and so 𝑥2 +

𝑥 + 𝑏 = 𝑦2 + 𝑦 + 𝑐, again, this precludes 

having three disjoint sets. 

91. For which ordered pairs of positive real 

numbers (a, b) is the limit of every 

sequence {𝒙𝒏} satisfying the condition. 

𝐥𝐢𝐦
𝒏 →𝜶

(𝒂𝒙𝒏+𝟏 − 𝒃𝒙𝒏) = 𝟎 

Sol.: The holds if and only if b < a, if b > a, the 

sequence 𝑥𝑛 = (
𝑏

𝑎
)
𝑛

 satisfies the condition 

but does not go to zero, if b = a, the sequence 

𝑥𝑛 = 1 +
1

2
+⋯+

1

𝑛
 does likewise. Now 

suppose b < a. If L and M are the limit inferior 

and limit superior of the given sequence, the 

condition implies M ≤ (
𝑏

𝑎
)  𝐿; since L ≤ M, we 

have M ≤ (
𝑏

𝑎
)  𝑀, and so L, M ≥ 0. Similarly, 

the condition implies L ≥ (
𝑏

𝑎
)𝑀, and since M 

≥ L, we have L ≥ (
𝑏

𝑎
)  𝐿, so L, M ≤ 0; therefore 

L = M = 0 and the sequence converges to 0. 

92. Consider the pair of four –digit positive 

integers (M, N) = (3600, 2500). Notice 

that M and N are both perfect squares, 

with equal digits in two places, and 

differing digits in the remaining two 

places. Moreover, when the digits differ, 

the digit in M is exactly one greater than 

the corresponding digit in N. Find all pairs 

of four –digit positive integers (M, N) with 

these properties. 

Sol.: If M = 𝑚2 𝑎𝑛𝑑 𝑁 =  𝑛2, then (m+ n) 

(m –n) ∈{11, 101, 110, 1001, 1010, 1100}. 

Since M and N are four-digit numbers, we 

must have 32 ≤ n <m ≤ 99, and so 65 ≤ 

m +n ≤ 197. Moreover, m +n and m –n 

are both odd or both even, so 11, 110 and 

1010 lead to no solutions. From this we 

get exactly five acceptable factorizations. 

101 = (m+ n) (m –n) = 101 × 1 

1001 = (m +n) (m –n) = 143 × 7 

1001 = (m +n) (m –n) = 91 × 11 

1001 = (m+ n) (m –n) = 77 × 13 

1100 = (m+ n) (m –n) = 110 × 10 

Giving the solutions (M, N) = (2601, 

2500), (5625, 4624), (2601, 1600), 

(2025, 1024), (3600, 2500). 

93. A function f defined on the positive 

integers satisfies f(1) = 1996 and 

𝒇(𝟏) + 𝒇(𝟐) +⋯+ 𝒇(𝒏) =

𝒏𝟐𝒇(𝒏)(𝒏 > 1).  

Sol.: An easy induction will show that 

𝑓(𝑛) =
2 × 1996

𝑛(𝑛 + 1)
 

Namely, 

𝑓(𝑛) =
1

𝑛2−1
(
3992

1.2
+⋯+

3992

(𝑛−1)𝑛
)  

=
3992

𝑛2−1
(1 −

1

2
+
1

2
−
1

3
+⋯+

1

𝑛−1
−
1

𝑛
)  

=
3992

(𝑛+1)(𝑛−1)
(1 −

1

𝑛
)  

=
3992

(𝑛+1)(𝑛−1)

𝑛−1

𝑛
=

3992

𝑛(𝑛+1)
  

In particular, f(1996) = 
2

1997
 

94. Define 𝒒(𝒏) =  ⌊
𝒏

⌊√𝒏⌋
⌋ (𝒏 = 𝟏, 𝟐,… ). 

Determine all positive integers n for which 

q(n) > q(n +1). 
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Sol.: We have q(n) > q(n+1) if and only if n 

+1 is a perfect square. Indeed, if n +1 = 𝑚2, 

then 

𝑞(𝑛) =  ⎣
𝑚2 − 1

𝑚 − 1
⎦ = 𝑚 + 1, 𝑞(𝑛 + 1) =  ⎣

𝑚2

𝑚
⎦

= 𝑚 

On the other hand, for n = 𝑚2 + 𝑑 with 0 ≤ 

d≤ 2m, 𝑞(𝑛) = ⎣
𝑚2+𝑑

𝑚
⎦ = 𝑚 +  ⎣

𝑑

𝑚
⎦ 

Which is non-decreasing. 

95. Let a, b, c be positive real numbers. 

(a) Prove that 𝟒(𝒂𝟑 + 𝒃𝟑) ≥ (𝒂 + 𝒃)𝟑 

(b)  Prove that 𝟗(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) ≥

 (𝒂 + 𝒃 + 𝒄)𝟑 

Sol.: Both parts follow from the Power Mean 

inequality: for r > 1 and 𝑥1, … , 𝑥𝑛 positive, 

(
𝑥1
𝑟 +⋯+ 𝑥𝑛

𝑟

𝑛
)

1/𝑟

≥
𝑥1 +⋯+ 𝑥𝑛

𝑛
, 

Which in turn follows from Jensen’s 

inequality applied to convex function 𝑥𝑟.  

96. Find all Solutions in non-negative integers 

x, y, z of the equation. 

𝟐𝒙 + 𝟑𝒚 = 𝒛𝟐 

Sol.: If y = 0, then 2𝑥 = 𝑧2 − 1 = (𝑧 + 1)(𝑧 −

1), so z +1 and z -1 are powers of 2. The only 

powers  of 2 which differ by 2 are 4 and 2, so 

(x, y, z) = (3, 0, 3). 

If y > 0, then 2𝑥 is a quadratic residue modulo 

3, hence x is even. Now we have 3𝑦 = 𝑧2 −

2𝑥 = (𝑧 + 2
𝑥

2) (𝑧 − 2
𝑥

2). The factors are 

powers of 3, say z+2𝑥/2 = 3𝑚 and z −2𝑥/2 =

3𝑛, but then 3𝑚 − 3𝑛 = 2
𝑥

2
+1. Since the right 

side is not divisible by 3, we must have n = 0 

and 3𝑚 − 1 = 2
𝑥

2
+1. 

If x = 0, we have m = 1, yielding (x, y, z) = (0, 

1, 2). Otherwise, 3𝑚 − 1 is divisible by 4, so m 

is even and 2
𝑥

2
+1 = (3

𝑚

2 + 1) (3
𝑚

2 − 1). The 

two factors on the right are powers of 2 

differing by 2, so they are 2 and 4, giving x = 

4 and (x, y, z) = (4, 2, 5). 

97. The sides a, b, c and u, v, w of two triangles 

ABC and UVW are related by the 

equations. 

𝒖(𝒗 + 𝒘− 𝒖) =  𝒂𝟐, 

𝒗(𝒘 + 𝒖 − 𝒗) =  𝒃𝟐, 

𝒘(𝒖 + 𝒗 −𝒘) = 𝒄𝟐. 

Prove that ABC is acute, and express the angles 

U, V, W in terms of A, B, C. 

Sol.: Note that 𝑎2 + 𝑏2 − 𝑐2 = 𝑤2 − 𝑢2 −

𝑣2 + 2𝑢𝑣 = (𝑤 + 𝑢 − 𝑣)(𝑤 − 𝑢 + 𝑣) > 0 by 

the triangle inequality, so cos𝐶 > 0. By this 

reasoning, all of the angles of triangle ABC are 

acute. Moreover, 

cos 𝐶 =
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
 

= √
(𝑤 + 𝑢 − 𝑣)(𝑤 − 𝑢 + 𝑣)

4𝑢𝑣
 

= √
𝑤2 − 𝑢2 − 𝑣2 + 2𝑢𝑣

4𝑢𝑣
=
1

√2
√1 − cos𝑈 

From which we deduce U = 1 − 2𝑐𝑜𝑠2𝐴 =

cos(𝜋 − 2𝐴). 

Therefore U = 𝜋 -2A, and similarly V = 𝜋- 2B, 

W = 𝜋- 2C. 

98. Two circles 𝑺𝟏 and𝑺𝟐 touch each other 

externally at K; they also touch a circle S 

internally at 𝑨𝟏 𝒂𝒏𝒅 𝑨𝟐, respectively. Let 

P be one point of intersection of S with the 
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common tangent to 𝑺𝟏 𝒂𝒏𝒅 𝑺𝟐 at K. The 

line P𝑨𝟏 𝒎𝒆𝒆𝒕𝒔 𝑺𝟏 𝒂𝒈𝒂𝒊𝒏 𝒂𝒕 𝑩𝟏, and P𝑨𝟐 

meets 𝑺𝟐again at 𝑩𝟐. Prove that 𝑩𝟏𝑩𝟐 is a 

common tangent to 𝑺𝟏 𝒂𝒏𝒅 𝑺𝟐. 

Sol.: It suffices to show that ∠𝐵2𝐵1𝑂1 =

∠𝐵1𝐵2𝑂2 =
𝜋

2
, where 𝑂1 𝑎𝑛𝑑 𝑂2 are the 

centers of 𝑆1 𝑎𝑛𝑑 𝑆2, respectively. By power –

of-a-point. P𝐴1. 𝑃𝐵1 = 𝑃 𝐾
2 = 𝑃𝐴2. 𝑃𝐵2,  so 

triangles P𝐴1𝐴2 𝑎𝑛𝑑 𝑃𝐵2𝐵1 are similar. 

Therefore ∠P𝐵1𝐵2 =  ∠𝑃𝐴2𝐴1 =
1

2
∠𝑃𝑂𝐴1, 

where O is the center of S. 

Now note that the homothety at 𝐴1 carrying 

𝑆1 to S takes 𝑂1𝑡𝑜 𝑂 𝑎𝑛𝑑 𝐵1𝑡𝑜 𝑃, so ∠𝑃𝑂𝐴1 =

 ∠𝐵1𝑂1𝐴1. From this we deduce ∠P𝐵1𝐵2 =

 ∠𝐵1𝑂1𝑁, where N is the midpoint of 𝐴1𝐵1. 

Finally, ∠𝐵2𝐵1𝑂1 =  𝜋 − ∠P𝐵1𝐵2 − ∠𝑂1𝐵1𝑁 =
𝜋

2
,  as desired. 

99. Find all solutions in positive real numbers 

a, b, c, d to the following system of 

equations:  

a + b+ c + d = 12 

abcd = 27 +ab +ac +ad +bc +bd +cd.   

Sol.: The first equation implies abcd = ≤ 81 by 

the arithmetic geometric mean inequality, 

with equality holding for a = b = c = d = 3. 

Again by AM-GM, 

 abcd ≥ 27 +6 (𝑎𝑏𝑐𝑑)1/2 

However, 𝑥2 − 6𝑥 − 27 ≥ 0 𝑓𝑜𝑟 𝑥 ≤

−3 𝑜𝑟 𝑥 ≥ 9, so (𝑎𝑏𝑐𝑑)1/2 ≥ 9,  hence abcd ≥ 

81. We conclude abcd = 81, and hence a = b= 

c= d= 3. 

100. Prove that the average of numbers n 

𝐬𝐢𝐧𝒏° (𝒏 = 𝟐, 𝟒, 𝟔, … , 𝟏𝟖𝟎)𝒊𝒔 𝐜𝐨𝐭 𝟏°. 

Solution: All arguments of trigonometric 

functions will be in degrees. We need to prove 

2 sin2 + 4 sin4 +⋯+ 178 sin 178

= 90 cot 1         (2) 

Which is equivalent to  

2 sin 2 sin1 + 2(2 sin4 . sin 1) + …+ 89 

(2 sin 178 . sin 1) = 90 cos1.                        (3) 

Using the identity 2 sin 𝑎 . sin 𝑏 = cos(𝑎 − 𝑏) −

cos(𝑎 + 𝑏), we find 

2 sin2 . sin 1 + 2(2 sin 4 . sin 1) + ⋯+ 89  

(2 sin178 . sin1)                                        

= (cos 1 − cos3) + 2(cos 3 − cos 5) + ⋯+

89(cos177 − cos 179)  

= cos 1 + cos3 + cos 5 +⋯+ cos175 

cos 177 − 89 cos 179 

= cos 1 + (cos3 + cos 177) +⋯

+ (cos 89 + cos 91)

− 89 cos179 

= cos 1 + 89 cos 1 = 90 cos 1, 

So (1) is true. 

Note: An alternate solution involves complex 

numbers. One expresses sin n as  

(𝑒
𝜋𝑖𝑛
180−𝑒

−𝜋𝑖𝑛
180 )

(2𝑖)
 𝑎𝑛𝑑 𝑢𝑠𝑒𝑠 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡 𝑡ℎ𝑎𝑡  

𝑥 + 2𝑥2 +⋯+ 𝑛𝑥𝑛 = (𝑥 +⋯+ 𝑥𝑛) +

(𝑥2 +⋯+ 𝑥𝑛) +⋯+ 𝑥𝑛  

=
1

𝑥−1
[(𝑥𝑛+1 − 𝑥) + (𝑥𝑛+1 − 𝑥2) + ⋯+

(𝑥𝑛−1 − 𝑥𝑛)]  

=
𝑛𝑥𝑛+1

𝑥−1
−
𝑥𝑛+1−𝑥

(𝑥−1)2
.  

101. For any nonempty set S of real 

numbers, let 𝜎(S) denote the sum of the 
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elements of S. Given a set A of n positive 

integers, consider the collection of all 

distinct sums 𝜎(S) as S ranges over the 

nonempty subsets of A. Prove that this 

collection of sums can be partitioned into n 

classes so that in each classes, the ratio of 

the largest sum of the smallest sum does 

not exceed 2. 

Sol.: Let A = {𝑎1, 𝑎2, … , 𝑎𝑛} where 𝑎1 < 𝑎2 <

⋯ < 𝑎𝑛. For i = 1, 2, …, n let 𝑠𝑖 = 𝑎1 + 𝑎2 +

⋯+ 𝑎𝑖 𝑎𝑛𝑑 𝑡𝑎𝑘𝑒 𝑠0 = 0. All the sums is 

question are less than or equal to 𝑠𝑛, and if 𝜎 is 

one of them, we have 

𝑠𝑖−1 < 𝜎 < 𝑠𝑖            (1) 

For an appropriate i. Divide the sums into n 

classes by letting 𝐶𝑖 denote the class of sums 

satisfying (1). We claim that these classes have 

the desired property. To establish this, it 

suffices to show that (1) implies. 

1

2
𝑠𝑖 <  𝜎 < 𝑠𝑖          (2) 

Suppose (1) holds. The inequality 𝑎1 + 𝑎2 +

⋯+ 𝑎𝑖−1 = 𝑠𝑖−1 <  𝜎 shows that the sum 𝜎 

contains at least one addend 𝑎𝑘  𝑤𝑖𝑡ℎ 𝑘 ≥ 𝑖. 

Then since then 𝑎𝑘 ≥ 𝑎𝑖, we have  

𝑠𝑖 − 𝜎 < 𝑠𝑖 − 𝑠𝑖−1 = 𝑎𝑖 ≤ 𝑎𝑘 ≤  𝜎,  which 

together with 𝜎≤ 𝑠𝑖 implies (2). 

Note: The result does not hold if 2 is replaced 

by any smaller constant c. To see this, choose n 

such that 𝑐 < 2 − 2−(𝑛−1) and consider the set 

{1,… , 2𝑛−1}. If this set is divided into n subsets, 

two of 1,……, 2𝑛−1, 1 + …….+ 2𝑛−1 must lie in 

the subset, and their ratio is at least (1+…..+ 

2𝑛−1)/(2𝑛−1) = 2 − 2(𝑛−1) > c.  

102. Let ABC be a triangle. Prove that there 

is a line l (in the plane of triangle ABC) such 

that the intersection of the interior of 

triangle ABC and the interior of its 

reflection A’B’C’ in l has area more than 
𝟐

𝟑
 

the area of triangle ABC. 

Solution :  

In all of the solutions, a, b, c denote the lengths 

of the sides BC, CA, AB, respectively, and we 

assume without loss of generality that a ≤ b ≤ 

c. 

Choose l to be the angle bisector of ∠A. Let P be 

the intersection of l with BC. Since AC ≤ AB, the 

intersection of triangles ABC and A’B’C’ is the 

disjoint union of two congruent triangles. APC 

and APC’. Considering BC as a base, triangles 

APC and ABC have equal altitudes, so their 

areas are in the same are in the same ratio as 

their bases: 

𝐴𝑟𝑒𝑎 (𝐴𝑃𝐶)

𝐴𝑟𝑒𝑎 (𝐴𝐵𝐶)
=
𝑃𝐶

𝐵𝐶
. 

Since AP is the angle bisector of ∠A, we have 
𝐵𝑃

𝑃𝐶
=
𝑐

𝑏
, so  

𝑃𝐶

𝐵𝐶
=

𝑃𝐶

𝐵𝑃 + 𝑃𝐶
=

1
𝑐
𝑏
+ 1

 

Thus it suffices to prove 

2
𝑐
𝑏
+ 1

>
2

3
.           (1) 

𝐵𝑢𝑡 2𝑏 ≥ 𝑎 + 𝑏 > 𝑐 by the triangle inequality, 

so  
𝑐

𝑏
< 2 and thus (1) holds. 

103. An n –term sequence {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} in 

which each term is either 0 or 1 is called a 

binary sequence of length n. Let an be the 

number of binary sequences of length n 

containing no three consecutive terms 

equal to 0, 1, 0 in that order. Let 𝒃𝒏 be the 

number of binary sequences of length n 
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that contain no four consecutive terms 

equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. 

Prove that 𝒃𝒏+𝟏 = 𝟐𝒂𝒏 for all positive 

integers n. 

Sol.: We refer to the binary sequences counted 

by (𝑎𝑛) and (𝑏𝑛) as “type A” and “type B”, 

respectively. For each binary sequence 

(𝑥1, 𝑥2, … , 𝑥𝑛) there is a corresponding binary 

sequence (𝑦0, 𝑦1, … , 𝑦𝑛) obtained by setting  

𝑦0 = 0 𝑎𝑛𝑑 𝑦1 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑖 mod 2, i = 

1, 2, …, n. (2) 

(Addition mod 2 is defined as follows: 0 +0 = 1 

+1 = 0 and 0 + 1 = 1 +0 = 1.) Then 

𝑥𝑖 = 𝑦𝑖 + 𝑦𝑖−1 𝑚𝑜𝑑 2, 𝑖 = 1, 2, … , 𝑛,  

And it is easily seen that (1) provides a one-to –

one correspondence between the set of all 

binary sequences of length n and the set of 

binary sequences of length n +1 in which the 

first term is 0. Moreover, the binary sequence 

(𝑥1, 𝑥2, … , 𝑥𝑛) has three consecutive terms 

equal 0, 1, 0 in that order if and only if the 

corresponding sequence (𝑦0, 𝑦1, … , 𝑦𝑛) has four 

consecutive terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 

in that order, so the first is of type A if and only 

if the second is of type B. The set of Type B 

sequences of length n +1 in which the first term 

is 0 is exactly half the total number of such 

sequences, as can be seen by means of the 

mapping in which 0’s and 1’s are interchanged. 

 

104. Triangle ABC has the following 

property: there is an interior point P such 

that ∠PAB = 10°, ∠𝑷𝑩𝑨 = 𝟐𝟎°, ∠𝑷𝑪𝑨 =

𝟑𝟎°, 𝒂𝒏𝒅 ∠𝑷𝑪𝑨 = 𝟒𝟎° . Prove that 

triangle ABC is isosceles. 

First Solution :  

All angles will be in degrees. Let x = ∠PCB. Then 

∠PBC = 80 –x. By the Law of Sines,  

1 =
𝑃𝐴 𝑃𝐵 𝑃𝐶

𝑃𝐵 𝑃𝐶 𝑃𝐴
=
sin∠𝑃𝐵𝐴 sin∠𝑃𝐶𝐵 sin∠𝑃𝐴𝐶

sin∠𝑃𝐴𝐵 sin∠𝑃𝐵𝐶 sin∠𝑃𝐶𝐴
  

=
sin20sin𝑥 sin40

sin10sin(80−𝑥) sin30
=
4sin𝑥 sin40𝑐𝑜𝑠 10

sin(80−𝑥)
.   

The identity 2 sin𝑎 . cos 𝑏 = sin(𝑎 − 𝑏) +

sin(𝑎 + 𝑏)now yields 

1 =
2 sin𝑥(sin30+sin50)

sin (80−𝑥)
=
sin𝑥(1+2cos40)

sin(80−𝑥)
,  

So, 

2 sin𝑥 cos 40 = sin(80 − 𝑥) − sin 𝑥 =

2 sin(40 − 𝑥) cos40.  

This gives x = 40 –x and thus x = 20. It 

follows that ∠ACB = 50 = ∠BAC, so triangle 

ABC is isosceles. 

105. Solve the system of equations: 

√𝟑𝒙(𝟏 +
𝟏

𝒙+𝒚
) =  𝟐  

√𝟕𝒚 (𝟏 −
𝟏

𝒙+𝒚
) =  𝟒√𝟐  

Sol.: Let u =√𝑥, 𝑦 =  √𝑦, so the system 

becomes  

𝑢 +
𝑢

𝑢2 + 𝑣2
=
2

√3
 

𝑣 −
𝑣

𝑢2 + 𝑣2
=
4√2

√7
. 

Now let z = u +vi; the system then reduces to 

the single equation 

𝑧 +
1

𝑧
= 2(

1

√3
+
2√2

√7
𝑖). 

Let t denote the quantity inside the 

parentheses; then 

 𝑧 = 𝑡 ± √𝑡2 − 1 
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=
1

√3
+
2√2

√7
𝑖 ± (

2

√21
+ √21)  

From which we deduce 

𝑢 =  (
1

√3
±

2

√21
)
2

, 𝑣 =  (
2√2

√7
± √2)

2

. 

106. Let ABCD be a tetrahedron with AB = 

AC = AD and circumcenter O. Let G be the 

centroid of triangle ACD, let E be the 

midpoint of BG, and let F be the midpoint 

of AE. Prove that OF is perpendicular to BG 

if and only if OD is perpendicular to AC. 

Sol.: We identify points with their vectors 

originating from the circumcenter, so that A. B = 

A. C = A.D and  

𝐴2 = 𝐵2 = 𝐶2 = 𝐷2. 

𝑁𝑜𝑤 (𝑂 − 𝐹). (𝐵 − 𝐺)

=
1

2
(𝐴 + 𝐸). (𝐵 − 𝐺) 

=
1

4
[(2𝐴 + 𝐵 + 𝐺). (𝐵 − 𝐺)] 

=
1

36
[18𝐴. 𝐵 − 6𝐴. (𝐴 + 𝐶 + 𝐷) + 9𝐵2

− (𝐴 + 𝐶 + 𝐷)2] 

=
1

36
[2𝐴. 𝐷 − 2𝐶. 𝐷] 

Therefore OF ⊥ BF if and only if OD ⊥ AC. 

 

107. Determine, as a function of n, the 

number of permutations of the set {1, 2, …, 

n} such that no three of 1, 2, 3, 4 appear 

consecutively. 

Sol.: There are n! permutations in all. Of those, 

we exclude (n -2)! Permutations for each 

arrangement of 1, 2, 3, 4 into an ordered triple 

and one remaining element, or 24(n -2)! in all. 

However, we have twice excluded each of the 

24(n-3)! Permutations in which all four of 1, 2, 

3, 4 occur in a block. Thus the number of 

permutations of the desired from is n! -24 (n -

2)! + 24(n -3)! 

108. Determine all function f: ℕ ⟶ℕ 

satisfying (for all n ∈ℕ) 

𝒇(𝒏) + 𝒇(𝒏 + 𝟏)

= 𝒇(𝒏 + 𝟐)𝒇(𝒏 + 𝟑)

− 𝟏𝟗𝟗𝟔. 

Sol.: From the given equation, we deduce 

𝑓(𝑛) − 𝑓(𝑛 + 2)

= 𝑓(𝑛 + 3)[𝑓(𝑛 + 2)

− 𝑓(𝑛 + 4)] 

If f(1) > f(3), then by induction, f(2m -1) > f(2m 

+1) for all m > 0, giving an infinite decreasing 

sequence f(1), f(3), …. Of positive integers, a 

contradiction. Hence f(1) ≤ f(3), and similarly 

f(n) ≤ f(n +2) for all n. 

Now note that 

0 = 1996 + 𝑓(𝑛) + 𝑓(𝑛 + 1) − 𝑓(𝑛

+ 2)𝑓(𝑛 + 3)

≤ 1996 + 𝑓(𝑛 + 2)

+ 𝑓(𝑛 + 3)

− 𝑓(𝑛 + 2)𝑓(𝑛 + 3) 

= 1997 − [𝑓(𝑛 + 2) − 1][𝑓(𝑛 + 3) − 1]. 

In particular, either f(n +2) = 1 or f(n +3) ≤ 

1997, and vice versa. The numbers f(2m+1) –

f(2m-1) are either all zero or all positive, and 

similarly for the numbers f(2m+ 2) –f(2m). If 

they are both positive, eventually f(n +2) and 

f(n+3) both exceed 1997, a contradiction. 

We now split into three cases. If f(2m) and f(2m 

+1) are both constant, we have [f(2m) -

1][f(2m+1)-1] = 1997 and so either f(2m) = 1 

and f(2m +1) = 1997 or vice versa. If f(2m +1) is 

constant but f(2m) is not, then 𝑓(2𝑚 + 1) = 1 
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for all m and 𝑓(2𝑚 + 2) = 𝑓(2𝑚) +

1997, 𝑠𝑜 𝑓(2𝑚) = 1997(𝑚 − 1) + 𝑓(2). 

Similarly, if f(2m) is not constant, then f(2m)= 1 

and f(2m +1) = 1997m + f(1). 

109. Consider triangles ABC where BC = 1 

and ∠BAC has a fixed measure 𝜶 >
𝝅

𝟑
. 

Determine which such triangle minimizes 

the distance between the incenter and 

centroid of ABC, and compute this distance 

in terms of 𝛼. 

Sol.: If we fix B and C and force A to lie above 

the line BC, then A is constrained to an arc. The 

centroid of ABC is constrained to the image of 

that arc under a 
1

3
 homothety at the midpoint of 

BC. On the other hand, the incenter subtends 

an angle of 
(𝜋/𝛼)

2
 at BC, so it is also constrained 

to lie on an arc, but its arc passes through B and 

C. Since the top of the incenter arc lies above 

the top of the centroid arc, the arcs cannot 

intersect (or else their circles would intersect 

four times). Moreover, if we dilate the centroid 

arc about the midpoint of BC so that its image is 

tangent to the incenter arc at its highest point, 

the image lies between the incenter arc and BC. 

In other words, the distance from the incenter 

to the centroid is always at least the 

corresponding distance for ABC isosceles. Hence 

we simply compute the distance for ABC 

isosceles. Hence we simply compute the 

distance in that case. The incenter makes an 

isosceles triangle of vertex angle 
(𝜋/𝛼)

2
,  so its 

altitude is 

1

2cot(𝜋−𝛼)

4
. 

Meanwhile, the distance of the centroid to BC is 
1

3
 that of A to BC, or 

1

6 cot(𝛼/2)
. The desired 

distance is thus 

 
1

2
cot

𝜋+𝛼

4
−
1

6
cot

𝛼

2
. 

110. Let a, b, c, d be four nonnegative real 

numbers satisfying the condition 

𝟐(𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅 + 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅)

+ 𝒂𝒃𝒄 + 𝒂𝒃𝒅 + 𝒂𝒄𝒅

+ 𝒃𝒄𝒅 = 𝟏𝟔 

Prove that 

𝒂 + 𝒃 + 𝒄 + 𝒅 ≥
𝟐

𝟑
(𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅

+ 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅) 

And determine when equality occurs. 

Sol.: For i = 1, 2, 3, define 𝑠𝑖 as the average of 

the products of the i-element subsets of {a, b, c, 

d}. Then we must show 

3𝑠2 + 𝑠3 = 4 ⇒ 𝑠1 ≥ 𝑠2. 

It suffices to prove the (unconstrained) 

homogeneous inequality 

3𝑠2
2𝑠1

2 + 𝑠3𝑠1
3 ≥ 4𝑠2

3, 

As then 3𝑠2 + 𝑠3 = 4 will imply 

(𝑠1 − 𝑠2)
3 + 3(𝑠1

3 − 𝑠2
3) ≥ 0. 

We now recall two basic inequalities about 

symmetric means of nonnegative real numbers. 

The first is Schur’s inequality: 

 3𝑠1
3 + 𝑠3 ≥ 4𝑠1𝑠2. 

While the second, 

𝑠1
2 ≥ 𝑠2 

Is a case of Maclaurin’s inequality 𝑠𝑖
𝑖+1 ≥

𝑠𝑖+1
𝑖.These combine to prove the claim: 

3𝑠2
2𝑠1

2 + 𝑠3𝑠1
3 ≥ 3𝑠2

2𝑠1
2 +

𝑠2
2𝑠3
𝑠1

≥ 4𝑠2
3. 
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Finally, for those who have only seen Schur’s 

inequality in three variables, note that in 

general any inequality involving 𝑠1, … , 𝑠𝑘 which 

holds for n ≥ k variables also holds for n +1 

variables, by replacing the variables 𝑥1, … , 𝑥𝑛+1 

by the roots of the derivative of the polynomial 

(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛−1). 

111. Let ABCD be a quadrilateral with AB = 

BC = CD = DA. Let MN and PQ be two 

segments perpendicular to the diagonal BD 

and such that the distance between them 

is d >
𝑩𝑫

𝟐
, with M ∈ AD, N ∈ DC, P ∈AB, and 

Q ∈ BC. Show that the perimeter of the 

hexagon AMNCQP does not depend on the 

positions of MN and PQ so long as the 

distance between them remains constant. 

Solution: The lengths of AM, MN, NC are all 

linear in the distance between the segments 

MN and AC; if this distance is h, extrapolating 

from the extremes MN = AC and M = N = D 

gives that 

𝐴𝑀 +𝑀𝑁 +𝑁𝐶 = 𝐴𝐶 +
2𝐴𝐵 − 𝐴𝐶

𝐵𝐷/2
 

In particular, if the segments MN and PQ 

maintain constant total distance from AC, as 

they do if their distance remains constant, the 

total perimeter of the hexagon is constant. 

112. Let m and n be positive integers such 

that n ≤ m. Prove that  

𝟐𝒏𝒏! ≤
(𝒎 + 𝒏)!

(𝒎 − 𝒏)!
≤  (𝒎𝟐 +𝒎)𝒏. 

Sol.: The quantity in the middle is (𝑚 + 𝑛)(𝑚 +

𝑛 − 1)… (𝑚 − 𝑛 + 1). If we pair off terms of 

the form (𝑚 + 𝑥)𝑎𝑛𝑑 (𝑚 + 1 − 𝑥), we get 

products which do not exceed 𝑚(𝑚 + 1),  since 

the function 𝑓(𝑥) = (𝑚 + 𝑥)(𝑚 + 1 − 𝑥) is a 

concave parabola with maximum at 𝑥 =
1

2
. From 

this the right inequality follows. For the left, we 

need only show (𝑚 + 𝑥)(𝑚 + 1 − 𝑥) ≥ 2𝑥 for 

x ≤n; this rearranges to (𝑚 − 𝑥)(𝑚 + 1 + 𝑥) ≥

0, which holds because 𝑚 ≥ 𝑛 ≥ 𝑥.  

113. Let 𝑷𝟏, 𝑷𝟐, 𝑷𝟑, 𝑷𝟒 be four points on a 

circle, and let 𝑰𝟏 be the incenter of the 

triangle 𝑷𝟐𝑷𝟑𝑷𝟒, 𝑰𝟐 be the incenter of the 

triangle 𝑷𝟏𝑷𝟑𝑷𝟒, 𝑰𝟑 be the incenter of the 

triangle 𝑷𝟏𝑷𝟐𝑷𝟒 𝒂𝒏𝒅 𝑰𝟒 be the incenter of 

the triangle P1P2P3. Prove that I1, I2, I3 and 

I4 are the vertices of a rectangle. 

Sol.: Without loss of generally, assume 

𝑃1, 𝑃2, 𝑃3, 𝑃4 occur on the circle in the order. Let 

𝑀12, 𝑀23,𝑀34,𝑀41 be the midpoints of arcs 

𝑃1𝑃2, 𝑃2𝑃3, 𝑃3𝑃4, 𝑃4𝑃1, respectively. 

Then the line 𝑃3𝑀1 is the angle bisector of 

∠𝑃2𝑃3𝑃1 and so passes through 𝐼4. Moreover, 

the triangle 𝑀12, 𝑃2𝐼4 is isosceles because 

∠𝐼4𝑀12𝑃2 =  ∠𝑃1𝑃2𝑃3 

= 𝜋 − 2∠𝑃1𝑃2𝐼4 − 2∠𝑀12𝑃2𝑃1 

= 𝜋 − 2∠𝑀12𝑃2𝐼4 

Hence the circle centered at M passing through 

𝑃1 and 𝑃2also passes through 𝐼4, 𝑎𝑛𝑑 likewise 

through 𝐼3. 

From this we determine that the angle bisector 

of ∠𝑃3𝑀12𝑃4 is the perpendicular bisector of 

𝐼3𝐼4. On the other hand, this angle bisector 

passes through 𝑀34, so it is simply the line 

𝑀12𝑀34; by symmetry, it is also the 

perpendicular bisector of 𝐼1𝐼2. We conclude 

that 𝐼1𝐼2𝐼3𝐼4 is a parallelogram. 

To show that 𝐼1𝐼2𝐼3𝐼4 is actually a rectangle, it 

now suffices to show that 𝑀12𝑀34 ⊥ 𝑀23𝑀41. 

To see this, simply note that the angle between 

these lines is half the sum of measure of the 

arcs 𝑀12𝑀23 𝑎𝑛𝑑 𝑀34𝑀41, but these arcs 

clearly comprise half of the circle. 
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114. The national Marriage Council wishes 

to invite n couples to from 17 discussion 

groups under the following conditions: 

(a) All members of the group must be 

of the same sex, i.e. they are either 

all male or all female. 

(b) The difference in the size of any 

two groups is either 0 or 1. 

(c) All groups have at least one 

number. 

(d) Each person must belong to one 

and only one group. 

Find all values of n, n ≤ 1996, for which this is 

possible. Justify your answer. 

Sol.: Clearly n ≤ 9 since each of 17 groups must 

contain at least one member. Suppose there are 

k groups of men and 17 –k groups of women; 

without loss of generality, we assume k ≤ 8. If 

m is the minimum number of members in a 

group, then the number of men of women is at 

most 𝑘(𝑚 + 1), while the number of women is 

at least (𝑘 + 1)𝑚. As there are the same 

number as men as women, we have 𝑘(𝑚 +

1) ≥ (𝑘 + 1)𝑚, 𝑠𝑜 𝑚 ≤ 𝑘 ≤ 8, and the 

maximum number of couples is 𝑘(𝑘 + 1) ≤ 72. 

In fact, any number of couples between 9 and 

72 can be distributed: divide the men as evenly 

as possible into 8 groups, and divide the women 

as evenly as possible into 9 groups. Thus 9 ≤ n 

≤ 72 is the set of acceptable numbers of 

couples. 

115. Let a, b and c be the lengths of the 

sides of a triangle. Prove that 

√𝒂 + 𝒃 − 𝒄 + √𝒃 + 𝒄 − 𝒂

+ √𝒄 + 𝒂 − 𝒃

≤ √𝒂 + √𝒃 + √𝒄 

Sol.: By the triangle inequality, 𝑏 + 𝑐 −

𝑎 𝑎𝑛𝑑 𝑐 + 𝑎 − 𝑏 𝑎𝑏𝑐 positive. For any positive 

x, y, we have 

2(𝑥 + 𝑦) ≥ 𝑥 + 𝑦 + 2√𝑥𝑦 =  (√𝑥 + √𝑦)
2

 

By the AM-GM inequality, with equality for x = 

y. Substituting 𝑥 = 𝑎 + 𝑏 − 𝑐, 𝑦 = 𝑏 + 𝑐 − 𝑎 we 

get 

√𝑎 + 𝑏 − 𝑐 + √𝑏 + 𝑐 − 𝑎 ≤ 2√𝑎,  

Which added to the two analogous inequalities 

yields the desired result. Inequality holds for 

𝑎 + 𝑏 − 𝑐 = 𝑏 + 𝑐 − 𝑎 = 𝑐 + 𝑎 − 𝑏, 𝑖. 𝑒. 𝑎 =

𝑏 = 𝑐. 

116. Let k ≥1 be an integer. Show that 

there are exactly 𝟑𝒌−𝟏 positive integers n 

with the following properties: 

(a) The decimal representation of n 

consists of exactly k digits. 

(b) All digits of k are odd. 

(c) The number n is divisible by 5. 

(d) The number m = 
𝒏

𝟓
 has k odd 

(decimal) digits. 

Sol.: The multiplication in each place must 

produce an even number of carries, since these 

will be added to 5 in the next place and an odd 

digit must result. Hence all of the digits of m 

must be 1, 5 or 9 and the first digit must be1, 

since m and n have the same number of 

decimal digits. Hence there are 3𝑘−1 choices for 

m and hence for n. 

117. A convex hexagon ABCDEF satisfies the 

following conditions: 

(a) Opposite sides are parallel (i.e. AB 

∥DE, BC ∥EF, CD ∥FA). 

(b) The distances between opposite 

sides are equal (i.e. d(AB, DE)= 

d(BC, EF)= d(CD, FA), where d(g, h) 

denotes the distance between 

lines g and h). 

(c) The angles ∠FAB and ∠CDE are 

right. 
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Show that diagonals BE and CF 

intersects at an angle of 𝟒𝟓°. 

Sol.: The conditions imply that A and D are 

opposite vertices of a square APDQ such that B, 

C, E, F lie on AP, PD, DQ, QA, respectively and 

that all six sides of the hexagon are tangent to 

the inscribed circle of the square. The diagonals 

BE and CF meet at the center O of the square. 

Let T, U, V be the feet of perpendiculars from O 

to AB, BC, CD; then ∠TOB = ∠BOU by reflection 

across OB, and similarly ∠UOC = ∠COV. 

Therefore 
𝜋

2
= 2∠𝐵𝑂𝐶, proving the claim. 

118. The polynomials 𝑷𝒏(𝒙) are defined by 

𝑷𝟎(𝒙) = 𝟎, 𝑷𝟏(𝒙) = 𝒙 and 𝑷𝒏(𝒙) =

𝒙𝑷𝒏−𝟏(𝒙) + (𝟏 − 𝒙)𝑷𝒏−𝟐(𝒙)  𝒏 ≥ 𝟐. 

For every natural number n ≥ 1, find 

all real numbers x satisfying the 

equation 𝑷𝒏(𝒙) =  𝟎. 

Sol.: One shows by induction that 

𝑃𝑛(𝑥) =
𝑥

𝑥 − 2
[(𝑥 − 1)𝑛 − 1] 

Hence 𝑃𝑛(𝑥) = 0 if and only if x = 0 or 𝑥 = 1 +

𝑒2𝜋𝑖𝑘/𝑛 for some k ∈ {1, …, n -1}. 

 

119. The real numbers x, y, z, t satisfy the 

equalities 𝒙 + 𝒚 + 𝒛 + 𝒕 = 𝟎 𝒂𝒏𝒅 𝒙𝟐 +

𝒚𝟐 + 𝒛𝟐 + 𝒕𝟐 = 𝟏. Prove that  

−𝟏 ≤ 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒕 + 𝒕𝒙 ≤ 𝟎.  

Sol.: The inner expression is (𝑥 + 𝑧)(𝑦 + 𝑡) =

 −(𝑥 + 𝑧)2, so the second inequality is obvious. 

As for the 

first, note that 

1 = (𝑥2 + 𝑧2) + (𝑦2 + 𝑡2) ≥
1

2
[(𝑥 + 𝑧)2 +

(𝑦 + 𝑡)2] ≥ [(𝑥 + 𝑧)(𝑦 + 𝑡)]  

By two applications of the power mean 

inequality. 

120. A convex polyhedron P and a sphere S 

are situated in space such that  S intercepts 

on each edge AB of P a segment XY with 

AX = XY = YB = 
𝟏

𝟑
𝑨𝑩. Prove that there 

exists a sphere T tangent to all edges of P. 

Sol.: Let AB and BC be two edges of the 

polyhedron, so that the sphere meets AB in a 

segment XY with AX = XY = YB and meets BC in a 

segment ZW with BZ = ZW = WC. In the plane 

ABC the points X, Y, Z, W lie on the cross-section 

of the sphere, which is a circle. Therefore BY. BX 

= BZ. BW by power –of-a point; this clearly 

implies AB = BC, and so the center of S is 

equidistant from AB and BC. We conclude that 

any two edges of P are equidistant from S and 

so there is a sphere concentric with S tangent to 

all edges. 

 

121. Natural numbers k, n are given such 

that 1 < k < n. Solve the system of n 

equations. 

𝒙𝒊
𝟑(𝒙𝒊

𝟐 +⋯+ 𝒙𝒊+𝒌−𝟏
𝟐) =  𝒙𝒊−𝟏

𝟐 𝟏 ≤

𝒊 ≤ 𝒏  

in n real unknowns 𝒙𝟏, … , 𝒙𝒏. (Note: 

𝒙𝟎 = 𝒙𝒏, 𝒙𝟏 = 𝒙𝒏+𝟏, 𝒆𝒕𝒄.) 

Sol.: The only solution is 𝑥1 = ⋯𝑥𝑛 = 𝑘
−1/3. 

Let L and M be the smallest and largest of the 

𝑥𝑖, respectively. If M = 𝑥𝑖, then 

𝑘𝑀3𝐿2 ≤ 𝑥𝑖
3(𝑥𝑖

2 +⋯+ 𝑥𝑖+𝑘−1
2) =  𝑥𝑖−1

2

≤ 𝑀2 

And so M ≤
1

(𝑘𝐿2)
. Similarly, if L = 𝑥𝑗, then  

𝑘𝐿3𝑀3 ≥ 𝑥1
3(𝑥𝑖

2 +⋯+ 𝑥𝑖−𝑘+1
2) = 𝑥𝑖−1

2

≥ 𝐿2 
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 and so 𝐿 ≥
1

(𝑘𝑀2)
. Putting this together, we get  

𝐿 ≥
1

𝑘𝑀2
≥ 𝑘𝐿4  

And so 𝐿 ≥ 𝑘−1/3; 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,𝑀 ≥  𝑘−1/3. 

Obviously L ≤ M, so we have L = M = 

𝑘−1/3 𝑎𝑛𝑑 𝑥1 = ⋯ = 𝑥𝑛 =  𝑘
−1/3. 

122. Shows that there do not exist 

nonnegative integers k and m such that k! 

+48 = 48 (𝒌 + 𝟏)𝒎. 

Sol.: Suppose such k, m exist. We must have 

48│k!, so k ≥ 6; one checks that k = 6 does not 

yield a solution, so k ≥ 7. In that case k! is 

divisible by 32 and by 9, so that 
(𝑘!+48)

48
 is 

relatively prime to 6, as then is k +1. 

If k +1 is not prime, it has a prime divisor 

greater than 3, but this prime divides k! and not 

k! +48. Hence k +1 is prime, and by Wilson’s 

theorem k! +1 is a multiple of k +1. Since k! +48 

is as well, we find k +1 = 47, and we need only 

check that 
46!

48+1
 is not a power of 47. We check 

that 
46!

48+1
= 29(𝑚𝑜𝑑 53) (by cancelling as many 

terms as possible in 46! Before multiplying), but 

that 47 has order 13 modulo 53 and that none 

of its powers is congruent to 29 modulo 53. 

123. We are given a collection of 

rectangular bricks, no one of which is cube. 

The edge lengths are integers. 

For every triple of positive integers (a, 

b, c), not all equal, there is sufficient 

supply of 𝒂 × 𝒃 × 𝒄 bricks. Suppose 

that the bricks completely tile a 𝟏𝟎 ×

𝟏𝟎 × 𝟏𝟎 box. 

(a) Assume that at least 100 bricks 

have been used. Prove that there 

exist at least two parallel bricks, 

that is, if AB is an edge of one of 

the bricks, A’B’ is an edge of the 

other and AB ∥A’B’ then AB = A’B’. 

(b) Prove the same statement with 

100 replaced by a smaller number. 

The smaller the number, the better 

the solution. 

Sol.: We prove the claim with 97 bricks. For 

each integer up to 16, we tabulate the number 

of nonparallel bricks that volume (disallowing 

cubical bricks and bricks with a dimension 

greater than 10) and their total volume: 

Volume 2  3  4  5  6  7  8  9  10  12  14  15  16 

Number 3  3  6  3  9  3  9  6   9    15  6    6     12 

Total  6  9  24 15  54  21 72 54  90   180  74  
90   192 

 

Assuming no two bricks are parallel, the 90 

smallest bricks have total volume 891. The 7 

other bricks each have volume at least 18, 

giving a total volume of at least 1017, a 

contradiction. 

We have not determined the optimal constant 

(one can improve the above bound to 96 

easily), but we note that an arrangement with 

73 nonparallel bricks is possible. 

 

124. Let O and G be the circumcenter and 

centroid, respectively, of triangle ABC, If R 

is the circumradius and r the inradius of 

ABC, show that  

𝑶𝑮 ≤  √𝑹(𝑹 − 𝟐𝒓).  

Sol.: Using vectors with original at O, we note 

that 𝑂𝐺2 =
1

9
(𝐴 + 𝐵 + 𝐶)2 =

1

3
𝑅2 +

2

9
𝑅2(cos 2𝐴 + cos 2𝐵 + cos 2𝐶). 
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Hence 𝑅2 − 𝑂𝐺2 =
(𝑎2+𝑏2+𝑐2)

9
. On the other 

hand, by the standard area formula K = 𝑟𝑠 =
𝑎𝑏𝑐

4𝑅
, we have 2𝑟𝑅 =

𝑎𝑏𝑐

(𝑎+𝑏+𝑐)
. We now note that 

(𝑎2 + 𝑏2 + 𝑐2)(𝑎 + 𝑏 + 𝑐) ≥ 9𝑎𝑏𝑐 

By two applications of the AM-GM inequality, 

so 2𝑟𝑅 ≤ 𝑅2 − 𝑂𝐺2,  proving the claim. 

125. Let ABCDE be a convex pentagon, and 

let M, N, P, Q, R be the midpoints of sides 

AB, BC, CD, DE, EA, respectively. If the 

segments AP, BQ, CR, DM have a common 

point, show that this point also lies on EN. 

Sol.: Let T be the common point, which we take 

as the origin of a vector system. Then 𝐴 × 𝑃 =

0, or equivalently 𝐴 × (𝐶 + 𝐷) =  0, which we 

may write 𝐴 × 𝐶 = 𝐷 × 𝐴. 

Similarly, we have 𝐵 × 𝐷 = 𝐸 × 𝐵, 𝐶 × 𝐸 =

𝐴 × 𝐶,𝐷 × 𝐴 = 𝐵 × 𝐷. Putting these equalities 

together gives 𝐸 × 𝐵 = 𝐶 × 𝐸, 𝑜𝑟 𝐸 ×

(𝐵 + 𝐶) = 0, which means the line EN also 

passes through the origin T. 

 

126. Show that there exists a subset A of 

the set {1, 2, …, 1996} having the following 

properties: 

(a) 1, 𝟐𝟏𝟗𝟗𝟔 − 𝟏 ∈ 𝑨; 

(b) Every element of A, except 1, is the 

sum of two (not necessarily 

distinct) elements of A; 

(c) A contains at most 2012 elements. 

Sol.: We state the problem a bit differently: we 

want to write down at most 2012 numbers, 

starting with 1 and ending with 21996 − 1, such 

that every number written is the sum of two 

numbers previously written. If 2𝑛 − 1 has been 

written, then 2𝑛(2𝑛−1) can be obtained by n 

doublings, and 2𝑛 − 1 can be obtained in one 

more step. 

Hence we can obtain 22 − 1, 24 − 1,… , 2256 −

1 𝑖𝑛 (1 + 1) + (2 + 1) +⋯+ (128 + 1) =

263  steps. In 243 steps, we turn 2256 −

1 𝑖𝑛𝑡𝑜 2499 − 2243. Now notice that the 

numbers 2243 − 2115, 2115 − 251, 251 −

219, 219 − 23, 23 − 21, 21 − 1 have all be 

written down; in 6 steps, we now obtain 2499 −

1. We make this into 2998 − 1 in 500 steps, and 

make 21996 − 1 in 999 steps. Adding 1 for the 

initial 1, we count 

1 + 263 + 243 + 6 + 500 + 999 = 2012 

Numbers written down, as desired. 

127. Let ℤ+ denote the set of nonzero 

integers. Show that an integer p > 3 is 

prime if an only if for any a, b ∈ ℤ+, exactly 

one of the numbers 

𝑵𝟏 = 𝒂 + 𝒃 − 𝟔𝒂𝒃 +
𝒑 − 𝟏

𝟔
, 

𝑵𝟐 = 𝒂 + 𝒃 + 𝟔𝒂𝒃 +
𝒑 + 𝟏

𝟔
 

belongs to ℤ+. 

Sol.: If 𝑁1 = 0, then 𝑝 = (6𝑎 − 1)(6𝑏 − 1) is 

composite; similarly, 𝑁2 = 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑝 =

 −(6𝑎 + 1)(6𝑏 + 1) is composite. Conversely, 

suppose that p is composite. If p ≡ 0, 2, 3 or 4 

(mod 6), then 𝑁1 𝑎𝑛𝑑 𝑁2 are not integers. 

Otherwise, all divisors of p are congruent to ±1 

(mod 6). So there exist natural numbers c, d 

such that 

𝑝 = (6𝑐 + 1)(6𝑑 + 1)𝑜𝑟(6𝑐 − 1)(6𝑑

− 1)𝑜𝑟(6𝑐 + 1)(6𝑑 − 1). 

In the first case, 𝑁2 is not an integer and 𝑁1 = 0 

for 𝑎 =  −𝑐, 𝑏 =  −𝑑. 
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In the second case, 𝑁2 is not an integer and 

𝑁1 = 0 for 𝑎 = 𝑐, 𝑏 = 𝑑. 

In the third case, 𝑁1 is not an integer and 𝑁2= 0 

for 𝑎 = 𝑐, 𝑏 =  −𝑑. 

128. Let M be a nonempty set and *a binary 

operation on M. That is, to each pair (a, b) 

∈𝑴×𝑴 one assigns an element a * b. 

Suppose further that for any a, b ∈M, 

(a* b)*b = a and a*(a* b) = b. 

(a) Show that a *b = b *a for all a, b 

∈M. 

(b) For which finite sets M does such a 

binary operation exist? 

Sol.:  

(a) First note that [a* (a* b)] *(a* b) = a by 

the first rule. By the second rule, we 

may rewrite the left side as b* (a *b), so 

b* (a *b) = a and so b *a = b*[b* (a* b)]. 

b* a = b*[b*(a* b)]. By the second rule 

this equals a *b, so a* b = b* a. 

(b) Such sets exist for all finite sets M. 

Identify M with {1, …, n} and define 

a* b = c ⟺a + b+ c = 0 (mod n). 

It is immediate that the axioms are 

satisfied. 

 

129. Determine whether there exist a 

function f: ℤ⟶ℤ such that for each k = 0, 1, 

…, 1996 and for each m ∈ℤ the equation 

𝒇(𝒙) + 𝒃𝒙 = 𝒎 has at least one solution x 

∈ℤ. 

Sol.: Each integer y can written uniquely as 

1997m +k with m ∈ℤ and k ∈ {0, …, 1996}. 

Define the function f by 𝑓(𝑦) =  𝑚 − 𝑘𝑦; then 

𝑓(𝑥) + 𝑘𝑥 = 𝑚 has the solution 𝑥 = 1997𝑚 +

𝑘, so the condition satisfied. 

 

130. Two sets of intervals A, B on a line are 

given. The set A contains 𝟐𝒎− 𝟏 intervals, 

every two of which have a common 

interior point. Moreover, each interval in A 

contains at least disjoint intervals of B. 

Show that there exists an interval in B 

which belongs to at least m intervals from 

A. 

Sol.: Let 𝛼1 = [𝑎𝑖 , 𝑏𝑖](𝑖 = 1,… , 2𝑚 − 1) be the 

intervals, indexed so that 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤

𝑎2𝑚−1. Choose k ∈{𝑚,… , 2𝑚 − 1} to minimize 

𝑏𝑘. By assumption, the interval 𝛼𝑘 contains two 

disjoint intervals from B, say 𝛽1 =

[𝑐1, 𝑑1] 𝑎𝑛𝑑 𝛽2 = [𝑐2, 𝑑2]. Without loss of 

generality, assume 

𝑎𝑘 ≤ 𝑐1 < 𝑑1 < 𝑐2 < 𝑑2 ≤ 𝑏𝑘. 

If 𝑑1 ≤ 𝑏𝑖 for i = 1, 2, …, m, then 𝛽1 ⊂ 𝛼1 for i = 

1, 2, …, m, so 𝛽1 satisfies the desired property. 

Otherwise, 𝑑1 > 𝑏𝑥 for some s ∈ {1, 2, …, m}. By 

assumption, 𝑐2 > 𝑑1 > 𝑏8. Since no two of the 

𝛼 are disjoint, we have 𝑏8 ≥ 𝑎𝑖 for all i, so 𝑐2 >

𝑎𝑖. On the other hand, by the choice of 𝑘, 𝑏𝑘 <

𝑏1 for i = m, …, 2𝑚1. Therefore 𝑎𝑖 < 𝑐2 < 𝑑2 ≤

 𝑏𝑘 ≤ 𝑏𝑖 for each 𝑖 ∈ {𝑚,𝑚 + 1,… , 2𝑚 −

1}, 𝑎𝑛𝑑 𝑠𝑜 𝛽2 has the desired property. 

131. The points E and D lie in the interior of 

sides AC and BC respectively, of a triangle 

ABC. Let F be the intersection of the lines 

AD and BE. Show that the area of triangles 

ABC and ABF satisfies. 

𝑺𝑨𝑩𝑪
𝑺𝑨𝑩𝑭

=
│𝑨𝑪│

│𝑩𝑬│
+
│𝑩𝑪│

│𝑩𝑫│
− 𝟏 

Sol.: Let the line parallel to BC through F meet 

AB at K and AC at N, Let the line parallel to CA 

through F meet BC at ME and AB at P; let the 

line parallel to AB through F meet BC at L and 

CA at O. Let 𝑣𝐶  𝑎𝑛𝑑 𝑣𝐹 be the distances of C 

and F, respectively, to the line AB. Then 
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𝑆𝐴𝐵𝐶
𝑆𝐴𝐵𝐹

=
𝑣𝐶
𝑣𝐹
=
𝐵𝐶

𝐹𝐾
=
𝐵𝐿 + 𝐿𝑀 +𝑀𝐶

𝐹𝐾
. 

Under the homothety through B carrying F to E, 

the segment PM maps to AC. Thus 

𝐿𝑀

𝐹𝐾
=
𝐹𝑀

𝐹𝑃
=
𝐸𝐶

𝐴𝐶
=
𝐴𝐶

𝐴𝐸
− 1. 

And similarly 

𝐶𝑀

𝐹𝐾
=
𝑁𝐹

𝐹𝐾
=
𝐶𝐷

𝐵𝐷
=
𝐵𝐶

𝐵𝐷
− 1. 

The required assertion follows by putting this all 

together and nothing BL = FK. 

132. Let n be a natural number. A cube of 

side length n can be divided into 1996 

cubes whose side lengths are also natural 

numbers. Determine the smallest possible 

value of n. 

Sol.: Since 1996 >123, we must have  n ≥ 13, 

and we now show n = 13 suffices, Inside a cube 

of edge 13, we place one cube of edge 5, one 

cube length 4, and 2 of length 2, and fill the 

remainder with cubes of edge 1. The number of 

cubes used is 

133 − (53 − 1) − (43 − 1) − 2(23 − 1) =

2197 − 124 − 63 − 2(7) = 1996, as desired. 

133. Let M be the midpoint of the median 

AD of triangle ABC. The line BM intersects 

side AC at the point N. Show that AB is 

tangent to the circumcircle of NB if and 

only if the following equality holds: 

𝑩𝑴

𝑩𝑵
=
𝑩𝑪𝟐

𝑩𝑵𝟐
. 

Sol.: First note that (by the Law of Sines in 

triangles ABM and AMN) 

𝐵𝑀

𝐵𝑁
=
sin∠𝑀𝐴𝐵 sin∠𝑀𝑁𝐴

sin∠𝐴𝐵𝑀 sin∠𝑁𝐴𝑀
. 

Then note that (by the Law of Sines in triangle 

ABD and ADC) 

sin∠𝑀𝐴𝐵

sin∠𝑁𝐴𝑀
=
𝐵𝐷

𝐷𝐶

sin∠𝐴𝐵𝐷

sin∠𝐷𝐶𝐴
. 

By the law of Sines in triangle BNC, 

𝐵𝐶2

𝐵𝑁2
=
𝑠𝑖𝑛2∠𝐵𝑁𝐶

𝑠𝑖𝑛2∠𝐵𝐶𝑁
; 

Therefore 
𝐵𝑀

𝑀𝑁
=
𝐵𝐶2

𝐵𝑁2
 if and only if  

sin∠𝐴𝐵𝐷

sin∠𝐴𝐵𝑀
=
sin∠𝐵𝑁𝐶

sin∠𝐵𝐶𝑁
, 

Which if we put 

𝛼 =  ∠𝐴𝐵𝑀, 𝛽 = ∠𝐵𝐶𝑁, 𝜃 =  ∠𝑁𝐵𝐶 becomes  

sin(𝛼 + 𝜃) sin𝛽 = sin(𝛽 + 𝜃) sin𝛼. 

Rewriting each side as a difference of cosines 

and cancelling, this becomes 

cos(𝛼 + 𝜃 − 𝛽) = cos(𝛽 − 𝛼 + 𝜃). 

Both angles in this equation are between –𝜋 

and 𝜋, so the angles are either equal or 

negatives of each other. The latter implies 𝜃 = 0, 

which is untrue, so we deduce 𝛼 = 𝛽, and so 
𝐵𝑀

𝑀𝑁
= 

𝐵𝐶2

𝐵𝑁2
 if and only if ∠ABM = ∠BCN, that is, if 

AB is tangent to the circumcircle of BNC. 

134. Three counters A, B, C are placed at the 

corners of an equilateral triangle of side n. 

The triangle is divided into triangles of side 

length 1. Initially all lines of the figure are 

painted blue. The counters move along the 

lines, painting their paths red, according to 

the following rules: 

(i) First A moves, then B, then C, 

then A, and so on in 

succession. On each turn, each 

counter moves the full length 
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of a side of one of the short 

triangles. 

(ii) No counter may retrace a 

segment already painted red, 

through it can stop on a red 

vertex, even if another counter 

is already there. 

Show that for all integers n >0 

it is possible to paint all of the 

segments red in this fashion. 

Sol.: The cases n = 1, 2, are trivial; we use them 

as the base cases for an inductive proof. We 

describe the moves for A, understanding that 

the moves for B and C are the same moves 

rotated by 
2𝜋

3
 𝑎𝑛𝑑

4𝜋

3
, respectively. To fix 

directions, imagine the triangle is oriented with 

one side parallel to the horizontal and the third 

vertex above it, and suppose A starts at the 

bottom left. We first move A right for n –1 

steps. We then alternate moving it up to the left 

and down to the left for a total of 2n –5 steps. 

We then trace a path through the inner triangle 

of side n –2 using the induction hypothesis, 

ending at another corner. Finally, we follow the 

unused edges from that corner, ending three 

steps later. 

135. Fifty numbers are chosen from the set 

{1, …, 99}, no two which sum to 99 or 100. 

Prove that the chosen numbers must be 

50, 51, …, 99. 

Sol.: In the sequence 

99, 1, 98, 2, 97, 3,… 51, 49, 50, any two adjacent 

numbers sum to 99 or 100, so both cannot 

occur. Grouping the numbers into 49 pairs plus 

one extra, we see at most 50 numbers can 

occur, and 50 must be one of them. Since we 

must step at least two terms along the list to 

make the next choice, the numbers must 

indeed be 50, 51, …, 99. Clearly we maximize 

the number of chosen numbers by taking them 

two apart, and the list has odd length, so taking 

99, 98 …, 50 is the only draw a graph with {1, …, 

99} as vertices, where two numbers are 

adjacent if they sum to 99 or 100. 

136. Let M be the intersection of the 

diagonals of the trapezoid ABCD. A point P 

such that ∠APM = ∠DPM is chosen on the 

base BC. Prove that the distance from C to 

the line AP is equal to the distance from B 

to the line DP. 

Sol.: Since M lies on the internal angle bisector 

of angle ∠APD, it lies at the same distance from 

the lines AP and DP. The ratio of this distance to 

the distance from C to AP is 
𝐴𝑀

𝐴𝐶
, while the ratio 

of this distance to the distance from B to DP is 
𝐵𝑀

𝑀𝐷
. 𝐵𝑢𝑡

𝐴𝑀

𝑀𝐶
=
𝐵𝑀

𝑀𝐷
 by similar triangles, so the 

latter two distances are indeed the same. 

137. In a group of several people, some are 

acquainted with each other and some are 

not. Every evening, one person invites all 

of his acquaintances to a party and 

introduces them to each other. Suppose 

that after each person has arranged at 

least one party, some two people are still 

unacquainted. Prove that they will not be 

introduced at the next party. 

Sol.: We claim that two people unacquainted 

after each person has held at least one party lie 

in different connected components of the 

original (and final) graph of acquaintance. If two 

people are connected by a path of length n, 

they will be connected by a path of length n -1 

after one person along the path (including 

either of the two people at the ends) holds a 

party, by a path of length n -2 after two of them 

hold a party, and so on. After each person holds 
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a party, the two people on the ends will be 

acquainted. 

138. There are n parking spaces along a one 

–way road down which n drivers are 

travelling. Each driver goes to his favorite 

parking space and parks there if it is free; 

otherwise, he parks at the nearest free 

place down the road. If there is no free 

space after his favorite, he drives away. 

How many lists 𝒂𝟏, … , 𝒂𝒏of favorite 

parking spaces are there which permit all 

of the drivers to park? 

Sol.: There are (𝑛 + 1)𝑛−1 such lists. To each 

list of preferences (𝑎1, … , 𝑎𝑛) which allows all 

drivers to park, associate the list (𝑏2, … , 𝑏𝑛),  

where 𝑏𝑖 is the difference mod n+ 1 between 

the numbers of the space driver i wants and the 

space the previous driver took. Clearly any two 

lists give rise to different sequences of 𝑏𝑖. 

We now argue that any list of 𝑏𝑖 comes from a 

list of preferences. Imagine that the n parking 

spaces are arranged in a circle with an extra 

phantom space put in at the end. Put the first 

driver in any space, then for i = 2, …, n, put 

driver i in the first available space after the 

space 𝑏𝑖 away from the space taken by driver i-

1; this gives a list of preferences if and only if 

the one space not taken at the end is the 

phantom space. However, by shifting the 

position of the first driver, we can always 

ensure that the phantom space is the space not 

taken. Thus the sequences of 𝑏𝑖 are equal in 

number to the lists of preferences, so there are 

(𝑛 + 1)𝑛−1 of each. 

139. Find all positive integers n such that 

𝟑𝒏−𝟏 + 𝟓𝒏−𝟏 𝒅𝒊𝒗𝒊𝒅𝒆𝒔 𝟑𝒏 + 𝟓𝒏. 

Sol.: This only occurs for n = 1. Let 𝑠𝑛 = 3
𝑛 + 5𝑛 

and note that 

𝑠𝑛 = (3 + 5)𝑠𝑛−1 − 3.5. 𝑠𝑛−2 

So 𝑠𝑛−1 must also divide 3.5. 𝑠𝑛−2. If n >1, then 

𝑠𝑛−1 is coprime to 3 and 5, so 𝑠𝑛−1 must divide 

𝑠𝑛−2, which is impossible since 𝑠𝑛−1 > 𝑠𝑛−2. 

140. Let M be the midpoint of side BC of 

triangle ABC, and let 𝒓𝟏 𝒂𝒏𝒅 𝒓𝟐 be the 

radii of the incircles of triangles ABM and 

ACM. Prove that 𝒓𝟏 < 2𝒓𝟐. 

Sol.: Recall that the area of a triangle equals its 

in radius times half its perimeter. Since ABM 

and ACM have equal area, we have 

𝑟1
𝑟2
=
𝐴𝐶 + 𝐴𝑀 + 𝐶𝑀

𝐴𝐵 + 𝐴𝑀 + 𝐵𝑀
 

And it suffices to show AC + AM + CM <2AB + 

2AM +2BM; 

Since BM = CM, this simplifies to AC < 2AB + AM 

+CM.  

In fact, by the triangle inequality, AC < AM +CM, 

so we are done. 

141. Several positive integers are written on 

a blackboard. One can erase any two 

distinct integers and write their greatest 

common divisor and least common 

multiple instead. Prove that eventually the 

numbers will stop changing. 

Sol.: If a, b are erased and c < d are written 

instead, we have c ≤ min (a, b) and d ≥ max (a, 

b); moreover, ab = cd. From this we may 

conclude 𝑎 + 𝑏 ≤ 𝑐 + 𝑑 by writing 𝑎𝑏 + 𝑎2 =

𝑐𝑑 + 𝑎2 ≤ 𝑎𝑐 + 𝑎𝑑 (the latter since (𝑑 −

𝑎)(𝑐 − 𝑎) ≤ 0) and dividing both sides by a. 

Thus the sum of the numbers never decreases, 

and it is obviously bounded (e.g. by n times the 

product of the numbers, where n is the number 

of numbers on the board); hence it eventually 
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stops changing, at which time the numbers 

never change. 

142. No three diagonals of a convex 1996 –

gon meet in a point. Prove that the 

number of triangles lying in the interior of 

the 1996-gon and having sides on its 

diagonal is divisible by 11. 

Sol.: There is exactly one such triangle for each 

choice of six vertices of the 1996-gon: if A, B, C, 

D, E, F are the six vertices in order, the 

corresponding triangle is formed by the lines 

AD, BE, CF. Hence the number of triangle is 

(1996
6
) ; since 1991 is a multiple of 11, so is the 

number of triangles. 

143. Prove that for every polynomial 𝒙𝟐 +

𝒑𝒙 + 𝒒 with integer coefficients, there 

exists a polynomial 𝟐𝒙𝟐 + 𝒓𝒙 + 𝒔 with 

integer coefficients such that the sets of 

values of the two polynomials on the 

integers are disjoint. 

Sol.: If p is odd, then 𝑥2 + 𝑝𝑥 + 𝑞 has the same 

parity as q for all integers x, and it suffices to 

choose r even and s of the opposite parity as q. 

If p = 2m is even, then 𝑥2 + 𝑝𝑥 + 𝑞 =

 (𝑥 + 𝑚)2 + (𝑞 −𝑚)2 which is congruent to 

𝑞 −𝑚2 𝑜𝑟 𝑞 − 𝑚2 + 1 modulo 4. Now it 

suffices to choose r even and s congruent to 

𝑞 −𝑚2 + 2 modulo 4. 

144. Sergey found 11 different solutions to 

the equation 𝒇 (𝟏𝟗𝒙 −
𝟗𝟔

𝒙
) = 𝟎. Prove that 

if he had tried harder, he could have found 

at least one more solution. 

Sol.: The equations 19𝑥 −
96

𝑥
= 𝑡 can be 

rewritten 19𝑥2 − 𝑡𝑥 − 96 = 0; 𝑠𝑖𝑛𝑐𝑒 𝑡2 +

19.96 > 0, it always has two real roots. 

Therefore the number of zeroes of f (if finite) is 

an even integer, so Sergey can find at least one 

more zero. 

145. Find all quadruples of polynomials 

𝑷𝟏(𝒙), 𝑷𝟐(𝒙), 𝑷𝟑(𝒙), 𝑷𝟒(𝒙) with real 

coefficients such that for each quadruple 

of integers x, y, z, t such that 𝒙𝒚 − 𝒛𝒕 = 𝟏, 

one has 

𝑷𝟏(𝒙)𝑷𝟐(𝒚) − 𝑷𝟑(𝒛)𝑷𝟒(𝒕𝟎 = 𝟏. 

Sol.: If 𝑃1(1) = 0, then 𝑃3(𝑧)𝑃4(𝑡) =  −1 for 

each pair of integers z, t, and so 𝑃3 𝑎𝑛𝑑 𝑃4 are 

constant functions; moreover, 𝑃1(𝑥)𝑃2(𝑦) = 0, 

so one of 𝑃1 𝑎𝑛𝑑 𝑃2 is identically zero. Ignoring 

such cases, which are easily enumerated, we 

assume 𝑃𝑖(1) ≠ 0 for all i. 

We first note that 𝑃1(𝑥)𝑃2(1) =  𝑃1(1)𝑃2(𝑥) 

for all nonzero integers x, so that 𝑃1 𝑎𝑛𝑑 𝑃2 are 

equal up to a scalar factor; similarly, 𝑃3 𝑎𝑛𝑑 𝑃4 

are equal up to a scalar factor. Now note that 

𝑃1(𝑥)𝑃2(𝑎𝑦) =  𝑃1(𝑎𝑥)𝑃2(𝑦) for all nonzero a, 

x, y, so that the difference between the two 

sides is identically zero as a polynomial in a. In 

particular, that means no term in 𝑃1(𝑥)𝑃2(𝑦) 

has unequal exponent in x and y, and the same 

is true of 𝑃1(𝑥)𝑃1(𝑦) on the other hand, if 

𝑃1(𝑥) has term of more than one degree, then 

𝑃1(𝑥)𝑃1(𝑦) contains a term with different 

degrees in x and y. Hence 𝑃1(𝑥) = 𝑐𝑥
𝑘 for 

some integer k and some constant c, and 

similarly 𝑃2(𝑥) = 𝑑𝑥
𝑘 , 𝑃3(𝑥) = 𝑒𝑥

𝑚, 𝑃4(𝑥) =

𝑓𝑥𝑚. 

Thus we must determine when 𝑐𝑑𝑥𝑘𝑦𝑘 −

𝑒𝑓𝑧𝑚𝑡𝑚 = 1 whenever 𝑥𝑦 − 𝑧𝑡 = 1 in 

integers. Clearly k = m since otherwise one of 

the two terms on the left dominates the other, 

and cd =1 by setting x = y = 1 and z = t = 0, and 

similarly ef = 1. Now note that (𝑥𝑦)𝑘 − (𝑧𝑡)𝑘 =

1 can only happen in general for k = 1, since for 

k >1, there are no consecutive perfect k-th 

powers. We conclude 𝑃1(𝑥) = 𝑐𝑥, 𝑃2(𝑥) =
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𝑥

𝑐
, 𝑃3(𝑥) = 𝑒𝑥, 𝑃4(𝑥) =

𝑥

𝑒
 for some nonzero real 

numbers c, e. 

146. Two players play the following game 

on a 𝟏𝟎𝟎 × 𝟏𝟎𝟎 board. The first player 

marks a free square, then the second 

player puts a 𝟏 × 𝟐 domino down covering 

two free squares, one of which is marked. 

This continuous until one player is unable 

to move. The first player wins if the entire 

board is covered, otherwise the second 

player wins. Which player has a winning 

strategy? 

Sol.: The first player has a winning strategy. Let 

us say a position is stable if every square below 

or to the right of a free square is free. Then we 

claim the first player can always ensure that on 

his turn, either the position is stable or there is 

a free square with exactly one free neighbor (or 

both). 

Let us label the square in the i-th row and j-th 

column as (i, j), with (1, 1) in the top left. We 

call a free square a corner if is not below or to 

the right of another free square. Let 

(𝑎1, 𝑏1), (𝑎2, 𝑏2),… , (𝑎𝑘 , 𝑏𝑘) be the corners 

from top to bottom. 

First notice that if (a, b) is a corner such that 

both (𝑎 + 1, 𝑏 − 1)𝑎𝑛𝑑 (𝑎 − 1, 𝑏 + 1) are 

nonfree (or off the board), then the first player 

may mark (a, b), and however the second player 

moves, the result will be a stable position. More 

generally, if (𝑎, 𝑏), (𝑎 + 1, 𝑏 − 1),… , (𝑎 +

𝑘, 𝑏 − 𝑘) are corners and (𝑎 − 1, 𝑏 +

1)𝑎𝑛𝑑 (𝑎 + 𝑘 + 1, 𝑏 − 𝑘 − 1) are both nonfree 

or off the board, the first player can be sure to 

return to a stable position. 

To show this, first note that we cannot have 

both a = 1 and b –k = 1, or else the number of 

non-free squares would be odd, which is 

impossible. Without loss of generality, assume 

that b –k ≠ 1 is not the final corner. The first 

player now marks (a, b). If the second player 

covers (a, b) and (a, b+1), the position is again 

stable. Otherwise, the first player marks (𝑎 +

1, 𝑏 − 1) and the second player is forced to 

cover it and (𝑎 + 2, 𝑏 − 1). Then the first player 

marks (𝑎 + 2, 𝑏 − 2) and the second player is 

forced to cover it and (𝑎 + 3, 𝑏 − 2), and so on. 

After (𝑎 + 𝑘, 𝑏 − 𝑘) is marked, the result is a 

stable position. 

(Note that the assumption b –k ≠ 1 ensures 

that the moves described do not cross the edge 

of the board.) To finish the proof, we need to 

show that such a chain of corners must exist. 

Write the labels (𝑎1, 𝑏1),… , (𝑎𝑘 , 𝑏𝑘) in a row, 

and join two adjacent labels by a segment if 

they are of the form (𝑎, 𝑏), (𝑎 + 1, 𝑏 − 1). If 

two adjacent labels (𝑎, 𝑏), (𝑎 + 𝑖, 𝑏 − 𝑗) are not 

joined by a segment, then either i = 1 or j = 1 

but not both. If i = 1, draw an arrow between 

the labels pointing towards (𝑎 + 𝑖, 𝑏 − 𝑗); 

otherwise draw the arrow the other way. Also 

draw arrows pointing to (𝑎1, 𝑏1)𝑎𝑛𝑑 (𝑎𝑘 , 𝑏𝑘). 

There is now one more chain of corners (joined 

by segments) than arrows, so some chain has 

two arrows pointing to it. That chain satisfies 

the condition above, so the first player can use 

it to create another stable position. 

Consequently, the first player can ensure 

victory. 

147. Let BD be the bisector of angle B in 

triangle ABC. The circumcircle of triangle 

BDC meets AB at E, while the circumcircle 

of triangle ABD meets BC at F. Prove that 

AE = CF. 

Sol.: By power-of-a-point. AE .AB = AD. AC and 

CF. CB = CD. CA, so 
𝐴𝐸

𝐶𝐹
= (

𝐴𝐷

𝐶𝐷
) (

𝐵𝐶

𝐴𝐵
). However, 
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𝐴𝐵

𝐶𝐵
=
𝐴𝐷

𝐶𝐷
 by the angle bisector theorem, so AE = 

CF. 

148. A 𝟏𝟎 × 𝟏𝟎 table consists of positive 

integers such that for every five rows and 

five columns, the sum of the numbers at 

their intersections is even. Prove that all of 

the integers in the table are even. 

Sol.: We denote the first five entries in a row as 

the “head” of that row. We first show that the 

sum of each head is even. We are given that the 

sum of any five heads is even; by subtracting 

two such sums overlapping in four heads, we 

deduce that the sum of any two heads is even. 

Now subtracting two such relations from a sum 

of five heads, we determine that the sum of any 

head is even. 

By a similar argument, the sum of any five 

entries in a row is even. 

By the same argument as above, we deduce 

that each entry is even. 

149. Prove that there are no positive 

integers a and b such that for each pair p, q 

of distinct primes greater than 1000, the 

number 𝒂𝒑 + 𝒃𝒒 is also prime. 

Sol.: Suppose a, b are so chosen, and let m be a 

prime greater than a +b, by Dirichet’s theorem, 

there exist infinitely many primes in any 

nonzero residue class modulo m; in particular, 

there exists a pair p, q such that p ≡ b (mod m), 

q ≡ -a (mod m), giving 𝑎𝑝 + 𝑏𝑞 is divisible by m, 

a contradiction. 

150. There are 2000 towns in a country, 

each pair of which is linked by a road. The 

Ministry of Reconstruction proposed all of 

the possible assignments of one way traffic 

to each road. The ministry of 

Transportation rejected each assignment 

that did not allow travel from any town to 

any other town. Prove that more of half of 

the assignments remained. 

Sol.: We will prove the same statement for n ≥ 

6 towns. First suppose n = 6. In this case there 

are 215 assignments, and an assignment is 

rejected only if either one town has road to all 

of the others in the same direction, or if there 

are two sets of three towns, such that within 

each town the roads point in a circle, but all of 

the roads from one set to the other point in the 

same direction. There are 5.211 had 

assignments of the first kind and 20.8 of the 

second kind, so the fraction of good 

assignments is at least 
5

8
. 

For n ≥ 6, we claim that the fraction of good 

assignments is at least 

5

8
∏(1 −

1

2𝑖−1
)

𝑛−𝑖

𝑖=6

. 

We show this by induction on a good 

assignment or r h -1 vertices can be extended to 

a good assignment on vertices simply by 

avoiding having all edges from the last vertex 

pointing in the same direction, which occurs in 

2 cases out of 2𝑛−1. 

Now it suffices to show that the above 

expression is more than 
1

2
. 

In fact, 

∏(1−
1

2
)
−1∞

𝑖=5

≤ 1 +∑
𝑖 − 4

2𝑖

∞

𝑖=5

 

= 1 +
1

25
∑

𝑖 + 1

2𝑖

∞

𝑖=0

= 1 +
1

25
∑∑

1

2𝑖

∞

𝑘=𝑖

∞

𝑖=0
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= 1 +
1

25
∑

1

2𝑖 − 1

∞

𝑖=0

= 1 +
4

25
=
9

8
 

Thus the fraction of good assignments is at least 

(
5

8
) (

8

9
) =

5

9
>
1

2
. 

151. Find all real numbers satisfying  

𝟔𝒙 + 𝟐𝟐𝒙 + 𝟐𝟒𝒙 − 𝟑𝟔𝒙 − 𝟏𝟔𝒙 = 𝟏. 

Ans:-  Rewrite  the given relation as: 

6𝑥 + 4𝑥 − 36𝑥 + 24𝑥 − 16𝑥= 1 

Let 6𝑥 = 𝑎, 4𝑥 = 𝑏,  we have 

a+ b -𝑎2 + 𝑎𝑏 − 𝑏2 = 1 

⇒𝑎2 − 𝑎𝑏 + 𝑏2 − 𝑎 − 𝑏 + 1=0 

⇒ 2𝑎2 − 2𝑎𝑏 + 2𝑏2 − 2𝑎 − 2𝑏 + 2=0 

⇒ (𝑎2 − 2𝑎𝑏 + 𝑏2)+ (𝑎2 − 2𝑎 + 1)+ (𝑏2 −

2𝑏 + 1)=0 

⇒ (𝑎 − 𝑏)2 + (𝑎 − 1)2 + (𝑏 − 1)2=0 

∴ a= 1 and b= 1 when a= b. 

⇒ 4𝑥 = 1 𝑎𝑛𝑑 6𝑥 = 1, giving x= 0 only. 

152. Two boxes contain between them 

65 balls of several different sizes. Each 

ball is white, black, red, or yellow. If 

you take any five balls of the same 

colour, at least two of them will always 

be of the same size (radius). Prove that 

there are at least three balls which lie 

in the same box, have the same colour 

and are of the same size. 

Sol: We will make repeated use of pigon–

hole- principle (PHP). As there are 65 balls 

and 2 boxes , one of these boxes must 

contain at least [
65

2
]+1 = 33 balls. 

Consider that box, now we have four colours 

(white, black, red, yellow) and hence there 

must be at least (
33

4
)+1 = 9 balls of the same 

colour. 

There can be at most 4 different sizes 

available for these 9 balls of the same 

colour, For if there were  5 (or 

more)different sizes, then collection of 5 

balls, all of different sizes, would not satisfy 

the given property. 

Thus of these 9 balls there must be at least 3 

balls of the same size. 

153. Find all continuous function f : (0, 

∞)⟶(0, ∞) ∋ f (1)= 1 and  

𝟏

𝟐
∫ (𝒇(𝒕))𝟐𝒅𝒕 =  

𝟏

𝒙
 (∫ 𝒇 (𝒕)𝒅𝒕)

𝒙

𝟎

𝟐𝒙

𝟎

 

Ans:- Define  , F (x) = ∫ 𝑓(𝑡)𝑑𝑡   
𝑥

0
 and G 

(x)= ∫ (𝑓(𝑡))2𝑑𝑡 
𝑥

0
 

Since f: (0, ∞) ⟶ (0, ∞) 

we have F (x)> 0 ∀ 𝑥 > 0 

Also,  
1

2
𝐺(𝑥) =  

1

𝑥
{𝐹(𝑥)}2, from the given 

condition  on differentiation, we have 

1

2
𝐺′(𝑥)= 

1

𝑥
. 2𝐹(𝑥). 𝐹′(𝑥) −

1

𝑥2
(𝐹(𝑥))2 

This means that  
1

2
(𝐹(𝑥))2=

2

𝑥
𝐹(𝑥) 𝐹′(𝑥) −

1

𝑥2(𝐹(𝑥))2
  

or, 
1

2
(
𝑥𝐹′(𝑥)

𝐹(𝑥)
)2 = 2

𝑥𝐹′(𝑥)

𝐹(𝑥)
− 1 

Solving this equation as a quadratic in 

𝑥𝐹′(𝑥)

𝐹(𝑥)
we have 
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𝑥𝐹′(𝑥)

𝐹(𝑥)
= 2 ± 2 = 𝑘(say) 

On integration, we obtain ∫
𝑑𝐹(𝑥)

𝐹(𝑥)
= 𝑘 ∫

𝑑𝑥

𝑥
 

⇒ ln 𝐹(𝑥)= klnx + ln𝜆 ⇒ 𝐹(𝑥)= 𝜆𝑥𝑘 

⇒ f (x)=𝜆k𝑥𝑘−1 ⇒ f (1) = 1 

⇒ 𝜆k=1 

∴ f(x)= 𝑥𝑘−1 = 𝑥1+√2 /𝑥
1−√2

  

154. Let x ≥ 𝟏, 𝒇(𝒙) =  
√[𝒙]+√{𝒙}

√𝒙
 , 

where [.] denotes G.I.F. and { } 

denotes fractional part. Determine the 

smallest number k ∋ f(x)≤ 𝒌 for each 

x ≥ 𝟏 

Ans:-  Let x = a+ b where a= [x], b= {x} 

f(x)= 
√𝑎+√𝑏

√𝑎+𝑏
 

(f(𝑥))2 =
𝑎+𝑏+2√𝑎𝑏

𝑎+𝑏
= 1 + 

2√𝑎𝑏

𝑎+𝑏
 

Using AM≥ 𝐺𝑀, ≤ 1 + 1 ⇒ 𝑓(𝑥) ≤ √2. 

155. Solve the equation (√𝟐 + √𝟐)𝒙 +

(√𝟐 − √𝟐)𝒙 = 𝟐𝒙 

Ans:- 1+ 
√2

2
= 1 + 𝑐𝑜𝑠

𝜋

4
= 2 cos2

𝜋

8
 

(
2+ √2

4
)
𝑥
2⁄ + (

2− √2

4
)
𝑥
2⁄  

= (𝑐𝑜𝑠
𝜋

8
)𝑥 + (𝑠𝑖𝑛

𝜋

8
)𝑥 

⇒ x= 2 

156. Maximize x+ y subject to the 

condition that 2𝒙𝟐 + 𝟑𝒚𝟐 ≤ 𝟏. 

Ans:-    
𝑥2

1
2⁄
+

𝑦2

1
3⁄
≤ 1 

Let z= x+ y 

Now, 4x + 6y
𝑑𝑦

𝑑𝑥
= 0  ⇒

𝑑𝑦

𝑑𝑥
= −

2𝑥

3𝑦
 

At the touching point. -
2𝑥

3𝑦
 = -1 

⇒ 2x= 3y and 2𝑥2 + 3𝑦2=1   ⇒ 2 (
3𝑦

2
)2 +

(3𝑦2) = 1 

⇒ 15𝑦2 = 2   ⇒ y= ±√
2

15
 

∴ x= 
3

2
 (±√

2

15
) =  ±√

3

10
      ∴ Max (z)= 

√
3

10
+√

2

15
= 

5

√30
. 

157. For any positive a, b prove that 

(𝒂 +
𝟏

𝒂
)𝟐 + (𝒃 +

𝟏

𝒃
)𝟐 ≥ 𝟖. 

Ans: AM ≥ GM 

(𝑎 +
1

𝑎
)2 + (𝑎 +

1

𝑎
)2 ≥ 

2√(𝑎 +
1

𝑎
)2 + (𝑏 +

1

𝑏
)2 

≥ 2(ab+
1

𝑎𝑏
+
𝑎

𝑏
+
𝑏

𝑎
) 

≥ 2(2+2)   [∵ ab +
1

𝑎𝑏
≥ 2] 

158. Find the following limit: 

𝐥𝐢𝐦
𝒙→∞

(
𝟏

√𝒏𝟐+𝟏
+

𝟏

√𝒏𝟐+𝟐
+⋯+

𝟏

√𝒏𝟐+𝒏
) 

Ans:- Let 𝑢𝑛 =
𝑛

√𝑛2+𝑛
 

∴ lim
𝑥→∞

𝑢𝑛 = lim
𝑥→∞

𝑛

√𝑛2+𝑛
= lim
𝑥→∞

1

√1+
1

𝑛

= 1 . 

By Cauchy’s first theorem:-

 lim
𝑥→∞

(
𝑢1+⋯+𝑢𝑛

𝑛
) = 1. 



 Challenging Mathematical Problems  

172 
 

So, lim
𝑥→∞

(
1

√𝑛2+1
+

1

√𝑛2+2
+⋯+

1

√𝑛2+𝑛
)= 1. 

159. For any real number x and for any 

positive integer n show that 

[x]+[x+
𝟏

𝒏
] + [𝒙 +

𝟐

𝒏
] + ⋯+ [𝒙 +

𝒏−𝟏

𝒏
] =

[𝒏𝒙] 

Ans:- Let x= [x]+y, where 0 ≤ y < 1, 

Let p be an integer such that P-1 ≤ 𝑛𝑦 < 𝑃 

Now, x+
𝑘

𝑛
= [𝑥] + 𝑦 +

𝑘

𝑛
 

Also, 
𝑃+𝑘−1

𝑛
< 𝑦 +

𝑘

𝑛
< 

𝑃+𝑘

𝑛
 

So, long as 
𝑃−1+𝑘

𝑛
< 1 , i.e. , k < n-(P-1) 

So, 𝑦 +
𝑘

𝑛
< 1 and consequently 

[x+
𝑘

𝑛
] = [x]for k= 0, 1, 2, …, n-P. 

But [x+
𝑘

𝑛
] = [x]+1 for k= n-P+1, …..n-1. 

∴[x]+ [x+
1

𝑛
]+…+[x+

𝑛−1

𝑛
] 

= ([𝑥] + [𝑥] + ⋯+ [𝑥])⏟              +

(([𝑥] + 1) + ([𝑥] + 1) + ⋯+ ([𝑥 + 1))]⏟                           

= n[x]+(P-1)……………………(1) 

Also, [nx]=[n[x]+ny]= n[x]+(P-1) 

Since P-1 ≤ ny < P……(2) 

From equation (1) & (2), 

[x]+[x+
1

𝑛
]+…+[x+

𝑛−1

𝑛
] = [nx]. 

160. Prove that for n > 1,  1+
𝟏

𝟐𝟐
+

𝟏

𝟑𝟐
+⋯+

𝟏

𝒏𝟐
< 2 −

𝟏

𝒏
 

Ans:- P(1)= 1+
1

22
=
5

4
< 2 −

1

2
=
3

2
=
6

4
. 

The statement is true for n= 2. 

Let , the statement is true for n= m. 

∴P(m)=  1+
1

22
+

1

32
+⋯+

1

𝑚2
< 2 −

1

𝑚
. 

Now, we need to show that the statement is 

also true for n=m+1. 

P(m+1)= 1+
1

22
+

1

32
+⋯+

1

𝑚2 < 2 −
1

(𝑚+1)2
 

< 2 −
1

𝑚
+

1

𝑚(𝑚+1)
.    [∵

1

(𝑚+1)2
<

 
1

𝑚(𝑚+1)
∀ 𝑚 > 1] 

< 2-
1

𝑚+1
. 

∴ The statement is true for n= m+1 

So, for all n ∊ ℕ the statement is true.  

Hence proved. 

161. In a 𝛥PQR, ⦟R = 
𝝅

𝟐
. If 

𝒕𝒂𝒏
𝑷

𝟐
 𝒂𝒏𝒅 𝒕𝒂𝒏

𝑸

𝟐
  are the roots of 

equation a𝒙𝟐 + 𝒃𝒙 + 𝒄= 0 (a≠0), then 

show that a + b = c. 

Ans:- (a) tan
𝑝

2
+ tan

𝑄

2
=

 −
𝑏

𝑎
,   tan

𝑃

2
tan

𝑄

2
=
𝑐

2
         ∴

𝑃

2
+
𝑄

2
=
𝜋

4
 

∴ 
tan

𝑝

2
 + tan

𝑄

2

1 − tan
𝑝

2
tan

𝑄

2

= tan
𝜋

4
=  1 

⟹  
− 
𝑏

𝑎

1 − 
𝑐

𝑎

 = 1 ⟹ 𝑏 = 𝑐 − 𝑎 ⟹ 𝑎 +

𝑏 = 𝑐 
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162. If A and B are real orthogonal 

matrices of the same order and |B|+|A|= 0.  

Prove that |A+ B|= 0 

Ans:-  |A|+|B|=0 

⇒ |A|= −|B| 

|A|.|B|=−1    [∵ |B|=|𝐵−1|as they are 

orthogonal] 

Let, C = A (𝐴𝑇 + 𝐵𝑇)B 

⇒ |C|= |A𝐴𝑇𝐵 + 𝐴𝐵𝑇𝐵| =  |𝐵 + 𝐴| 

………..(i) 

And |C|= |A||𝐴𝑇 + 𝐵𝑇||𝐵| =  −|𝐴𝑇 + 𝐵𝑇| 

⇒ - |(𝐴 + 𝐵)𝑇| =  −|𝐴 + 𝐵|…………..(ii) 

|𝐴 + 𝐵| =  −|𝐴 + 𝐵| 

⇒ 2 |A +B|=0 

⇒ |A+ B|=0 

163. Determine whether there is a one –to 

– one function f: ℝ⟶ ℝ such that  

 f(𝒙𝟐)-[f(𝒙)]𝟐 ≥
𝟏

𝟒
∀ 𝒙 

Ans:- Take x= 0, then f(0) – (f(0))2 ≥
1

4
 

⇒ (f(0))2 + (
1

2
)2 −  2.

1

2
. f(0) ≤ 0 

⇒ (f(0) −
1

2
)2 ≤ 0 

⇒ f(0) −
1

2
 = 0 ⇒ f(0) =

1

2
  

Also, taking x=1 we have f(1) - 
1

2
 = 0 ∴ 

f(0) = f(1)= 
1

2
 

∴ This is not one -to –one function. 

164. If 0 < u < 1 and 𝒖𝒏+𝟏 = 𝟏 −

 √𝟏 − 𝒖𝒏  ∀ 𝒏 > 1, 

 Prove that (i) {𝒖𝒏} converges to zero 

  (ii) 𝐥𝐢𝐦
𝒏⟶∞

𝒖𝒏+𝟏

𝒖𝒏
= 
𝟏

𝟐
 

Ans:- (i) 0 < 𝑢1 < 1 

⇒ 0 < √1 − 𝑢1 < 1 

⇒ 0 < 1 -√1 − 𝑢1 < 1 

i.e. 0 < 𝑢2 < 1 

Similarly, 0 < 𝑢3 < 1 ….. and so on. 

Let 0 < 𝑢𝑛 < 1, then 0 < 1- √1 − 𝑢𝑛 < 1, 

i.e. 0 < 𝑢𝑛+1 < 1 

Thus {𝑢𝑛} is bounded. 

Again, 𝑢𝑛+1 − 𝑢𝑛= 1-√1 − 𝑢𝑛  -𝑢𝑛 

=(1- 𝑢𝑛)- √1 − 𝑢𝑛  

= (√1 − 𝑢𝑛 )
2 −√1 − 𝑢𝑛  

= √1 − 𝑢𝑛  (√1 − 𝑢𝑛 − 1) 

< 0 as 0 < √1 − 𝑢𝑛 < 1 

∴ 𝑢𝑛+1 < 𝑢𝑛       as 0 < √1 − 𝑢𝑛 <1 

∴ {𝑢𝑛} is monotonically decreasing.  ∴ {𝑢𝑛} 

converges two zero. 

(ii) Let  lim
𝑛⟶∞

𝑢𝑛 = 𝑙, then lim
𝑛⟶∞

𝑢𝑛+1

𝑢𝑛
 

∴ lim
𝑛⟶∞

1− √1−𝑙

𝑙
= lim
𝑛⟶∞

𝑙

𝑙(
1+ √1−𝑙

)
 = 

1

1+ √1−0
=
1

2
 

;  Since 𝑢𝑛 converges to zero. 
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165. Let g: ℝ⟶ ℝ be a continuous 

function ∋ g(x) = g (
𝒙−𝟏

𝟐
)   ∀ x. 

Show that g must be a constant function. 

Ans:- g(x) = g (
𝑥−1

2
) 

⇒ g (
𝑥−1

2
) = g (

𝑥−1

2
−1

2
) = g (

𝑥−3

4
) 

Again putting x= 
𝑥−1

2
 

g (
𝑥−1

2
)= g (

𝑥−7

2
) and so on 

Generally we have, g(
𝑥−1

2
)= g (

𝑥−(2𝑛−1)

2𝑛
) 

∴ g (x)= g (
𝑥

2𝑛
− 1 +

1

2𝑛
) 

∴ lim
𝑛⟶∞

𝑔 (𝑥) = 𝑔 (−1) 

⇒ g (x)= g (-1)= constant ∀ x. 

166. Find the greatest and least value of 

the function f (x)= 𝒙𝟑 − 𝟑𝒙𝟐 + 𝟐𝒙 + 𝟏 in 

[2, 3]. 

Ans:- f (x)= 𝑥3 − 3𝑥2 + 2𝑥 + 1 

f′(x)= 3𝑥2 − 6𝑥 + 2;    f′ (2) = 2 > 0;     f′ 

(3) =11 > f′ (2) 

∴ f(x) is an increasing function 

Note that f″(x) = 6x -6 > 0 ∀ x ∊ [2, 3] 

∴ f(x) is concave. 

Thus the function has min. value at x= 2 and 

max. Value at x= 3  

∴ minimum value= f(2)=1  ∴ maximum  

value = f(3) = 7 

 

167. Let F (x) = ∑ 𝒂𝒌𝒙
𝒌𝒏

𝒌=𝟎  , where 𝒂𝒌 

satisfy ∑
𝒂𝒌

𝒌+𝟏
= 𝟎𝒏

𝒌=𝟎  so that there exists a 

real root of     f (x) = 0 in the interval (0, 

1) 

Ans:- F (x) = ∫ 𝑓(𝑡)𝑑𝑡 =
𝑥

0

 ∫ (∑ 𝑎𝑘𝑡
𝑘𝑛

𝑘=0 )𝑑𝑡
𝑥

0
 = ∑ 𝑎𝑘

𝑛
𝑘=0  .

𝑥𝑘+1

𝑘+1
 

Clearly F (x) satisfies the conditions of 

Rolle’s Theorem as F (0) = 0 and  

F (1) =∑
𝑎𝑘

𝑘+1
= 0𝑛

𝑘=𝑜  

Hence ∃ a ‘c’ ∊ (0, 1) ∋ F′(c) =0 ⇒ F (c) =0 

168. Show that 1+ 
𝟏

𝟐
+
𝟏

𝟑
+
𝟏

𝟒
+⋯ .+ 

𝟏

𝒏
 can 

never be an integer value. 

Ans:- We are to show:- 1+ 
1

2
+
1

3
+
1

4
+

⋯ .+ 
1

𝑛
 = 

𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 ∀ 𝑛 > 1 

Let, P (n): 1+ 
1

2
+
1

3
+
1

4
+⋯ .+ 

1

𝑛
= 

𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 ∀ 𝑛 > 1 

When n=2, LHS= 1+ 
1

2
=
3

2
=

𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 

∴ P (2) is true. Let P (m)be true 

⇒ 1+ 
1

2
+
1

3
+
1

4
+⋯ .+ 

1

𝑚
=

𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
= 

𝑘

𝑟
(𝑠𝑎𝑦)  

Now, P (m+1) =  
𝑘

𝑟
 + 

1

𝑚+1
 

m is odd or even, 

But in case, it can be shown that 

P (m)= 
𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 

∴P (n) is true for all n ∊ℕ 
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169. Let f: ℝ → ℝ be differentiable and 

assume there is no x 𝒊𝒏 ℝ ℈ f(x) = f’(x) = 

0.  Show that S = {x| 0≤ 𝒙 ≤ 𝟏 ; 𝒇(𝒙) = 𝟎} 

is finite. 

Ans:- Consider 𝑓−1({0}). Since {0} is 

closed and f is continuous 𝑓−1({0}) is 

closed. Therefore, S=[0,1]∩ 𝑓−1({0}) is 

closed and bounded subset of ℝ. Hence, S is 

complete. 

Assume S is infinite. 

Then there is a limit point 𝑥 ∊ 𝑆; 

i.e. there is a sequence {𝑥𝑛} of distinct 

points in S which converges to x. 

Also, as all points are in S, 𝑓(𝑥𝑛) = 𝑓(𝑥) =

0 ∀ 𝑛 ∊ 𝑁. 

We now show that f’(x) =0. 

Since.|𝑥𝑛 − 𝑥|→0 ,  

so 

f’(x) = lim
𝑛→∞

𝑓(𝑥+(𝑥𝑛−𝑥))−𝑓(𝑥)

𝑥𝑛−𝑥
 

        = lim
𝑛→∞

𝑓(𝑥𝑛)−𝑓(𝑥)

𝑥𝑛−𝑥
 

        = 0 

The last equality holds since f(x) = f(𝑥𝑛) =0 

holds ∀ 𝑛 ∊ 𝑁. 

170. The four digit number aabb is a 

square. Find the number. 

Ans:-  aabb = 𝑛2 

Then   𝑛2 = 1100a + 11b 

                   = 11(100a + b) 

                   = 11(99a + a + b) 

Since, 𝑛2 is divisible by112, we see that 11 | 

(a+b) 

i.e. a+b=11. Since 𝑛2 𝑖𝑠 a square , bcan’t be  

0,1,2,3,5,7 or 8 . Checking the remaining we 

see that 7744= 882 

171. Find the maximum value of 

 𝒄𝒐𝒔𝜶𝟏. 𝒄𝒐𝒔𝜶𝟐. 𝒄𝒐𝒔𝜶𝒏, under the 

restrictions 

 0 <𝜶𝟏, 𝜶𝟐, …𝜶𝒏  ≤ 𝟐  𝒄𝒐𝒕𝜶𝟏. 𝒄𝒐𝒕𝜶𝟐. 𝒄𝒐𝒕𝜶𝒏 

= 1. 

Ans.  

Given, (cot 𝛼1). (cot 𝛼2)…. (cot 𝛼𝑛) = 1 

⟹cos𝛼1 . cos 𝛼2… . cos 𝛼𝑛 =

 sin 𝛼1 . sin 𝛼2… . sin 𝛼1 …………….(1) 

Now, (cos 𝛼1 . cos 𝛼2… . cos 𝛼𝑛)
2 =

(cos𝛼1 . cos 𝛼2… . cos 𝛼𝑛)(cos 𝛼1 . cos 𝛼2… . cos 𝛼𝑛) 

=

(cos𝛼1 . cos 𝛼2… . cos 𝛼𝑛)(

sin 𝛼1 . sin 𝛼2… . sin 𝛼𝑛) [from (1)] 

= 
1

2𝑛
sin 2𝛼1 . sin 2𝛼2… . sin 2𝛼𝑛 ≤

1

2𝑛
  

∴ (cos 𝛼1 . cos 𝛼2… . cos 𝛼𝑛)
2 ≤

1

2𝑛
 

∴cos 𝛼1 . cos 𝛼2… . cos 𝛼𝑛 ≤ √
1

2𝑛
 ≤

1

2
𝑛
2

  

[∵cos𝛼𝑖 ≥ 0] 

172. Let f(x, y) = 0 is a circle such that f(0, 

𝜆) = 0 and f(𝜆,0) = 0 have equal roots and 

f(1,1)= - 2 then the radius of the circle is 

(a) 4                             (b) 8                             

(c) 2                                    (d) 1 
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Ans. (c) 

Let f(x, y) = 𝑥2 + 𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 𝑐 =

0 𝑏𝑒 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑖𝑟𝑐𝑙𝑒 

f(0, 𝜆) = 𝜆2 + 2𝑓𝜆 + 𝑐 = 0  ………….(1) 

f(𝜆, 0) = 𝜆2 + 2𝑔𝜆 + 𝑐= 0…………….(2) 

∵ (1) and (2) have equal roots. 

∴ D= 0 

⟹ 𝑓2 = 𝑔2 = 𝑐 

∴ f(x, y) = 𝑥2 + 𝑦2 + 2𝑔𝑥 ± 2𝑓𝑦 + 𝑔2 = 0 

f(1, 1) = - 2  ⟹ 𝑔2 + 2𝑔 ± 2𝑔 + 4 = 0 

when f = - g, 𝑔2 = −4 (not possible) 

∴ f = g and g = f = -2 and c = 4 

∴ Radius of circle is 2. 

173. Let s=√𝟏 + √𝟐 + √𝟑 +⋯+ √𝟏𝟎𝟎𝟎𝟎 

and I=∫ √𝒙 𝒅𝒙
𝟏𝟎𝟎𝟎

𝟎
. Show that I ≤ 𝒔 ≤ 𝑰 +

𝟏𝟎𝟎. 

Ans:- I=∫ √𝑥 𝑑𝑥
1000

0
= ∫ √𝑥 𝑑𝑥

1

0
+

∫ √𝑥 𝑑𝑥
2

1
+⋯+ ∫ √𝑥 𝑑𝑥

10000

9999
 

→∫ 0. 𝑑𝑥 + ∫ √1  
2

1

1

0
dx 

+….+∫ √9999 𝑑𝑥
10000

9999
≤ 𝐼 ≤ ∫ 1. 𝑑𝑥 +

1

0

∫ √2  𝑑𝑥 +⋯+ ∫ √10000 
10000

9999

2

1
 dx 

→√1 +√2 +…..+√9999 ≤ 𝐼 ≤ √1 +√2 

+…..+√10000 

→I ≤ 𝑆 

Also, S ≤ 𝐼 + √10000 

∴ I ≤ 𝑆 ≤ 𝐼 + 100 

174. Prove that  

1 < 
𝟏

𝟏𝟎𝟎𝟏
+

𝟏

𝟏𝟎𝟎𝟐
+⋯+

𝟏

𝟑𝟎𝟎𝟏
< 

𝟒

𝟑
 

Ans:- consider 2001 numbers 
1

𝑘
, 1001 ≤

𝑘 ≤ 3001 

Using AM- HM inequality, we get 

(∑ 𝑘3001
𝑘=1001 )(∑

1

𝑘
≥ (2001)23001

𝑘=1001  

But ∑ 𝑘3001
𝑘=1001 = (2001)2 

Hence we get the inequality ∑
1

𝑘
> 13001

𝑘=1001  

On the other hand grouping 500 terms at a 

time, we also have  

S= ∑
1

𝑘
< 

500

1000
+

500

1500
+

500

2000
+

500

2500
+3𝑛+1

𝑘=𝑛+1

1

3001
< 

1

2
+
1

3
+
1

4
+
1

5
+

1

3001
=
3851

3000
<
4

3
 

[Remarks:- if S =∑
1

𝑘

3001
𝑘=1001 , there are (2n+ 

1) terms in the sum and the middle term is  

1

2𝑛+1
; then  

29

27
< 𝑆 <

7

6
 ]. 

175. Let A be a set containing n elements. 

If the number of elements in the set,  

B = {(x, y, z) : x ∊A, y ∊A, z ∊A and x, y, z, 

are not all distinct}  is equal to 280,  

then find the value of n? 

Ans; According to question 𝑛3 − (𝑛
3
). 3! =

280 

∴ 𝑛3 − 𝑛(𝑛 − 1)(𝑛 − 2) = 280 

⟹ n(𝑛2 − 𝑛2 + 3𝑛 − 2)= 280 

⟹ n(3n- 2)= 280= 10(3.10- 2) 
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TOPIC WISE SOLVED 
PROBLEMS 

INDUCTION 

(Objective Type) 

1. The sum of  n terms of the series 𝟏. 𝟑𝟐 +

𝟐. 𝟓𝟐 + 𝟑. 𝟕𝟐 +⋯∞ 𝒊𝒔 

(a) 𝟒𝒏𝟑 + 𝟒𝒏𝟐 + 𝒏    (b) 
𝒏

𝟔
(𝒏 + 𝟏)(𝟔𝒏𝟐 +

𝟏𝟒𝒏 + 𝟕)   (c) 
𝒏(𝒏+𝟏)

𝟔
    (d) none. 

Sol. : Let 𝑝(𝑛): 1. 32 + 2. 52 + 3. 72 +⋯+

(𝑛)(2𝑛 + 1)2 

∴ 𝑃(𝑛): ∑𝑛 (2𝑛 + 1)2⟹

𝑃(𝑛): ∑𝑛 (4𝑛2 + 4𝑛 + 1)  

⟹ 𝑃(𝑛): ∑𝑛 (4𝑛2 + 4𝑛2 + 𝑛) ⟹

𝑃(𝑛): 4∑𝑛3 + 4∑𝑛2 + ∑𝑛  ∴ 𝑃(𝑛) =
1

6
𝑛(𝑛 + 1)(6𝑛2 + 14𝑛 + 7).  

2. 𝟏𝟎𝒏 + 𝟑. 𝟒𝒏+𝟐 +𝑲 K is divisible by 9 for all 

n ∊N. Then the least +ve integral value of k is- 

(a)  5,    (b) 3,   (c) 1,   (d) none. 

Sol. Let 𝑃(𝑛): 10𝑛 + 3. 4𝑛+2 + 𝑘 =

9𝜆 (𝑤ℎ𝑒𝑟𝑒 𝜆 ∊ 𝐼) 

⟹ 𝑃(1): 10 + 3. 43 + 𝑘 = 9  𝜆1
⟹𝑃(1): 202 + 𝑘

= 9𝜆1………(1)𝐴𝑙𝑠𝑜, 𝑃(2): 100 + 3. 4
4 + 𝑘

= 9𝜆2 

⟹ 𝑃(2): 868 + 𝑘 = 9𝜆2………… . (2) 

From (1) and (2), then minimum value of k is 

5 such that P(n) is divisible by 9. 

 

3.  𝒙𝒏 − 𝟏 is divisible by 𝒌 − 𝒌. Then the least 

+ve integral  value of k is 

(a) 1,    (b) 2,   (c) 3,   (d) none 

Sol.: Let  𝑃(𝑛): 𝑥𝑛 − 1 =  𝜆(𝑥 − 𝑘) 

𝑁𝑜𝑤, 𝑃(1): 𝑥 − 1

= 𝜆1(𝑥 − 𝑘) 𝐴𝑙𝑠𝑜, 𝑃(2): 𝑥
2

− 1 = 𝜆2(𝑥 − 𝑘)

⟹ 𝑃(2): (𝑥 − 1)(𝑥 + 1)

=  𝜆2(𝑥 − 𝑘) 

∴ Least value of k which the proposition P(n) 

is true is k = 1. 

4. 𝑰𝒇 𝟏 + 𝟓 + 𝟏𝟐 + 𝟐𝟐 + 𝟑𝟓 +⋯ to n terms = 
𝒏𝟐(𝒏+𝟏)

𝟐
, nth term of series is 

(a) 
(𝟐𝒏−𝟏)

𝟐
,   (b) 

𝒏(𝟑𝒏−𝟏)

𝟐
,    (c) 

𝟐𝒏(𝟐𝒏+𝟏)

𝟑
,   (d) 

none. 

Sol.: Let 𝑃(𝑛): 1 + 5 + 12 + 22 + 35 +⋯ (n 

terms) 

=
𝑛2(𝑛+1)

2
 𝑛𝑡ℎ 𝑡𝑒𝑟𝑚 𝑜𝑓 𝐿𝐻𝑆 =  𝑃(𝑛) − 𝑃(𝑛−1)  

⟹ 𝑃(𝑛) − 𝑃(𝑛−1) =
𝑛2(𝑛+1)

2
−
(𝑛−1)2𝑛

2
  

⟹ 𝑃(𝑛) − 𝑃(𝑛−1) =
𝑛

2
{𝑛2 + 𝑛 − 𝑛2 + 2𝑛 − 1}  

∴ 𝑇𝑛 = 𝑃(𝑛) − 𝑃(𝑛−1) =
𝑛

2
(3𝑛 − 1)  

 

5. 𝟏𝟑 + 𝟐𝟑 + 𝟑𝟑 +⋯+ 𝟏𝟎𝟎𝟑 = 𝒌𝟐 , 𝒕𝒉𝒆𝒏 𝒌 = 

(a) 1010,   (b)  5050,    (c) 10501,    (d) none 

Sol.: 13 + 23 + 33 +⋯+ 1003 = 𝑘2⟹

∑ 𝑛3100
𝑛=1 = 𝑘2 

⟹ {
100(100 + 1)

2
}

2

= 𝑘2⟹ 𝑘 =
100.101

2

= 5050 

Note that k here will not be negative as k is 

sum of cubes of +ve integers. 
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6. Sum till n terms of the series 
𝟏𝟑

𝟏
+
𝟏𝟑+𝟐𝟑

𝟏+𝟑
+

𝟏𝟑+𝟐𝟑+𝟑𝟑

𝟏+𝟑+𝟓
= 

(a) 
𝟒𝒏𝟐+𝟑

𝟓
,    (b) 

𝒏(𝒏+𝟏)𝟑

𝟔
,   (c) 

𝒏(𝟐𝒏𝟐+𝟗𝒏+𝟏𝟑)

𝟐𝟒
,    (d) 

none 

Sol.:  Let 𝑃(𝑛) = 
13

1
+
13+23

1+3
+
13+23+33

1+3+5
+

⋯(𝑛 𝑡𝑒𝑟𝑚𝑠) 

⟹ 𝑃(𝑛) ∶  ∑
13+23+⋯+𝑛3

1+3+5…….(𝑛 𝑡𝑒𝑟𝑚𝑠)
 ⟹

𝑃(𝑛) : ∑ {
∑𝑛3

𝑛2
}  

⟹ 𝑃(𝑛) : ∑ {
1

4

𝑛2(𝑛+1)2

𝑛2
 } ⟹ 𝑃(𝑛):

1

4
∑(𝑛2 +

2𝑛 + 1)  

⟹ 𝑃(𝑛) ∶
1

4
{∑𝑛2 + 2∑𝑛 + ∑(1)}  

⟹ 𝑃(𝑛):
1

4
{
𝑛(𝑛+1)

2
+
1

3
𝑛(𝑛 + 1)(2𝑛 + 1) + 𝑛}  

⟹ 𝑃(𝑛):
1

24
𝑛 {3(𝑛 + 1) + 2(𝑛 + 1)(2𝑛 + 1) +

6}  

∴ 𝑃(𝑛):
1

24
𝑛(2𝑛2 + 9𝑛 + 13)  

7.  
𝟏

𝟏
+

𝟏

𝟏+𝟐
+

𝟏

𝟏+𝟐+𝟑
+⋯ up to(n+1) terms is 

equal to 

(a)  
𝟐𝒏

𝒏+𝟏
,   (b) 

𝒏

𝒏+𝟏
,   (c) 

𝟐𝒏

𝒏+𝟐
   (d) none 

Sol.: Let 𝑃(𝑛):
1

1
+

1

1+2
+

1

1+2+3
+⋯(𝑛 +

1)𝑡𝑒𝑟𝑚𝑠 

𝑡𝑛 =
1

1 + 2 + 3 +⋯+ 𝑛
=

2

𝑛(𝑛 + 1)
⟹ 𝑡𝑛

= 2 [
1

𝑛
−

1

𝑛 + 1
] 

⟹ 𝑃(𝑛): {(1 −
1

2
) + (

1

2
−
1

3
) +⋯

+ (
1

𝑛
−

1

𝑛 + 1
)} 

∴ 𝑃(𝑛) = 2(1 −
1

𝑛 + 1
) =

2𝑛

𝑛 + 1
 

8. For all n∊ N, ∫
𝐬𝐢𝐧𝟐𝒏𝒙

𝐬𝐢𝐧𝒙

𝝅

𝟎
𝒅𝒙 =  

(a) –𝝅,    (b) 0,      (c) 
𝝅

𝟐
   (d) none 

Sol.: Let 𝑃(𝑛) = ∫
sin2𝑛𝑥

sin𝑥

𝜋

0
𝑑𝑥  

STEP I : ⟹𝑃(1) = ∫
sin2𝑛𝑥

sin𝑥

𝜋

0
𝑑𝑥 = 2∫ cos 𝑥

𝜋

0
=

0 

𝐹𝑜𝑟 𝑛 = 1  

STEP II: ⟹ For n = 𝑛1, Let us assume that the 

proposition is true for n = m 

∴ 𝑃(𝑚) = ∫
sin2𝑘𝑥

sin𝑥

𝜋

0
𝑑𝑥 = 0……… . . (1) 

STEP III: Let us prove the proposition for n = 

m +1. If the proposition is true for n = m+1, 

then it was also true for n = m. Thus the 

proposition will be true for all n∊ N. 

𝑃(𝑚+1) − 𝑃(𝑚)

= ∫
sin[2(𝑘 + 1)𝑥] − sin2𝑘𝑥

sin𝑥

𝜋

0

𝑑𝑥 

𝑃(𝑚+1) + 𝑃(𝑚)

= ∫
2 cos[(2𝑘 + 1)𝑥] − sin 𝑥

sin 𝑥

𝜋

0

 𝑑𝑥 

⟹ 𝑃(𝑚+1) − 𝑃(𝑚) = [
sin(2𝑘 + 1) 𝑥

2𝑘 + 1
]
𝜋

0
 

⟹ 𝑃(𝑚+1) − 𝑃(𝑚) =
2

2𝑘 + 1
(0 − 0) =  0 

∴ 𝑃(𝑚+1) = 𝑃(𝑚) 

Since the proposition is true for n = m+1, 

thus it was also true for n = m. Hence the 

proposition is true ∀ n ∊ N. 
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9. 
𝟏

𝟏.𝟒
+

𝟏

𝟒.𝟕
+

𝟏

𝟕.𝟏𝟎
+⋯ to n terms 

(a) 
𝟏

𝟓𝒏−𝟏
,    (b) 

𝟏

𝟓𝒏+𝟏
,    (c) 

𝟏

𝒏+𝟒
 ,    (d) none 

Sol.: Let 𝑃(𝑛):
1

1.4
+

1

4.7
+

1

7.10
+⋯𝑛 𝑡𝑒𝑟𝑚𝑠 

⟹ 𝑃(𝑛):
1

3
(1 −

1

4
) +

1

3
(
1

4
−
1

7
) +

1

3
(
1

7
−
1

10
)

+⋯(𝑛 𝑡𝑒𝑟𝑚𝑠) 

⟹ 𝑃(𝑛) ∶
1

3
{1 −

1

4
+
1

4
−
1

7
+⋯+

1

(3𝑛 − 2)

−
1

3𝑛 + 1
} 

⟹ 𝑃(𝑛):
1

3
{1 −

1

3𝑛 + 1
}  ∴  𝑃(𝑛):

𝑛

3𝑛 + 1
. 

10. For every positive integer 𝒏,
𝒏𝟕

𝟕
+
𝒏𝟓

𝟓
+

𝟐𝒏𝟑

𝟑
−

𝒏

𝟏𝟎𝟓
 

(a) an integer   (b) a rational number    (c) an 

odd integer    (d) none 

Sol.: Let  𝑃(𝑛):
𝑛7

7
+
𝑛5

5
+
2𝑛3

3
−

𝑛

105
 

⟹ 𝑃(1):
1

7
+
1

5
+
2

3
−

1

105
⟹ 𝑃(1)

=
15 + 21 + 70 − 1

105
 

= 1 ⟹ 𝑃(2): 8 (
16

7
+
4

5
+
2

3
) −

2

105
= 15 

∴ By induction 𝑃(𝑛) is an integer ∀ n ∊ N. 

 

 (SUBJECTIVE TYPE) 

1) Given 𝒂𝒏+𝟏 = 𝟑𝒂𝒏 − 𝟐𝒂𝒏−𝟏 𝒂𝒏𝒅 𝒂𝟎 =

𝟐, 𝒂𝟏 = 𝟑, show that 𝒂𝒏 = 𝟐
𝒏 + 𝟏 ∀ n∊ N 

Sol.: Step I. For n = 1    𝑎1 = 2
1 + 1 = 3 

𝑛 = 2  

𝑎1+1 = 3𝑎1 − 2𝑎0 = 3(3) − 2(2) = 5  

Therefore, the result is true for 𝑎2 = 2
2 +

1   𝑛 = 1 and 2 

Step II: Assume that the result is true for n = 

k. 

𝑎𝑘 = 2
𝑘 + 1  

Step III: for n = k +1 

𝑎𝑘−1 = 3𝑎𝑘 − 2𝑎𝑘−1  = 3(2𝑘 + 1) −

2(2𝑘−1 + 1) = 3. 2𝑘 + 3 − 2𝑘 − 2 = 2. 2𝑘 +

1 = 2𝑘+1 + 1  

(By the induction assumption) 

This shows that the result is true for n = k 

+1. Hence by the principle of mathematical 

induction. The result is true for all n ∊ N. 

2) Prove that 
𝒅𝒙𝒚

𝒅𝒙𝒏
= (−𝟏)𝒏−𝟏. (𝒏 −

𝟏)! 𝐬𝐢𝐧 {𝒏
𝝅

𝟐
− 𝒚} 𝒔𝒊𝒏𝒏 {

𝝅

𝟐
+ 𝒚}∀ 𝒏 ∈

𝑵,𝒘𝒉𝒆𝒓𝒆 𝒚 =  𝐭𝐚𝐧−𝟏 𝒙. 

Sol.: Let  𝑃(𝑛) = 
𝑑𝑥𝑦

𝑑𝑥𝑛
= (−1)𝑛−1. (𝑛 −

1)! sin {𝑛 (
𝜋

2
− 𝑦)} 𝑠𝑖𝑛𝑛 {

𝜋

2
+

𝑦}…………(1) 

Step I: For n = 1 

LHS of (1) 
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
tan−1 𝑥 =

1

1+𝑥2
+

1

1+𝑡𝑎𝑛2𝑦
 

(∵ 𝑦 =  tan−1 𝑥) =
1

𝑠𝑒𝑐2𝑦

=  𝑐𝑜𝑠2𝑦 ……………(2) 

= sin (
𝜋

2
− 𝑦) sin (

𝜋

2
− 𝑦)

=  (−1)1−1(1 − 1)! 

sin (
𝜋

2
− 𝑦) sin (

𝜋

2
+ 𝑦) = 𝑅.𝐻. 𝑆 𝑜𝑓 (1) 
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Therefore, P(1) is true. 

Step II: Assume it is true for n = k, then 

𝑃(𝑘) : 
𝑑𝑘𝑦

𝑑𝑥𝑘
= (−1)𝑘−1(𝑘 − 1)! sin {𝑘

𝜋

2
−

𝑦} 𝑠𝑖𝑛𝑘 {
𝜋

2
+ 𝑦}  

Step III: For n = k+1. 

𝑃(𝑘 + 1): 
𝑑𝑘+1𝑦

𝑑𝑥𝑘+1
= (−1)𝑘𝑘! sin {𝑘 +

1 (
𝜋

2
− 𝑦)} 𝑠𝑖𝑛𝑘+1 {

𝜋

2
+ 𝑦}  

L. H. S. 

𝑑𝑘+1𝑦

𝑑𝑥𝑘+1
=

𝑑

𝑑𝑥
[
𝑑𝑘𝑦

𝑑𝑥𝑘
] =

𝑑

𝑑𝑥
{(−1)𝑘−1(𝑘 −

1)! sin {𝑘
𝜋

2
− 𝑦} 𝑠𝑖𝑛𝑘 {

𝜋

2
+ 𝑦}}  

(by assumption step) 

= (−1)𝑘−1(𝑘 − 1)!
𝑑

𝑑𝑦
[sin {𝑘 (

𝜋

2

− 𝑦)} 𝑠𝑖𝑛𝑘  (
𝜋

2
+ 𝑦)] 

𝑑𝑦

𝑑𝑥
= (−1)𝑘−1(𝑘 − 1)! 

[sin {𝑘 (
𝜋

2
− 𝑦)} .

𝑑

𝑑𝑦
𝑠𝑖𝑛𝑘  (

𝜋

2
+ 𝑦) +

𝑠𝑖𝑛𝑘  (
𝜋

2
+ 𝑦)

𝑑

𝑑𝑦
sin {𝑘 (

𝜋

2
− 𝑦)}]

𝑑𝑦

𝑑𝑥
  

=  (−1)𝑘−1(𝑘 − 1)! [sin {𝑘 (
𝜋

2
−

𝑦)} 𝑘 𝑠𝑖𝑛𝑘−1  (
𝜋

2
+ 𝑦) cos (

𝜋

2
+ 𝑦) −

𝑠𝑖𝑛𝑘  (
𝜋

2
+ 𝑦) cos {𝑘 (

𝜋

2
−

𝑦)}] . 𝑐𝑜𝑠2𝑦 𝑓𝑟𝑜𝑚 (2)  

=  (−1)𝑘−1(𝑘 − 1)! 𝑠𝑖𝑛𝑘−1  (
𝜋

2
+

𝑦) [sin {𝑘 (
𝜋

2
− 𝑦)} cos (

𝜋

2
+ 𝑦) −

sin (
𝜋

2
+ 𝑦) cos {𝑘 (

𝜋

2
− 𝑦)}] 𝑠𝑖𝑛2 (

𝜋

2
+ 𝑦)  

= (−1)𝑘−1𝑘! 𝑠𝑖𝑛𝑘+1  (
𝜋

2
+ 𝑦) sin {

𝑘𝜋

2
−

𝑘𝑦 −
𝜋

2
− 𝑦}  

= (−1)𝑘−1𝑘! 𝑠𝑖𝑛𝑘+1  (
𝜋

2
+ 𝑦) sin {(𝑘 −

1)
𝜋

2
− (𝑘 + 1)𝑦}  

= (−1)𝑘−1𝑘! 𝑠𝑖𝑛𝑘+1  (
𝜋

2
+ 𝑦) ×

−sin {𝜋 + (𝑘 − 1)
𝜋

2
− (𝑘 + 1)𝑦}  

= (−1)𝑘−1𝑘! 𝑠𝑖𝑛𝑘+1  (
𝜋

2
+ 𝑦) sin {(𝑘 +

1)
𝜋

2
− (𝑘 + 1)𝑦}  

= (−1)𝑘−1𝑘! 𝑠𝑖𝑛𝑘+1  (
𝜋

2
+ 𝑦) sin {(𝑘 +

1) (
𝜋

2
− 𝑦)}  

= 𝑅. H. S. 

This shows that the result is true for n = 

k+1. Hence by the principle of 

mathematical induction the result is true 

for all n ∊ N. 

 

3) Given that 𝒂𝒓, 𝒃𝒓, 𝒂𝒏𝒅 𝒄𝒓 are (+) ve real 

numbers for r = 1, 2, 3, …, n and that 

𝒂𝒓
𝟐 = 𝒃𝒓

𝟐 + 𝒄𝒓
𝟐, 𝒓 = 𝟏, 𝟐,… , 𝒏  

𝑨𝒏 = 𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏;  𝑩𝒏 = 𝒃𝟏 +

𝒃𝟐 +⋯+ 𝒃𝒏;  

𝑪𝒏 = 𝒄𝟏 + 𝒄𝟐 +⋯+ 𝒄𝒏  

Prove that 𝑨𝟐𝒏 ≥  𝑩𝟐𝒏+ 𝑪𝟐𝒏 

 

Sol.: Let 𝑃(𝑛): 𝐴
2𝑛 ≥  𝐵2𝑛 + 𝐶2𝑛 

Step I: For n = 1, 𝐴1 = 𝑎1, 𝐵1 = 𝑏1, 𝐶1 = 𝑐1 

𝑆𝑖𝑛𝑐𝑒, 𝑎1
2 = 𝑏1

2 +

𝑐1
2 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐴1

2 ≥ 𝐵1
2 + 𝐶1

2  

So the result is true for n = 1 
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Step II: Assume it is true for n = k, then 𝐴𝑘
2 ≥

 𝐵𝑘
2 + 𝐶𝑘

2 

Step III: For n = k+1 

Now 𝐴𝑘+1 = 𝐴𝑘 + 𝑎𝑘+1, 𝐵𝑘+1 = 𝐵𝑘 +

𝑏𝑘+1 , 𝐶𝑘+1 = 𝐶𝑘 + 𝑐𝑘+1 

Let 𝐵𝑘 = 𝑟 cos𝜃  𝑎𝑛𝑑 𝐶𝑘 = 𝑟 sin𝜃 

∴ 𝐵2𝑘 + 𝐶2𝑘 =  𝑟2 tan−1 (
𝐶𝑘
𝐵𝑘
) =  𝜃 

∵ 𝐵2𝑘 + 𝐶2𝑘 ≤  𝐴2𝑘 (by assumption 

step) 

∴ 𝑟2 ≤ 𝐴2𝑘  𝑖. 𝑒. 𝑟 ≤  𝐴𝑘  

𝐹𝑢𝑟𝑡ℎ𝑒𝑟, 𝑠𝑖𝑛𝑐𝑒 𝑎𝑘+1
2 ≥ 𝑏𝑘+1

2 +

𝑐𝑘+1
2(𝑓𝑜𝑟 𝑟 = 𝑘 + 1)  

1 =  (
𝑏𝑘+1
𝑎𝑘+1

)
2

+ (
𝑐𝑘+1
𝑎𝑘+1

)
2

 

𝑃𝑢𝑡 
𝑏𝑘+1
𝑎𝑘+1

= cos𝛼 ,
𝑐𝑘+1
𝑎𝑘+1

= sin𝛼 

𝑆𝑜 𝑡ℎ𝑎𝑡 𝐵𝑘+1 = 𝐵𝑘 + 𝑏𝑘+1 =

𝑟 cos 𝜃 + 𝑎𝑘+1 cos𝛼 and 𝐶𝑘+1 = 𝐶𝑘 +

𝑐𝑘+1 = 𝑟 sin 𝜃 + 𝑎𝑘+1 sin𝛼  𝑡ℎ𝑒𝑛 

 𝐵𝑘+1
2 + 𝐶𝑘+1

2 = 𝑟 cos 𝜃 +

𝑎𝑘+1 cos(𝜃 − 𝛼) ≤  𝑟
2 + 𝑎𝑘+1

2 +

2𝑟𝑎𝑘+1 (∵ cos(𝜃 − 𝛼) ≤ 1) =

 (𝑟 + 𝑎𝑘+1)
2  

= 𝐴𝑘+1
2 (∵ 𝑟 ≤  𝐴𝑘)  

𝑇ℎ𝑢𝑠 𝐵𝑘+1
2 + 𝐶𝑘+1

2 < 𝐴𝑘+1
2  

This shows that the result is true for n = k+1. 

Hence, by the principle of mathematical 

induction the result is true for all n ∊ N. 

4) Prove that 
𝒅𝒏

𝒅𝒙𝒏
(
𝐥𝐨𝐠𝒙

𝒙
) =

(−𝟏)𝒏.𝒏!

𝒙𝒏+𝟏
(𝐥𝐨𝐠𝒙 −

𝟏 −
𝟏

𝟐
… . .

𝟏

𝒏
)∀ 𝒏 ∈ 𝑵 𝒂𝒏𝒅 𝒙 = 𝟎. 

Sol.: Step I: For n = 1 L. H. S. 
𝑑

𝑑𝑥
(
log𝑥

𝑥
) =

1−log𝑥

𝑥2
 

=
(−1)11

𝑥1+1
 (log 𝑥 − 1) R. H. S. which is true 

for n = 1 

Step II: Assume it is true for n = k. 

𝑖. 𝑒.
𝑑𝑘

𝑑𝑥𝑘
 (
log𝑥

𝑥
) =

(−1)𝑘𝐾!

𝑥𝑘+1
(log 𝑥 − 1 −

1

2
… .

1

𝑘
)  

Step III: For n = k +1 

We have 
𝑑𝑘+1

𝑑𝑥𝑘+1
(
log𝑥

𝑥
) =

𝑑

𝑑𝑥
[
𝑑𝑘

𝑑𝑥𝑘
(
log𝑥

𝑥
)] 

=
𝑑

𝑑𝑥
[
(−1)𝑘𝐾!

𝑥𝑘+1
(log 𝑥 − 1 −

1

2
… . .

1

𝑘
)] 

(by assumption) 

= (−1)𝑘 𝐾! [
1

𝑥𝑘+1
(
1

𝑥
) + (log 𝑥 − 1 −

1

2
… . .

1

𝑘
) −

(
(𝑘+1)

𝑥𝑘+2
)]  

=
(−1)𝑘𝐾!

𝑥𝑘+2
[1 − (𝑘 + 1) [log𝑥 − 1 −

1

2
… .−

1

𝑘
]]  

=
(−1)𝑘+1𝐾!

𝑥𝑘+2
 [(𝑘 + 1) (log 𝑥 − 1 −

1

2
−⋯−

1

𝑘
) −

1]  

=
(−1)𝑘+1(𝑘+1)!

𝑥𝑘+2
[log𝑥 − 1 −

1

2
−⋯−

1

𝑘
−

1

𝑘+1
]  

This shows that the result is true for n = k+1. 

Hence by the mathematical induction, the 

result is true for all n ∊ N. 

5) Let 𝒇. 𝑹 → 𝑹 such that 𝒇(𝒙 + 𝒚) =

𝒇(𝒙). 𝒇(𝒚)∀ 𝒙, 𝒚 ∊ 𝑹, to show that 𝒇(𝒏) =

 𝒌𝒏, where k is real number and n is non-

negative integer. Hence or otherwise show 

that 𝒇(𝒙) =  𝒌𝒙 for all rational x. 

Sol.: ∵ 𝑓(𝑥 + 𝑦) =

 𝑓(𝑥)𝑓(𝑦)……………(1) 

𝑃𝑢𝑡𝑡𝑖𝑛𝑔 𝑥 = 0, 𝑦 = 0 𝑤𝑒 𝑔𝑒𝑡 𝑓(0) =

 1, 𝑙𝑒𝑡 𝑘 =  𝑓(1)  

We will show that 𝑓(𝑛) = 𝑘
𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 0 

Step I: For 𝑛 = 0, 𝑓(0) =  𝑘01, so the 

result is true for n = 0. 
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Step II: Assume it is true for n = p, when p 

is positive integer 𝑓(𝑝) = 𝑘
𝑝 

Step III: For n = p + 1 

𝑓(𝑝+1) = 𝑓(𝑝)𝑓(1) = 𝑘
𝑝. 𝑘 =  𝑘𝑝+1 (by 

assumption step) 

This show that the result is true for all 

non-negative integers. 

Again if p is negative integer 𝑖. 𝑒. 𝑝 =  −𝑚. 

Where m is positive integer. Then we can 

write 

𝑓(0) = 𝑓(𝑝+𝑚)⟹ 𝑓(𝑝)𝑓(𝑚) =

1 (𝑏𝑦 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝)  

⟹ 𝑓(𝑝)𝑘
𝑚 = 1  

⟹ 𝑓(𝑝) = 𝑘
−𝑚⟹ 𝑓(𝑝) = 𝑘

𝑝 it is true for 

negative integer 

Finally let 𝑛 =
𝑝

𝑞
 when p, q> 0 and then 

𝑓(𝑝) = 𝑓(𝑛𝑞) = 𝑓(𝑛 + 𝑛 +⋯𝑞 𝑡𝑖𝑚𝑒𝑠)  

= 𝑓(𝑛)𝑓(𝑛)𝑓(𝑛)… . . 𝑞 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 =  [𝑓(𝑛)]
2

  

∴ 𝑓(𝑝) = [𝑓(𝑛)]
𝑞
 (𝑏𝑦 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝)  

⟹ 𝑓(𝑛) = 𝑘
𝑝

𝑞 = 𝑘𝑛.  

Hence the result is true for all rational 

number. 

6) Show that for all n ∊ N, 

√𝒂 + √𝒂 + √𝒂 +⋯+ √𝒂 ≤
𝟏+√𝟒𝒂+𝟏

𝟐
 

where ‘a’ is fixed positive number and n 

radical signs are taken on L.H.S. 

Sol.: Let 𝑃(𝑛) = 
√𝑎 + √𝑎 + √𝑎 +⋯+√𝑎 <

1+√(4𝑎+1)

2
 

Step I: For n = 0, then √𝑎 <  
1+√(4𝑎+1)

2
 

⟹ 2√𝑎 < 1 +√(4𝑎 + 1)  ⟹ 4𝑎 <

1 + 4𝑎 + 1 + 2√(4𝑎 + 1)  

⟹ 2√(4𝑎 + 1) + 2 > 0 which is true 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑃(1) 𝑖𝑠 𝑡𝑟𝑢𝑒  

Step II: Assume it is true for n = k, 

then 

𝑃(𝑘): 
√𝑎 + √𝑎 + √𝑎 +⋯+ √𝑎 <

1+√(4𝑎+1)

2
  

K-radical signs 

Step III: For n = k+1 

𝑃(𝑘+1): 
√𝑎 + √𝑎 + √𝑎 +⋯+ √𝑎 <

1+√(4𝑎+1)

2
   

(𝑘 + 1)𝑟𝑎𝑑𝑖𝑐𝑎𝑙 𝑠𝑖𝑔𝑛𝑠  

For assumption step 

√𝑎 + √𝑎 + √𝑎 +⋯+ √𝑎 <
1+√(4𝑎+1)

2
  

k-radical signs 

⟹ 

√𝑎 +√𝑎 + √𝑎 +⋯+ √𝑎

< 𝑎 +
1 + √(4𝑎 + 1)

2
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⟹√𝑎 +√𝑎 + √𝑎 +√𝑎 +⋯+√𝑎

<  √𝑎 +
1 + √(4𝑎 + 1)

2
 

= √
2𝑎 + 1 + √(4𝑎 + 1)

2
 

(𝑘 + 1) radical signs 

=  √
4𝑎 + 2 + 2√(4𝑎 + 1)

4

=  √
(√4𝑎 + 2)

2
+ 1 + 2√(4𝑎 + 1)

4
 

= √(
1+√(4𝑎+1)

2
)
2

=
1+√(4𝑎+1)

2
  

= √𝑎 + √𝑎 + √𝑎 + √𝑎 +⋯+ √𝑎

<
1 + √(4𝑎 + 1)

2
 

(𝑘 + 1) radical signs 

 

Which is true for n = k +1 

Hence by the principle of 

mathematical induction the result is 

true for all n ∊ N. 

 

7) Show that for all 𝒏 ≥ 𝟏, (𝑿𝒀)𝒏 =

 ∑ 𝒏𝑪𝒓
𝒏
𝒓=𝟎  𝑿𝒏−𝒓  𝒀𝒓 where X and Y are 

functions of x and 𝒙𝒏 denotes the nth 

derivation of X with respect to x. 

Sol.: Step I: For n = 1, 

(𝑋𝑌)1 = 𝑋𝑌1 + 𝑌𝑋1 = 𝑋0𝑌1 + 𝑌0𝑋1 =

 ∑ 1𝐶𝑟
1
𝑅=0 𝑋1−𝑟𝑌𝑟 which is true for all n = 1 

Step II: Assume it is true for n = k, i.e. 

(𝑋𝑌)𝑘 = ∑ 𝑘𝐶𝑟
𝑘
𝑟=0 𝑋𝑘−𝑟𝑌𝑟 

Step III: For n = k+1, we have  (𝑋𝑌)𝑘+1 =

[𝑘𝐶0𝑋𝑘−0𝑌0 + 𝑘𝐶1𝑋𝑘−1𝑌1 + 𝑘𝐶2𝑋𝑘−2𝑌2 +

⋯+ 𝑘𝐶𝑘𝑋0𝑌𝑘]1
 

= 𝑘𝐶0(𝑋𝑘𝑌1 + 𝑌0𝑋𝑘+1) + 𝑘𝐶1(𝑋𝑘−1𝑌2 +

𝑌1𝑋𝑘) + 𝑘𝐶2(𝑋𝑘−2𝑌3 + 𝑌2𝑋𝑘−1) + ⋯+

𝑘𝐶𝑘(𝑋0𝑌𝑘+1 + 𝑌1𝑋𝑘)  

= 𝑘𝐶0𝑋𝑘+1𝑌0 + (𝑘𝐶0 + 𝑘𝐶1)𝑋𝑘𝑌1 +

(𝑘𝐶1 + 𝑘𝐶2)𝑋𝑘−1𝑌2 + (𝑘𝐶2 + 𝑘𝐶3)𝑋𝑘−1𝑌3 +

⋯+⋯+ 𝑘𝐶𝑘𝑋0𝑌𝑘+1  

= 𝑘 + 1𝐶0𝑋𝑘+1𝑌0 + 𝑘 + 1𝐶1𝑋𝑘𝑌1

+ 𝑘 + 1𝐶2𝑋𝑘−1𝑌2 +⋯

+ 𝑘 + 1𝐶𝑘+1𝑋0𝑌𝑘+1 

=  ∑ 𝑘 + 1𝐶𝑟
𝑘+1
𝑟=0 𝑋𝑘+1−𝑟𝑌𝑟.  

This shows that the result is true for n = 

k+1. Hence by the principle of 

mathematical induction, the result is true 

for all n ∊ N. 

8) Suppose the natural number are divided 

into groups (1); (2, 3); (4, 5, 6); (7, 8, 9, 

10); ……… and that every second group is 

deleted. Prove that the sum of the terms of 

the first k groups, which remain after 

deletion, is always 𝒌𝟒. 

Sol.: The remaining groups are (1); (4, 5, 

6); (11, 12, 13, 14, 15); ……….. step I. Sum 

of the terms in first group = 1 = 14 and 

sum of the terms in the terms in the 1st 

two groups = 1+(4+5+6)= 16= 24. The 

result is true for k = 1 and k = 2 step II. 

Assume that the sum of the terms of the 

first k groups 𝑘4 

Step III. Now considering the (𝑘 + 1)𝑡ℎ 

group 
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1st term in the 1st group = 1 

1st term in the 2nd group = (1+2)+1= 4 

 1st term in the 3rd group = 

(1+2+3+4)+1= 11 

……………………………………………… 

……………………………………………… 

1st term in the (k+1) th group = 

(1+2+3+…+2k)+1 

=k(1+2k)+1 = (2𝑘2+k+1) 

The number of terms in the (k+1)th 

group = (2k +1)  

∴ The sum of the terms in the (k+1) the 

group 

=
(2𝑘 + 1)

2
[2 (2𝑘2 + 𝑘 + 1) + 2𝑘] 

= (2𝑘 + 1)(2𝑘2 + 2𝑘 + 1) 

= 4𝑘3 + 6𝑘2 + 4𝑘 +

1 ………………… . (1)  

Sum of the terms in the first (k+1) groups 

= (sum of first k group) + (sum of terms 

in the (k+1)th group) = 𝑘4 + 4𝑘3 +

6𝑘2 + 4𝑘 + 1 by assumption step and (1) 

= (𝑘 + 1)4. 

This show that the result is true for n = 

k+1. Hence, by the principal of 

mathematical induction, the result is true 

for all n ∊N. 

9) Show that ∫ 𝒄𝒐𝒔𝒏𝒙
𝝅

𝟐
𝟎

𝐜𝐨𝐬 𝒏𝒙𝒅𝒙 =
𝝅

𝟐𝒏+𝟏
 

Sol.: Let 𝐼𝑛 = ∫ 𝑐𝑜𝑠𝑛𝑥
𝜋

2
0

cos𝑛𝑥 𝑑𝑥 =
𝜋

2𝑛+1
  

Step I: For n = 1, 𝐼1 = ∫ cos 𝑥
𝜋

2
0

cos 𝑥 𝑑𝑥 

=
1

2
∫ (1 + cos 2𝑥)

𝜋
2

0

𝑑𝑥 

=
1

2
(𝑥 +

sin2𝑥

2
)
𝜋

2
0
  

=
1

2
(
𝜋

2
) =

𝜋

22
 

Therefore, the result is true for n -1 

Step II: For n = k+1 

𝐼𝑘+1 = ∫ 𝑐𝑜𝑠𝑘+1𝑥

𝜋
2

0

cos(𝑘 + 1)𝑥 𝑑𝑥

= ∫ 𝑐𝑜𝑠𝑘𝑥

𝜋
2

0

(cos(𝑘

+ 1)𝑥  𝑑𝑥)𝑑𝑥 

𝐼𝑘+1 − 𝐼𝑘 = ∫ 𝑐𝑜𝑠𝑘𝑥

𝜋
2

0

{cos(𝑘 + 1)𝑥 cos 𝑥

− cos 𝑘𝑥}𝑑𝑥 

    = ∫ 𝑐𝑜𝑠𝑘𝑥
𝜋

2
0

{cos(𝑘 + 1)𝑥 cos 𝑥 −

cos(𝑘 + 1)𝑥 cos𝑥 − sin(𝑘 +

1)𝑥 sin 𝑥}𝑑𝑥 

{∵ cos𝑘𝑥 = cos[(𝑘 + 1)𝑥 − 𝑥] 

= cos(𝑘 + 1) 𝑥 cos 𝑥

+ sin(𝑘 + 1)𝑥 sin𝑥} 

= sin(𝑘 + 1) 𝑥. 𝑐𝑜𝑠𝑘𝑥(− sin𝑥)𝑑𝑥 

Integrating by parts 

𝐼𝑘+1 − 𝐼𝑘 = [sin(𝑘 + 1) 𝑥
𝑐𝑜𝑠𝑘+1𝑥

(𝑘 + 1)
]

𝜋
2
0

− ∫ (𝑘 + 1)

𝜋
2

0

 

cos(𝑘 + 1)𝑥
𝑐𝑜𝑠𝑘+1

(𝑘 + 1)
 𝑑𝑥 = 0 − 𝐼𝑘+1 

𝐼𝑘+1 =
1

2
𝐼𝑘 =

1

2
.
𝜋

2𝑘+1
. 𝐼𝑘+1 =

𝜋

2𝑘+2
 

This shows that the result is true for n = k+1. 

Hence, by the principal of mathematical 

induction, the result is true for all n ∊ N. 
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10) Show that ∑ 𝒌𝟐𝒏
𝒌=𝟎 𝒏𝑪𝒌 = 𝒏(𝒏 +

𝟏)𝟐𝒏−𝟐 𝒇𝒐𝒓 𝒏 ≥ 𝟏. 

Sol.: Let 𝑃(𝑛) = ∑ 𝑘2𝑛
𝑘=0 𝑛𝐶𝑘   

= 𝑛(𝑛 + 1)2𝑛−2 𝑓𝑜𝑟 𝑛 ≥ 1. 

Step I: For n = 1 

𝑃(1) =∑𝑘2
1

𝑘=0

1𝐶𝑘 = 0 + 1 1𝐶1 = 1

= 1(1 + 1) 21−2 

𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑛 = 1  

Step II: Assume it is true for n –m  

𝑖. 𝑒. 𝑃(𝑚) =∑𝐾2
𝑚

𝑘=0

𝑚𝐶𝑘 = 𝑚(𝑚 + 1)2
𝑚−2 

Step III:  For n = m+1 

𝑃(𝑚+1) = ∑ 𝑘2
𝑚+1

𝑘=0

𝑚 + 1𝐶𝑘 = 0 + ∑ 𝐾2
𝑚+1

𝑘=1

  

𝑚 + 1𝐶𝑘 =∑𝑘2
𝑚

𝑘=1

𝑚 + 1𝐶𝑘

+ (𝑚 + 1)2𝑚+ 1𝐶𝑚+1

= ∑𝑘2
𝑚

𝑘=1

  

(𝑚𝐶𝑘 +𝑚𝐶𝑘−1) + (𝑚 + 1)
2

=∑𝑘2
𝑚

𝑘=1

𝑚𝐶𝑘

+ [∑𝑘2
𝑚

𝑘=1

𝑚𝐶𝑘−1 + (𝑚 + 1)
2]

= 𝑃(𝑚) + ∑ 𝑘2
𝑚+1

𝑘=1

 𝑚𝐶𝑘−1  

=  𝑃(𝑚) +∑(𝑘 + 1)2
𝑚

𝑘=0

𝑚𝐶𝑘(𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑘 𝑏𝑦 𝑘

+ 1) 

= 𝑃(𝑚) +∑(𝑘2 + 2𝑘 + 1)

𝑚

𝑘=0

𝑚𝐶𝑘

= 𝑃(𝑚) +∑𝑘2
𝑚

𝑘=0

𝑚𝐶𝑘

+ 2∑𝑘

𝑚

𝑘=0

𝑚𝐶𝑘 +∑𝑚𝐶𝑘

𝑚

𝑘=0

 

= 2𝑃(𝑚) + 2𝑚2
𝑚−1

+ 2𝑚(𝑓𝑟𝑜𝑚 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑡ℎ𝑒𝑜𝑟𝑒𝑚) 

= 2𝑚(𝑚 + 1)2𝑚−2 + 2𝑚. 2
𝑚−1 + 2. 2𝑚−1 

= (𝑚 + 1)(𝑚 + 2)2𝑚−1 

This show that the result is true for n = m+1. 

Hence, by the principal of mathematical 

induction, the result is true for all n ∊ N. 

 

11) Show that the sequence {𝒂𝒏}, where 𝒂𝒏 =
𝟏.𝟑.𝟓….(𝟐𝒏−𝟏)

𝟐.𝟒.𝟔…..𝟐𝒏
√(𝟐𝒏 + 𝟏) is a monotonic 

decreasing sequence. 

Sol.: ∴𝑎𝑛 =
1.3.5……(2𝑛−1)

2.4.6…..2𝑛
√(2𝑛 + 1) 

Step I. For n= 1, 2 𝑎1 =
√3

2
, 𝑎2 =

1.3

2.4
 √(4 + 1) =

3√5

8
 

𝐻𝑒𝑟𝑒 𝑎1 > 𝑎2 (∴ 2 > 1)  

It is monotonic decreasing function which is 

true for n = 1, 2 

Step II. Assume it is true for n = k, then 

𝑎𝑘−1 > 𝑎𝑘(∵ 𝑘 > 𝑘 − 1) 

Step III. For n = k+1 
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𝑎𝑘+1

=
1.3.5… . . (2𝑘 − 1)(2𝑘 + 1)

2.4.6… . .2𝑘(2𝑘 + 2)
.√(2𝑘 + 3)

=
𝑎𝑘

√(2𝑘 + 1)
.
(2𝑘 + 1) − √(2𝑘 + 3)

(2𝑘 + 2)
 

⟹ 𝑎𝑘+1

=
𝑎𝑘√(2𝑘 + 1)(2𝑘 + 3)

(2𝑘 + 2)
……………(1) 

𝐴𝑠𝑠𝑢𝑚𝑒 
√(2𝑘 + 1)(2𝑘 + 3)

(2𝑘 + 2)

< 1……… . (2) 

𝑡ℎ𝑒𝑛 (2𝑘 + 1)(2𝑘 + 3) < (2𝑘 + 2)2 

⟹ 4𝑘2 + 8𝑘 + 3 < 4𝑘2 + 8𝑘 + 4 ⟹ 0 <

1 which is true. 

From (1) and (2), we get 𝑎𝑘+1 < 𝑎𝑘(∵ 𝑘 +

1 > 𝑘) 

This show that the result is true for n = k+1. 

Hence, by the principal of mathematical 

induction, the result is true for all n ∊ N. 

 

12) If ‘a’ fixed real number  ≥ 𝟐, then show 

that 
𝟏+𝒂+𝒂𝟐+⋯+𝒂𝒏

𝒂+𝒂𝟐+⋯+𝒂𝒏−𝟏
≥
𝒏+𝟏

𝒏−𝟏
, 𝒏 ∈ 𝑵, 𝒏 > 1. 

Sol.:  let 𝑃(𝑛) : 
1+𝑎+𝑎2+⋯+𝑎𝑛

𝑎+𝑎2+⋯+𝑎𝑛−1
≥
𝑛+1

𝑛−1
 

Step I. For n = 2 𝑃(2):
1+𝑎+𝑎2

𝑎
≥
3

1
: 1 + 𝑎 +

𝑎2 ≥ 3𝑎 

: 𝑎2 − 2𝑎 + 1 ≥ 0    ∶  (𝑎 − 1)2 ≥ 0  

𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑛 = 2  

Step II. Assume it is true  for n = k, then 

𝑃(𝑘):
1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘

𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1
≥
𝑘 + 1

𝑘 − 1
  

Step III. For n = k+1, we have to show that 

𝑃(𝑘+1):
1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘 + 𝑎𝑘+1

𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1 + 𝑎𝑘

≥
𝑘 + 2

𝑘
  

𝑜𝑟 1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘 + 𝑎𝑘+1

≥
𝑘 + 2

𝑘
 

(𝑎 + 𝑎2 +⋯+ 𝑎𝑘)…………… . (1) 

𝐵𝑦 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝, 𝑤𝑒 𝑔𝑒𝑡  

1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘

≥ (
𝑘 + 1

𝑘 − 1
) (𝑎 + 𝑎2

+⋯+ 𝑎𝑘−1) 

𝐴𝑑𝑑𝑖𝑛𝑔 𝑎𝑘+1 to both sides, we get 

1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘 + 𝑎𝑘+1

≥ (
𝑘 + 1

𝑘 − 1
) (𝑎 + 𝑎2

+⋯+ 𝑎𝑘−1)

+ 𝑎𝑘+1………(2) 

𝑎𝑠𝑠𝑢𝑚𝑒 (
𝑘 + 1

𝑘 − 1
) (𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1)

+ 𝑎𝑘+1 ≥ (
𝑘 + 2

𝑘
) 

(𝑎 + 𝑎2 +⋯+ 𝑎𝑘)…………… . (3) 

𝑡ℎ𝑒𝑛 (
𝑘 + 1

𝑘 − 1
−
(𝑘 + 2)

𝑘
) (𝑎 + 𝑎2 +⋯

+ 𝑎𝑘−1) + 𝑎𝑘+1

≥ (
𝑘 + 2

𝑘
) 𝑎𝑘 

⟹
2

𝑘(𝑘 − 1)
(𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1)

−
(𝑘 + 2)

𝑘
𝑎2 ≥ 0 

⟹ 2(𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1)

+ 𝑘(𝑘 − 1)𝑎𝑘+1

−
𝑘 + 2

𝑘
𝑎𝑘 ≥ 0 

⟹ 2(𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1)

+ 𝑎𝑘{(𝑘 − 1)𝑘𝑎

− (𝑘 + 2)} ≥ 0 

⟹ 2(𝑎 + 𝑎2 +⋯+ 𝑎𝑘−1)

+ 𝑎𝑘(𝑘 − 1)(𝑘(𝑎 − 1)

− 2) ≥ 0 
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Which is true 

{
∵ 𝑎 ≥ 2 𝑎𝑛𝑑 𝑘 ≥ 2

∴ 𝑘 − 1 ≥ 1, 𝑘(𝑎 − 1) − 2 ≥ 0
 

From (2) and (3), we get 

1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘 + 𝑎𝑘+1

≥ (
𝑘 + 2

𝑘
) (𝑎 + 𝑎2

+⋯+ 𝑎𝑘) 

∴
1 + 𝑎 + 𝑎2 +⋯+ 𝑎𝑘 + 𝑎𝑘+1

𝑎 + 𝑎2 +⋯+ 𝑎𝑘

≥
𝑘 + 2

𝑘
………(4) 

Hence, the statement (4) is true for n = k+1 

and by the principle of mathematical 

induction, it is true for all natural numbers. 

13) Let 𝒂𝟏, … , 𝒂𝒏 be positive integers s.t.  𝒂𝟏 ≤

⋯ ≤ 𝒂𝒏.  

Prove that  
𝟏

𝒂𝟏
+⋯+

𝟏

𝒂𝒏
=  𝟏 ⟹ 𝒂𝒏 < 𝟐

𝒏 

Sol.: Suppose 𝑎𝑛 ≥ 2
𝑛! By backward 

induction, we prove that 𝑎𝑘 ≥ 2
𝑘! 𝑓𝑜𝑟 𝑘 =

1,… . , 𝑛 

Suppose that the assumption is proved for 

𝑘 = 𝑛, 𝑛 − 1,… . . , 𝑚 + 1. Then, 

1

𝑎𝑚
≤ √

1

𝑎1… . . 𝑎𝑚

𝑚

≤ 𝑚√1 −
1

𝑎1
−⋯−

1

𝑎𝑚
 

= 𝑚√1 −
1

𝑎𝑚+1
+⋯+

1

𝑎𝑛
≤ 𝑚√

1

𝑎1…𝑎𝑚

≤ 𝑚√ ∑
1

2𝑖!

𝑛

𝑖=𝑚+1

≤
1

2𝑚!
  

It remains to be observed that 
1

21!
+

1

22!
+

⋯+
1

2𝑘!
< 1. 

14) The positive integers 

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 𝒂𝒏𝒅 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏 are given. 

The sums 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏 𝒂𝒏𝒅 𝒚𝟏 +

𝒚𝟐 +⋯+ 𝒚𝒏 are equal and less than 𝒎𝒏. 

Prove that one may cross out some of the 

terms in the equality 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏 =

 𝒚𝟏 + 𝒚𝟐 +⋯+ 𝒚𝒏. So that one, again gets 

an equality 

 

Sol.: The conditions of the problem imply that 

𝑆 =  𝑥1 +⋯+ 𝑥𝑚 = 𝑦1 +⋯+ 𝑦𝑛 is at least 2 

(since 𝑚 ≤ 𝑠, 𝑛 ≤ 𝑠, 𝑠 < 𝑚𝑛). If 𝑚 = 𝑛 =

2, 2 ≤ 𝑆 ≤ 3, the assertion is easy to check. 

We prove in the general case by induction on 

𝑚 + 𝑛 = 𝑘, if 𝑘 ≥ 4. 𝐿𝑒𝑡 𝑥1 > 𝑦1be the largest 

numbers among 𝑥𝑖 𝑎𝑛𝑑 𝑦𝑖  respectively (1 ≤

𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛). The case 𝑥𝑖 = 𝑦𝑖  is 

obvious. To apply the induction hypothesis to 

the equality (𝑥1 − 𝑦1) + 𝑥2 +⋯+ 𝑥𝑚 = 𝑦2 +

⋯+ 𝑦𝑛 𝑤𝑖𝑡ℎ 𝑘 − 1 = 𝑚 + 𝑛 − 1  on both 

sides, it is sufficient to check the inequality 

𝑆′ = 𝑦2 +⋯+ 𝑦𝑛 < 𝑚(𝑛 − 1). 𝑆𝑖𝑛𝑐𝑒, 𝑦1 >
𝑠

𝑛
, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑆′ < 𝑆 −

𝑠

𝑛
= 𝑚𝑛

(𝑛−1)

𝑛
=

𝑚(𝑛 − 1). 

 

NUMBER THEORY 

(Objective Type) 

1) If the unit digit in 𝟒𝟓𝟗 × 𝟒𝟔 × 𝟐𝟖 × 𝟒𝟖𝟒 is 

2, then the digit in place of * is 

(a) 3;    (b) 5;   (c) 7;    (d) none 

Sol.: (9 × 6 × 4) = 216. In order to obtain 2 at 

the unit place he must multiply 216 by 2 or 7. 

∴ of the given numbers, we have 7. 
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2) If the unit’s digit in (𝟑𝟏𝟐𝟕)𝟏𝟕𝟑 is 

(a) 1;   (b) 3;   (c) 7;    (d) none 

Sol.: Unit digit is (3127)173= unit digit in 7173. 

Now, 74 gives unit ……digit 1. 

∴ 173 = (74)43 × 71. Thus 7173 gives unit 

digit 7. 

3) 𝟒𝟔𝟏 + 𝟒𝟔𝟐 + 𝟒𝟔𝟑 + 𝟒𝟔𝟒 is divisible by 

(a) 3;   (b) 10;    (c) 11;    (d) none 

Sol.: 461(1 + 4 + 42 + 43) =  461 × 85 =

 460 × 340 which is clearly divisible by 10. 

4) A number when divided successively by 4 

and 5 leaves remainders 1 and 4 

respectively. When it is successively 

divided by 5 and 4, then the respectively 

remainder will be 

(a) 2, 3;    (b) 3, 2;    (c) 4, 1;    (d) none 

Sol.:  

∴ y = (5 × 1 + 4) = 9 

∴x = (4x+1)=4 × 9+1= 37  

Now, 37 when divided successively by 

5 and 4.  

∴ Respectively remainders (2, 3) 

5)  When the sum 𝟏𝟓 + 𝟐𝟓 + 𝟑𝟓 +⋯+ 𝟗𝟗𝟓 +

𝟏𝟎𝟎𝟓 is divided by 4, then remainder is 

(a) 1;    (b) 2;    (c) 3;    (d)none 

Sol.: We see that the unit of 5th power of any 

no. is the unit digit of the same no…………. So, 

the sum of the unit digit of 5th powers of 

numbers from 1 to 100 = (0 + 1 + 2 +⋯+

9) × 10 = 450 

The remaining parts of the given sum will be 

divisible by 4. Now, if we divide 450 by 4, 

then the quotient is 112 and the remainder is 

2, which is the required remainder.  

(6)  The last two digits in 𝟏𝟗𝟏𝟗𝟗𝟏 is 

(a) 17;   (b)18;   (c) 19;    (d) none 

Sol.:  

Because 1910 = 1 (𝑎𝑛𝑑 100), 191991 =

 (1910)199. 19 = 1.19 (𝑚𝑜𝑑 100). The last two 

digit number is 19. 

(7) The sum 𝟏𝟏𝟗𝟗𝟗 + 𝟐𝟏𝟗𝟗𝟗 +⋯+ 𝟐𝟎𝟎𝟎𝟏𝟗 is 

multiple of 

(a) 1998;   (b) 1999;    (c) 2000;   (d) 

none 

Sol.:  

Because ∑ 𝑖19992000
1001 = ∑ (𝑗 +1000

1

1000)1999 =∑ (𝑗 − 1001)19991000
1 =

 ∑ (−𝑘)19991000
1  

                                      =

 ∑ (𝑖)19991000
1  (𝑚𝑜𝑑 2001), it follows that 

∑ 𝑖1999
2000

1

= ∑ 𝑖1999
1000

1

+ ∑ 𝑖1999
2000

1

= ∑ 𝑖

1000

1

+ ∑(−𝑖)1999
1000

1

= 0 (𝑚𝑜𝑑 2001) 

(8) January 1, 2000, falls on a Saturday, the 

day of the week will January 1, 2020 is 

(a) Sunday;   (b) Wednesday;   (c) 

Friday;    (d) none 

Sol.: Because there are 20 years in the 

range 2000-2019 of which five are 

leap years, January 1, 2020, falls on 

day 20+5≡ 4 (mod 7) i.e. Wednesday. 

(9) The number Zeros at the end, if 100! Is 

fully expanded and written out is 

(a) 23;   (b) 24;   (c) 25;   (d) none 

Sol.: Highest power of 2 in 100! is 97. 

Similarly power of 5 in 100! is 24. 
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Each pair of 5 and 2 will give rise to a 10 or a 

zero at the end. Hence the number of zero in 

100! is equal to 24. 

(10) If n is positive odd integer., then 𝒏𝟑 −

𝒏 is divisible by 

(a) 15;   (b) 20;   (c) 24;   (d) none 

Sol.: 𝑛3 − 𝑛 = (𝑛 − 1)𝑛(𝑛 + 1)= product of 

three consecutive positive intergers and is 

divisible by 3!= 6. 

Also (𝑛 − 1)𝑎𝑛𝑑 (𝑛 + 1) are consecutive even 

integers and their product is divisible by 4. 

Hence 𝑛3 − 𝑛 is divisible by 6 × 4 = 24 if n is 

positive odd. 

(11) Sum of all the divisors of 360 

excluding 1 and itself is 

(a) 1170;   (b) 924;   (c) 809;   (d) 723 

Sol.: 𝑁 = 360 =  23 × 32 × 51 =

 𝑃1
𝛼1 . 𝑃2

𝛼2 . 𝑃3
𝛼3 

The sum of all the distinct positive integral 

divisor of 360 

= (
𝑃1
𝛼1+1 − 1

𝑃1 − 1
)(
𝑃2
𝛼2+1 − 1

𝑃2 − 1
)(
𝑃3
𝛼3+1 − 1

𝑃3 − 1
) 

=
24 − 1

2 − 1
.
33 − 1

3 − 1
.
52 − 1

5 − 1
=
15

1
.
26

2
.
24

4
= 1170 

This includes 1 and the number 360. Thus 

sum of all the divisors of 360 excluding 1 and 

itself is 1170 − 361 = 809. 

(12) The sum of all cubes of three 

consecutive integers is divisible by 

(a) 9;   (b) 12;   (c) 18;   (d) none 

Sol.: Try by trial method 

13 + 23 + 33 = 36
23 + 33 + 43 = 36
33 + 43 + 53 = 36

} All these numbers are 

divisible by 9. 

(13) 𝟐𝟐
𝒏
+ 𝟏 where n is a positive integer 

greater than one ends in 

(a) 5;   (b) 7;   (c) 9;   (d) none 

Sol.: For 22
𝑛
+ 1 𝑓𝑜𝑟 𝑛 > 1, 22

𝑛
+ 1 = 24 +

1 = 17 𝑓𝑜𝑟 𝑛 = 2    

22
𝑛
+ 1 = 28 + 1 = 257 𝑓𝑜𝑟 𝑛 = 3 , 22

𝑛
+ 1 =

216 + 1 = 56537 𝑓𝑜𝑟 𝑛 = 4 and so, on we 

observe that it ends with 7. 

(14) When 𝟐𝒏 − 𝟏 is a prime, then the sum 

of the reciprocals of all the divisors of the 

number 𝟐𝒏(𝟐𝒏 − 𝟏) is 

(a) 
𝟏

𝟐𝒏
;   (b)

𝟏

𝟐𝒏+𝟏
;    (c) 

𝟏

𝟐
;    (d) none 

Sol.: Sum of all reciprocals of all the divisors 

of the number 2𝑛(2𝑛 − 1). Sum of all divisors 

including 

=
1 𝑎𝑛𝑑 𝑖𝑡𝑠𝑒𝑙𝑓 2𝑛−1(2𝑛 − 1)

2𝑛−1. (2𝑛 − 1)

=
2𝑛(2𝑛 − 1)

2𝑛−1. (2𝑛 − 1)
= 2 

 

(Subjective Type) 

1) Prove that 
𝟏𝟑

𝟐𝟕𝟎
+ 𝟑𝟕𝟎 

Sol.: Observe that 270 + 370 = 435 + 935, and 

that 35 is odd. Now 𝑎𝑛 + 𝑏𝑛 is divisible by 

𝑎 + 𝑏 when n is odd. 

From this is follows that 435 + 935 is divisible 

by 13. 

2) Find the number of positive integer n less 

than 1991 for which 
𝟔

𝒏𝟐
+ 𝟑𝒏 + 𝟐. 
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Sol. Note that 𝑛2 + 3𝑛 + 2 = (𝑛 + 1)(𝑛 + 2) 

and that 6 = 2 × 3. So if 6 is to be a divisor of 

𝑛2 + 3𝑛 + 2, then either (a) 6 is divisor of 𝑛 +

1; or (b) 6 is a divisor of 𝑛 + 2; or (c) 3 is a 

divisor of 𝑛 + 1, and 2 is a divisor of 𝑛 + 2; or 

(d) 2 is a divisor of 𝑛 + 1 and 3 is a divisor of 

𝑛 + 2. 

Possibility (a) holds for n = 5, 11, 17, …………. 

, 1991, or 332 values in all. Possibility (b) 

holds for n = 4, 10, 16, ….. , 1990 another 332 

values. Possibility (c) holds for n = 2, 8, 14, 

…… , 1998, another 332 values, and 

possibility (d) holds for n = 1, 7, 13, ….. , 

1987, yet another 332 values. So there are 

4 × 332 = 1328 values of n between 1 and 

1991 for which 𝑛2 + 3𝑛 + 2 is divisible by 6. 

3) Prove that the positive integers that have 

an odd number of divisors are the squares. 

Sol.: We know this by exhibiting a pairing 

between the divisors of an integer. Let n be a 

given positive integer and let d be any 

divisors of n. Then 𝑛/𝑑 is an integer, and it is 

also a divisors of n because 𝑛 = (𝑑 × 𝑛/𝑑). If 

n is not a square, then each divisors acquires 

one and precisely one mate The divisors now 

get grouped into pairs, and this tell us that the 

number of divisor is even (for it is twice the 

number of pairs.) 

4) Given that a, b, c are positive integers with 

no common factor and such that 
𝟏

𝒂
+
𝟏

𝒃
=
𝟏

𝒄
, 

then prove that (a+ b) is a square. 

Sol.: This is clearly to be analyzed along the 

same links as problem 7, but it is an trickier 

one. From the relation 
1

𝑎
+
1

𝑏
=
1

𝑐
. We obtain 

𝑐(𝑎 + 𝑏) = 𝑎𝑏 𝑜𝑟 𝑎𝑏 − 𝑐(𝑎 + 𝑏) = 0. 

Adding 𝑐2 to both sides and factorizing we get 

(𝑎 − 𝑐)(𝑏 − 𝑐) =  𝑐2. 

So 𝑎 − 𝑐 𝑎𝑛𝑑 𝑏 − 𝑐 are a pair of 

complementary factors of 𝑐2. Suppose that 

𝑎 − 𝑐 𝑎𝑛𝑑 𝑏 − 𝑐 share a prime factor P. 

Then 𝑝2 is a divisor of 𝑐2, so p is a divisor of c. 

This means that P is a divisors of a and b as 

well which cannot happen as a and b are 

coprime. 

Since the product of the coprime numbers 

𝑎 − 𝑐 𝑎𝑛𝑑 𝑏 − 𝑐  is a square, each of them is a 

squares. Let 𝑎 − 𝑐 = 𝑢2, 𝑏 − 𝑐 =
𝑐2

𝑢2
,  where u 

is a divisors of c. This leads to 𝑎 + 𝑏 = 𝑐 +

𝑢2 + 𝑐 +
𝑐2

𝑢2
= 𝑢2 + 2𝑐 +

𝑐2

𝑢2
= (𝑢 +

𝑐

𝑢
)
2

, and 

so a+ b is a square. 

5) Find the number of pairs (x, y) of integers 

for which 𝟐𝒙𝒚 − 𝟓𝒙 + 𝒚 = 𝟓𝟓. 

Sol.: We need to find all pairs (x, y) of integers 

such that 2𝑥𝑦 − 5𝑥 + 𝑦 = 55. Write the 

equation as 𝑦(2𝑥 + 1) = 5𝑥 + 55, 𝑜𝑟 𝑦 =
5𝑥+55

2𝑥+1
. From this equation it follows that  2𝑥 +

1 is a divisor of 5𝑥 + 55. Since 5x +55=

2(2𝑥 + 1) + (𝑥 + 53), it further follows that 

2𝑥 + 1 is a  divisor of x +53 and therefore 

also of 2(x+53) = 2x +106. Since 2x +106= 

(2𝑥 + 1) + 105, this means that 2x +1 is a 

divisors of 105. 

Next, since 105 = 3 × 5 × 7, the divisors of 

105 are ±1,±3,±5,±7,±15,±35, 𝑎𝑛𝑑 ± 105. 

Since 2x +1 may assume any of these values, 

the possible values of x are 

0, −1, 1, −2, 2, −3, 3, −4, 7,−8, 10,−11, 17,−18, 52 𝑎𝑛𝑑 −

53. The values of y are readily found from the 

relation 𝑦 =
(5𝑥+55)

(2𝑥+1)
 and we obtain the 

following pairs (x, y), that solve the given 

equation 

(−53, 2), (−18, 1), (−11, 0), (−8,−1), (−4,−5),  

(−3,−8), (−2,−15), (−1,−50), (0, 55),  
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(1, 20), (2, 13),  

(3, 10), (7, 6), (10, 5), (17, 4)𝑎𝑛𝑑 (52, 3) 

𝑜𝑟  sixteen pairs in all. 

6) N is a 50 digit number (in base -10). All 

digits except the 26th (from the left) are 1. 

Given that N is divisible by 13, find its 26th 

digit. 

Sol.: Let x be the 26th digit of N. In base −10.  

N = 

11111111……1111⏟            
25 𝑜𝑛𝑒𝑠

𝑥 11111111……1111⏟            
24 𝑜𝑛𝑒𝑠

 

We now apply the  ‘alternating 3-digit sum’ 

testing divisibility by 13. Recalling that the 

sum has to be computed starting from the 

right. We computer the All sum as 𝐴 + 11̅̅̅̅ 𝑥 −

𝐵 + 11, where 

𝐴 =  111 − 111 +⋯− 111⏟              
8 𝑏𝑙𝑜𝑐𝑘𝑠

  𝐵

=  111 − 111 +⋯+ 111⏟              
7 𝑏𝑙𝑜𝑐𝑘𝑠

 

Clearly A = 0 and B = 111. So, the All sum is 

11̅̅̅̅ 𝑥 − 100 𝑜𝑟 1̅𝑥, which obviously is divisible 

by 13 only for x = 3. 

Hence, the 26th digit of N is 3. 

7) Find integers a, b such that 𝒙𝟐 − 𝒙 − 𝟏 is a 

divisor of the polynomial 𝒂𝒙𝟏𝟕 + 𝒃𝒙𝟏𝟔 + 𝟏 

Sol.:  This is a difficult problem, and its 

solution should be studied with great care. A 

few new ideas are used in the analysis, which 

were not discussed in the earlier chapters. 

Consider the equation 𝑥2 − 𝑥 − 1 = 0. It has 

two solutions of which one is the number 𝜙 

(the ‘golden ratio’) given by 𝜙 =
√5+1

2
=

1.6180339 …………. It can be shown (by 

arguments similar to those used earlier, in 

showing that √2 is not rational), that 𝜙 is not 

rational; that is, it does not equal the ratio of 

two non-zero integers. This has the following 

implication. If c and d are integers such that 

c𝜙 +d = 0, then c and are both 0. For if c𝜙 +d 

= 0 and c ≠ 0 then we have 𝜙 =  −
𝑑

𝑐
, a 

rationed number. Since this can’t be, we must 

have c = 0; but this forces d to be 0 too.  

By definition, substituting 0 for x in 𝑥2 − 𝑥 −

1 yields 0, Since 𝑎𝑥17 + 𝑏𝑥16 + 1 is a multiple 

of 𝑥2 − 𝑥 + 1, substituting 𝜙 for x in 𝑎𝑥17 +

𝑏𝑥16 + 1 must yield 0; that is 𝑎 𝜙17 + 𝑏𝜙16 +

1 = 0. Since the result of substituting 𝜙 in 

𝑥2 − 𝑥 − 1yields 0, we must have 𝜙2 =  𝜙 +

1. This relation allows us to express all 

powers of 𝜙 in the form c𝜙 +d where c and d 

are integers. For example, 𝜙3 =  𝜙 + 𝜙2 =

 𝜙 × (𝜙 + 1) =  𝜙2 + 𝜙 = 2𝜙 + 1, the 

relation, 𝜙 = 𝜙+ I being used repeatedly. 

Similarly, 𝜙4 =  𝜙 × 𝜙3 =  𝜙 × (2𝜙 + 1) =

2𝜙2 + 𝜙 = 3𝜙 + 2. In general, if we have 

expressed 𝜙𝑛−1 in the form c𝜙+d, then, we 

have 𝜙𝑛 =  𝜙 × 𝜙𝑛−1 =  𝜙 × (𝑐𝜙 + 𝑑) =

𝑐𝜙2 + 𝑑𝜙 = 𝑐(𝜙 + 1) + 𝑑𝜙 = (𝑐 + 𝑑)𝜙 + 𝑐 

Since we have already expressed 𝜙4 in the 

stated form, We may now do the same for any 

higher power of 𝜙 . We display below some of 

the results of these computations, 

𝜙5 = 50 + 3,     𝜙6 = 8𝜙 + 5,  

𝜙7 = 1.3𝜙 + 8,         𝜙8 = 21𝜙 +

13,…….  

………… ..        𝜙15 = 610𝜙 + 377,   

𝜙16 = 987𝜙 + 610,      𝜙17 =

1597𝜙 + 987,  

As already noted that if c and d are integers, 

such that c𝜙 +d = 0, then we have c = 0 and d 

= 0. Since a and b are integers, so are 
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1597𝑎 + 987𝑏 𝑎𝑛𝑑 987𝑎 + 610𝑏 +

1 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 𝑤𝑒 𝑑𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑎𝑡 

1597𝑎 + 987𝑏 = 0, 987𝑎 + 610𝑏 =

 −1  

This is a pair of simultaneously equations in a 

and b, and it is easily solved (by the usual 

elimination technique) we obtain a = 987, b 

= -1597. We thus obtain the required answer 

and we see that there is just one pair of 

integers (a, b) such that 𝑥2 − 𝑥 − 1 is a 

divisors of 𝑎𝑥17 + 𝑏𝑥16 + 1; namely (a, b) = 

(987, -1597). 

8) Find all prime numbers P such that the 

number 𝑷𝟐 + 𝟏𝟏 has exactly 6 divisors. 

Sol.: We first note that the choice p =2 does 

not work as 22 + 11 = 15 = 3 × 5 has 4 and 

not 6 divisors. So P must be an odd prime, 

implying that 𝑃2 + 11 is even and therefore 

contains the prime 2 as a factor. 

We know now use the formula for d(n), the 

divisor function. Since 6 = 3 × 2, there are 

precisely two categories of number with 6 

divisors, those of the kind 𝑞5 (with q prime) 

and those of the kind 𝑞2𝑟(with q, r unequal 

primes). So, if 𝑃2 + 11  has 6 divisors, then 

𝑃2 + 11 = 𝑞5 𝑜𝑟 𝑞2𝑟 where q, r are primes, q 

≠ r. The 1st case is quickly ruled out, our 

earlier observation tells us that q = 2, but this 

does not work, as there is no prime P with 

𝑃2 + 11 = 25. 

Now we shall consider 𝑃2 + 11 = 𝑞2𝑟. 

Observe that P = 3 works; for 32 + 11 = 20 =

 22 × 5, which has 6 divisors. We need to only 

consider the case when P>3. Since P is prime, 

it is indivisible by 3, so p ≡±1, which means 

that 𝑝2 ≡ 1 (𝑚𝑜𝑑 3) and therefore that 𝑃2 +

11 ≡ 0 (𝑚𝑜𝑑 3) so, 3 is a divisor of 𝑃2 + 11. 

This means that q, r are 2, 3 in some order. 

However, neither possibility works; for 

neither 223 = 12 𝑛𝑜𝑟 322 = 12 is the form 

𝑃2 + 11 for any time P. 

 

9)  Find the positive integer n for which the 

following holds if its divisors are listed in 

increasing order as 

𝒅𝟏, 𝒅𝟐, 𝒅𝟑, … , 𝒘𝒊𝒕𝒉 𝒅𝟏 = 𝟏 𝒕𝒉𝒆𝒏 𝒏 =

 𝒅𝟏𝟑 + 𝒅𝟏𝟒 + 𝒅𝟏𝟓 𝒂𝒏𝒅 (𝒅𝟓 + 𝟏)
𝟑 = 𝒅𝟏𝟓 +

𝟏 

Sol.: An impossible problem? Not quite; Let 

𝑎 =
𝑛

𝑑13
, 𝑏 =

𝑛

𝑑14
𝑎𝑛𝑑 𝑐 =

𝑛

𝑑15
. Then since 𝑑13 +

𝑑14 + 𝑑15 = 𝑛 𝑎𝑛𝑑 𝑑13 < 𝑑14 < 𝑑15, we 

deduce that 𝑎 > 𝑏 > 𝑐, 𝑎𝑛𝑑
1

𝑎
+
1

𝑏
+
1

𝑐
= 1. 

In this equation we must have 𝑐 > 1. (𝐼𝑓 𝑐 =

1, 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 𝑤𝑜𝑢𝑙𝑑 𝑒𝑥𝑐𝑒𝑒𝑑1. ) If 𝑐 ≥ 3, 

then a>b>3, and 
1

𝑎
+
1

𝑏
+
1

𝑐
<
1

3
+
1

3
+
1

3
= 1; 

the above equation could never hold good so 

we must have c>3, which implies that c = 2 

and therefore that a>b>2 and  
1

𝑎
+
1

𝑏
=
1

2
 Next, 

suppose that 𝑏 ≥ 4. Then a >4 and 
1

𝑎
+
1

𝑏
<

1

4
+
1

4
=
1

2
; the equation 

1

𝑎
+
1

𝑏
=
1

2
  could never 

hold good so, b<4, which means that b= 3. 

Since 
1

𝑎
+
1

𝑏
=
1

2
. We get a = 6. So the values of 

a, b, c are now all known using these values 

we see that 𝑑13 =
𝑛

6
, 𝑑14 =

𝑛

3
 𝑎𝑛𝑑 𝑑15 =

𝑛

2
. 

Three deductions now follows: 

(a) n is divisible by 6, so 
2

𝑛
,
3

𝑛
; 

(b)  as n cannot have  a  proper divisor 

greater than 
𝑛

2
 (this is true for any n), 

there can be only divisor after 𝑑15, 

namely n itself; implying that n has 

exactly 16 divisors, with 𝑑16 = 𝑛; 

(c) 
𝑛

2
+ 1 is a cube (its cube root is 𝑑5 + 1) 

Next, suppose that 5 is a divisor of n. Then, 

depending upon whether n is divisible by 4 or 
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not, the first five divisors of n are either1, 2, 3, 

4, 5 or 1, 2, 3, 5, 6. So either 𝑑5 = 5 𝑜𝑟 𝑑5 = 6. 

The first possibility leads to 
𝑛

2
+ 1 =

 (5 + 1)3 = 216 𝑜𝑟 𝑛 = 430. while the second 

leasts to 
𝑛

2
+ 1 = (6 + 1)3 = 343 𝑜𝑟 𝑛 = 684. 

But 430 is not divisible by 6 (whearas, it is 

already know that 
6

𝑛
) and 684 is not divisible 

by 5. This contradictory state of affairs tells 

us that n does not have 5 as a prime factor. 

Since 16 has following five factorization; 16 

=8 × 2 = 4 × 4 = 4 × 2 × 2 = 2 × 2 × 2 × 2, 

there are five classes of numbers with 16 

divisors; those of the kinds 𝑝15, 𝑝7 × 𝑞, 𝑝3 ×

𝑞3, 𝑝3 × 𝑞 × 𝑟 𝑎𝑛𝑑 𝑝 × 𝑞 × 𝑟 × 𝑠 where p, q, r, 

s are distinct primes, each greater than 5. We 

shall now consider each of these cases in turn. 

We already know that n is divisible by the 

primes 2 and 3, so the possibility n = 𝑝15 is 

ruled out. 

If 𝑛 =  𝑝7 × 𝑞. then we must have 𝑛 =  27 ×

3 = 384 𝑜𝑟 𝑛 =  37 × 2 = 4374;𝑤ℎ𝑖𝑙𝑒 𝑖𝑓 𝑛 =

𝑝3 × 𝑞3, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑚𝑢𝑠𝑡 ℎ𝑎𝑣𝑒 𝑛 =  23 × 33 =

216. In one of these three cases is 
𝑛

2
+ 1 a 

cube. So, this possibility too is ruled out. 

If  𝑝 × 𝑞 × 𝑟 × 𝑠, then, as earlier, 2, 3 ∊ {p, q, r, 

s}. So, n is of the form 6pq where p, q are 

distinct primes, say with 5 < 𝑝𝑞. The 16 

divisors of n are in this case 1, 2, 3, 6, 

𝑝(= 𝑑5), … , 𝑝𝑞(= 𝑑13), 2𝑝𝑞(𝑑14, 3𝑝𝑞 =

 𝑑15), 6𝑝𝑞. The relation 
𝑛

2
+ 1 = (𝑑5 + 1)

3 

reduces to 3𝑝𝑞 + 1 = (𝑝 +

1)3, 𝑤ℎ𝑖𝑐ℎ 𝑦𝑒𝑖𝑙𝑑𝑠 3𝑝 =  𝑝2 + 3𝑝 + 3. Since 3 

is a divisor of each of the quantities 3q, 3p 

and 3, we must have 
3

𝑝2
, which is absurd as p 

is a prime number greater than 5. So this 

possibilities is also ruled out. 

If 𝑛 =  𝑝3 × 𝑞 × 𝑟, 𝑡ℎ𝑒𝑛 2, 3 ∈ {𝑝, 𝑞, 𝑟}, so n is 

one of the following forms: 24𝑝, 54𝑝, 6𝑝3, 

where p is a prime number greater than 5. 

Each of these cases must now be considered. 

In each case, the first four divisors of n are 1, 

2, 3, 6. We quickly ascertain that p = 7 does 

not yield a solution because none of the 

numbers 12 × 7 + 1 = 85, 27 × 7 + 1 =

190, 3 × 73 + 1 = 1030 is a cube. Therefore, 

p> 7, which in facts means that 𝑝 ≥ 11. If n = 

24p then the next divisor after 6 is 𝑑5 = 8, 

yielding 
𝑛

2
+ 1 = (8 + 1)3 = 729, 𝑜𝑟 𝑛 =

1456,  but this cannot be, as 24 is not even a 

divisor of 1456. 

If n = 54p then the next divisor after 6 is  

𝑑59, 𝑦𝑒𝑖𝑙𝑑𝑖𝑛𝑔 
𝑛

2
+ 1 = (9 + 1)3 =

1000, 𝑜𝑟 𝑛 = 1998 = 54 × 37.  Therefore p = 

37. Does this fit the given condition the 16 

divisors of 1998 are 1, 2, 3, 6, 9, 18, 27, 37, 54, 

74, 111, 222, 333, 666, 999 and 1998, 

therefore 𝑑5 = 9, 𝑑13 = 333, 𝑑14 = 999. The 

conditions do indeed hold good! 

Finally, of 𝑛 = 6𝑝3, 𝑤𝑖𝑡ℎ 𝑝 ≥ 11, 𝑡ℎ𝑒𝑛 𝑑5 = 𝑝. 

So we obtain the equation 3𝑝3 +

1(𝑝 + 1)3, 𝑜𝑟 3𝑝3 = 𝑝3 + 3𝑝2 + 3𝑝. This 

implies that 
3

𝑝
, an absurdity. So there is no 

solution to be found here. 

Thus there is just one number which fits the 

given conditions: 𝑛 = 1998 = 2 × 33 × 37.  

10)   Let n be the positive integer with at least 

4 divisors and let its divisors is be 

𝒅𝟏, 𝒅𝟐, 𝒅𝟑, 𝒅𝟒, … .,  where 𝒅𝟏 < 𝒅𝟐 < 𝒅𝟑 <

𝒅𝟒 < ⋯ ,𝑤𝑖𝑡ℎ 𝒅𝟏 = 𝟏. find all possible 

values of n it is known that n = 𝒅𝟏
𝟐 +

𝒅𝟐
𝟐 + 𝒅𝟑

𝟐 + 𝒅𝟒
𝟐 

Sol.: Obviously 𝑑1 = 1. If n were odd, then all 

its divisors would be old and 1+𝑑2
2 + 𝑑3

2 +

𝑑4
2 would be a sum of four old numbers, 

therefore even; a contradiction. So n is even, 

which means that 𝑑2 = 2. Let 𝑑3 𝑎𝑛𝑑 𝑑4 be 
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denoted by a and b, for the case of writing; 

then 𝑛 = 5 + 𝑎2 + 𝑏2, 𝑤𝑖𝑡ℎ
𝑎

𝑛
,
𝑏

𝑛
, 2 < 𝑎 < 𝑏. 

Suppose that a is even. Then 𝑎 = 22 = 4 (the 

only possibility) so 𝑛 = 21 + 𝑏2 and since b 

must be old, it is the least odd prime divisor 

of n. Since 
2𝑏

𝑛
 it follows that 

2𝑏

21
+ 𝑏2, 𝑠𝑜

𝑏

21
 and 

therefore b = 3 or 7, which means that n = 30 

or 70. It may be checked however that neither 

30 nor 70 fits given conditions. 

So a is odd, and therefore is even, can be 4?  

Then it can only be the case that a = 3 and 

𝑛 = 5 + 32 + 42 = 30. But 30 does not fit the 

conditions so b > 4, and since b is first even 

divisors of after 2, it must happen that b = 2a. 

So, 𝑛 =  5 + 𝑎2 + (2𝑎)2 𝑜𝑟 𝑛 = 5 + (1 + 𝑎2). 

Since 
𝑎

𝑛
 we must have 

𝑎

5
+ (1 + 𝑎2). Since a 

and 1+𝑎2 have no factors in common, we 

conclude that 
𝑎

5
 ∴ a = 5, forcing 𝑛 = 5 × 26 =

130. And this does fit the given conditions: 

The first four divisors of 130 are 1, 2, 5, 10 

and indeed 130 = 12 + 22 + 52 + 102. So 

there is precisely one number which satisfies 

the given conditions. 

11) Let p > 2 be a prime suppose, the sum 𝟏 +
𝟏

𝟐
+
𝟏

𝟑
+⋯+

𝟏

𝒑−𝟏
 be denoted by 

𝑨𝒑

𝑩𝒑
 where 

Ap and Bp are co-prime positive integers. 

For example, when p = 5, we get the sum 
𝟐𝟓

𝟏𝟐
, 𝒔𝒐 𝑨𝟓 = 𝟐𝟓,𝑩𝟓 = 𝟏𝟐 𝒂𝒏𝒅 𝒘𝒉𝒆𝒏 𝒑 =

𝟏𝟏 we get the sum 
𝟕𝟑𝟖𝟏

𝟐𝟓𝟐𝟎
, 𝒔𝒐 𝑨𝟏𝟏 =

𝟕𝟑𝟖𝟏,𝑩𝟏𝟏 =

𝟐𝟓𝟐𝟎 𝒐𝒃𝒔𝒆𝒓𝒗𝒆 𝒕𝒉𝒂𝒕
𝟓

𝑨𝟓
 𝒂𝒏𝒅

𝟏𝟏

𝑨𝟏𝟏
. Show 

that 
𝑷

𝑨𝒑
 is always hold. 

Sol.: Since 𝑃 − 1 is an even number, we pay 

pair the numbers 1, 2, 3, …, P -1 thus; 

{1, 𝑝 − 1}, {2, 𝑝 − 2}…… .,  the sum of the 

numbers in each pair being P. Now observe 

that 
1

1
+

1

𝑝−1
=

𝑝

𝑝−1
,
1

2
+

1

𝑝−2
=

𝑝

2(𝑝−2)
,  and 

more generally, for any i(1 < 𝑖 ≤ 𝑝 − 1) 

1

𝑖
+

1

𝑝−𝑖
=

𝑝

𝑖(𝑝−𝑖)
 so the sum 

1

1
+
1

2
+⋯+

1

(𝑝−1)
 

may be written in the from 
𝑝

𝑝−1
+

𝑝

2(𝑝−2)
+

𝑝

3(𝑝−3)
…… . , 𝑤𝑖𝑡ℎ

(𝑝−1)

2
 fractions in all, each 

with a numerator p. The 1cm of the 

denominators of these fraction is not divisible 

by p, as the numbers 𝑝 − 1, 2(𝑝 − 2), 3(𝑝 −

3),…., are not divisible by p(each is a product 

of number less than p, therefore not divisible 

by p). So the p in the numerator remains-it 

does not get cancelled away with anything in 

the denominator. It follows that the 

numerator of sum contains a factor of p. In 

other words, 𝐴𝑝 is divisible by p. In fact, for 

primes p greater than 3, 𝐴𝑝 is divisible not 

just by p but by 𝑝2; but this is lot harder to 

prove and we shall not attempt it here. The 

reader should refer to the text by Hardy and 

wright for a proof. 

12) If the sum 𝟏 +
𝟏

𝟐
+
𝟏

𝟑
+⋯+

𝟏

𝟗𝟗
+

𝟏

𝟏𝟎𝟎
 be 

computed and written as 
𝑨

𝑩
.  Where A and 

B are positive integer with no common 

factors. Show that neither A nor B is 

divisible by 5. 

Sol.: We start by grouping the denominators 

1, 2, …, 100 into different, subsets depending 

upon their divisibility by 5. Specifically for k 

= 0, 1 and 2, let 𝑆𝑘 be the set of numbers n 

between 1 and 100 (both inclusive) for which 

power (5, n)= k. That is, so has all the non-

multiple of 5, 𝑆1 has the multiples of 5 which 

are not multiplies of 25, and 𝑆2 has the 

multiplies of 25: 

𝑆0 =

{1, 2, 3, 4, 5, 6, 7, 8, … , 97, 98, 99}  

𝑆1
= {5, 10, 15, 20, 30,… , 85, 90, 95} 
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𝑆2 = {25, 50, 75, 100} 

Next, let 𝐴𝑘 for k = 0, 1, 2 be defined thus: 

𝐴0 = 100! (1! +
1

2
+
1

3
+
1

4
+
1

6

+⋯+
1

99
). 

𝐴1 = 100! (
1

5
+
1

10
+
1

15
+
1

20

+
1

30
+⋯+

1

95
). 

𝐴2 = 100! (
1

25
+
1

50
+
1

75
+

1

100
) 

(The bracketed expressions on the right are, 

respectively the sums of the reciprocals of the 

of the numbers in 𝑠0, 𝑠1 and 𝑠2) obviously, 

𝐴0, 𝐴1, 𝐴2 are integers (multiplication by 100! 

“clears the function”) and 
𝐴

𝐵
=
𝐴0+𝐴1+𝐴2

100!
. 

Now observe that 𝐴2 =
100!

25
(1 +

1

2
+
1

3
+
1

4
) −

2𝑝 implying that power (5, 𝐴2)= power (5, 

100!) since power (5, 100!) = [
100

5
] + [

100

25
] =

 20 + 4 = 24, we deduce that power (5, 𝐴2) = 

24. 

Next, let us consider 𝐴1. We shall make 

repeated use of the following readily-verified 

identity 

1

5𝑛 + 1
+

1

5𝑛 + 2
+

1

5𝑛 + 3

+
1

5𝑛 + 4
 

=
50(2𝑛 + 1)(5𝑛2 + 5𝑛 + 1)

(5𝑛 + 1)(5𝑛 + 2)(5𝑛 + 3)(5𝑛 + 4)
 

Observe that the denominator on the right is 

indivisible by 5, as is the quantity 5𝑛2 + 5𝑛 +

1. So, if the sum on the left is written as 
𝑎

𝑏
 

where a, b are coprime, then b is indivisible 

by 5, and power (5, a) is at least 2(by virtue 

of the factor of 50). Now rewrite the 

expression for 𝐴1 as 

100!

5
[(
1

1
+
1

2
+
1

3
+
1

4
) +⋯

+ (
1

16
+
1

17
+
1

18
+
1

19
)] 

The dots represent two more bracketed 

expressions (there are four such expression 

in all). Each bracketed expression on the right 

yields a fraction with a numerator which is a 

multiple of 25. So it follows that, power (5, 

𝐴1) ≥ 24 − 1 + 2 = 25. When the same 

argument is applied to the defining 

expression for 𝐴0, it yields the following sum: 

100! [(
1

1
+
1

2
+
1

3
+
1

4
)

+ (
1

96
+
1

97
+
1

98
+
1

99
)] 

And as each bracketed expression on the 

right yields a fraction with denominator 

invisible by 5 and a numerator which is a 

multiple of 25, we have power (5, 𝐴0) ≥ 24 +

2 = 26. Summarizing our finding, we have 

power (5, 𝐴0) ≥ 26, 

𝑃𝑜𝑤𝑒𝑟 (5, 𝐴1) =≥ 25,  

𝑃𝑜𝑤𝑒𝑟 (5, 𝐴2) ≥ 24  

From which it follows that power 

(5, 𝐴0 + 𝐴1 + 𝐴2) = 24. 

Finally using the fact that power (5, 100!) = 

24, we deduce that in the fraction 
𝐴

𝐵
=

𝐴0+𝐴1+𝐴2

100!
 the numerator and denominator are 

divisible by the same power of 5. This means 

that when common factors are cancelled 

away, 5 is not present as a factor in either the 

numerator or denominator; that is both A and 

B are indivisible by 5. 

13) Show that if the positive integer n is such 

that 2n +1 and 3n +1 are both squares, 

then 
𝟒𝟎

𝒏
. 
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Sol.: Let 2𝑥 + 1 =  𝑥2 𝑎𝑛𝑑 3𝑥 + 1 =  𝑦2 where 

x and y are n for which these equations holds 

are shown in the following table: 

x   1    9   89   881 

y   1    11  109   1079 …….. 

n  0    40   3960   388080……… 

This table is full of tantalizing patterns! 

We need to so that n is a multiple of 40. Since 

𝑛 =
(𝑥2−1)

2
, this is the same as showing that 

𝑥2 − 1 is a multiple of 80. So , it suffices to 

show the following if x, y are integers such 

that 3𝑥2 − 2𝑦2 = 1, 𝑡ℎ𝑒𝑛 𝑥2 − 1  (𝑚𝑜𝑑 80). 

To show this, it is enough to show that  𝑥2 ≡

1(𝑚𝑜𝑑 5)𝑎𝑛𝑑 𝑥2 ≡ 1 (𝑚𝑜𝑑 16); 𝑓𝑜𝑟 𝑖𝑓
5

𝑥2
−

1 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜
16

𝑥2
− 1 𝑡ℎ𝑒𝑛 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑙𝑦

80

𝑥2
− 1 . 

First we note that x must be odd; for  3𝑥2 =

1 + 2𝑦2, an odd number. Next, note that since 

(±1) ≡ 1(𝑚𝑜𝑑 5)𝑎𝑛𝑑(±2) ≡ 4 mod, all 

squares are congruent to 0, 1 or 4 (mod 5); 

and since (±3)2 ≡ (±5)2 ≡ 9 (mod 16) all 

odd suppose that 𝑥2 = 0 (mod 5); then 3𝑥2 −

1 ≡ 1, 

∴ 2𝑦2 ≡ −1, 𝑠𝑜 𝑦2 ≡ 2 (𝑚𝑜𝑑 5); but this is 

not possible. The possibility 𝑥2 ≡ 4 (mod 5) 

is ruled out similarly it leads to 𝑦2 ≡ 3 (mod 

5). Therefore, 𝑥2 ≡ 1 (mod 5). Next, suppose 

that 𝑥2 ≡ 9 (mod 16); then 3𝑥2 − 1 ≡ 10 

(mod 16) therefore 2𝑦2 ≡ 10, leading to 𝑦2 ≡

5 (mod 16) or 𝑦2 ≡ 13 (mod 16). But both 

these are impossible! All odd squares are 

congruent to 1 or 9 (mod 16) 

Therefore, 𝑥2 ≡ 1 (mod 16) 

Since 𝑥2 ≡ 1 (mod 5) and 𝑥2 ≡ 1 (mod 16), it 

follows that 𝑥2 ≡ 1 (mod 80), and therefore 

that 
40

𝑛
. 

14) Let T be the set of all triplets (a, b, c) of 

integers such that 𝟏 ≤ 𝒂 ≤ 𝒃 ≤ 𝒄 ≤ 𝟔. For 

each triplet (a, b, c) in T, take the number 

a× 𝒃 × 𝒄 and odd all these nmubers 

corresponding to all the triplets in T. Show 

that this sum is divisible by 7. 

Sol.: If (a, b, c) is a valid triplet then (7 −

𝑐, 7 − 𝑏, 7 − 𝑎) is also a valid triple as 1 ≤

(7 − 𝑐) ≤ (7 − 𝑏) ≤ (7 − 𝑎) ≤ 6.  Note 

(7 − 𝑏) ≠ 𝑏 etc. 

Let S = ∑ (𝑎, 𝑏, 𝑐)1≤𝑎≤𝑏≤𝑐≤6  then by the above  

𝑆 =  ∑ (7 − 6)(7 − 𝑏)(7 − 𝑐)

1≤𝑎≤𝑏≤𝑐≤6

 

∴ 2𝑆 =  ∑ [(𝑎, 𝑏, 𝑐)

1≤𝑎≤𝑏≤𝑐≤6

+ (7 − 𝑎)(7 − 𝑏)(7

− 𝑐)] 

In the R. H. S. every term is divisible by 7. i.e. 
7

2𝑠
 and hence, 

7

𝑠
. 

15) A sequences of numbers 𝒂𝒏, 𝒏 − 𝟏, 𝟐,…. is 

defined as follows: 𝒂𝟏 =
𝟏

𝟐
𝒂𝒏𝒅 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒏 ≥ 𝟐, 𝒂𝒏 =

(
𝟐𝒏−𝟑

𝟐𝒏
)𝒂𝒏−𝟏 𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 ∑ 𝒂𝒌

𝒏
𝒌=𝟏 <

1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1. 

Sol.: Given: 𝑎1 =
1

2
 𝑓𝑜𝑟 𝑛 ≥ 2 

𝑠𝑜, 𝑎𝑛 =
2𝑘 − 3

2𝑘
𝑎𝑘−1 𝑓𝑜𝑟 𝑘 ≥ 2. 

𝑜𝑟 2𝑘𝑎𝑘 = (2𝑘 − 3)𝑎𝑘−1

⟹ 2𝑘𝑎𝑘
− (2𝑘 − 3)𝑎𝑘−1 = 0 

⟹ 2𝑘𝑎𝑘 − 2(𝑘 − 1)𝑎𝑘−1 − 𝑎𝑘−1 = 0 

⟹ 2𝑘𝑎𝑘 − 2(𝑘 − 1)𝑎𝑘−1

= −𝑎𝑘−1………… . . (1) 
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Now adding up Eq. (1) from k = 2 to k = (n 

+1), we have 

4𝑎2 − 2𝑎1 = −𝑎1
6𝑎3 − 2𝑎2 = −𝑎2
8𝑎4 − 6𝑎3 = −𝑎3

⋮ 
⋮ }

 
 

 
 

 ………… . (2) 

2𝑛𝑎𝑛 − 2(𝑛 − 1)𝑎𝑛−1
= −𝑎𝑛−1, 2(𝑛

+ 1)𝑎𝑛+1 − 2𝑛𝑎𝑛 

= −𝑎𝑛 𝑠𝑢𝑚𝑚𝑖𝑛𝑔, 𝐸𝑞. (2), 𝑤𝑒 𝑔𝑒𝑡, 2(𝑛

+ 1)𝑎𝑛+1 − 2𝑎1 

= −∑𝑎𝑘

𝑛

𝑘=1

⟹∑𝑎𝑘

𝑛

𝑘=1

= 2𝑎1 − 2(𝑛 + 1)𝑎𝑛+1
= 1 − 2(𝑛 + 1)𝑎𝑛+1 

𝑎1 =
1

2
, 𝑎𝑛 = (1 −

3

2𝑛
)𝑎𝑛−1 

⟹ 𝑎2 = (1 −
3

4
)
1

2
,=
1

2
×
1

4
=
1

8

⟹ 𝑎3 = (1 −
3

6
)
1

8
 

=
1

2
×
1

8
=

1

16
    𝑎𝑛: (1 −

3

2𝑛
) 𝑎𝑛−1  is 

positive as (1 −
3

2𝑛
) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 2  is 

positive and 𝑎1, 𝑎2, 𝑎3, ………. are all 

positive. Since each 

𝑎𝑖  𝑖𝑠 𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 (1 −

3

2𝑖
) 𝑎𝑖−1 𝑎𝑛𝑑 𝑎𝑖 > 0 implies that 𝑎2 >

0…… 𝑎𝑖−1 > 0 and hence,  

∑ 𝑎𝑘

𝑛

𝑘=1

= 1 − 2(𝑛 + 1)𝑎𝑛+1 < 1. [

∵ 2(𝑛 + 1)𝑎𝑛+1 > 0 

 

16) Prove that 𝒏 =
𝟏

𝟖
{(𝟏𝟕 + 𝟏𝟐√𝟐)

𝒎
+

(𝟏𝟕 − 𝟏𝟐√𝟐)
𝒎
} + 𝟔 is an integer for all n 

∊ N and hence, show that both 

(𝒏 − 𝟏)(𝟐𝒏 − 𝟏) are perfect squares for 

all n ∊ N. 

Sol.: As is problem 73, the terms containing 

√2 vanishes in the expansion of (17 +

12√2)
𝑚
+ (17 − 12√2)

𝑚
 and integral terms 

are all multiplies of 8 and hence, n is an 

integers, (prove it) 𝑛 − 1 =
1

8
× [(17 +

12√2)
𝑚
+ (17 − 12√2)

𝑚
+ 6 − 8] =

1

8
×

[(17 + 12√2)
𝑚
+ (17 − 12√2)

𝑚
− 2] 

comparing the above expansion from the 

result of problem 71. We get, 

17 + 12√2 =  (3 + 2√2)2, 17 − 12√2

= (3 − 2√2)2 𝑎𝑔𝑎𝑖𝑛 𝑏𝑜𝑡ℎ (17

+ 12√2)(17 − 12√2)𝑎𝑛𝑑 (3

+ 2√2)(3 − 2√2)𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1. 

𝑆𝑜,
1

8
× [(17 + 12√2)

𝑚

+ (17 − 12√2)
𝑚
− 2] 

=
1

8
× {[(3 + 2√2)

𝑚−2
] +

[(3 − 2√2)𝑚−2] − 2 × (3 + 2√2)(3 −

2√2)}  

=
1

8
× [
(3 + 2√2)

𝑚2

+ (3 − 2√2)
𝑚2

2√2
] 

𝑎𝑛𝑑 2𝑛 − 1 =
1

4
× [(17 + 12√2)

𝑚
+

(17 − 12√2)
𝑚
+ 6 − 4]  

=
1

4
× [(17 + 12√2)

𝑚
+ (17 −

12√2)
𝑚
+ 2]  
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= [
(3+2√2)

𝑚
+(3−2√2)

𝑚

2
] and hence the 

result show that (3 + 2√2)
𝑚
−

(3 − 2√2)
𝑚

 and 
(3+2√2)

𝑚
+(3−2√2)

𝑚

2
 

are and so 
(1+√2)

𝑛
+(1−√2)

𝑛

2√2
 is also an 

integer and hence, their sum is also an 

integer. Thus, 

1

32
[(17 + 12√2)

𝑚
+ (17 − 12√2)

𝑚
−

2] is a square integer. To show that 

Exp. (1) can be written as 
1

2
𝑚(𝑚 + 1) 

consider the Exp. (2)  
1

32
×

[(17 + 12√2)
𝑚
+ (17 − 12√2)

𝑚
− 2] 

= {
(1 + √2)

𝑛
+ (1 − √2)

𝑛

2
}

2

{
(1 + √2)

𝑛
− (1 − √2)

𝑛

2√2
}

2

 

=
1

2
[
{(1+√2)

𝑛
−(1−√2)

𝑛
}
2

4
]. 

[
{(1 + √2)

𝑛
+ (1 − √2)

𝑛
}
2

4
] 

For all n, we shall show that 

{(1+√2)
𝑛
−(1−√2)

𝑛
}
2

4
 
{(1+√2)

𝑛
+(1−√2)

𝑛
}
2

4
 

are consecutive integers clearly, for n 

= 1, we get 

{(1 + √2)
𝑛
− (1 − √2)

𝑛
}
2

4
=
8

4

= 2 𝑎𝑛𝑑
{(1 + √2)

𝑛
+ (1 − √2)

𝑛
}
2

4

=
4

4
= 1 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓𝑜𝑟 𝑛 = 1 

{(1 + √2)
𝑛
+ (1 − √2)

𝑛
}
2

4
 𝑎𝑛𝑑  

{(1 + √2)
𝑛
− (1 − √2)

𝑛
}
2

4
  

Are consecutive integers. For any n, 

(1 + √2)
𝑛
− (1 − √2)

𝑛

2
 𝑎𝑛𝑑 

(1 + √2)
𝑛
+ (1 − √2)

𝑛

2
 

Are integers (prove) and hence 

{
(1 + √2)

𝑛
− (1 − √2)

𝑛

2
}

2

= {
(1 + √2)

𝑛
− (1 − √2)

𝑛

4
}

2

 

𝑎𝑛𝑑 {
(1 + √2)

𝑛
− (1 − √2)

𝑛

2
}

2

= {
(1 + √2)

𝑛
− (1 − √2)

𝑛

4
}

2

 

𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. 𝑁𝑜𝑤

= {
(1 + √2)

𝑛
− (1 − √2)

𝑛

4
}

2

 

=
(1 + √2)

2𝑛
+ (1 − √2)

2𝑛
− 2

4
 

=
(3 + 2√2)

𝑛
+ (3 − 2√2)

𝑛
− 2

4
……… . . (3) 

𝑎𝑛𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, {
(1 + √2)

𝑛
− (1 − √2)

𝑛

4
}

2

 

=
(3 + 2√2)

𝑛
+ (3 − 2√2)

𝑛
− 2

4
……… . (4) 

∴ From Exp (3) and (4), we find that 

{(1 + √2)
𝑛
+ (1 − √2)

𝑛
}

4
 𝑎𝑛𝑑 
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{(1 + √2)
𝑛
− (1 − √2)

𝑛
}

4
 

𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚
2𝑘−2

4
 𝑎𝑛𝑑

2𝑘+2

4
 𝑜𝑟

1

2
(𝑘 −

1)𝑎𝑛𝑑
1

2
(𝑘 + 1) and hence, they differ 

by 
1

2
(𝑘 + 1) −

1

2
(𝑘 − 1) = 1. 

𝑆𝑜 
1

32
× {(17 + 12√2)

𝑛

− (17 − 12√2)
𝑛
− 2} 

=
1

2
× {
(1 + √2)

𝑛
− (1 − √2)

𝑛

4
}

2

× {
(1 + √2)

𝑛
+ (1 − √2)

𝑛

4
}

2

 

=
1

2
×
(𝑘−1)

2
×
(𝑘+1)

2
𝑜𝑟 =

1

2
(𝑚 −

1)𝑚 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦
𝑚(𝑚+1)

2
  and 

hence, the result. 

Note: This 
1

32
[(17 + 12√2)

𝑛
+

(17 − 12√2)
𝑛
− 2] gives you an 

infinite family of square and 

triangular numbers. 

17) Show that for 𝒇(𝒎) =
𝟏

𝟖
{(𝟑 +

𝟐√𝟐)
𝟐𝒎+𝟏

+ (𝟑 − 𝟐√𝟐)
𝟐𝒎+𝟏

−

𝟔}𝒃𝒐𝒕𝒉 𝒇(𝒎) + 𝟏 𝒂𝒏𝒅 𝟐𝒇(𝒎) + 𝟏 are 

perfect squares for all n∊ N by showing 

that 𝒇(𝒎) is an integer. 

Sol.: First let us show that the expression  

𝑓(𝑚) =
1

8
[(3 + 2√2)

2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] 

𝑓𝑜𝑟 𝑚 = 1,
1

8
× [(3 + 2√2)

2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] 

=
1

8
× [2 × 3𝐶0 × 3

3 + 2 × 3𝐶2 × 3
1

× (2√2)
2
− 6] 

=
1

8
× [54 + 144 − 6] =

1

8
× [192] =

 24 and hence, is an integer. For any 

m>1 let us prove that the expression, 

𝑓(𝑚 + 1) =
1

8
[(3 + 2√2)

2𝑚+1
+

(3 − 2√2)
2𝑚+1

− 6] is an integer. 

Expanding and cancelling the terms, 

we get 

𝑓(𝑚 + 1) =
1

8
× [(3 + 2√2)

2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] 

=
1

4
× [32𝑚+1 + 2𝑚 +

1𝐶2 . 3
2𝑚−1(2√2)

2
+ 2𝑚 +

1𝐶4 . 3
2𝑚−3. (2√2)

4
+⋯+

2𝑚 + 1𝐶2 . 3(2√2)
2𝑚−1

− 3]  

=
1

4
× [2𝑚 + 1𝐶2 . 3

2𝑚+1. (2√2)
2
+

2𝑚 + 1𝐶4 . 3
2𝑚−3. (2√2)

4
+⋯+

2𝑚 + 1𝐶2𝑚 . 3(2√2)
2𝑚
+ 32𝑚+1 − 3]  

All the terms in the above expression 

except 32𝑚+1 − 3 are multiplies of 4, 

as the even power of (2√2) is a 

multiple of 4. 32𝑚+1 − 3 = 3[9𝑚 − 1] 

is also multiple of 4. 

Now, 𝑓(𝑚) + 1 =
1

8
× [(3 +

2√2)
2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] + 1 
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=
1

8
× [(3 + 2√2)

2𝑚+1
+ (3 −

2√2)
2𝑚+1

− 6 + 8]  

=
1

8
× [(3 + 2√2)

2𝑚+1
+ (3 −

2√2)
2𝑚+1

+ 2]  

𝑁𝑜𝑤, 3 + 2√2 =  (1 + √2)
2
, 3 −

2√2 =  (1 − √2)
2

  

𝑆𝑜,
1

8
× [(3 + 2√2)

2𝑚+1
+

(3 − 2√2)
2𝑚+1

+ 2]  

=
1

8
× [{(1 + √2)

2
}
2𝑚+1

+

{(1 − √2)
2
}
2𝑚+1

+ 2]  

=
1

8
× [{(1 + √2)

2𝑚+1
}
2

+

{(1 − √2)
2𝑚+1

}
2

+ 2]  

=
1

8
× [{(1 + √2)

2𝑚+1
}
2

+

{(1 − √2)
2𝑚+1

}
2

− 2(−1)]  

=
1

8
× [{(1 + √2)

2𝑚+1
}
2

+

{(1 − √2)
2𝑚+1

}
2

− 2 × (1 +

√2)
2𝑚+1

(1 − √2)
2𝑚+1

]  

𝑆𝑖𝑛𝑐𝑒 (1 + √2)
2𝑚+1

(1 − √2)
2𝑚+1

 

= [(1 + √2)(1 − √2)]
2𝑚+1

 

=  (−1)2𝑚+1 = −1  

So the given expression is equal to 

{
(1 + √2)

2𝑚+1
− (1 − √2)

2𝑚+1

2√2
}

2

 

𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 
(1+√2)

2𝑚+1
−(1−√2)

2𝑚+1

2√2
 is an 

integer, as all the left over terms 

contain 2√2 as a factor in the 

numerator. 

𝑁𝑜𝑤, 2𝑓(𝑚) + 1 =
1

4
× [(3 +

2√2)
2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] + 1  

=
1

4
× [(3 + 2√2)

2𝑚+1
+ (3 −

2√2)
2𝑚+1

− 2] Since n is shown. Now, 

(2n +1) can be written as 

=
1

4
× [{(1 + √2)

2𝑚+1
}
2

+

{(1 − √2)
2𝑚+1

}
2

− 2]  

=
1

4
× [{(1 + √2)

2𝑚+1
}
2

+

{(1 − √2)
2𝑚+1

}
2

+ 2 × {(1 +

√2)(1 − √2)}
2𝑚+1

]  

= {
(1 + √2)

2𝑚+1
+ (1 − √2)

2𝑚+1

2
}

2

 

By a similar reasoning, the expression 

(1+√2)
2𝑚+1

+(1−√2)
2𝑚+1

2
 is an integer. 

Hence, the result. 

 

18) Suppose f is a function on the positive 

integers, which takes integers (i.e. f: N→Z) 

with the following properties 

(a) 𝒇(𝟐) = 𝟐,   (b) 𝒇(𝒎,𝒏) = 𝒇(𝒎). 𝒇(𝒏),    

(c) 𝒇(𝒎) > 𝒇(𝒏) if m > n. Find 

f(1983).  

Sol.: 𝑓(2) = 2, 𝑓(4) = 𝑓(2.2) = 𝑓(2). 𝑓(2) = 2.2 =

4,  
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𝑓(8) = 𝑓(2.4) = 𝑓(2). 𝑓(4) = 2.4 = 8. Thus we 

infer 𝑓(24) = 2
𝑛 that let us use M. I for 

proving 𝑓(21) = 2 by hypothesis………..(1) 

𝐴𝑠𝑠𝑢𝑚𝑒 𝑓(2𝑛) =  2𝑛………… . . (2)  

𝑓(2𝑛+1) = 𝑓(2. 2𝑛) =  𝑓(2). 𝑓(2𝑛) =

2. 2𝑛……………(3)  

By hypothesis and Eq. (1) and (2), we need to 

find f(n) for all n. 

Let us see that happens for 

𝑓(1), 𝑓(3) 𝑎𝑡 𝑓𝑖𝑟𝑠𝑡 𝑓(1) < 𝑓(2). 

𝑁𝑜𝑤, 𝑓(2) = 𝑓(1×2) = 𝑓(1) × 𝑓(2)⟹ 𝑓(1) = 1  

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑓(2) < 𝑓(3) < 𝑓(4), 2 < 𝑓(3) < 4  

But the only integer lying between 2 and 4 is 

3. Thus 𝑓(3) = 3. So, again we guess that 𝑓(𝑛) =

𝑛, for all n. Let us prove by using the strong 

principle of mathematical induction. 

Let 𝑓(𝑛) = 𝑛  for all n < a, fixed m ∊ N. 

Now, we should prove that 𝑓(𝑚) = 𝑚. If m is 

an even integer, then 𝑓(𝑚) = 2𝑘, 𝑎𝑛𝑑 𝑘 < 𝑚. 

So, 𝑓(𝑚) = 𝑓(2𝑘) = 𝑓(2) × 𝑓(𝑘) = 2 × 𝑘 = 2𝑘 =

𝑚. So all even m, 𝑓(𝑚) = 𝑚. If m is an odd 

integer, let m = 2k +1, and 𝑓(2𝑘) < 𝑓(2𝑘+1) <

𝑓(2𝑘+2), 2𝑘 < 𝑓(2𝑘+1) < 𝑓(2𝑘+2) 

(Because the function 𝑓(𝑛) = 𝑛 is true for all 

even integer n). But only integer lying 

between 2k and 2𝑘 + 2 𝑖𝑠 2𝑘 + 1,(since the 

range of f is integer) 

Thus, 𝑓(𝑘+1) = 2𝑘 + 1, 𝑖. 𝑒. 𝑓(𝑚) = 𝑚, in the 

case of odd m also. Thus, 𝑓(𝑛) = 𝑛,  for all n∊ 

N. 

  ∴𝑓(1983) = 1983. 

19)   Let a sequence 𝒙𝟏, 𝒙𝟐 + 𝒙𝟑, ……. of 

complex numbers de defined by 𝒙𝟏 =

𝟎, 𝒙𝒏+𝟏 = 𝒙𝒏−𝟏
𝟐 𝒇𝒐𝒓 𝒏 > 1 where 𝒊𝟐 =

 −𝟏. Find the distance of 

𝒙𝟐𝟎𝟎𝟎 𝒇𝒓𝒐𝒎 𝒙𝟏𝟗𝟗𝟕 in the complex plane. 

Sol.: Let a sequence 𝑥1 = 0, 𝑥2 = 0
2 − 𝑖, 

𝑥3 = (−𝑖)
2 − 𝑖 =  −1 − 𝑖 =  −(1 + 𝑖),  

𝑥4 = [−(1 + 𝑖)]
2 − 𝑖 = 2𝑖 − 𝑖 = 𝑖,  

𝑥5 = (𝑖)
2 − 𝑖 =  −1 − 𝑖 =  𝑥3,  

𝑥6 = (−1 − 𝑖)
2 

−𝑖 = 𝑖 =  𝑥4, 𝑥6 = 𝑥4 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑥7 =

 𝑥5 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 𝑥2𝑛 = 𝑖 𝑓𝑜𝑟 𝑛 ≥ 1, 𝑥2𝑛+1 =

−1 − 𝑖 𝑥2000 = 𝑖 = (0, 1)   in the complex 

plane, 𝑥1997 = (−1,−𝑖) = (−1,−1) in the 

complex plane. 

So the distance between 𝑥2000 𝑎𝑛𝑑 𝑥1997 is 

√12 + 22 = √5. 

 

20) Show that 𝑭(𝑷𝟏
𝒙𝟏 × 𝑷𝟐

𝒙𝟐) =  𝑭(𝑷𝟏
𝒙𝟏) ×

𝑭(𝑷𝟐
𝒙𝟐) 

Sol.: Any divisors of 𝑃1
𝛼1is 𝑃1

𝑟1 , 𝑤ℎ𝑒𝑟𝑒 0 ≤

𝑟 ≤ 𝛼1 

𝐹(𝑃1
𝛼1) =  ∑ 𝑇3

𝛼1
𝑟=0 (𝑃1

𝑟) =  ∑ (𝑟 + 1)3
𝛼1
𝑟=0  = 

sum of the cubes of the first 𝛼1 + 1 natural 

numbers, 

= [
(𝛼1 + 1)(𝛼1 + 2)

2
]

2

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝐹(𝑃2
𝛼2) =  [

(𝛼1 + 1)(𝛼2 + 2)

2
]

2

 

𝐹(𝑃1
𝛼1 . 𝑃2

𝛼2) =  ∑ 𝑇3(𝑃1
𝑟. 𝑃2

𝑠)
0≤𝑟≤𝛼1
0≤𝑟≤𝛼2
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=∑∑(𝑟 + 1)3

𝛼2

𝑠=0

𝛼1

𝑟=0

(𝑠 + 1)3

=∑(𝑟

𝛼1

𝑟=0

+ 1)3(∑(𝑠 + 1)3

𝛼2

𝑠=0

) 

=∑(𝑟 + 1)3

𝛼1

𝑟=0

 [
(𝛼2 + 1)(𝛼2 + 2)

2
]

2

 

𝐹(𝑃2
𝛼2).∑(𝑟 + 1)3

𝛼1

𝑟=0

= 𝐹(𝑃2
𝛼2) [

(𝛼1 + 1)(𝛼2 + 2)

2
]

3

 

= 𝐹(𝑃2
𝛼2) 𝐹(𝑃1

𝛼2) . Hence proved. 

21) If 𝒏𝟏 𝒂𝒏𝒅 𝒏𝟐 are two numbers, such that 

the sum of all the divisors of 𝒏𝟏 other than 

𝒏𝟏 is equal to sum of all the divisors of 𝒏𝟐 

other than 𝒏𝟐, then the pair (𝒏𝟏, 𝒏𝟐) is 

called an anticable number pair. Given 𝒂 =

𝟑. 𝟐𝒏 − 𝟏, primes numbers, then shows 

that (𝟐𝒏𝒂𝒃, 𝟐𝒏𝒄) is an anticable pair. 

Sol.: If N =  𝑃1
𝛼1 , 𝑃2

𝛼2 , … , 𝑃𝑛
𝛼𝑛 , then sum of 

the divisors N is given by the formula. 

∑𝑑(𝑁) =
𝑃1
𝛼1+1 − 1

𝑃1 − 1
×
𝑃2
𝛼2+1 − 1

𝑃2 − 1

×… . .
𝑃𝑛
𝛼𝑛+1 − 1

𝑃𝑛 − 1
 

So the sum of the divisors of 2𝑛 𝑎. 𝑏 =

(2𝑛+1 − 1) ×
𝑎2−1

𝑎−1

𝑏2−1

𝑏−1
= (2𝑛+1 − 1)(𝑎 +

1)(𝑏 + 1) 

 = (2𝑛+1 − 1)(9. (22𝑛−1)   

𝐵𝑢𝑡, 2𝑛 𝑎𝑏 =  2𝑛[9. 22𝑛−1 − 9. 2𝑛−1 +

1](𝑜𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)  

The sum of the divisors of 2𝑛 𝑎𝑏 other than 

2𝑛 𝑎. 𝑏 is  

9. 22𝑛−1(2+1 − 1) − 2𝑛(9. 22𝑛−1 − 9. 2𝑛−1 +

1)  

= 9. 23𝑛 − 9. 22𝑛−1 − 9. 23𝑛−1 + 9. 22𝑛−1 −

2𝑛 = 9. 23𝑛−1 − 2𝑛  

= 2𝑛 (9. 22𝑛−1 − 1) =  2𝑛. 𝑐.  

Thus the sum of the divisors of 2𝑛. 𝑎𝑏 other 

than itself is 2𝑛. 𝑐. 

Now, sum of the divisors of 2𝑛𝑐 other than 

itself is 
2𝑛+1−1

2−1
×
𝑐2−1

𝑐+1
− 2𝑛. 𝑐 = (2𝑛+1 −

1)(𝑐 + 1) − 2𝑛. 𝑐 

= (2𝑛+1 − 1)9. 22𝑛−1 − 2𝑛(9. 22𝑛−1 − 1)

= 9. 23𝑛 − 9. 22𝑛−1 + 2

= 2𝑛[9. 22𝑛−1 − 9. 2𝑛−1 + 1]

=  2𝑛 𝑎𝑏 

i.e. the sum of the divisors of 2𝑛𝑐 other than 

2𝑛𝑐 equal to 2𝑛 𝑎𝑏. 

  

22) If n = 𝑷𝟏, 𝑷𝟐, P3 and P1, P2 and P3 are 

distinct prime numbers. If ∑ 𝒅𝒅
𝒏

=

𝟑𝑵 𝒐𝒓 𝑶𝒄(𝑵) =  𝟑𝑵,  then show that  

∑
𝟏

𝒅𝒊
𝑵
𝒊=𝟏 = 𝟑. 

Sol.: The divisors of N are 

1, 𝑃1, 𝑃2, 𝑃3, 𝑃1𝑃2, 𝑃1𝑃3, 𝑃2𝑃3, 𝑃1𝑃2𝑃3. It is given 

that 

1 + 𝑃1 + 𝑃2 + 𝑃3 + 𝑃1𝑃2 + 𝑃1𝑃3 +

𝑃2𝑃3 + 𝑃1𝑃2𝑃3 = 3𝑁  

𝑁𝑜𝑤,∑
1

𝑑𝑖

𝑁

𝑖=1

=
1

1
+
1

𝑃1
+
1

𝑃2
+
1

𝑃3
+

1

𝑃1𝑃2
+

1

𝑃1𝑃3

+
1

𝑃2𝑃3
+

1

𝑃1𝑃2𝑃3
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=
𝑃1𝑃2𝑃3 + 𝑃2𝑃3 + 𝑃1𝑃3 + 𝑃1𝑃2 + 𝑃3 + 𝑃2 + 𝑃1 + 1

𝑃1𝑃2𝑃3
 

But the numerator is the sum of the divisors 

of N. 

𝑖. 𝑒.∑𝑑
𝑑
𝑛

= 3𝑁 = 3𝑃1𝑃2𝑃3 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒,  

∑
1

𝑑𝑖

𝑁

𝑖=1

=
3𝑃1𝑃2𝑃3
𝑃1𝑃2𝑃3

= 3 

23) Determine with proof all the arithmetic 

program with integer terms with the 

property that for each positive integer n, 

the sum of the first n terms is a perfect 

square.  

Sol.: When n = 1, the first term itself is a 

perfect square  

Let it be 𝑘2. The sum to n terms of the Ap is 

𝑆𝑛 =
𝑛

2
[2𝑎 + (𝑛 − 1)𝑑], 𝑤ℎ𝑒𝑟𝑒 𝑎 =  𝑝2 

Since 𝑆𝑛 is a perfect square for every n, the 

nth term 2𝑎 + (𝑛 − 1)𝑑 > 0, for every n and 

hence d>0. 

If n is an odd prime, say P, then 

𝑆𝑝 =
𝑝

2
[2𝑎 + (𝑛 − 1)𝑑] 

Since 𝑆𝑝 is a perfect square 𝑃1[2𝑎 + (𝑝 − 1)𝑑] 

i.e. 
𝑃

[(2𝑎−𝑑)+𝑝𝑑]
 

𝐵𝑢𝑡
𝑃

𝑝𝑑
, 𝑠𝑜

𝑃

(2𝑎 − 𝑑)
. 

𝑇ℎ𝑖𝑠 𝑖𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑖𝑚𝑒 𝑝, 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 2𝑎 −

𝑑 = 0𝑜𝑟 2𝑎 = 𝑑 i.e. d= 2𝑘2 

So, the required A.p is 𝑘2, 3𝑘2, 5𝑘2, … , (2𝑛 −

1)𝑘2 where k is any natural number. 

 

24) All two digit numbers from 10 to 99 are 

written consecutively, that is N= 101112 

….. 99.  

Show that 
𝟑𝟐

𝑵
. From which other two digit 

number you should start so that N is 

divisible by (i) 3 and (ii) 𝟑𝟐. 

Sol.:  N is divisible by 9, if the digit sum is 

divisible by 9. The digit sum of N: 

The number of 1𝑠 occurring in the digits from 

10 to 19 = 11 and from 20 to 99 = 8 

So, that of ones is 11+8= 19. Similarly, 

No of 2𝑠, 3𝑠, … .9 are all equal to 19. 

So, sum of all digits = 19(1 + 2 + 3 +⋯+

9) =
19×9×10

2
= 19 × 5 × 9 = 855 and hence, 

1011……. 99 is divisible by 9. 

When the numbers start from 12, the sum of 

the digits becomes 855 − 3 = 852 (since 10, 

11 account for the digital sum 3) and, hence is 

divisible by 3 

(a) For divisibility by 3, it could start 

from 13, 15, 16, 18, 19, 21, 22, 24, 

25 ………. 

(b) For divisibility by 32 = 9 the 

numbers may start from any of 18, 

19, 27, 28, 36, 37 ………. 

 

25) When the numbers from 1 to n are written 

in decimal notation, it is found that the 

total number of digit in writing all these in 

1998, find n. 

Sol.: To write the first nine single digit 

number from 1 to 9 both inclusion the no. of 

digit used = 9 

To write the two digits number from 10 to 99, 

no of digit used = (99 − 9) × 2 = 180. 
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So, the number of digit used to write numbers 

from 1 to 99 is 189. 

Total number of digit used in writing up to n 

is 1998. 

The total no. of all three digits numbers =

(999 × 99) × 3 = 2700 > 1998. So, n should 

be less than 999. 

No. of digits used to write the three digit 

numbers up to N is 1998 − 189 = 1809. 

In each 3 digit number, we use three digits. 

So, the number of three digits number in N = 
1809

3
= 603 

So, therefore N = 703 − 1 = 702 

Since up to 702, there are 603, three digit 

numbers 90 two digit numbers and 9 one 

digit numbers. 

 

26) Find all integers values of a such that 

quadratic expressions (𝒙 + 𝒂)(𝒙 +

𝟏𝟗𝟗𝟏) + 𝟏 can be factored as (𝒙 + 𝒃)(𝒙 +

𝒄) where b and c are integers. 

Sol.: (𝑥 + 𝑎)(𝑥 + 1991)+= (𝑥 + 𝑏)(𝑥 + 𝑐) 

⟹ 1991 + 𝑎 = 𝑏 + 𝑐 𝑎𝑛𝑑 1991𝑎 + 1

= 𝑏𝑐 

∴ (𝑏 − 𝑐)2 = (𝑏 + 𝑐)2 − 4𝑏𝑐

=  (1991 + 9)2

− 4(1991𝑎 + 1) 

= (1991 + 𝑎)2 − 4 × 1991𝑎⏟                − 4

=  (1991 − 𝑎)2 − 4 

𝑜𝑟 (1991 − 𝑎)2 − (𝑏 − 𝑐)2 = 4 

If the difference between two perfect square 

is 4, then one of them is 4 and the other is 

zero. Therefore, 1991 − 𝑎 = ±2, (𝑏 − 𝑐)2 = 0. 

⟹ 𝑎 = 1991 + 2 = 1993 𝑎𝑛𝑑 𝑏 − 𝑐

= 0 𝑜𝑟 𝑎 = 1991 − 2

= 1989 𝑎𝑛𝑑 𝑏

= 𝑐. 𝐵𝑢𝑡 𝑏 + 𝑐 = 2𝑏

= 1991 + 𝑎

= 1991

+ 1993 𝑜𝑟 1991

+ 1989 ⟹ 𝑏 = 𝑐

= 1992 𝑜𝑟 1990. 

So, the only 2 values of a are 1993 and 1989 

 

27) Find the last two digit in (𝟓𝟔𝟕𝟖𝟗)𝟒𝟏 

Sol.:   56789 ≡ 89 (mod 100) = 

−11 (𝑚𝑜𝑑 100) 

∴ (56789)49 ≡ (−11)41 (𝑚𝑜𝑑 100)

≡ (−11)40

× (−11)(𝑚𝑜𝑑 100)

≡ (11)40 × (−11)(𝑚𝑜𝑑 100) 

112 ≡ 21 (𝑚𝑜𝑑 100), 114 ≡ 21 ×

4 (𝑚𝑜𝑑 100), 116 ≡ 21 × 41 =

61(𝑚𝑜𝑑 100), 1110 ≡ 41 × 61 ≡

01(𝑚𝑜𝑑 100), 114 ≡ (01)40 ≡

1(𝑚𝑜𝑑 100), (−11)41 ≡ 1140 ×

(−11)(𝑚𝑜𝑑 100) ≡  1 × (−11)(𝑚𝑜𝑑 100) ≡

−11 ≡ 89 (𝑚𝑜𝑑 100).  

That is the last two digits of (56789)41 are 8 

and 9 in that order. 

 

28) Prove that [𝒙] + [𝟐𝒙] + [𝟒𝒙] + [𝟖𝒙] +

[𝟏𝟔𝒙] + [𝟑𝟐𝒙] = 𝟏𝟐𝟑𝟒𝟓  has no solution. 

Sol.: 12345 ≤ 𝑥 + 2𝑥 + 4𝑥 + 8𝑥 + 16𝑥 +

32𝑥 = 63𝑥 
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∴ 𝑥 ≥
12345

63
= 195

20

21
, when x = 196, the L H S 

of the given equation becomes 12348. 

∴ 195
20

21
≤ 𝑥 < 196. Consider x in the 

interval(195
31

32
, 196). The L H S expression of 

the given equation= 195 + 0 + 390 + 1 +

780 + 3 + 1560 + 7 + 3120 + 15 + 6240 +

31 = 12342 < 12345. 

When 𝑥 < 195
31

32
, the LHS is less than 12342. 

∴ For no value of x. The given equality will be 

satisfied. 

 

29) Consider the following multiplication in 

decimal notation 𝟗𝟗𝟗 × 𝒂𝒃𝒄 = 𝐝𝐞𝐟 𝟏𝟑𝟐.  

Determine the digits a, b, c, d, e, f 

Sol.: Since 999 × 𝑎𝑏𝑐 = def 132, 

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 (1000 − 1) × 𝑎𝑏𝑐 = def 132.  

𝑖. 𝑒. 𝑎𝑏𝑐 000 = def 132 + 𝑎𝑏𝑐  

This implies that c = 8, b = 6, a = 8, so that 

𝑎𝑏𝑐 = 868 

𝑁𝑜𝑤, 86800 − 868 = def 132 . 𝑖. 𝑒. 867132 =

def 132 , 𝑠𝑜 𝑡ℎ𝑎𝑡 def 867.  

This digits a, b, c, d, e, f are → 8, 6, 8, 8, 6, 7 

respectively. 

 

30) Given with justification, a natural number 

n for which 𝟑𝟗 + 𝟑𝟏𝟐 + 𝟑𝟏𝟓 + 𝟑𝒏 is a 

perfect cube (of an integer). 

Sol.: 39 + 312 + 315 + 3𝑛 = 39(1 + 33 + 36 +

3𝑛−9) = (33)3{1 + 3. 32 + (32)𝑠 + 3𝑛−9 −

3. (32)2}  

= (33)3(1 + 32)3, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 3𝑛−9 −

35 = 0 = (270)3, Provided 3𝑛−9=35 

 i.e., provided n = 14. 

 

31) Two prime’s numbers 𝑷𝟏, 𝑷𝟐 𝒘𝒊𝒕𝒉 (𝑷𝟏 <

𝑷𝟐) are called twin primes if they differ by 

2. (e.g. 17, 19 or 41, 43). Prove that if 

𝑷𝟏, 𝑷𝟐 are twin primes with 𝑷𝟏 bigger 

than 3, then 𝑷𝟏 + 𝑷𝟐 is always divisible by 

12. 

Sol.: Since 𝑃1, 𝑃2 are twin primes with 𝑃1 < 𝑃2 

and 𝑃1 < 3, therefore 𝑃1, 𝑃1 + 1,𝑃2 are three 

consecutive integers 𝑃1, 𝑃2 are both odd and 

neither of them is divisible by 3. Therefore 𝑃1  

is of the form 6𝑘 − 1 and 𝑃2 is of the form 

6𝑘 + 1. Therefore 𝑃1 + 𝑃2 = 12𝑘. i.e. 𝑃1 + 𝑃2 

is a multiple of 12. 

 

32) Determine with proof all the arithmetic 

progressions with integer terms with the 

property that for each positive integer n, 

the sum of the first n terms is a perfect is a 

perfect square. 

Sol.: Let a be the first term and d the common 

difference. 

The sum of n terms, 𝑆𝑛 say, is given by 

𝑆𝑛 =
𝑛

2
{2𝑎 + (𝑛 − 1)𝑑} 

Since 𝑆1(= 𝑎) must be a perfect square, 

therefore a must be a perfect square, say 𝑘2, 

where k is an integer. Also since 𝑆𝑛  is a 

perfect square for every n, therefore 2𝑎 +

(𝑛 − 1)𝑑 > 0 for every n. Consequently d 

must be a integer. 

Let us consider the case when n is an odd 

prime, say p . 
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Then 𝑆𝑝 =
𝑃

2
{2𝑎 + (𝑝 − 1)𝑑} 

Since 𝑆𝑝 must be a perfect square, and 
𝑝

𝑠𝑝
, 

therefore 
𝑃2

𝑆𝑃
, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑃|{(2𝑎 − 𝑑) +

𝑝𝑑} 𝑖. 𝑒. 𝑃|{2𝑎 − 𝑑}. 

This is possible for all primes P, if and only if 

2𝑎 − 𝑑 = 0 

i.e., if and only if d = 2𝑘2. Therefore the A.P. is 

𝑘2, 3𝑘2, 5𝑘2, 7𝑘2, …… .. 

33)  How many zeros are there at the end in 

the product of the numbers 1, 2, 3, …., 

1994? 

Sol.: We are required to find the highest 

power of 10 contained in the product 1994! 

If P be the highest power of 5 contained in 

1994! And q be the highest power of 2 

contained in 1994! Then highest power of 10 

contained in 1994! = min{𝑝, 𝑞} 

Since 2 < 5, therefore the highest, power of 5 

contained in 1994! Is less than the highest 

power of 2 contained in 1994! i.e. p< q 

therefore min{𝑝, 𝑞} = 𝑝. To find p we proceed 

as follows: let [x] denote the greatest integer 

not exceeding x. Then the highest power of 5 

contained in 1994! Is equal to ∑ [
1994

5𝑘
]∞

𝑘=1  

observe that the above expression is not an 

infinite series because [
1994

5𝑘
] =  0, 

Whenever 5𝑘 > 1994. 

Therefore, P = [
1994

5
] + [

1994

52
] + [

1994

53
] +

[
1994

54
] + [

1994

55
] + ⋯ = 398 + 79 + 15 + 3 +

0… .= 495 

Hence the highest power of 10 contained in 

1994! = 495. 

34) If a, b, x, y are integer greater than 1, such 

that a and b have no common factor except 

1 and 𝒙𝒂 = 𝒚𝒃, show that 𝒙 =  𝒏𝒃, 𝒚 =  𝒏𝒂 

for some integer n greater than 1. 

Sol.: Since 𝑥𝑎 = 𝑦𝑏, therefore if a prime, say 

p, divides x, then it must divide 𝑦𝑏, and 

consequently it must divide y as well. 

Similarly, if a prime, say q, divide y, then it 

must divide x as well. Thus we find that 

exactly the same primes must occur in the 

prime factorization of x and y. 

Let 𝑥 = 𝑃1
𝑒1  𝑃2

𝑒2   𝑃3
𝛼3 ……. 

𝑦 =  𝑃1
𝑑1  𝑃2

𝑑2  𝑃3
𝑑3  

𝑇ℎ𝑒𝑛  𝑥𝑎 = 𝑦𝑏 ⟹ (𝑃1
𝑒1  𝑃2

𝑒2  … )𝑎 =

 (𝑃1
𝑑1 𝑃2

𝑑2 … . )
𝑏

 

⟹ 𝑐1𝑎 =  𝑑1𝑏, 𝑐2𝑎 =  𝑑2𝑏,…… ..  

Since a prime to b, therefore it follows that a 

divides  𝑑1 𝑎𝑛𝑑 𝑏 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑐1 𝑖. 𝑒 … ., 

𝑐1 = 𝑢1𝑏, which gives 𝑑1 = 𝑢1𝑎, 

similarly we have 

𝑐2 = 𝑢2𝑏, 𝑑2 = 𝑢2𝑎,…,  for some 

positive integers 𝑢1, 𝑢2…. etc. 

𝐿𝑒𝑡 𝑛 =

 𝑃1
𝑢1  𝑃2

𝑢2   𝑃3
𝑢3 …… . 𝑡ℎ𝑒𝑛 𝑛𝑏 =

𝑥, 𝑥𝑎 = 𝑦.  

 

35) Let 𝒎𝟏,𝒎𝟐,𝒎𝟑, … ,𝒎𝒏 be a re-

arrangement of numbers 1, 2, 3, …, n. Let 

that n is odd. Prove that the product  

(𝒎𝟏 − 𝟏)(𝒎𝟐 − 𝟐)… (𝒎𝒏 − 𝒏) is an even 

integer. 

Sol.: Since n is odd, we have n = 2m +1 for 

some positive integer m. Out of the integer 1, 

2, …, n, there are m+ 1 odd ones namely 1, 3, 

5, ……, (2m+1) and m even ones, namely 2, 4, 
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6, ….2m. Consider the pairs 

(𝑚1, 1), (𝑚2, 2), … , (𝑚𝑛, 𝑛). 

Since there are m +1 odd integers among 

𝑚1,𝑚2, … ,𝑚𝑛 and only m even integers 

among 1, 2, …, n therefore at least one of the 

odd 𝑚𝑖′𝑠 must be paired with an odd i, 

consequently, for some positive integer i, 

𝑚𝑖 − 𝑖 must be even, and therefore the 

product (𝑚1 − 1), (𝑚2 − 2),… , (𝑚𝑛 − 𝑛) 

must be even. 

 

36) Determine, with proof, all the positive 

integers n for which (i) n is not the square 

of any integer and (ii) [√𝒏]
𝟑
 𝒅𝒊𝒗𝒊𝒅𝒆𝒔 𝒏𝟐. 

Sol.: Suppose [√𝑛] = 𝑡. Since n is not the 

square of any integer, therefore √𝑛 must lie 

strictly between t and t +1 i.e. 𝑡 <  √𝑛 < 𝑡 +

1. 𝑆𝑜 𝑡ℎ𝑎𝑡 𝑡2 < 𝑛 < (𝑡 + 1)2. 

By hypothesis (ii), 𝑡3 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑛2. This implies 

that 𝑡2 must divide 𝑛2, and consequently t 

must divide n. Now 𝑡2 + 𝑡 𝑎𝑛𝑑 𝑡2 + 2𝑡  are 

the only positive integers lying between 

𝑡2 𝑎𝑛𝑑 (𝑡 + 1)2 which are multiples of t. 

Therefore we must have either 𝑛 =  𝑡2 +

𝑡 𝑜𝑟 𝑛 =  𝑡2 + 2𝑡. 

Case I: 𝑛 =  𝑡2 + 1, 𝑡3|𝑛3⟹ 𝑡3|(𝑡2 + 𝑡)2 ⟹
𝑡

(𝑡+1)2
 

⟹
𝑡

1
⟹ 𝑡 = 1 ⟹ 𝑛 − 2. 

Case II: 𝑛 = 𝑡2 + 2𝑡, 𝑡3|𝑛2⟹ 𝑡3|(𝑡3 +

2𝑡)2 ⟹
𝑡

(𝑡+2)2
 

⟹
𝑡

4
⟹ 𝑡 = 1, 2 𝑜𝑟 4 ⟹ 𝑛

= 3, 8 𝑜𝑟 24. 

Thus the possible values of n are 2, 3, 8, 24. 

By actual verification we find all these values 

of n satisfy the given conditions. 

Thus  n = 2, 3, 8, 24 

37) Determine the largest 3-digit prime factor 

of the integer 𝟐𝟎𝟎𝟎𝑪𝟏𝟎𝟎𝟎 . 

Sol.: 2000𝐶1000 =
2000.1999….1001

1.2.3….1000
 

Every three digit prime is a factor of 1, 2, 3, 

…., 1000. Also 2000𝐶1000  is an integer. So 

every three digit prime occurs in the prime 

factors of the denominator at least once. The 

greatest three digit prime factor of 2000𝐶1000 

is the one which occurs once in the 

denominator and at least twice in the 

numerator. 

Therefore it must be less than 
1

3
× 2000. i.e. 

less than 666 and as close to it as possible. 

(Because then only will it occur twice in the 

numerator and once in the denominator). 

Checking the numbers 666, 665, … for 

primality we find that 661 is the first prime in 

this sequences, which is the desired answer. 

 

38) Prove that any number N written in base 7 

will be even or odd according as the sum 

of its digits is even or odd. 

Sol.: Let us first observe that for P = 2, 

(
2𝑝−1−1

𝑝
) is not an integer. Therefore 2 cannot 

satisfy the given condition. Next, let p be a 

prime of the form 4k +1. Suppose (
2𝑝−1−1

𝑝
) =

 𝑚2, for some odd integer m. It is obvious that 

m cannot be even. Then 24𝑘 − 1 =

(4𝑘 + 1)𝑚2. 

Since every perfect square leaves a remainder 

1 when divided by 4, therefore R. H. S. will 
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leave a remainder 1 when divided by 4. But 

the L. H. S will leave a remainder 3 when 

divided by 3. This is not possible. Therefore p 

cannot be of the form 4k +1. Let now p be of 

the form 4k +3. First consider the case p = 3 

(i.e. k = 0)in this case (
2𝑝−1−1

𝑝
) =  (

23−1−1

3
) =

1 

Which is a perfect square. Therefore p = 3 is 

one of the primes t that we are looking for. 

Let Now 𝑃 = 4𝑘 + 3,𝑤𝑖𝑡ℎ 𝑘 > 0, 2𝑝−1 − 1 =

 24𝑘+2 − 1(22𝑘+1 − 1)(22𝑘+1 + 1). 

Since 22𝑘+1 − 1 𝑎𝑛𝑑 22𝑘+1 + 1 are relatively 

prime, therefore if their product is of from 

𝑃𝑚2, one of them must be 𝑃𝑢2 and the other 

must be 𝑣2,  where u and v are relatively 

prime, Since 22𝑘+1 − 1 is of the form 4𝑠 +

3 𝑎𝑛𝑑 𝑣2 must be of the from 4𝑠 + 1, 

therefore it follows that 22𝑘+1 − 1 cannot be 

of the form 𝑣2. Therefore we must have 

22𝑘+1 − 1 = 𝑃𝑢2, 22𝑘+1 + 1 = 𝑣2. 

Now,  22𝑘+1 + 1 = 𝑣2⟹ 22𝑘+1 =

(𝑣 − 1)(𝑣 + 1), so that 𝑣 − 1 𝑎𝑛𝑑 𝑣 + 1 must 

be both powers of 2. Suppose 𝑣 + 1 =  2𝑎 , 𝑣 −

1 =  2𝑏 . 𝑆𝑜 𝑡ℎ𝑎𝑡 2𝑎 − 2𝑏 = 2. 2𝑎+𝑏 = 22𝑘+1 

𝑁𝑜𝑤, 2𝑎 − 2𝑏 = 2⟹ 2𝑏(2𝑎−𝑏 − 1) = 2 ⟹

2𝑏 = 1  

2𝑎−𝑏 − 1 = 1 ⟹ 𝑏 = 1, 𝑎 = 2 ∴ 𝑣 − 1 =

2, 𝑣 + 1 = 4,   

𝑣2 = 9 22𝑘+1 + 1 = 9 ⟹ 𝑘 + 1⟹ 𝑃 = 7  

Therefore the only possibility for P is 7. Since 

(
27−1−1

7
) =  9 which is a perfect square, 

therefore 7 is another prime that we are 

looking for. 

Thus the only primes satisfying the given 

condition are 3 & 7. 

39) Each of the positive integers 𝒂𝟏, … , 𝒂𝒏 is 

less than 1951. The least common multiple 

of any two of these is greater than 1951. 

Show that 
𝟏

𝒂𝟏
+⋯+

𝟏

𝒂𝒏
< 2. 

Sol.: The numbers of integers from 1 to m, 

which are multiple of b is [
𝑚

𝑏
]. From the 

assumption, we know that none of the 

integers 1, …, 1951 is simultaneously divisible 

by two of the numbers 𝑎1, … , 𝑎𝑛.  Hence the 

number of integers 1, …., 1951 divisible by 

one of 𝑎1, … , 𝑎𝑛 𝑖𝑠 [
1951

𝑎1
] + ⋯+ [

1951

𝑎𝑛
]. This 

number does not exceed 1951. Hence 
1951

𝑎1
−

1 +⋯+
1951

𝑎𝑛
− 1 < 1951

1951

𝑎1
+⋯+

1951

𝑎𝑛
<

𝑛 + 1951 < 2.1951. 

1

𝑎1
+⋯+

1

𝑎𝑛
< 2. This problem was used at 

the MMO 1951. It is due to paul Erdos. The 2 

can be replaced by 
6

5
, but even this is not the 

best possible bound. 

40) If the positive integers x, y satisfy 𝟐𝒙𝟐 +

𝒙 = 𝟑𝒚𝟐 + 𝒚, then show that 𝒙 − 𝒚, 𝟐𝒙 +

𝟐𝒚 + 𝟏, 𝟑𝒙 + 𝟑𝒚 + 𝟏 are perfect square. 

Sol.: (a) From 2𝑥2 + 𝑥 = 3𝑦2 +

𝑦,𝑤𝑒 𝑔𝑒𝑡 𝑥2 = 𝑥 − 𝑦 + 3𝑥2 − 3𝑦2 =

(𝑥 − 𝑦)(3𝑥 + 3𝑦 + 1), 𝑦2 = 𝑥 − 𝑦 + 2𝑥2 −

2𝑦2 = (𝑥 − 𝑦)(2𝑥 + 2𝑦 + 1). Since 

3(𝑥 + 𝑦) + 1 𝑎𝑛𝑑 2(𝑥 + 𝑦) + 1 are prime to 

each other and 𝑥 − 𝑦 = gcd(𝑥2, 𝑦2) =

gcd(𝑥, 𝑦)2 , 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 3𝑥 + 3𝑦 + 1 =

 𝑏2 𝑎𝑛𝑑 2𝑥 + 2𝑦 + 1 = 𝑎2 must also be 

squares. This proves (a) (b) with 𝑥 =

𝑑. 𝑏, 𝑦 = 𝑑. 𝑎, gcd(𝑎, 𝑏) = 1,𝑤𝑒 𝑔𝑒𝑡 𝑑2 = 𝑥 −

𝑦 From (a) we get 3𝑎2 − 2𝑏2 = 1 𝑎𝑛𝑑 𝑑2 =

𝑑𝑏 − 𝑑𝑎 ⟹ 𝑑 = 𝑏 − 𝑎, 𝑥 = (𝑏 − 𝑎)𝑏, 𝑦 =

(𝑏 − 𝑎)𝑎. The solutions of  3𝑎2 − 2𝑏2 = 1 can 

be obtained from. 
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(√3 + √2)
2𝑛+1

= 𝑎𝑛 + √3 + 𝑏𝑛√2  by 

powering or, simpler, by recurrence . From 

𝑎𝑛+1 + √3 + 𝑏𝑛+1√2 = (𝑎𝑛√3 + 𝑏𝑛√2)(5 +

2√6) we get  𝑎𝑛+1 = 5𝑎𝑛 + 4𝑏𝑛, 𝑏𝑛+1 =

6𝑎𝑛 + 5𝑏𝑛, 𝑎1 = 1, 𝑏1 = 1. The next solutions 

𝑎2 = 9, 𝑏2 = 11 𝑦𝑒𝑖𝑙𝑑𝑠 𝑥2 = 22, 𝑦2 = 18. 

 

41) Several different positive integers lie 

strictly between two successive square. 

Prove that their pair wise products are 

also different. 

Sol.: Let 𝑛2 < 𝑎 < 𝑏 < 𝑐 < 𝑑 < (𝑛 + 1)2, 𝑎𝑏 =

𝑏𝑐. Then 𝑑 − 𝑎 < 2𝑛 our aim is to produce a 

contradiction to (1). 

From 𝑎𝑑 = 𝑏𝑐, we conclude that 

𝑎[(𝑎 + 𝑑) − (𝑏 + 𝑐)] = (𝑎 − 𝑏)(𝑎 − 𝑐) > 0. 

Hence  

𝑎 + 𝑑 > 𝑏 + 𝑐.𝑁𝑜𝑤 (𝑎 + 𝑑)2 − (𝑑 − 𝑎)2 =

4𝑎𝑑 = 4𝑏𝑐 < (𝑏 +

𝑐)2 .𝑊𝑒 𝑐𝑜𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑎𝑡 (𝑑 − 𝑎)2 >

(𝑎 + 𝑑)2 − (𝑏 + 𝑐)2 = (𝑎 + 𝑑 + 𝑏 + 𝑐)(𝑎 +

𝑑 − 𝑏 + 𝑐). Each term of the first factor on the 

R. H. S. is larger than 𝑛2, and the second is 

𝑛2 ≥ 1.  

Thus we have 𝑑 − 𝑎 > 2𝑛, which contradicts 

(1). 

42) Let a, b, c , d be integers with a > b >c >d 

>0. Suppose that 

𝒂𝒄 + 𝒃𝒅 = (𝒃 + 𝒅 + 𝒂 − 𝒄)(𝒃 +

𝒅 − 𝒂 + 𝒄). Prove that 𝒂𝒃 + 𝒄𝒅 is 

not prime. 

 

Sol.: Three different arguments are presented 

hence. The first is the most elementary, using 

only number theory and counting arguments, 

and a detailed proof is given. The second 

arguments uses technical topic, so only a 

sketch of the proof is provided. The third 

argument, which only a sketch, is a lovely 

hybrid of algebra, number theory and 

combinatory. It was discovered by a 

Bulgarian contestant who received a special 

prize for his creativity.  

For any p-element subset A of {1, 2, ……….2p} 

denote the sum of the elements of A by Γ(A) 

of the (
2𝑝

𝑝
) . 𝑠𝑢𝑐ℎ  𝑠𝑢𝑏𝑠𝑒𝑡𝑠 , 𝐿 =

{1, 2, … , 𝑝} 𝑎𝑛𝑑 𝑅 = {𝑝 + 1, 𝑝 +

2,… ,2𝑝}𝑠𝑎𝑡𝑖𝑠𝑓𝑦  Γ (L) ≡Γ(R)≡ 0 (mod P). For 

A≠ LR . we have A ∩ L ≠ 𝜙 ≠ A ∩ R.  

Portion the (
2𝑝

𝑝
) − 2𝑝 elements subsets other 

than L and R into group of size p as follows. 

For any set E of integers, define x ⊕E = 

{𝑥 + 𝑒(𝑚𝑜𝑑 𝑝): 𝑒 ∊ 𝐸}, where the sums are 

positive and no greater than P. Let A be any p-

element subset other than P. Let A be any p-

element subset other than L or R. Define 𝐴𝐿 =

𝐴 ∩ 𝐿 𝑎𝑛𝑑 𝐴𝑅 = 𝐴 ∩ 𝑅. (Note that both of 

these sets are non empty). Then the group of 

P subsets in which A lies is 𝐴𝐿 ∪ 𝐴𝑅 , (1 ⊕

𝐴𝐿) ∪ 𝐴𝑅 , (2 ⊕ 𝐴𝐿) ∪ 𝐴𝑅 , (𝑃 − 1⊕ 𝐴𝐿) ∪ 𝐴𝑅 

(In more sophisticated language, we are 

partitioning the subsets into equivalence 

classed where two subset A and A’ are in the 

same class if and only if A’∩R= A∩ R and A’ 

∩L is a cyclic permutation of A ∩ L within L.) 

This method of grouping subsets has the 

following properties. 

 Each group contain P distinct subsets, 

and each subsets has a different 

element sum modulo P. To see this, 

assume that (x ⊕𝐴𝐿) ∪𝐴𝑅 =

(𝑦⊕ 𝐴𝐿) ∪ 𝐴𝑅 

This implies that 𝑥 ⊕ 𝐴𝐿 = 𝑦⊕

𝐴𝐿 . Let 𝐴𝐿 have n elements. This we 

have 𝑎(𝑥 ⊕ 𝐴𝐿) = 𝑎(𝑦 ⊕ 𝐴𝐿). But this 

implies that 𝑛𝑥 − 𝑛𝑦 ≡ 0 (mod P), 
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which forces x = y because P is prime 

and 0<n<p. 

 Every subset other than L or R lies in 

exactly one group. Assume that two 

groups shared the same subset E. In 

other words, assume that 

𝐸 = (𝑥 ⊕ 𝐴𝐿) ∪ 𝐴𝑅𝑎𝑛𝑑 𝐸(𝑦 ⊕ 𝐵𝐿)𝐵𝑅 .  

 

Since both x ⊕ 𝐴𝐿 and y⊕ 𝐵𝐿 are 

subsets of L, we have 𝐴𝑅 = 𝐸 ∩ 𝑅 =

 𝐵𝑅 . Thus x ⊕ 𝐴𝐿 = 𝑦⊕𝐵𝐿  or 𝐵𝐿 =

(𝑥 + 𝑦)⊕ 𝐴𝐿. This shows that the 

collection of subsets (y⊕ 𝐵𝐿) ∪ 

𝐵𝑅 , 𝑦 = 0, 1, 2, … . , 𝑃 − 1 will be the 

same as the collection (x ⊕ 𝐴𝐿)∪ 

𝐴𝑅 , 𝑥 = 0, 1, 2, … , 𝑃 − 1. It follows that 

exactly one subsets A in each group 

satisfies 𝜎(A) ≡ 0 (mod P), and the 

total number of such sub sets is 
1

𝑃
[(
2𝑝

2
) − 2] + 2 

In fact, we have proved a little bit 

more than for any r ≠0 (mod P), there 

are exactly 
1

𝑝
[(
2𝑝

2
) − 2] 

Subsets with element sum congruent 

to r modulo P. 

 

43) Let p, q, n be positive integers with 𝒑 +

𝒒 < 𝑛. Let (𝒙𝟎, 𝒙𝟏, … , 𝒙𝒏) be an (n+1) 

tuple of integers satisfying the following 

conditions. 

(a) 𝒙𝟎 = 𝒙𝒏 = 𝟎, (b) For each i with 

𝟏 ≤ 𝒊 ≤ 𝒏, either 𝒙𝒊 − 𝒙𝒊−𝟏 =

𝑷 𝒐𝒓 𝒙𝒊 − 𝒙𝒊−𝟏 = −𝒒. Show that 

there exist indicates i > j with (i, j) 

≠ (0, n) such that 𝒙𝒊 = 𝒙𝒋. 

Sol.: Let d be the greatest common factor of p 

and q; then the problem with p, q 𝑥𝑖 replaced 

by 
𝑝

𝑑
,
𝑞

𝑑
,
𝑥

𝑑
 is equivalent to the original problem. 

Hence without loss of generality, we may 

assume p and q are relatively prime. 

Let r = p+ q observe that 𝑥𝑖+1 ≡ 𝑥𝑟 +

𝑝(𝑚𝑜𝑑 𝑟). Since −𝑞 ≡ 𝑝(𝑚𝑜𝑑 𝑟). By induction, 

𝑥𝑖+𝑘 ≡ 𝑥𝑖 + 𝑝𝑘(𝑚𝑜𝑑 𝑟). In particular, 𝑥𝑛 ≡

 𝑥0 + 𝑛𝑝 (𝑚𝑜𝑑 𝑝 + 𝑞). Since 𝑥𝑛 = 𝑥0 = 0, we 

deduce that r divides up. However, by 

assumption p is relatively prime to 9 and hence 

also to r, and so n = 𝑚𝑟 for some integer m. 

Since n > r is assumed, we have m > 1. 

Let 𝑠𝑖 = 𝑥𝑖+𝑝 − 𝑥𝑖 for I = 0, …, (𝑚 − 1)𝑟. By the 

previous observation, 𝑠𝑖 is a multiple of r, 

Moreover 𝑠𝑖+1 − 𝑠𝑖 = (𝑥𝑖+𝑟+1 − 𝑥𝑖+𝑟) −

 (𝑥𝑖+1 − 𝑥𝑖) ≤ 𝑝—𝑞 = 𝑟 𝑎𝑛𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑠𝑖+1 −

𝑠𝑖 > −𝑟. 

It suffices to show that 𝑠𝑖 = 0 for some I, for 

then we can take our pair to be (𝑖, 𝑖 + 𝑟).If 𝑠0 =

0, we are done so assume that 𝑠0 > 0 (the 

argument for 𝑠0 > 0 is similar). Let 𝑠𝑖 be the 

first non-negative term among 𝑠0, … , 𝑠(𝑚−1)𝑟 =

 𝑥𝑛 − 𝑥0 = 0. Then 𝑠𝑖 − 1 is negative and 𝑠𝑖 is 

non negative, but both are multipliers of r and 

they differ by at most r. This can only occur if 

𝑠𝑖−1 = −𝑟 𝑎𝑛𝑑 𝑠𝑖 = 0. 

44) For any positive integer n, let d(n) denote 

the number of positive divisors of n 

(including 1 and n itself). Determine all 

positive integers k such that 
𝒅(𝒏)𝟐

𝒅(𝒏)
= 𝒌 for 

some n. 

Sol.: Let n = 𝑃1
𝑎1 ……… .𝑃𝑟

𝑎𝑟  

𝑇ℎ𝑒𝑛 𝑑(𝑥) = (𝑎1 + 1)(𝑎2 + 1)… . . (𝑎𝑟 +

1), 𝑎𝑛𝑑   

d(𝑛2) = (2𝑎1 + 1)(2𝑎2 + 1)……… (2𝑎𝑟 + 1). 

So the ai must be chosen so that  

(2𝑎1 + 1)(2𝑎2 + 1)……… . . (2𝛼𝑟 + 1) =

𝐾(𝑎1 + 1)(𝑎2 + 1)… (𝑎𝑟 + 1)  
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Since all (2𝑎𝑖 + 1) are odd, this clearly mplies 

that k must odd. We know that conversely, 

given any odd k, can find 𝑎𝑖. 

We use a form of induction on k. First, it is true 

for k = 1 (take n = 1). Second, we show that if it 

is true for k, then it is true for 2𝑚𝑘 − 1. That is 

sufficient, since any odd number has the form 

2𝑚𝑘 − 1 for some smaller odd number k. Take 

𝑎𝑖 = 2
𝑖[(2𝑚 − 1)𝑘 − 1]𝑓𝑜𝑟 𝑖 = 0, 1, … ,𝑚 − 1. 

𝑇ℎ𝑒𝑛 2𝑎𝑖 + 1 = 2
𝑖+1(2𝑚 − 1)𝐾 −

(2𝑖+1 − 1)𝑎𝑛𝑑   

𝑎𝑖 + 1 =  2
𝑖(2𝑚 − 1)𝐾 − (2𝑖 − 1).  

So the product of the (2𝑎1 + 1)′𝑆 divided by 

the product of the (𝑎𝑖 + 1)′𝑆 is 2𝑚(2𝑚 −

1)𝐾 − (2𝑚 − 1)𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 (2𝑚 −

1)𝐾, 𝑜𝑟
(2𝑚𝑘−1)

𝑘
. 

Thus if we take these 𝑎𝑖𝑠 together with those 

giving k, we get 2𝑚𝑘 − 1 which completes the 

induction. 

 

45) Find all pairs (n, p) of positive integers, 

such that :P is prime; 𝒏 ≤ 𝟐𝒑;𝒂𝒏𝒅 (𝒑 −

𝟏)𝒏 + 𝟏 is divisible by 𝒏𝒑−𝟏 

Sol.: Evidently (1, P) is a solution for every prime 

p. Assume n >1 and take q to be the smallest 

prime divisor of n. we first show that q = p. Let x 

be the smallest positive integer for which 

(𝑝 − 1)𝑥 = 1 (𝑚𝑜𝑑 𝑞). Certainly y exists and 

indeed y < q. 

Since (𝑝 − 1)𝑞−1 = 1 (𝑚𝑜𝑑 𝑞). We know that 

(𝑝 − 1)𝑛 = −1(𝑚𝑜𝑑 𝑞) so x exists also. 

Writing 𝑛 = 𝑠𝑦 + 𝑟,𝑤𝑖𝑡ℎ 0 ≤ 𝑟 < 𝑦,  we 

conclude that (𝑝 − 1)𝑟 = −1(𝑚𝑜𝑑 𝑞) and 

hence 𝑥 ≤ 𝑟 < 𝑦 (r cannot be zero sine 1 is not 

-1(mod q)) 

Now write 𝑛 = ℎ𝑥 + 𝐾 𝑤𝑖𝑡ℎ 0 ≤ 𝑘 ≤ 𝑥. 

𝑇ℎ𝑒𝑛 − 1 =  (𝑝 − 1)𝑛 = (−1)𝑛(𝑝 −

1)𝑘(𝑚𝑜𝑑 𝑞). h cannot be even. Because then 

(𝑝 − 1)𝑘 = −1(𝑚𝑜𝑑 𝑞), contradicting the 

minimality of x. so h is odd and hence 

(𝑝 − 1)𝑘 = 1 (𝑚𝑜𝑑 𝑞) with 0 ≤ 𝑘 < 𝑥 < 𝑦. 

This contradicts the minimality of y unless k = 0, 

so n = ℎ𝑥. 

But x <q, so x = 1, so (𝑝 − 1)  =  −1 (mod q) p 

and q are primes so q = p as claimed. 

So p is the smallest prime divisors of n. We are 

also given that 𝑥 < 2𝑝. so either p = n, or p = 2, 

n = 4. The latter dues not work, so we have 

shown that n = p Evidently n = p = 2 and n = p = 

3 work. Assume now that p > 3 we show that 

there are no solutions of this type. 

Expand (𝑝 − 1)𝑝 + 1 by the binomial theorem, 

to get (since (−1)𝑝 = −1): 

1 + −1 + 𝑝2 −
1

2
𝑝(𝑝

− 1)𝑝2
𝑝(𝑝 − 1)𝑝 − 2

6𝑝3
.  

𝑇ℎ𝑒 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑜𝑚 𝑝𝑖 𝑤𝑖𝑡ℎ 𝑖 ≥ 3 are 

obviously divisible by 𝑝3. 

Since the binomial co-efficient by are integral. 

Hence the sum is 𝑃2 + (𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑃3). So 

the sum is not divisible by 𝑃3. But for 𝑝 >

3, 𝑃𝑝−1 is divisible by 𝑝3. So it cannot divide 

(𝑝 − 1)𝑝 + 1, and there are no more solutions. 

 

46) Determine whether or not there exists a 

positive integer n such that n is divisible by 

exactly 2000 different prime numbers, and 

𝟐𝒏 + 𝟏 is divisible by n. 

Sol.: Note that for a odd b, we have 
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2𝑎𝑏 + 1 = (24 + 1)(2𝑎(𝑏 − 1) − 2𝑎(𝑏 − 2) +

⋯+ 1) and so 2𝑎 + 1 is a factor of 2𝑎𝑏 + 1. It is 

sufficient therefore to find m such that (1) m 

has only a few distinct prime factors (2) 2𝑚 + 1 

has a large number of distinct prime factors (3) 

m divides 2𝑚 + 1 (but not m), so that 𝑘𝑚 has 

exactly 2000 factors then 𝑘𝑚 still divides 2𝑚 +

1 and hence 2𝑘𝑚 + 1. 

The simplest case is where m has only one 

distinct prime factor P, in other words it is a 

power of P. But if P is a prime, then p divides 

2𝑝 − 2, so the only p for which p divides. 2𝑝 +

1 is 3. So the questions are (1) whether 𝑎𝑛 =

 2𝑚 + 1 is divisible by 𝑚 =

 34 𝑎𝑛𝑑 (2)𝑎𝑛 ℎ𝑎𝑠 𝑎 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟   

𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑝𝑟𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑎𝑛+1 =

 𝑎𝑛(2
𝑚 − 2𝑚 + 1),𝑤ℎ𝑒𝑟𝑒 𝑚 = 3𝑛  but 2𝑚 =

(𝑎𝑛−1), 𝑆𝑜 𝑎𝑛+1 = 𝑎𝑛(𝑎𝑛
2 − 3𝑎𝑛 +

3).𝑁𝑜𝑤 𝑎1 = 9, so an induction show that 

3𝑛+1 divides 𝑎𝑛,  which answer (1) affirmatively. 

Also, since 𝑎𝑛 is a factor of 𝑎𝑛+1, any prime 

dividing 𝑎𝑛 𝑎𝑙𝑠𝑜 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑎𝑛+1 

𝑃𝑢𝑡 𝑎𝑛 = 3
𝑛+1 𝑏𝑛. Then 𝑏𝑛+1𝑏𝑛(3

2𝑛+1 𝑏𝑛
2 −

3𝑛+2𝑏𝑛 + 1) 

𝑁𝑜𝑤 (32𝑛+1 𝑏𝑛
2 − 3𝑛+2𝑏𝑛+1) > 1, So, it must 

have some prime factor p > 1. 

But P be 3 or divide 𝑏𝑛 𝑠𝑖𝑛𝑐𝑒 (3
2𝑛+1 𝑏𝑛

2 −

3𝑛+2𝑏𝑛+1) is a multiple of 3𝑏𝑛 𝑝𝑙𝑢𝑠 1. 𝑆𝑜 𝑏𝑛+1 

has at least one prime factor p >3 which does 

not divide 𝑏𝑛. 𝑠𝑜 𝑏𝑛+1 has at least h distinct 

prime factors greater than 3, which answers (2) 

affirmatively. But that is all we need we can 

take m in the first paragraph above to be  32000. 

(1) m has only one distinct prime factor. 

(2)   2𝑚+1 = 32001𝑏2000  ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡  1999 

distinct prime factors other than 3. 

(3) m divides 2𝑚 + 1. Take k to be a product of 

1999 distinct prime factors  dividing 𝑏2000. 

Then 𝑛 =  𝑘𝑚 is the required number with 

exactly 2000 distinct prime factors which 

divides 2𝑛 + 1. 

 

47) Let 𝒂𝟏, 𝒂𝟐, … be a sequence of integers 

with infinitely many  negative terms 

suppose that for each positive integer n, 

the numbers 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 leave n different 

remainder on division by n. Prove that 

each integer occurs exactly once in the 

sequence. 

Sol.: Let 𝐴𝑛 = {𝑎1, … , 𝑎𝑛}. Elements of 𝐴𝑛 are 

distinct because they are distinct modulo n. 

Observe that, for 𝑎𝑖 , 𝑎𝑗  ∊ 𝐴𝑛, 𝑘 ≔ |𝑎𝑖 − 𝑎𝑗| <

𝑛, because, otherwise, 𝑎1 𝑎 ∊ 𝑎𝑘  𝑎𝑛𝑑 𝐴𝑖 ≡

 𝑎𝑗 𝑚𝑜𝑑 𝑘. Therefore max𝐴𝑛 −min𝐴𝑛 < 𝑛. 

But 𝐴𝑛 consists of n distinct integers. Therefore, 

for 𝑚𝑛 = min𝐴𝑛 , 𝐴𝑛 = {𝑚𝑛,𝑚𝑛+1, … ,𝑚𝑛 +

𝑛 − 1} 

There are infinitely many negative and positive 

numbers in the sequence, therefore all integers 

have to appear in our sequence. This finishes 

the proof. 

 

48) Determine all pairs (x, y) of integers such 

that 𝟏 + 𝟐𝒙 + 𝟐𝟐𝒙+𝟏 = 𝒚𝟐. 

Sol.: If (x, y) is a solution then obviously 𝑥 ≥ 0 

and (𝑥, −𝑦) is a solution too. For x = 0, we get 

the two solutions (0, 2) and (0, −2) 

Now let (x, y) be a solution with 𝑥 > 0, without 

loss of generality confine attention to y > 0. The 

equation rewritten as 2𝑥(1 + 2𝑥+1) =

(𝑦 − 1)(𝑦 + 1). Shows that the factors 𝑦 −

1 𝑎𝑛𝑑 𝑦 + 1 are even exactly one of them 

divisible by 9. Hence 𝑥 ≥ 3 and one of these 
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factors is divisible by 2𝑥−1 but not by 2𝑥 . So 𝑦 =

 2𝑥+1 𝑚+𝑒 ,𝑚 𝑜𝑑𝑑, 𝑒 = ±1. Plugging this into 

the original equation we obtain. 

 2𝑥(1 + 2𝑥+1) = (2𝑥−1𝑚+ 𝑒)2 − 1 =

  22𝑥−2𝑚2 + 2𝑥 me or equivalently, 1 + 2𝑥+1 =

 2𝑥−2 𝑚2 +𝑚𝑒  

Therefore, 1 − 𝑒𝑚 = 2𝑥−2(𝑚2 −

8)………… . (𝑖𝑖)𝑓𝑜𝑟 𝑒 = 1 this yields 𝑚2 − 8 ≤

0  i.e. m = 1, which fails to satisfy (ii) For e = -1 

equation (ii) gives us. 

1 +𝑚 = 2𝑥−2(𝑚2 − 8) ≥ 2 (𝑚2 −

8)𝑖𝑚𝑝𝑙𝑦𝑖𝑛𝑔  

2𝑚2 −𝑚 − 17 ≤ 0 ℎ𝑒𝑛𝑐𝑒 𝑚 ≤ 3; on the other 

hand m cannot be 1 by (ii). Because m is odd . 

these values indeed satisfy the given equation. 

Recall that then 𝑦 =  −23 is also good. Thus we 

have the complete list of solutions 

(𝑥, 𝑦): (0, 2), (0, −2), (4, 23), (4,−23) 

 

49) Let n be a positive integer and 

𝑷𝟏, 𝑷𝟐, … , 𝑷𝒏 be n prime numbers all 

larger than 5. Such that 𝑷𝟏
𝟐 + 𝑷𝟐

𝟐 +⋯+

𝑷𝒏
𝟐 is divisible by 6. Prove that 6 divides n. 

Sol.: Through possible remainders when divided 

by 6 are 0, 1, 2, 3, 4, 5, 𝑝𝑖  being prime 𝑝𝑖
2 will 

have to leave only remainder 1 or 5. i.e. 𝑝𝑖
2 is of 

the from 6𝑚𝑟 ±  1: so should be 𝑝𝑖, Hence 𝑝𝑖
2 

is of the form 6𝑚𝑟 + 1: 𝑠𝑜 𝑝𝑖
2 +⋯+ 𝑝𝑛

2 is 

divisible by 6 only when n is divisible by 6. 

50) Find all pairs (m, n) of (+) integers such that 

𝒎𝟐

𝟐𝒎𝒏𝟐−𝒏𝟑+𝟏
 𝒊𝒔 (+) 𝒗𝒆 𝒊𝒏𝒕𝒆𝒈𝒆𝒓. 

Sol.: The denominator is 2𝑚𝑛2 − 𝑛3 + 1 =

 𝑛2(2𝑚 − 𝑛) + 1, 𝑠𝑜 2𝑚 ≥ 𝑛 > 0. 𝐼𝑓 𝑛 = 1,  

then m must be even, in other words, we have 

the solution (m, n) = (2k, 1). So assume n > 1. 

Put 𝑛 =
𝑚2

2𝑚𝑛2−𝑛3+1
.  

Then we have a quadratic equation for m, 

namely 𝑚2 − 2ℎ𝑛2𝑚+ (𝑛3 − 1)ℎ = 0. This 

has solutions ℎ𝑛2 ±𝑁, where N is the positive 

square root of 𝑛2𝑥4 − ℎ𝑥3 + ℎ. Since n >1, 𝑛 ≥

1, n is certainly real. But the sum and product of 

the roots are both positive, so both roots must 

be positive. The sum is an integer, so, if one 

root is a positive integer, than so is the other. 

The larger root ℎ𝑛2 +𝑁 is greater than ℎ𝑛2, so 

the smaller root <
ℎ(𝑛3−1)

ℎ𝑛2
< 𝑛. But note that if 

2𝑚 − 𝑛 > 0,  then since n > 0, we must have 

the denominator (2𝑚 − 𝑛)𝑛2 + 1 smallest than 

the numerator and hence 𝑚 − 𝑛. So for the 

smallest root we cannot have 2𝑚 − 𝑛 > 0. But 

2𝑚 − 𝑛 = 0 for the smaller root. Hence ℎ𝑛2 −

𝑁 =
𝑛

2
. 

Now 𝑁2 = (ℎ𝑛2 −
ℎ

2
)
2
= ℎ2𝑛4 − ℎ𝑛3 +

ℎ, 𝑠𝑜 ℎ =
𝑛2

4
 Thus n must be even, put n = 2k 

and get the solutions (𝑚, 𝑛) =

(𝑘, 2𝑘)𝑎𝑛𝑑 (8𝑘4 − 𝑘, 2𝑘). We have shown that 

any solutions must be of one of the three forms 

given, out it is trivial to check that they are all 

indeed solutions. 

 

QUADRATIC EQUATIONS 
AND EXPRESSIONS 

(Objective Type) 

1) If 𝟎 < 𝛼 < 𝛽 < 𝛾 <
𝝅

𝟐
, then equation 

𝟏

𝒙−𝐬𝐢𝐧𝜶
+

𝟏

𝒙−𝐬𝐢𝐧𝜷
+

𝟏

𝒙−𝐬𝐢𝐧𝜸
= 𝟎 has 

(a) Imaginary root,   (b) real and equal 

roots,   (c) real and unequal root,   

(d) rational roots. 
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Sol.: Since, 0 < 𝛼 < 𝛽 < 𝛾 <
𝜋

2
(𝑔𝑖𝑣𝑒𝑛) 

⟹ sin𝛼 < sin𝛽 < sin𝛾  

Now the given equation is 

(𝜒 − sin𝛽)(𝜒 − sin𝛾)

+ (𝜒 − sin𝛼)(𝜒 − sin 𝛾)

+ (𝜒 − sin𝛼)(𝜒 − sin𝛽) =  0 

𝐿𝑒𝑡 𝑓(𝑥) = (𝜒 − sin𝛽)(𝜒 − sin 𝛾)

+ (𝜒 − sin𝛼)(𝜒

− sin𝛾)

+ (𝜒 − sin𝛼)(𝜒

− sin𝛽) =  0 

⟹ 𝑓(sin𝛼) = (sin 𝛼 − sin𝛽)(sin 𝛼 −

sin 𝛾) > 0  

⟹ 𝑓(sin𝛽) = (sin 𝛽 − sin𝛼)(sin𝛽 −

sin 𝛾) < 0  

⟹ 𝑓(sin𝛾) = (sin 𝛾 − sin𝛼)(sin 𝛾 −

sin𝛽) >  0  

Hence equation f(x) = 0 has once root between 

sin𝛼  𝑎𝑛𝑑 sin𝛽  and other between  

sin𝛽  𝑎𝑛𝑑 sin𝛾.  

2) If 𝒚 =
𝟏

𝐜𝐨𝐭 𝒙 𝐭𝐚𝐧𝟑𝒙
, 𝒕𝒉𝒆𝒏 

(a) 𝒚 <
𝟏

𝟑
 𝒐𝒓 𝒚 > 3;   (b) 

𝟏

𝟑
≤ 𝒚 ≤ 𝟑;  

(c) 𝒚 ≤
𝟏

𝟑
 𝒐𝒓 𝒚 ≥ 𝟑;   (iv) 

𝟏

𝟑
≤ 𝒚 ≤ 𝟏 

Sol.: 𝑦 =
tan𝑥

tan3𝑥
=
1−3𝑡𝑎𝑛2𝑥

3−𝑡𝑎𝑛2𝑥
 ⟹ 𝑦 =

1−3𝑡2

3−𝑡2
 

∴ (𝑦 − 3)𝑡2 + 1 − 3𝑦 =

0  𝑠𝑖𝑛𝑐𝑒 𝑡 𝑖𝑠 𝑟𝑒𝑎𝑙 ⟹ ∆≥ 0  

∴ 0 − 4(𝑦 − 3)(1 − 3𝑦) ≥ 0 ⟹

(𝑦 − 3)(1 − 3𝑦) ≤ 0  

⟹ 𝑦 ≤
1

3
𝑜𝑟 𝑦 ≥ 3 ⟹ 𝑦 <

1

3
𝑜𝑟 𝑦 > 3.  

(𝐻𝑒𝑟𝑒 𝑦 ≠
1

3
, 3)  

Case I: For 𝑦 =
1

3
⟹

1−3𝑡2

3−𝑡2
=
1

3
⟹ 3− 9𝑡2 =

3 − 𝑡2 

⟹ 𝑡 = 0  

Case II: For = 3 ⟹
1−3𝑡2

3−𝑡2
= 3,⟹ 1 − 3𝑡2 =

9 − 3𝑡2 

{not possible} 

3) If 
∑ 𝒙𝟐𝒓𝒌−𝟏
𝒓=𝟎

∑ 𝒙𝒓𝒌−𝟏
𝒓=𝟎

  is a polynomial in x for two 

values p and q of k, then roots of equation, 

𝒙𝟐 + 𝒑𝒙 + 𝒒 = 𝟎 cannot be  

(a) Real;  (b) positive   (c) rational;   (d) 

irrational 

Sol.: 
∑ 𝑥2𝑟𝑘−1
𝑟=0

∑ 𝑥𝑟𝑘−1
𝑟=0

 is a polynomial in x. i.e. 

{1 + 𝑥2 + 𝑥4 +⋯+ 𝑥2(𝑘−1)} is 

divisible by {1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑘−1} 

⟹
(
1−𝑥2𝑘

1−𝑥2
)

(
1−𝑥𝑘

1−𝑥
)
=
1+𝑥𝑘

1+𝑥
(𝑥 ≠ 1) is a polynomial in x if 

and only if: (1 + 𝑥𝑘) is divisible by (1 +

𝑥)𝑖𝑓 𝑥 =  −1 

But it is not possible, because the equation is 

not defined for 𝑥 =  −1. 

Hence, there are no real values of x for which 

the equation is defined. 

Thus, it can be easily said that the roots of the 

equation cannot be Rational. 

 

4) If one root of the equation 𝒂𝒙𝟐 + 𝒃𝒙 +

𝒄 = 𝟎 is reciproed of the other root of the 

equation 𝒂𝟏𝒙
𝟐 + 𝒃𝟏𝒙 + 𝒄𝟏 = 𝟎, 𝒕𝒉𝒆𝒏 

(a) (𝒂𝒂𝟏 − 𝒄𝒄𝟏)
𝟐 = (𝒃𝒄𝟏 −

𝒃𝟏𝒂)(𝒃𝟏𝒄 − 𝒂𝟏𝒃) 
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(b) (𝒂𝒃𝟏 − 𝒂𝟏𝒃)
𝟐 = (𝒃𝒄𝟏 −

𝒃𝟏𝒄)(𝒄𝒂𝟏 − 𝒄𝟏𝒂) 

(c) (𝒃𝒄𝟏 − 𝒃𝟏𝒄)
𝟐 = (𝒄𝒂𝟏 −

 𝒂𝟏𝒄)(𝒂𝒃𝟏 − 𝒂𝟏𝒃) 

(d) None 

Sol.: Let α be a root of the equation 𝑎𝑥2 + 𝑏𝑥 +

𝑐 = 0 

𝑇ℎ𝑒𝑛,
1

𝛼
 is a root of 𝑎1𝑥

2 + 𝑏1𝑥 + 𝑐1 = 0 

⟹ 𝑎𝛼2 + 𝑏𝛼 + 𝑐 = 0………(1)&
𝑎1

𝛼2
+

𝑏1

𝛼
+ 𝑐2 = 0  

⟹ 𝑐1𝛼
2 − 𝑏1𝛼 + 𝑎1 = 0 ……… . (2)  

Since (1) & (2) have one root in common, 

⟹
𝛼2

𝑏𝑎1−𝑏1𝑐
=

𝛼

𝑐𝑐1− 𝑎𝑎1
=

1

𝑎𝑏1−𝑐1𝑏
 

⟹ 𝛼2 =
𝑏𝑎1−𝑏1𝑐

𝑎𝑏1−𝑐1𝑏
, 𝛼 =

𝑐𝑐1− 𝑎𝑎1

𝑎𝑏1−𝑐1𝑏
, 𝑁𝑜𝑤, 𝛼2 =  (𝛼)2  

⟹ (𝑏𝑎1 − 𝑏1𝑐)(𝑎𝑏1 − 𝑐1𝑏) =

 (𝑐𝑐1 −  𝑎𝑎1)
2   

 

5) If α and 𝛽 are the roots of the equation 

𝒙𝟐 − 𝒂𝒙 + 𝒃 = 𝟎 𝒂𝒏𝒅 𝒗𝒏 = 𝜶
𝒏 +𝜷𝒏 then 

which of the following is true? 

(a) 𝒗𝒏+𝟏 = 𝒂𝒗𝒏 + 𝒃𝒗𝒏−𝟏;   (b) 𝒗𝒏+𝟏 =

𝒃𝒗𝒏 + 𝒂𝒗𝒏−𝟏;   (c) 𝒗𝒏+𝟏 = 𝒂𝒗𝒏 −

𝒃𝒗𝒏−𝟏;   (d) 𝒗𝒏+𝟏 = 𝒃𝒗𝒏 − 𝒂𝒗𝒏−𝟏; 

Sol.: 𝛼 + 𝛽 ∊ 𝑥2 − 𝑎𝑥 + 𝑏 = 0 𝛼2 + 𝑎𝛼 + 𝑏 =

0………… . (1) 

𝑜𝑟 𝛽2 + 𝑎𝛽 + 𝑏 = 0……………(2)  

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 (1)𝑏𝑦 𝛼𝑛−1 𝑎𝑛𝑑 (2)𝑏𝑦 𝛽𝑛−1  

⟹ 𝛼𝑛−1 − 𝑎𝛼𝑛 + 𝑏𝛼𝑛−1 =

0………… . (3)  

⟹ 𝛽𝑛−1 − 𝛼𝛽𝑛 + 𝑏𝛽𝑛−1 =

0………(4),   

Adding (3) & (4), we have 

(𝛼𝑛+1 + 𝛽𝑛+1) − 𝑎(𝛼𝑛 + 𝛽𝑛) +

𝑏(𝛼𝑛−1 + 𝛽𝑛−1) =  0  

⟹ 𝑣𝑛+1 − 𝑎𝑣𝑛 + 𝑏𝑣𝑛−1 = 0  

∴ 𝑣𝑛+1 − 𝑎𝑣𝑛 − 𝑏𝑣𝑛−1  

6) Let a, b, c be non-zero real numbers, such 

that 

∫ (𝟏 + 𝒄𝒐𝒔𝟖𝒙)
𝟏

𝟎
(𝒂𝒙𝟐 + 𝒃𝒙 +

𝒄)𝒅𝒙 = ∫ (𝟏 + 𝒄𝒐𝒔𝟖𝒙)
𝟐

𝟎
(𝒂𝒙𝟐 +

𝒃𝒙 + 𝒄)𝒅𝒙   

Then the quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 =

𝟎 has  

(a) No root in (0, 2);  (b) at least one root in (0, 

2);  (c) two root in (0, 2);  (d) two imaginary 

roots 

Sol.: Consider the function 

𝜙(𝑥) =  ∫ (1 + 𝑐𝑜𝑠8𝑥)
𝑥

0

(𝑎𝑥2 + 𝑏𝑥

+ 𝑐)𝑑𝑥 ⟹ 𝑓(1)

= 𝑓(2)…… . . (1) 

Obviously, (a), 𝜙(x) is continuous on [1, 2] and 

(b) differentiable on (1, 2), (c) Also, 𝜙(1) =

 𝜙(2)  (given) 

Therefore, by Rolle’s theorem there exists at 

least point k ∊ (1, 2) such that 𝜙’(k) = 0 

Now, 𝜙(x) = (1 + 𝑐𝑜𝑠8𝑥)(𝑎𝑥2 + 𝑏𝑥 + 𝑐) 

∴ 𝜙′(𝑘) =  0  

⟹ (1 + 𝑐𝑜𝑠8𝑥)(𝑎𝑘2 + 𝑏𝑘 + 𝑐) =

0   
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⟹ 𝑎𝑘2 + 𝑏𝑘 + 𝑐 = 0 {∵

(1 + 𝑐𝑜𝑠8𝑥) ≠ 0}  

⟹ 𝑘 𝑖𝑠 𝑎 𝑟𝑜𝑜𝑡 𝑜𝑓  𝑎𝑥2 + 𝑏𝑥 + 𝑐 =

0 𝑖𝑛 (1, 2) 

7) If𝟐𝒂 + 𝟑𝒃 + 𝟔𝒄 = 𝟎 (𝒂, 𝒃, 𝒄 ∊ 𝑹) then the 

quadratic equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 has 

(a) At least one in [0, 1];  (b) at least 

one root in [2, 3];  (c) at least one 

root in [4, 5];  (d) none 

Sol.: (A) Let 𝑓(𝑥) =
𝑎

3
𝑥3 +

𝑏

2
𝑥2 + 𝑐𝑥. We have 

𝑓(0) = 0 𝑎𝑛𝑑 𝑓(1) =
𝑎

3
+
𝑏

2
+ 𝑐 =

2𝑎+3𝑏+6𝑐

6
=

0 

(∵ 2𝑎 + 3𝑏 + 6𝑐 = 0).  

Thus, 0 and 1 are two roots of f(x) = 0. So, 

𝑓′(𝑥) = 0 𝑖. 𝑒. 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 has at least 

one real root between 0 and 1. 

8) If α, 𝛽 be the roots of the equation 𝟔𝒙𝟐 −

𝟔𝒙 + 𝟏 = 𝟎, 𝒕𝒉𝒆𝒏
𝟏

𝟐
(𝒂 + 𝒃𝒙 + 𝒄𝒙𝟐 +

𝒅𝒙𝟑) +
𝟏

𝟐
(𝒂 + 𝒃𝜷 + 𝒄𝜷𝟐 + 𝒅𝜷𝟐) = 

(a) 
𝒅

𝟏
+
𝒄

𝟐
+
𝒃

𝟑
+

𝒂

𝟏𝟐
;  (b) 𝟏𝟐𝒂 + 𝟔𝒃 +

𝟒𝒄 + 𝟗𝒅;  (c) 
𝒂

𝟏
+
𝒃

𝟐
+
𝒄

𝟑
+
𝒅

𝟒
;   (d) 

none 

Sol.: Here 𝛼 + 𝛽 = 1, 𝛼𝛽 =
1

6
. Thus the given 

expression 
1

2
{(𝑎 + 𝑏) + 𝑏(𝛼 + 𝛽) +

𝑐(𝛼2 + 𝛽2) + 𝑑(𝛼3 + 𝛽3)} =
𝑎

1
+
𝑏

2
+
𝑐

3
+
𝑑

4
 

after calculation of values. 

9) If a is a positive integer, the number of 

values of a satisfying 

 ∫ {𝒂𝟐 (
𝐜𝐨𝐬𝟑𝒙

𝟒
+
𝟑

𝟒
𝐜𝐨𝐬 𝒙) + 𝒂𝐬𝐢𝐧𝒙 −

𝝅

𝟐
𝟎

𝟐𝟎 𝐜𝐨𝐬𝒙}  𝒅𝒙 ≤ −
𝒂𝟐

𝟑
, 

(a) Only one;  (b) two;  (c) three;   (d) 

none 

Sol.: Given ∫ {𝑎2 (
cos3𝑥

4
+
3

4
cos 𝑥) + 𝑎 sin𝑥 −

𝜋

2
0

20 cos 𝑥}𝑑𝑥 ≤
𝑎2

3
⟹ {𝑎2 (

sin3𝑥

4
+
3

4
sin 𝑥) −

𝑎 cos𝑥 − 20 sin𝑥} | 
𝜋

2
0
≤ −

𝑎2

3
⟹ 𝑎2 (−

1

12
+

3

4
) − 0 − 20 + 𝑎 ≤

𝑎2

3
 

⟹
2

3
𝑎2 + 𝑎 − 20 +

𝑎2

3
≤ 0 ⟹ 𝑎2 +

𝑎 − 20 ≤ 0  

⟹ (𝑎 + 5)(𝑎 − 4) ≤ 0  

Thus, a = 1, 2, 3, 4  {∵ a∊ I} 

10) If (𝒙 − 𝒄) is a factor of order m of the 

polynomial f(x) of degree n (𝟏 < 𝑚 < 𝑛), 

then x = c is a root of the polynomial 

(a) 𝒇𝒎(𝒙);  (b) 𝒇𝒎−𝟏(𝒙);  (c) 𝒇𝒏(𝒙);  

(d) none 

Sol.: since (𝑥 − 𝑐) is a factor of order m of the 

polynomial 𝑓(𝑥) 

∴ 𝑓(𝑥) =  (𝑥 − 𝑐)𝑚𝜙(𝑥)  

Where 𝜙(x) is a polynomial of degree (𝑛 − 𝑚) 

⟹ 𝑓(𝑥), 𝑓′(𝑥),… . , 𝑓(𝑚−1)(𝑥) are all 

zero for x = c but 𝑓𝑚(𝑥) ≠ 0 𝑎𝑡 𝑥 = 𝑐. 

11) The value of a for which one root of 

(𝒂𝟐 − 𝟓𝒂 + 𝟑)𝒙𝟐 + 𝒙(𝟑𝒂 − 𝟏)𝒂 + 𝟐 = 𝟎 

is twice as large as the other is 

(a) 
𝟏

𝟑
;  (b) −

𝟏

𝟑
;  (c) 

𝟐

𝟑
,  (d) none 

Sol.: Let α and 2α be the two roots of the given 

equation. So,  

𝛼 + 2𝛼 = −
3𝑎−1

𝑎2−5𝑎+3
 𝑎𝑛𝑑   

2𝛼2 =
2

𝑎2−5𝑎+3
,⟹  𝛼 =

−
3𝑎−1

3(𝑎2−5𝑎+3)
 𝑎𝑛𝑑   
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𝛼2 =
1

𝑎2 − 5𝑎 + 3
,⟹

1

𝑎2 − 5𝑎 + 3

=
(3𝑎 − 1)2

9(𝑥2 − 5𝑎 + 3)
 

[∵ 𝛼2 = (𝛼)2],⟹ 9(𝑎2 − 5𝑎 + 3)

=  (3𝑎 − 1)2 

(∵  𝑎2 − 5𝑎 + 3 ≠ 0),⟹ −39 + 26

= 0,⟹ 𝑎 =
2

3
. 

12) Equation 
𝒂𝟐

𝒙−𝜶
+

𝒃𝟐

𝒙−𝜷
+

𝒄𝟐

𝒙−𝝂
= 𝒎−

𝒏𝟐𝒙 (𝒂, 𝒃, 𝒄,𝒎, 𝒏 ∊ 𝑹) has necessarily 

(a) All the roots real;  (b) all the roots 

imaginary;  (c) two real and two 

imaginary   (d) none 

Sol.: Let 𝑃 + 𝐿𝑞 be a root of given equation 

 ∴
𝑎2

𝑝−𝛼+𝑙𝑞
+

𝑏2

𝑝−𝛽+𝑙𝑞
+

𝑐2

𝑝−𝛾+𝑙𝑞
 

⟹
𝑎2{𝑝−𝛼+𝑙𝑞}

(𝑝−𝛼)2+𝑞2
+
𝑏2{(𝑝−𝛽)−𝑙𝑞}

(𝑝−𝛽)2+𝑞2
+

𝑐2{(𝑝−𝛾)−𝑙𝑞}

(𝑝−𝛾)2+𝑞2
 = 𝑚− 𝑛2𝑝 − 𝑙𝑛2𝑞 

According to law of equality of complex 

numbers, we have 

𝑞 [
𝑎2

(𝑝 − 𝛼)2 + 𝑞2
+

𝑏2

(𝑝 − 𝛽)2 + 𝑞2

+
𝑐2

(𝑝 − 𝛾)2 + 𝑞2
+ 𝑛2]

=  0 ∴ 𝑞 = 0 

𝐻𝑒𝑛𝑐𝑒 𝑝 + 𝑙𝑞 = 𝑝 is a real number. 

 

13) If 𝒙 = (𝜷 − 𝜸)(𝜶 − 𝜹), 𝒚 = (𝜸 − 𝜶)(𝜷 −

𝜹) 𝒛 = (𝜶 − 𝜹)(𝜸 − 𝜹) then the value of 

𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 − 𝟑𝒙𝒚𝒛 is 

(a) 0;  (b) 𝜶𝟔 + 𝜷𝟔 + 𝜸𝟔 + 𝜹𝟔;  (c) 

𝜶𝟔𝜷𝟔𝜸𝟔𝜹𝟔;  (d) none 

Sol.: Since on solving, we have 𝑥 + 𝑦 + 𝑧 = 0 

∴ 𝑥3 + 𝑦3 + 𝑧3 = 3𝑥𝑦𝑧 (by definition) 

14) The range of values of a for which all the 

roots of the equation 

(𝒂 − 𝟏)(𝟏 + 𝒙 + 𝒙𝟐) =

(𝒂 + 𝟏)(𝟏 + 𝒙𝟐 + 𝒙𝟒) are 

imaginary is 

(a) [−∞,−𝟐];  (b) [𝟐,∞];  (c) −𝟐 < 𝑎 < 2;  

(d) none 

Sol.:  

(1 + 𝑥 + 𝑥2)[(𝑎 − 1)(1 − 𝑥 + 𝑥2) −

(𝑎 + 1)(1 − 𝑥 + 𝑥3)]  

= 0 (1 + 𝑥 + 𝑥2 =

0 ℎ𝑎𝑠 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑟𝑜𝑜𝑡𝑠)  

⟹−2 (1 + 𝑥2) + 2𝑎𝑥 = 0,  must have 

imaginary roots. 

⟹ 𝑥3 − 𝑎𝑥 + 1, must have imaginary roots 

⟹𝑎2 − 4 < 0 ⟹ −2 < 𝑎 < 2. 

15)  If a, b , c are non-zero, unequal rational 

number then the roots the equation  

𝒂𝒃𝒄𝟐𝒙𝟐 + (𝟑𝒂𝟐 + 𝒃𝟐)𝒄𝒙 − 𝟔𝒂𝟐 − 𝒂𝒃 +

𝟐𝒃𝟐 = 𝟎 are 

(a) Rational;  (b) imaginary;  (c) 

irrational;  (d) none 

Sol.:  

∆= 𝑐2(3𝑎2 + 𝑏2)2 − 4𝑎𝑏𝑐2(−6𝑎2 −

𝑎𝑏 + 2𝑏2)  

⟹ ∆ =  𝑐2(3𝑎2 − 𝑏2 + 4𝑎𝑏)2  

16) If the equation 𝒙𝟐 − 𝟑𝒙𝒌 + 𝟐𝒆𝟐 𝐥𝐨𝐠𝒌 − 𝟏 =

𝟎 has real roots such that the product of 

roots is 7, then the value of k is 

(a) ±𝟏;  (b) ±𝟐;  (c) ±𝟑;  (d) none 

Sol.: Since, 𝑒2 log𝑘  𝑒log𝑘
2
= 𝑘2 
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∴ The given equation is 𝑥2 − 3𝑘𝑥 +

(2𝑘2 − 1) = 0 

Now, product of roots = 7 (given) 

⟹2𝑘2 − 1 = 7 ∴ 𝑘 =  ±2 

17)  Product of real root of 𝒕𝟐𝒙𝟐 + |𝒙| + 𝟗 = 𝟎, 

(a) Is always positive;  (b) is always 

negative;   (c) does not exist;   (d) 

none. 

Sol.: Since the equation 𝑡2𝑥2 + |𝑥| + 9 = 0 is 

always positive for all x ∊ R. 

∴ The equation does not possess real root. 

18) If a, b, c are real and 𝒙𝟑 − 𝟑𝒃𝟐𝒙 + 𝟐𝒄𝟑 is 

divisible by (𝒙 − 𝒂)𝒂𝒏𝒅 (𝒙 − 𝒃), then 

(a) 𝒂 = −𝒃 = −𝒄;  (b) 𝒂 = 𝟐𝒃 = 𝟐𝒄; 

(c) 𝒂 = 𝒃 = 𝒄; 𝒐𝒓 𝒂 =  −𝟐𝒃 =

 −𝟐𝒄;  (d) none 

Sol.: Since, 𝑓(𝑥) =  𝑥33𝑏2𝑥 + 2𝑐3 is divisible by 

𝑥 − 𝑎 𝑎𝑛𝑑 𝑥 − 𝑏  ∴ 𝑓(𝑎) =  0 

⟹ 𝑎3 − 3𝑏2𝑎 + 2𝑐3 =

0……… . . (1)𝑎𝑛𝑑 𝑓(𝑏) =  0  

⟹ 𝑏3 − 3𝑏3 + 2𝑐3 =

0……(2)𝑎𝑛𝑑 ⟹ −2𝑏3 + 2𝑐3 = 0  

∴ 𝑏 = 𝑐. 𝑃𝑢𝑡𝑡𝑖𝑛𝑔, 𝑏 = 𝑐 𝑖𝑛 (1), 𝑤𝑒 𝑔𝑒𝑡.  

𝑎3 − 3𝑎𝑏2 + 2𝑏3 = 0⟹ (𝑎 − 𝑏)(𝑥2 +

𝑎𝑏 − 2𝑏2) = 0  

⟹ 𝑎 − 𝑏 𝑜𝑟 𝑎2 + 𝑎𝑏 + 2𝑏2. 𝑇ℎ𝑢𝑠, 𝑎 =

𝑏 = 𝑐  

𝑜𝑟 𝑎2 + 𝑎𝑏 = 2𝑏2⟹ 𝑎 = 𝑏 = 𝑐 𝑎𝑛𝑑   

(𝑎 + 2𝑏)(𝑎 − 𝑏) = 0 ⟹ 𝑎 = 𝑏 =

𝑐 𝑎𝑛𝑑 𝑎 =  −2𝑏  

∴ 𝑎 = 𝑏 = 𝑐 𝑎𝑛𝑑 𝑎 =  −2𝑏 =  −2𝑐  

 

19) Both the root of the equation 

(𝒙 − 𝒃)(𝒙 − 𝒄) + (𝒙 − 𝒄)(𝒙 −

𝒂) + (𝒙 − 𝒂)(𝒙 + 𝒃) = 𝟎 are 

always: 

(a) Positive;  (b) negative;  (c) real;  (d) 

none 

Sol.: The given equation can be written as 

3𝑥2 − 2𝑥(𝑎 + 𝑏 + 𝑐) + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 0. 

𝑁𝑜𝑤, ∆ 4(𝑎 + 𝑏 + 𝑐)2 − 12(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)  

⟹ ∆= 2 [(𝑏 − 𝑐)2 + (𝑐 − 𝑎)2 +

(𝑎 − 𝑏)2] ⟹ ∆≥ 0. Hence the roots are 

real. 

20) If x denotes the set of real number p for 

which 𝒙𝟐 = 𝒑(𝒙 + 𝒑) has a its roots 

greater than P, then x is equal to 

(a) (−𝟐,−
𝟏

𝟐
),  (b) (−

𝟏

𝟐
,
𝟏

𝟒
),  (c)  null 

set,  (d) (−∞, 𝟎) 

Sol.: Since the roots are greater than p, i.e. p 

lies outside both the roots, such that 𝑎𝑓(𝑝) >

 0 

⟹ 1(𝑝2 − 2𝑝2) > 0 ⟹ 𝑝2 > 0 which 

is impossible. 

𝐻𝑒𝑛𝑐𝑒, 𝑥 = {𝑝|𝑝 ∊ 𝜙}  

21) If a and b are rational and 𝛼, 𝛽 be the roots 

of 𝒙𝟐 + 𝟐𝒂𝒙 + 𝒃 = 𝟎,  then the equation 

with rational coefficients are one of whose 

roots in 𝜶 + 𝜷 + √𝜶𝟐 + 𝜷𝟐 is 

(a) 𝒙𝟐 + 𝟒𝒂𝒙 + 𝟐𝒃 = 𝟎; (b) 𝒙𝟐 +

𝟒𝒂𝒙 − 𝟐𝒃 = 𝟎; (c) 𝒙𝟐 − 𝟒𝒂𝒙 +

𝟐𝒃 = 𝟎; (d) 𝒙𝟐 − 𝟒𝒂𝒙 − 𝟐𝒃 = 𝟎 

Sol.: Since, 𝛼, 𝛽 ∊ 𝑥2 + 2𝑎𝑥 + 𝑏 = 0(𝑔𝑖𝑣𝑒𝑛) 

∴ 𝛼 + 𝛽 = −2𝑎 𝑎𝑛𝑑 𝛼𝛽 = 𝑏  

𝐿𝑒𝑡 𝑦 = 𝛼 + 𝛽 + √𝛼2 + 𝛽2  
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⟹ (𝑦 + 2𝑎)2 = 𝛼2 + 𝛽2 =

 (𝛼2 + 𝛽2)2 − 2𝛼𝛽 = 4𝑎2 − 2𝑏  

⟹ 𝑦2 + 4𝑎𝑦 + 2𝑏 = 0.  

The required equation is 𝑥2 + 4𝑎𝑦 + 2𝑏 = 0 

22) Let 𝒇(𝒙) =  𝒙𝟑 + 𝒙𝟐 + 𝟏𝟎𝟎𝒙 + 𝟕𝐬𝐢𝐧𝒙, 

then the equation 
𝟏

𝒚−𝒇(𝟏)
+

𝟐

𝒚−𝒇(𝟐)
+

𝟑

𝒚−𝒇(𝟑)
=

𝟎 has  

(a) No real root;  (b) one real root;   

(c) two real roots;   (d) more 

than two real roots. 

Sol.: 𝑓(𝑥) =  𝑥3 + 𝑥2 + 100𝑥 + 7 sin𝑥 

∴ 𝑓′(𝑥) = 3𝑥2 + 2𝑥 + 100 + 7 cos 𝑥  

⟹ 𝑓′(𝑥) = 3𝑥2 + 2𝑥 + 93 + 7(1 + cos 𝑥) > 0  

∴ f(x) is an increasing function. 

⟹ 𝑓(1) < 𝑓(2) < 𝑓(3) 𝑙𝑒𝑡 𝑓(1) = 𝑎, 𝑓(2) =

𝑏, 𝑓(3) = 𝑐, 𝑡ℎ𝑒𝑛 𝑎 < 𝑏 < 𝑐……… (1)  

Now given equation is 
1

𝑦−𝑎
+

2

𝑦−𝑏
+

3

𝑦−𝑐
= 0 

⟹ (𝑦 − 𝑏)(𝑦 − 𝑐) + 2(𝑦 − 𝑎)(𝑦 − 𝑐) +

3(𝑦 − 𝑎)(𝑦 − 𝑏) = 0  

𝐿𝑒𝑡   

𝑔(𝑦) = (𝑦 − 𝑏)(𝑦 − 𝑐) + 2(𝑦 − 𝑎)(𝑦 − 𝑐) +

3(𝑦 − 𝑎)(𝑦 − 𝑏)  

⟹ 𝑔(𝑎) = (𝑎 − 𝑏)(𝑎 − 𝑐) > 0  

⟹ 𝑔(𝑏) = 2(𝑏 − 𝑎)(𝑏 − 𝑐) < 0  

⟹ 𝑔(𝑐) = 3(𝑐 − 𝑎)(𝑐 − 𝑏) > 0  

∴ given equation 𝑔(𝑦) = 0 has one real root 

between a and b and other between b and c. 

 

23) If 𝐬𝐢𝐧𝜶  𝒂𝒏𝒅𝐜𝐨𝐬𝜶 are roots of the 

equation 𝒑𝒙𝟐 + 𝒒𝒙 + 𝒓 = 𝟎, 𝒕𝒉𝒆𝒏 

(a) 𝒑𝟐 − 𝒒𝟐 + 𝟐𝒑𝒓 = 𝟎;  (b) 

(𝒑 + 𝒓)𝟐 = 𝒒𝟐 − 𝒓𝟐;  (c) 𝒑𝟐 +

𝒒𝟐 − 𝟐𝒑𝒓 = 𝟎;  (d) (𝒑 − 𝒓)𝟐 =

 𝒒𝟐 + 𝒓𝟐 

Sol.: sin𝛼 , cos 𝛼  𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 

⟹ sin𝛼 + cos𝛼 =  −
𝑞

𝑝
 and since 

𝛼 cos𝛼 =
𝑟

𝑝
 

⟹ (sin𝛼 + cos𝛼)2 =
𝑞2

𝑝2
 

⟹ 1+ 2sin𝛼 cos𝛼 =
𝑞2

𝑝2
⟹ 1+

2𝑟

𝑝

=
𝑞2

𝑝2
 

∴ 𝑃2 − 𝑞2 + 2𝑝𝑟 = 0 

24) The roots of the equation 𝟖𝒙𝟐 − 𝟏𝟎𝒙 +

𝟑 = 𝟎 are 𝛼 and 𝜷𝟐 >
𝟏

𝟐
, then the equation 

whose roots are (𝜶 + 𝒊𝜷)𝟏𝟎𝟎 𝒂𝒏𝒅 (𝜶 −

𝒊𝜷)𝟏𝟎𝟎 is 

(a) 𝒙𝟐 − 𝒙 + 𝟏 = 𝟎;  (b) 𝒙𝟐 + 𝒙 + 𝟏 =

𝟎;  (c) 𝒙𝟐 − 𝒙 − 𝟏 = 𝟎;  (d) none 

Sol.: Since 𝑓(𝑥) = (2𝑥 − 1)(4𝑥 − 3) ∴ 𝑥 =
1

2
,
3

4
 

𝑁𝑜𝑤, 𝛼 =
1

2
𝑎𝑛𝑑 𝛽2 =

3

4
{∴  𝛽2 >

1

2
(𝑔𝑖𝑣𝑒𝑛)}  

𝛼 + 𝑖𝛽 =
1

2
+
√3

2
= 𝑟𝑒𝑖𝜃 = 𝑒

𝑙𝜋
3 ⟹ 𝑟

= 1 𝑎𝑛𝑑 𝛩 =
𝜋

3
 

𝐴𝑙𝑠𝑜 , 𝛼 − 𝑖𝛽 = 𝑒 −
𝑖𝜋

3
(𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒) 
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∴ (𝛼 + 𝑖𝛽)100 = 𝑒
𝑙100𝜋
3 = 𝑒𝑖.3.3𝜋. 𝑒

𝑙𝜋
3

= −𝑒
𝑙𝜋
3  

𝐴𝑙𝑠𝑜, (𝛼 − 𝑖𝛽)100

= −𝑒−
𝑙𝜋
3 (𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒) 

𝑆𝑢𝑚 =  −(𝑒
𝑙𝜋
3 + 𝑒

𝑙𝜋
3 ) =  −2 cos

𝜋

3
=  −1 

Product = 1 

∴ Required equation is 𝑥2 + 𝑥 + 1 = 0 

 

(SUBJECTIVE TYPE) 

1) If the root of 𝒇(𝒙) = 𝒂𝒙
𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 +

𝒅 = 𝟎 are 𝜶𝟏, 𝜶𝟐, 𝜶𝟑  and the root of 𝜙(y) = 

𝒂𝒚𝟑 +
𝒇′′(𝒚)

𝟐!
  

𝒚𝟐 +
𝒇′(𝒚)

𝟏!
𝒛 + 𝒇(𝒚) =

𝟎 𝒂𝒓𝒆 𝜷𝟏, 𝜷𝟐, 𝜷𝟑, then show that 

𝜶𝟏 − 𝜷𝟏 = 𝜶𝟐 − 𝜷𝟐 = 𝜶𝟑 −𝜷𝟑. 

Sol.: Consider 𝑓(𝑥) = 𝑎𝑥
3 + 𝑏𝑥2 + 𝑐𝑥 +

𝑑…………(1) 

𝜙(𝑦) =  𝑎𝑦3 +
𝑓′′(𝑦)

2!
 𝑦2 +

𝑓′(𝑦)

1!
𝑦

+ 𝑓(𝑦)

= 0……… . (2) 

𝑁𝑜𝑤  𝑓(𝑦) = 𝑎𝑦
3 + 𝑏𝑦2 + 𝑐𝑦 + 𝑑, 𝑓′(𝑦) =

3𝑎𝑦2 + 2𝑏𝑦 + 𝑐  

𝑓′′(𝑦) = 6𝑎𝑦 + 2𝑏  

Substituting above values in equation (2), we 

get  

𝜙(𝑦) =  𝑎𝑦
3 +

(6𝑎𝑦+2𝑏)

2!
𝑦2 + (3𝑎𝑦2 + 2𝑏𝑦 +

𝑐)𝑦 + 𝑎𝑦3 + 𝑏𝑦2 + 𝑐𝑦 + 𝑑  

          = 𝑎𝑦3 + (3𝑎𝑦 + 𝑏)𝑦2 + (3𝑎𝑦2 + 2𝑏𝑦 +

𝑐) + 𝑎𝑦3 + 𝑏𝑦2 + 𝑐𝑦 + 𝑑  collecting all a, b, & c 

terms 

          = 𝑎[𝑦3 + 𝑦3 + 3𝑦2𝑦 + 3𝑦𝑦2] +

𝑏[𝑦2 + 𝑦2 + 2𝑦𝑦] + 𝑐(𝑦 + 𝑦) + 𝑑  

          = 𝑎(𝑦 + 𝑦)3 + 𝑏(𝑦 + 𝑦)2 + 𝑐(𝑦 +

𝑦)𝑑…… (3)  

⟹ 𝜙(𝑦) = 𝑓(𝑦+𝑦) key point. Let 𝑦 + 𝑦 = 𝑥 ⟹

𝑦 = 𝑥 − 𝑦 

Hence which means the roots of (1) are 

decreased by quality y. 

∴ If 𝛼1, 𝛼2, 𝛼3 a are the roots of (1), and 

𝛽1, 𝛽2, 𝛽3, are the roots of (2), then 𝛼1 −

𝑦 = 𝛽1;  𝛼2 − 𝑦 = 𝛽2;  𝛼3 − 𝑦 = 𝛽3 

⟹ 𝛼1 − 𝛽1 = 𝑦;  𝛼2 − 𝛽2 = 𝑦;  𝛼3 − 𝛽3 = 𝑦  

⟹ 𝛼1 − 𝛽1 = 𝛼2 − 𝛽2 = 𝛼3 − 𝛽3  𝑃𝑟𝑜𝑣𝑒𝑑.  

 

2) If 𝛼, 𝛽, 𝛽, y, y, 𝛼 are the roots of 𝒂𝒊𝒙
𝟐 +

𝒃𝒊𝒙 + 𝒄𝒊 = 𝟏, 𝟐, 𝟑; then show that 

(𝜶 + 𝜷 + 𝜸) + (𝜶𝜷 + 𝜷𝒚 + 𝒚𝜶) + 𝜶𝜷𝜸 =

 {∏
𝒂𝒊−𝒃𝒊+𝒄𝒊

𝒂𝒊

𝟑
𝒊=𝟎 }

𝟏

𝟐
− 𝟏. 

Sol.: Since 𝛼, 𝛽 are roots of 𝑎𝑖𝑥
2 + 𝑏𝑖𝑥 + 𝑐𝑖 = 0 

∴ 𝛼 + 𝛽 =
−𝑏1
𝑎1

 & 𝛼𝛽 =
𝑐1
𝑎1

 

1 + 𝛼 + 𝛽 + 𝛼𝛽 = 1 −
−𝑏1
𝑎1

+
𝑐1
𝑎1

= (
𝑎1 − 𝑏1 + 𝑐1

𝑎1
) 

⟹ (1 + 𝛼)(1 + 𝛽)

= (
𝑎1 − 𝑏1 + 𝑐1

𝑎1
)……… . . (1) 
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𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 (1 + 𝛽)(1 + 𝛾)

= (
𝑎2 − 𝑏2 + 𝑐2

𝑎2
)…………(2)𝑎𝑛𝑑  

(1 + 𝛾)(1 + 𝛼) = (
𝑎3 − 𝑏3 + 𝑐3

𝑎3
)……… . (3) 

Multiplying equation (1),(2) and (3). We get, 

(1 + 𝛼)2(1 + 𝛽)2(1 + 𝛾)2 =

 ∏ (
𝑎𝑖−𝑏𝑖+𝑐𝑖

𝑎𝑖
)3

𝑖=1 ⟹ 1+ 𝛼 + 𝛽 + 𝛾 + 𝛼𝛽 +

𝛽𝛾 + 𝛾𝛼 + 𝛼𝛽𝛾 = (∏ (
𝑎𝑖−𝑏𝑖+𝑐𝑖

𝑎𝑖
)3

𝑖=1 )

1

2
 

⟹ (𝛼 + 𝛽 + 𝛾) + (𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼) + 𝛼𝛽𝛾

= (∏(
𝑎𝑖 − 𝑏𝑖 + 𝑐𝑖

𝑎𝑖
)

3

𝑖=1

)

1
2

− 1.  

3) If a, b, c, d are the roots of the equation 

𝒙𝟒 + 𝒑𝟏𝒙
𝟑 + 𝒑𝟐𝒙

𝟐 + 𝒑𝟒 = 𝟎,

𝒕𝒉𝒆𝒏 𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 (𝟏 + 𝒂𝟐)(𝟏 + 𝒃𝟐)(𝟏 +

𝒄𝟐)(𝟏 + 𝒅𝟐) = (𝟏 − 𝒑𝟐 + 𝒑𝟒) +

(𝒑𝟑 − 𝒑𝟏)
𝟐 

Sol.: As a, b, c, d are the roots of the given 

equation  

∴ 𝑥4 + 𝑝1𝑥
3 + 𝑝2𝑥

2 + 𝑝3𝑥 + 𝑝4 =

(𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)(𝑥 −

𝑑)………… . . (1)  

Equation (1) is an identity, so we put x = i on 

both sides  

= 𝑖4 + 𝑝1𝑖
3 + 𝑝2𝑖

2 + 𝑝3𝑖 + 𝑝4 =

(𝑖 − 𝑎)(𝑖 − 𝑏)(𝑖 − 𝑐)(𝑖 − 𝑑)  

⟹ (1 − 𝑝2 + 𝑝4) + 𝑖(𝑝3 − 𝑝1) =

(𝑖 − 𝑎)(𝑖 − 𝑏)(𝑖 − 𝑐)(𝑖 − 𝑑)………(2)  

Again putting 𝑥 = −𝑖 on equation (1), we get 

(1 − 𝑝2 + 𝑝4) − 𝑖(𝑝3 − 𝑝1) =

(−𝑖 − 𝑎)(−𝑖 − 𝑏)(−𝑖 − 𝑐)(−𝑖 −

𝑑)……… . . (3)  

Multiplying equation (2) and (3), we get 

{(1 − 𝑝2 + 𝑝4) + 𝑖(𝑝3 − 𝑝1)}{(1 −

𝑝2 + 𝑝4) − 𝑖(𝑝3 − 𝑝1)}  

= (𝑖 − 𝑎)(𝑖 − 𝑏)(𝑖 − 𝑐)(𝑖 − 𝑑)(−𝑖 −

𝑎)(−𝑖 − 𝑏)(−𝑖 − 𝑐)(−𝑖 − 𝑑)  

⟹ (1 − 𝑝2 + 𝑝4)
2 + (𝑝3 − 𝑝1)

3 =

(𝑖 + 𝑎2)(𝑖 + 𝑏2)(𝑖 + 𝑐2)(1 + 𝑑2).  

4) If 𝜷 + 𝒄𝒐𝒔𝟐𝜶,𝜷 +

𝒔𝒊𝒏𝟐𝜶  𝒂𝒓𝒆 𝒕𝒉𝒆 𝒓𝒐𝒐𝒕𝒔 𝒐𝒇 𝒙𝟐 + 𝟐𝒃𝒙 + 𝒄 =

𝟎 𝒂𝒏𝒅 𝒚 + 𝒄𝒐𝒔𝟒𝜶, 𝒚 + 𝒔𝒊𝒏𝟒𝜶 are the roots 

of 𝒙𝟐 + 𝟐𝒃𝒙 + 𝒄 = 𝟎, the prove that 𝒃𝟐 −

𝑩𝟐 = 𝒄 − 𝑪. 

Sol.: If 𝛼, 𝛽 are the roots of equation 𝑎𝑥2 +

𝑏𝑥 + 𝑐 = 0𝑡ℎ𝑒𝑛 (𝛼 − 𝛽)2 = (𝛼 + 𝛽)2 −

4𝛼𝛽 =
𝑏2

𝑎2
−
4𝑐

𝑎
=
𝑏2−4𝑎𝑐

𝑎2
  𝑠𝑖𝑛𝑐𝑒  

(𝛽 + 𝑐𝑜𝑠2𝛼), (𝛽 + 𝑠𝑖𝑛2𝛼) are roots of equation 

𝑥2 + 2𝑏𝑥 + 𝑐 = 0 

∴ {(𝛽 + 𝑐𝑜𝑠2𝛼),−(𝛽 + 𝑠𝑖𝑛2𝛼)}2

=
4𝑏2 − 4𝑐

𝑙2
 

⟹ 𝑐𝑜𝑠22𝛼 = 4(𝑏2 − 𝑐)……… . (1) 

𝐴𝑙𝑠𝑜, [(𝛾 + 𝑐𝑜𝑠4𝛼) − (𝛾 + 𝑠𝑖𝑛4𝛼)]2

=
4𝐵2 − 4𝑐

𝑙2
 

⟹ (𝑐𝑜𝑠4𝛼 − 𝑠𝑖𝑛4𝛼)2 = 4(𝐵2 −

𝐶)…… . (2)  

⟹ (𝑐𝑜𝑠2𝛼 + 𝑠𝑖𝑛2𝛼)(𝑐𝑜𝑠2𝛼 −

𝑠𝑖𝑛2𝛼) = 4(𝐵2 − 𝐶).  

From equation (1) and (2), we get 

4(𝑏2 − 𝑐) = 4(𝐵2 − 𝐶) 

⟹ 𝑏2 − 𝐵2 = 𝑐 − 𝐶   𝑃𝑟𝑜𝑣𝑒𝑑  
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5) Show that for any real numbers 

𝒂𝟑, 𝒂𝟒, … , 𝒂𝟖𝟓, the roots of the equation 

𝒂𝟖𝟓𝒙
𝟖𝟓 + 𝒂𝟖𝟒𝒙

𝟖𝟒 +⋯+ 𝒂𝟑𝒙
𝟑 + 𝟑𝒙𝟐 +

𝟐𝒙 + 𝟏 = 𝟎 are real. 

Sol.: Let 

𝑃(𝑥) =  𝑎85𝑥
85 +⋯+ 𝑎3𝑥

3 + 3𝑥2 +

2𝑥 + 1 = 0……… . (1)  

𝑠𝑖𝑛𝑐𝑒 𝑃(𝑥) = 1,  then 0 is not a root of (1). 

𝐿𝑒𝑡 𝛼1, 𝛼2, 𝛼3, … , 𝛼85 be the complex root of (1) 

𝑇ℎ𝑒𝑛 𝑡ℎ𝑒 𝛽𝑖 (𝑙𝑒𝑡
1

𝛼𝑖
) are the complex roots of 

the polynomial   

𝑄(𝑦) = 𝑦
85 + 2𝑦85 + 3𝑦85 + 𝑎3𝑦

82 +⋯+

𝑎85.  

𝐼𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 ∑ 𝛽𝑖
85
𝑖=1 =

 −2 𝑎𝑛𝑑 ∑ 𝛽𝑖𝛽𝑗
85
𝑖<𝑗 = 3  

𝑇ℎ𝑒𝑛 ∑ 𝛽𝑖
285

𝑖=1 = (∑ 𝛽𝑖
85
𝑖=1 )

2
− 2∑ 𝑆𝑖𝑆𝑗𝑖<𝑗 =

 −2 < 0  

Thus, the 𝛽𝑖′𝑠 are not real and then the 𝛼𝑖′𝑠 are 

not all real. 

Conclusion: The equation 𝑎85𝑥
85 + 𝑎84𝑥

84 +

⋯+ 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 = 0 are not real 

root, if 𝑎0 ≠ 0 𝑎𝑛𝑑 𝑎1
2 < 2𝑎0𝑎2. 

6) Suppose that 𝒂𝟏 > 𝒂𝟐 > 𝒂𝟑 > 𝒂𝟒 > 𝒂𝟓 >

𝒂𝟔 and 𝒑 = 𝒂𝟏 + 𝒂𝟐 + 𝒂𝟑 + 𝒂𝟒 + 𝒂𝟓 +

𝒂𝟔, 𝒒 =  𝒂𝟏𝒂𝟑 + 𝒂𝟑𝒂𝟓 + 𝒂𝟓𝒂𝟏 + 𝒂𝟐𝒂𝟒 +

𝒂𝟒𝒂𝟔 + 𝒂𝟔𝒂𝟐 𝒂𝒏𝒅 𝒓 =  𝒂𝟏𝒂𝟑𝒂𝟓 + 𝒂𝟐𝒂𝟒𝒂𝟔. 

Then show that all the roots of the 

equation 𝟐𝒙𝟑 − 𝒑𝒙𝟐 + 𝒒𝒙 − 𝒓 = 𝟎 

are real 

Sol.: let 𝑓(𝑥) = 2𝑥
3 − 𝑝𝑥2 + 𝑞𝑥 − 𝑟 = 2𝑥3 −

(𝑎1 + 𝑎2 +⋯+ 𝑎6)𝑥
2 + (𝑎1𝑎3 + 𝑎3𝑎5 +

𝑎5𝑎1 + 𝑎2𝑎4 + 𝑎4𝑎6 + 𝑎6𝑎2)𝑥 − (𝑎1𝑎3𝑎5 +

𝑎2𝑎4𝑎6)  

𝐹𝑟𝑜𝑚 (𝑎1𝑎3𝑎5 +

𝑎2𝑎4𝑎6)𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒 𝑓(𝑥) 𝑖𝑛 𝑓𝑜𝑟𝑚 𝑜𝑓   

𝑓(𝑥) = 𝑝(𝑥 − 𝑎1)(𝑥 − 𝑎3)(𝑥 − 𝑎5) +

𝑞(𝑥 − 𝑎2)(𝑥 − 𝑎4 )(𝑥 − 𝑎6)  

⟹ 𝑓(𝑥) = (𝑥 − 𝑎1)(𝑥 − 𝑎3) (𝑥 − 𝑎5) +

(𝑥 − 𝑎2)(𝑥 − 𝑎4 )(𝑥 − 𝑎6)…… . (1)  

𝑓(𝑥) > 0 ∀ 𝑥 > 𝑎1, 𝑓(𝑥) < 0 ∀𝑎2 > 𝑥 > 𝑎1  

𝑓(𝑥) > 0 ∀ 𝑎4 > 𝑥 > 𝑎6, 𝑓(𝑥) < 0  ∀ 𝑎6 > 𝑥  

So from properties of continuous function we 

say that equation 𝑓(𝑥) = 0 have three real 

roots. 

7) Suppose the root of the equation 

𝒙𝒏 − 𝒂𝟏𝒙
𝒏−𝟏 + 𝒂𝟐𝒙

𝒏−𝟐 +⋯+

𝒂𝒏−𝟏𝒙 + 𝒂𝒏 = 𝟎 are real 

Show that if 𝛼 is a real root, then 

𝒂𝟏 − [
(𝒂𝟏

𝟐 − 𝟐𝒏𝒂𝟐)

(𝒏 − 𝟏)
]

𝟏
𝟐

≤ 𝒏𝜶+ 𝒂𝟏 + [
(𝒂𝟏

𝟐 − 𝟐𝒏𝒂𝟐)

(𝒏 − 𝟏)
]

𝟏
𝟐

 

Sol.: Let 𝑓(𝑥) = 𝑥
𝑛 − 𝑎1𝑥

𝑛−1 + 𝑎2𝑥
𝑛−2 +⋯+

𝑎𝑛 = 0  …… . . (1) 

After differentiating (𝑛 − 2) times, we get 

[𝑛(𝑛 − 1)(𝑛 − 2)……… .3]𝑥2 − [(𝑛 − 1)(𝑛 −

2)… .2]  

𝑎1𝑥 + [(𝑛 − 2)…1]𝑎𝑛 = 0  

⟹ 𝑛(𝑛 − 1)𝑥2 − 2(𝑛 − 1)  

𝑎1𝑥 + 2𝑎2 = 0  
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⟹ roots of this equation is 

𝑥 =
𝑎1(𝑛 − 1) ± √(𝑛 − 1)

2𝑎1
2 − 2𝑛(𝑛 − 1)𝑎2

𝑛(𝑛 − 1)
 

If 𝛼 is a root of equation (1) 

⟹
1

𝑛

⎣
 
 
 
 

𝑎1 − (𝑛 − 1)
√
(𝑎1

2 −
2𝑛𝑎2
(𝑛 − 1)

)

(𝑛 − 1)2

⎦
 
 
 
 

≤ 𝛼 

≤
1

𝑛

⎣
 
 
 
 

𝑎1 + (𝑛 − 1)
√
(𝑎1

2 −
2𝑛𝑎2
(𝑛 − 1)

)

(𝑛 − 1)2

⎦
 
 
 
 

 

⟹ 𝛼1 −√
𝑎1
2 − 2𝑛𝑎2
(𝑛 − 1)

≤ 𝑛𝛼

≤ 𝛼1 +√
𝑎1
2 − 2𝑛𝑎2
(𝑛 − 1)

  𝑝𝑟𝑜𝑣𝑒𝑑. 

 

8) If all the coefficient of the equation 𝒇(𝒙) =

 𝒙𝒏 + 𝒑𝟏𝒙
𝒏−𝟏 + 𝒑𝟐𝒙

𝒏−𝟐 +⋯+ 𝒑𝒏 =

𝒇(𝒙) = 𝟎   

Be whole number and if (0) and 𝒇(𝟏) be each 

odd integers, then prove that the equation can 

not have integral root. 

Sol.: 𝑓(0) = 𝑝𝑛 = 𝑜𝑑𝑑, 𝑓(1) = 1 + 𝑝1 + 𝑝2 +

⋯+ 𝑝𝑛 = 𝑜𝑑𝑑 

Case I: If x = 2m, then 𝑓(𝑥) = 𝑥
𝑛⏟

𝑜𝑑𝑑

+ 𝑝1𝑥
𝑛−1 +

⋯+ 𝑝𝑛⏟
𝑜𝑑𝑑

= 𝑜𝑑𝑑 ∴ x = 2m cannot be a root of 

the odd equation 𝑓(𝑥) = 0 

Case II: 𝑥 = 2𝑚 + 1, 𝑡ℎ𝑒𝑛, 𝑓(𝑥) = 𝑥
𝑛⏟

𝑜𝑑𝑑

+

𝑝1𝑥
𝑛−1 +⋯+ 𝑝𝑛⏟

𝑜𝑑𝑑

 

= 𝑥𝑛 + 𝑝1 (𝑒𝑣𝑒𝑛 + 1) + 𝑝2(𝑒𝑣𝑒𝑛 + 1) +⋯

+ 𝑝𝑛−1(𝑒𝑣𝑒𝑛 + 1) + 𝑝𝑛 

= 𝑥𝑛 + 𝑝𝑛 + (𝑝1 𝑒𝑣𝑒𝑛 + 𝑝2 𝑒𝑣𝑒𝑛 +⋯+

𝑝𝑛−1 𝑒𝑣𝑒𝑛) + (𝑝1 + 𝑝2 +⋯+ 𝑝𝑛−1)  

= 𝑥𝑛⏟
𝑜𝑑𝑑

+ 𝑝1 𝑒𝑣𝑒𝑛 +⋯+ 𝑝𝑛−1 𝑒𝑣𝑒𝑛⏟                
𝑒𝑣𝑒𝑛

+

𝑝1 +⋯+ 𝑝𝑛−1⏟        
𝑒𝑣𝑒𝑛

  

⟹ 𝑥 = (2𝑚 + 1) cannot be a root of the 

equation 𝑓(𝑥) = 0 

Therefore equation cannot have an integral 

root. 

 

9) If the equations  𝒂𝒙𝟐 + 𝟐𝒃𝒙 + 𝒄 =

𝟎 𝒂𝒏𝒅 𝒙𝟐 + 𝟐𝒑𝟐𝒙 + 𝟏 = 𝟎, has one root 

commons. If a, b, c are in arithmetic 

progression and 𝒑𝟐 ≠ 𝟏, then find the 

second root of second equation. 

Sol.: Let 𝛼 is the common root of both 

equations 

∴ 𝑎𝛼2 + 2𝑏𝛼 + 𝑐 = 0……… . . (1)  

𝛼2 + 2𝑝2𝛼 + 1 = 0…………… . (2)  
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Now by cross multiplication, we get 

∴
𝛼2

2𝑏 − 2𝑝2𝑐
=

𝛼

𝑐 − 𝑎

=
1

2𝑎𝑝2 − 2𝑏
………(3) 

⟹ 𝛼2 =
2𝑏 − 2𝑝2𝑐

2𝑎𝑝2 − 2𝑏
=

(𝑐 − 𝑎)2

(2𝑎𝑝2 − 2𝑏)2
 

∴ (2𝑏 − 2𝑝2𝑐)(2𝑎𝑝2 − 2𝑏)2

= (𝑐 − 𝑎)2(2𝑎𝑝2

− 2𝑏) 

⟹ 4𝑎𝑐𝑝4 − 4𝑏(𝑎 + 𝑐)𝑝2 + 4𝑏2

+ (𝑐 − 𝑎)2 = 0 

⟹ 𝑝2 =

4𝑏(𝑎+𝑐)±√16𝑏2(𝑎+𝑐)2−16𝑎𝑐{4𝑏2+(𝑐−𝑎)2}

8𝑎𝑐
  

Let d is the common difference of A.P. 

𝑎, 𝑏, 𝑐 ⟹ 𝑎 = 𝑏 − 𝑑, 𝑐 = 𝑏 + 𝑑, 

𝑠𝑜, 𝑝2 =

4𝑎(2𝑏)± √16𝑏2(2𝑏)2−16(𝑏−𝑑)(𝑏+𝑑)(4𝑏2+4𝑑2)

8(𝑏−𝑑)(𝑏+𝑑)
  

=
𝑏2 ±√𝑏4 − (𝑏4 − 𝑑4)

𝑏2 − 𝑑2
=
𝑏2 ± 𝑑2

𝑏2 − 𝑑2
  

𝑠𝑜, 𝑝2 =
𝑏2 + 𝑑2

𝑏2 − 𝑑2
(𝑝2 ≠

𝑏2 − 𝑑2

𝑏2 − 𝑑2
 𝑎𝑠 𝑝2

≠ 1) 

𝐹𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1)𝛼 =
𝑐 − 𝑎

2𝑎𝑝2 − 2𝑏
 

⟹ 𝛼 =
2𝑑

2(𝑏 − 𝑑)
(𝑏2 + 𝑑2)
𝑏2 − 𝑑2

− 2ℎ

= −(
𝑏 + 𝑑

𝑏 − 𝑑
) =  −

𝑐

𝑎
 

Let second root of equation (2) be 𝛽 

∴ 𝛼𝛽 = 1 ⟹  𝛽 =
1

𝛼
=

1

−𝑐/𝑎
=  −

𝑎

𝑐
  

10) If 𝛼, 𝛽 are the roots of the equation 𝒂𝒙𝟐 +

𝟐𝒃𝒙 + 𝒄 = 𝟎 𝒂𝒏𝒅 𝜶𝟒 𝜷𝟒 are the roots of 

the equation 𝒍𝒙𝟐 +𝒎𝒙+ 𝒏 =

𝟎, 𝒕𝒉𝒆𝒏 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝒕𝒉𝒆 𝒓𝒐𝒐𝒕𝒔 𝒐𝒇  

𝒕𝒉𝒆 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝒂𝟐𝒍𝒙𝟐 − 𝟒𝒂𝒄𝒍𝒙 + 𝟐𝒄𝟐𝒍 +

𝒂𝟐𝒎 = 𝟎 are always real and opposite in 

sign (𝛼, 𝛽 are real and different). 

Sol.: We have 𝛼 + 𝛽 =  −
𝑏

𝑎
;  𝛼𝛽

𝑐

𝑎
& 𝛼4 + 𝛽4 =

 −
𝑚

1
; 

𝛼4𝛽4 =
𝑛

𝑙
, 𝑁𝑜𝑤 𝛼4 + 𝛽4 = −

𝑚

𝑙
= [(𝛼2 + 𝛽2)2 − 2𝛼2𝛽2] 

⟹−
𝑚

𝑙
= [{(𝛼 + 𝛽)22𝛼𝛽}2 − 2𝛼2𝛽2] =

{
𝑏2

𝑎2
−
2𝑐

𝑎
} −

2𝑐2

𝑎2
 

⟹ (
𝑏2

𝑎2
)

2

− 4(
𝑐

𝑎
) (
𝑏2

𝑎2
) + 2(

𝑐2

𝑎2
) +

𝑚

𝑙
= 0 

It shows (
𝑏2

𝑎2
) is a root of the equation 𝑥2 −

4(
𝑐

𝑎
)𝑥 + 2 (

𝑐2

𝑎2
) +

𝑚

𝑙
= 0…………(1) 

𝑖. 𝑒. , 𝑎2𝑙𝑥2 − 4𝑎𝑐𝑙𝑥 + 2𝑐2𝑙 + 𝑚𝑎2 = 0  

It show one of the equation (i) is 
𝑏2

𝑎2
 (positive) 

Now, 𝑦 +
𝑏2

𝑎2
=
4𝑐

𝑎
⟹ 𝑦 = −(

𝑏2−4𝑎𝑐

𝑎2
) < 0 

Hence roots are real and opposite in sign. 

11) If 𝐭𝐚𝐧𝒙 − 𝐭𝐚𝐧𝒚 = 𝒂 𝒂𝒏𝒅 𝒙 + 𝒚 = 𝟐𝒃, 

prove that 𝐭𝐚𝐧𝒛  𝒂𝒏𝒅 𝐭𝐚𝐧𝒚 are the roots 

of the equation 𝒙𝟐 − (𝟏 − 𝒂) 𝐭𝐚𝐧𝟐𝒃 . 𝒙 +

𝒂 = 𝟎 

Sol.: Let tan 𝑥 , tan 𝑦 are the roots of the 

equation 𝑥2 − (1 − 𝑎) tan 2𝑏 . 𝑥 + 𝑎 = 0 
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tan 𝑥 + tan 𝑦 = (1 −

𝑎) tan 2𝑏  𝑎𝑛𝑑 tan 𝑥 . tan 𝑦 =

𝑎…………(1)  

𝑎𝑛𝑑 tan 𝑥 − tan 𝑦 =

𝑎 (𝑖𝑡 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛). 𝐺𝑖𝑣𝑒𝑛 𝑥 + 𝑦 =

2𝑏………… . . (2)  

Taking tan on both sides of equation (2) 

tan 𝑥 + tan𝑦

1 − tan 𝑥 tan𝑦
= tan2𝑏 ⟹

tan 𝑥 + tan 𝑦

1 − 𝑎𝑦

= tan 2𝑏 

So, equation (1) is true 

∴ Our assumption that tan 𝑥 , tan 𝑦 are the 

roots of the equation 𝑥2 − (1 − 𝑎). tan 2𝑏 . 𝑥 +

𝑎 = 0, 𝑖𝑠 𝑡𝑟𝑢𝑒. 

12) Let  𝒑𝒏(𝒙) be the polynomial, 𝒑𝒏(𝒙) =

 𝟏 + 𝟐𝒙 + 𝟑𝒙𝟐 +⋯+ (𝒏 + 𝟏)𝒙𝒏, show 

that 𝒑𝒏(𝒙) has no real root if n is even and 

exactly one real root if n is odd and root 

lies between -1 and 0. 

Sol.: 𝑝𝑛(𝑥) = 1 + 2𝑥 + 3𝑥
2 +⋯+ (𝑛 + 1)𝑥

𝑛
 

(where x >0; 𝑝𝑛(𝑥)>0) so, 𝑝𝑛(𝑥) have no 

positive real root. 

𝑝𝑛(𝑥) = 1 + 2𝑥 + 3𝑥
2 +⋯+

(𝑛 + 1)𝑥𝑛,   

𝑥𝑝𝑛(𝑥) = 𝑥 + 2𝑥
2 +⋯+ 𝑛𝑥4 +

(𝑛 + 1)𝑥𝑛+1  

⟹ (1 − 𝑥)𝑝𝑛(𝑥) = 1 + 𝑥 + 𝑥
2 + 𝑥3 +

⋯+ 𝑥4 − (𝑛 + 1)𝑥𝑛+1  

=
1(1 − 𝑥𝑛+1)

1 − 𝑥
− (𝑛 + 1)𝑥𝑛+1 

⟹ 𝑝𝑛(𝑥) =
1−(𝑛+2)𝑥𝑛+1+(𝑛+1)𝑥𝑛+2

(1−𝑥)2
 for 

negative values of x, 𝑝𝑛(𝑥)will vanish 

when ever 

𝑓(𝑥) = 1 − (𝑛 + 2)𝑥
𝑛+1 + (𝑛 + 1)𝑥𝑛+2  

𝑓(−𝑥) = 1 − (𝑛 + 2)(−𝑥)
𝑛+1 +

(𝑛 + 1)(−𝑥)𝑛+2.  

If n is even, there is no change of sign in this 

expression and so there is no negative real root. 

If n is odd, there is one charge of sign. So there 

can be one negative real root. 

In this case 𝑓(−1) = 1 − (𝑛 + 2) − (𝑛 + 1) =

 −(𝑛 + 1) =  −(2𝑛 + 2) < 0& 𝑓(0) > 0. 

So we can say that when n is odd, the real root 

lies between 0 and -1. 

13) Show that the roots of the equation 𝒙𝒏 +

𝒂𝟏𝒙
𝒏−𝟏 + 𝒂𝟐𝒙

𝒏−𝟐 +⋯+ 𝒂𝒏−𝟏𝒙 + 𝒂𝒏 = 𝟎 

can not be real if (𝒏 − 𝟏)𝒂𝟏
𝟐 − 𝟐𝒏𝒂𝟐 < 0. 

Sol.: If 𝑓(𝑥) = 𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + 𝑎2𝑥
𝑛−2 +⋯+

𝑎𝑛 = 0…………(1) has n roots, then 𝑓′(𝑥) =

0 ℎ𝑎𝑠 (𝑛 − 1)𝑟𝑜𝑜𝑡𝑠. 𝑓′(𝑥) has (𝑛 − 2) roots. 

So differential equation (1) (𝑛 − 2) times we 

get, 

𝑛(𝑛 − 1)(𝑛 − 2)… .3𝑥2 + (𝑛 − 1)(𝑛 −

2)… .2𝑎1𝑥 + (𝑛 − 2)(𝑛 − 3)… .1. 𝑎2 = 0 has 

two roots. 

 

If equation (2) not has two real roots, then 

equation (1) not has n (all) real roots. 

Equation (2) not has two real root if 𝐵2 − 4𝐴𝑐 

(discriminant of (2) <0) 
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⟹ [(𝑛 − 1)(𝑛 − 2)… . .2]2. 𝑎1
2

− 4. 𝑛(𝑛 − 1)(𝑛

− 2)……… . .3. (𝑛

− 2)(𝑛 − 3)… . .2.1. 𝑎2
< 0. 

⟹ (𝑛 − 1). 𝑎1
2 − 2𝑛𝑎2 < 0  Proved. 

14) a, b, c, d are four distinct real numbers and 

they are in A. P. If 𝟐(𝒂 − 𝒃) + 𝒙(𝒃 − 𝒄)𝟐 +

(𝒄 − 𝒂)𝟑 = 𝟐(𝒂 − 𝟏) + (𝒃 − 𝒅)𝟐 +

(𝒄 − 𝒅)𝟑 then prove that  𝒙 ≥ 𝟏𝟔 𝒐𝒓 𝒙 ≤

 −𝟖. 

Sol.: Since a, b, c, d are in A.P. 

∴ (𝑏 − 𝑎) = 𝑐 − 𝑏 = 𝑑 − 𝑐 =  Let d 

(common difference) 

∴ 𝑑 = 𝑎 + 3𝐷 ⟹ 𝑎 − 𝑑 =

 −3𝐷 𝑎𝑛𝑑 𝑑 = 𝑏 + 2𝐷  

⟹ 𝑏 − 𝑑 = −2𝐷  𝑐 = 𝑎 + 2𝐷 ⟹ 𝑐 −

𝑎 = 2𝐷.  

∴ 𝐺𝑖𝑣𝑒𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛, 2(𝑎 − 𝑏) +

𝑥(𝑏 − 𝑐)2 + (𝑐 − 𝑎)3  

= 2(𝑎 − 𝑑) + (𝑏 − 𝑑)2 + (𝑐 −

𝑑)3 𝑏𝑒𝑐𝑜𝑚𝑒𝑠  

−2𝐷 + 𝑥𝐷2 + (2𝐷)3 = −6𝐷 + 4𝐷2 −

𝐷3  

⟹ 9𝐷2 + (𝑥 − 4)𝐷 + 4 =

0 𝑠𝑖𝑛𝑐𝑒 𝐷 𝑖𝑠 𝑟𝑒𝑎𝑙  

⟹ (𝑥 − 4)2 − 4.9.4 ≥ 0 ⟹ 𝑥2 −

8𝑥 − 128 ≥ 0  

⟹ (𝑥 − 16)(𝑥 + 8) ≥ 0 ∴ 𝑥 ≥

16 𝑜𝑟 𝑥 ≤ −8 𝑝𝑟𝑜𝑣𝑒𝑑.  

15) Find the value of ‘a’ for which the equation 

(𝒙𝟐 + 𝒙 + 𝟐)𝟐 − (𝒂 − 𝟑)(𝒙𝟐 + 𝒙 +

𝟐)(𝒙𝟐 + 𝒙 + 𝟏) + (𝒂 − 𝟒)(𝒙𝟐 + 𝒙 + 𝟏)𝟐= 

0, has at least one real root. 

Sol.: The given equation can be written as 

(
𝑥2 + 𝑥 + 2

𝑥2 + 𝑥 + 1
) − (𝑎 − 3)(

𝑥2 + 𝑥 + 2

𝑥2 + 𝑥 + 2
)

+ (𝑎 + 4)

=  0………(1) 

𝐿𝑒𝑡
𝑥2 + 𝑥 + 2

𝑥2 + 𝑥 + 2
= 𝑡   ⟹ 𝑡

= 1 +
1

𝑥2 + 𝑥 + 1
 

𝑆𝑖𝑛𝑐𝑒 (𝑥2 + 𝑥 + 1) =  (𝑥 +
1

2
)
2

+
3

4

⟹ 𝑥2 + 𝑥 + 1 ≥
3

4
 

⟹ 𝑡 ∊ (1,
7

3
) now equation (1) 

becomes; 

𝑡2 − (𝑎 − 3)𝑡 + (𝑎 − 4) =

 0……… . (2)  

At least one root of this equation must 

lie in (1,
7

3
) from equation (2), 𝑡 = 𝑎 −

4, 2. 

For one root lie in (1,
7

3
) , 𝑤𝑒 ℎ𝑎𝑠 1 <

𝑎 ≤
7

3
⟹ 5 < 𝑎 ≤

19

3
. 

16) Let  𝒇(𝒙) be a polynomial leaving 

remainder, 𝑨𝟏, when divided by (𝒙 − 𝒂𝟏). 

The remainder 𝑨𝟐 when divided by (𝒙 −

𝒂𝟐)………. And finally 

𝑨𝒎, 𝒊𝒇 𝒅𝒊𝒗𝒊𝒅𝒆 𝒃𝒚 (𝒙 − 𝒂𝒎). Find the 

remainder left by the polynomial, when 

divided by (𝒙 − 𝒂𝟏)(𝒙 − 𝒂𝟐)… . . (𝒙 − 𝒂𝒎) 

Sol.: 𝑓(𝑎1) = 𝐴1, 𝑓(𝑎2) = 𝐴2, ……… . . , 𝑓(𝑎𝑚) =

 𝐴𝑚 

𝑓(𝑥) = (𝑥 − 𝑎1)(𝑥 − 𝑎2)… . (𝑥 −

𝑎𝑚)𝑄(𝑥) + 𝑅(𝑥)……… . (𝑦)  
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Here 𝑅(𝑥) will be a polynomial of degree 

(𝑚 − 1) 

𝑅(𝑎1) = 𝐴1, 𝑅(𝑎2) = 𝐴2, … , 𝑅(𝑎𝑚) =

 𝐴𝑚  

𝑅(𝑥) = 𝑝𝑚−1 − 𝑥
𝑚−1 + 𝑝𝑚−2 −

𝑥𝑚−2 +⋯+ 𝑝0 𝑎𝑛𝑑 ,   

𝑅(𝑥) = 𝐵1(𝑥 − 𝑎2)(𝑥 − 𝑎3)… (𝑥 −

𝑎𝑚) + 𝐵2(𝑥 − 𝑎1)(𝑥 − 𝑎3)(𝑥 − 𝑎𝑚) +

𝐵3(𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎4)…+⋯+

𝐵𝑚(𝑥 − 𝑎1)(𝑥 − 𝑎2)… (𝑥 −

𝑎𝑚−1)…… . . (1)  

Putting x = 𝑎1on both sides, we get 

𝑅(𝑎1)

=
𝐴1

(𝑎1 − 𝑎2)(𝑎1 − 𝑎3)… (𝑎2 − 𝑎𝑚)

=  𝐵1 

………………. 

………………… 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝐵2

=
𝐴2

(𝑎2 − 𝑎1)(𝑎2 − 𝑎3)… . (𝑎2 − 𝑎𝑚)
 

…………………… 

………………… .. 

𝐵𝑚 =
𝐴𝑚

(𝑎𝑚 − 𝑎1)(𝑎𝑚 − 𝑎2)… . . (𝑎𝑚 − 𝑎𝑚−1)
 

∴ 𝑅(𝑥)

=
𝐴1. (𝑥 − 𝑎2)(𝑥 − 𝑎3)… (𝑥 − 𝑎𝑚)

(𝑎1 − 𝑎2)… . (𝑎1 − 𝑎𝑚)

+
𝐴2. (𝑥 − 𝑎1)(𝑥 − 𝑎3)… . . (𝑥 − 𝑎𝑚)

(𝑎2 − 𝑎1)(𝑎2 − 𝑎3)……(𝑎2 − 𝑎𝑚)

+ ⋯ 

⟹ 𝑅(𝑥) = ∑𝐴𝑖

𝑚

𝑖=1

(∏(
𝑥 − 𝑎𝑘
𝑎𝑖 − 𝑎𝑘

)

𝑚

𝑘=2
𝑘≠1

) 

17) Given that 𝛼, 𝛾 are the roots of the 

equation 𝑨𝒙𝟐 − 𝟒𝒙 + 𝟏 = 𝟎  and 𝛽, 𝛿 the 

roots of the equation 𝑩𝒙𝟐 − 𝟔𝒙 + 𝟏 = 𝟎  

find values of A and B such that 𝛼, 𝛽, 𝛾 and 

𝛿 are in H.P. 

Sol.: Given equation are 𝐴𝑥2 − 4𝑥 + 1 =

0……… . (1) 

𝐵𝑥2 − 6𝑥 + 1 = 0………… . . (2)  

𝛼 + 𝛾 =
4

𝐴
………(𝑖)   𝛽 + 𝛿

=
6

𝐵
… . . (𝑖𝑖)  𝛼𝛾

=
1

𝐴
……… . . (𝑖𝑖𝑖)   𝛽𝛿

=
1

𝐵
………(𝑖𝑣) 

Given 𝛼, 𝛽, 𝛾, 𝛿 are in H. p. 

∴ 𝛽 =
2𝛼𝛾

𝛼 + 𝛾
=
1

2
𝑎𝑛𝑑 𝛾 =

2𝛽𝛿

𝛽 + 𝛿
=
1

3
 

Since 𝛽 is a root of equation (2) 

∴ 𝐵𝛽2 − 6𝛽 + 1 = 0

⟹ 𝐵 ×
1

4
− 6.

1

2
+ 1

= 0 ⟹ 𝐵 = 8 

Since 𝛾 is a root of equation (1)        ∴ 𝐴𝛾2 −

4𝛾 + 1 = 0,⟹
4

9
−
4

3
+ 1 = 0 ⟹ 𝐴 = 3 

18) If 𝛼, 𝛽 are the roots of the equations 𝒙𝟐 −

𝒑𝒙 + 𝒒 = 𝟎 then find the quadratic 

equation whose roots are 

(a) (𝜶𝟐 − 𝜷𝟐)(𝜶𝟑 − 𝜷𝟑)𝒂𝒏𝒅 𝜶𝟑𝜷𝟐 +

𝜶𝟐𝜷𝟐 

(b) (𝜶𝟐 + 𝜷𝟐)(𝜶𝟑 + 𝜷𝟑)𝒂𝒏𝒅 𝜶𝟓𝜷𝟑 +

𝜶𝟑𝜷𝟓 − 𝟐𝜶𝟒𝜷𝟒 

Sol.:  

(a)  𝛼, 𝛽 are roots of 𝑥2 − 𝑝𝑥 + 𝑞 = 0 
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∴  𝛼 + 𝛽 = 𝑝 & 𝛼𝛽 = 𝑞……… . . (1)  

𝑁𝑜𝑤 (𝛼2 − 𝛽2)(𝛼3 − 𝛽3) = {(𝛼 + 𝛽)(𝛼 −

𝛽)}{(𝛼 − 𝛽)((𝛼2 − 𝛽2)(𝛼2 + 𝛼𝛽 + 𝛽2)}  

= (𝛼 − 𝛽)2(𝛼 + 𝛽)(𝛼2 + 𝛽2 + 𝛼𝛽)  

= {(𝛼 + 𝛽)2 − 4𝛼𝛽}(𝛼 + 𝛽)2{(𝛼 +

𝛽)2 − 𝛼𝛽2}  

= (𝑝2 − 49)𝑝(𝑝2 − 𝑞) =  𝑝5 − 5𝑝3𝑞 +

4𝑝𝑞4  

𝛼3𝛽3 + 𝛼2𝛽2 = 𝛼2𝛽3(𝛼 + 𝛽) =

 (𝑞)2. 𝑝 = 𝑝𝑞2  

∴ Quadratic equation whose roots are  

(𝛼2 − 𝛽2)(𝛼3 − 𝛽3) & 𝛼3𝛽2 + 𝛼2𝛽3 is   

𝑥2 − [{(𝛼2 − 𝛽2)(𝛼3 − 𝛽3)}

+ {𝛼3𝛽2 + 𝛼2𝛽3}]𝑥

+ (𝛼2 − 𝛽2)(𝛼3 − 𝛽3){𝛼3𝛽2

+ 𝛼2𝛽3} = 0 

⟹ 𝑥2 − [(𝑝5 − 5𝑝3𝑞 + 4𝑝𝑞4) + 𝑝𝑞2]𝑥 −

(𝑝5 − 5𝑝3𝑞 + 4𝑝𝑞4)  

𝑝𝑞2 = 0⟹ 𝑥2 −  (𝑝5 − 5𝑝3𝑞 + 4𝑝𝑞4 +

𝑝𝑞2)𝑥 − (𝑝6𝑞2 − 5𝑝4𝑞3 + 4𝑝2𝑞6) = 0  

(b) (𝛼2 + 𝛽2)(𝛼3 + 𝛽3) = {(𝛼 + 𝛽)2 −

2𝛼𝛽}{(𝛼 + 𝛽)(𝛼2 − 𝛼𝛽 + 𝛽2)} 

= {(𝛼 + 𝛽)2 − 2𝛼𝛽}{(𝛼 +

𝛽){(𝛼 + 𝛽)2 − 2𝛼𝛽 − 𝛼𝛽}}  

= (𝑝2 − 2𝑞)(𝑝3 − 3𝑝𝑞) =

𝑝(𝑝2 − 2𝑞)(𝑝2 − 3𝑞)  

𝛼5𝛽3 + 𝛼3𝛽5 − 2𝛼4𝛽4 =

 𝛼3𝛽3(𝛼2 + 𝛽2 − 2𝛼𝛽)   

= 𝛼3𝛽3{(𝛼 + 𝛽)2 − 4𝛼𝛽} =

 𝑞3(𝜋2 − 49)  

∴ Quadratic equation whose roots are 

(𝛼2 + 𝛽2)(𝛼3 + 𝛽3) & 𝛼5𝛽2 + 𝛼3𝛽5 −

2𝛼5𝛽4 𝑖𝑠 

𝑥2 − [{(𝛼2 + 𝛽2)(𝛼3 + 𝛽3)} +

{𝛼5𝛽3 + 𝛼3𝛽5 − 2𝛼4𝛽4}]  

𝑥 + {(𝛼2 + 𝛽2)(𝛼3 + 𝛽3). 𝛼5𝛽3 +

𝛼3𝛽5 − 2𝛼4𝛽4} = 0  

⟹ 𝑥2—[𝑝(𝑝2 − 2𝑞)(𝑝2 + 3𝑞) +

𝑞3(𝑝2 − 4𝑝𝑞)]  

𝑥 + 𝑝(𝑝2 − 2𝑞)(𝑝2 + 3𝑞) +

𝑞3(𝑝2 − 49) = 0  

19) Let p(x) be a polynomial of degree n>1 

with integer coefficients and let k be a 

positive integer. Consider the polynomial 

𝑸(𝒙) = 𝒑 (𝒑. (𝒑(𝒑(𝒙)))), where p occurs k 

times. Prove that there are at most n 

integer t such that Q(t)= t. 

Sol.: The claim is obvious of every integer 

fixed point of Q is a fixed point of p itself. For 

the sequel assume that this is not the case. 

Take any integer 𝑥0 such that Q(𝑥0) =

 𝑥0, 𝑃(𝑥0) ≠ 𝑥0 and define inductively 𝑥𝑖+1 =

 𝑝(𝑥0) 𝑓𝑜𝑟 𝑖 = 0, 1, 2, ……… .,  then 𝑥𝑘 = 𝑥0 . it 

is evident that 𝑝(𝑢) − 𝑝(𝑣) is divisible 𝑢 − 𝑣 for 

distinct integer u, v ……..(i) 

[Indeed, if 𝑝(𝑥) =  ∑𝑎𝑖𝑥𝑖 then each 𝑞𝑖(𝑢𝑖 −

𝑣𝑖) is divisible by 𝑢 − 𝑣]. 

Therefore each term in the claim of (non-

zero) differences. 

𝑥0 − 𝑥1, 𝑥1 − 𝑥2, … . , 𝑥𝑘−1 − 𝑥𝑘 , 𝑥𝑘 −

𝑥𝑘+1…… . (𝑖𝑖) is a divisor of the next one; and 

since 𝑥𝑘 − 𝑥𝑘+1 = 𝑥0 − 𝑥1;  all these 

difference have equal absolute values. For 

𝑥𝑚 = min(𝑥1, … . , 𝑥𝑘)  this means that 𝑥𝑚−1 −

𝑥𝑚 = −(𝑥𝑚 − 𝑥𝑚+1). Thus 𝑥𝑚+1(≠ 𝑥𝑚) It 

follows that consecutive difference in the 

sequence (ii) have opposite signs. 

Consequently 𝑥0, 𝑥1, 𝑥2……. is an alternating 

sequence of two distinct values. In other 

words, every integer fixed point of Q is a fixed 

point of the polynomial 𝑃(𝑝(𝑥)). Out task is to 

prove that there are at most n such points. 
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Let a be one of them so that b= p(a) ≠ a (we 

have assumed that such an a exists); then a = 

𝑝(𝑏). Take any other integer fixed point 𝛼 of 

𝑃(𝑝(𝑥))𝑎𝑛𝑑 𝑙𝑒𝑡 𝑝(𝛼) =  𝛽, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑝(𝛽) =  𝛼; 

the numbers 𝛼 and 𝛽 need not be distinct (𝛼 

can be a fixed point of p), but each of 𝛼, 𝛽 is 

different from each of a, b. Applying property 

(1) to the four pairs of integers (𝛼, a) (𝛽, b), 

(a, b), (𝛽, a) we get that the members 𝛼 −

𝑎 𝑎𝑛𝑑 𝛽 − 𝑏 divide each other, and also 𝛼 −

𝛽 𝑎𝑛𝑑 𝛽 − 𝑎 divide each other. 

Consequently, 𝛼 − 𝑏 ± (𝛽 − 𝑎), 𝛼𝑎 =

 ±(𝛽 − 𝑏)……………(𝑖𝑖𝑖) 

Suppose we have a plus in both in stances : 

𝛼 − 𝑏 =  𝛽 − 𝑎 𝑎𝑛𝑑 𝛼 − 𝑎 =  𝛽 − 𝑏.  

Subtraction yields 𝑎 − 𝑏 = 𝑏 − 𝑎, a 

contradiction, as a ≠ b therefore at least one 

equality in (iii) holds with a minus sign. For 

each of them this means that 𝛼+𝛽 = a +b; 

equivalently a+ b –𝛼 = 𝑝(𝛼) = 0. 

Denote a +b by c. We have shown that every 

integer fixed point of Q other that a and b is a 

root of the polynomial. 𝐹(𝑥) = 𝑐 − 𝑥 − 𝑝(𝑥). 

This is of course true for a and b as well. And 

since p has degree n >1, the polynomial F has 

the same degree. S, it cannot have more than 

n roots. Hence the result. 

20) If 𝛼 areal root of 𝒙𝟓 − 𝒙𝟑 + 𝒙 − 𝟐 = 𝟎, 

then show that [𝜶𝟔] = 𝟑 (for any real 

number we denote by [x] the greatest 

integer not exceeding x) 

Sol.: If 𝛼 is solution of 𝑥5 − 𝑥3 + 𝑥 − 2 = 0,  

then we have 𝛼(𝛼4 − 𝛼2 + 2) = 2. Now,  

𝛼4 − 𝛼2 + 1 = (𝛼2 −
1

2
)
2
+
3

4
> 0. So, 

we must have 𝛼> 0. Also 0 ≤ 𝑥 ≤

1 ⟹ 𝑥5 − 𝑥3 − 𝑥 + 2 

𝑥3(𝑥2 − 1) + 𝑥 − 1 − 1 =

 −[1 + (1 − 𝑥) + 𝑥3(1 − 𝑥)2]  

∴ 𝛼 < 1. 𝐴𝑔𝑎𝑖𝑛  𝛼 is a solution of the 

given equation implies that 𝛼5 − 𝛼3 +

𝛼 − 2 = (𝛼 − 1)(𝛼4 + 𝛼3 + 1) − 1 =

0 

𝐼𝑓 𝛼 ≥ 2, 𝑡ℎ𝑒𝑛 (𝛼 − 1)(𝛼4 + 𝛼3 +

1) − 1 ≥ 24  

∴ 𝛼 < 2 𝑤𝑒 ℎ𝑎𝑣𝑒 1 < 𝛼 < 2, 𝛼6 =

 𝛼4 − 𝛼2 + 2𝛼.  

We want to prove that [𝛼6] =

3 𝑜𝑟 3 ≤ 𝛼6 < 4 

𝑜𝑟 𝛼4 − 𝛼2 + 2𝛼 − 3 ≥ 0 𝑎𝑛𝑑 𝛼4 −

𝛼2 + 2𝛼 − 4 < 0  

𝐵𝑢𝑡 𝛼5 − 𝛼3 = 2 − 𝛼.  

𝑆𝑜 𝑡ℎ𝑎𝑡 𝑤𝑎𝑛𝑡 𝑡𝑜 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡 2𝛼2 −

5𝛼 + 2 < 0  

𝑁𝑜𝑤, 2𝛼2 − 5𝛼 + 2 = (𝑎 + 2)(2𝛼 −

1) < 0 𝑓𝑜𝑟   

1

2
< 𝛼 < 2. We have already seen that 

1 < 𝛼 < 2. 

𝐻𝑒𝑛𝑐𝑒 𝛼6 < 4.  

𝐴𝑔𝑎𝑖𝑛 𝛼4 − 𝛼2 + 2𝛼 − 3 ≥ 0 is 

equivalent to 

𝛼5 − 𝛼3 + 2𝛼2 − 3𝛼 ≥ 0 is equivalent 

to 

2𝛼3 − 4𝛼 + 2 = 2(𝛼 − 1)2 ≥ 0  

∴ 𝑤𝑒 𝑝𝑟𝑜𝑣𝑒𝑑 3 ≤  𝛼6  

21) Let 𝛼 and 𝛽 be the roots of the equation 

𝒙𝟐 −𝒎𝒙− 𝟏 = 𝟎 where m is an odd 

integer. Let 𝝀𝒏 =  𝜶𝒏 + 𝜷𝒏 𝒇𝒐𝒓 𝒏 ≥

𝟎. 𝑺𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝒇𝒐𝒓 𝒏 ≥ 𝟎 
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(a) 𝜆n is an integer 

(b) 𝐠𝐜𝐝(𝝀𝒏, 𝝀𝒏+𝟏) = 𝟏 

Sol.: 𝛼 and 𝛽 are the root of the equation 𝑥2 −

𝑚𝑥 − 1 𝑤𝑒 ℎ𝑎𝑣𝑒 𝛼2 +𝑚𝛼 − 1 =

0……… . (1)𝛽2 +𝑚𝛽 − 1 = 0……… . (2) 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝐸𝑞. (1)𝑏𝑦 𝛼𝑛−2, 𝛼𝑛 +𝑚𝛼𝑛−1 −

𝛼𝑛−2 = 0……… . (3)  

Multiply Eq. (2) by 𝛽𝑛−2, 𝛽𝑛 +𝑚𝛽𝑛−1 −

𝛽𝑛−2 = 0……………(4) 

Adding Equations. (3) and (4), we get 

 𝛼𝑛 + 𝛽𝑛 = −𝑚(𝛼𝑛−1 + 𝛽𝑛−1) +

(𝛼𝑛−2 + 𝛽𝑛−2) Which gives a recurrence 

relation for 𝑛 ≥ 2 𝑖. 𝑒., 

𝜆𝑛 =  −𝑚 𝜆𝑛−1 + 𝜆𝑛−2 𝑓𝑜𝑟 𝑛 ≥

2……… . (𝐴)  

(a) 𝜆0 = 1 + 1 = 2, 𝜆1 =  𝛼 + 𝛽 =  −𝑚. 

Thus 𝜆0 𝑎𝑛𝑑 𝜆1 are integers. By 

induction, it follows from (A) that 𝜆𝑛  is 

an integer for each 𝑛 ≥ 0. 

(b) We again use (A) to prove by production 

that gcd(𝜆𝑛, 𝜆𝑛+1) = 1. This is clearly 

true for n = 0 as gcd(−2,−𝑚) =

1 𝐿𝑒𝑡 gcd(𝜆𝑛−2, 𝜆𝑛−1) = 1, 𝑛 ≥ 2. 

It were to happen that  gcd(𝜆𝑛−1, 𝜆𝑛) > 1 

Take a prime p, that divides both 

𝜆𝑛−1 𝑎𝑛𝑑 𝜆𝑛. Then from A, we find that p 

divides 𝜆𝑛−2 also. 

Thus 𝜙 is a factor of gcd(𝜆𝑛−2, 𝜆𝑛−1) a 

contradiction, so gcd(𝜆𝑛−2, 𝜆𝑛) is equal to 1. 

Hence we have gcd(𝜆, 𝜆𝑛+1) = 1 ∀ 𝑛 ≥ 0. 

22) If p, q, r be positive real numbers, but not 

all equal such that two of the equations.  

𝒑𝒙𝟐 + 𝟐𝒒𝒙 + 𝒓 = 𝟎, 𝒒𝒙𝟐 + 𝟐𝒓𝒙 +

𝒑 = 𝟎, 𝒓𝒙𝟐 + 𝟐𝒑𝒙 + 𝒒 = 𝟎 have a 

common root say 𝛼. Show that  

(a) 𝛼 is real and negative , 

(b) The third equation has non –

real roots. 

Sol.: Consider the discriminantes of three 

equations. 

𝑝𝑥2 + 2𝑞𝑟 + 𝑟 = 0……… . (1)  

𝑞𝑥2 + 2𝑟𝑥 + 𝑝 = 0……… . . (2)  

𝑟𝑥2 + 2𝑝𝑥 + 𝑞 = 0…… . . (3)  

Let us denote by 𝐷1, 𝐷2, 𝐷3 

respectively. 

So, we have 

𝐷1 = 4(𝑞
2 − 𝑟𝑝), 𝐷2 =

𝑟(𝑟2 − 𝑝𝑞),𝐷3 = 4(𝑝
2 − 𝑞𝑟)  

Adding we get 

𝐷1 + 𝐷2 + 𝐷3 = 4(𝑝
2 + 𝑞2 + 𝑟2 −

𝑝𝑞 − 𝑞𝑟 − 𝑟𝑝)  

= 2{(𝑝 − 𝑞)2 + (𝑞 − 𝑟)2 +

(𝑟 − 𝑝)2} > 0  

∴, q, r are not all equal. 

Hence at least one of 𝐷1. 𝐷2. 𝐷3 must be 

positive we may assume 𝐷1 > 0. 

Let us suppose 𝐷2 < 0 and 𝐷3 < 0. In this 

case both the equation (2) and (3) have only 

non –real roots but equation (1) has only real 

roots. Hence, the common roots 𝛼 must be 

between (2) and (3). 

But then the conjugate 𝛼  of 𝛼 is the other root 

of both (2) and (3). 

Hence it follows that (2) and (3) have same 

set of roots  
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⟹
𝑞

𝑟
=
𝑟

𝑝
=
𝑝

𝑞
. This p= q= r contradicting the 

given condition. Hence 𝐷2 𝑎𝑛𝑑 𝐷3 cannot be 

negative we may assume 𝐷2 ≥ 0. 

So we have 𝑞2 − 𝑟𝑝 > 0, 𝑟2 − 𝑝𝑞 ≥ 0. which 

give 𝑞2𝑟2 > 𝑝2𝑞𝑟 

∴p, q, r are all positive 

Hence, we get 𝑞𝑟 > 𝑝2. 𝑜𝑟 𝐷3 > 0 

We conclude that the common root must be 

between eqs. (1) and (2),. Thus 𝑝𝛼2 + 2𝑞𝛼 +

𝑟 = 0, 𝑞𝛼2 + 2𝑟𝛼 + 𝑝 = 0. Eliminating 𝛼2, we 

get 

2(𝑞2 − 𝑝𝑟)𝛼 =  𝑝2 − 𝑞𝑟 ∴  𝑞2 − 𝑝𝑟 > 0, 𝑝2 −

𝑞𝑟 < 0.  

So we conclude 𝛼 < 0. 

⟹ (B) as only non-real roots. 

23) If a, b, c are three positive real numbers 

such that 𝒂 + 𝒃 + 𝒄 = 𝟏 and Let  

𝝀 = 𝐦𝐢𝐧{𝒂𝟑 + 𝒂𝟐𝒃𝒄,−𝒃𝟑 +

𝒂𝒃𝟐𝒄, 𝒄𝟑 + 𝒂𝒃𝒄𝟐}  

Show that the roots of the equations 𝒙𝟐 + 𝒙 +

𝟒𝝀 = 𝟎 are real. 

Sol.: Suppose the equation 𝑥2 + 𝑥 + 4𝜆 = 0 

has no real roots. Then 1 − 16𝜆 < 0 ⟹ 1−

16(𝑎3 + 𝑎2𝑏𝑐) < 0,  

1 − 16(𝑏3 + 𝑎𝑏2𝑐) < 0 𝑎𝑛𝑑 1 − 16(𝑐3 +

𝑎𝑏𝑐2) < 0.  

𝑁𝑜𝑤 1 − 16(𝑎3 + 𝑎2𝑏𝑐) < 0 ⟹ 1−

16𝑎2(𝑎 + 𝑏𝑐) < 0  

⟹ 1 − 16𝑎2(1 − 𝑏 − 𝑐 + 𝑏𝑐) < 0  

⟹ 1 − 16𝑎2(1 − 𝑏)(1 − 𝑐) < 0 ⟹
1

16
<

𝑎2(1 − 𝑏)(1 − 𝑐)  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 
1

16
< 𝑏2(1 − 𝑐)(1 − 𝑎)𝑎𝑛𝑑

1

16
<

𝑐2(1 − 𝑎)(1 − 𝑏) Multiplying these we get, 

𝑎2𝑏2𝑐2(1 − 𝑎)2(1 − 𝑏)2(1 − 𝑐)2 >
1

163
 

𝐻𝑜𝑤𝑒𝑣𝑒𝑟, 0 < 𝑎 < 1 ⟹ 𝑎(1 − 𝑎) ≤
1

4
 

𝐻𝑒𝑛𝑐𝑒, 𝑎2𝑏2𝑐2(1 − 𝑎)2(1 − 𝑏)2(1 − 𝑐)2 =

(𝑎(1 − 𝑎))
2
(𝑏(1 − 𝑏))

2
(𝑐(1 − 𝑐))

2
<

1

163
    a 

contradiction. 

So, we conclude that the given equation has 

real roots. 

24) Let 𝒇(𝒙), 𝒈(𝒙) 𝒂𝒏𝒅 𝒉(𝒙) be three 

polynomials such that 
𝒇(𝒙)

𝒉(𝒙)
,
𝒈(𝒙)

𝒉(𝒙)
, (𝒇(𝒙), 𝒈(𝒙)) =  𝟏, show that 

𝒇(𝒙),
𝒈(𝒙)

𝒉(𝒙)
 

Sol.: Since 
𝑓(𝑥)

ℎ(𝑥)
  is a polynomial 𝑝(𝑥) such that 

ℎ(𝑥) = 𝑔(𝑥). 𝑝(𝑥)…………(1) 

Again 
𝑔(𝑥)

ℎ(𝑥)
  is a polynomial 𝑞(𝑥) such that 

ℎ(𝑥) = 𝑞(𝑥). 𝑔(𝑥)………(2) 

Further ∵(𝑓(𝑥), 𝑔(𝑥)) = 1. 

∴ ∃ polynomial 𝑎(𝑥) 𝑎𝑛𝑑 𝑏(𝑥) 

Such that 𝑓(𝑥)𝑎(𝑥) + 𝑔(𝑥)𝑏(𝑥) = 1…… . (3) 

Multiplying by ℎ(𝑥) on both sides, we get 

𝑓(𝑥)ℎ(𝑥)𝑎(𝑥) + 𝑔(𝑥)ℎ(𝑥)𝑏(𝑥) = ℎ(𝑥) using (2) 

and (1), we get 

⟹ 𝑓(𝑥)[𝑔(𝑥)𝑞(𝑥)]𝑎(𝑥) + 𝑔(𝑥)[𝑓(𝑥)𝑝(𝑥)]𝑏(𝑥) =

 ℎ(𝑥)  ⟹ 𝑓(𝑥)𝑔(𝑥)[𝑞(𝑥)𝑎(𝑥) + 𝑝(𝑥)𝑏(𝑥)] =

ℎ(𝑥)⟹ 𝑓(𝑥)
𝑔(𝑥)

ℎ(𝑥)
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25) If m, n integers ≥ 𝟎 𝒂𝒏𝒅 𝒇(𝒙), 𝒈(𝒙) are 

polynomial such that (𝒙 − 𝒂)𝒎𝒇(𝒙) =

 (𝒙 − 𝜶)𝒏𝒈(𝒙) 𝒘𝒊𝒕𝒉 𝒇(𝒙) ≠ 𝟎,𝒈(𝒙) ≠ 𝟎. 

Show that 𝒎 = 𝒏 𝒂𝒏𝒅 𝒇(𝒙) = 𝒈(𝒙). 

Sol.: Given (𝑥 − 𝑎)𝑚𝑓(𝑥) = (𝑥 −

𝛼)𝑛𝑔(𝑥), 𝑓(𝛼) ≠ 0,𝑔(𝛼) ≠ 0. We want to prove 

that m=n and 𝑓(𝑥) = 𝑔(𝑥). If possible let m≠n, 

without loss of any generality. Let m>n.  

∴ 𝑛 −𝑚 is a +ve integer, so that  

(𝑥 − 𝛼)𝑚𝑓(𝑥) = (𝑥 − 𝛼)𝑛−𝑚𝑔(𝑥) 

𝑖. 𝑒.
(𝑥 − 𝛼)

𝑓(𝑥)
⟹  𝛼 𝑖𝑠 𝑎 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑓(𝑥) = 0 

⟹ 𝑓(𝛼) = 0 which is contrary to the given 

hypothesis.  

∴ Our supposition is wrong, Hence m = n and 

(𝑥 − 𝑎)𝑚𝑓(𝑥) = (𝑥 − 𝛼)
𝑛𝑔(𝑥)⟹ 𝑓(𝑥) = 𝑔(𝑥) 

26) The root of the equation 𝒙𝟑 − 𝒂𝒙𝟐 + 𝒃𝒙−

𝒄 = 𝟎 are 𝛼, 𝛽, 𝛾 from the equation whose 

roots are 𝜶 + 𝜷,𝜷 + 𝜸, 𝜸 + 𝜶. Also express 
𝟏

𝜶+𝜷
+

𝟏

𝜷+𝜸
+

𝟏

𝜸+𝜶
 in terms of a, b, c. 

Sol.: Roots of the equation 𝑥3 − 𝑎𝑥2 + 𝑏𝑥 −

𝑐 = 0…………(1) are 𝛼, 𝛽, 𝛾, if 𝛾 =  𝛼 + 𝛽 =

(𝛼 + 𝛽 + 𝛾) − 𝛾 =  𝑎 − 𝛾 

[∵  𝛼 + 𝛽 + 𝛾 = 𝑎]  

∴ 𝑦 = 𝑎 − 𝑥 𝑜𝑟 𝑥 = 𝑎 − 𝑦. Putting this value 

of x in (1) we have (𝑎 − 𝑦)3 − 𝑎(𝑎 − 𝑦)2 +

𝑏(𝑎 − 𝑦) − 𝑐 = 0 

𝑜𝑟, 𝑦3 − 2𝑎𝑦2 + (𝑎2 + 𝑏)𝑦 + (𝑐 − 𝑎𝑏) =

0……… . (2)  

Which is required equation. Its roots are 𝛼 +

𝛽, 𝛽 + 𝛾, 𝛾 + 𝛼. Changing into 
1

𝑦
 and 

Multiplying by 𝑦3, we get (𝑐 − 𝑎𝑏)𝑦3 +

(𝑎2 + 𝑏)𝑦2 − 2𝑎𝑦 + 1 = 0…… . . (3). 

Roots of this equation are the reciprocals of 

the roots of (2), ∴ Roots of (3) are  

1

𝛼 + 𝛽
,
1

𝛽 + 𝛾
,
1

𝛾 + 𝛼
 

Now, 
1

𝛼+𝛽
+

1

𝛽+𝛾
+

1

𝛾+𝛼
= sum of roots of (3) 

=
−𝑎2 + 𝑏

𝑐 − 𝑎𝑏
=
𝑎2 + 𝑏

𝑎𝑏 − 𝑐
 

27) If 𝛼, 𝛽, 𝛾 are the roots of the cubic equation 

𝒙𝟑 + 𝟑𝒙 + 𝟐 = 𝟎 from an equation whose 

roots are (𝜷 − 𝜸)𝟐, (𝜸 − 𝜶)𝟐, (𝜶 − 𝜷)𝟐 and 

hence show that 𝒙𝟑 + 𝟑𝒙 + 𝟐 = 𝟎 has 

imaginary roots. 

Sol.: 𝑥3 + 3𝑥 + 2 = 0………… . (1) 

∴ It roots are 𝛼, 𝛽, 𝛾 

∴ 𝛼 + 𝛽 + 𝛾 = 0, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 =

3, 𝛼𝛽𝛾 =  −2. 

Let 𝛾 be a root of the transformed equation 

∴ 𝛾 = (𝛽 − 𝛾)2 = (𝛽 + 𝛾)2 − 4𝛽𝛾

=  (−𝛼)2 −
4𝛼𝛽𝛾

𝛼
 

[∵ 𝛼 + 𝛽 + 𝛾 = 0]

=  𝛼2

+
8

𝛼
[∵ 𝛼𝛽𝛾 =  −2] 

𝑅𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝛼 𝑏𝑦 𝑥, ∴ 𝑦

=  𝑥2 +
8

𝑥
𝑜𝑟 𝑥3 − 𝑥𝑦

+ 8 = 0…… . . (2) 

Subtracting (2) from (1) (3 + 𝑦)𝑥 − 6 = 0 

∴ 𝑥 =
6

3+𝑦
. Putting this value of x in (1), we 

get 

(
6

3 + 𝑦
)
3

+ 3.
6

3 + 𝑦
+ 2 = 0 
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216 + 18(3 + 𝑦)2 + 2(3 + 𝑦)2 = 0. 𝑦3 +

18𝑦2 + 82𝑦 + 216 = 0. Which is the required 

equation product of all its roots = −216 

∴ (𝛼 − 𝛽)2 (𝛽 − 𝛾)2 (𝛾 − 𝛼)2 = −216  

R H S being – 𝑣𝑒, one of the factors. 

∴ that will make all the three roots imaginary 

which is not possible. Every odd integer 

equation with real coefficients has at least 

one real root on the L H S (𝛼 − 𝛽)2 𝑖𝑠 − 𝑣𝑒. 

∴ 𝛼 − 𝛽 is purely imaginary.  

∴ 𝛼 and 𝛽 are conjugate complex roots. Hence 

two roots of (1) are imaginary. 

28) The roots 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 of the equation 𝒙𝟑 +

𝒂𝒙 + 𝒂 = 𝟎,  where a is a non zero real, 

satisfy 
𝒙𝟏
𝟐

𝒙𝟐
+
𝒙𝟐
𝟐

𝒙𝟑
+
𝒙𝟑
𝟐

𝒙𝟏
=  −𝟖.  Find 

𝒙𝟏, 𝒙𝟐, 𝒙𝟑 

Sol.: We are given 𝑥1
3𝑥3 + 𝑥2

3𝑥1 + 𝑥3
3𝑥2 =

8𝑥1𝑥2𝑥3 

𝑥1 + 𝑥2 + 𝑥3 = 0; 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1 = 𝑎;  

𝑥1𝑥2𝑥3 = −𝑎 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑖 = 1, 2, 3.  

𝑥𝑖
3 + 𝑎𝑥𝑖 + 𝑎 = 0, 𝑥1

3 + 𝑎𝑥1 + 𝑎 = 0  

𝑁𝑜𝑤, 𝑥2
3 + 𝑎𝑥2 + 𝑎 = 0, 𝑥3

3 + 𝑎𝑥3 +

𝑎 = 0.  

⟹ (𝑥1
3𝑥3 + 𝑥2

3𝑥1 + 𝑥3
3𝑥2)

+ 𝑎(𝑥1𝑥3 + 𝑥1𝑥3
+ 𝑥2𝑥1 + 𝑥3𝑥2)

+ 𝑎(𝑥3 + 𝑥1 + 𝑥2) = 0. 

𝑖. 𝑒. , 8𝑎 + 𝑎2 = 0 ⟹ 𝑎 = −8  

So, given equation is 𝑥3 − 8𝑥 − 8 =

0, 𝑜𝑛𝑒 𝑟𝑜𝑜𝑡 𝑖𝑠 − 2, other roots are given by 

𝑥2 − 2𝑥 − 4 = 0 𝑖. 𝑒. 𝑥 = 1 ± √5 

𝑆𝑜, {𝑥1, 𝑥2, 𝑥3} = {−2, 1 − √5, 1 + √5}  

29) If a, b, c ∊ R, a ≠ 0, then solve the system of 

equation: 𝒂𝒙𝟏
𝟐 + 𝒃𝒙𝟏 + 𝒄 = 𝒙𝟐; 𝒂 𝒙𝟐

𝟐 +

𝒃𝒙𝟐 + 𝒄 = 𝒙𝟑; ……𝒂𝒙𝒏−𝟏
𝟐 + 𝒃𝒙𝒏−𝟏 + 𝒄 =

 𝒙𝒏 𝒂𝒏𝒅 𝒂𝒙𝒏
𝟐 + 𝒃𝒙𝒏 + 𝒄 =

 𝒙𝟏 𝒊𝒔 𝒏 𝒖𝒏𝒌𝒏𝒐𝒘𝒏𝒔 𝒙𝟏, 𝒙𝟐, 𝒙𝒏 𝒕𝒉𝒆𝒏  

(i) (𝒃 − 𝟏)𝟐 < 4𝒂𝒄; 

(ii) (𝒃 − 𝟏)𝟐 = 𝟒𝒂𝒄; 

(iii) (𝒃 − 𝟏)𝟐 > 4𝒂𝒄 

Sol.: Given system of equation can be written 

as  

𝑎𝑥1
2 + (𝑏 − 1)𝑥1 + 𝑐 = 𝑥2 − 𝑥1 =

𝑓(𝑥1) 𝑠𝑎𝑦  

𝑎 𝑥2
2 + (𝑏 − 1)𝑥2 + 𝑐 =  𝑥3 − 𝑥2 =

 𝑓(𝑥2) 𝑠𝑎𝑦  

𝑎𝑥𝑛−1
2 + (𝑏 − 1)𝑥𝑛−1 + 𝑐 = 𝑥𝑛 −

𝑥𝑛−1 = 𝑓(𝑥(𝑛−1)) 𝑠𝑎𝑦  

𝑎𝑥𝑛
2 + (𝑏 − 1)𝑥𝑛 + 𝑐 = 𝑥1 − 𝑥𝑛 =

 𝑓(𝑥(𝑛)) 𝑠𝑎𝑦   

𝑓(𝑥1) + 𝑓(𝑥2) +⋯+ 𝑓(𝑥𝑛) = 0… . . (1)  

Case 1: When (𝑏 − 1)2 < 4𝑎𝑐. Each roots of 

𝑎𝑥1
2 + (𝑏 − 1)𝑥1 + 𝑐 = 0 are imaginary. If a 

> 0, then 

𝑓(𝑥1) + 𝑓(𝑥2) +⋯+ 𝑓(𝑥𝑛) > 0. 𝐼𝑓 𝑎 <

0, 𝑡ℎ𝑒𝑛  

𝑓(𝑥1) + 𝑓(𝑥2) +⋯+ 𝑓(𝑥𝑛) ≠ 0  

∴No solution. 

Case 2: When (𝑏 − 1)2 = 4𝑎𝑐. In case 1 and 2 

all of  

𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛) ≥

0, 𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝑛) ≤ 0  

From equation (1),  

 𝑓(𝑥1) + 𝑓(𝑥2) +⋯+ 𝑓(𝑥𝑛) = 0, 
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𝑓(𝑥1) = 𝑓(𝑥2) = ⋯ = 𝑓(𝑥𝑛) = 0  

𝐵𝑢𝑡 𝑓(𝑥𝑖) = 0 ⟹ 𝑎𝑥𝑖
2 + (𝑏 − 1)𝑥𝑖 + 𝑐 = 0  

𝑥𝑖 =
−(𝑏 − 1) ± 0

2𝑎

=
1 − 𝑏

2𝑎
[∵  (𝑏 − 1)2

= 4𝑎𝑐] 

𝐻𝑒𝑛𝑐𝑒 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 =
1 − 𝑏

2𝑎
 

Case 3:  When (𝑏 − 1)2 > 4𝑎𝑐. Roots of 𝑎𝑥𝑖
2 +

(𝑏 − 1)𝑥𝑖 + 𝑐 = 0, are real and unequal. Let 𝛼 

and 𝛽 be roots. 

If 𝑎 < 0 ∀𝑥1 ∊ [𝛼, 𝛽] 𝑎 𝑥1
2 + (𝑏 − 1)𝑥1 + 𝑐 ≥

0 

𝑖. 𝑒. 𝑓(𝑥1) ≥ 0  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝑖 ∊ [𝛼, 𝛽],  

(𝑖 = 1, 2, 3…𝑛)𝑖. 𝑒. 𝑓(𝑥1) ≥ 0  

𝐵𝑢𝑡 𝑓(𝑥1) + 𝑓(𝑥2) +⋯+ 𝑓(𝑥𝑛) = 0,  

𝑓(𝑥1) = 𝑓(𝑥2) = ⋯ = 𝑓(𝑥𝑛) = 0  

∴ 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛  

𝑡ℎ𝑒𝑛 𝑒𝑎𝑐ℎ 𝑎𝑥𝑖
2 + (𝑏 − 1)𝑥𝑖 + 𝑐 = 0  

𝑆𝑜, 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛
= −(𝑏 − 1)

±
√(𝑏 − 1)2 − 4𝑎𝑐

2𝑎
 

𝐴𝑙𝑠𝑜, ∀ 𝑥1 ∉ (𝛼, 𝛽)(𝑖 = 1, 2, 3, …𝑛)𝑖. 𝑒. 𝑓(𝑥𝑖)

≤ 0 

𝑏𝑢𝑡 𝑓(𝑥1) + 𝑓(𝑥2) +⋯+ 𝑓(𝑥𝑛) = 0,  

𝑠𝑜 𝑓(𝑥1) = 𝑓(𝑥2) = ⋯ = 𝑓(𝑥𝑛) = 0 

∴ 𝑥1 = 𝑥2 = ⋯ =

 𝑥𝑛 𝑡ℎ𝑒𝑛 𝑒𝑎𝑐ℎ 𝑎𝑥𝑖
2 + (𝑏 − 1)𝑥𝑖 + 𝑐 =

0  

𝑠𝑜 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛

= 
(1 − 𝑏) ± √(𝑏 − 1)2 − 4𝑎𝑐

2𝑎
 

𝑤ℎ𝑒𝑛 𝑎 > 0 𝑤𝑒 𝑔𝑒𝑡  

𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛

= 
(1 − 𝑏) ± √(𝑏 − 1)2 − 4𝑎𝑐

2𝑎
 

30) Let 𝑷(𝒙) = 𝟎 be a fifth degree polynomial 

equation with integer coefficients that has 

at least one integer root. If 𝑷(𝟐) =

𝟏𝟑 𝒂𝒏𝒅 𝑷(𝟏𝟎) = 𝟓. Compute a value of x 

that must satisfy 𝑷(𝒙) = 𝟎. 

Sol.: Let 𝑃(𝑥) ≡ (𝑥 − 2) 𝑞(𝑥) + 𝑃(2), 𝑞(𝑥) would 

have integer coefficients. 

Let r be an integer such that 𝑃(𝑟) = 0 

Then 𝑃(𝑟) = (𝑟 − 2). 𝑞(𝑟) + 13 = 0, 𝑆𝑜 𝑟 −
2

13
 

𝑇ℎ𝑢𝑠, 𝑟 − 2 can only equal ± 𝑜𝑟 ± 13. Leading 

to r = 3, 1, 15, or −11. 

𝐿𝑒𝑡 𝑃(𝑥) ≡ (𝑥 = 10), 𝐹(𝑥) + 𝑃(10). Leads to 𝑟 −
10

5
. 

So r can only be 11, 9, 15 or 5. Thus, r = 15. 

31) If 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 are the roots of 𝒙𝟑 − 𝒙𝟐 + 𝟒 =

𝟎, from the equation whose roots are 𝒙𝟏 +

𝒙𝟐
𝟐 + 𝒙𝟑

𝟐;  𝒙𝟐 + 𝒙𝟑
𝟐 + 𝒙𝟏

𝟐;  𝒙𝟑 + 𝒙𝟏
𝟐 +

𝒙𝟐
𝟐 

Sol.: 𝑥1, 𝑥2, 𝑥3 are the roots of equation 

𝑥3 − 𝑥2 + 4 = 0…………(1)  

∴ 𝑥1 + 𝑥2 + 𝑥3 = 1; 𝑥1𝑥2 + 𝑥2𝑥3 +

𝑥3𝑥1 = 0;  
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If the transformed equation is in terms of y, 

then 

𝑦 = 𝑥1 + 𝑥2
2 + 𝑥3

2 = 𝑥1 +

(𝑥2 + 𝑥3)
2 − 2𝑥2𝑥3  

= 𝑥1 + (1 − 𝑥1)
2 −

2𝑥1𝑥2𝑥3
𝑥1

= 𝑥1 + (1 − 𝑥1)
2 +

8

𝑥1
 

∴ 𝑦 = 𝑥 + (1 − 𝑥)2 +
8

𝑥

= 𝑥2 − 𝑥 + 1 +
8

𝑥
 

𝑜𝑟 𝑥3 − 𝑥2 + 𝑥 − 𝑥𝑦 + 8 = 0……(2) 

Subtracting (2) from (1), we get    𝑥𝑦 − 𝑥 −

4 = 0 ⟹ 𝑥 =
4

𝑦−1
 

Putting this value of x in (1), we get 

64

(𝑦 − 1)3
−

16

(𝑦 − 1)2
+ 4 = 0 

⟹ (𝑦 − 1)3 − 4(𝑦 − 1) + 16 = 0 

32) If 𝛼, 𝛽, 𝛾 be the roots of the equation 𝒙𝟑 +

𝟑𝒙 + 𝟐 = 𝟎, find the equation whose roots 

are (𝜶 − 𝜷)(𝜶 − 𝜸), (𝜷 − 𝜸)(𝜷 − 𝜶), (𝜸 −

𝒂)(𝜸 − 𝜷). 

Hence show that the above equation has two 

imaginary roots. 

Sol.: Let 𝑧 = (𝛼 − 𝛽)(𝛼 − 𝛾) =  𝛼2 − 𝛼𝛽 −

𝛼𝛾 + 𝛽𝛾 

= 𝛼2 − ∑𝛼𝛽 +
2𝛼𝛽𝛾

𝛼
 𝑜𝑟 𝛼𝑧 =  𝛼3 − 3𝛼 +

2(−2)……… . (1)  

[∵  ∑ 𝛼𝛽 = 3;  𝛼𝛽𝛾 =  −2]𝑎𝑙𝑠𝑜 𝛼3 + 3𝛼 + 2 =

0,𝑤𝑒 𝑔𝑒𝑡   

𝛼2 − 3𝛼 = −6𝛼 − 2  on putting this value 

in(1) 

𝛼𝑧 =  −6𝛼 − 6 𝑜𝑟 𝛼(𝑧 + 6) =  −6, 𝛼

=  −
6

𝑧 + 6
 

But 𝛼 is a root of 𝑥3 + 3𝑥 + 2 = 0 

∴ [−
6

𝑧 + 6
]
3

+ 3 [−
6

𝑧 + 6
] + 2 = 0 

(𝑧 + 6)3 − 9(𝑧 + 6)2 − 108

= 0, 𝑧3 + 9𝑧2 − 216 = 0 

𝑙𝑒𝑡 𝑧1, 𝑧2, 𝑧3 be the roots of above equation 

then; 

𝑧1, 𝑧2, 𝑧3 = (𝛼 − 𝛽)(𝛼 − 𝛾) (𝛽 − 𝛾)(𝛽 −

𝛼) (𝛾 − 𝑎)(𝛾 − 𝛽) = 216   

𝑜𝑟 − (𝛼 − 𝛽)2(𝛽 − 𝛾)2(𝛾 − 𝑎)2 = 216,   

(𝛼 − 𝛽)2(𝛽 − 𝛾)2(𝛾 − 𝑎)2 = 216  

Hence, one of the factors in R H S must be 

−𝑣𝑒 say (𝛼 − 𝛽)2𝑖𝑠 − 𝑣𝑒 𝑖. 𝑒. 𝛼 − 𝛽 =pure 

imaginary showing that 𝛼 and 𝛽 are conjugate 

complex. Hence, the given equation has two 

imaginary roots. 

33) If 𝛼, 𝛽, 𝛾 be the roots of 𝒙𝟑 − 𝒙𝟐 + 𝟒 = 𝟎, 

find that the equation whose roots are 𝜶 −

𝜶𝟐 + (∑𝜶𝟐), 𝜷 − 𝜷𝟐 + (∑𝜶𝟐), 𝜸 − 𝜸𝟐 +

(∑𝜶𝟐)  

Sol.: ∑𝛼 = 1,∑𝛼𝛽 = 0 ∴ ∑𝛼2 = ∑𝛼2 −

2∑𝛼𝛽 = 1… . . (1) 

𝐴𝑙𝑠𝑜 𝛼3 − 𝛼2 + 4 = 0 [∴𝛼 is a root of the 

given equation] 

∴ 𝛼2 − 𝛼 = −
4

𝛼
𝑜𝑟 𝛼 − 𝛼2

=
4

𝛼
……(2) 

Let 𝛾 be a root of the new equation 

∴ 𝛾 =  𝛼 − 𝛼2 + (𝛼2 + 𝛽2 + 𝛾) =
4

𝛼
+ 1[𝑏𝑦 (1)𝑎𝑛𝑑 (2)]  
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∴ 𝛾 − 1 =
4

𝛼
𝑜𝑟 𝛼 =

4

𝛾 − 1
 

Since 𝛼 is a root of 𝑥3 − 𝑥2 + 4 = 0, we get 

64

(𝛾 − 1)3
−

16

(𝛾 − 1)2
+ 4

= 0, (𝛾 − 1)3

− 4(𝛾 − 1) + 16

= 0 

𝑜𝑟, 𝑦3 − 3𝑦2 − 𝑦 + 19 = 0  

 

34) A polynomial 𝒇(𝒙) with rational 

coefficients leaves remainder 15. When 

divided by 𝒙 − 𝟑 and remainder 𝟐𝒙 + 𝟏, 

when divided by (𝒙 − 𝟏)𝟐. Find the 

remainder when 𝒇(𝒙)  is divided by (𝒙 −

𝟑)(𝒙 − 𝟏)𝟐. 

Sol.: Let quotient be 𝑞(𝑥) and remainder be 

𝑟(𝑥) when 𝑓(𝑥) 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 (𝑥 − 3)(𝑥 − 1)
2. 

Now as divisor is a polynomial of degree 3 the 

remainder must be polynomial of degree at 

most 2. i.e., it must be of the form 𝑎𝑥2 + 𝑏𝑥 +

𝑐; a, b, c are some rational numbers. 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 =  𝑎[(𝑥 − 1) + 1]2 +

𝑏[(𝑥 − 1) + 1] + 𝑐  

= 𝑎(𝑥 − 1)2 + (2𝑎 + 𝑏)(𝑥 − 1) + 𝑎 +

𝑏 + 𝑐  

𝐵𝑦 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚,  

𝑓(𝑥) ≡ 𝑞(𝑥)(𝑥 − 3)(𝑥 − 1)
2 +

𝑎(𝑥 − 1)2 + (2𝑎 + 𝑏)(𝑥 − 1) + 𝑎 +

𝑏 + 𝑐…… . (1)  

Now according to given condition 𝑓(𝑥) leaves a 

remainder 15 when divided by 𝑥 − 3  

∴𝑓(3) = 15 

Now putting x = 3 in (1), we have 

(2𝑎 + 𝑏)(𝑥 − 1) + (𝑎 + 𝑏 + 𝑐) = 2𝑥 +

1  

Putting x = 1, we get 𝑎 + 𝑏𝑐 = 3…………(3) 

Putting x = 0, throughout, we get – 𝑎 + 𝑐 =

1………(4) 

From (2), (3) and (4), we get 𝑎 = 2, 𝑏 =

 −2, 𝑐 = 3 

Remainder =  𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 2𝑥2 − 2𝑥 + 3. 

35)  If 𝒑(𝒙) = 𝒙
𝟐 + 𝒂𝒙 + 𝒃  be a quadratic 

polynomial in which a, b are inters. Given 

any integer n, show that there is an integer 

M such that 𝒑(𝒏)𝒑(𝒏+𝟏) = 𝒑(𝑴) 

Sol.: Let the zero’s of 𝑝(𝑥) be 𝛼, 𝛽 so that 

𝑝(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛽). 𝑇ℎ𝑒𝑛 𝑝(𝑛) =

(𝑛 − 𝛼)(𝑛 − 𝛽. ) 

𝑝(𝑛+1) = (𝑛 + 1 − 𝛼)(𝑛 + 1 − 𝛽) we have to 

show that 𝑝(𝑛)𝑝(𝑛+1) can be written as 

(𝑡 − 𝛼)(𝑡 − 𝛽) for some integer t (which will 

depend upon) 

𝑝(𝑛)𝑝(𝑛+1) = (𝑛 − 𝛼)(𝑛 − 𝛽. )(𝑛 + 1 −

𝛼)(𝑛 + 1 − 𝛽)  

= {(𝑛 − 𝛼)(𝑛 + 1 − 𝛽)}{(𝑛 − 𝛽)(𝑛 +

1 − 𝛼)}  

= {𝑛(𝑛 + 1) − 𝑛(𝛼 + 𝛽) − 𝛼 + 𝛼𝛽} ×

{𝑛(𝑛 + 1) − 𝑛(𝛼 + 𝛽) − 𝛽 + 𝛼𝛽}  

= {𝑛(𝑛 + 1) + 𝑛𝛼 + 𝑏 − 𝛼}{{𝑛(𝑛 +

1)} + 𝑛𝑎 + 𝑏 − 𝛽}  

= (𝑡 − 𝛼)(𝑡 − 𝛽); 𝑡 = 𝑛(𝑛 + 1) + 𝑎𝑛 +

𝑏 =  𝑝(𝑡)  

𝑇ℎ𝑢𝑠, 𝑝(𝑛)𝑝(𝑛+1)   can be written as 𝑝(𝑀) for 

𝑝(𝑛)𝑀 = 𝑛(𝑛 + 1) + 𝑎𝑛 + 𝑏 
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36) If n is an odd integers no divisible by 3, 

show that  𝒙𝒚(𝒙 + 𝒚)(𝒙𝟐 + 𝒙𝒚 + 𝒚𝟐) is a 

factor of (𝒙 + 𝒚)𝒏 − 𝒙𝒏 − 𝒚𝒏  

Sol.: We have    

𝑥𝑦(𝑥 + 𝑦)(𝑥2 + 𝑦2 + 𝑥𝑦) = 𝑥𝑦(𝑥 + 𝑦)(𝑥 −

𝑤𝑦)(𝑥 − 𝑤2𝑦)  

[𝑤, 𝑤2 are non real cube roots of unity] 

It is enough to show that (𝑥 + 𝑦)𝑛 − 𝑥𝑛 − 𝑦𝑛 

vanishes for x = 0; y = 0. Now, 𝑥 =  −𝑦; 𝑥 =

𝑤𝑦 𝑎𝑛𝑑 𝑥 =  𝜔2𝑦 

The polynomial obviously vanishes for x = 

𝑤𝑦 

(𝑤𝑦 + 𝑦)𝑛 − (𝑤𝑦)𝑛 − 𝑦𝑛 = 𝑦𝑛[(𝑤 + 1)𝑛 −

𝑤𝑛 − 1]  

= 𝑦𝑛[(−𝑤2)𝑛 −𝑤𝑛 − 1] =  −𝑦𝑛[(𝑤 + 1)𝑛 −

𝑤𝑛 − 1]  

= 𝑦𝑛[(−𝑤2)𝑛 −𝑤𝑛 − 1] =  −𝑦𝑛[𝑤2𝑛 +𝑤𝑛 +

1]  

(∵ n is odd) 

Let 𝑛 = 3𝑝 + 2, 𝑡ℎ𝑒𝑛 𝑤𝑛 = 𝑤3𝑝+1, 𝑤2𝑛 =

 𝑤6𝑝+2 = 𝑤2  

∴ Above expression = −𝑦𝑛[𝑤2 +𝑤 + 1] = 0 

If n =3p+2, then 𝜔𝑛 = 𝜔2, 𝜔2𝑛 = 𝜔 and the 

above expression is zero. We can similarly 

prove that the given polynomial vanishes for 

𝑥 =  𝜔2𝑦. If n is an odd positive integer not 

divisible by 3, then (𝑥 + 𝑦)𝑛 − 𝑥𝑛 − 𝑦2 is 

divisible by 𝑥𝑦(𝑥2 + 𝑦2 + 𝑥𝑦). 

37) Find out at  what n the polynomial 𝟏 +

𝒙𝟐 + 𝒙𝟒 +⋯+ 𝒙𝟐𝒏−𝟐 is divisible by the 

polynomial 𝟏 + 𝒙 + 𝒙𝟐 + 𝒙𝒏−𝟏 

Sol.: 1+𝑥2 + 𝑥4 +⋯+ 𝑥2𝑛−2 =
𝑥2𝑛−1

𝑥2−1
,  

1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑛−1 =
𝑥𝑛 − 1

𝑥 − 1
 

It is required to find out at what n. 

[
𝑥2𝑛−1

𝑥2−1
]

[
𝑥𝑛−1

𝑥−1
]
  will be a polynomial in x,  

𝑤𝑒 𝑓𝑖𝑛𝑑,
[
𝑥2𝑛−1

𝑥2−1
]

[
𝑥𝑛−1

𝑥−1
]
=  

𝑥𝑛+1

𝑥+1
 

For 𝑥𝑛 + 1  to be divisible by x +1, it is 

necessary and sufficient that  (−1)𝑛 + 1 = 0 

i.e. n is odd. 

Thus, 1 + 𝑥 + 𝑥𝑛 +⋯+ 𝑥2𝑛−2  is divisible by 

1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑛−1, if n is odd. 

38) Find out at what values of p and q where 

𝒙𝟒 + 𝟏 is divisible by 𝒑𝟐 + 𝒑𝒙 + 𝒒? 

Sol.: Let us suppose 

𝑥4 + 1 = (𝑥2 + 𝑝𝑥 + 𝑞)(𝑥2 + 𝑝′𝑥 + 𝑞′)

=  𝑥4(𝑝 + 𝑝′)𝑥3(𝑞

+ 𝑞′𝑝𝑝′)𝑥2. (𝑝𝑞′ + 𝑞𝑝′)𝑥

+ 𝑞𝑞′ 

For determining p, q, p’ and q’ we have four 

equations. 

p +p’ = 0, 𝑝𝑝′ + 𝑞 + 𝑞′ = 0, 𝑝𝑞′ +

𝑞𝑝′ = 0, 𝑞𝑞′ = 1 

From(1) and (3), we find 𝑝′ = −𝑝(𝑞′ − 𝑞) =

0 assume  

Case 1: 𝑝 = 0, 𝑝′ =  0, 𝑞 + 𝑞′ = 0, 𝑞𝑞′ =

1, 𝑞2 = −1 

𝑞 =  ±𝑖; 𝑞′ = ±𝑖.  

The corresponding factorization has the from 

𝑥4 + 1 = (𝑥2 + 𝑖)(𝑥2 − 𝑖) 

Case 2: 𝑞′ = 𝑞, 𝑞2 = 1, 𝑞 =  ±1, suppose first 

𝑞′ = 𝑞 = 1 𝑡ℎ𝑒𝑛 𝑝𝑝′ = −2, 𝑝 + 𝑝′ = 0, 𝑝2 =

2, 𝑝 =  ±√2, 𝑝′ = ±√2 
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The corresponding factorization is 

𝑥4 + 1 = (𝑥2 − √2𝑥 + 1)(𝑥2 − √2𝑥 + 1)  

Assume then, 

𝑞 = 𝑞′ = 1, 𝑝 + 𝑝′ = 0, 𝑝𝑝′ = 2; 𝑝 =

 ±√2𝑖, 𝑝′ = √2𝑖  

Factorization will be 

𝑥4 + 1 = (𝑥2 +√2𝑥𝑖 − 1)(𝑥
2 −

√2𝑥1 − 1  

39) Show that if 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 are all distinct, 

then the polynomial (𝒙 − 𝒂𝟏)
𝟐(𝒙 −

𝒂𝟐)
𝟐… . (𝒙 − 𝒂𝒏)

𝟐 + 𝟏 can never be 

written as the product of two polynomials 

with integer coefficients. 

Sol.: Suppose that there exists polynomial 

𝑓(𝑥). 𝑔(𝑥) with integer coefficients such that 

𝑓(𝑥). 𝑔(𝑥) = (𝑥 − 𝑎1)
2(𝑥 −

𝑎2)
2… . (𝑥 − 𝑎𝑛)

2 + 1……… . (1)  

∴ R H S is always +ve. 

∴  𝑓(𝑥) can never vanish. 

So its sign never changes. 

Similarly 𝑔(𝑥) can never vanish and its sign 

never changes. 

∴𝑓(𝑥), 𝑔(𝑥) are always +ve, so 𝑓(𝑥) 𝑎𝑛𝑑 𝑔(𝑥) are 

both always +ve. 

Substituting 𝑥 = 𝑎1, 𝑎2, … , 𝑎𝑛 in (1) we get 

𝑓(𝑎1)  𝑔(𝑎1) = 1, 𝑓(𝑎2)  𝑔(𝑎2) =

1,… . . , 𝑓(𝑎𝑛)  𝑔(𝑎𝑛) = 1  

∵ 𝑓(𝑎1), …… , 𝑓(𝑎𝑛)  are all +ve integers. 

It follows that  

𝑓(𝑎1) = 𝑓(𝑎2) = ⋯ = 𝑓(𝑎𝑛) = 1  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑔(𝑎1) = 𝑔(𝑎2) = ⋯ = 𝑔(𝑎𝑛) = 1  

∵ 𝑓(𝑥) − 1, 𝑔(𝑥) − 1 vanish when 𝑥 =

 𝑎1, 𝑎2, … , 𝑎𝑛 

∴ 𝑓(𝑥) − 1 = 𝑝(𝑥)(𝑥 − 𝑎1)(𝑥 − 𝑎2)… . (𝑥 − 𝑎𝑛)  

By factor theorem, 

𝑔(𝑥) − 1 = 𝑞(𝑥)(𝑥 − 𝑎1)(𝑥 − 𝑎2)… . (𝑥 − 𝑎𝑛)  

𝑝(𝑥), 𝑞(𝑥) are polynomial with integer 

coefficients. 

∵ 𝑓(𝑥). 𝑔(𝑥) 𝑖𝑠 𝑎 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 2𝑛, 𝑝(𝑥). 𝑞(𝑥) must 

be both constants. Suppose 𝑝(𝑥) = 𝑎, 𝑞(𝑥) = 𝑏 

𝑇ℎ𝑒𝑛 𝑓(𝑥) = 𝑎(𝑥 − 𝑎1)(𝑥 − 𝑎2)… . (𝑥 − 𝑎𝑛) +

1  

𝑔(𝑥) = 𝑏(𝑥 − 𝑎1)(𝑥 − 𝑎2)… . (𝑥 − 𝑎𝑛) + 1  

(substituting these conditions these 

conditions imply 𝑎2 = −1, 𝑏2 = −1) 

∴ There is a contradiction and given 

polynomial cannot be expressed as the 

product of two polynomials with integer 

coefficients. 

40) If 𝜶𝟏𝟑 = 𝟏, 𝒂𝒏𝒅 𝜶 ≠ 𝟏, find an equation, 

whose roots are 𝜶 + 𝜶𝟑 + 𝜶𝟒 + 𝜶−𝟒 +

𝜶−𝟑 + 𝜶−𝟏 𝒂𝒏𝒅 𝜶𝟐 + 𝜶𝟓 + 𝜶𝟔 + 𝜶−𝟔 +

𝜶−𝟓 + 𝜶−𝟐 

Sol.: Let A = 𝛼 + 𝛼3 + 𝛼4 + 𝛼−4 + 𝛼−3 + 𝛼−1 

= 𝛼 + 𝛼3 + 𝛼4 + 𝛼9 + 𝛼10 +

𝛼12(∵ 𝛼13 = 1)  

𝐵 =  𝛼2 + 𝛼5 + 𝛼6 + 𝛼−6 + 𝛼−5 + 𝛼−2 =

 𝛼2 + 𝛼5 + 𝛼6 + 𝛼7 + 𝛼8 + 𝛼11  

𝐴 + 𝐵 =  𝛼 + 𝛼2 + 𝛼3 + 𝛼4 + 𝛼5 + 𝛼6 + 𝛼7 +

𝛼8 + 𝛼9 + 𝛼10 + 𝛼11 + 𝛼12 = (1 + 𝛼 + 𝛼2 +

𝛼3 +⋯+ 𝛼12) − 1 =
(𝛼13−1)

(𝛼−1)
− 1 = 1 
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𝐴 × 𝐵 = (𝛼 + 𝛼3 + 𝛼4 + 𝛼9 + 𝛼10 + 𝛼12) ×

(𝛼2 + 𝛼5 + 𝛼6 + 𝛼7 + 𝛼8 + 𝛼11)  

= 3(𝛼 + 𝛼2 + 𝛼3 +⋯+ 𝛼12) ≤

3(−1) =  −3  

Required equation is 𝑥2 + 𝑥 − 3 = 0 

41) Show that 𝒇(𝒙) = 𝒙
𝟏𝟎𝟎 − 𝒙𝟓𝟎𝟎 + 𝒙𝟏𝟎𝟎 +

𝒙 + 𝟏 = 𝟎 has no rational roots. 

Sol.: If there a rational root. Let it be 
𝑝

𝑞
, where 

(𝑝, 𝑞) = 1, 𝑞 ≠ 0. Then q should divide the 

coefficient of the leading term and p should 

divide the constant term. 

Thus, 
𝑞

1
⟹ 𝑞 = ±1 𝑎𝑛𝑑

𝑝

1
= 𝑝 = ±1 

𝑇ℎ𝑢𝑠,
𝑝

𝑞
=  ±1. 𝐼𝑓  𝑡ℎ𝑒 𝑟𝑜𝑜𝑡

𝑝

𝑞
= 1, 𝑡ℎ𝑒𝑛 

𝑓(1) = 1 − 1 + 1 + 1 + 1 = 3 ≠ 0.  

So 1 is not a root. 

If  
𝑝

𝑞
= −1, 𝑡ℎ𝑒𝑛 𝑓(−1) = 1 ≠ 0 

Hence, -1 is not a root. Thus, there exists no 

rational roots for given polynomial. 

42) If 𝒑(𝒙) be a real polynomial function 𝒑(𝒙) =

𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅. Show that if |𝒑(𝒙)| ≤

𝟏 for all x such that |𝒙| ≤ 𝟏, 𝒕𝒉𝒆𝒏 |𝒂| +

|𝒃| + |𝒄| + |𝒅| ≤ 𝟕. 

Sol.: Considering the polynomials ±𝑝(±𝑥). We 

may assume without loss of generality that a, 

b > 0 

Case 1: If c, d > 0, then 𝑝(1) = 𝑎 + 𝑏 + 𝑐 + 𝑑 ≤

1 < 7 

Case 2: If 𝑑 ≤ 0 𝑎𝑛𝑑 𝑐 ≤ 0, 𝑡ℎ𝑒𝑛 |𝑎| + |𝑏| +

|𝑐| + |𝑑| 

= 𝑎 + 𝑏 + 𝑐 + 𝑑 = (𝑎 + 𝑏 + 𝑐 + 𝑑) −

2𝑑 = 𝑝(1) − 2𝑝(0) ≤ 1 + 2 = 3 < 7  

Case 3: 𝑑 ≥ 0, 𝑐 > 0 𝑡ℎ𝑒𝑛 |𝑎| + |𝑏| + |𝑐| + |𝑑| 

= 𝑎 + 𝑏 + 𝑐 + 𝑑

=
4

3
𝑝(1) −

1

3
𝑝(−1)

−
8

3
𝑝
(
1
2
)
+
8

3
 

𝑝
(−
1
2
)
≤
4

3
+
1

3
+
8

3
+
8

3
=
21

3
= 7 

Case 4: If d< 0, c< 0 then |a|+|b|+|c|+|d| =

𝑎 + 𝑏 − 𝑐 − 𝑑 

=
5

3
𝑝(1) − 4𝑝 (

1

2
) +

4

3
𝑝 (−

1

2
)

≤
5

3
+ 4 +

4

3
=
21

3
= 7 

43) If all the coefficients in the equation 𝒇(𝒏) =

 𝒙𝒏 + 𝒑𝟏𝒙
𝒏−𝟏 + 𝒑𝟐𝒙

𝒏−𝟐 +⋯+ 𝒑𝒏 = 𝟎 be 

whole numbers and if 𝒇(𝟎) 𝒂𝒎𝒅 𝒇(𝟏) be 

each odd integers. Show that the equation 

cannot have a common measurable root. 

Sol.: Given  𝑥𝑛 + 𝑝1𝑥
𝑛−1 + 𝑝2𝑥

𝑛−2 +⋯+

𝑝𝑛 = 𝑓(𝑥) = 0………… . . (1) 

Cannot have fractional root as all coefficients 

are integers and coefficients of 𝑥𝑛 is 1. 

It cannot have even roots as of 𝑓(0) 𝑖. 𝑒. , 𝑝
𝑛 is 

odd. 

Hence 𝑓(2𝑚) will be odd 

∵ all the terms expect the last term are even. 

In the given equation it cannot have odd 

roots, for it x is odd. Then 𝑥𝑛 = an odd 

number = an even number +𝑓(𝑥)= an odd 

number, as so it cannot vanishes. Thus 

equation (1) cannot have common surable 

roots. 
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44) Find all polynomials 𝒇(𝒙) with real 

coefficients which satisfy the equality 

𝒇(𝒂−𝒃) + 𝒇(𝒃−𝒄) + 𝒇(𝒄−𝒂) = 𝒇(𝒂 + 𝒃𝒄)∀ 

real numbers a, b, c such that 𝒂𝒃 + 𝒃𝒄 +

𝒄𝒂 = 𝟎 

Sol.: Let 𝑓(𝑥) be a polynomial which satisfy the 

equation if a = b = 0 

Then 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 ∊

𝑅 𝑠𝑜 𝑤𝑒 𝑔𝑒𝑡 𝑓(0−0) + 𝑓(0−𝑐) + 𝑓(𝑐−0) =

27(0 + 0 + 𝑐), ∀ 𝑐 ∊ 𝑅 

⟹ 𝑓(0) + 𝑓(−𝑐) + 𝑓(𝑐) = 27(𝑐), ∀ 𝐶 ∊ 𝑅  

⟹ 𝑓(0) + 𝑓(−𝑐) = 𝑓(𝑐) ∀ 𝐶 ∊ 𝑅 𝐿𝑒𝑡 𝑐 =

0 𝑤𝑒 𝑔𝑒𝑡 𝑓(0) = 0  

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑓(𝑐) = 𝑓(𝑐) ∀ 𝐶 ∊ 𝑅.  

Hence, f is even which must be of the from 

𝑓(𝑥) = 𝑎𝑛𝑥
2𝑛 + 𝑎𝑛−1𝑥

2𝑛−2 +⋯+

𝑎1𝑥
2 𝑤𝑖𝑡ℎ 𝑎1, 𝑎2, 𝑎3, …… . , 𝑎𝑛 ∊ 𝑅  

For any real number u and v the triplet (a, b, 

c) will satisfy 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎. 

𝐿𝑒𝑡 𝑎 = 𝑢𝑣, 𝑏 = (1 − 𝑢)𝑣, 𝑐 = (𝑢2 − 𝑢)𝑣  

∴ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 𝑤𝑖𝑙𝑙 𝑏𝑒𝑐𝑚𝑒 (𝑎 + 𝑏)𝑐 + 𝑎𝑏  

= 𝑣 + (𝑢2 − 𝑢)𝑣 + 𝑢𝑣(1 − 𝑢)𝑣 = 𝑣2 +

(𝑢2 − 𝑢) + 𝑣2(𝑢 − 𝑢2) = 𝑣2 + (𝑢2 − 𝑢) +

𝑣2(𝑢2 − 𝑢) = 0  

∴The given equation results 

𝑓[(2𝑢 − 1)𝑣] + 𝑓[(1 − 𝑢2)𝑣] + 𝑓[(𝑢2 − 2𝑢)𝑣]  

= 27(𝑣2 − 𝑢 + 1)𝑢∀ 𝑢, 𝑣 ∊ 𝑅 ……… . . (1)  

[∵ (𝑎 − 𝑏) = (2𝑢 − 1)𝑣, (𝑏 − 𝑐) =

(1 − 𝑢2)𝑣, (𝑐 − 𝑎) = (𝑢2 − 2𝑢)𝑣]  

Let us fix u regard this is as a polynomial with 

variable v. 

𝑓(2𝑢−1)𝑣 − (2𝑢 − 1)
2𝑛𝑣2𝑛 + (2𝑢 −

1)2𝑛−2𝑣2𝑛−2…….  

𝑓(1−𝑢2)𝑣 =  (1 − 𝑢
2)2𝑛𝑣2𝑛 + (1 −

𝑢2)2𝑛−2 𝑣2𝑛−2……  

𝑓(𝑢2−2𝑢)𝑣 =  (𝑢
2 − 2𝑢)2𝑛 + 𝑣2𝑛 +⋯  

𝑓(𝑢2−𝑢+1)𝑣 =  (𝑢
2 − 𝑢 + 1)2𝑛 𝑣2𝑛 +⋯  

How equality the leading coefficients of both 

sides of (1), we get (2𝑢 − 1)2𝑛 +

(1 − 𝑢2)2𝑛 + (𝑢2 − 2𝑢)2𝑛 = 2(𝑢2 − 𝑢 +

1)2𝑛 ∀ 𝑢 ∈ 𝑅 

𝐿𝑒𝑡 𝑢 =  −2, 𝑡ℎ𝑒𝑛 (−5)2𝑛 + (−3)2𝑛 + (8)2𝑛 =

2(7)2𝑛  

5𝑛 + 32𝑛 + 82𝑛 = 2(7)2𝑛.  

Now above result is true only for x = 1 and x 

= 2 

∴𝑓(𝑥) is either 𝛼𝑛2 𝑓𝑜𝑟 𝑛 = 1. 𝑜𝑟 𝛽𝑥2 𝑓𝑜𝑟 𝑛 =

2 

Hence 𝑓(𝑥) can be written as a linear 

combination i.e. 𝑓(𝑥) =  𝛼𝑥
2 + 𝛽𝑥4  

Hence, 𝑓(𝑥) =  𝛼𝑥
2 + 𝛽𝑥4 is a polynomial 

which satisfies the given equation for 𝛼, 𝛽 ∊ R 

45) If 𝛼+ 𝛽+ 𝛾= 0, then show that𝜶𝒏+𝟑 +

𝜷𝒏+𝟑 + 𝜸𝒏+𝟑 =  𝜶𝜷𝜸(𝜶𝒏 +𝜷𝒏 + 𝜸𝒏) +
𝟏

𝟐
(𝜶𝟐 + 𝜷𝟐 + 𝜸𝟐)(𝜶𝒏+𝟏 + 𝜷𝒏+𝟏 + 𝜸𝒏+𝟏) 

Sol.: 𝛼+ 𝛽+ 𝛾 = 0 i.e., Let 𝛼, 𝛽, 𝛾 denote the 

roots of equation 𝑥3 + 𝑞𝑦 + 𝑟 = 0 𝑖. 𝑒. 𝑥 =

 𝛼 𝑜𝑟 𝛽 𝑜𝑟 𝛾 

Multiplying this equation by 𝑥𝑛. We have 

𝑥𝑛+3 + 𝑞𝑥𝑛+1 + 𝑟𝑥𝑛 = 0  

Substituting in succession x = 𝛼, 𝛽 𝛾 
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 We have 𝛼𝑛+3 + 𝑞𝛼𝑛+1 + 𝑟𝛼𝑛 =

0…………(1),  

 𝛽𝑛+3 + 𝑞𝛽𝑛+1 + 𝑟𝛽𝑛 =

0…………(2),  

 𝛾𝑛+3 + 𝑞𝛾𝑛+1 + 𝑟𝛾𝑛 =

0…………(3) 

Adding (1), (2) and (3) 

𝛼𝑛+3 + 𝛽𝑛+3 + 𝛾𝑛+3

+ 𝑞(𝛼𝑛+1 + 𝛽𝑛+1 + 𝛾𝑛+1)

+ 𝑟(𝛼𝑛 + 𝛽𝑛 + 𝛾𝑛)

= 0…… . (4) 

But by 𝑥3 + 𝑞𝑥 + 𝑟 = 0, we have𝛼𝛽 + 𝛽𝛾 +

𝛾𝛼 = 𝑞, 𝛼𝛽𝛾 =  −𝑟. 

𝑖. 𝑒., ∑𝛼𝛽 =  𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼

=
1

2
(2𝛼𝛽 + 2𝛽𝛾 + 2𝛾𝛼) 

=
1

2
[(𝛼 + 𝛽 + 𝛾)2 − (𝛼2 + 𝛽2 + 𝛾2)]

= −
1

2
(𝛼2 + 𝛽2 + 𝛾2)[∵ 𝛼 + 𝛽

+ 𝛾 = 0] 

∴ (4)𝑔𝑖𝑣𝑒𝑠 𝛼𝑛+3 + 𝛽𝑛+3 + 𝛾𝑛+3

= −𝑞(𝛼𝑛+1 + 𝛽𝑛+1 + 𝛾𝑛+1)

− 𝑟(𝛼𝑛 + 𝛽𝑛 + 𝛾𝑛) 

=
1

2
(𝛼2 + 𝛽2 + 𝛾2)(𝛼𝑛+1 + 𝛽𝑛+1 + 𝛾𝑛+1)

+ 𝛼𝛽𝛾(𝛼2 + 𝛽2 + 𝛾2 

 

MISCELLANEOUS EQUATIONS 
AND INEQUATIONS 

(OBJECTIVE TYPE) 

1) The solution |
𝒙

𝒙−𝟏
| + |𝒙| =  |

𝒙𝟐

𝒙−𝟏
| is 

(a) 𝒙 ≥ 𝟎;  (b) 𝒙 > 0;  (c) 𝒙 ∊ (𝟏,∞);   (d) 

none 

Sol.: Let 
𝑥

(𝑥−1)
 𝑎𝑛𝑑 𝑏 = 𝑥    ∴ 𝑎 + 𝑏 =

𝑥2

(𝑥−1)
 

The given equation becomes |𝑎| + |𝑏| =

 |𝑎 + 𝑏|. 

But his equality holds if 𝑎𝑏 ≥ 0 

∴
𝑥2

(𝑥−1)
≥ 0 critical points are 0, 1 

∴ 𝑥 ∊ {0} ∪ (1,∞)  

2) The number of solutions of the equations 

𝟏! + 𝟐! + 𝟑! + ⋯+ (𝒙 − 𝟏)! + 𝒙! =

 𝒌𝟐 𝒂𝒏𝒅 𝒌 ∊ 𝑰are 

(a) 2;   (b) 3;   (c) 4;   (d) none 

Sol.: The given equation is 1! +2! +3! 

+…+(𝑥 − 1)! 𝑥! =  𝑘2 

We can readily check that for x < 4 the given 

equation has the only solutions = 1, 𝑘 =

 ±1 𝑎𝑛𝑑 𝑥 = 3, 𝑘 ± 3. 

Now let us prove that there are no solutions 

for 𝑥 ≥ 4. 

The expressions 

1! + 2! + 3! + 4! = 33
1! + 2! + 3!…+ 5! = 153
1! + 2! + ⋯+ 6! = 873
1! + 2! + ⋯+ 7! = 5913

} 

End with the digit 3. 

Now for 𝑥 ≥ 4 the last digit of the sum 1! +2! 

+…+x! is equal to 3 and therefore this sum 

can not be equal to a square of a whole 

number k (because a square of a whole 

number cannot end with 3) 

3) The solution set of (
𝟑

𝟓
)
𝒙
= 𝒙 − 𝒙𝟐 − 𝟗 is 

(a) 𝜙;   (b) all real;  (c) all x ∊ N;   (d) none 

Sol.: We have 𝑥 − 𝑥2 − 9 =  −(𝑥3 − 𝑥 + 9) =

− {(𝑥 −
1

2
)
2
+
35

4
} <  0∀ 𝑥 ∊ 𝑅 
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𝐵𝑢𝑡 (
3

5
)
𝑥
> 0 for each x ∊ R. Thus (

3

5
)
𝑥
= 𝑥 −

𝑥2 − 9 has no solution. 

4) If 𝟎 ≤ 𝒑 ≤ 𝝅, then the quadratic equation 

(𝐜𝐨𝐬 𝒑 − 𝟏)𝒙𝟐 + (𝐜𝐨𝐬𝒑)𝒙 + 𝐬𝐢𝐧𝒑 = 𝟎,   

(a) Real roots;  (b) imaginary roots;  (c) 

nothing can be said,   (d) none. 

Sol.: The discriminant D of the quadratic 

equation (1) is given by D= 𝑐𝑜𝑠2𝑝 −

4(cos 𝑝 − 1) sin𝑝 

= 𝑐𝑜𝑠2𝑝 − 4 cos 𝑝 sin𝑝 + 4 sin 𝑝 =

 (cos 𝑝 − 2 sin 𝑝)2 + 4 sin𝑝 − 4𝑠𝑖𝑛2𝑝 =

 (cos 𝑝 − 2 sin 𝑝)2 + 4 sin𝑝 (1 − sin 𝑝)  

𝐴𝑠 0 ≤ 𝑝 ≤ 𝜋, sin𝑝 ≤ 0. 𝐴𝑙𝑠𝑜 1 − sin 𝑝 ≥

0 ∀ 𝑝 ∊ 𝑅.  

Therefore, 𝐷 ≥ 0. Hence (1) has real roots. 

 

5) The range of values of a for which all the 

roots of the equation 

(𝒂 − 𝟏)(𝟏 + 𝒙 + 𝒙𝟐)
𝟐
= (𝒂 + 𝟏)(𝟏 +

𝒙𝟐 + 𝒙𝟒) are imaginary is 

(a) (𝟐,∞) ;  (b) (−∞,−𝟐];   (c) −𝟐 <

𝑎 < 2;  (d) none 

Sol.: (1 + 𝑥 + 𝑥2)[(𝑎 − 1)(1 + 𝑥 + 𝑥2) −

(𝑎 + 1)(1 − 𝑥 + 𝑥2)] = 0 

(1 + 𝑥 + 𝑥2) = 0 has imaginary roots 

⟹ −2(1 + 𝑥2) + 2𝑎𝑥 = 0,  must have 

imaginary roots 

⟹ 𝑥2 − 𝑎𝑥 + 1 = 0, must have 

imaginary root. 

⟹ 𝑎2 − 4 < 0,⟹ −2 < 𝑎 < 2.  

 

6) Let f(x) = (𝟏 + 𝒃𝟐)𝒙𝟐 + 𝟐𝒃𝒙 + 𝟏 𝒂𝒏𝒅  let 

m(b) be the minimum value of f(x). As b 

varies, the range of m(b) is 

(a) [0, 1];   (b) [𝟎,
𝟏

𝟐
];   (c) [

𝟏

𝟐
, 𝟏];  (d) none 

Sol.: 𝑓(𝑥) = (1 + 𝑏2)𝑥2 + 2𝑏𝑥 +

1…………(1) 

𝑓′(𝑥) = 2(1 + 𝑏
2)𝑥 + 2𝑏 = 0 ⟹ 𝑥

= −
𝑏

1 + 𝑏2
. 

𝑓′′(𝑥) = 2(1 + 𝑏
2) > 0  

∴ 𝑓(𝑥) has min. value at  

𝑥 =  −
𝑏

1+𝑏2
 min. value of 𝑓(𝑥) 𝑖. 𝑒.,  

𝑚(𝑏) =
𝑏2

1 + 𝑏2
−

2𝑏2

1 + 𝑏2
+ 1 

𝑜𝑟 𝑚(𝑏) = 1 −
𝑏2

1 + 𝑏2
=

1

1 + 𝑏2
 

𝑐𝑙𝑒𝑎𝑟𝑙𝑦, 0 <  𝑚(𝑏) ≤ 1. [∵ 𝑏
2

≥ 0 𝑚𝑎𝑥. 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑚(𝑏) = 1] 

 

7) If 𝒚 = 𝟐[𝒙] + 𝟑 = 𝟑[𝒙 − 𝟐] +

𝟓, 𝒕𝒉𝒆𝒏 [𝒚 + 𝒚] 𝒊𝒔 [𝒙] denotes the integral 

part of x 

(a) 10;   (b) 11;   (c) 12;   (d)none 

Sol.: ∵ 𝑦 = 2[𝑥] + 3 = 3[𝑥 − 2] + 5……… . (1) 

𝑜𝑟, 2[𝑥] + 3 = 3[𝑥 − 2] + 5 ⟹ 2[𝑥] +

3 = 3{[𝑥] − 2} + 5  

⟹ 2[𝑥]3 = 3[𝑥] − 6 + 5 ⟹ [𝑥] =

4 𝑓𝑟𝑜𝑚 (1)  

𝑦 = 2, 4 + 3, 𝑦 = 11   

∴ 4 ≤ 𝑥 < 5  
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⟹ 4+ 𝑦 ≤ 𝑥 + 𝑦 < 5 + 𝑦 ⟹ 15 ≤ 𝑥 +

𝑦 < 16  

(∵ 𝑦 = 11)  

∴ (𝑥 + 𝑦) = 15  

 

8) The solution set of the following equation 

is {
𝟒 𝐥𝐨𝐠𝟐

𝟐 𝒙 + 𝟏 = 𝟐 𝐥𝐨𝐠𝟐 𝒚

𝐥𝐨𝐠𝟐 𝒙
𝟐 ≥ 𝐥𝐨𝐠𝟐 𝒚

 

(a) (√𝟐, 𝟐);   (b) (2, 2);   (c) (√𝟐, 𝟏);  (d) 

none 

Sol.: The system of equation is 4 log2
2 𝑥 + 1 =

2 log2 𝑦………… . (1) 

log2 𝑥
2 ≥ log2 𝑦  0…………(2)  

Substituting log2 𝑦 from (1)in (2) 

2 log2 𝑥 ≥ (
1

2
) (4 log2

2 𝑥 + 1)  

⟹ 4 log2 𝑥 ≥ 4(log2 𝑥)
2 + 1⟹

(2 log2 𝑥 − 1)
2 ≤ 0  

𝐻𝑒𝑛𝑐𝑒 2 log2 𝑥 − 1 = 0, ∴ 𝑥 =

 √2 𝑓𝑟𝑜𝑚 (1)𝑦 = 2  

Hence solutions set of system is (√2, 2) 

9) Values of a for which exactly one root of 

𝟓𝒙𝟐 + (𝒂 + 𝟏)𝒏 + 𝒂 = 𝟎 lies in the 

interval 𝟏 < 𝑥 < 3 is  

(a) 𝒂 > 0;  (b) 𝒂 > 2;  (c) −𝟏𝟐 < 𝑎 < −3;  

(d) none 

Sol.: 𝑓(1) = 5 + 𝑎 + 1 + 𝑎 = 6 + 2𝑎, 

𝑓(3) = 45 + 3(𝑎 + 1) + 𝑎 = 4𝑎 = 48  

∴ 𝑓(1). 𝑓(3) < 0, (6 + 2𝑎)(4𝑎 + 48) < 0,  

(𝑎 + 3)(𝑎 + 12) <  0  

∴ −12 < 𝑎 < −3  

10) The number of real roots of (𝟔 − 𝒙)𝟒 +

(𝟖 − 𝒙)𝟒 = 𝟏𝟔 is 

(a) 0;  (b) 2;  (c) 4;   (d) none 

Sol.: Consider 𝑦 =
[(6−𝑥)+(8−𝑥)]

2
 

Let 𝑦 = 𝑓(−𝑥). Then the given equation 

becomes 

(𝑦 + 1)4 + (𝑦 − 1)4 = 16 ⟹ 𝑦4 + 6𝑦2 −

7 = 0  

⟹ (𝑦2 − 1)(𝑦2 + 7) = 0 ⟹ 𝑦2 − 1 = 0  

∵ 𝑦2 + 7 ≠ 0  

⟹ 𝑦 = ±1 ⟹ 7− 𝑥 = ±1 ⟹ 𝑥 = 6, 8  

 

11) All solutions of equations 𝒙𝟐 + 𝒚𝟐 − 𝟖𝒙 −

𝟖𝒚 = 𝟐𝟎 𝒂𝒏𝒅 𝒙𝒚 + 𝟒𝒙 + 𝟒𝒚 = 𝟒𝟎 satisfy 

the following equations (s). 

(a) 𝒙 + 𝒚 = 𝟏𝟎;  (b) |𝒙 + 𝒚| = 𝟎;   (c) 

|𝒙 − 𝒚| =  𝟏𝟎;   (d) none 

Sol.: Given, 𝑥2 + 𝑦2 − 8𝑥 − 8𝑦 =

20……… . . (1) 

𝑥𝑦 + 4𝑥 + 4𝑦 = 40… . . (2)  

(1) + 2. (2) ⟹ (𝑥 + 𝑦)2 = 100 ⟹ 𝑥 +

𝑦 =  ±10      ∴ (𝑥 + 𝑦) = 10.  

 

12) If 𝟓{𝒙} = 𝒙 + [𝒙] − {𝒙} =
𝟏

𝟐
, 𝒘𝒉𝒆𝒓𝒆 {𝒙}𝒂𝒏𝒅 [𝒙] are fractional and 

integral part of x then the number of 

solutions f the equation is 

(a) 1 ;   (b) 2;  (c) 3;  (d) none 

Sol.: 5{𝑥} = 𝑥 + [𝑥]……… . . (1) 

[𝑥] − {𝑥} =
1

2
……… . (2)  
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∴ 𝑥 = [𝑥] + {𝑥}……… . . (3) from (1) & (3) 

we get 

[𝑥] + 2{𝑥}……… . . (4). Solving (2) & (4) 

we get [x] = 1, {x} 
1

2
     ∴ 𝑓𝑟𝑜𝑚 (3) 𝑥 =

3

2
. 

 

13) Let  F(x) be a function defined by 𝑭(𝒙) =

𝒙 − [𝒙], 𝑹 where [x] is the greatest integer 

less than or equal to x. Then the number of 

solutions of F(𝒙) + 𝑭(
𝟏

𝒙
) =  𝟏 is 

(a) 0;   (b) 1;   (c) 2;   (d) none 

Sol.: 𝐹(𝑥) = 𝑥 − [𝑥]  0 ≠ 𝑥 ∊ 𝑅  ∴ 𝑝(𝑥) +

𝐹
(
1

𝑥
)
= 1 

⟹ 𝑥 − [𝑥] +
1

𝑥
− [
1

𝑥
] =  1 

⟹ (
𝑥 + 1

𝑥
) − ([𝑥] + [

1

𝑥
]) =  1…… . . (1) 

⟹ 𝑥 +
1

𝑥
= [𝑥] + [

1

𝑥
] ≠ 1 

∴ R H S is an integer. Hence LHS is also 

integer  

𝐿𝑒𝑡 [𝑥] + [
1

𝑥
] + 1 = 𝐴 (Integer) 

The equation (1) becomes 𝑥 +
1

𝑥
= 𝐴 

⟹ 𝑥2 − 𝐴𝑥 + 1 = 0 ∴ 𝑥 =  
𝐴 ± √𝐴2 − 4

2
 

𝐹𝑜𝑟 𝑟𝑒𝑎𝑙 𝑥, 𝐴2 − 4 ≥ 0   

∴ 𝐴 ≥ 2 & 𝐴 ≤ −2, 𝐴 = 2 & 𝐴 =  −2 does 

not satisfy of (1) 

∴ 𝐴 > 2 & 𝐴 < −2 & 𝐴 ∊ 𝐼.  

Then equation (1) has infinite many 

solutions. 

 

14) Number of solutions of 𝟑|𝒙| = |𝟐 − |𝒙|| is 

(a) 0;    (b) 2;  (c) 4;   (d) none 

Sol.: Given equation is (
1

3
)
𝑥
= −2 − 𝑥, 

−∞ < 𝑥 ≤ −2 + 𝑥,−2 ≤ 𝑥 ≤ 0  

3𝑥 = 2 − 𝑥, 0 ≤ 𝑥 ≤ 2 = 𝑥 − 2,  

2 ≤ 𝑥 < ∞ 𝑎𝑡 𝑥 = 2,  3𝑥 − 𝑥 + 2 = 9  

(as 3𝑥 − 𝑥 + 2 is an increasing function for 

x>2) 

 

For 𝑥 =  −2, (
1

3
)
𝑥
+ 2 + 𝑥 = 9  𝑓𝑜𝑟 𝑥 <

−2, (
1

3
)
𝑥
+ 2 + 𝑥 = 9 (𝑎𝑠 (

1

3
)
𝑥
+ 2 +

𝑥 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔) 

Hence given equation has only two solution –

2 and 2. 

 

15) The system of equation |𝒙 − 𝟏| + 𝟑𝒚 =

𝟒, 𝒙 − |𝒚 − 𝟏| = 𝟐  has 

(a) 1;    (b) 2;    (c) 3;    (d) none  

Sol.: The given equations are |𝑥 − 1| + 3𝑦 = 4 



 Challenging Mathematical Problems  

245 
 

⟹ {
𝑥 + 3𝑦 = 5   𝑥 ≥ 1 … . . (1)

−𝑥 + 3𝑦 = 3, 𝑥 < 1………(2)
 𝑎𝑛𝑑 𝑥

− |𝑦 − 1| = 2 

⟹ {
𝑥 − 𝑦 = 1 𝑦 ≥ 1………… . (3)

𝑥 + 𝑦 = 3, 𝑥 < 1…… . (4)
 

Solving (1) & (3) we get x = 2, y = 1 

Solving (1) & (4) we get x = 2, y = 1 no 

solution 

(∵ 𝑥 ≥ 1, 𝑦 < 1)  

Solving (2) & (3) we get x = 3, y = 2 no 

solving 

(∵ 𝑥 ≥ 1, 𝑦 ≥ 1)  

Solving (2) & (4) we get 𝑥 =
5

2
, 𝑦 =

3

2
 

No solving (∵x<1, y<1) 

Here solution is x = 2, y = 1 (a unique 

solution) 

 

16) The number of integral roots of the 

equation 

√(𝒙 + 𝟑) − 𝟒√𝒙 − 𝟏 +

√(𝒙 + 𝟖) − 𝟔√𝒙 − 𝟏 = 𝟏 is 

(a) 1;  (b) 2;  (c) 3;  (d) none 

Sol.: Taking √𝑥 − 1 = 𝑡(𝑡 ≥ 0) the equation 

reduces to √𝑡2 + 4 − 4𝑡 + √𝑡2 − 6𝑡 + 9 = 1 

⟹ |𝑡 − 2| + |𝑡 − 3| = 1  

It is necessary for t to satisfy 2 ≤ 𝑡 ≤ 3. 

∴ 2 ≤ −√𝑥 − 1 ≤ 3 ⟹ 4 ≤ (𝑥 − 1) ≤ 9 ⟹

5 ≤ 𝑥 ≤ 10  

 

17) If 𝛼, 𝛽, 𝛾 be the roots of 𝒇(𝒙) =

𝟎.𝒘𝒉𝒆𝒓𝒆 𝒇(𝒙) = 𝒙
𝟑 + 𝒙𝟐 − 𝟓𝒙 − 𝟏 =

𝟎, 𝒕𝒉𝒆𝒏 [𝜶] + [𝜷] + [𝜸], where |.| denotes, 

the greatest integer is equal to 

(a) 1;  (b) –2;    (c) –c ;   (d) none 

Sol.: Let 𝑓(𝑥) = 𝑥
3 + 𝑥2 − 5𝑥 − 1 

∴𝑓′(𝑥) = 3𝑥
2 + 2𝑥 − 5 

Now the sign scheme for 3𝑥2 + 2𝑥 − 5 is 

Also 𝑓(∞) = −∞ < 0; 𝑓∞ =  ∞ > 0; 𝑓(1) =

 −4 

𝑓 (−
5

3
) =

148

27
 

∴ 𝑓(−3) =  −27 + 9 + 15 − 1  

= −4 < 0 ∴ 𝑓(−2) = −8 + 4 + 10 − 1 >

0;  

𝑓(−1) = 4 > 0, 𝑓(0) = −1 < 0; 𝑓(2) = −1 > 0  

∴ −3 < 𝛼 < −2; −1 < 𝛽 < 0; 1 < 𝛾 < 2  

∴ [𝛼] + [𝛽] + [𝛾] =  −3 − 1 + 1 = −3.  

18) If S be the solution of the equation (𝒙)𝟐 +

[𝒙]𝟐 = (𝒙 − 𝟏)𝟐[𝒙 + 𝟏], where (x) = least 

integer, [x] = greatest integer, R= real 

numbers, Z = integer, N = natural 

numbers, then 

(a) 𝑺 = 𝑹;  (b) 𝑺 = 𝑹 = −𝒁;   (c) 𝑺 = 𝑹 =

 −𝑵;   (d) none 

Sol.: Here (x)= least integer ≥ 𝑥 𝑎𝑛𝑑 [𝑥] =

 greatest integer ≤ 𝑥, so (𝑥) − [𝑥] = 1, if x is 

not integer and [x] = (x) if x ∊z. 

Now, (𝑥 − 1) = (𝑥) − 1, [𝑥 + 1] = [𝑥] + 1, 𝑠𝑜,  

(𝑥)2 + [𝑥]2 = (𝑥 − 1)2 (𝑥 + 1)2,  

⟹ (𝑥)2 + [𝑥]2 = (𝑥)2 − 2(𝑥) + 1 + [𝑥]2 +

2[𝑥] + 1  
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⟹ [𝑥] − (𝑥) + 1 = 0,⟹ −1 + 1 = 0 𝑖𝑓 𝑥 

∉ 𝑧, 𝑎𝑛𝑑 0 + 1 ≠ 0 𝑖𝑓 𝑥 ∊ 𝑧, 

Hence the solution set S= R –Z. 

 

19) The number of triplets (x, y, z) satisfying 

the equation 𝒙𝟒 + 𝒚𝟒 + 𝒛𝟒 − 𝟐𝒙𝟐𝒚𝟐 −

𝟐𝒚𝟐𝒛𝟐 − 𝟐𝒛𝟐𝒙𝟐 = 𝟐𝟒 is (where x, y, z are 

integer) 

(a) 0;   (b) 1;   (c) 2;   (d) none 

Sol.: Since 24 is even number 𝑥4 + 𝑦4 + 𝑧4 

has to be even 

Two cases arise: 

(i) All of x, y and z are even which is 

not possible since in that case 16 

divides each term of (and hence 

the whole of) the left hand side 

while 16 does not divide 24. 

(ii) Two of x, y and z are odd and one 

of them is even say, x is even. 

We have that: 𝑥4 + 𝑦4 + 𝑧4 − 2𝑥2𝑦2 −

2𝑦2𝑧2 − 2𝑧2𝑥2  = 𝑥4 − 2𝑥2(𝑦2 + 𝑧2) +

(𝑧2 − 𝑦2)2 

                      =  𝑥4 − 2𝑥2(𝑦2 + 𝑧2) +

(𝑧 − 𝑦)2(𝑧 + 𝑦)2  

Here again 16 divides each term since y and z 

are odd. 

Thus in either case the equation has no 

solutions in integers. 

 

(SUBJECTIVE TYPE) 

1) Solve 𝒛 + 𝒂𝒚 + 𝒂𝟐𝒙 + 𝒂𝟑 = 𝟎; 𝒛 + 𝒃𝒚 +

𝒃𝟐𝒙 + 𝒃𝟑 = 𝟎; 𝒛 + 𝒄𝒚 + 𝒄𝟐𝒙 + 𝒄𝟑 = 𝟎. 

Sol.: The given equation show that the 

polynomial 𝛼3 + 𝑥𝛼3 + 𝑦𝛼 + 𝑧 vanishes at 

three different values of 𝛼 namely at 𝛼= a, 𝛼= 

b and at 𝛼 = c (assuming that a, b, c are not 

equal to one another) 

Set up different 𝛼3 + 𝑥𝛼2 + 𝑦𝛼 + 𝑧 −

(𝛼 − 𝑎)(𝛼 − 𝑏)(𝛼 − 𝑐) 

This differences also becomes zero at 𝛼 equal 

to a, b, c. Expanding this expression in powers 

of 𝛼, we get (𝑥 + 𝑎 + 𝑏 + 𝑐)𝛼2 + (𝑦 − 𝑎𝑏 −

𝑎𝑐 − 𝑏𝑐)𝛼 + 𝑧 + 𝑎𝑏𝑐  this second degree 

thrinomial vanishes at three different values 

at 𝛼 and therefore it equals zero identically 

and consequently, all its coefficients are equal 

to zero. i.e. x +a +b +c = 0; 𝑦 = 𝑎𝑏 − 𝑎𝑐 −

𝑏𝑐 = 0; 𝑧 + 𝑎𝑏𝑐 = 0 

𝐻𝑒𝑛𝑐𝑒, 𝑥 =  −(𝑎 + 𝑏 + 𝑐), 𝑦 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐,   

𝑧 =  −𝑎𝑏𝑐 is solution of our system. 

 

2) Solve: 𝒙𝟏 + 𝒙𝟐 = 𝒂𝟏;  𝒙𝟐 + 𝒙𝟑 = 𝒂𝟐;  𝒙𝟑 +

𝒙𝟒 = 𝒂𝟑; … . 𝒙𝒏−𝟏 + 𝒙𝒏 = 𝒂𝒏−𝟏  𝒙𝒏 +

𝒙𝟏 = 𝒂𝒏 

Sol.: we have 𝑥2 = 𝑎1 − 𝑥1, 𝑥3 = 𝑎2 − 𝑥2 =

 𝑎2 − 𝑎1 + 𝑥1  𝑥4 = 𝑎3 − 𝑥3 = 𝑎3 − 𝑎2 +

𝑎1 = 𝑥1… .. 

𝑥𝑛 = 𝑎𝑛−1 − 𝑎𝑛−2 +⋯± 𝑎2 ± 𝑎1 ± 𝑥1  

It should be noted that in the last quality the 

upper signs will occur when n is odd and let 

the lower signs when n is even. 

Consider the two cases separately. 

1. Let n be odd, then 𝑥𝑛 = 𝑎𝑛−1 − 𝑎𝑛−2 +

⋯+ 𝑎2 − 𝑎1 + 𝑥1 on other hand 𝑥𝑛 +

𝑥1 = 𝑎𝑛 from these two equalities we get 

𝑥1 =
𝑎𝑛−𝑎𝑛+1+𝑎𝑛−2….−𝑎2+𝑎1

2
 

𝑥2 =
𝑎1 − 𝑎𝑛 + 𝑎𝑛−1… .−𝑎3 + 𝑎2

2
 

𝑥3 =
𝑎2 − 𝑎1 + 𝑎𝑛… .−𝑎4 + 𝑎3

2
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2. Let now n be even, then 𝑥𝑛 = 𝑎𝑛−1 −

𝑎𝑛−2 +⋯− 𝑎2 + 𝑎1 − 𝑥1 on the other 

hand 𝑥𝑛 = 𝑎𝑛 − 𝑥1 consequently for the 

given system of equations to be 

compatible the following equality must be 

satisfied. 

𝑎𝑛−1 − 𝑎𝑛−2 +⋯− 𝑎2 + 𝑎1 = 𝑎𝑛  

𝑖. 𝑒. 𝑎𝑛 + 𝑎𝑛−2 +⋯+ 𝑎2 = 𝑎𝑛−1 +

𝑎𝑛−3 +⋯+ 𝑎1  

(The sum of coefficients with even 

subscript must equal the sum of 

coefficients with odd subscript) It is 

apparent that in this case the system 

will be indeterminate. i.e. will allow 

an infinite number of solutions 

namely. 

𝑥1 =  𝜆; 𝑥2 = 𝑎1 − 𝜆; 𝑥3 = 𝑎2 − 𝑎1 +

𝜆; 𝑥4 = 𝑎3 − 𝑎2 + 𝑎1 − 𝜆; 𝑥𝑛 =

 𝑎𝑛−1 − 𝑎𝑛−2 +⋯+ 𝑎3 − 𝑎2 + 𝑎1 − 𝜆  

Where 𝜆 is an arbitrary quantity 

 

3) Solve: 𝒙 𝐬𝐢𝐧𝒂 + 𝒚𝐬𝐢𝐧𝟐𝒂 + 𝒛 𝐬𝐢𝐧𝟑𝒂 =

𝐬𝐢𝐧𝟒𝒂   𝒙 𝐬𝐢𝐧𝒃 + 𝒚 𝐬𝐢𝐧𝟐𝒃 + 𝒛𝐬𝐢𝐧𝟑𝒃 =

𝐬𝐢𝐧𝟒𝒃 , 𝒙 𝐬𝐢𝐧 𝒄 + 𝒚𝐬𝐢𝐧𝟐𝒄 + 𝒛 𝐬𝐢𝐧𝟑𝒄 =

𝐬𝐢𝐧𝟒𝒄 

Sol.: We have sin2𝑎 = 2 sin𝑎 cos𝑎 , sin3𝑎 =

sin𝑎 (4 𝑐𝑜𝑠2𝑎 − 1) sin 4𝑎 =

4 sin𝑎 (2 𝑐𝑜𝑠3𝑎 − cos 𝑎). 

The first equation of our system is rewritten 

in following way. 𝑥 + 2𝑦 cos 𝑎 + 𝑧(4𝑐𝑜𝑠2𝑎 −

1) = 4 

(2 𝑐𝑜𝑠3𝑎 − cos𝑎) The remaining two are 

similar. Expand this equation in powers of 

cos 𝑎 , 𝑤𝑒 ℎ𝑎𝑣𝑒 

8 𝑐𝑜𝑠3𝑎 − 4𝑧 𝑐𝑜𝑠2𝑎 − (2𝑦 + 4) cos 𝑎 +

𝑧 − 𝑥 = 0  

Putting cos 𝑎 = 𝑡 and dividing both 

members by 8, we get  𝑡3 −
𝑧

2
𝑡2 −

𝑦+2

4
𝑡 +

𝑧−𝑥

8
= 0 

Our system of equations is equivalent to 

the statement that the equation has three 

roots: 

𝑡 = cos 𝑎 ; 𝑡 = cos 𝑏 ; 𝑎𝑛𝑑 𝑡 =

cos 𝑐 , 𝑤ℎ𝑖𝑐ℎ 𝑓𝑜𝑙𝑙𝑜𝑤𝑠:  

𝑧

2
= cos 𝑎 + cos𝑏 + cos 𝑐 

𝑦 + 2

4
=  −(cos𝑎 cos 𝑏 + cos 𝑎 cos 𝑐

+ cos 𝑏 cos 𝑐) 

𝑥 − 𝑧

4
= cos 𝑎 cos 𝑏 cos 𝑐 

∴The solution of our system will be 

𝑥 = 2(cos 𝑎 + cos 𝑏 + cos 𝑐) +

8(cos 𝑎 + cos 𝑏 + cos 𝑐)  

𝑦 =  −2 − 4 (cos 𝑎 cos 𝑏 + cos𝑎 cos 𝑐 +

cos 𝑏 cos 𝑐)  

𝑧 = 2(cos 𝑎 + cos 𝑏 + cos 𝑐)  

 

4) Solve : x+ y+ z= 14 ;  𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 =

𝟗𝟏 ; 𝒚𝟐 = 𝒛𝒙 

Sol.: We have 𝑥 + 𝑦 + 𝑧 = 14…… . . (1) 

𝑥2 + 𝑦2 + 𝑧2 = 91…… . . (2)  

𝑦2 = 𝑧𝑥…… . (3)  

Squaring the 1st we get 𝑥2 + 𝑦2 + 𝑧2 + 2𝑥𝑦 +

2𝑦𝑧 + 2𝑧𝑥 = 196  Putting the values of 𝑥2 +

𝑦2 + 𝑧2 from (2) 

And of 𝑧𝑥 from (3), we get 91 + 2𝑥𝑦 + 2𝑦𝑧 +

2𝑦2 = 196.2𝑥𝑦 + 2𝑦𝑧 + 2𝑦2 = 105, 2𝑥(𝑥 +

𝑦 + 𝑧) = 105 

2𝑦(14) = 105 𝑜𝑟 𝑣 =
105

28
=
15

4
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𝐻𝑒𝑛𝑐𝑒, 𝑥 + 𝑧 = 14 −
15

4
 𝑓𝑟𝑜𝑚 (1)𝑜𝑟 𝑥

+ 𝑧 =
41

4
 

𝐴𝑙𝑠𝑜, 𝑧𝑥 =  (
15

4
)
2

𝑜𝑟 𝑧𝑥 =
225

116
 𝑓𝑟𝑜𝑚 (2) 

Hence, x and z are the roots of the 

equation 

𝑡2 − (𝑥 + 𝑧)𝑡 + (𝑥𝑧)

= 0 𝑜𝑟 𝑡2 −
41

4
𝑡 +

225

16
= 0 

𝑜𝑟 16𝑡2 − 164𝑡 + 225 = 0 

⟹ 𝑡 =
164 ± √(164)2 − 4 × 16 × 225

32
 

⟹ 𝑡 =
41 ± √412 − 900

8
 

=
41 ± √(41 + 30)(41 − 30)

8

=
41 ± √71 × 11

8
0

=
41 ± √781

8
 

𝐻𝑒𝑛𝑐𝑒, 𝑥 =
41 ± √781

8
, 𝑦 =  ±

15

4
, 𝑧

=
41 ± √781

8
 

5) Solve: x+ y +z = 𝒂𝒃; 𝒙−𝟏 + 𝒚−𝟏 + 𝒛−𝟏 =

 𝒂−𝟏𝒃;𝒙𝒚𝒛 =  𝒂𝟑 

Sol.: 𝑥 + 𝑦 + 𝑧 = 𝑎𝑏,
1

𝑥
+
1

𝑦
+
1

𝑧
=
𝑏

𝑎
, 𝑥𝑦𝑧 =  𝑎3 

By (2) and (3), we have 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 =  𝑎2𝑏 

Now by (1), (3) and (4), it is clear that x, y, z 

are roots of 𝑡3 − 𝑎𝑏𝑡2 + 𝑎2𝑏𝑡 − 𝑎3 = 0 we 

see that the above equations vanishes for t = 

a, i.e. (𝑡 − 𝑎) is a factor of (5). 

So by remainder theorem (5) is 

𝑡2(𝑡 − 𝑎) + 𝑎𝑡(𝑡 − 𝑎) + 𝑎2(𝑡 − 𝑎) −

𝑎𝑏𝑡(𝑡 − 𝑎) = 0  

𝑜𝑟 (𝑡 − 𝑎)(𝑡2 − 𝑎𝑡 + 𝑎2 − 𝑎𝑏𝑡) =

0 𝑜𝑟 (𝑡 − 𝑎)  

{𝑡2 + 𝑡(𝑎 − 𝑎𝑏) + 𝑎2} =  0 𝑖. 𝑒. , 𝑒𝑖𝑡ℎ𝑒𝑟 𝑡 =

𝑎.  

𝑜𝑟,

𝑡 =
−(𝑎 − 𝑎𝑏) ± √[(𝑎 − 𝑎𝑏)2 − 4𝑎2]

2
 

𝑖. 𝑒. , 𝑥, 𝑦, 𝑧 𝑎𝑟𝑒  𝑎,
1

2
𝑎 [𝑏 − 1

+ √𝑏2 − 2𝑏 − 3] 

1

2
𝑎 [𝑏 − 1 − √𝑏2 − 2𝑏 − 3] 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

6) Examine x, y, z from the equations 

(𝒙 + 𝒚 − 𝒛)(𝒙 − 𝒚 + 𝒛) = 𝒂𝒚𝒛; (𝒚 + 𝒛 −

𝒙)(𝒚 − 𝒛 + 𝒙) = 𝒃𝒛𝒙; (𝒛 + 𝒙 − 𝒚)(𝒛 − 𝒙 +

𝒚) = 𝒄𝒙𝒚 

Sol.: Given equation are (𝑥 + 𝑦 − 𝑧)(𝑥 − 𝑦 +

𝑧) = 𝑎𝑦𝑧………… . (1) 

(𝑦 + 𝑧 − 𝑥)(𝑦 − 𝑧 + 𝑥)

= 𝑏𝑧𝑥…………… . . (2) 

(𝑧 + 𝑥 − 𝑦)(𝑧 − 𝑥 + 𝑦) = 𝑐𝑥𝑦…………(3) 

Multiplying (1), (2), (3) we get 

(𝑥 + 𝑦 − 𝑧)2(𝑥 − 𝑦 + 𝑧)2(𝑦 + 𝑧 − 𝑥)2

= 𝑎𝑏𝑐𝑥2𝑦2𝑧2 

𝑜𝑟, (−𝑥3 − 𝑦3 − 𝑧3 + 𝑦2𝑧 + 𝑦𝑧2 + 𝑧2𝑥

+ 𝑧𝑥2 + 𝑥2𝑦 + 𝑥𝑦2 − 2𝑥𝑦𝑧)2

= 𝑎𝑏𝑐𝑥2𝑦2𝑧2……… . . (4) 

Or,  dividing both sides of equation (4) by 

𝑥2𝑦2𝑧2 
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𝑜𝑟, 𝑎𝑏𝑐 = (−
𝑥2

𝑦𝑧
−
𝑦2

𝑧𝑥
−
𝑧2

𝑥𝑦
+
𝑦

𝑥
+
𝑧

𝑥

+
𝑥

𝑦
+
𝑥

𝑧
+
𝑦

𝑧

− 2)…………… . (5) 

By equation (1) may be written as  

𝑎 =
𝑥2 − 𝑦2 − 𝑧2 + 2𝑦𝑧

𝑦𝑧
=
𝑥2

𝑦𝑧
−
𝑦

𝑧
−
𝑧

𝑦
+ 2 

𝑜𝑟 𝑎 − 2 =
𝑥2

𝑦𝑧
−
𝑦

𝑧
−
𝑧

𝑦
 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑏 − 2 =
𝑦2

𝑧𝑥
−
𝑧

𝑥
−
𝑥

𝑧
𝑎𝑛𝑑 𝑐 − 2

=
𝑧2

𝑥𝑦
−
𝑥

𝑦
−
𝑦

𝑥
 

Now from equation (5) 

𝑎𝑏𝑐 =  [(2 − 𝑎) + (2 − 𝑏) + (2 − 𝑐) − 2]2  

𝑎𝑏𝑐 =  (4 − 𝑎 − 𝑏 − 𝑐)2  

 

7) Eliminate x, y, z from the equations 𝒂𝒙𝟐 +

𝒃𝒚𝟐 + 𝒄𝒛𝟐 = 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 = 𝒚𝒛 + 𝒛𝒙 +

𝒙𝒚 = 𝟎 

Sol.: Given equation are 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 =

0……… . . (1) 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0……………(2)  

𝑦𝑧 + 𝑧𝑥 + 𝑥𝑦 = 0………… . . (3)  

Multiplying (2) by (x+ y+ z), we have 

(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧)(𝑥 + 𝑦 + 𝑧) = 0 𝑜𝑟, 𝑎𝑥2 +

𝑏𝑦2 + 𝑐𝑧2 + 𝑥𝑦  

(𝑎 + 𝑏)𝑦𝑧(𝑏 + 𝑐) + 𝑧𝑥(𝑐 + 𝑎) =  0  

𝐵𝑢𝑡 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 = 0  

∴ 𝑥𝑦(𝑎 + 𝑏) + 𝑦𝑧(𝑏 + 𝑐) + 𝑧𝑥(𝑐 + 𝑎) = 0   

𝐴𝑙𝑠𝑜 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 0  

𝐻𝑒𝑛𝑐𝑒
𝑥𝑦

𝑏 − 𝑎
=

𝑦𝑧

𝑐 − 𝑏
=

𝑧𝑥

𝑎 − 𝑐
=
1

𝑘
(𝑠𝑎𝑦) 

Dividing each ratio by xyz, 

1

𝑧(𝑏 − 𝑎)
=

1

𝑥(𝑐 − 𝑏)
=

1

𝑦(𝑎 − 𝑐)
=
1

𝑘
 

∴ 𝑥 =
𝑘

(𝑐 − 𝑏)
, 𝑦 =

𝑘

(𝑎 − 𝑐)
, 𝑧 =

𝑘

(𝑏 − 𝑎)
 

Substituting these values in (2) 

𝑎
𝑘

𝑐 − 𝑏
+ 𝑏

𝑘

𝑎 − 𝑐
+  𝑐

𝑘

𝑏 − 𝑎
= 0 

𝑎(𝑏 − 𝑎)(𝑎 − 𝑐) + 𝑏(𝑐 − 𝑏)(𝑏 − 𝑎) +

𝑐(𝑐 − 𝑏)(𝑎 − 𝑐) = 0  

𝑜𝑟 𝑎3 + 𝑏3 + 𝑐3 − (𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 +

𝑎) + 5𝑎𝑏𝑐 = 0  

𝑜𝑟 𝑎3 + 𝑏3 + 𝑐3 − 3(𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 +

𝑎) − 4(𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 + 𝑎) + 5𝑎𝑏𝑐 = 0  

𝑜𝑟 (𝑎 + 𝑏 + 𝑐)3 − 4(𝑎 + 𝑏)(𝑏 + 𝑐)(𝑐 +

𝑎) + 5𝑎𝑏𝑐 = 0  

 

8) Solve: (𝟏𝟐𝒙 − 𝟏)(𝟔𝒙 − 𝟏)(𝟒𝒙 − 𝟏)(𝟑𝒙 −

𝟏) = 𝟓 

Sol.: We can write the equation in the 

from 

 (𝑥 −
1

12
) (𝑥 −

1

6
) (𝑥 −

1

4
) (𝑥 −

1

3
) =

5

1.2.6.
…………(1) 

∴
1

12
<
1

6
<
1

4
<
1

3
𝑎𝑛𝑑

1

6
−

1

12
=
1

3
−
1

4
  

We can introduce a new variable 
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𝑦 =
1

4
[(𝑥 −

1

12
) + (𝑥 −

1

6
) + (𝑥 −

1

4
) +

(𝑥 −
1

3
)] =  𝑥 −

5

24
  

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑥 = 𝑦 +
5

24
 𝑖𝑛(1), we get 

(𝑦 +
3

24
) (𝑦 +

1

24
) (𝑦 −

1

24
) (𝑦 −

3

24
)

=
5

12.6.4.3
 

(𝑦2 − (
1

24
)
2

)(𝑦2 − (
3

24
)
2

) =
5

12.6.4.3
 

𝑆𝑜, 𝑦2 =
49

242
 𝑖. 𝑒. 𝑦1 =

7

24
 𝑎𝑛𝑑 𝑦2 = −

7

24
, 

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑟𝑜𝑜𝑡𝑠 𝑎𝑟𝑒 −
1

12
 𝑎𝑛𝑑

1

2
. 

Note: An equation of the from (𝑥 − 𝑎)(𝑥 −

𝑏)(𝑥 − 𝑐)(𝑥 − 𝑑) = 𝐴𝑥2 where 𝑎𝑏 = 𝑐𝑑 can 

be reduced to a collection of two quadratic 

equations by a change of variable 𝑦 = 𝑥 +
𝑎𝑏

𝑥
. 

 

9) Solve the equation 𝒙𝟑 − [𝒙] =

𝟑 𝒘𝒉𝒆𝒓𝒆  [𝒙]𝒅𝒆𝒏𝒐𝒕𝒆𝒔 the greatest 

integer. 

Sol.: ∵ 𝑥 = [𝑥] + 𝑓, 0 ≤ 𝑓 < 1. And given 

equation is 𝑥3 − [𝑥] = 3 ⟹ 𝑥3 − (𝑥 − 𝑓) =

 3 ⟹ 𝑥3 − 𝑥 =  3 − 𝑓, 

Hence it follows that 2 < 𝑥3 − 𝑥 ≤

3 𝑓𝑢𝑟𝑡ℎ𝑒𝑟 𝑓𝑜𝑟 𝑥 ≥ 2. 

We have 𝑥3 − 𝑥 = 𝑥(𝑥2 − 1) ≥ 2(4 − 1) =

6 > 3 

𝑓𝑜𝑟 𝑥 < −1 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑥3 − 𝑥 = 0 < 2;  

For −1 < 𝑥 ≤ 0 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑥3 − 𝑥 ≤  −𝑥 <

1 𝑎𝑛𝑑  

𝑓𝑜𝑟 0 < 𝑥 ≤ 1 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑥3 − 𝑥 < 𝑥 < 𝑥3 ≤ 1  

Therefore x, must be 1 < x < 2. 

10) Solve: 

√𝒙 + 𝟐√𝒙 + 𝟐√𝒙 +⋯+ 𝟐√𝒙 + 𝟐√𝟑𝒙 

= 𝒙 

Sol.: The given equation 

√𝑥 + 2√𝑥 + 2√𝑥 +⋯+ 2√𝑥 + 2√𝑥 + 2 =

𝑥… . . (1)  

On replacing the last letter x on the L H S of 

equation (1) by the value of x, expressed by 

(1)we obtain 

𝑥 = √𝑥 + 2√𝑥 + 2√𝑥 +⋯+ 2√𝑥 + 2𝑥  

(2𝑛 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 𝑠𝑖𝑔𝑛𝑠)  

Further, let us replace the last letter x by the 

same expression, again and again yields  

∴ 𝑥 = √𝑥 + 2√𝑥 + 2√𝑥 +⋯+ 2√𝑥 + 2𝑥   

(3𝑥 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 𝑠𝑖𝑔𝑛𝑠) 

√𝑥 + 2√𝑥 + 2√𝑥 +⋯+ 2√𝑥 + 2𝑥 = ⋯ 

𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒 = 𝑥

=  √𝑥 + 2√𝑥 + 2√𝑥 +⋯ 
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= lim
𝑁→∞

√𝑥 + 2√𝑥 + 2√𝑥 +⋯+ 2√𝑥 + 2𝑥  

(𝑁 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 𝑠𝑖𝑔𝑛𝑠) 

It follows that 

𝑥 = √𝑥 + 2√𝑥 + 2√𝑥 +⋯ =

 √𝑥 + 2(√𝑥 + 2√𝑥 +⋯) = √𝑥 + 2𝑥  

Hence 𝑥2 = 𝑥 + 2𝑥 ⟹ 𝑥2 − 3𝑥 = 0 

Therefore x = 0, 3. 

 

11) Solve: 𝟏 −
𝒙

𝟏!
+
𝒙(𝒙−𝟏)

𝟐!
−
𝒙(𝒙−𝟏)(𝒙−𝟐)

𝟑!
+⋯+

(−𝟏)𝒏.
𝒙(𝒙−𝟏)(𝒙−𝟐)−(𝒙−𝒙+𝟏)

𝒏!
= 𝟎 

Sol.: The given equation is  

1 −
𝑥

1!
+
𝑥(𝑥 − 1)

2!
−
𝑥(𝑥 − 1)(𝑥 − 2)

3!
+ ⋯

+ (−1)𝑛.
𝑥(𝑥 − 1)(𝑥 − 2) − (𝑥 − 𝑥 + 1)

𝑛!
= 0 

𝑃𝑢𝑡 𝑥 = 𝑛 ∊ 𝑁 ∴  1 −
𝑛

1!
+
𝑛(𝑛 − 1)

2!

−
𝑛(𝑛 − 1)(𝑛 − 2)

3!
+ ⋯

+ (−1)𝑛. 

∴𝑛𝐶0 ± 𝑛𝐶1 + 𝑛𝐶2 − 𝑛𝐶3 +⋯+ (−1)
𝑛𝑛𝐶𝑛 = 0 

𝑛(𝑛 − 1)(𝑛 − 2)

𝑛!
= 0 

∴  (1 − 1)𝑛 = 0 𝑜𝑟 0𝑛 = 0 it is true for all 

natural numbers  

Hence solution x ∊ N 

 

12) Find the number of roots in the equations 

𝐬𝐢𝐧 𝒙 = 𝐥𝐨𝐠𝒙 

Sol.:  sin 𝑥 = log 𝑥  𝑡ℎ𝑒𝑛 𝑥 ≤ 10 (because if 

otherwise the L H S ≤ 1 and RHS >1). Since 

2.2𝜋 > 10, the interval of the axis on the from 

x = 0 to x = 10 contains only one wave of the 

since curve 𝑦 = sin𝑥 and a part of the next 

wave (see the figure). The graph of the 

function y = log 𝑥 obviously intersects the 

first wave of the since curve at one point. 

Further, 2𝜋 +
𝜋

2
< 10, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑥 =

5𝜋

2
 

we have sin 𝑥 = 1 > log 𝑥 , 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 𝑦 =

log 𝑥 also intersects the first half of the 

second positive half wave of the since curve; 

further since at the point x = 10. We have 

log 𝑥 = 1 > sin 𝑥, the graph of 𝑦 = log 𝑥 must 

intersect the second half wave as well. We see 

that the total number of the roots of the 

equation sin 𝑥 = log 𝑥 is equal to three. 

 

13) Solve: 𝟒|𝒙
𝟐−𝟖𝒙+𝟏𝟐|−𝐥𝐨𝐠𝟒𝟕 = 𝟕𝟐𝒚−𝟏  

𝒂𝒏𝒅 |𝒚 − 𝟑| − 𝟑|𝒚| − 𝟐(𝒚 + 𝟏)𝟐 ≥ 𝟏 

Sol.: The equation of the system is equivalent 

to the equation 4|𝑥
2−8𝑥+12| = 72𝑦 

Its both sides are positive, and therefore it is 

equivalent to the equation |𝑥2 − 8𝑥 + 12| =

(2𝑦) log4 7 

𝑆𝑖𝑛𝑐𝑒 log4 7 > 0 𝑎𝑛𝑑 𝑥
2 − 8𝑥 + 12 = 0 for 

any x, it follows that y≥ 0. Therefore we 

should solve the inequality of given system 

only for two cases, 0 ≤ 𝑦 ≤ 3 𝑎𝑛𝑑 𝑦 <

3. 𝐹𝑜𝑟 0 ≤ 𝑦 ≤ 3 the equality of given system 

assumes the from 3 − 𝑦 − 3𝑦 − 2𝑦2 − 4𝑦 −

2 − 1 ≥ 0 𝑖. 𝑒. 𝑦2 + 4𝑦 ≥

0,𝑤ℎ𝑒𝑛𝑐𝑒 𝑤𝑒 𝑓𝑖𝑛𝑑 − 4 ≤ 𝑦 ≤ 0. 

𝑁𝑜𝑡ℎ𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 0 ≤ 𝑦 ≤ 3, we find that y = 0 

for y > 3 the inequality of the given system 
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assumes the from 𝑦 − 3 − 3𝑦 − 2𝑦2 − 4𝑦 −

2 − 1 ≥ 0 𝑖. 𝑒. −2𝑦2 − 6𝑦 − 6 > = 0. 

This inequality has no solutions. Substituting 

the value y = 0 into the equation of given 

system, we obtain  

⟹ {
𝑦 = 0

𝑥2 − 8𝑥 + 12 = 0
        

⟹ {
𝑦 = 0

 (𝑥 − 2)(𝑥 − 6) = 0
 

⟹ [{
𝑥 = 2,
𝑦 = 0,

  {
𝑥 = 6
𝑦 = 0

 

Thus two pairs of numbers (2, 0) and (6, 0) 

are the solutions of given system. 

 

14) Find a, where the equation 𝒂𝟑 +

𝒂𝟐|𝒂 + 𝒙| + |𝒂𝟐𝒙 + 𝟏| = 𝟏 has no less 

than four different integers solutions. 

Sol.: Given equation is 𝑎3 + 𝑎2|𝑎 + 𝑥| +

|𝑎2𝑥 + 1| = 1……… . . (1) 

We can write equation (1) as  |𝑎2𝑥 + 1| +

|𝑎3 + 𝑎2𝑥| = (𝑎2𝑥 + 1) − (𝑎3 + 𝑎2𝑥)  

It follows from the properties of modulus that 

the inequality |𝐴| + |𝐵| = 𝐴 − 𝐵 holds true if 

𝐴 ≥ 0 𝑎𝑛𝑑 𝐵 ≤ 0, equation (1) is equivalent 

to the system 

{
𝑎2𝑥 + 1 ≥ 0
𝑎3 + 𝑎2𝑥 ≤ 0 

………………… . (2) 

The values a = 0 satisfies the hypothesis since 

in this case system (2) and consequently 

equation (1) have all x ∊ R as their solutions. 

Let a ≠ 0. Then system (2) is equivalent to 

{𝑥 ≥ −𝑎
−2

𝑥 ≤  −𝑎
……… . (3) 

Thus we have to find all values of a for which 

system (3) has no less than four different 

integer solutions. 

Let us compare the numbers – 𝑎 𝑎𝑛𝑑 −
1

𝑎2
, we 

find their difference, −
1

𝑎2
− (−𝑎) =  − −

1

𝑎2
+

𝑎 =
𝑎3−1

𝑎2
  

=
(𝑎−1)𝑎2+𝑎+1

𝑎2
 𝑠𝑖𝑛𝑐𝑒 𝑎2 + 𝑎 + 1 > 0 for any a, 

it follows that 𝑎2 + 𝑎 + 1 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑓𝑒𝑐𝑡  

𝑡ℎ𝑒 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠  

𝑏𝑒𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑. In accordance with the 

method of intervals, we have −𝑎−2 <

−𝑎 𝑖𝑓 𝑎 < 1, 𝑎 ≠ 0,−𝑎−2 = −𝑎 =  −1 𝑖𝑓 𝑎 =

1,−𝑎−2 < −𝑎 𝑖𝑓 𝑎 > 1. Consequently; (a) if a 

> 1, then system (3) has no solutions. (b) If a 

= 1 then (3) ⟹ x = -1, there is a unique 

solution and the condition of the problem are 

not satisfied, (c) if 0 < 𝑎 < 1, then −1 <

−𝑎 <

0, 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[−𝑎−2, −𝑎] 

contains no less than four integers provided 

that the inequality −𝑎−2 ≤ −4 holds true. 

Let us solve the system {
0 < 𝑎 < 1

−
1

𝑎2
≤ −4   ⟹

{
0 < 𝑎 < 1
1 − 4𝑎2 ≥ 0

  

⟹ {
0 < 𝑎 < 1

(
1

2
− 𝑎) (

1

2
+ 𝑎) ≥ 0

 ⟹ {
0 < 𝑎 < 1

𝑎 ≤
1

2

⟹ {0 < 𝑎 ≤
1

2
 

Thus if 0 < 𝑎 ≤
1

2
, then the given equation has 

no less than four different integer 

solutions.(d) if −1 < 𝑎 < 0, 𝑡ℎ𝑒𝑛 0 < −𝑎 < 1 

and the interval. 

[−𝑎−2, −𝑎] contains at least four integers. 

Provided that the inequality – 𝑎−2 ≤ −3 holds 
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true Let us solve the system  {
−1 < 𝑎 < 0
−𝑎−2 ≤ −3

=

{
−1 < 𝑎 < 0
−1 ≤ −3𝑎2

  ⟹ {
−1 < 𝑎 < 0
3𝑎2 − 1 ≤ 0

  

⟹ {

−1 < 𝑎 < 0

(𝑎 −
1

√3
) (𝑎 +

1

√3
) ≤ 0  

⟹ {

−1 < 𝑎 < 0

−
1

√3
≤ 𝑎 ≤

1

√3

 

⟹
√3

3
< 𝑎 < 0 

𝑖𝑓 
−√3

3
≤ 𝑎 < 0, then the equation has no less 

than four integer solutions. (e) if a = -1, then 

the interval [-1, 1] contains only three 

integers i.e. conditions of the problem are not 

satisfied. (f) if a <-1, then −1 < −𝑎−2 < 0, 

and for the interval [−𝑎−2, −𝑎] to contain no 

less then four, it is necessary that the 

inequality −𝑎 ≥ 3 hold true, i.e. the inequality 

𝑎 ≤ −3 be valid. Thus, for 𝑎 ≤ −3, the given 

equation has no less than four integer 

solutions. 

Combining all the results, we get the set of 

required values of the number a namely the 

interval (−∞,−3)𝑎𝑛𝑑 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [−
√3

2
,
1

2
]. 

 

15) Solve: 𝐥𝐨𝐠(𝟐−𝒙)(𝟐 − 𝒚) > 0  

𝑎𝑛𝑑 𝐥𝐨𝐠(𝟒−𝒚)(𝟐𝒙 − 𝟐) > 0 

Sol.: If the numbers x and y satisfy this 

systems them they also satisfy the conditions. 

2 − 𝑥 > 0.2 − 𝑥 ≠ 1, 2𝑥 − 2 > 0.4 − 𝑦 >

0, 4 − 𝑦 ≠ 1.2 − 𝑦 > 0. i.e. the system of 

inequality 1 < 𝑥 < 2, 𝑦 < 2. On this domain 

for the bases of the logarithms of the initial 

system we have 0 < 2 − 𝑥 < 1, 4 − 𝑦 > 2. 

Thus the original system is equivalent to the 

system  

{

1 < 𝑥 < 2
𝑦 < 2

0 < 2 − 𝑦 < 1
2𝑥 − 2 > 1

 ⟹ {
3

2
< 𝑥 < 2

1 < 𝑦 < 2
   

Consequently, the set of all solutions of 

the original system is the set of pairs (x, 

y) where x belongs to the interval (
3

2
, 2) 

and y belongs to the interval (1, 2). 

 

16) Find out whether the system of equations 

𝒙 + 𝒚 = 𝟎 𝒙𝟐 + 𝒚𝟐 = 𝟎 𝒂𝒏𝒅𝐬𝐢𝐧(𝒙 + 𝒚) =

𝟎, 𝒙𝟐 + 𝒚𝟐 = 𝒃 are equivalent for (i) b = 2 

and (ii) b = 5. 

Sol.: It is clear that both for b = 2 and for b = 

5 the second system is a consequence of the 

first. Since the equation sin(𝑥 + 𝑦) = 0 is a 

consequence of the equation 𝑥 + 𝑦 = 0 

The first system has solutions 

(1, −1), (−1, 1)𝑤ℎ𝑒𝑛 𝑏 =

2 𝑎𝑛𝑑 [√
5

2
 , −√

5

2
] , [√

5

2
, √

5

2
]  𝑤ℎ𝑒𝑛 𝑏 = 5 

Let us find the set of solutions of the second 

system. 

From its first equation we have 𝑥 + 𝑦 =

𝑛𝜋(𝑛 ∊ 𝐼)𝑎𝑛𝑑,  consequently, it is equivalent 

to the collection of system 

{
𝑥 + 𝑦 = 𝑛𝜋

𝑥2 + 𝑦2 = 𝑏, 𝑛 ∊ 𝐼
…………(1) 

Consequently, the collection of system (1) is 

equivalent to the collection of systems 

{

𝑥 + 𝑦 = 𝑛𝜋

𝑥𝑦 =
1

2
𝑛2𝜋2 −

1

2𝑏
, 𝑛 ∊ 𝐼

……………(2) 

To find the set of solutions of (2), x and y are 

the roots of the quadratic equation. 
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𝑡2 + 𝑛𝜋𝑡 +
1

2
(𝑛2𝜋2 − 𝑏) =  0, 𝑛 ∊ 𝐼. 

Discriminant 𝐷 ≥ 0 𝑖. 𝑒. , 𝑛2𝜋2 −

2(𝑛2𝜋2 − 𝑏) ≥ 0 i.e. when 𝑥2 ≤
2𝑏

𝜋2
. 

It follows that for b = 2 the collection of 

system (2) has a solutions only for n = 0 and 

for b = 5 it has a solution for n = -1, n = 0, n 

= 1. Thus, for b = 2 these systems are 

equivalent. 

Comparing the sets of solutions for b = 5, we 

find that the initial system are not equivalent. 

17) Solve the equation (𝟏𝟒𝟒)|𝒙| − 𝟐(𝟏𝟐)|𝒙| +

𝒂 = 𝟎 for every value of the parameter a. 

Sol.: The given equation can be written as  

(12)2|𝑥| − 2(12)|𝑥| + 𝑎 = 0. Let us write 𝑦 =

 (12)2|𝑥|. 

Then the above equations becomes 𝑦2 − 2𝑦 +

𝑎 = 0 

⟹ 𝑦 =
2 ± √4 − 4𝑎

2
⟹ 𝑦

= 1 ± √1 − 𝑎…… . (1) 

The equation (1) is valid if 1 − 𝑎 > 0 𝑖. 𝑒. 𝑎 <

1.  

No solution is possible if 𝑎 > 1. 𝐼𝑓 𝑎 =

1, 𝑡ℎ𝑒𝑛 𝑦 = 1. 

⟹ 12|𝑥| = 1 ⟹ |𝑥| =  0 ⟹ 𝑥 = 0  

𝑙𝑒𝑡 𝑢𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑤ℎ𝑒𝑛 𝑎 <

1. 𝐹𝑟𝑜𝑚 (1)𝑤𝑒 ℎ𝑎𝑣𝑒 12|𝑥| = 1 +

√1 − 𝑎……(2)𝑎𝑛𝑑 12|𝑥| = 1 −

√1 − 𝑎……… . (3)  

But the equation (3) is unacceptable, since 

12|𝑥| > 1. 

Hence, we have 12|𝑥| = 1 + √1 − 𝑎 

⟹ |𝑥| =  log12(1 + √1 − 𝑎) ⟹ 𝑥 =

 ± log12(1 + √1 − 𝑎)  

Whenever a < 1. 

18) Solve: 𝒙𝟐 𝟐𝒙+𝟏 + 𝟐|𝒙−𝟑|+𝟐 = 𝒙𝟐. 𝟐|𝒙−𝟑|+𝟒 +

𝟐𝒙−𝟏 

Sol.: We consider two cases according as 𝑥 ≥

3 𝑜𝑟 𝑥 < 3. As we know, if 𝑥 ≥ 3, 𝑡ℎ𝑒𝑛 [𝑥 −

3] = 𝑥 − 3 

Case I :  𝐿𝑒𝑡 𝑥 ≥ 3. 𝑇ℎ𝑒𝑛 |𝑥 − 3| = (𝑥 − 3). 

Hence the given equations becomes  

𝑥2. 2𝑥+1 + 2𝑥−3+2 = 𝑥2. 2𝑥−3+4 + 2𝑥−1  

⟹ 𝑥2. 2𝑥+1 + 2𝑥−1 = 𝑥2. 2𝑥+1 + 2𝑥−1 which 

is satisfied for every x. 

Hence the given equations is satisfied for 

every 𝑥 ≥ 3 

Case II :  𝐿𝑒𝑡 𝑥 < 3, 𝑡ℎ𝑒𝑛 |𝑥 − 3| =  −(𝑥 − 3). 

Hence the given equations becomes, 

𝑥2. 2𝑥+1 + 2−(𝑥−3)+2 = 𝑥2. 2−(𝑥−3)+4 + 2𝑥−1  

⟹ 𝑥2. 2𝑥+1 + 25−𝑥 = 𝑥2. 27−𝑥 + 2𝑥−1  

⟹ 𝑥2. 2𝑥+1 − 2𝑥+1 = 𝑥2. 27−𝑥 + 25−𝑥  

⟹ 𝑥2. 2𝑥−1 − 2𝑥−1 = 𝑥2. 22. 25−𝑥 − 25−𝑥  

⟹  2𝑥−1(4𝑥2 − 1) =  25−𝑥(4𝑥2 − 1)  

⟹ 2𝑥−1(4𝑥2 − 1) − 25−𝑥(4𝑥2 − 1) = 0  

⟹ (4𝑥2 − 1)(2𝑥−1 − 25−𝑥) = 0 ⟹ 4𝑥2 − 1 =

0………(1)  

𝑎𝑛𝑑 2𝑥−1 − 25−𝑥 = 0………… . (2)  

(1) ⟹ 4𝑥2 = 1⟹ 𝑥2 =
1

4
⟹ 𝑥 = 1

1

2
  

(2) ⟹ 2𝑥−1 = 25−𝑥 ⟹ 𝑥 − 1 = 5 − 𝑥 ⟹

2𝑥 = 6 ⟹ 𝑥 = 3  
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But x is < 3. 

Hence the x = 3 does not give the solution of 

the equations. Hence the solutions of the 

original solutions are 𝑥 ≥ 3. (from case 1) 

and 𝑥 =  ±
1

2
(from case 2) 

 

19) Solve the inequality 

𝐥𝐨𝐠
𝟐𝟓 − 𝒙𝟐

𝟏𝟔
(
𝟏𝟒 − 𝟐𝒙 − 𝒙𝟐

𝟏𝟒
) > 1 

Sol.: As we know, if the log function log𝑎 𝑥 is 

meaning ful then its base a should be > 0 and 

a ≠ 1.Also x > 0 therefore we shall discuss 

two cases according as the 0 <
25−𝑥2

16
<

1 𝑎𝑛𝑑
25−𝑥2

16
> 1. 

Case 1 : Let 
25−𝑥2

16
> 1. 

This ⟹ 25 − 𝑥2 > 16 ⟹ 𝑥2 < 9,⟹

(𝑥2 − 9) < 0 

⟹ (𝑥 + 3)(𝑥 − 3) < 0 ⟹ 25 − 𝑥2 > 16 ⟹

−3 < 𝑥 < 3…… . (1)  

In this case, the given inequality is equivalent 

to  

24 − 2𝑥 − 𝑥2

14
>
25 − 𝑥2

16
,⟹

24 − 2𝑥 − 𝑥2

7

>
25 − 𝑥2

8
 

⟹ 192 − 16𝑥 − 8𝑥2 > 175 − 7𝑥2 ⟹

𝑥2 + 16𝑥 − 17 < 0  

⟹ (𝑥 + 17)(𝑥 − 1) < 0 ⟹ −17 < 𝑥 <

1………(2)  

∴ Taking (1) and (2) together we find that 

−3 < 𝑥 < 1 ………….(3) 

Case 2 : Let 0 <
25−𝑥2

16
< 1. In this case, the 

original inequality is equivalent to the double 

inequality. 

0 <
24 − 2𝑥 − 𝑥2

14
<
25 − 𝑥2

16
 

Thus in this case, we have to solve the 

following system of double inequalities:  

(i) 0 <
25−𝑥2

16
< 1 

(ii) 0 <
24−2𝑥−𝑥2

14
<
25−𝑥2

16
 

The first inequality is reduced to 0 < 25 −

𝑥2 𝑎𝑛𝑑 25 − 𝑥2 < 16 𝑖. 𝑒. 9 < 𝑥2 < 25. But 

9 < 𝑥2 ⟹ 𝑥2 − 9 > 0 ⟹ (𝑥 − 3)(𝑥 + 3) > 0  

⟹ 𝑥 < −3 𝑜𝑟 𝑥 > 3 𝑎𝑛𝑑 𝑥2 < 25 ⟹

𝑥2 − 25 < 0 ⟹ (𝑥 − 5)(𝑥 + 5) < 0  

⟹ −5 < 𝑥 < 5.  

Hence taking together 9 < 𝑥2 < 25 ⟹ −5 <

𝑥 < −3 𝑎𝑛𝑑 3 < 𝑥 < 5……… . . (4) 

The second double inequality is equivalent to 

the system of inequalities (iii) 24 − 2𝑥 −

𝑥2 > 0⟹ 𝑥2 + 2𝑥 − 24 < 0 𝑎𝑛𝑑 (𝑖𝑣)𝑥2 +

16𝑥 − 17 > 0 

(iii) ⟹ (𝑥 + 6)(𝑥 − 4) < 0 ⟹ −6 <

𝑥 < 4 

(iv) (𝑥 + 17)(𝑥 − 1) > 0 ⟹ 𝑥 <

−17 𝑜𝑟 𝑥 > 1. 

Thus (iii)+ (iv) ⟹ 1 < 𝑥 < 4 ………….(5) 

Finally (4) +(5) i.e. , (3 < 𝑥 < 5 𝑎𝑛𝑑 1 < 𝑥 <

4) 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟 ⟹ 3 < 𝑥 < 4. 

Hence combining the two cases we have the 

solution of the original inequality which 

consists of two intervals : −3 < 𝑥 <

1 𝑎𝑛𝑑 3 < 𝑥 < 4.  
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20) Solve : (
𝟏

𝟐
)
√𝐱𝟐−𝟐𝐱𝟑+𝟏

< (
𝟏

𝟐
)
𝟏−𝐱

 

Sol.: Since the base of the exponential 

inequality (i.e. 
1

2
) is less than 1, hence the 

original inequality is equivalent to the 

inequality. √𝑥6 − 2𝑥3 + 1 > 1 − 𝑥 

𝑆𝑖𝑛𝑐𝑒 √𝑥6 − 2𝑥3 + 1 = √(𝑥3 − 1)2|𝑥3 − 1|,  

∴ the above inequality can be written as 

|𝑥3 − 1| > 1 − 𝑥…………… . (1) 

𝐼𝑓 1 − 𝑥 < 0 𝑖. 𝑒. 𝑥 > 1, then the inequality 

(1) is automatically satisfied since the left 

member is non negative. 

∴ The solution of the inequality (1) is the set 

of all x >1 we now consider 𝑥 ≤ 1. In this case 

𝑥3 ≤ 1. 𝑖. 𝑒. 𝑥3 − 1 ≤ 0 𝑎𝑛𝑑 𝑠𝑜 |𝑥3 − 1| =

(𝑥3 − 1) and then we can write the inequality 

(1) as −(𝑥3 − 1) > 1 − 𝑥 ⟹ −𝑥3 + 1 > 1 −

𝑥 ⟹ 𝑥3 − 𝑥 > 0,⟹ 𝑥(𝑥2 − 1) > 0 ⟹

𝑥(𝑥 − 1)(𝑥 + 1) < 0 Solving this inequality 

by the method of intervals we find that it is 

true for 𝑥 < −1 and for x located in the 

interval 0 < 𝑥 < 1…… . (3) Hence combining 

(2) and (3), we concluded that the original 

inequality is valid for 𝑥 < 1, 0 < 𝑥 < 1 and 

also 𝑥 < 1. 

 

INEQUALITIES 

(OBJECTIVE TYPE) 

1) If 𝒏𝟒 < 𝟏𝟎𝒏 for a fixed positive integer 

𝒏 ≥ 𝟐, 𝒕𝒉𝒆𝒏  

(a) (𝒏 + 𝟏) <  𝟏𝟎𝒏+𝟏;  (b) (𝒏 + 𝟏)𝒏 ≥

 𝟏𝟎𝒏+𝟏;   (c) 𝒏𝟒 + 𝟏 < 𝟏𝟎𝒏+𝟏;   (d) 

none 

Sol.: we have (
𝑛+1

𝑛
)
 4
= (1 +

1

𝑛
)
4
≤

 (1 +
1

2
)
4
= (

3

2
)
4
< 10 

[∵ 𝑛 ≥ 2] ⟹ (𝑛 + 1)4 ≤ 𝑛4. 10 <

10𝑛. 10 =  10𝑛+1  

 

2) If a, b, c are the sides of a triangle, then 
𝟏

𝒃+𝒄
,
𝟏

𝒄+𝒂
,
𝟏

𝒂+𝒃
 is also the sides of the 

triangle is, 

(a) Always false;   (b) always true;  (c) 

Sometimes;   (d) none 

Sol.: Assume that 𝑎 ≥ 𝑏 ≥ 𝑐. We must have 

𝑏 + 𝑐 > 𝑎. 

Also, note that 𝑏 + 𝑐 ≤ 𝑐 + 𝑎 ≤ 𝑎 + 𝑏 

⟹
1

𝑏 + 𝑐
≥

1

𝑐 + 𝑎
≥

1

𝑎 + 𝑏
 

To show that 
1

𝑏+𝑐
,
1

𝑐+𝑎
,
1

𝑎+𝑏
 are sides of a 

triangle, it is sufficient to show that 
1

𝑐+𝑎
=

1

𝑎+𝑏
>

1

𝑏+𝑐
 

𝐴𝑠 𝑎 ≥ 𝑏 ≥ 𝑐, 𝑤𝑒 𝑔𝑒𝑡 2𝑎 ≥ 𝑎 + 𝑏, 𝑎𝑛𝑑 2𝑎 ≥

𝑎 + 𝑐  

⟹
1

2𝑎
≤

1

𝑎 + 𝑏
,
1

2𝑎
≤

1

𝑎 + 𝑐
 

⟹
1

𝑎 + 𝑏
+

1

𝑎 + 𝑐
≥
1

2𝑎
+
1

2𝑎
=
1

𝑑
>

1

𝑏 + 𝑐
 

[∵ 𝑎 < 𝑏 < 𝑐] ∴ it represents a triangle. 

3) The product of three positive reals is 1 and 

their sum is greater then sum of their 

reciprocals. Exactly one of them is greater 

than 

(a) -1;  (b) 0;  (c) 1;   (d) none 

Sol.: Let three positive reals be a, b and 
1

𝑎𝑏
, 
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We are given 𝑎 + 𝑏 +
1

𝑎𝑏
>
1

𝑎
+
1

𝑏
+

𝑎𝑏…… . . (1) 

𝑁𝑜𝑤 (𝑎 − 1)(𝑏 − 1) (
1

𝑎𝑏
− 1)

= 1 + (𝑎 + 𝑏 +
1

𝑎𝑏
)

− (𝑎𝑏 +
1

𝑎
+
1

𝑏
) − 1

= (𝑎 + 𝑏 +
1

𝑎𝑏
)

− (𝑎𝑏 +
1

𝑎
+
1

𝑏
) >  0 

Using (1)⟹ either all these 𝑎 − 1, 𝑏 −

1 𝑎𝑛𝑑
1

𝑎𝑏
− 1 are positive or exactly one of 

them is positive. 

But 𝑎 > 1, 𝑏 > 1 𝑎𝑛𝑑
1

𝑎𝑏
> 1. Thus exactly one 

of 𝑎, 𝑏,
1

𝑎𝑏
 exceed 1. 

 

4) If 𝒂 + 𝒃 + 𝒄 = 𝟔, 𝒕𝒉𝒆𝒏 √𝟒𝒂 + 𝟏 +

√𝟒𝒃 + 𝟏 + √𝟒𝒄 + 𝟏 is 

(a) ≤ 𝟗;    (b) > 9;   (c) < 9;   (d) none 

Sol.: By the Cauchy Schwarz inequality, 

(√4𝑎 + 1 + √4𝑏 + 1 + √4𝑐 + 1)
2
≤

(1 + 1 + 1)  

(4𝑎 + 1 + 4𝑏 + 1 + 4𝑐 + 1) =

3[4(𝑎 + 𝑏 + 𝑐) + 3]  

= (3)(27) ⟹ √4𝑎 + 1 + √4𝑏 + 1 +

√4𝑐 + 1 ≤ 9  

 

5) If a, b, c ∊ R, then 

√𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 − 𝒃𝒄 − 𝒄𝒂 − 𝒂𝒃 ≥ 

(a) 
√𝟑

𝟒
𝐦𝐚𝐱{|𝒃 − 𝒄|, |𝒄 − 𝒂|, |𝒂 − 𝒃|} ; 

(b) 𝐦𝐚𝐱{|𝒃 − 𝒄|, |𝒄 − 𝒂|, |𝒂 − 𝒃|} 

(c) 
√𝟑

𝟐
 {𝐦𝐚𝐱|𝒃 − 𝒄|, |𝒄 − 𝒂|, |𝒂 − 𝒃|} 

(d) 𝒏𝒐𝒏𝒆 

Sol.: We have, 𝑎2 + 𝑏2 + 𝑐2 − 𝑏𝑐 − 𝑐𝑎 − 𝑎𝑏 =
1

2
 

[(𝑏2 + 𝑐2 − 2𝑏𝑐) + (𝑐2 + 𝑎2 − 2𝑐𝑎) +

(𝑎2 + 𝑏2 − 2𝑎𝑏) =
1

2
[(𝑏 − 𝑐)2 +

(𝑐 − 𝑎)2 + (𝑎 − 𝑏)2] ≥ 0 

𝐴𝑙𝑠𝑜, 𝑎2 + 𝑏2 + 𝑐2 − 𝑏𝑐 − 𝑐𝑎 − 𝑎𝑏

−
3

4
(𝑏 − 𝑐)2 

=
1

4
[4𝑎2 + 4𝑏2 + 4𝑐2 − 4𝑏𝑐 − 4𝑐𝑎 − 4𝑎𝑏

− 3(𝑏2 + 𝑐2 − 2𝑏𝑐)]

=
1

4
[4𝑎2 + 𝑏2 + 𝑐2 + 2𝑏𝑐

− 4𝑎(𝑐 + 𝑏)] 

=
1

4
[4𝑎2 + (𝑏 + 𝑐)2 − 4𝑎(𝑏 + 𝑐)]  =

1

4
[2𝑎 − (𝑏 + 𝑐)]2 ≥ 0 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑎2 + 𝑏2 + 𝑐2 − 𝑏𝑐 − 𝑐𝑎 − 𝑎𝑏

≥
√3

2
|𝑐 − 𝑎|𝑎𝑛𝑑 𝑎2 + 𝑏2 + 𝑐2

− 𝑏𝑐 − 𝑐𝑎 − 𝑎𝑏 ≥  
√3

2
|𝑎 − 𝑏| 

⟹ 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎

≥
√3

2
max{|𝑏 − 𝑐|, |𝑐

− 𝑎|, |𝑎 − 𝑏|} 

 

6) If x >0, 𝜆 > 0 and 𝝀𝒙 +
𝟏

𝒙
− 𝟏 is always 

non-negative, then the least value of 𝜆 is: 

(a) 
𝟏

𝟒
;  (b) 

𝟏

𝟐
;   (c) 

𝟏

𝟑
;    (d) none 

Sol.: 𝜆𝑥 +
1

𝑥
− 1 ≥ 0 ⟹ 𝜆𝑥2 − 𝑥 + 1 ≥ 0 

⟹ (−1)2 − 4. 𝜆. 1 ≤ 0 ⟹ 𝜆 ≥
1

4
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∴ least value of 𝜆 is 
1

4
. 

 

7) If x ∊ R and y = 
𝒙𝟐

(𝟏+𝒙𝟒)
 then 

(a) 𝟎 ≤ 𝒚 ≤
𝟏

𝟐
;   (b) 𝟎 ≤ 𝒚 ≤ 𝟏;   (c) 𝟎 ≤

𝒚 ≤ 𝟐;   (d) none 

Sol.: 𝑦 + 𝑦𝑥4 = 𝑥2, 𝑤ℎ𝑒𝑟𝑒 𝑦 ≥ 0, 𝑦𝑥4 − 𝑥2 +

𝑦 = 0 

𝑥2 =
1±√1−4𝑦2

2
, for this exists. 1 − 4𝑦2 = 0 

⟹ −
1

2
≤ 𝑦 ≤

1

2
 𝑏𝑢𝑡 𝑦 = 0 ⟹ 0 ≤ 𝑦 ≤

1

2
. 

1 

8) If 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 are any real numbers and n 

is position integer, then 

(a) ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏 ≥ 𝒏(∑𝒙𝒊)
𝟐;  (b) 𝒏∑𝒙𝒊

𝟐 <

(∑ 𝒙𝒊
𝒏
𝟏 )𝟐;  (c) 𝒏∑ 𝒙𝒊

𝟐𝒏
𝒊=𝟏 ≥ (∑ 𝒙𝒊

𝒏
𝟏 )𝟐  

(d) none 

Sol.: Here, 
𝑥1
2+𝑥2

2+⋯+𝑥𝑛
2

𝑛
≥ (

𝑥1+𝑥2+⋯+𝑥𝑛

𝑛
)
2

 

⟹ 𝑛∑𝑥𝑖
2

𝑛

𝑖=1

≥ (∑𝑥𝑖

𝑛

1

)

2

 

 

9) If x, y, z are positive real number, such that  

𝒙 + 𝒚 + 𝒛 = 𝟐,  then 

(a) (𝟐 − 𝒙)(𝟐 − 𝒚)(𝟐 − 𝒛) ≤ 𝟖𝒙𝒚𝒛; 

(b) (𝟐 − 𝒙)(𝟐 − 𝒚) × (𝟐 − 𝒛) ≤ 𝟖𝒙𝒚𝒛 

(c) (𝟐 − 𝒙)(𝟐 − 𝒚)(𝟐 − 𝒛) ≥
𝟏

𝟐
; 

(d) 𝒏𝒐𝒏𝒆 

Sol.: 𝑥 + 𝑦 + 𝑧 = 2 ∴ (2 − 𝑥)(2 − 𝑦)(2 − 𝑧) =

(𝑦 + 𝑧)(𝑧 + 𝑥)(𝑥 + 𝑦) 

⟹ (𝑦 + 𝑧) ≥ 2√𝑦𝑧, (𝑥 + 𝑦) ≥ 2√𝑥𝑧,   

(𝑥 + 𝑦) ≥ 2√𝑥𝑦.   

∴ (𝑦 + 𝑧)(𝑧 + 𝑥)(𝑥 + 𝑦) ≥ 8𝑥𝑦𝑧   

𝐴𝑙𝑠𝑜, (
𝑥−1 + 𝑦−1 + 𝑧−1

3
)

≥ (
𝑥 + 𝑦 + 𝑧

3
)
−1

 

⟹ 𝑥−1 + 𝑦−1 + 𝑧−1 ≥ 3. (
2

3
)
−1

 

⟹ 𝑥−1 + 𝑦−1 + 𝑧−1 ≥
9

2
 

 

10) If the product of n positive numbers is 𝒏𝒏, 

them their sum is 

(a) & 𝒏𝟐;   (b) = 𝒏 +
𝟏

𝒏
;  (c) > 𝑛;  (d) none 

Sol.: Let 𝑎1, 𝑎2, ……… , 𝑎𝑛 be n positive 

integers such that 𝑎1𝑎2, … , 𝑎𝑛 = 𝑛
𝑛. Since 

𝐴.𝑀 ≥ 𝐺.𝑀 

∴
𝑎1 + 𝑎2 +⋯+ 𝑎𝑛

𝑛
≥  (𝑎1𝑎2, … 𝑎𝑛)

1
𝑛 

⟹
𝑎1 + 𝑎2 +⋯+ 𝑎𝑛

𝑛
≥ 𝑛 

⟹ 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛
≥ 𝑛2  

11) For positive real number a, b, c such that a 

+b +c = p which one holds? 

(a) 
𝒃𝒄

𝒂
+
𝒄𝒂

𝒃
+
𝒂𝒃

𝒄
≥ 𝒑; 

(b) (𝑷 − 𝒂)(𝑷 − 𝒃)(𝑷 − 𝒄) ≤ 𝟖𝒂𝒃𝒄 

(c) (𝑷 − 𝒂)(𝑷 − 𝒃)(𝑷 − 𝒄) ≥
𝟖

𝟐𝟕
𝒑𝟑; 

(d) 𝒏𝒐𝒏𝒆 

Sol.: Using 𝐴.𝑀 ≥ 𝐺.𝑀 one can show 

(𝑏 + 𝑐)(𝑐 + 𝑎)(𝑎 + 𝑏) ≥ 8𝑎𝑏𝑐  

⟹ (𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐) ≥ 8𝑎𝑏𝑐 ⟹

(𝑏)ℎ𝑜𝑙𝑑𝑠   
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𝐴𝑙𝑠𝑜,
(𝑝 − 𝑎) + (𝑝 − 𝑏) + (𝑝 − 𝑐)

3
≥ [(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝

− 𝑐)]
1
3 

⟹
3𝑝 − (𝑎 + 𝑏 + 𝑐)

3
≥ [(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝

− 𝑐)]
1
3 

⟹
2𝑝

3
≥ [(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐)]

1
3 

⟹ (𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐) ≤
8𝑝3

27
⟹ (𝑐)𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑𝑠 

𝐴𝑔𝑎𝑖𝑛, 𝑠𝑖𝑛𝑐𝑒
1

2
(
𝑏𝑐

𝑎
+
𝑐𝑎

𝑏
) ≥ √(

𝑏𝑐

𝑎
.
𝑐𝑎

𝑏
) 𝑒𝑡𝑐 

∴Adding the inequalities, we get 

𝑏𝑐

𝑎
+
𝑐𝑎

𝑏
+
𝑎𝑏

𝑐
≥ 𝑎 + 𝑏 + 𝑐 = 𝑝  

⟹ (a) does not holds. 

12) If 𝟎 < 𝛼 < 𝛽 <
𝝅

𝟐
  then 

(a) 𝜷 𝐭𝐚𝐧𝜶 <  𝛼 𝐭𝐚𝐧𝜷;  (b) 𝜷 𝐭𝐚𝐧𝜶 >

 𝛼 𝐭𝐚𝐧𝜷;  (c) 𝜷 𝐭𝐚𝐧𝜶 <  𝛼 𝐬𝐢𝐧𝜷; (d) 

none 

Sol.: We know, 𝑓(𝑥) =
sin𝑥

𝑥
 is decreasing 

𝑓(𝛽) < 𝑓(𝛼): 0 < 𝛼 < 𝛽 <
𝜋

2
.
sin𝛽

𝛽

<
sin𝛼

𝛼
 𝑜𝑟 𝛼 sin𝛽

<  𝛽 sin𝛼 . 𝐴𝑙𝑠𝑜, 𝑓(𝑥)

=
tan𝑥

𝑥
 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 

∴  𝑓(𝛽) > 𝑓(𝛼) 𝑎𝑠 𝛼 < 𝛽.  

⟹
tan𝛽

𝛽
>
tan𝛼

𝛼
𝑜𝑟 𝛼 tan𝛽 >  𝛽 tan 𝛼. 

 

13) If x, y, z are real, distinct and 𝒖 =  𝒙𝟐 +

𝟒𝒚𝟐 + 𝟗𝒛𝟐 − 𝟔𝒚𝒛 − 𝟑𝒛𝒙 − 𝟐𝒙𝒚, 𝒕𝒉𝒆𝒏 𝒖 is 

(a) Zero;  (b) non-negative;   (c) non-

positive;   (d) none 

Sol.: 𝑢 =
1

2
{2𝑥2 + 8𝑦2 + 18𝑧2 − 12𝑦𝑧 −

6𝑧𝑥 − 4𝑥𝑦} =
1

2
{(𝑥 − 2𝑦)2 + (2𝑦 − 3𝑧)2 +

(3𝑧 − 𝑥)2} 

⟹ 𝑢 ≥ 0 

 

14) The minimum value of p = 𝒃𝒄𝒙 + 𝒄𝒂𝒚 +

𝒂𝒃𝒛 when 𝒙𝒚𝒛 = 𝒂𝒃𝒄, 𝒊𝒔 

(a) 𝒂𝒃𝒄;  (b) 𝟒𝒂𝒃𝒄;   (c) 𝟓 𝒂𝒃𝒄;   (d)none  

Sol.: 𝐴.𝑀 ≥ 𝐺.𝑀 ⟹
𝑏𝑐𝑥+𝑐𝑎𝑦+𝑎𝑏𝑧

3
≥

 (𝑎2𝑏2𝑐2, 𝑥𝑦𝑧)
1

3 

𝑏𝑐𝑥 + 𝑐𝑎𝑦 + 𝑎𝑏𝑧 ≥ 3𝑥𝑦𝑧 𝑜𝑟  

𝑏𝑐𝑥 + 𝑎𝑐𝑦 + 𝑎𝑐𝑦 + 𝑎𝑏𝑧 ≥ 3𝑎𝑏𝑐  

 

15) If a, b , c, d are positive real numbers such 

that a +b+ c+ d = 2, then 𝑴 =

(𝒂 + 𝒃)(𝒄 + 𝒅) satisfies the relation 

(a) 𝟎 ≤ 𝑴 ≤ 𝟏;   (b) 𝟏 ≤ 𝑴 ≤ 𝟐   (c) 𝟐 ≤

𝑴 ≤ 𝟑 ;    (d) none 

Sol.: (a) Using 𝐴.𝑀 ≥ 𝐺.𝑀, 𝑡ℎ𝑒𝑛
(𝑎+𝑏)+(𝑐+𝑑)

2
≥

 {(𝑎 + 𝑏)(𝑐 + 𝑑)}
1

2,  

⟹
2

2
≥ 𝑀

1
2,⟹ 𝑀 ≤ 1. 

As a, b, c, d > 0. So, M = (𝑎 + 𝑏) × (𝑐 + 𝑑) > 0 

𝑖. 𝑒. ,   0 ≤ 𝑀 ≤ 1.  
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(SUBJECTIVE TYPE) 

1) If−𝟏 ≤ 𝒂𝟏 ≤ 𝒂𝟐 ≤ ⋯ ≤ 𝒂𝒏 ≤ 𝟏,  prove 

that 

∑√𝟏 − 𝒂𝒊𝒂𝒊+𝟏 −√(𝟏 − 𝒂𝒊
𝟐)(𝟏 − 𝒂𝒊+𝟏

𝟐)

𝒏−𝟏

𝒊=𝟏

≤
𝝅√𝟐

𝟐
 

Sol.: It is natural to make the 

trigonometric substitution 𝑎𝑖 =

cos 𝑥𝑖  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥𝑖 ∊ 0, 𝜋, 𝑖 = 1, 2, … . , 𝑛.  

Note that the monotonicity of the cosine 

function combined with the given 

inequalities show that the 𝑥𝑖′𝑠 from a 

decreasing sequence. The expression on 

the left becomes  

∑√1 − cos 𝑥𝑖 cos 𝑥𝑖+1 − sin 𝑥𝑖 sin 𝑥𝑖+1

𝑛−1

𝑖=1

 

= ∑√1 − cos(𝑥𝑖+1 − 𝑥𝑖)

𝑛−1

𝑖=1

= √2 ∑ sin
𝑥𝑖+1 − 𝑥𝑖

2

𝑛−1

𝑖=1

 

Here we used a subtraction and a double-

angle formula. The sine function is concave 

down on [0, 𝜋]; hence we can Jensen’s 

inequality to obtain 

1

𝑛 − 1
  ∑ sin

𝑥𝑖+1 − 𝑥𝑖
2

𝑛−1

𝑖=1

≤ sin(
1

𝑛 − 1
∑

𝑥𝑖+1 − 𝑥𝑖
2

𝑛−1

𝑖=1

) 

Hence, 

√2 ∑ sin
𝑥𝑖+1 − 𝑥𝑖

2

𝑛−1

𝑖=1

≤ (𝑛 − 1)√2 sin
𝑥𝑛 − 𝑥1
2(𝑛 − 1)

≤  √2(𝑛 − 1) 

sin
𝜋

2(𝑛 − 1)
. 𝑆𝑖𝑛𝑐𝑒 𝑥𝑛 − 𝑥1 ∈ (0, 𝜋). 

Using the fact that sin 𝑥 < 𝑥 𝑓𝑜𝑟 𝑥 > 0 𝑦𝑒𝑖𝑙𝑑𝑠 

√2(𝑛 − 1)
sin 𝜋

(2(𝑛 − 1))
≤
√2𝜋

2
 

 

2) Let 𝒙𝟎 = 𝟎 𝒂𝒏𝒅 𝒙𝟏, 𝒙𝟐, … . , 𝒙𝒏 > 0 with 

∑ 𝒙𝒌
𝒏
𝒌=𝟏 = 𝟏 

Prove that 

 ∑
𝒙𝒌

√𝟏+𝒙𝟎+⋯+𝒙𝒌−𝟏√𝒙𝒌+⋯+𝒙𝒏

𝒏
𝒌=𝟏 <

𝝅

𝟐
 

Sol.: Since 𝑥𝑖′𝑠 are positive and add up to 

1, we can make the substitution 𝑥0 + 𝑥1 +

⋯+ 𝑥𝑘 = sin𝑎𝑘 , with 𝑎0 < 𝑎1 < ⋯ <

 𝑎𝑛 =
𝜋

2
, 𝑘 = 0, 1, … . , 𝑛. The inequality 

becomes ∑
sin𝑎𝑘−sin𝑎𝑘−1

√1+sin𝑎𝑘−1  √1−sin𝑎𝑘−1

𝑛
𝑘=1 <

𝜋

2
, 

Which can be written as 

∑
2sin

𝑎𝑘 − 𝑎𝑘−1
2

cos
𝑎𝑘 + 𝑎𝑘 − 1

2
cos 𝑎𝑘−1

𝑛

𝑘=1

 

For 0 < 𝑥 <
𝜋

2
, cos 𝑥 is a decreasing 

function and sin 𝑥 < 𝑥. Hence the left side 

of the inequality is strictly less than 

∑
2
𝑎𝑘−𝑎𝑘−1

2
cos𝑎𝑘−1

cos𝑎𝑘−1

𝑛
𝑘=1 = ∑ (𝑎𝑘 −

𝑛
𝑘=1

𝑎𝑘−1) =
𝜋

2
 and problem is solved. 
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3) If a, b, c be the edge of a right 

parallelepiped and d its diagonal. Show 

that 𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐 ≥ 𝒂𝒃𝒄𝒅 √𝟑. 

Sol.: Since in a right parallelepiped the 

diagonal is given by the formula 𝑑 =

 √𝑎2 + 𝑏2 + 𝑐2 , the inequality is equivalent to 

(𝑎2𝑏2 + 𝑏2𝑐2 + 𝑐2𝑎2)2 ≥ 3𝑎2𝑏2𝑐2 

(𝑎2 + 𝑏2 + 𝑐2) After regrouping term this 

becomes 
𝑐4

2
(𝑎2 − 𝑏2) +

𝑎4

2
(𝑏2 + 𝑐2)2 +

𝑏4

2
(𝑐2 − 𝑎2) ≥ 0 

Note that the equality holds if and only if = a 

= b = c  i.e. the parallelepiped is a cube. 

 

4) If 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 are real numbers, show 

that  

∑∑𝒊𝒋

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

𝐜𝐨𝐬(𝒂𝒊 − 𝒂𝒋) ≥ 𝟎 

Sol.: By using the addition formula for the 

cosine we obtain  

∑∑𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

cos(𝑎𝑖 − 𝑎𝑗)

=  ∑∑(𝑖𝑗 cos 𝑎𝑖 cos 𝑎𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ 𝑖𝑗 sin𝑎𝑖 + sin𝑎𝑗)  

=∑𝑖 cos 𝑎𝑖

𝑛

𝑖=1

∑𝑗cos𝑎𝑗

𝑛

𝑗=1

+∑𝑖 sin𝑎𝑖

𝑛

𝑖=1

∑𝑗sin 𝑎𝑗

𝑛

𝑗=1

 

= (∑𝑖 cos 𝑎𝑖

𝑛

𝑖=1

)

2

+ (∑𝑖 sin 𝑎𝑖

𝑛

𝑖=1

)

2

≥ 0 

 

5) The non-negative numbers a, b, c, A, B, C 

and k satisfy a +A = b +B = c+ C = k. 

Prove that  𝒂𝑩 + 𝒃𝑪 + 𝒄𝑨 ≤ 𝒌𝟐. 

Sol.: The inequality is equivalent to 

𝑎(𝑘 − 𝑏) + 𝑏(𝑘 − 𝑐) + 𝑐(𝑘 − 𝑎) ≤  𝑘2. If 

we view the left side as a function in a, it 

is linear. The conditions from the 

statement imply that interval of definition 

is [0, k]. It follows that in order to 

maximize the left and side we need to 

choose a ∊ {0, k}. Repeating the same 

argument for b and c, it follows that the 

maximum of the left hand side is attained 

for some (a, b, c)∊ {0, 𝑘}3. Checking the 

eight possible situations, we obtain that 

this maximum is 𝑘2, and we are done. 

 

6) Let 𝟎 ≤ 𝒙𝒌 ≤ 𝟏  for all k = 1, 2, ….., n. Show 

that 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏 −

𝒙𝟏𝒙𝟐……… . 𝒙𝒏 ≤ 𝒏 − 𝟏 

Sol.: Let us fix 𝑥2, 𝑥3……𝑥𝑛  and then 

consider the function f: [0, 1] →R. 

f(x)= 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 − 𝑥𝑥2……… . 𝑥𝑛. 

The function is linear in x, hence attains 

its maximum the left side of the inequality 

one must choose 𝑥1 𝑡𝑜  be 0 or 1, and by 

symmetry, the same is true for the other 

variables of occurs, if all 𝑥𝑖 are equal to 1, 

then we have equality. If at least one of 

them is 0, then their product is also zero, 

and the sum of the other 𝑛 − 1 terms is at 

most 𝑛 − 1. Which proves the inequality. 

 

7) Find the maximum value of the sum 𝑺𝒏 =

 𝒂𝟏(𝟏 − 𝒂𝟐) + 𝒂𝟐 + (𝟏 − 𝒂𝟑) + ⋯+

𝒂𝒏(𝟏 − 𝒂𝟏), where 
𝟏

𝟐
< 𝒂𝒋 ≤

𝟏 𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒊 = 𝟏, 𝟐,… . , 𝒏. 
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Sol.: The expression is linear in each of 

the variables. So, as in the solutions to the 

previous problems, the maximum is 

attained for  𝑎𝑘 =
1

2
𝑜𝑟 1, 𝑘 =

1,2,…… , 𝑛. 𝐼𝑓 𝑎𝑘 =
1

2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, 𝑡ℎ𝑒𝑛  𝑆𝑛 =

𝑛

4
,  Let us show that the value of 𝑆𝑛  cannot 

exceed this number. If exactly m of the 

𝑎𝑘
′ 𝑠 are equal to 1, then m terms of the 

sum are zero. Also, at most m trams are 

equal to 
1

2
, 𝑛𝑎𝑚𝑒𝑙𝑦  those of the from 

𝑎𝑘(1 − 𝑎𝑘+1)𝑤𝑖𝑡ℎ 𝑎𝑘 = 1 𝑎𝑛𝑑 𝑎𝑘+1 =
1

2
. 

Each of the remaining terms has both 

factors equal to 
1

2
, and hence is equal to 

1

4
. 

Thus the value of the sum is at most 

𝑚. 0 +
𝑚

2
+
(𝑛−2𝑚)

4
=
𝑛

4
. Which shows that 

the maximum is 
𝑛

4
. 

 

8) If 𝒏 ≥ 𝟐 𝒂𝒏𝒅 𝟎 < 𝒙𝒊≤𝟏 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊 = 1, 2, …., 

n show that (𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏) −

(𝒙𝟏𝒙𝟐 + 𝒙𝟐𝒙𝟑 +⋯+ 𝒙𝒏𝒙𝟏) ≤ [
𝒏

𝟐
] and 

determine when there is equality [.] 

denote the greatest integer function. 

Sol.: Denote the left side of the inequality 

by 𝑆(𝑥1, 𝑥2…𝑥𝑛) This expression is linear 

in each of the variables 𝑥𝑖 As before, it 

follows that it is enough to prove the 

inequality when the 𝑥𝑖
′𝑠  are equal to 0 or 

1. If exactly k of the 𝑥𝑖′𝑠 are equal to 0, 

and the others are equal to 1, then 

𝑆(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝑛 − 𝑘, and since the 

sum 𝑥1𝑥2 + 𝑥2𝑥3 +⋯+ 𝑥𝑛𝑥1 is at least 

𝑛 − 2𝑘,S(𝑥1, 𝑥2, … , 𝑥𝑛) is less than or 

equal to 𝑛 − 𝑘 − (𝑛 − 2𝑘) = 𝑘. So the 

maximum of S is less than or equal to 

min(𝑘, 𝑛 − 𝑘) .𝑊ℎ𝑖𝑐ℎ  is at most [
𝑛

2
]. If 

follows that for n even. Equality holds 

when (𝑥1, 𝑥2, …, ) =(1, 0, 1, 0, ……, 1, 0) or 

(0, 1, 0, 1, ……0, 1). For n odd. Equality 

holds when all pairs (𝑥𝑖, 𝑥𝑖+1), 𝑖 =

1, 2, … . , 𝑛. consist of a zero and a one, 

except for one pair which consist of two 

ones (with the convention 𝑥𝑛+1 = 𝑥𝑖). 

 

9) Prove that for numbers a, b, c in the 

interval [0, 1] 
𝒂

𝒃+𝒄+𝟏
+

𝒃

𝒄+𝒂+𝟏
+

𝒄

𝒂+𝒃+𝟏
+

(𝟏 − 𝒂)(𝟏 − 𝒃)(𝟏 − 𝒄) ≤ 𝟏 

Sol.: For any non-negative numbers 𝛼, 𝛽, 

the function 𝑥 →
𝛼

𝑥+𝛽
 is convex for 𝑥 ≥ 0. 

Viewed as a function in any of the three 

variables, the given expression is a sum of 

two convex functions and two linear 

functions so it is convex. Thus when two 

of the variables are fixed, the maximum is 

attained when the third is at one of the 

end points of the interval, so the values of 

the expression are always less than the 

largest value obtained by choosing a, b, c 

∊[0, 1]. An easy check of the eight possible 

cases shows that the value of the 

expression cannot exceed 1. 

10) If a, b, c, d, e ∊[p, q] with p > 0, prove that 

(1+b+c+d+e) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
+
𝟏

𝒅
+
𝟏

𝒆
) ≤ 𝟐𝟓 +

𝟔(√
𝒑

𝒒
−√

𝒒

𝒑
 )
𝟐

 

Sol.: If we fix four of the numbers and 

regard the fifth as a variable x, then the 

left side becomes a function of the form 

𝛼𝑥 +
𝛽

𝑥+𝑦
, with 𝛼, 𝛽, y positive and x 

ranging over the interval [p, q]. This 

function is convex on the interval [p, q] 

being the sun of a linear and a convex 

function, so it attains its maximum at one 

(or possibly both) of the end points of the 

interval of definition. As the value of the 

expression, it is enough to let a, b, c, d, e 

take the values p and q. 
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If n of the numbers are equal tom p, and 

5 − 𝑛  are equal to q, then the left side is 

equal to  

𝑥2 + (5 − 𝑛)2 + 𝑛(5 − 𝑛)(
𝑝

𝑞
+
𝑞

𝑝
)

=  25

+ 𝑛(5

− 𝑛)(
√𝑝

𝑞
−
√𝑞

𝑝
)

2

 

The maximal value of 𝑛(5 − 𝑛 ) is attained 

when n=2 or 3 in which case 𝑛(5 − 𝑛)=6, and 

the inequality is proved.   

 

11) Prove that if 𝟏 ≤  𝒙𝒏 ≤ 𝟐, 𝒌 = 𝟏, 𝟐,…… , 𝒏 

then (∑ 𝒙𝒌
𝒏
𝒌=𝟏 ) (∑

𝟏

𝒙𝒌

𝒏
𝒌=𝟏 )

𝟐
≤ 𝒏𝟑 

Sol.: Using the AM- GM inequality we can 

write 

√(∑ 𝑥𝑘
𝑛
𝑘=1 ) (∑

1

𝑥𝑘

𝑛
𝑘=1 )

23

≤
1

3
(∑ 𝑥𝑘

𝑛
𝑘=1 +

∑
1

𝑥𝑘

𝑛
𝑘=1 + ∑

1

𝑥𝑘

𝑛
𝑘=1 )  

∑
𝑥𝑘 +

1
𝑥𝑘
+
1
𝑥𝑘

3

𝑛

𝑘=1

. 

The function 𝑥 +
2

𝑥
 is convex on the interval 

[1, 2], so it attains its maximum at one of the 

end points of the interval. Also, the value of 

the function at each of the end point is equal 

to 3. This shows that  

∑
𝑥𝑘 +

1
𝑥𝑘
+
1
𝑥𝑘

3

𝑛

𝑘=1

≤ 𝑛 

And the inequality is proved. 

Let us point out that the same idea can be 

used to prove the more general from of this 

inequality. 

12) Prove that 

𝟏

√𝟏 + √𝟑
+

𝟏

√𝟓 + √𝟕
+⋯

+
𝟏

√𝟗𝟗𝟗𝟗 + √𝟗𝟗𝟗𝟗
> 24 

Sol.: There are some terms missing to make 

this sum telescope. However, since the left 

hand side is greater than 
1

√3+√5
+

1

√7+√9
+⋯+

1

√9999+√10001
 the inequality will show from 

1

√1+√3
+

1

√3+√5
+

1

√5+√7
+⋯+

1

√9999+ √10001
>

48 Now we are able to telescope. Rationalize 

the denominators and obtain the equivalent 

inequality. 

√3 − √1

2
+
√5 − √3

2
+
√7 − √5

2
+⋯

+
√10001 + √9999

2
> 48. 

The left side is equal to 
(√10001−1)

2
, and an easy 

check shows that this is larger than 48. 

13) If 𝒂𝒌 =
𝒌

(𝒌−𝟏)𝟒/𝟑+𝒌𝟒/𝟑+(𝒌+𝟏)𝟒/𝟑
. Show that 

𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝟗𝟗𝟗𝟗 < 50. 

Sol.: The idea is first to decreases the 

denominator of 𝑎𝑛,  replacing 𝑘4/3 𝑏𝑦 (𝑘 −

1)2/3 (𝑘 + 1)2/3 and then to rationalize it. We 

have 

𝑎𝑛 <
𝑘

(𝑘 − 1)
4
3 + (𝑘 − 1)

2
3 (𝑘 + 1)

2
3 + (𝑘 + 1)

4
3

=
𝑘((𝑘 + 1)

2
3 (𝑘 − 1)

2
3)

(𝑘 + 1)2 (𝑘 − 1)2

=
1

4
((𝑘 + 1)

2
3 (𝑘 − 1)

2
3) 

It follows that ∑ 𝑎𝑛
999
𝑛=1 <

1

4
∑ 𝑎𝑛
999
𝑛=1 ((𝑘 +

1)
2

3 (𝑘 − 1)
2

3) 
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=
1

4
(1000

2
3 + 999

2
3 − 1

2
3 − 0

2
3)

<
1

4
(100 + 100 − 1)

<  50. 

14) Show that ∑
𝟏

(𝒏+𝟏)√𝒏
∞
𝒏=𝟏 < 2. 

Sol.: It is natural to transform the terms of the 

sum as  

1

√𝑛(𝑛 + 1)
=

1/𝑛

𝑛(𝑛 + 1)
=
√𝑛

𝑛
−

√𝑛

𝑛 + 1
. 

This allow us to rewrite the sum as 1 +

∑ √𝑛−√𝑛−1

𝑛
∞
𝑛=2 . 

The sum does not telescope, but it is bounded 

from above by 

1 +∑
√𝑛 − √𝑛 − 1

√𝑛√𝑛 − 1

∞

𝑛=2

= 1 +∑(
1

√𝑛 − 1
−
1

√𝑛
)

∞

𝑛=2

 

With telescope to 2. This proves the 

inequality. 

 

15) For each positive integer n. Show that 

(𝟏 +
𝟏

𝒏
)
𝒏

< (𝟏 +
𝟏

𝒏 + 𝟏
)
𝒏+𝟏

 

Sol.: This is an important inequality that can 

be proved in a number of ways. Here we will 

give a proof based on comparing 

corresponding terms in the binomial 

expansions of each side,  

(1 +
1

𝑛
)
𝑛

= ∑ (
𝑛

𝑘
)(
1

𝑛
)
𝑘𝑛

𝑘=0

 

= ∑
𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑘 + 1)

𝑛. 𝑛. 𝑛 ………𝑛

𝑛

𝑘=0

1

𝑘!
∑

1

𝑘!

𝑛

𝑘=0

 

(1 −
1

𝑛
) (1 −

2

𝑛
)… . (1 −

𝑘 − 1

𝑛
). 

In a similar manner, 

(1 +
1

𝑛 + 1
)
𝑛+1

= ∑
1

𝑘!

𝑛+1

𝑘=0

(1 −
1

𝑛 + 1
). 

(1 −
2

𝑛 + 1)
… (1 −

𝑘 − 1

𝑛 + 1
)

=  (
1

𝑛 + 1
)
𝑛+1

+∑(1 −
1

𝑛 + 1
)

𝑛

𝑘=0

 

(1 −
2

𝑛 + 1
)… . (1 −

𝑘 − 1

𝑛 + 1
). 

The inequality is now obvious. Since 

comparing the coefficients of 
1

𝑘
: in these 

expressions. We see that for each k, k = 0, 1, 

2, ….., n. 

(1 −
1

𝑛
) (1 −

2

𝑛
)………(1 −

𝑘 − 1

𝑛
)

< (1 −
1

𝑛 + 1
) (1

−
2

𝑛 + 1
)………(1 −

𝑘 − 1

𝑛 + 1
) 

It is worth nothing that 

(1 +
1

𝑛
)
2
= ∑

1

𝑘!
𝑛
𝑘=0 (1 −

1

𝑛
) (1 −

2

𝑛
)…… . (1 −

𝑘−1

𝑛
) < ∑

1

𝑘!
𝑛
𝑘=0 (1 −

1

𝑛
) (1 −

2

𝑛
)………(1 −

𝑘−1

𝑛
) < ∑

1

𝑘!
𝑛
𝑘=0 = 1 + ∑

1

𝑘!
𝑛
𝑘=0 < 1 +

∑
1

2𝑘−1
𝑛
𝑘=0 = 1 + ∑

1

2𝑘
𝑛−1
𝑘=0 < 1 + ∑

1

2𝑘
∞
𝑘=0 = 3.  

Thus the sequence (1 +
1

𝑛
)
𝑛

 is increasing and 

bounded above by 3. (It can be shown that 

the sequence converges to the number e) 
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The next result is important theoretically and 

is very useful. 

16) Show that 𝒏 {(𝒏 + 𝟏)
𝟏

𝒏 − 𝟏} < 1 +
𝟏

𝟐
+
𝟏

𝟑
+

⋯+
𝟏

𝒏
< 𝑛 − (𝑛 − 1)𝒏−𝟏/(𝒏−𝟏)  

Sol.: Let 𝑆𝑛 = 1 +
1

2
+⋯+

1

𝑛
. The left most 

inequality is equivalent to proving. 

𝑛 + 𝑆𝑛
𝑛

> (𝑛 + 1)1/𝑛 

Which has vaguely the look of an arithmetic 

mean geometric mean inequality. We can 

make the idea work in the following way:  

𝑛 + 𝑆𝑛
𝑛

=
𝑛 + (1 +

1
2 +⋯+

1
𝑛)

𝑛
 

=
(1 + 1) + (1 +

1
2) +⋯+ (1 +

1
𝑛)

𝑛
 

=
2 +

3
2
+
4
3
+⋯+

(𝑛 + 1)
𝑛

𝑛
 

(2.
3

2
.
4

3
…… . .

𝑛 + 1

𝑛
)
1/𝑛

. 

For the right most inequality. We need to 

show that 
𝑛−𝑆𝑛

𝑛−1
> 𝑛−1/(𝑛−1). Again, using the 

arithmetic mean  geometric mean inequality. 

We have 

𝑛 − 𝑆𝑛
𝑛 − 1

=
𝑛 − (1 +

1
2 +

1
3 +⋯+

1
𝑛)

𝑛 − 1
 

=
(1 − 1) + (1 −

1
2) +⋯+ (1 −

1
𝑛)

𝑛 − 1
 

=

1
2 +

2
3 +⋯+

(𝑛 − 1)
𝑛

𝑛 − 1

> (
1

2
.
1

3
.
3

4
… . .

𝑛 − 1

𝑛
)

1
(𝑛−1)

 

=
1

𝑛

1/(𝑛−1)

= 𝑛−1/(𝑛−1) 

17) Let 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 are real (n > 1) and 𝑨 +

 ∑ 𝒂𝒊
𝟐𝒏

𝒊=𝟏 <
𝟏

𝒏−𝟏
 (∑ 𝒂𝒊

𝒏
𝒊=𝟏 )𝟐 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝑨 <

2𝒂𝒊𝒂𝒋 𝒇𝒐𝒓 𝟏 ≤ 𝒊 ≤ 𝒋 ≤ 𝒏. 

Sol.: By the Cauchy-Schwarz inequality   

(∑𝑎𝑖

𝑛

𝑖=1

)

2

= [(𝑎1 + 𝑎2) − 𝑎3 +⋯+ 𝑎𝑛]
2

≤ (1 +⋯1 )((𝑎1 + 𝑎2)
2

+ 𝑎3
2… .+𝑎𝑛

2)

= (𝑛 − 1) [∑𝑎2
𝑛

𝑖=1

+ 2𝑎1𝑎2] 

This, together with the given inequality, 

implies that  

𝐴 < −(∑𝑎𝑖
2

𝑛

𝑖=1

) +
1

𝑛 − 1
(∑𝑎

𝑛

𝑖=1

)

2

< −(∑𝑎𝑖
2

𝑛

𝑖=1

)

+
1

𝑛 + 1
[(𝑛

− 1) [(∑𝑎2
𝑛

𝑖=1

− 2𝑎1𝑎2)]]

=  2𝑎1𝑎2. 

In a similar manner, 𝐴 <

2𝑎1𝑎2 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. 

18) If positive numbers p, q, r such that 𝟐𝒑 =

𝒒 + 𝒓, 𝒒 ≠ 𝒓 show that 
𝒑𝒒−𝒓

𝒒𝟐𝒓𝟐
< 1. 

Sol.: Suppose that q and r are positive 

integers, and consider the q number 
1

𝑞
……

1

𝑞
 

and the r. By the arthmatic mean geometric 

mean equality. 
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1

𝑞𝑞
.
1

𝑟𝑟

1/(𝑞+𝑟)

<
𝑞(1/𝑞) + 𝑟(1/𝑟)

𝑞 + 𝑟
=
1

𝑝
, 

𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎lent to the desired inequality 

of course, this method breaks down if either q 

or r is not an integer, so how shall we 

proceed? One idea is to rewrite the inequality 

in the following manner: 

𝑝𝑞+𝑟 < 𝑞𝑞𝑟
𝑟
, (
𝑞 + 𝑟

2
)
𝑞+𝑟

< 𝑞𝑞𝑟𝑟, (
1

2
)
𝑞+𝑟

< (
𝑞

𝑞 + 𝑟
)
𝑞

 

(
𝑟

𝑞 + 𝑟
)
𝑟

.
1

2

<  (
𝑞

𝑞 + 𝑟
)
𝑞/(𝑞+𝑟)

(
𝑟

𝑞 + 𝑟
)
𝑟/(𝑞+𝑟)

. 

𝑆𝑒𝑡 𝑥 =  
𝑞

(𝑞 + 𝑟)
 𝑎𝑛𝑑 𝑦 =  

𝑟

(𝑞 + 𝑟)
. 

𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝑡ℎ𝑎𝑡 𝑥 + 𝑦 = 1 𝑎𝑛𝑑 0 < 𝑥, 𝑦 < 𝑖. 

Then the problem is equivalent to proving 

that 

𝐹(𝑥) ≡ 𝑥
𝑥(1 − 𝑥)1−𝑥 >

1

2
, 0 < 𝑥 < 1, 𝑥 

≠
1

2
. 

By introducing the function in this way, we 

are able to use the methods of analysis. The 

idea is to find the minimum value of F on (0, 

1). To simplify the differentiation, we will 

consider the function 𝐺(𝑥) = log 𝐹(𝑥). To find 

the critical points, we differentiate: 

𝐺′(𝑥) =
𝑑

𝑑𝑥
[𝑥 log 𝑥 + (1 − 𝑥) log(1 − 𝑥)]

= (log 𝑥 + 1) − 1

− log(1 − 𝑥) = log
𝑥

1 − 𝑥
. 

𝑊𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡 𝐺′(𝑥) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 =
1

2
. 

Furthermore, 𝐺′(𝑥) < 0 on the interval 

(0,
1

2
)  𝑎𝑛𝑑 𝐺′(𝑥) > 0 on the interval (

1

2
, 1). 

Therefore 𝐺(𝑥) lakes its minimum value on 

(0, 1)𝑎𝑡 𝑥 =
1

2
. Thus, the minimum value of 

𝐹(𝑥) on (0, 1) is 𝐹
(
1

2
)
= (

1

2
)
1/2

=
1

2
. It follows 

that 𝐹(𝑥) >
1

2
 for all x in (0, 1) 𝑥 ≠

1

2
 and the 

proof is complete. 

 

19) If 𝟎 ≤  𝒙𝒊 < 𝜋, 𝑖 = 1,… . , 𝑛 and set 𝒙 =
𝟏

𝒏
(𝒙𝟏 + 𝒙𝟐 +⋯+

𝒙𝒏). 𝑺𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 ∏ (
𝐬𝐢𝐧𝒙𝒊

𝒙
)𝒏

𝒊=𝟏 ≤ (
𝐬𝐢𝐧𝒙

𝒙
)
𝒏

 

Sol.: The problem is equivalent to proving 

that ∑ log
sin𝑥𝑖

𝑥𝑖

𝑛
𝑖=1 ≤ 𝑛 log

sin 𝑥

𝑥
 consider the 

function 𝑓(𝑡) = log
sin 𝑡

𝑡
. 

It is a straight forward matter to show that f 

is concave (𝑓(𝑡)
𝑛 < 0) on the interval (0, 𝜋) 

Therefore,  

𝑓 (
𝑥1 + 𝑥2
2

) ≥
𝑓(𝑥1) + 𝑓(𝑥2)

2
. 

In a manner completely analogous to the 

proof it follows that  

𝑓 (
𝑥1 +⋯+ 𝑥𝑛

2
) ≥

𝑓(𝑥1) +⋯+ 𝑓(𝑥𝑛)

2
 

Direct substitution into this inequality 

completes the proof. 

log (
sin𝑥

𝑥
) ≥

1

𝑛
(log

sin 𝑥1
𝑥1

+⋯

+ log
sin 𝑥𝑛
𝑥𝑛

 ) 
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20) If a, b, c, d are non-negative numbers such 

that 𝒂 ≤ 𝟏, 𝒂 + 𝒃 ≤ 𝟓, 𝒂 + 𝒃 + 𝒄 ≤

𝟏𝟒, 𝒂 + 𝒃 + 𝒄 + 𝒅 ≤30.  Prove that √𝒂 +

√𝒃 + √𝒄 + √𝒅 ≤ 𝟏𝟎. 

Sol.: We will prove a more general statement. 

If 𝑎1, 𝑎2, … , 𝑎𝑛 are positive, 0 ≤ 𝑏1 ≤ 𝑏2 ≤

⋯ ≤ 𝑏𝑛 and for all 𝑘 ≤ 𝑛, 𝑎1 + 𝑎2 +⋯+ 𝑎𝑘 ≤

 𝑏1 + 𝑏2 +⋯+ 𝑏𝑘 , then √𝑎1 + √𝑎2 +⋯+

√𝑎𝑛 ≥ √𝑏1 +√𝑏2 +⋯+√𝑏𝑛. The special 

case of the original problem is obtained for n 

= 4, by setting 𝑏𝑘 = 𝑘
2, 𝑘 = 1, 2, 3, 4. Let us 

prove the above result, we have 
𝑎1

√𝑏1
+

𝑎2

√𝑏2
+

⋯+
𝑎𝑛

√𝑏𝑛
 

= 𝑎1 (
1

√𝑏1
−

1

√𝑏2
) (𝑎1 + 𝑎2) (

1

√𝑏2
−

1

√𝑏3
) +

(𝑎1 + 𝑎2 + 𝑎3) (
1

√𝑏3
−

1

√𝑏4
) +⋯+ (𝑎1 + 𝑎2 +

⋯+ 𝑎𝑛) 
1

√𝑏𝑛
 

The differences in the parenthesis are all 

positive. Using the hypothesis we obtain that 

this expression is less than or equal to  

𝑏1 (
1

√𝑏1
−

1

√𝑏2
) − (𝑏1 + 𝑏2) (

1

√𝑏2
−

1

√𝑏3
)

+⋯+ (𝑏1 + 𝑏2 +⋯+ 𝑏𝑛)
1

√𝑏𝑛
 

= √𝑏1 +√𝑏2 +⋯+√𝑏𝑛. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,  

𝑎1

√𝑏1
+
𝑎2

√𝑏2
+⋯+

𝑎𝑛

√𝑏𝑛

≤ √𝑏1 +√𝑏2 +⋯+√𝑏𝑛 

Using this result and the Cauchy-Schwarz 

inequality, we obtain. (√𝑎1 +√𝑎2 +⋯+

√𝑎𝑛)
2

 

= (4√𝑏1. √
𝑎1
𝑏1
+ 4√𝑏2. √

𝑎2
𝑏2
+⋯

+ 4√𝑏𝑛. √
𝑎𝑛
𝑏𝑛
)

2

≤ (√𝑏1 +√𝑏2 +⋯+√𝑏𝑛) 

𝑎1

√𝑏1
+
𝑎2

√𝑏2
+⋯+

𝑎𝑛

√𝑏𝑛

≤ (√𝑏1 +√𝑏2 +⋯

+√𝑏𝑛)
2 

𝑇ℎ𝑖𝑠 𝑔𝑖𝑣𝑒𝑠  √𝑎1 + √𝑎2 +⋯+√𝑎𝑛 ≤

 √𝑏1 +√𝑏2 +⋯+√𝑏𝑛. 

 

21) Suppose 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 be non-negative 

numbers such that 𝒂𝟏𝒂𝟐 − 𝒂𝒌 ≤
𝟏

(𝟐𝒌)!
  for 

all k. Show that 𝒂𝟏 + 𝒂𝟐 +⋯𝒂𝒏 ≥
𝟏

𝒏+𝟏
+

𝟏

𝒏+𝟐
+⋯+

𝟏

𝟐𝒏
. 

Sol.: We have 

 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = (1 −
1

2
) (1.2𝑎1) +

(
1

3
−
1

4
) (3.4𝑎2) + ⋯+ (

1

2𝑛−1
−

1

2𝑛
) ((2𝑛 −

1). 2𝑛𝑎𝑛) 

= (1 −
1

2
−
1

3
+
1

4
) (1.2𝑎1)

+ (
1

3
−
1

4
−
1

5
+
1

6
) 

(1.2𝑎1 + 3.4𝑎2) + ⋯

+ (
1

2𝑛 − 1
−
1

2𝑛
) (1.2𝑎1

+ 3.4𝑎2) + ⋯

+ (2𝑛 − 1). 2𝑛𝑎𝑛 

Using the AM-GM inequality and the 

hypothesis we obtain. 
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22) The numbers 𝒂𝟏 ≥ 𝒂𝟐… ≥ 𝒂𝒏 >

0 𝑎𝑛𝑑 𝒃𝟏 ≥ 𝒃𝟐 ≥ ⋯ ≥ 𝒃𝒏 >

0. 𝑆𝑎𝑡𝑖𝑠𝑓𝑦 𝒂𝟏 ≥ 𝒃𝟏, 𝒂𝟏 + 𝒂𝟐 ≥ 𝒃𝟏 +

𝒃𝟐, 𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏 ≥ 𝒃𝟏 + 𝒃𝟐 +⋯+

𝒃𝒏. Prove that 

𝒂𝟏
𝒌 + 𝒂𝟐

𝒌 +⋯+ 𝒂𝒏
𝒌 ≥ 𝒃𝟏

𝒌 + 𝒃𝟐
𝒌 +⋯+

𝒃𝒏
𝒌  for every positive integer k. 

Sol.: We can write 

𝑎𝑖
𝑘 − 𝑏𝑖

𝑘(𝑎𝑖 − 𝑏𝑖)(𝑎𝑖
𝑘−1 + 𝑎𝑖

𝑘−2 +⋯+

𝑎𝑖𝑏𝑖
𝑘−2 + 𝑏𝑖

𝑘−1)  

To simplify computations, set 𝑐𝑖 = 𝑎𝑖 =

 𝑏𝑖 𝑎𝑛𝑑 𝑑𝑖 = 𝑎2
𝑘−1 + 𝑎𝑖

𝑘−2𝑏𝑖 +⋯+

𝑎𝑖𝑏𝑖
𝑘−2 + 𝑏𝑖

𝑘−1. 

The hypothesis implies 𝑐1 + 𝑐2 +⋯+ 𝑐𝑗 ≥ 0  

for all j and 𝑑𝑖 > 𝑑𝑖+1 > 0 the latter since 

𝑎𝑖  𝑎𝑛𝑑 𝑏𝑖 are decreasing positive sequences. 

Hence 𝑎1
𝑘 − 𝑏1

𝑘 + 𝑎2
𝑘 − 𝑏2

𝑘 +⋯+ 𝑎𝑛
𝑘 −

𝑏𝑛
𝑘 = 𝑐1𝑑1 + 𝑐2𝑑2 +⋯+ 𝑐𝑛𝑑𝑛 =

(𝑑1 − 𝑑2)𝑐1 + (𝑑2 − 𝑑3)(𝑐1 + 𝑐2) + ⋯+

𝑑𝑛(𝑐1 + 𝑐2 +⋯+ 𝑐𝑛) ≥ 0   the inequality is 

proved. 

 

23) If 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 and𝒚𝟏 ≥ 𝒚𝟐 ≥ ⋯ ≥ 𝒚𝒏  be 

two sequence of positive numbers such 

that 𝒙𝟏 ≥ 𝒚. 

𝒙𝟏𝒙𝟐 ≥ 𝒚𝟏𝒚𝟐……… . . 𝒙𝟏𝒙𝟐…𝒙𝒏 ≥

 𝒚𝟏𝒚𝟐……𝒚𝒏.  

𝑺𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏 ≥ 𝒚𝟏 +

𝒚𝟐 +⋯+ 𝒚𝒏.  

Sol.: We want to reduce the inequalities 

involving products to inequality involving 

sums. For this we use the A.M. GM inequality 

we have  

𝑥1
𝑦1
+
𝑥2
𝑦2
+⋯+

𝑥𝑘
𝑦𝑘
≥ 𝐾 √

𝑥1
𝑦1
 

𝑘 𝑥2
𝑦2
…… . .

𝑥𝑘
𝑦𝑘

≥ 𝐾,  

𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑓𝑜𝑖𝑙𝑜𝑤𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠.  

Returning to the original inequality we have 

𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 =
𝑥1
𝑦1
𝑦1 +

𝑥2
𝑦2
𝑦𝑛 =

𝑥1
𝑦1

 

(𝑦1 − 𝑦2) + (
𝑥1
𝑦1
+
𝑥2
𝑦2
) (𝑦2 − 𝑦3) + ⋯

+ (
𝑥1
𝑦1
+
𝑥2
𝑦2
+⋯+

𝑥𝑛
𝑦𝑛
) 𝐼𝑛. 

By using the inequality deduced at the 

beginning of the solution for the first factor in 

each term, we obtain that this expression is 

greater than or equal to 

1 − (𝑦1 − 𝑦2) + 2(𝑦2 − 𝑦3) + ⋯+ 𝑥𝑦𝑛  

= 𝑦1 + 𝑦2 +⋯+ 𝑦𝑛 and we and done. 

 

24) Let {𝒂𝒏} be a sequence of positive 

numbers such that for all n, ∑ 𝒂𝒌
𝒏
𝒌=𝟏 ≥

 √𝒏. 𝑺𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 

 ∑ 𝒂𝟐𝒌
𝒏
𝒌=𝟏 ≥

𝟏

𝟒
(𝟏 +

𝟏

𝟐
+⋯+

𝟏

𝒏
) for all 

n. 

Sol.: We start by proving another inequality, 

namely that if 𝑎1, 𝑎2, … . , 𝑎𝑛 are positive and  

𝑏1 ≥ 𝑏2 ≥ ⋯…… . 𝑏𝑛 ≥ 0 and if for all  

𝐾 ≥ 𝑛, 𝑎1 + 𝑎2 +⋯+ 𝑎𝑘 ≥ 𝑏1 ≥

 𝑏2 +⋯+ 𝑏𝑘 , than 

𝑎1
2 + 𝑎2

2 +⋯+ 𝑎𝑛
2 ≥ 𝑏1

2 + 𝑏2
2 +

⋯+ 𝑏𝑛
2.   

This inequality is the same as the one in 

problem 2 in the particular case where the 

exponent is 2, but with a weaker hypothesis 
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using the Able summation formula, we can 

write   

𝑎1𝑏1 + 𝑎2𝑏2 +⋯+ 𝑎𝑛𝑏𝑛 = 𝑎1(𝑏1 − 𝑏2) +

(𝑎1 + 𝑎2)(𝑏2 − 𝑏3) + (𝑎1 + 𝑎2 + 𝑎3)(𝑏3 −

𝑏4) + ⋯+ (𝑎1 + 𝑎2 +⋯+ 𝑎𝑛) 𝑏𝑛 this 

inequalities in the statement show that this is 

greater than or equal to 𝑏1(𝑏1 − 𝑏2) +

(𝑏1 + 𝑏2)(𝑏2 − 𝑏3) + ⋯+ (𝑏1 + 𝑏2 +⋯+

𝑏𝑛)𝑏𝑛 = 𝑏1
2 + 𝑏2

2 +⋯+ 𝑏𝑛
𝑛  combining this 

with the canchy Schwarz  inequality we obtain 

(𝑎1
2 + 𝑎2

2 +⋯+ 𝑎𝑛
2)(𝑏1

2 + 𝑏2
2 +⋯+

𝑏𝑛
2) ≥  (𝑎1𝑏1 + 𝑎2𝑏2 +⋯+ 𝑎𝑛𝑏𝑛)

2 ≥

 (𝑏1
2 + 𝑏2

2 +⋯+ 𝑏𝑛
2)2 and the proof is 

complete. 

Returning to our problem, note first that √𝑛 −

√𝑛 − 1 >
1

2√𝑛
 Indeed, multiplying by the 

rational conjugate of the left side, this becomes 

𝑛(𝑛 − 1) >
(√𝑛 − √𝑛 − 1)

(2√𝑛)
. 

After eliminating the denominators and 

cancelling out terms, this becomes √𝑛 −

√𝑛 − 1. 

The conclusion of the problem now follow from 

the inequality proved in the beginning by 

choosing 𝑏𝑛 = √𝑛 − √𝑛 − 1. 

 

25) Suppose 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏, 𝒚𝟏, 𝒚𝟐, . . , 𝒚𝒏 be 

positive real numbers such that  

(i) 𝒙𝟏𝒚𝟏 < 𝒙𝟐𝒚𝟐 < ⋯ < 𝒙𝒏𝒚𝒏 

(ii) 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒌 ≥ 𝒚𝟏 + 𝒚𝟐 +⋯+

𝒚𝒌 𝒘𝒉𝒆𝒓𝒆 𝟏 ≤ 𝒌 ≤ 𝒏. 

Sol.:  

(a) Let 𝑆𝑘 = (𝑥1 − 𝑦1) + (𝑥2 − 𝑦2) + ⋯+

(𝑥𝑘 − 𝑦𝑘)𝑎𝑛𝑑  

𝑍𝑘 =
1

𝑥𝑘𝑦𝑘
 Then we have 𝑆𝑘 ≥ 0 𝑎𝑛𝑑 𝑧𝑘 −

𝑧𝑘+1 > 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝐾 = 1, 2,… , 𝑛 − 1.  

It follows that  

1

𝑥1
+
1

𝑥2
+⋯+

1

𝑥𝑛
−
1

𝑦1
−
1

𝑦2
…
1

𝑦𝑛
 

= (
1

𝑥1
−
1

𝑦1
) + (

1

𝑥2
−
1

𝑦2
) +⋯+ (

1

𝑥𝑛
−
1

𝑦𝑛
) 

=
𝑦1 − 𝑥1
𝑥1𝑦1

+
𝑦2 − 𝑥2
𝑥2𝑦2

+⋯+
𝑦𝑛 − 𝑥𝑛
𝑥𝑛𝑦𝑛

 

= 𝑆1𝑍1 − (𝑆2 − 𝑍2)𝑍2… . . −(𝑆𝑛
− 𝑆𝑛−1)𝑍𝑛
= −𝑆1(𝑍1 − 𝑍2)

− 𝑆2(𝑍2
− 𝑍3)…… . 𝑆𝑛−1(𝑍𝑛−1
− 𝑍𝑛) 

−𝑆𝑛𝑍𝑛 ≤ 0 with equality if and only if 𝑆𝑘 =

0,𝐾 = 1, 2, … . , 𝑛 that is, when 𝑥𝑘 =

 𝑦𝑘 , 𝐾 = 1, 2, … , 𝑥. 

(b) We can assume without loss of generality 

that 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛. From the 

hypothesis it follows that if or any partition 

of the set {𝑎1, 𝑎2, … , 𝑎𝑛} into two subset 

since we can perform such a partition in 2𝑘 

ways it follows that 𝑎1 + 𝑎2 +⋯+ 𝑎𝑘 ≥

2𝑘 . we now apply (a) to the numbers 𝑎1 +

𝑎2 +⋯+ 𝑎𝑛 𝑎𝑛𝑑 1.2. 2
2…2𝑛−1. 

(whose sum is 2𝑛 − 1) . It follows that 
1

𝑎1
+

1

𝑎2
+⋯+

1

𝑎𝑛
≤
1

1
+
1

2
+⋯+

1

2𝑛−1
=

 2 −
1

2𝑛−1
 

 

 

26) If 𝟎 =  𝒂𝟎 < 𝒂𝟏 < ⋯ < 𝒂𝒏 𝒂𝒏𝒅 𝒂𝒊+𝟏 −

𝒂𝒊 ≤ 𝟏 𝒇𝒐𝒓 𝟎 ≤ 𝒊 ≤ 𝒏 − 𝟏 then show that 

(∑ 𝒂𝒊
𝒏
𝒊=𝟎 )𝟐 ≥ ∑ 𝒂𝒊

𝟑𝒏
𝒊=𝟎  

Sol.: Try to prove that   
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(∑𝑎𝑖

𝑛

𝑖=0

)

2

−∑𝑎𝑖
3

𝑛

𝑖=0

= 2∑∑𝑎𝑖

𝑛

𝑗=0

 

𝑛

𝑖=0

𝑎𝑗 + 𝑎𝑗 − 1

2
 

[1 − (𝑎𝑗 − 𝑎𝑗−1)] we have equality if 𝑎𝑗 −

𝑎𝑗−1 = 1 for j = 1, …, n. 

This gives the well known (∑ 𝑖𝑛
𝑖=0 )

2 − ∑ 𝑖3𝑛
𝑖=0  

 

27) Prove that, for any positive numbers 

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌(𝒌 ≥ 𝟒) 
𝒙𝟏

𝒙𝒌+𝒙𝟐
+

𝒙𝟐

𝒙𝟏+𝒙𝟑
+⋯+

𝒙𝟏

𝒙𝒌−𝟏+𝒙𝟏
≥ 𝟐. Can you replace 2 by a greater 

number? 

Sol.: Denote the L.H. S of the inequality by 𝐿𝑘 .  

For K = 4,  we have 

𝐿4
𝑥1

𝑥4 + 𝑥2
+

𝑥2
𝑥1 + 𝑥3

+
𝑥3

𝑥2 + 𝑥4
+

𝑥4
𝑥1 + 𝑥3

=
𝑥1 + 𝑥3
𝑥2 + 𝑥4

+
𝑥2 + 𝑥4
𝑥1 + 𝑥3

≥ 2 

Now suppose that the proposed inequality is 

true for some 𝑘 ≥ 4. i.e., that 𝐿𝑘 ≥ 2. Consider 

k+1 arbitary positive numbers  

𝑥1, 𝑥2, … . , 𝑥𝑘 , 𝑥𝑘+1. Since 𝐿𝑘+1, is symmetric 

with respect to these number without loss of 

generality , we may assume that 𝑥𝑖 ≥

 𝑥𝑘+1 𝑓𝑜𝑟 𝑖 = 1,… . , 𝑘. 𝑇ℎ𝑢𝑠, 

𝐿𝑘+1 =
𝑥1

𝑥𝑘+1 + 𝑥1
+⋯+

𝑥𝑘
𝑥𝑘−1 + 𝑥𝑘−1

+
𝑥𝑘+1
𝑥𝑘 + 𝑥1

> 𝐿𝑘 ≥ 2. 

Now we prove 2 cannot be replaced by a larger 

number. Consider the case k = 2m, where m is a 

positive integer  >1 set 𝑥1 = 𝑥2𝑚 = 1, 𝑥2 =

 𝑥2𝑚−1,𝑥3 = 𝑥2𝑚−2 = 𝑡
2, … . , 𝑥𝑚 = 𝑥𝑚+1 =

 𝑡𝑚−1 

Where t is an arbitrary positive number. Then 

𝐿𝑘 simplifies to 𝐿𝑘 = 2.  

1 +
(𝑚 − 2)𝑡

1 + 𝑡2
. 𝐻𝑒𝑛𝑐𝑒, 𝑙𝑖𝑚 → ∞ 𝐿𝑘 = 2. 

We can proceed similarly in the case 𝑘 = 2𝑚 +

1. 

 

28) If x, y, z be positive reals with 𝒙𝒚 + 𝒚𝒛 +

𝒛𝒙 = 𝟏 prove that 
𝟐𝒙(𝟏−𝒙𝟐)

(𝟏+𝒙𝟐)𝟐
+
𝟐𝒚(𝟏−𝒚𝟐)

(𝟏+𝒚𝟐)𝟐
+

𝟐𝒛(𝟏−𝒛𝟐)

(𝟏+𝒛𝟐)𝟐
≤ 

𝒙

𝟏 + 𝒙𝟐
+

𝒚

𝟏 + 𝒚𝟐
+

𝒛

𝟏 + 𝒛𝟐
 

Sol.: This reminds of the formula sin 𝛼 =

2 tan (
𝛼

2
) [1 + 𝑡𝑎𝑛2  (

𝛼

2
)] 𝑎𝑛𝑑 cos𝛼 =

[1−𝑡𝑎𝑛2 (
𝛼

2
)]

[1+𝑡𝑎𝑛2 (
𝛼

2
)]
. 

𝑆𝑜 𝑙𝑒𝑡 𝑢𝑠 𝑠𝑒𝑡 𝑥 = tan (
𝛼

2
) , 𝑦 = tan (

𝛽

2
) , 𝑧

= tan (
𝛾

2
) 

The inequality now becomes, cos 𝛼 sin𝛼 +

cos𝛽 sin𝛽 + cos 𝛾 sin𝛾 ≤
(sin𝛼+sin𝛽+sin𝛾)

2
 

sin2𝛼 + sin2𝛽 + sin 2𝛾 ≤ sin𝛼 + sin𝛽 +

sin𝛾  (1) until now we ignored 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 =

1. It is satisfied if 𝛼+ 𝛽+ 𝛾 = 𝜋. Indeed 𝑧 =

tan (
𝜋

2
−
𝛼

2
−
𝛽

2
) = cot (

𝛼

2
+
𝛽

2
) =

(1−𝑥𝑦)

(𝑥+𝑦)
, 𝑎𝑛𝑑 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 𝑥𝑦 + (𝑥 + 𝑦)𝑧 =

𝑥𝑦 + 1 − 𝑥𝑦 = 1. 

We may assume that in (1) we are dealing 

with the angles 𝛼, 𝛽, 𝛾 of a triangle. By the 

sine law, for the RHS we have 

sin 𝛼 + sin𝛽 + sin 𝛾 =
𝑎 + 𝑏 + 𝑐

2𝑅
=
2𝑆

2𝑅
=
𝑆𝑟
𝑅𝑟

=
𝐴

𝑟𝑅
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Denote the distance of the circumcentre M. 

from a, b, c by x, y, z. Then, for the LHS we get 

sin 2𝛼 + sin 2𝛽 + sin2𝛾

= 2(sin𝛼 cos𝛼 + sin𝛽 cos 𝛽 + sin𝛾 cos 𝛾)

=
𝑎 cos𝛼 + 𝑏 cos𝛽 + 𝑐 cos 𝛾

𝑅
 𝑏𝑢𝑡  

𝑎 cos 𝛼 + 𝑏 cos𝛽 + 𝑐 cos 𝛾 = 𝑎.
𝑥

𝑅
+ 𝑏.

𝑦

𝑅
+ 𝑐.

𝑧

𝑅

=
2.4

𝑅
 

𝐻𝑒𝑛𝑐𝑒,
sin 𝛼 + sin𝛽 + sin 𝛾

sin 2𝛼 + sin 2𝛽 + sin2𝛾
=
𝑅

2𝑟
≥ 1. 

 

 

29) Prove that for real numbers 𝒙𝟏 ≥ 𝒙𝟐 ≥

⋯ ≥ 𝒙𝒏 > 0. 
𝒙𝟏
𝒙𝟐
+
𝒙𝟐
𝒙𝟑
+⋯+

𝒙𝒏−𝟏
𝒙𝒏

+
𝒙𝒏
𝒙𝟏

≤
𝒙𝟐
𝒙𝟏
+
𝒙𝟑
𝒙𝟐
+⋯+

𝒙𝒏
𝒙𝒏−𝟏

+
𝒙𝟏
𝒙𝒏
. 

 

Sol.: Transfer all terms to the left side and 

look at all terms with an 𝑥𝑛: 𝑓(𝑥) =
𝑥𝑛−1

𝑥𝑛
+
𝑥𝑛

𝑥1
−

𝑥𝑛

𝑥𝑛−1
−
𝑥1

𝑥𝑛
. Let us find the minimum of this 

function on the interval [𝑥𝑛−1,∞]. the 

derivation of 𝑓(𝑥𝑛)  on this interval is positive, 

and hence the minimum is attained at 𝑥𝑛 =

 𝑥𝑛−1. Inserting 𝑥𝑛 = 𝑥𝑛−1 into the inequality, 

we get same inequality, but for variables 

𝑥1 𝑡𝑜 𝑥𝑛−1. We finish the proof by induction. 

 

 

 

30) Let n > 2 and 𝒙𝟏, 𝒙𝟐, … . , 𝒙𝒏 be non 

negative reals. Prove that 

(𝒙𝟏𝒙𝟐, … . , 𝒙𝒏)
𝟏

𝒏 +
𝟏

𝒏
∑ |𝒙𝒊 − 𝒙𝒋|𝒊<𝑗 ≥

𝟏

𝒏
(𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏) 

 

Sol.: We may assume that 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛 . 

Then all the points 𝑥1, … . , 𝑥𝑛 lie on the 

segment [𝑥𝑛, 𝑥1]. Hence |𝑥𝑖 − 𝑥𝑗| ≤  |𝑥𝑛 − 𝑥1|. 

In addition, |𝑥1 − 𝑥𝑘| + |𝑥𝑘 − 𝑥𝑛| = 𝑥1 − 𝑥𝑛 

for k = 2, …., n -1. Together with |𝑥1 − 𝑥𝑛|we 

get the estimate ∑ |𝑥𝑖 − 𝑥𝑗|𝑖>𝑗 ≥ (𝑛 − 1)(𝑥1 −

𝑥𝑛) 

𝑆𝑖𝑛𝑐𝑒 (𝑥1…𝑥𝑛)
1

𝑛 ≥ 𝑥𝑛, it is sufficient to prove 

that 𝑥𝑛 +
1

𝑛
(𝑛 − 1) (𝑥1 − 𝑥𝑛 ≥

𝑥1+⋯+𝑥𝑛

𝑛
) 

𝑜𝑟, 𝑥𝑛 + (𝑛 − 1)𝑥𝑖 ≥ 𝑥1 +⋯+ 𝑥𝑛, which is 

valid. The proof of this weak inequality was 

so simple since. We could get by with huge 

over estimations. 

 

SET THEORY 

(OBJECTIVE TYPE) 

1) Which of the following has only one 

subset? 

(a) { };   (b) {4};   (c) {0};   (d) none 

Sol.: Subsets of { }i.e. 𝜙 is 𝜙. Subsets of {4} 

are 𝜙, {4} subsets of {4, 5} are 𝜙 {4}, {5}, 

{4, 5}. Subsets of {0} are 𝜙, {0}  

∴ cannot answer is (a). 

 

2) If A = {𝒙 ∈ 𝒄; 𝒙𝟐 = 𝟏}𝒂𝒏𝒅 𝑩 = {𝒙 ∈

𝒄; 𝒙𝟒 = 𝟏}, then A ∆ B =  

(a) {−𝟏, 𝟏}; (b) {−𝒊, 𝒊};   (c) {−𝟏, 𝟏, 𝒊, −𝒊}  

(d) none 
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Sol.: 𝑥2 = 1 ⟹ 𝑥 = −1, 1                            ∴

𝐴 = {−1, 1} 

𝑥4 = 1 ⟹ 𝑥2 = −1, 1 ⟹ 𝑥 =  −𝑖, 𝑖, −1, 1  

∴ 𝐵 = {−𝑖, 𝑖, −1, 1} 

∴ 𝐴 ∆𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴)

=  𝜙 ∪ {−𝑖, 𝑖} = {−𝑖, 𝑖} 

3) If 𝒏(𝑨) = 𝟑, 𝒏(𝑩) = 𝒚, 𝒕𝒉𝒆𝒏 𝒏(𝑨 × 𝑨 ×

𝑩) =  

(a) 36;   (b) 102;  (c) 108;   (d) none 

Sol.: 𝑛(𝐴 × 𝐴 × 𝐵) = 𝑛(𝐴) × 𝑛(𝐴) ×

𝑛(𝐵) = 3 × 3 × 4 = 36 

4) If u = R and let A = {𝒙 ∊ 𝑹: 𝟎 < 𝑥 <

2},𝑩 = {𝒙 ∊ 𝑹: 𝟏 < 𝑥 ≤ 3} which of the 

following is false? 

(a) 𝑨 ∩ 𝑩 = {𝒙 ∊ 𝑹: 𝟏 < 𝑥 < 2} 

(b) 𝑨′ = {𝒙 ∊ 𝑹: 𝒙 ≤ 𝟎 𝒐𝒓 𝒙 ≤ 𝟐} 

(c) 𝑨 ∪ 𝑩 = {𝒙 ∊ 𝑹: 𝟎 ≤ 𝒙 ≤ 𝟑}; 

(d) 𝒏𝒐𝒏𝒆 

Sol.: 𝐴′ = 𝑅 − 𝐴 = {𝑥 ∊ 𝑅: 𝑥 ≤ 0 𝑜𝑟 𝑥 ≥ 2} 

𝐵′ = 𝑅 − 𝐵 = {𝑥 ∊ 𝑅: 𝑥 ≤ 1 𝑜𝑟 𝑥 > 3}  

𝐴 ∪ 𝐵 = {𝑥 ∊ 𝑅: 𝑥 ∊ 𝐴 𝑎𝑛𝑑 𝑥 ∊ 𝐵} = {𝑥 ∊

𝑅: 0 < 𝑥 ≤ 3}  

 

5) The set (A ∪ B ∩C) ∩(𝑨 ∪ 𝑩′ ∪ 𝑪′)′𝒏𝒄′=  

(a) A ∩ C;   (b) B’ ∩ C’;    (c) B ∩ C’   (d) 

none 

Sol.: (A ∪ B ∪C) ∩(𝐴 ∪ 𝐵′ ∩ 𝐶′)′ ∩ 𝐶′ 

= (𝐴 ∪ 𝐵 ∪ 𝐶) ∩ (𝐴′ ∪ 𝐵 ∪ 𝐶) ∩ 𝐶′  

= (𝜙 ∪ 𝐵 ∪ 𝐶) ∩ 𝐶′ = (𝐵 ∪ 𝐶) ∩ 𝐶′ =

(𝐵 ∩ 𝐶′) ∪ (𝐶 ∩ 𝐶′)  

= (𝐵 ∩ 𝐶′) ∪ 𝜙 = 𝐵 ∩ 𝐶′  

6) If  𝑨 = {(𝒙, 𝒚): 𝒚 =
𝟏

𝒙
, 𝟎 ≠ 𝒙 ∊

𝑹}𝒂𝒏𝒅 𝑩 = {(𝒙, 𝒚): 𝒚 =  −𝒙, 𝒙 ∊ 𝑹}, 𝒕𝒉𝒆𝒏 

(a) A ∩B = 𝜙   (b) A ∩B = A;   (c) A∩ B = 

B;   (d) none 

Sol.: Here A and B can be shown as; 

⟹A ∩ B = 𝜙 

7) Let x be the universal set for sets A and B. 

If 𝒏(𝑨) = 𝟐𝟎𝟎,𝒏(𝑩) =  𝟑𝟎𝟎 𝒂𝒏𝒅 𝒏(𝑨 ∩

𝑩) =  𝟏𝟎𝟎, then 𝒏(𝑨′ ∩ 𝑩′) = 𝟑𝟎𝟎 

provides n(x)= 

(a) 500;   (b) 600;   (c) 700;  (d) none 

Sol.: We have 𝑛(𝐴 ∩ 𝐵) =  𝑛(𝐴) + 𝑛(𝐵) −

𝑛(𝐴 ∩ 𝐵) 

∴ 𝑛(𝐴 ∪ 𝐵) = 200 + 300 − 100 = 400  

𝐴𝑙𝑠𝑜, 𝑛(𝐴′ ∪ 𝐵′) = 𝑛(𝐴 ∪ 𝐵′) = 𝑛(𝑥) −

𝑛(𝐴 ∪ 𝐵)  

∴ 300 = 𝑛(𝑥) − 400 𝑜𝑟 𝑛(𝑥) = 700.  

 

8) If A ∪ B = A ∪ C and A ∩B = A ∩ C, then 

(a) B = C only when A ⊆ C 

(b) B = C;  

(c) B= C only when A ⊆ B 

(d) Done 

Sol.: Let x ∊ B ⟹ x ∊ A ∪ B ⟹ x ∊ A ∪ C 

Case I: x ∊ A, x ∊ A ∩ B or x ∊ A ∩ C or x ∊ 

C, B⊆C 

Case II: x ∊ C, x∊ B⟹ x ∊ C or B ⊆ C 

Similarly C⊆ B  

∴ B = C 
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9) If A = {𝜽: 𝟐 𝒄𝒐𝒔𝟐𝜽 + 𝐬𝐢𝐧𝜽 ≤ 𝟐} 𝒂𝒏𝒅  

𝑩 = {𝜽:
𝝅

𝟐
≤ 𝜽 ≤

𝟑𝝅

𝟐
}  𝒕𝒉𝒆𝒏 𝑨 ∩ 𝑩 = 

(a) {𝜽: 𝝅 ≤ 𝜽 ≤
𝟑𝝅

𝟐
} ; 

(b) {𝜽:
𝝅

𝟐
≤ 𝜽 ≤

𝟓𝝅

𝟔
𝒐𝒓 𝝅 ≤  𝜽 ≤

𝟑𝝅

𝟐
} ; 

(c) {𝜽: 𝝅 ≤ 𝜽 ≤
𝟓𝝅

𝟔
} 

(d) None 

Sol.: Let 2 𝑐𝑜𝑠2𝜃 + sin𝜃 ≤ 2 𝑎𝑛𝑑
𝜋

2
≤ 𝜃 <

3𝜋

2
 

⟹ 2 − 2 𝑠𝑖𝑛2𝜃 + sin𝜃 ≤ 2 ⟹ 2 𝑠𝑖𝑛2𝜃 −

sin𝜃 ≥ 0  

⟹ sin 𝜃 (2 sin 𝜃 − 1) ≥ 0 ⟹
𝜋

2
≤ 𝜃

≤
5𝜋

6
 𝑜𝑟 𝜋 ≤ 𝜃 ≤

3𝜋

6
 

∴ 𝐴 ∩ 𝐵 = {𝜃:
𝜋

2
≤ 𝜃 ≤

5𝜋

2
 𝑜𝑟 𝜃 ≤ 𝜋

≤
3𝜋

2
} 

 

10) If A and B be two sets such that 

𝒏(𝑨 × 𝑩) = 𝟔.  

Let three elements of 𝑨 ×

𝑩 𝒂𝒓𝒆 (𝟑, 𝟐)(𝟕, 𝟓)(𝟖, 𝟓)then  

(a) A= {3, 7, 8};   (b) B = {2, 5};   (c) C = 

{3, 5};  (d) none 

Sol.: Since (3, 2), (7, 5), (8, 5)∊ A × B, we 

have 3, 7, 8∊ A and 2, 5 ∊B. 

Also 𝑛(𝐴 × 𝐵) = 6 = 3 × 2 

A = {3, 7, 8} and B = {2, 5} 

Since the graphs of 𝑥𝑦 = 4 and y = x, x > 

0 intersect ay one point, we have 𝐴 ∩ 𝐵 =

 𝜙 and A ∩B is a single set. 

 

11) A set contains n elements, then its power 

set 

(a) n element;   (b) 𝟐𝒏 elements;   (c) 𝒏𝒏 

elements   (d) none 

Sol.: As power set is set of all subsets, and 

we know number of subsets of a set 

containing n element is 2𝑛. 

∴Power set contains 2𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 

 

12) If A and B are sets, then 𝑨 ∩ (
𝑩

𝑨
)is 

(a) 𝜙;   (b) A;   (c) B;    (d) none 

Sol.: Let x ∊ 𝐴 ∩ (
𝐵

𝐴
) ⟹ 𝑥 ∊ 𝐴 𝑎𝑛𝑑 (𝑥 ∊

𝐵

𝐴
) 

⟹ 𝑥 ∊ 𝐴 𝑎𝑛𝑑 (𝑥 ∊ 𝐵 𝑎𝑛𝑑 𝑥 ∉ 𝐴) ⟹ 𝑥 ∊

𝜙  

∴ 𝐴 ∩ (
𝐵

𝐴
) ⊂ 𝜙 ………… . . (1) 

𝑆𝑖𝑛𝑐𝑒 𝜙 ⊂ 𝐴 ∩ (
𝐵

𝐴
)…………(2) 

∴ 𝐹𝑟𝑜𝑚 (1) 𝑎𝑛𝑑 (2) 𝐴 ∩ (
𝐵

𝐴
) = 𝜙 

 

13) Let R be set of points inside a rectangle of 

sides a and b (a, b>1) with two sides along 

the positive direction of x-axis and y-axis 

and C be the set of points inside a unit 

circle central at origin, then 

(a) 𝑹 = {(𝒙, 𝒚): 𝟎 ≤ 𝒙 ≤ 𝒂, 𝟎 ≤ 𝒚 ≤ 𝒃}; 

(b) 𝑹 = {(𝒙, 𝒚): 𝟎 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏}; 

(c) 𝑹 ∪ 𝑪 = 𝑹; 

(d)  None 

Sol.: Since, R denotes the set of points 

inside the rectangle of sides a and b for 

both a and b >1, then 𝑅{(𝑥, 𝑦): 0 < 𝑥 <
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𝑎, 0 < 𝑦 < 𝑏}.  Also C is the set of points 

inside the unit circle, centred at origin, 

such that 𝑆 = {(𝑥, 𝑦): 𝑥2 + 𝑦2 < 1}  

14) Which of the following is not correct? 

(a) 𝑨 ⊆ 𝑨𝒄 if and only if A = 𝜙; 

(b) 𝑨 = 𝑩 is equivalent to A ∪ C= B ∩ C 

and A ∩ C= B ∩ C; 

(a) 𝑨𝒄 ⊆ 𝑨 if and only if A = x, where x is a 

universal set. 

(b) 𝒏𝒐𝒏𝒆 

Sol.: 𝐴𝑐  satisfies (A) and (B) by definition 

(D) also follows trivially. 

Assuming A to be any set other than the 

empty set also 𝐵 = 𝐴 𝑎𝑛𝑑 𝐶 =

 𝜙,𝑤𝑒 ℎ𝑎𝑣𝑒 𝐴 ∪ 𝐵 = 𝐴 − 𝐴 ∪ 𝐶 𝐵𝑢𝑡 𝐵 ≠

𝐶, 𝑠𝑜 (c) is incorrect. 

15) Let S is the set of points inside the square. 

T is the set of points inside the triangle and 

C is the set of the points inside the circle. If 

the triangle and circle intersect each other 

and are contained in the square , then 

(a) S∩ T ∩ C ≠ 𝜙;   (b) S ∪T ∪C =C;   (c) S 

∪T =S ∪C;   (d) none 

Sol.: Since, T ∩ C≠ 𝜙 and S∩ T ∩ C= T ∩ C 

so option (c) is true 

Also T ⊂ S and C ⊂ S, So S ∪ T ∪ C = S 

Also, S∪ T = S = S∪ C. 

 

16) The set (𝑨 ∩ 𝑩𝒄)𝒄 ∪ (𝑩 ∩ 𝑪) =  

(a) 𝑨𝒄  ∪ 𝑩;   (b) 𝑨𝒄 ∪ 𝑩 ∪ 𝑪;   (c) 𝑨𝒄 ∪

 𝑩𝒄; (d) none 

Sol.: Let S =  (𝐴 ∩ 𝐵𝑐)𝑐 ∪ (𝐵 ∩ 𝐶) 

⟹ 𝑆 = ( 𝐴𝑐 ∪ 𝐵) ∪ (𝐵 ∩

𝐶) (𝐷𝑒 𝑀𝑜𝑟𝑔𝑎𝑛′𝑠𝐿𝑎𝑤)   

⟹ 𝑆 =  𝐴𝑐 ∪ (𝐵 ∪ (𝐵 ∩ 𝐶)) ∴ 𝑆 =  𝐴𝑐 ∪ 𝐵  

17) Of the numbers of 3 teams in a college 21 

are in the cricket team, 26 are in hockey 

team and 29 are in the football team. 

Among team, 14 play football and cricket. 

Eight play all the three games. The total 

number of members in the three teams is 

(a) 43;   (b) 49;   (c) 64;   (d) none. 

Sol.: (a) Let C, H, F denote the sets 

members who are on the cricket, hokey 

and football team respectively. 

∴ n(C) = 21, n(H) = 26, n(F) = 29, n(C ∩ 

B) = 14, n(C∩ F) = 15, n(F ∩ C) = 12 and 

n(C ∩ H ∩ F)= 8. 

∴n(C ∪ H ∪ F) = n(C) + n(H)+ n(F) –n(C 

∩ H) –n (H∩ F) –n (F ∩) +n(C∩ H ∩ F) 

= (21 + 26 + 29) − (14 + 15 + 12) +

9 = 43.  

 

(SUBJECTIVE TYPE) 

1)  If the collection of all these three elements 

subsets drawn from the set {1, 2, 3, …., 

300}. Find the number of these subsets for 

which the sum of the three elements is a 

multiple of 3. 

Sol.: For 0 ≤ 𝑗 ≤ 2, 𝑙𝑒𝑡 𝐴𝑗  denote the set of 

all integers between 1 and 300 which 

leave remainder j when divided by 3. 

Then |𝐴𝑗| = 100 𝑓𝑜𝑟 0 ≤ 𝑗 ≤ 2. If a, b, c is 

a 3-element subset of the given set 

𝑠′ = 1, 2,… , 300 then 3 divides a+ b+ c if 

and only if 

(i) All a, b, c are in𝐴0 or in 𝐴1 𝑜𝑟 𝑖𝑛 𝐴2 

(ii) One of the a, b, c is in 𝐴0, another in 

𝐴1, and the third one in 𝐴2. 
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The number of 3 element subsets of 

𝐴1, 0 ≤ 𝑗 ≤ 2 is (100
3
). For each choice of a 

in 𝐴0. b in 𝐴1 and c in 𝐴2. 

We get a 3-element subset such that 3 

divides a+ b+ c. 

Thus the total number of 3-element 

subsets {a, b, c} such 3 divides a +b +c is 

equal to 3(100
3
) + 1003 = 1495100 

 

2) How many 3-element subset of the set {1, 

2, 3, …, 20} are there such that the product 

of the three number in the subset is 

divided by 4? 

Sol.:  We cannot the 3-element subset {a, 

b, c} such that 4 does not divide 𝑎𝑏𝑐. This 

is possible if and only if either all the 

three are odd numbersor any two of them 

are odd and the other is an even number 

not divisible by 4. There are 10 odd 

numbers in the set {1, 2, 3, …20} and 5 

even numbers not divided by 4. Thus the 

numbers of 3-element subset {a, b, c} such 

that 4 does not divide 𝑎𝑏𝑐 is equal to 

(10
3
) + 5(10

3
) = 345. The number of 3 

element subset is  

(20
3
) = 1140. Thus the number of 3 

element subsets such that the product of 

these element is divisible by 4 is equal to 

1140 − 345 = 795. 

 

3) Suppose 𝑨𝟏, 𝑨𝟐, … , 𝑨𝟔 are six sets each 

with 4 elements and 𝑩𝟏, 𝑩𝟐, … , 𝑩𝒏 are n 

sets each two elements such that 𝑨𝟏 ∪

𝑨𝟐 ∪ …∪ 𝑨𝟔 = 𝑩𝟏 ∪ 𝑩𝟐 ∪ …∪ 𝑩𝒏 =

𝑺 (𝒔𝒂𝒚). Given that each element of S 

belongs to exactly 4 of the 𝑨𝒊′𝒔 and exactly 

3 of the 𝑩𝒋′𝒔 then find the value of n. 

Sol.: Since each 𝐴𝑖  contains 4 elements, 

totally we get 24 elements of which some 

may be repeated. But each element is 

repeated 4 times as each element belongs 

to exactly 4 of the 𝐴𝑖
′𝑠. Hence there are 

24

4
= 6 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆. 

Since S = 𝐵1 ∪ 𝐵2 ∪ …∪ 𝐵𝑛 and each 𝐵𝑖  

consists of each element appears exactly 

3 times. Thus the number of distinct 

elements in S is also equal to 
2𝑛

3
. 

Therefore 
2𝑛

3
= 6hich gives n = 9. 

 

4) If A = {1, 2, 3, …, 100} and B is a subset of 

A having 48 elements. Show that B has two 

distinct elements x and y whose sum is 

divisible by 11. 

Sol.: For each n, 0 ≤ 𝑛 ≤

10, 𝑙𝑒𝑡 𝐴𝑛 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1 𝑡𝑜 100

 which leaves remainder n after division 

by 11. Then 𝐴1 consists of 10 elements 

and 𝐴𝑛 for n ≠1 consists of 9 elements 

each. If (a, b) is any two element subset of 

(1, 2, 3, …, 100) the 11 divides a +b if and 

only if either both a and b are in 𝐴0 or else 

a is 𝐴𝑘 and b is in 𝐴11−𝑘 for some 𝑘, 1 ≤

𝑘 ≤ 10. 

Consider any set B  with 48 elements. If B 

contains two element from the set 𝐴0,  

then we are done. Similarly if B contains 

an element from 𝐴𝑘 and another from 

𝐴11−𝑘, 1 ≤ 𝑘 ≤ 10 then again, their sum is 

divisible by 11. Thus B can contain one 

element from 𝐴0, 10 from 𝐴1 and 9 from 

the sets 𝐴𝑘 for some 4 values of k (≠10), 

say 𝑘1, 𝑘2, 𝑘3, 𝑘4 no two of which add up 

to 11. 

But these account only for 47 elements. 

Hence there must be an element which is 
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either in 𝐴10 or in 𝐴11−𝑘𝑗  1 ≤ 𝑗 ≤ 4. Thus 

we can always find an element a in 

𝐴𝑘  𝑎𝑛𝑑 𝑏 𝑖𝑛 𝐴11−𝑘. Here a, b are in B and 

11 divides a +b. 

 

5) If A⊂ {1, 2, 3, …100}, |A| =50 such that no 

two numbers from A have their sum as 

100 show that A contains a square. 

Sol.: If 100∊ A then we are done , so 

assume A ⊂ {1, 2, 3, …, 100} consider 

the two element subsets {1, 99}, {2, 

98}, {3, 97}, …., {49, 51} along with the 

singleton set (50). These fifty sets are 

disjoint, and their un ion is the set {1, 

2, 3, …., 99} and the sun of the two 

numbers in each of the two element 

set is 100. The hypotheses implies 

that A can contain at most one 

elements it has to contain exactly one 

element from each of the fifty sets. 

Since (36, 64) is one of the pairs and 

both 36 and 64 are squares we are 

done. 

 

6) Find the number of un ordered pairs (A, B) 

(i.e. the pair (A, B) and (b, A) are 

considered to the same) of subsets of an n-

element set x which satisfy the condition 

(a) A ≠ b; (ii) A∪ B = x. 

Sol.: Suppose A has r elements, 0 ≤ 𝑟 ≤ 𝑛. 

Such an A can be choosen in (𝑛
𝑟
) ways. For 

each such A, the set B must necessarily 

have the remaining (n –r) elements and 

possible some elements of A. Thus there 

are ∑ (𝑛
𝑟
)2𝑟𝑛

𝑟=0 = (1 + 2)𝑛 = 3𝑛 ways of 

choosing two sets A and B satisfying the 

given condition. Among these choices, 

only in one case A = B (=x), and in all 

other cases A ≠ B, since the order does 

not manner, we essentially have 
(3𝑛−1)

2
 

pairs. 

 

7) Let x be a set containing n elements. Find 

the number of all ordered triplets (A, B, C) 

of subsets of x such that A is a subset of B 

is a proper subset of C. 

Sol.: Let x be an n-element set and let B be 

a subset of x containing r elements. Thus 

there are (𝑛
𝑟
) choices for B, Hence there 

are 21 choices for A 2𝑛−1 − 1  choices for 

C. Thus we obtain the total number of 

triplets (A, B, C) such that  A ⊂ B ⊂ C, but 

B ≠ C as ∑ 2𝑟𝑛
𝑟=0 (𝑛

𝑟
)(2𝑛−𝑟 − 1) which 

simiplifies to 4𝑛 − 3𝑛. 

Aliter: Let us denote by 0 or 1 the absence 

or presence of element of x in the sets  A, 

B, C, for any fixed element of x, there are 

only four choices, namely, 000, 011, 111. 

Hence there are 3𝑛 triplets (A, B, B). The 

number of triples (A, B, C) with  A ⊂ B ⊂ C 

but B ≠ C is therefore 4𝑛 − 3𝑛 

 

8) Show that the number of 3-element 

subsets (a, b, c) of the set {1, 2, 3, …, 63} 

with a+ b+ c<95 is less than the number 

of those with a +b +c > 95. 

Sol.: Suppose that (a, b, c) is a subset of {1, 

2, 3, …, 63} with a +b +c < 95. Then 

(64 − 𝑎, 64 − 𝑏, 64 − 𝑐) is a subset of {1, 

2, 3, …, 95} with (64 − 𝑎, 64 − 𝑏, 64 − 𝑐) 

= 192−(𝑎 + 𝑏 + 𝑐) > 192 − 95 = 97. 

Conversely, if (a, b, c) is a subset of {1, 2, 

3, …, 63} with a +b +c>97. Then (64 −

𝑎, 64 − 𝑏, 64 − 𝑐) is such that (64 − 𝑎) +

(64 − 𝑏) + (64 + 𝑐) = 192 −

(𝑎 + 𝑏 + 𝑐) < 95. Thus there is one-one 

correspondence between 3-element 
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subsets (a, b, c) with a +b +c <95 and 

those such that a +b +c > 97. 

Hence the number of subsets with a +b 

+c < 95 is equal to that with a +b +c 

>97. Thus the set of 3-element subsets (a, 

b, c) with a+ b +c > 95 will contain those 

with a +b +c => 97 and a few more. 

 

9) For which positive integral values of n can 

the set {1, 2, 3, …, 4n} be split into n 

disjoint 4-element subset {a, b, c, d} such 

that in each of these sets 𝒂 =
(𝒃+𝒄+𝒅)

𝟑
. 

Sol.: Suppose {a, b, c, d} is a group in 

which 𝑎 =
(𝑏+𝑐+𝑑)

3
.  Then a + b+ c +d = 

4a. Hence if such an n-exists, then 4 

divides 1+ 2 +…+ 4n. However this sum 

is 2𝑛(4𝑛 + 1). 

Thus a necessary condition for existence 

of such a set is that n be even. 

We show that this condition is also 

sufficient i.e. if n = 2k for some k, then it 

is possible to partition {1, 2, 3, …., 8k} into 

groups of 4 elements {a, b, c, d} such that 

a = 
(𝑏+𝑐+𝑑)

3
. To this end, divide {1, 2, 3, …, 

8k} into groups of 8 integers such that 

each group contains 8 consecutive 

integers. If {𝑎 + 1, 𝑎 + 2, 𝑎 + 3,… , 𝑎 + 8} 

is one such set, we can divide this set into 

two 4 integers each as follows: 

{𝑎 + 4, 𝑎 + 1, 𝑎 + 3, .0… , 𝑎 + 8}, {𝑎 +

5, 𝑎 + 2, 𝑎 + 6,… , 𝑎 + 7}. 

The desired partition is obtained since 

𝑎 + 4 =
𝑎+1+𝑎+3+𝑎+8

3
, 

𝑎 + 5 =
𝑎 + 2 + 𝑎 + 6 + 𝑎 + 7

3
 

 

10) Find the number of ways to choose an 

ordered pair (a, b) of numbers from the 

set {1, 2, …., 10} such that |𝒂 − 𝒃| ≤ 𝟓. 

Sol.: Let 𝐴1 = [(𝑎, 𝑏)𝑎, 𝑏 ∊

{1, 2, 3, … . , 10}, |𝑎 − 𝑏| = {𝑖}, 𝑖 =

0, 1, 2, 3, 4, 5. 𝐴0 = {
(𝑖,𝑖)

𝑖
=

1, 2, 3,… , 10}𝑎𝑛𝑑  

|𝐴0| = 10, 𝐴1 = {
(𝑖, 𝑖 + 1)

𝑖
= 1, 2, 3, … , 9}

∪ {
(𝑖, 𝑖 − 1)1

𝑖

= 1, 2, 3, … , 10}𝑎𝑛𝑑 |𝐴1|

= 9 + 9 = 18. 

𝐴2 = {
(𝑖, 𝑖 + 2)

𝑖
= 1, 2, 3, … , 8}

∪ {
(𝑖, 𝑖 − 2)

𝑖

= 3, 4, … . , 10}  𝑎𝑛𝑑 |𝐴2|

= 8 + 8 = 16 

𝐴3 = {
(𝑖, 𝑖 + 3)

𝑖
= 1, 2, … , 7}

∪ {
(𝑖, 𝑖 − 3)

𝑖

= 4, 5, … , 10}𝑎𝑛𝑑 |𝐴3|

= 7 + 7 = 14 

𝐴4 = {
(𝑖, 𝑖 + 4)

𝑖
= 1, 2, 3, … , 6}

∪ {
(𝑖, 𝑖 − 4)

𝑖

= 5, 6, … , 10} 𝑎𝑚𝑑 |𝐴4|

= 6 + 6 = 12. 
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𝐴5 = {
(𝑖, 𝑖 + 5)

𝑖
= 1, 2, … , 5}

∪ {
(𝑖, 𝑖 − 5)

𝑖

= 6, 7, … , 10} 𝑎𝑛𝑑 |𝐴5| = 

= 5 + 5 = 10 

∴the required set of pairs (𝑎, 𝑏) =

 ⋃ 𝐴𝑖
5
𝑖=0  and the number of such pairs, 

(which are disjoint) 

= |⋃𝐴1

5

𝑖=0

| =  ∑|𝐴𝑖|

5

𝑖=0

= 10 + 18 + 16 + 14 + 12

+ 10 = 80. 

 

11) Identify the set S by the following 

information:  

(i) S ∩ {3, 5, 8, 11} = {5, 8} 

(ii) S ∪ {4, 5, 11, 13} = {4, 5, 7, 8, 11, 13} 

(iii) {8, 13} ⊂ S 

(iv) S ⊂ {5, 7, 8, 9, 11, 13} 

Also show that no three of the condition 

suffices to identify S uniquely.  

Sol.: From(i), 5, 8 ∊ S ……….(1) From (ii), 

7, 8 ∊ S …… (2)From (iii), 8, 13∊ S 

……….(3) 

Therefore from eqns. (1) (2) and (3), we 

find that 5, 7, 8, 13 ∊ S. S ⊂ {5, 7, 8, 9, 11, 

13} ……….(4) (given) 

If at all S contain any others element 

other than those given in (4), it may be 9 

or 11 or both. 

But 9 ∉ S [∵ 9 ∊ S ∪{4, 5, 11, 13}= {4, 5, 7, 

8, 11, 13}] 

Again 11 ∉ S, for 11 ∉ S ∩{3, 5, 8, 11}= {5, 

8} 

∴ S = {5, 7, 8, 13} 

If condition (i) is not given, then S is not 

unique as S may be {7, 8, 13} or {5, 7, 8, 

13} or {5, 7, 8, 11, 13}. Similarly deleting 

any other data leads to more than one 

solution to S (verify) 

 

12) Let x ⊂ {1, 2, 3, …, 99} and n(x) =10. Show 

that it is possible to choose two distinct 

non empty proper subsets y, z of x such 

that ∑ (
𝒚

𝒚
∈ 𝒚) =  ∑ (

𝒛

𝒛
∈ 𝒛). 

Sol.: Since n(x) = 10, the number of non-

empty, proper subsets of x is 210 − 2 =

1022. 

The sum of the elements of the proper 

subsets of x can possibly range from 1 to 

∑ (90 + 𝑖)9
𝑖=1 . That is 1 to (91+ 92+ … + 

99) i.e. 1 to 855. 

That is the 1022 subsets can have sums 

from 1 to 855. By pigeon-hole principle, at 

least two distinct subsets B and C will 

have the same sum. 

(∵ there are 855 different sums, and so if 

we have more than 855 subsets then at 

least two of then have the same sum.) If B 

and C are not disjoint, then let  

𝑋 = 𝐵 − (𝐵 ∩  𝐶)𝑎𝑛𝑑 𝑌 = 𝐶 − (𝐵 ∩ 𝐶).  

Clearly, X and Y are disjoint and non-

empty and have the same sum of their 

elements. 

Define S(A) = sum of the elements of A. 

We have B and C not necessarily disjoint 

such that S(B) = S(C). 
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Now, S(X)= S(B) –S(B∩ C), S(Y) = S(C) –S 

(B∩ C) but S(B) = S(C). 

Hence, S(X)= S(Y) 

Also X ≠ 𝜙. For if x is empty, then B ⊂C 

which implies S(B)< S(C) (a 

contradiction). Thus x and y non empty 

and S(X)= S(Y). 

 

13) A, B, C are the set of all the positive 

divisors of 𝟏𝟎𝟔𝟎, 𝟐𝟎𝟓𝟎 𝒂𝒏𝒅 𝟑𝟎𝟒𝟎 

respectively. Find 𝒏(𝑨 ∪ 𝑩 ∪ 𝑪). 

Sol.: Let n(A) =  number of positive 

divisors of 1060 = 2060 × 560 𝑖𝑠 612 n(B) 

= number of positive divisors of 205 =

 2100 × 550 𝑖𝑠 101 × 51 and n(C) = 

number of positive divisors of 3040 =

 240 × 340 × 540 = 413. 

The set of common factors of A and B will 

be of the form 2𝑚. 5𝑛 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑚 ≤

60 𝑎𝑛𝑑 0 ≤ 𝑛 ≤ 50. 𝑆𝑜, 𝑛(𝐴 ∩ 𝐵) = 61 ×

51. 

Similarly, since the common factors of B 

and C and A are C are also of the from 

2𝑚 × 5𝑛, and in the former case 0 ≤ 𝑚 ≤

40, 0 ≤ 𝑛 ≤ 40,  and in the latter case 0 ≤

𝑚 ≤ 40, 0 ≤ 𝑛 ≤ 40 

∴ 𝑛(𝐵 ∩ 𝐶) =  412 also  𝑛(𝐴 ∩ 𝐶) =

 412 𝑎𝑛𝑑 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶)𝑖𝑠 𝑎𝑙𝑠𝑜 412. 

∴ 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶) = 𝑛(𝐴) + 𝑛(𝐵) + 𝑛(𝐶)

− 𝑛(𝐴 ∩ 𝐵) − 𝑛(𝐵 ∩ 𝐶)

− 𝑛(𝐴 ∩ 𝐶)

+ 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) 

612 + 101 × 51 + 413 − 61 × 51 − 412 −

412 + 412  

= 61(61 − 51) + 412(41 − 1) + 101 × 51  

= 610 + 1681 × 40 + 101 × 51 = 73001.  

 

14) A student an vacation for a d days 

observed that  

(i) It rained 7 times morning or 

afternoon. 

(ii) When it rained in the afternoon, it 

was clear in the morning. 

(iii) There were five clear afternoon and 

(iv) There were 6 clear mornings. Find 

the value of d. 

Sol.: Let the set of days in rained in the 

morning be M, and the set of days it 

rained in the afternoon be 𝐴𝑟. Then, 

clearly the set of days when there were 

clear morning is 𝑀′𝑟 and the set of days 

when there were clear afternoon is 𝐴𝑟′ 

By condition (b), we get 𝑀𝑟 ∩ 𝐴𝑟 =  𝜙, by 

(d), we get 𝑀𝑟
′ = 6 𝑏𝑦 (𝑐), 𝑤𝑒 𝑔𝑒𝑡 𝐴𝑟

′ =

5, 𝑎𝑛𝑑 𝑏𝑦 (𝑎), 𝑤𝑒 𝑔𝑒𝑡 𝑀𝑟 ∪ 𝐴𝑟 = 7,𝑀𝑟 and 

𝐴𝑟 are disjoint sets, and 𝑛(𝑀𝑟) = 𝑑 −

6, 𝑛(𝐴𝑟) = 𝑑 − 5 

∴ Applying the principle of inclusion and 

exclusion we get 

𝑛(𝑀𝑟 ∪ 𝐴𝑟) = 𝑛(𝑀𝑟) + 𝑛(𝐴𝑟) −

𝑛(𝑀𝑟 ∩ 𝐴𝑟)  

⟹ 7 = (𝑑 − 6) + (𝑑 − 5) − 0 ⟹ 𝑑 =

18,⟹ 𝑑 = 9.  

 

15) It is proposed to partition the set of 

positive integers into two disjoint subsets 

A and B. Subject to the following 

conditions: (i) 1 is in A; (ii) No two distinct 

numbers of A have a sum of the from𝟐𝒌 +

𝟐(𝒌 = 𝟎, 𝟏, 𝟐, … . ); (ii) No two distinct 

members of 3 have a sum of the form   

𝟐𝒌 + 𝟐(𝒌 = 𝟎, 𝟏, 𝟐, … . ) Show that this 
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partitioning can be carried out in a unique 

manner and determine the subsets to 

which 1987, 1988, 1989, 1997, 1998 

belong. 

Sol.: Since it is given that 1 ∊ A, 2 ∉ A For 

if 2 ∊ A then 20 + 2 = 3 is generated by 2 

members of A violating the condition for 

the partitioning. 

∴ 2 ∊B similarly, 3∉ A as 3 = 4 =  21 +

2 ∴ 3 ∊ 𝐵. 

But 4 ∉B. For if 4∊ B, then 22 + 2 = 4 +

2 = 6 is generated by two members of B. 

∴ The partitioning for the first few 

positive integers is  

A = {1, 4, 7, 8, 12, 13, 15, 16, 20, 23, ….} 

B = {2, 3, 5, 6, 9, 10, 11, 14, 17, 18, 19, 21, 

22, ….} 

Suppose 1, 2, …, n-1 (for 𝑛 ≥ 3) have 

already been assigned to A ∩ B in such a 

way  that no two distinct members of A or 

B have a sum = 21 + 2(𝑙 = 0, 1, 2, …… . ) 

Now, we need to assign n to A or B. 

Let k be a positive integer such that 

2𝑘−1 + 2 ≤ 𝑛 < 2𝑘 + 2. The assign ‘n’ to 

the complement of the set to which 2𝑘 +

2 − 𝑛 belongs. But for this, we need to 

check that 2𝑘 + 2 − 𝑛 has already been 

assigned. Now as 𝑛 ≥ 2𝑘−1 + 2 < 2𝑘 +

1.                      2𝑛 > 2𝑘 + 2 ∴ 𝑛 > 2𝑘 + 2 −

𝑛. 

Since all numbers below n have been 

assumed to be assigned to either A or , 

2𝑘 + 2 − 𝑛 has already been assigned and 

hence n is also assigned uniquely. For 

example, consider k =1, 3 = 20 + 2 ≤ 𝑛 <

21 + 2 = 4. 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑛 = 3, 4 − 𝑛 = 1 

Now 1 ∊ A (given) 

∴ 3 ∊ B consider k = 2.  

∴ 22−1 + 2 ≤ 𝑛 < 22 + 2 = 6, 4 ≤ 𝑛 < 6. 

When n = 4, as 6 − 𝑛 = 2 ∊ 𝐵,𝑤𝑒 𝑎𝑠𝑠𝑖𝑔𝑛 

4 to A. when n = 5, as 6 − 5 = 1 ∊ 𝐴, we 

assign 5 to B. Since the set to when n gets 

assigned is uniquely determined by the 

set to which 2𝑘 + 2 − 𝑛 belongs, the 

partitioning is unique. Looking at the 

pattern of the partitioning of the initial set 

of positive integers, we conjecture the 

following: 

(1) n ∊ A if 
4

𝑛
. 

(2) n ∊B if 
2

𝑛
𝑏𝑢𝑡

4

𝑛
 

(3) If n = 2𝑟. 𝑘 + 1(𝑟 ≥ 1, 𝑘 𝑜𝑑𝑑, 𝑡ℎ𝑒𝑛 𝑛 ∊

𝐴 if k is of the form 4𝑚 − 1). 

Proof the conjecture: we note that 1, 4∊ A 

and 2, 3 ∊B. 2𝑘−1 + 2 ≤ 𝑛 < 2𝑘 + 2 and all 

numbers less than n have been assigned 

to A or B and satisfy the above 

conjectures, then if 
4

𝑛
, 𝑎𝑠 2𝑘 + 2 − 𝑛 is 

divisible by 2 but not 4, 2𝑘 + 2 − 𝑛 ∊ 𝐵. 

Hence n ∊ A. Similarly, if 2 divides n but 

not 4, then 2𝑘 + 2 − 𝑛 is divisible by 4 

and hence, is in A 

∴ n ∊ B. If n = 2𝑟. 𝑘 + 1 

Where  r >1, k is odd and k = 4𝑚 −

1, 𝑡ℎ𝑒𝑛 2𝑘 + 2 − 𝑛 =  2𝑘 − 2𝑟. 𝑘 + 1 =

 2𝑟(2𝑘−𝑟 − 𝑘) + 1, where clearly 2𝑘−𝑟 − 𝑘 

is odd and equals 1 (mod 4) 

∴ 2𝑘 + 2 − 𝑛 ∊ 𝐵 

Hence, n ∊ A similarly, it can be shown 

that if n = 2𝑟. 𝑘 + 1 where k ≡1 (mod 4), 

then n ∊ B. Thus, the conjecture is proved. 

Now, 1988 is divisible by 4. 

∴ 1998 ∊ A. 
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1987 = 21. 993 + 1 where 993= 1 (mod 

4)    ∴ 1988 ∈ 𝐵 

1989 = 22. 497 + 1 where 497 = 1 (mod 

4)    ∴ 1989 ∈ 𝐵. 

2

1998
 𝑏𝑢𝑡

4

1998
  ∴ 1998 ∊ 𝐵. 

1997 =  22. 449 + 1 where 499= 3(mod 

4)  

∴ 1997 ∊ A 

16)  If A denote the subsets of the set {1, 11, 

21, 31, ….541, 551} having the property 

that no two elements of A odd up to 552. 

Show that A cannot have more than 28 

elements. 

Sol.: Observe that S consists of 56 numbers in 

A.P. Hence first term is 1 and common 

difference is 10. The sum of every pair of 

numbers equidistant from the beginning and 

the end is 552. Also, the sum of no two others 

elements can be 552.  

We divide S into 28 pairs: (1, 551), (11, 541), 

(21, 531) ………….. (271, 282), if A consists of 

at the most 28  elements, then it is possible to 

choose these elements in such a way that at 

most one element from a pair is in A. however 

if A contains 29 (or more) elements, then by 

the pigeon hole principle, A must contain 

both the elements of at least one pair, and 

therefore A contain two elements whose sum 

is 552. 

Since A has the property that no two element 

of A add up to 552, therefore A cannot have 

more than 28 elements. 

17) Show that in any set of 20 distinct integers 

chosen from the set {1, 4, 7, …, 100} there 

will always be two distinct integers whose 

sum is 104. 

Sol.: There are 34 integers in A.P. 1, 4, 7, …, 

100. Let us denote the set {1, 4, 7, …., 100} by 

s. Let us group them into 17 pairs. 

(4, 100), (7, 97), (10, 94), …, (49, 55) and (1, 

52). The sum of the integers in each of the 

first sixteen pairs is 104. The last pair 

consists of the two integers which cannot be 

paired with any other integer in the given A.P. 

So as to have the sum 104. It is obvious that  

the sum of two integers from the given A.P. 

can be 104 if and only if two integers both 

belong to some one of the first sixteen pairs 

written above. 

Let us try to construct a subset of  S which is 

as big as possible, and has the property that 

no two numbers of the set add up to 104. 

Such a set can have at the most 18 members, 

namely the two integers 1 and 100, and 

exactly one out of each of the remaining16 

pairs. 

The moment we odd one more member of S 

to it, it will have both the one of the sixteen 

pairs (4, 100) …. (49, 55) i.e. it will have two 

distinct integers whose sum is 104.  

Therefore in any set of 20 (in fact 19!) 

distinct integers chosen forms, there will 

always be two distinct integers whose sum is 

104. 

 

18) Find all possible sets of consecutive 

positive integers such that the sum of the 

numbers in the set is 795 (e. g. the sets 

{30}, {9, 10, 11}, {4, 5, 6, 7, 8} and {6, 7, 8, 

9} are the sets of consecutive positive 

integers with sum 30.) 

Sol.: Suppose 𝑛 + 1, 𝑛 + 2,… , 𝑛 + 𝑘 is a set of 

k consecutive integers whose sum is 795 i.e. 

(𝑛 + 1) + (𝑛 + 2) +⋯+ (𝑛 + 𝑘) = 795 ⟹

{𝑘𝑛 +
1

2
𝑘(𝑘 + 1)} = 795…… . . (1) 
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We are required to find all solutions of (1) in 

integers. 

Case I: If k is doubly even, say = 4m, then 

4𝑚𝑛 + 2𝑛(4𝑚 + 1) = 795. 

Here L HS is even and RHS is odd, and 

consequently no solution is possible. 

Case II: If k is singly even, say = 4𝑚 + 2, the 

(1) becomes (4𝑚 + 2)𝑛 + (2𝑚 + 1)(4𝑚 +

3) = 795. 

So that 2m +1 must divide 795, i.e. 2m +1 = 

1, 3, 5, 15, 53, 159, 265, 795. Also then 2𝑛 =
795

2𝑚+1
− (4𝑚 + 3) > 0 i.e. 2m+1 cannot have 

values other than 1, 3, 5, 15. 

For these values, we have k = 4m +2 = 2, 6, 

10, 30 and the corresponding values of n are 

[795−
𝑘(𝑘+1)

2
]

𝑘
 i.e. 396, 129, 74, 11. 

Thus the sets are {397, 398}, {130, 131, …, 

135}{75, 76, …, 84,}{12, …, 13, 41} …. (A) 

Case III: If k is odd, say 2m +1, then (1) 

becomes (2𝑚 + 1)𝑛 + (𝑚 + 1)(2𝑚 + 1) =

795. 

So that 795 must be divided by 2m +1. The 

possible values of 2m +1 are 1, 3, 5, 15, 53, 

159, 265, 795 Further more 𝑛 =
795

(2𝑚+1)
−

 (𝑚 + 1) > 0, which gives n = 794, 263, 157, 

45 respectively, when 2m +1 = 1, 3, 5, 15 

The other values do not give positive values 

of n and therefore must be rejected. The 

corresponding sets are {795}, {264, 265, 

266}, {158, 159, 160, 161, 162}, {46, 47, …., 

60} …… (B) All the possible sets are those 

given in (A) and (B).  

 

19) If the 7 element set A= {a, b, …, g}, find a 

collection T of 3- element subsets of A such 

that each pair of element from A occurs 

exactly in one of the subsets of T. 

Sol.:  If the 3-element subsets in the class are 

pairwise disjoint, then one of the subsets has 

number of elements and so at least one pair 

has one element in common but not two or 

more. If just one pair of subsets has common 

elements, they have to have two elements in 

common. So this is also not possible. Thus the 

problem reduces to finding a class of all  3-

element subsets with precisely one element 

common between any two of the subsets. 

Clearly, {(a, b, d), (b, c, e), (c, d, f), (d, e, g), (e, 

f, a ), (a, c, g), (b, f, g)}, in one such class. Any 

permutation of A will give another class. 

20) Let S in the set {1, 2, 3, …, 𝟏𝟎𝟔}. Show that 

for any subset A of S with 101 elements. 

We can find 100 distinct elements  𝒙𝒊 of S, 

Such that the sets 𝒙𝒊 + A are all pair wise 

disjoint. 

{Note that 𝒙𝒊 + 𝑨 is the set  

{𝒂 +
𝒙𝒊

𝒂
} 𝒊𝒔 𝒊𝒏 𝑨]  

    Sol.:  

Having found 𝑥1, 𝑥2, … , 𝑥𝑘 there are k. 101 -

100 for –bidden values for 𝑥𝑘+𝑖 of the form 

        𝑥1 + 𝑎𝑚 − 𝑎𝑛 with m and n unequal and 

another k forbidden values with m= n.  

   Since         99.101.100+99=106 − 1.  

We can successively choose 100 distinct 𝑥𝑖. 
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COMBINATORICS 

(OBJECTIVE TYPE) 

1) If S = 1.1!+2.2!+3.3!+…+n.n! then 
𝟏

𝒏!
(𝑺 +

𝟏) is 

(a) Not integer;   (b) integer;     (c) 

undefined;   (d) none 

Sol.: We have S = ∑ 𝑘(𝑘!)𝑛
𝑘=1 =

 ∑ {(𝑘 + 1) − 1}𝑛
𝑘=1 (𝑘!)  

= ∑{(𝑘 + 1)! − 𝑘!}

𝑛

𝑘=1

= (𝑛 + 1)! − 1 ⟹ 𝑆 + 1

= (𝑛 + 1)! 

Thus, 
𝑆+1

𝑛!
∊  integer. Hence (b) is correct 

answer. 

 

2) If 1! +2! +3!+…+n! cannot be the square 

of a natural number except for n =  

(a) 1, 3;   (b) 2, 3;   (c) 3, 3;   (d) none 

Sol.: For n = 1, we have 𝑆1= 1!= 1, which is a 

perfect square. 

For n = 2, we have 𝑆2 = 1! + 2 = 1 + 2 + 3, 

which is not a perfect square. 

For n = 3, We have 𝑆3 = 1! + 2! + 3! = 1 +

2 + 6 = 9,𝑤ℎ𝑖𝑐ℎ is a perfect square. 

For n = 4, we have 𝑆4 = 1! + 2! + 3! + 4! =

1 + 2 + 6,… ,+24 = 33 which is not a perfect 

square. 

For 𝑛 ≥ 5,𝑤𝑒 𝑓𝑖𝑛𝑑 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑠 at units 

place in n! is 0and 𝑆4 = 1! + 2! + 3! + 4! has 3 

as the digit ay units place. Therefore for 𝑛 ≥

5, 𝑆𝑛 has 3 at units place. Therefore 𝑆𝑛 is not a 

perfect square for 𝑛 ≥ 5. 

Hence, 𝑆𝑛 = 1! + 2! + 3! + ⋯+ 𝑛! is not a 

perfect square of a natural number except for 

n = 1, 3. Hence (a) is correct answer. 

 

3) The value of  

(𝟕𝑪𝟎 + 𝟕𝑪𝟏) + (𝟕𝑪𝟏 + 𝟕𝑪𝟐) + ⋯+

(𝟕𝑪𝟔 + 𝟕𝟕)𝒊𝒔  

(a) 𝟐𝟖 − 𝟐;   (b) 𝟐𝟖 − 𝟑;   (c) 𝟐𝟖;    (d) 

none 

Sol.: (7𝐶0 + 7𝐶1) + (7𝐶1 + 7𝐶2) + ⋯+

(7𝐶6 + 77) = 8𝐶1 + 8𝐶2 +⋯+ 8𝐶7 = 8𝐶0 +

8𝐶1 + 8𝐶2 +⋯+ 8𝐶7 + 8𝐶8 − (8𝐶0 + 8𝐶8) =

 28 − 1(1 + 1) =  28 − 2  

Hence (a) is the correct answer. 

 

4) The value of n for which 

𝒏 − 𝟏𝑪𝟒 − 𝒏 − 𝟏𝑪𝟑 −
𝟓

𝟒
, 𝒏 − 𝟐𝑷𝟐 < 0. 

where n ∊ N is 

(a) (−∞, 𝟏) ∪ (𝟑, 𝟏𝟎);   (b) (0, 2) ∪(3, 10);  

(c) {1, 2, 3};   (d) none 

Sol.: we have  

𝑛 − 1𝐶4 − 𝑛 − 1𝐶3 −
5

4
. 𝑛 − 2𝑃2 < 0 

⟹
(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)

4!

−
(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

3!

−
5

4
(𝑛 − 2)(𝑛 − 3) < 0 

⟹
(𝑛 − 2)(𝑛 − 3)

24
{(𝑛 − 1)(𝑛 − 4)

− 4(𝑛 − 1) − 30} < 0 

⟹ (𝑛 − 2)(𝑛 − 3)(𝑥2 − 9𝑥 − 22) < 0 

⟹ (𝑛 − 2)(𝑛 − 3)(𝑛 − 11)(𝑛 + 2) < 0  

⟹ (𝑛 − 2)(𝑛 − 3)(𝑛 − 11) < 0 
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[∵ 𝑛 + 2 > 0 𝑓𝑜𝑟 𝑛 ∊ 𝑁] 

⟹ 𝑛 ∊ (−∞, 2) ∪ (3, 11) ⟹ 𝑛

∊ (0, 2) ∪ (3, 11) 

⟹ 𝑛 = 1, 4, 5, 6, 7, 8, 9, 10 

 

But 𝑛 − 1𝐶4  𝑎𝑛𝑑 𝑛 − 1𝑃2 both are 

meaningful for 𝑛 ≥ 5.  

Hence,  n = 5, 6, 7, 8, 9, 10. 

 

5) (n!)! is divisible by 

(a) (𝒏!)𝒏!;   (b) (𝒏!)𝒏!−𝟏;   (c) (𝒏!)(𝒏−𝟏)!   

(d) none 

Sol.: Clearly. (n!) is the product of natural 

numbers from 1 to n! 

∴ (𝑛!)! = {1 × 2 × 3…𝑥𝑛}

× {(𝑛 + 1)(𝑛 + 2)… (2𝑛)}

× 

⋮       ⋮      ⋮                                             

{(2𝑛 + 1)(2𝑛 + 2)… . (3𝑛)}

× {(𝑛! − 𝑛 + 1)(𝑛! − 𝑛

+ 2)(𝑛! − 𝑛

+ 3)… . 𝑛!}……… . . (1) 

We observe that: Last term of the first 

bracket on RHS of (1) in n  

Last term of second bracket RHS of (1)𝑖𝑠 

2n.  

Last term of third bracket on RHS of (1) is 

3.n and so on 

Last term of the last bracket on RHS of (1) 

is (n−1)! n  

It is clear from this that there are (𝑛 − 1)! 

brackets on the RHS of (1) and each 

bracket there is product of n consecutive 

natural numbers. From (1) we have, 

(𝑛!)! =  ∏ [(𝑟 − 1)𝑛 + 1{(𝑟 − 1)𝑛 + 3}

(𝑛−1)!

𝑟=1

− {(𝑟 − 1)𝑛 + 𝑛}] 

We know that the product of n 

consecutive natural number is divisible 

by n! 

So, let {(𝑟 − 1)𝑛 + 1}{(𝑟 − 1)𝑛 +

2}… {(𝑟 − 1)𝑛 + 𝑛} = 𝑛! 𝐼𝑟, 𝑟 =

1, 2, … , (𝑛 − 1)! 

∴ (𝑛!)! =  ∏ 𝑛!

(𝑛−1)!

𝑟=1

𝐼𝑟 = (𝑛!)
(𝑛−1)! 

∴ (𝑛!)! = ∏ 𝑛!

(𝑛−1)!

𝑟=1

𝑙𝑟 = (𝑛!)
(𝑛−1)! . ∏ 𝑙𝑟

(𝑛−1)!

𝑟=1

= (𝑛!)(𝑛−1)!

× 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑁𝑜. 

Thus (n!)! is divisible by (𝑛!)(𝑛−1)! 

 

6) Number of positive integer n <17, for 

which n!(n+ 1)!+ (n+ 2)! Is an integral 

multiple of 49 is 

(a) 5;   (b) 6;   (c) 7;   (d) none 

Sol.: Here n! + (n +1)!+(n+2)! = n! 

(1+(n+1)+(n+2) (n+1)) = n! (𝑛 + 2)2 ⟹ 

either 7 divides (n+2) or 49 divides n! 

i.e.,  n = 5, 12, 14, 15, 16 (as n< 17). Thus the 

number of solution if five 

 

7) Number of ordered triplets (x, y, z) such 

that x, y, z are primes and 𝒙𝒚 + 𝟏 = 𝒛 is 

(a) 0,   (b) 1,   (c) 2,   (d) none 
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Sol.: Here, 𝑥𝑦 + 1 = 𝑧,  where x, y, z are 

prime. 

Thus, y cannot be odd, as if y is prime  

⟹𝑥𝑦 + 1 is divisible by (x+1). Now, z 

must be odd  

⟹ x must be even (as, 𝑥𝑦 = 𝑧 − 1). 

Thus only even i.e. prime is x = 2 

⟹ x = 2, y = 2, z = 5 

So, there is only one such triplet (2, 2, 5) 

Hence (b) is correct answer. 

 

8) If 𝒏𝟏 = 𝒙𝟎𝒙𝟐𝒙𝟑 𝒂𝒏𝒅 𝒏𝟐 = 𝒚𝟏𝒚𝟐𝒚𝟑 be two 

3-digit numbers, then the pairs 𝒏𝟏 𝒂𝒏𝒅 𝒏𝟐 

can be formed, so that 𝒏𝟏 can be 

subtracted from 𝒏𝟐 without borrowing is 

(a) 45. 55;  (b) 55. (𝟒𝟓)𝟐;   (c) 𝟓𝟓𝟐. 𝟒𝟓𝟐; 

(d) none 

Sol.: Here, 𝑛1 = 𝑥1𝑥2𝑥3 𝑎𝑛𝑑 𝑛2 = 𝑦1𝑦2𝑦3 

⟹ 𝑛1 can be subtracted from 𝑛2 without 

borrowing if 𝑦𝑖 ≥ 𝑥𝑖  𝑓𝑜𝑟 𝑖 = 1, 2, 3. 

∴ Let 𝑥1 = 𝑟 ⟹ {
𝑟 = 0, 1, 2, … , 9  𝑓𝑜𝑟 𝑥2 𝑜𝑟 𝑥3
𝑟 = 1, 2, 3, … . , 9  𝑓𝑜𝑟 𝑥1

 

∴ 𝑦𝑖 = 𝑟, 𝑟 + 1,… . , 9. Thus for 

𝑦1, 𝑦2 𝑎𝑛𝑑 𝑦3 𝑤𝑒 ℎ𝑎𝑣𝑒 (10 − 𝑟) choices, each 

⟹ Total number of ways for choosing 

𝑦𝑖  𝑎𝑛𝑑 𝑥𝑖 

= {∑ (10 − 𝑟)9
𝑟=1 }{∑ (10 −9

𝑟=0

𝑟)}. {∑ (10 − 𝑟)9
𝑟=0 } = 45. 55. 55 = 45. 552  

 

 

 

9) ∑ ∑ 𝟏𝟎𝑪𝒋≤𝒋𝟎≤𝒊 . 𝒋𝑪𝒊 =  

(a) 𝟑𝟏𝟎 − 𝟏;  (b) 𝟐𝟏𝟎 − 𝟏;   (c)   𝟑𝟏𝟎 − 𝟐𝟏𝟎;    

(d) none 

 

Sol.: ∑ ∑ 10𝐶𝑗≤𝑗0≤𝑖 . 𝑗𝐶𝑖 = 10𝐶1(1𝐶0 + 1𝐶1) +

10𝐶2  (2𝐶0 + 2𝐶1 + 2𝐶2)10𝐶3(3𝐶0 + 3𝐶1 + 3𝐶2 +

3𝐶3) + ⋯+ 10𝐶10(10𝐶0 + 10𝐶1 + 10𝐶2 +⋯+

10𝐶10) 

= 10𝐶1 . 2 + 10𝐶2 . 2
2 + 10𝐶3 . 2

3 +⋯+

10𝐶10 . 2
10  

= (1 + 2)10 − 1 = 310 − 1  

 

10) If f(n) denotes the number of different 

ways the position integer ‘n’ can be 

expressed as the sum of 𝟏′𝒔𝒂𝒏𝒅 𝟐′𝒔. For 

example 𝒇(𝟒) = 𝟓,  since 4 = 1+ 1+ 1 +1, 

1 +1 +2, 1+ 2+ 1, 2 +1 +1, 2 +2 note that 

order of 𝟏′𝒔𝒂𝒏𝒅 𝟐′𝒔 is important then 

𝒇(𝒇(𝟔))=  

(a) 𝒇(𝟔) ;   (b) 𝒇(𝟏𝟎);   (c) 𝒇(𝟏𝟑);  (d) none 

 

Sol.: As: 𝑓(4) = 5  given 

∴ 𝑓(6) can be written using 1′𝑠𝑎𝑛𝑑 2′𝑠 as 

Number 
of 1’s 

Number of 
2’S 

 No. of 
arrangement 

0 
 
2 
 
4 
 
6 

3 
 
2 
 
1 
 
0 

3!

3!
= 1 

4!

2! 2!
= 6 

5!

4!
=  5 

6!

6!
=  1 

                  Total 
= 13 

∴ 𝑓(6) = 13 
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∴ 𝑓(𝑓(6)) =  𝑓(13) 

 

11) The number of ways of choosing triplets 

(x, y, z) such that 𝒛 ≥

𝐦𝐚𝐱{𝒙, 𝒚}  𝒂𝒏𝒅 𝒙, 𝒚, 𝒛 ∊ {𝟏, 𝟐,… , 𝒏, 𝒏 +

𝟏} is 

(a) 𝒏 + 𝟏𝑪𝟑 + 𝒏 + 𝟐𝑪𝟑;   (b) 𝒏 + 𝟏𝑪𝟐 +

𝒏 + 𝟐𝑪𝟑;   (c) n (n+1);  (d) none 

Sol.: When z = n +1, we can choose x, y from 

{1, 2, …, n}. 

Thus when z = n +1, x, y can be chosen 𝑛2. 

When z = n, x, y can be chosen in(𝑛 − 1)2 

ways and so on. 

Thus, there are 𝑛2 + (𝑛 − 1)2 +⋯+ 12 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1) ways of choosing the 

triplets. 

Alternatively, triplets with x = y < z, x < y <z, 

y < z < x can be chosen in 𝑛 + 1𝐶2 , 𝑛 +

1𝐶3 , 𝑛 + 1𝐶3  𝑤𝑎𝑦𝑠 

∴ There are 𝑛 + 1𝐶2 + 2(𝑛 + 1𝐶3) =

 𝑛 + 2𝐶3 + 𝑛 + 1𝐶3 . 

 

12) The number of ordered pairs (m, n), m, n ∊ 

{1, 2, …., 100} such that 𝟕𝒎 + 𝟕𝒏 is 

divisible by 5 is  

(a) 1000;   (b)  12000;   (c) 3000,   (d) 

none 

Sol.: Note that 7𝑟(𝑟 ∊ 𝑁) ends in 7, 9, 3, or 1 

(corresponding to r = 1, 2, 3 and 4 

respectively). Thus 7𝑚 +

7𝑛 𝑐𝑎𝑛𝑛𝑜𝑡 𝑒𝑛𝑑 𝑖𝑛 5 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑚. 𝑛 ∊

𝑁. In other words, for 7𝑚 + 7𝑛 𝑡𝑜  be divisible 

by 5, it should end in 0. 

For 7𝑚 + 7𝑛 to end in 0, the forms of m and n 

should be as follows: 

        m          n 

1      4r         4s+2 

2     4r +1    4s +3 

3   4r +2     4s 

4   4r +3       4s +1 

Thus for a given value of m there are just 25 

values of n for which 7𝑚 + 7𝑛 ends in 0. For 

instance, if m = 4r, then = 2, 6, 10, 98. 

∴ There are 100 × 25= 2500 ordered pairs 

(m, n) for which 7𝑚 + 7𝑛 is divisible by 5. 

 

13) A 7-digit number is divisible by 9 is to be 

formed by using 7 out of numbers {1, 2, 3, 

4, 5, 6, 7, 8, 9}. The number of ways in 

which this can be done is 

(a) 4. 7! ;   (b) 3, 7!;  (c) 2. 7!;   (d) none 

Sol.: Sum of 7 digits = a multiple of 9. We 

know, sum of numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 is 

45. So, two left number should also have sum 

as 9. 

The pairs to be left are (1, 8)(2, 7), (3, 6)(4, 

5) which each pair left number of 7 –digit 

number is 7! So, with all 4 pairs = 4 × 7! 

 

14) The number of ways af arranging m 

members out of 1, 2, 3, …, n  so that 

maximum is (n –2) and minimum is 2 

(repetitions of number is allowed) such 

that maximum and minimum both occur 

exactly once (𝒏 > 5,𝑚 > 3) is 

(a) (𝒏 − 𝟏𝑪𝒎−𝟐)
𝟐;   (b) 𝒎(𝒎−

𝟏)(𝒏 − 𝟓)𝒎−𝟐   (c)  𝒏𝑪𝟐 . 𝒏𝑪𝒎 ;   (d) 

none         
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Sol.: First we take one number as 2 and one as 

(𝑛 − 2) and put them in m (𝑚 − 1) ways.. 

Now remaining (𝑚 − 2) numbers can be any 

one from, 3, 4, …., (n-4), (n-3),  

Which we can do in (𝑛 − 5)(𝑚−2). 

∴ Total number of ways = 𝑚(𝑚 − 1)(𝑛 −

5)(𝑚−2). 

 

15)  The number of rational numbers lying in 

the interval (2002, 2003) all whose digits 

other the decimal point are non- zero and 

are in decreasing order is 

(a) 𝟐𝟏𝟎 − 𝟏;   (b) 𝟐𝟗 − 𝟏 ;   (c) 𝟐𝟏𝟎 − 𝟐;   

(d) none 

Sol.: A rational number of the desired 

category is of the form 2002. 𝑥1, 𝑥2, … , 𝑥𝑘  

where 1 ≤ 𝑘 ≤ 9  and 9 ≥  𝑥1 > 𝑥2 > ⋯ >

 𝑥𝑘 ≥ 1. We can choose k digits out in 9𝐶𝑘  

ways and arrange them is decreasing order in 

just one way. Thus, the desired number of 

rational number is 9𝐶1 + 9𝐶2 +⋯+ 9𝐶9 =

 29 − 1. 

 

16) How many different 9 digit numbers can 

be formed from the number 22, 33, 55, 

888 by rearranging its digits so that the 

odd digits occupy even positions? 

(a) 16;   (b) 32;   (c) 64;   (d) none 

Sol.:  

 

Out of 4 odd digits, 4 even places can be 

occupied in 𝑛𝐶4 ways. 

∴ Total number of ways = (
4𝐶4  4!

2!2!
) (

5𝐶5  5!

3!2!
) 

17) The sum of all possible numbers greater 

than 𝟏𝟎𝟒 formed by using the digits from 

{1, 3, 5, 7, 9} is  

(a) 6, 66, 66, 600;   (b) 6, 66, 600;   (c) 6, 

66, 660;   (d) none 

Sol.:  

If 1 were at units place (i.e. 5)then the 

remaining first 4 places (1- 4)can be filled in 

4! Ways. 

∴ sum of all 4! (1)= 24 similarly for 3, 5, 7 

and 9 filled in units place the rest four places 

can be filled in 4! Ways in each case 

∴ If sum of all digits in units place is S. 

⟹ S = 4! (1+3+5+7+9)⟹ S = 4! × 25 =

600. 

Similarly, sum of all digits in ten places, 

hundred’s place, thousands place, ten 

thousands place and hundred thousands 

place in 600 in all cases. 

 

18) The number of ways of arranging letters 

AAAAABBBCCCDEEF in a row if the letters 

C are Separated from one another 

(a) 95135040;  (b) 95135039;  (c) 

95135041;   (d) none 

Sol.: 𝐴 𝐴 𝐴 𝐴 𝐴⏟      
5

 𝐵 𝐵 𝐵⏟  
3

 𝐶 𝐶 𝐶⏟  
3

 𝐸 𝐸 ⏟
2

  𝐹⏟
1

 

Number of ways of arranging AAAABBDEEF 

are  
12!

5!3!2!
 

Now, there are 13 places in between or on the 

sides of 12 characters, and since we want to 

separate all the c’s this can be done in placing 

these c’s in these 13 places This can be done 

in  13𝐶3 ways. 
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∴ Total number of ways = 
12!

5!3!2!
× 13𝐶3          

 ∴ Total number of ways = 95135040. 

 

19) The number of rectangles in the following 

fig is 

(a) 𝟓 × 𝟓;  (b) 𝟓𝟐 × 𝟑𝟑;   (c) 𝟓𝑪𝟐 × 𝟓𝑪𝟐;   

(d) none 

Sol.: Since, there are 5 horizontal lines 

and 5 vertical lines, and each choice of a 

pair of horizontal lines and a pair of 

vertical lines gives us a rectangle. Hence 

the no. of rectangles = 5𝐶2 × 5𝐶2  

 

20) From a company of 15 soldiers any 4 are 

placed on guard, each both to catch for 4 

hour. For what length of time (in hour) can 

different batches be selected? 

(a) 5460;  (b) 5410;   (c) 54090;   (d) none 

Sol.: The number of ways in which 4 

soldiers can be selected out of 15 are the 

number of ways batches can be formed.  

Now 4 soldiers can be selected out of 15 

in 15𝐶4 ways = 1365. Again, if can batch 

has two watch for 4 hours, then 1365 

batches will watch for 1365 × 4 = 5460. 

 

21)  A parallelogram is cut by two sets of m 

lines parallel to its sides. The number of 

parallelograms thus formed is 

(a) 𝒎𝑪𝟐;   (b) (𝒎𝑪𝟐)
𝟐;   (c) (𝒎 + 𝟐𝑪𝟐)

𝟐;   

(d) none 

Sol.: Each set is having (𝑚 + 2) parallel 

lines and each parallelogram is formed by 

choosing two straight lines from the first 

set and two straight lines from the second 

set. 

Two straight line from the first set can be 

chosen in 𝑚 + 2𝐶2 ways and two strainght 

lines from the second set can be chosen in 

𝑚 + 2𝐶2 ways. 

Hence, the total number of parallelograms 

formed = 𝑚 + 2𝐶2 . 𝑚 + 2𝐶2 = (𝑚 + 2𝐶2)
2

 

 

22) If n dice from an even number is 189, then 

n =  

(a) 3;   (b) 4;   (c) 8;   (d) none 

Sol.: Number of all possible outcomes, on 

all the n-sides ≡ 6𝑛 . Now, for any one 

dice odd number on it can occur in 3𝐶1 

ways. 

So, for all the dice, an odd number can 

occur in 3𝑛 ways 

[
𝑁𝑜. 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑐𝑒 

𝑠ℎ𝑜𝑤𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
] 

[𝑁𝑜. 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑜𝑛 𝑛 

. 𝑑𝑖𝑐𝑒𝑠][𝑒𝑣𝑒𝑟𝑦 𝑑𝑖𝑐𝑒 𝑠ℎ𝑜𝑤𝑛 𝑜 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟] 

⟹ Required ways = 6𝑛 − 3𝑛 = 189 (𝑔𝑖𝑣𝑒𝑛). 

𝐵𝑦 𝐻𝑖𝑡 𝑎𝑛𝑑 𝑇𝑟𝑖𝑎𝑙 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑛

= 3. 

 

23) If a, b, c, d, e are primes, the number of 

divisions of 𝒂𝒄𝟐𝒅𝒆 is 

(a) 73;   (b) 72;   (c) 71;   (d) none 

Sol.: Let N = 𝑎𝑏2𝑐2𝑑𝑒 

Where a, b, c, d and e are prime out of one 

factor a, we can have either one or none. 
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∴Number of possible divisors of a = 

(1+1) = 2, for b, there are two factors, we 

can have either one, two or none 

∴ Number of possible divisors of b = 

(2+1) = 3 

Similarly, the number of possible factors 

of c, d and e is (2+1), (1+1) and (1+1) 

respectively. 

Hence, the number of all possible divisors 

of 𝑎𝑏2𝑐2𝑑𝑒 𝑎𝑟𝑒 (1 + 1)(2 + 1)(2 +

1)(1 + 1)(1 + 1). 

Now, there exists only one possible worst 

case in which the factors is 𝑎0𝑏0𝑐0𝑑0𝑒0 =

1 which a factor of every number. ∴ 

Number of ways = 72 -1 = 71. 

24) If 3dices are thrown together, then the 

number of ways in which the sum of the 

number of ways in which the sum of the 

numbers appearing on the dice is n, 𝟗 ≤

𝒏 ≤ 𝟏𝟒 is 

(a) −𝒏𝟐 + 𝟐𝟏𝒏 − 𝟖𝟑;  (b)( −𝒏𝟐 − 𝟐𝟏𝒏 −

𝟖𝟑;   (c) −𝒏𝟐 + 𝟐𝟏𝒏 + 𝟖𝟑    (d) none 

Sol.: If 9 ≤ 𝑛 ≤ 14, 𝑡ℎ𝑒𝑛 6 ≤ 𝑘 − 3 ≤ 11. 

Thus the coeff. of 𝑥𝑛−3 𝑖𝑛 (1 − 𝑥6)3 (1 −

𝑥)3 = 𝑐𝑜𝑒𝑓𝑓. 𝑜𝑓 𝑥𝑛−3 in 

 (3𝐶0 − 3𝐶
1𝑥
6 + 3𝐶

2𝑥
12 − 3𝐶

3𝑥
18) ×

(1 − 𝑥)−3 = 3𝐶0 

𝐶𝑜𝑒𝑓𝑓. 𝑜𝑓 𝑥𝑛−3 𝑖𝑛 (1 − 𝑥)−3 −

3𝐶1  𝑐𝑜𝑒𝑓𝑓. 𝑜𝑓 𝑥
𝑛−9 𝑖𝑛 (1 − 𝑥)−3 = 3𝐶0 ×

𝑛 − 3 + 3 − 1𝐶3−1 − 3𝐶1 × 𝑛 − 9 + 3 −

1𝐶3−1   

= 𝑛 − 1𝐶2 − 3 × 𝑛 − 7𝐶2 = 21𝑛 − 𝑛
2 −

83 = −𝑛2 + 21𝑛 − 83  

25) The number of ways of choosing 10 balls 

from infinite  white, red , blue and green 

balls is 

(a) 286;   (b) 295;  (c) 312;   (d) none. 

 Sol.: Required ways = 

{𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥10 𝑖𝑛 (1 + 𝑥 + 𝑥2 +

⋯)4}  

⟹ coefficient of 𝑥10 𝑖𝑛 (
1

1−𝑥
)
4

 ⟹ 

coefficient of 𝑥10 in (1 − 𝑥)−4⟹

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥10 in 

(1 + 4𝑥 +
5.4

2!
𝑥2 +

4.5.6

3!
𝑥3 + 7𝐶

4𝑥
4 + 8𝐶

5𝑥
5

+ 9𝐶
6𝑥
6 +⋯+ 13𝐶

10𝑥
10) 

∴ Required ways= 13𝐶10 =
13.12.11

3.2.1
= 286 

26) In how many ways can 6 coins be chosen 

from 20 one rupee coins, 10 fifty paise 

coins, 7 twenty paise coins? 

(a) 𝟑𝟕𝑷𝟔;   (b) 𝟑𝟕𝑪𝟔;  (c) 𝟑𝟕𝑷𝟏𝟎;   (d) none 

Sol.: Since, the distribution equation is x + 

y + z = 6, where x, y and z represents one 

rupee, fifty paise and twenty paise coins 

respectively. 

∴Number of ways of choosing r things out 

of n things = 𝑛 + 𝑟 − 1𝐶𝑟 . 

Where everything occur any number of 

time. 

 ∴Required ways = 3 + 6 − 1𝐶6 = 8𝐶2 =

28. 

 

27) The number of non-negative solution of 

𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 +⋯+ 𝒙𝒏 ≤ 𝒏.(where n is 

possible integer) is  

(a) 𝟐𝒏𝑪𝒏−𝟏;   (b) 𝟐𝒏𝑪𝒏−𝟏 − 𝟏;   (c) 𝟐𝒏𝑷𝒏 −

𝟏;    (d) none 
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Sol.: In general, we know that, for the 

distribution equation 𝑥1 + 𝑥2 + 𝑥3 +⋯+

𝑥𝑛 = 𝑛. The number of ways in which n 

things can be distributed among r in such 

a ways end can receive none, one or more 

or all of n items are 𝑛 + 𝑟 − 1𝐶𝑟−1 . 

∴ for the distribution equation 

𝑥1 + 𝑥2 + 𝑥3 +⋯+ 𝑥𝑛 ≤ 𝑛. Let required 

ways = w 

⟹ 𝑊 =

{𝑁𝑜. 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 1 𝑖𝑡𝑒𝑚}{𝑁𝑜. 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 2 𝑖𝑡𝑒𝑚}  

{𝑁𝑜. 𝑜𝑓 𝑤𝑎𝑦𝑠 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 𝑖𝑡𝑒𝑚}  

⟹ 𝑊 = 1 + 𝑛 − 1𝐶𝑛−1 + 2 + 𝑛 − 1𝐶𝑛−1 +

⋯+ 𝑛 + 𝑛 − 1𝐶𝑛−1   

⟹ 𝑊 = 𝑛𝐶𝑛−1 + 𝑛 + 1𝐶𝑛−1 +⋯+

2𝑛 − 1𝐶𝑛−1   

⟹ 𝑊 = (𝑛𝐶𝑛−1 + 𝑛𝐶𝑛) + 𝑛 + 1𝐶𝑛−1 +⋯+

 2𝑛 − 1𝐶𝑛−1   

⟹ 𝑊 = {(𝑛 + 1𝐶𝑛 + 𝑛 − 1𝐶𝑛−1) + ⋯+

2𝑛 − 1𝐶𝑛−1} − 𝑛𝐶𝑛  

…………………………………………………  

……………………………………………………  

⟹ 𝑊 = (2𝑛𝐶𝑛 + 2𝑛 − 1𝐶𝑛−1) − 𝑛𝐶𝑛 ⟹

𝑊 = 2𝑛𝐶𝑛 − 𝑛𝐶𝑛  

∴ 𝑊 = 2𝑛𝐶𝑛−1 − 1.  

28)  For  𝟐 ≤ 𝒓 ≤ 𝒏, (𝒏
𝒓
) + 𝟐( 𝒏

𝒓−𝟏
) + ( 𝒏

𝒓−𝟐
) = 

(a) (𝒏+𝟐
𝒓
);   (b) (𝒏

𝒓
);   (c) (𝒏+𝟏

𝒓+𝟏
);   (d) none 

Sol.: Let n be the number of newspaper 

which are read 

⟹60n = (300)(5) 

∴ n = 25 

29) In how many ways the letters of the word 

PERSON can be placed in the squares of 

the adjoining fig. So that no row remains 

empty? 

(a) 81;   (b) 18720;   (c) 18721;   (d) none 

Sol.: In PERSON total letters = 6 which 

are to be filled in 8 squares. 

6 number of ways of choosing 6 letters to 

fill in 8 squares= 8𝐶6 − 2 = 28 − 2 = 26 

Required ways = 26 × 6!= 18720. 

30) The  number of ways of arranging 5 

players to through the cricket ball so that 

the youngest way no thrown first is 

(a) 97;   (b) 98;  (c) 99;   (d) none. 

Sol.: Keeping the youngest player aside, 

one of four players can throw the cricket 

ball at first place in 4𝐶1 ways. 

Now the three players (not able to throw) 

the ball in first placed and 1 youngest 

player i.e. 4 can arrange themselves in 4! 

Ways to thrown the ball. 

∴ Required ways = 4𝐶1   4! = 96. 

31) The total number of ways in which a 

bigger can be given at least one rupee from 

four 25 paise coins three 50 paise coins 

and 2 one rupee coin is 

(a) 55;   (b) 54;   (c) 53;    (d) none 

Sol.: (b) 

32) In how many ways can 4 prizes be 

distributed in a class of 20 students when 

each student is eligible for all prizes? 

(a) 1600;   (b) 16000;   (c) 160000;   (d) 

none 

Sol.: The first prize can be given in 20 

ways. 
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The next prize can be given in 20 ways 

The next prize can be given in 20 ways. 

The last prize can be given in 20 ways. 

Total number of ways all the four prizes 

can be given is 20 × 20 × 20 × 20 =

160000. 

33) The number of ways in which 4 particular 

persons A, B, C, D and 6 move persons can 

stand in a queue. So that A always stand 

before B. B stand C and C before D is  

(a) 10! 4!;   (b) 10! -4!;   (c) 
𝟏𝟎!

𝟒!
;   (d) none 

Sol.: Total number of arrangements of 10 

persons when there is no restriction = 

10! 

Number of ways in which A, B, C, D can be 

arranged among themselves = 4! 

∴ Number of arrangements of 10 persons 

when A, B, C, D occurs in a particular 

order =
10!

4!
 

34) A father with 8 children taken 3 at a time 

to Nicco Park, as often as he can without 

talking the same children together more 

than once. How often will be father go? 

(a) 56;   (b) 106 ;   (c) 206;   (d) none. 

Sol.: [The number of times he can select 3 

children out of 8]= [The number of visits 

he (the father) can make] 

∴ The number of ways of selecting 3 

children out of 8 = 8𝐶3 = 56. 

35) In a steamer there are stalls for 12 animals 

and there are horse cows and calves (not 

less than 12 each) ready to be shipped. In 

how many ways can the ship load be 

made? 

(a) 𝟑𝟏𝟐;   (b) 𝟑𝟏𝟐 − 𝟏𝟐;    (c)  𝟑𝟏𝟐 + 𝟏;    

(d) none 

Sol.: First stall can be filled in 3 ways, 2nd 

stall in 3 ways and so on. Similarly, 12th 

stall in 3 ways. 

∴ Number of ways of loading steamer is 

3 × 3 × 3… . .× 3(12 𝑡𝑖𝑚𝑒𝑠) =  312. 

 

(SUBJECTIVE TYPE) 

1) Evaluate: ∑
𝒏𝑪𝒓

𝟐𝒏−𝟏𝑪𝒓

∞
𝒓=𝟎  

Sol.: A general method of finding the sum 

of a series ∑ 𝑢𝑟
∞
𝑟=0   is to express 

𝑢𝑟 𝑎𝑛𝑑 𝑣𝑟 − 𝑣𝑟+1 so that 𝑣𝑛 → 0  𝑎𝑠 𝑛 →

∞,𝑤𝑒 𝑔𝑒𝑡. 

Lt
𝑛 →∞

∑𝑢𝑟

∞

𝑟=0

= Lt
𝑛 →∞

∑(𝑣𝑟 − 𝑣𝑟+1)

∞

𝑟=0

 

= Lt
𝑛 →∞

(𝑣0 − 𝑣𝑟+1) = 𝑣0.  

In the present case, it is easily verified 

that 

𝑛𝐶𝑟
2𝑛𝐶𝑟

−
𝑛𝐶𝑟+1
2𝑛𝐶𝑟+1

=
∟𝑛

∟𝑟

∟𝑟

∟𝑛 − 𝑟
 
∟2𝑛 − 𝑟

∟2𝑛

−
∟𝑛

∟𝑟 + 1
 
∟𝑟 + 1

∟𝑛 − 𝑟 − 1
 

∟2𝑛 − 𝑟 − 1

∟2𝑛

=
∟𝑛

∟2𝑛
[
∟2𝑛 − 𝑟

∟𝑛 − 𝑟
 
∟2𝑛 − 𝑟 − 1

∟𝑛 − 𝑟 − 1
]

=
∟𝑛

∟2𝑛
 
∟2𝑛 − 𝑟 − 1

∟𝑛 − 𝑟
 

[(2𝑛 − 𝑟) − (𝑛 − 𝑟)]

=
1

2
 
∟𝑛

∟2𝑛 − 1
 
∟2𝑛 − 𝑟 − 1

∟𝑛 − 𝑟
  



 Challenging Mathematical Problems  

292 
 

=
1

2

𝑛𝐶𝑟
2𝑛 − 1𝐶𝑟

 ∑
𝑛𝐶𝑟

2𝑛 − 1𝐶𝑟

∞

𝑟=0

= 2∑[
𝑛𝐶𝑟
2𝑛𝐶𝑟

−
𝑛𝐶𝑟+1
2𝑛𝐶𝑟+1

]

∞

𝑟=0

 

= 2
𝑛𝐶0
2𝑛𝐶0

= 2 

2) Given that the number C is greater than 1, 

show that one of the two number 

√𝒄 + 𝟏 − √𝑪, √𝑪 − √𝑪 − 𝟏 is always 

greater than the number. 

Sol.: In fact √𝑐 + 1 − √𝑐, √𝑐 − √𝑐 − 1 

To show this we have to show that 

√𝑐 + 1 + √𝑐 − 1 ≤ 2√𝑐  

𝑜𝑟 2𝑐 + 2√𝑐2 − 1 ≤ 4𝑐 𝑜𝑟√𝑐2 − 1 ≤ 𝑐  

𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡𝑟𝑢𝑒.  

Alternatively, consider the parabola 𝑦 =

 √𝑥. and √𝑥 is a concave function. 

3) Show that the product of 2n consecutive 

negative integers is divisible by (2n)! 

Sol.: Let r be a natural number, Then 

−𝑟,−𝑟 − 1,−𝑟 − 2,… ,−𝑟 − (2𝑛 − 1) are 

an consecutive negative integers. 

Let P be their product. Then, 𝑃 =

(−𝑟)(−𝑟 − 1)(−𝑟 − 2)… . (−𝑟 −

(2𝑛 − 1)) 

              = (−1)2𝑛 𝑟(𝑟 + 1)(𝑟 + 2)… . (𝑟

+ 2𝑛 − 1)

= 𝑟(𝑟 + 1)(𝑟 + 2)… . (𝑟

+ 2𝑛 − 1) 

=
(𝑟 + 1)!  𝑟(𝑟 + 1)(𝑟 + 2)… . (𝑟 + 2𝑛 − 1)

(𝑟 − 1)!

=
(𝑟 + 2𝑛 − 1)!

(𝑟 − 1)!
 

= {
(2𝑛 + 𝑟 − 1)!

(2𝑛)! (𝑟 − 1)!
} (2𝑛)!

= (2𝑛)! 2𝑛 + 𝑟 − 1𝐶2𝑛
= (2𝑛)! 

(A natural number). Hence, P is divisible 

by (2n)! 

4) How many 3-digit numbers are of the from 

𝒂𝒃𝒄, with a, c < b and a ≠ 0? 

Sol.: Since the digit at hundred’s place 

cannot be zero 

Therefore, we must have 𝑎 ≥ 1. 

But it is given that a, c < b. Therefore 𝑏 ≥

2. 

⟹b = 2, 3, 4, 5, …., 9 

Let b = r, where r = 2, 3, ….., 9. Then a can 

take (𝑟 − 1) values 1, 2, …., r-1. Thus for 

each value of r, abc can take r(r−1) 

values. But, r can take value from 2 to 9. 

Therefore, by the fundamental principle 

of addition. Required number of numbers  

= ∑𝑟(𝑟 − 1)

9

𝑟=2

= ∑𝑟2
9

𝑟=2

−∑𝑟

9

𝑟=2

=∑𝑟2
9

𝑟=1

−∑𝑟

9

𝑟=1

 

=
9(9 + 1)(9 × 2 + 1)

6
− 9(9 + 1). 

5) There are two sets of parallel lines, their 

equations 𝒙 𝐜𝐨𝐬𝜶 + 𝒚𝐬𝐢𝐧𝜶 = 𝑷;𝑷 =

𝟏, 𝟐,… . ,𝒎 𝒂𝒏𝒅  

𝒚 𝐜𝐨𝐬𝜶 − 𝒙 𝐬𝐢𝐧𝜶 = 𝒒; 𝒒 =

𝟏, 𝟐,… . , 𝒏(𝒏 > 𝑚) where 𝛼 is a given 

const. Show that the lines from 
𝟏

𝟔
𝒎(𝒎− 𝟏)(𝟑𝒏 −𝒎− 𝟏) squares. 
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Sol.: The equation 𝑥 cos𝛼 + 𝑦 sin𝛼 = 𝑝; 𝑝 =

1, 2, 3,… . ,𝑚 represents m parallel lines such 

that the distance between two consecutive 

lines is one unit. Similarly the equation 

𝑦 cos 𝛼 − 𝑥 sin𝛼 = 𝑞; 𝑞 = 1, 2, … . , 𝑛 

represents n parallel lines such that the 

distance between any two consecutive lines is 

one unit. 

We observe that the slope of each line of first 

set is 𝑚1 = − cot𝛼 and the slope of each line 

of second set is 𝑚2 = tan𝛼. 

Clearly, 𝑚1𝑚2 = −1 

Therefore every line of first set is 

perpendicular to every line of second set. 

We observe that four lines consisting of two 

lines of the first set and two lines of the 

second set will form a square, if the distance 

between two parallel lines of first set is same 

as the distance between two parallel lines of 

second set. 

Since m < n therefore the length of the side of 

the largest square formed by the  two sets of 

lines is (𝑚 − 1) units and the length of the 

side of the smallest square is 1 unit. Clearly, 

two lines at a unit distance from the set of m 

parallel lines can be chosen in (𝑚 − 1) ways, 

namely (1, 2) (2, 3) (3, 4)……., (m-1, m) and 

two lines at a unit distance from the set of n 

parallel lines can be chosen in (𝑚 − 1) ways, 

namely (1, 2)(2, 3), …., (n-1, n). Therefore 

number of squares whose sides are of length 

1 unit (m-1)(n-1). 

Similarly two lines at a distance of 2 units 

from the set of m parallel lines can be chosen 

in (𝑚 − 2) ways, namely (1, 3) (2, 4), …, (m-2, 

m) and two lines at a distance of 2 units from 

the set of n parallel lines can be chosen in (n -

2) ways, namely (1, 3)(2, 4), ….., (n -2, n) 

Therefore, number of squares whose sides 

are of length 2 units = (𝑚 − 2)(𝑛 − 2) 

containing in this, manner, we find that the 

number of squares whose sides are of length 

2 units = (𝑚 − (𝑚 − 1))(𝑛 − (𝑚 − 1)) 

Hence, Total number of squares 

= (𝑚 − 1)(𝑛 − 1) + (𝑚 − 2)(𝑛 − 2) +⋯+

(𝑚 − (𝑚 − 1))(𝑛 − (𝑚 − 1))  

= ∑(𝑚 − 𝑟)(𝑛 − 𝑟)

𝑚−1

𝑟=1

 

= ∑{𝑚𝑛 − 𝑟(𝑚 + 𝑛) + 𝑟2}

𝑚−1

𝑟=1

= 𝑚𝑛(𝑚 − 1) − (𝑚 + 𝑛) 

∑ 𝑟

𝑚−1

𝑟=1

+ ∑ 𝑟2
𝑚−1

𝑟=1

 

= 𝑚𝑛(𝑚 − 1) − (𝑚 + 𝑛)
𝑚(𝑚 − 1)

2

+
(𝑚 − 1)𝑚(2𝑚 − 1)

6
 

=
𝑚(𝑚 − 1)

6
{6𝑛 − 3(𝑚 + 𝑛) + (2𝑚 − 1)} 

=
𝑚(𝑚−1)

6
{6𝑛 − 3𝑚 − 3𝑛 + 2𝑚 + 1} =

𝑚(𝑚−1)(3𝑛−𝑚−1)

6
 . 

 

6) There are n straight lines in a plane  such 

that 𝒏𝟏 are parallel in different direction, 

𝒏𝟐 are parallel in different direction and so 

on, 𝒏𝒌 𝒂𝒓𝒆  parallel in another direction 

such that 𝒏𝟏 + 𝒏𝟐 +⋯𝒏𝟐 = 𝒏. Also no 

three of the given lines meet a point. Show 

that the total number of inter section is 
𝟏

𝟐
(𝒏𝟐 − ∑ 𝒏𝒓

𝟐𝒌
𝒓=𝟏 ). 
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Sol.: If no two of n given lines are parallel 

and no three of them meet at a point, then 

the total number of points of intersection 

is 𝑛𝐶2 . But it is given that there are k sets 

of 𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑘 parallel lines such that 

no line in one set is parallel to a lines in 

any other set. Also lines of one set do not 

intersect with each other. 

Therefore, lines of one set do not provide 

any points of intersection. Hence, total 

number of points of intersection 

 = 𝑛𝐶2 − (𝑛1𝐶2
+ 𝑛2𝐶2

+⋯+ 𝑛𝑘𝐶2
+) 

=
𝑛(𝑛 − 1)

2
− {

𝑛1(𝑛1 − 1)

2
+
𝑛2(𝑛2 − 1)

2

+⋯+
𝑛𝑘(𝑛𝑘 − 1)

2
} 

=
𝑛(𝑛 − 1)

2
−
1

2
{(𝑛1

2 + 𝑛2
2 +⋯+ 𝑛𝑘

2)

− (𝑛1 + 𝑛2 +⋯+ 𝑛𝑘)} 

=
𝑛(𝑛 − 1)

2
−
1

2
{(𝑛1

2 + 𝑛2
2 +⋯+ 𝑛𝑘

2)

− 𝑛} 

=
𝑛2
2
−
1

2
 (𝑛1

2 + 𝑛2
2 +⋯+ 𝑛𝑘

2)

=
1

2
[𝑛2 −∑𝑛𝑟

2

𝑘

𝑟=1

] 

 

7) There are 15 seats in as row numbered as 

1 to 15. In how many ways can 4 persons 

sit in such a way that seat number 6 is 

always occupied and no two person sit in 

adjacent seats. 

Sol.: Since seat number ‘6’ is always occupied 

and no two persons can occupy adjacent 

seats. Therefore , at most two persons can sit 

on the left side of sixth seat. 

Thus, we have the following cases for the 

selection of seats. 

Case I: When two seats are selected on the 

right side sixth seat and one seat on its right 

side; 

Since no two adjacent seats are selected, so 

we can select either 1st and 3rd or 2nd and 4th 

or 1st and 4th seats. So, there are 3 ways to 

select 2 seat on the left side of sixth seat one 

the right side of sixth seat there are 9 seats. 

Therefore, one seat (excluding 7th seat) on the 

right side of sixth seat can be chosen in 8 

ways. 

Case II: When two seats are selected on the 

right side of sixth seat and one seat on its left 

side. 

In this case, one seats are selected on the 

right side of sixth seat and one seat on its left 

side. 

In this case,  one seat on the left side of sixth 

seat can be chosen in 4 ways (any one of the 

first four seats) and the number of ways of 

selecting two seats on the right side of sixth 

seat is same the number of non-negative 

integral solutions of the equation 𝑥1 + 𝑥2 +

𝑥3 = 7, where 𝑥1 ≥ 1, 𝑥2 ≥ 1 𝑎𝑛𝑑 𝑥3 ≥ 0. 

Here, 𝑥1 is the number of vacant seats 

between sixth seat and the first seat selected 

on the right side of sixth seat, 𝑥2 𝑖𝑠  the 

number of vacant seats between sixth seat 

and the first seat selected on the right side of 

sixth seat, 𝑥2 is the number of vacant seats 

between first and second seat selected on the 

right side of sixth seat and 𝑥3 is the number of 

vacant seats on the right side of the second 

selected seat. 

Let 𝑦1 = 𝑥1 − 1, 𝑦2 = 𝑥2 − 1 𝑎𝑛𝑑 𝑦3 = 𝑥3. 

Then 𝑥1 + 𝑥2 + 𝑥3 = 7  
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⟹ 𝑦1 + 𝑦2 + 𝑦3 = 5,  where 𝑦1, 𝑦2, 𝑦3 ≥ 0 

Total number of integral solutions of this 

equation is 5 + 3 − 1𝐶3−1 = 7𝐶2 = 21. 

Thus, the number of ways in which two seats 

can be chosen on the right side of sixth seat = 

21. Hence total number of selection of seats in 

this case 4 × 21 = 84. 

Case III: When all the three persons sit on the 

right side of sixth seat: 

Let 𝑥1 be the number of vacant seats between 

6th seat and first seat selected on the right of 

6th seat, 𝑥2 𝑏𝑒 the number of vacant seats 

between first selected seat and the second 

selected seat, 𝑥3 be the number of seats 

between second and third selected seat and 

𝑥1 be the numbers of vacant seats on the right 

side of fourth selected seat. Then, the number 

of ways of selecting 3 seats on the right side 

of sixth seat is equal to the number of the 

integral solution of the equation 𝑥1 + 𝑥2 +

𝑥32 + 𝑥4 = 6,  where 𝑥1 ≥ 1, 𝑥2 ≥ 1, 𝑥3 ≥

1, 𝑥4 ≥ 0.  Let 𝑧1 = 𝑥1 − 1, 𝑧2 = 𝑥2 − 1, 𝑧3 =

 𝑥3 − 1 and 𝑧4 = 𝑥4. Then, we have 𝑧1 + 𝑧2 +

𝑧3 + 𝑧4 = 3,𝑤ℎ𝑒𝑟𝑒 𝑧𝑖 ≥ 0; 𝑖 = 1, 2 , 3, 4 

Total number of solution of this equation is 

3 + 4 − 1𝐶4−1 = 6𝐶3 = 20  

Thus the number of ways of selecting 3 seats 

on the right side of 6th seat = 20. 

Hence total number of ways of selection of 4 

seats 24 +84+ 20= 128. 

But, corresponding to each way of selection of 

4 seats there are 4! Arrangements of 4 

persons. Hence total number of seating 

arrangement =128× 4! = 3072. 

 

8) In the given figure, you have the road 

plane of a city. A man standing at x wants 

to reach the house at y by the shortest 

path. What is the number of different 

paths that he can take? 

Sol.: As the man wants to travel by one many 

possible shortest paths, he will never turn up 

the trim down words. So a travel by one of the 

shortest path is to take a horizontal pieces 

and 4 vertical pieces of roads. As he cannot 

take a right turn, he will use only one of the 

five horizontal pieces in the same vertical 

column. Similarly same horizontal row. 

∴A shortest path is an arrangement of eight 

things 

    𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝑈1, 𝑈2, 𝑈3, 𝑈4. So that the order 

of 𝐿5 𝑎𝑛𝑑 𝑈5 do not change. 

(∵ clearly 𝐿2 cannot be taken without talking 

𝐿1, 𝐿2 can not taken without taking 𝑈1 etc.) 

Hence, the number of shortest path = the 

number of arrangements of 

𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝑈1, 𝑈2, 𝑈3, 𝑈4 where the order of 

𝐿5 as well as the order of 𝑈5 do not change = 

the number of arrangements treating 

𝐿5 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑑 𝑈5 as identical =
8!

4!4! 
= 70. 

9) Find the number of permutations 

(𝑷𝟏, 𝑷𝟐, 𝑷𝟑, 𝑷𝟒, 𝑷𝟓)𝒐𝒇 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔 such 

that for any k, 𝟏 ≤ 𝒌 ≤ 𝟓, (𝑷𝟏, 𝑷𝟐, … . , 𝑷𝒌) 

does not from a permutation of 1, 2, …., k. 

So.: Let 𝑇𝑛 is the required number of 

permutations. If k is the least positive integer 

such that (𝑃1, 𝑃2, … . , 𝑃𝑘) is a permutations of 

1, 2, 3,  …, k. 

Now are desire of count the number of 

permutation for k = n. Now, 
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∑𝑇𝑘

𝑛

𝑘=1

. (𝑛 − 𝑘)! = 𝑛! 

⟹ 𝑇𝑛 = 𝑛! − 𝑇1. (𝑛 − 1)! − 𝑇2. (𝑛 − 2)! −

⋯− 𝑇𝑛−1. 1!  

𝐶𝑙𝑒𝑎𝑟𝑙𝑦, 𝑇1 = 1; 𝑇2 = 2! − 𝑇1. 1! = 1, 𝑇3 =

3; 𝑇4 = 13; 𝑇5 = 71 𝑎𝑛𝑑 𝑇6 = 461.  

10) Find the best and the greatest value of  

∑ ∑ |𝒙𝒊 − 𝒙𝒋|
𝒏
𝒊=𝟏

𝒏
𝒋=𝟏 ; 𝒘𝒉𝒆𝒓𝒆 𝟎 < 𝑥 <

1 ∀ 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.  

Sol.: For last value: ∵It is possible to have 𝑥𝑖 =

 𝑥𝑗;  𝑖 = 𝑗 = 1, 2, 3, … , 𝑥 

∴ 𝑆𝑚𝑖𝑛 = 0 

For greatest value: without loss of generality, 

we can assume that 0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 ≤

1 (supposing the equality sign for 0 and 1 

also).  

Then  𝕊 = (𝑥2 − 𝑥1) + [(𝑥3 − 𝑥1) +

(𝑥3 − 𝑥2)] + [(𝑥4 − 𝑥1)] + [(𝑥4 − 𝑥2) +

(𝑥4 − 𝑥3)] + ⋯+ [(𝑥4 − 𝑥1) + (𝑥4 − 𝑥2) +

⋯+ 𝑥𝑥 − (𝑥𝑥 − 1)] 

 

Case I:  If n = 2m, 

𝕊= ∑ (2𝑘 − 2𝑚 − 1)2𝑚
𝐾=1 𝑥𝑘 

If k= 1, 2, …, m; then coefficients are negative. 

∴To maximize S’, We chose 𝑥1 = 𝑥2 = ⋯ =

 𝑥𝑛 = 0 

If 𝑘 = 𝑚 + 1,𝑚 + 2,… , 2𝑚 then coefficients 

are positive. 

 ∴ To maximize 𝑆′ ∼, we choose 𝑥𝑚+1 =

 𝑥𝑚+2 = ⋯ ∼= 𝑥2𝑚 = 1 

∴ 𝑆𝑚𝑎𝑥 = 1 + 3 +⋯+ (2𝑚 − 1) =  𝑚
2 =

𝑛2

4
 

Case II: If 𝑛 = 2𝑚 + 1  𝑆 =  ∑ (2𝑘 −
(2𝑚+1)
𝐾=1

2𝑚 − 1) 𝑥𝑘 

Now we choose 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑚 = 0, 𝑥𝑚+1 

can take any𝑥𝑛+2 = ⋯ = 𝑥2𝑚+1 = 1 

∴ 𝑆𝑚+𝑥 = 2 + 4 +⋯+ 2𝑚 = 𝑚(𝑚 + 1)

=
(𝑛2 − 1)

4
 

Combining, 𝑆′𝑚𝑎𝑥 = [
𝑛2

4
]. 

By actually, 𝑥𝑖  ≠ 0 & 𝑥𝑖 = 1 ∀ 𝑖 =

1, 2, ………… , 𝑛 

∴𝑆′𝑚𝑎𝑥 is not possible. 

Even if you show S= ∑ (2𝑘 − 𝑛 − 1)2𝑚
𝑘=1 𝑥𝑘  

and mentions than to get 𝑆𝑚𝑎𝑥 we have to put 

𝑥𝑖, 𝑆 = 0 and some 𝑥𝑖 , 

 𝑆 = 1 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒. He will get full 

credit. 

 

11) If (𝟏 + 𝒙)𝒏∑ 𝒏𝑪𝒓
𝒏
𝒓=𝟎 . 𝒙𝒓= then, show that  

 Number of 
times 
occurring 
with negative 
sign 

Number of 
times with 
positive 
sign 

Total 

𝑥1 
𝑥2 
⋮ 
⋮ 
𝑥𝑛 

(𝑛 − 1) 
(𝑛 − 2) 
⋮ 
⋮ 

(𝑛 − 𝑘) 

0 
1 
⋮ 
⋮ 
(k- 1) 

−(𝑛
− 1)𝑥1 
−(𝑛
− 3)𝑥2 
⋮ 
⋮ 

(2𝑘 − 𝑛
− 1)𝑥𝑘 
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{∑(−𝟏)𝒓−𝟏
∞

𝒓=𝟏

. 𝒄𝟐𝒓−𝟐}

𝟐

+ {∑(−𝟏)𝒓−𝟏
∞

𝒓=𝟏

. 𝒄𝟐𝒓−𝟏}

𝟐

= ∑𝒄𝒓

𝒏

𝒓=𝟎

 

 

Sol.: Let  

{∑(−1)𝑟−1
∞

𝑟=1

. 𝑐2𝑟−2}

2

= (𝑐0 − 𝑐2 + 𝑐4… . )
2……… . (𝑖)𝑎𝑛𝑑  

{∑(−1)𝑟−1
∞

𝑟=1

. 𝑐2𝑟−1}

2

= (𝑐1 − 𝑐3
+ 𝑐5… . )

2……(𝑖𝑖) 

 

𝐺𝑖𝑣𝑒𝑛: (1 + 𝑥)𝑛 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 +⋯+

𝑐𝑛𝑥
4…… . (𝑖𝑖𝑖)  

𝑃𝑢𝑡 𝑥 = 𝑖 𝑖𝑛 (𝑖𝑖𝑖): (1 + 𝑖)𝑛 = 𝑐0 + 𝑐1𝑖 − 𝑐2 −

𝑐3𝑖 + 𝑐4……… = (𝑐0 − 𝑐2 + 𝑐4… . ) +

𝑖(𝑐1 − 𝑐3 + 𝑐5… . )…………(𝑖𝑣)  

𝑃𝑢𝑡 𝑥 = 𝑖 𝑖𝑛 (𝑖𝑖𝑖): (1 − 𝑖)𝑛 = 𝑐0 − 𝑐1𝑖 − 𝑐2 +

𝑖𝑐3 + 𝑐4……… = (𝑐0 − 𝑐2 + 𝑐4… . ) +

𝑖(𝑐1 − 𝑐3 + 𝑐5… . )… . . (𝑣)  

(𝑖𝑣) × (𝑣) =  {(1 + 𝑖)(1 − 𝑖)}𝑛 =

 (𝑐0 − 𝑐2 + 𝑐4… . )
2 + (𝑐1 − 𝑐3 + 𝑐5… . )

2  

⟹ 2𝑛 = (𝑐0 − 𝑐2 + 𝑐4… . )
2 + (𝑐1 − 𝑐3 +

𝑐5… . )
2,   

⟹ ∑ 𝑐𝑟
𝑛
𝑟=0 = (𝑐0 − 𝑐2 + 𝑐4… . )

2 +

(𝑐1 − 𝑐3 + 𝑐5… . )
2   

 

 

12) Prove that ∑ 𝒙𝒌𝟗
𝒌=𝟎  𝒅𝒊𝒗𝒊𝒅𝒆𝒔 ∑ 𝒙𝒌𝒌𝒌𝟗

𝒌=𝟎  

Sol.: Let   

𝐵 =  ∑ 𝑥𝑘𝑘𝑘
9

𝑘=0

= 𝑥0 + 𝑥1111 + 𝑥2222 +⋯

+ 𝑥9999 𝑎𝑛𝑑 𝐴 = ∑𝑥𝑘
9

𝑘=0

= 𝑥0 + 𝑥1 + 𝑥2 +⋯+ 𝑥9 

𝑁𝑜𝑤, 𝐵 − 𝐴 =  ∑(𝑥𝑘𝑘𝑘 − 𝑥𝑘)

9

𝑘=0

=  ∑ 𝑥𝑘
9

𝑘=0

 {(𝑥10)𝑘𝑘𝑘 − 1}

= {(𝑥10)𝑘𝑘𝑘 − 1} ∑ 𝑥𝑘
9

𝑘=0

= 𝑀∑𝑥𝑘
9

𝑘=0

,  

⟹ 𝐵 = (𝑀 + 1)∑ 𝑥𝑘9
𝑘=0 , 𝑖. 𝑒. ∑ 𝑥𝑘𝑘𝑘9

𝑘=0    is 

divisible by ∑ 𝑥𝑘9
𝑘=0 . 

 

13) After several operation of differentiation 

and multiplying by (x+ 1) performed in an 

arbitrary order the polynomial 𝒙𝟖 + 𝒙𝟕 is 

changed to ax +b. Prove that the 

difference between the in tegers a and b is 

always divisible by 49. 

Sol.: Let 𝑓(𝑥) =  𝑥𝑚, 𝑡ℎ𝑒𝑛 𝑓𝑛(𝑥) =

𝑚(𝑚 − 1)(𝑚 − 2)… . (𝑚 + 1 −

𝑛)𝑥𝑚−𝑛𝑤ℎ𝑒𝑟𝑒 𝑓𝑛(𝑥)𝑖𝑠 𝑛𝑡ℎ derivative of f(x). 

∴  𝑓𝑛(𝑥) =
𝑚!

(𝑚 − 𝑛)!
𝑥𝑚−𝑛 

𝐿𝑒𝑡 𝑔(𝑥) = 𝑥8 + 𝑥7, 𝑡ℎ𝑒𝑛 𝑔𝑛(𝑥) =
8!

(8−𝑛)!
 𝑥8−𝑛 +

7!

(7−𝑛)!
𝑥7−𝑛 Multiplying both 

sides by (1+ x), then  
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(1 + 𝑥)𝑔𝑛(𝑥) =
8!

(8 − 𝑛)!
𝑥8−𝑛

+
7!

(7 − 𝑛)!
 𝑥7−𝑛

+
8!

(8 − 𝑛)!
 𝑥9−𝑛 

After (8 − 𝑛)𝑛𝑡ℎ differentiation of (i) we get 
7!

(7−𝑛)!
 𝑥8−𝑛…… . . (𝑖) if into the from ax +b. 

Let h(x) = (x+1) 𝑔𝑛(𝑥). 

𝑁𝑜𝑤 ℎ8−𝑛(𝑥) =
8!

(8 − 𝑛)!
.
(8 − 𝑛)!

0!

+
7!

(7 − 𝑛)!
.
(9 − 𝑛)!

7!

+
8!

(8 − 𝑛)!
.
(9 − 𝑛)!

7!
𝑥

= 8! (9 − 𝑛)𝑥 + 7! (8 − 𝑛)

+ 8.7! 

= 8! (9 − 𝑛)𝑥 + 7! (16 − 𝑛)𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 𝑎 =

8! (9 − 𝑛)𝑥  

= 7! (72 − 8𝑛)! 𝑏 = 7! (16 − 𝑛)  

∴ 𝑎 − 𝑏 = 7! (72 − 8𝑛 − 16 + 𝑛) =

7! (56 − 7𝑛) = 7 × 7! (8 − 𝑛) = 49.6! (8 − 𝑛)  

∴ 𝑎 − 𝑏 is divisible by 49. 

14) Let n be an odd integer greater than 1 and 

𝒌𝟏, 𝒌𝟐, … . , 𝒌𝒏 be given integers. For each 

of the n! Permutations 𝒂 =

(𝒂𝟏, 𝒂𝟐, … . , 𝒂𝒏)𝒐𝒇 𝟏, 𝟐, ……… ,𝒏. Let 

𝑺(𝒂)∑ 𝒌𝒊 𝒂𝒊
𝒏
𝒊=𝟏 . Show that there are two 

permutations b and c, b ≠ c such that n! is 

a divisors of 𝑺(𝒃) − 𝑺(𝒄). 

Sol.: Let ∑ 𝑆(𝑎) be the sum of 𝑆(𝑎) over all n! 

permutation a = (𝑎1, 𝑎2, … . , 𝑎𝑛). We compute 

∑ 𝑆(𝑎) mod n! two ways one of which depends 

on the desired conclusion being false, and 

reach a contradiction when n is odd. 

First way 𝐼𝑛  ∑ 𝑆(𝑎) , 𝑘1 is multiplied by each i 

∊ {1, …, n} a total of (n -1)! Times. Once for 

each permutation of {1, …, n} in which 𝑎1 = 𝑖. 

Thus the coefficient of 𝑘1 𝑖𝑛 ∑ 𝑆(𝑎)  𝑖𝑠 (𝑛 −

1)! (1 + 2 +⋯+ 𝑛) =
(𝑛+1)!

2
. 

The same is true for all k, so ∑ 𝑆(𝑎) =
(𝑛+1)!

2
∑ 𝑘𝑖
𝑛
𝑖=1 ……… . (1) 

Second way, if n! is not a divisors of 𝑆(𝑏) − 𝑆(𝑐) 

for any b ≠ c, then each 𝑆(𝑎) must have a 

different remainder mod n! Since there are n! 

permutations, these remainders must be 

precisely the numbers 0, 1, 2, …, n! -1. Thus  

∑ 𝑆(𝑎) =
(𝑛!−1)𝑛!

2
  𝑚𝑜𝑑 𝑛!………… . . (2)  

Combining (1) and (2), we get 

(𝑛 + 1)!

2
∑𝑘𝑖

𝑛

𝑖=1

≡
(𝑛! − 1)𝑛!

2
  𝑚𝑜𝑑 𝑛!………… . (3) 

Now, for n odd, the left side of (3) is 

congruent to 0 modulo n!, while for n >1 the 

right side is not congruent to 0 (n! -1 is odd) 

For n> 1 and odd, we have a contradiction. 

 

15) If 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 be real numbers satisfying 

the conditions: |𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏| =

𝟏 𝒂𝒏𝒅 |𝒙𝒊| ≤
𝒏+𝟏

𝟐
 𝒐𝒓 𝒊 = 𝟏, 𝟐,… . . , 𝒏. show 

that there exist a permutations 

𝒚𝟏, 𝒚𝟐, …… . . , 𝒚𝒏 𝒐𝒇 𝒙𝟏, 𝒙𝟐, … . , 𝒙𝒏 such 

that |𝒚𝟏 + 𝟐𝒚𝟐 +⋯+ 𝒏𝒚𝒏| ≤
𝒏+𝟏

𝟐
. 

Sol.: For any permutation 𝜋 = (𝑦1, 𝑦2, … . , 𝑦𝑛) 

of (𝑥1, 𝑥2, … . , 𝑥𝑛) Let S(𝜋)= 𝑦1 + 2𝑦2 + 3𝑦3 +

⋯+ 𝑛𝑦𝑛 Let 𝜋0 be the identity permutation, 

𝜋0 = (𝑥1, 𝑥2, … . . , 𝑥𝑛) and let 𝜋 be the reverse 

permutation, 𝜋 = 
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(𝑥𝑛, 𝑥𝑛−1, … , 𝑥1), 𝑖𝑓 |𝑆(𝜋0)| ≤
(𝑛+1)

2
 𝑜𝑟 |𝑆(𝜋)| ≤

(𝑛+1)

2
, then we are done. 

Thus we assume |𝑆(𝜋0)| > (𝑛 +

1)𝑎𝑛𝑑 |𝑆(𝜋)| >
(𝑛+1)

2
 

Note that 𝑆(𝜋0) + 𝑆(𝜋) = (𝑥1 + 2𝑥2 +⋯+

𝑛𝑥𝑛) + (𝑥𝑛 + 2𝑥𝑛−1 +⋯+ 𝑛𝑥1) =

(𝑛 + 1)(𝑥1 + 𝑥2 +⋯+

𝑥𝑛)𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑡ℎ𝑎𝑡 |𝑆(𝜋0) + 𝑆(𝜋)| = 𝑛 + 1. 

Since each of 𝑆(𝜋0)𝑎𝑛𝑑 𝑆(𝜋) 𝑒𝑥𝑐𝑒𝑒𝑑𝑠
(𝑛+1)

2
 is 

absolute value, they must have opposite 

signs. Thus, one of 𝑆(𝜋0)𝑎𝑛𝑑𝑆(𝜋) is greater 

than 
(𝑛+1)

2
, and the other is less than −

(𝑛+1)

2
. 

Now, starting from 𝜋0, we can obtain any 

permutation by successive, transpositions of 

neighboring elements. In particular, there 

exists a chain 𝜋0, 𝜋1, … . , 𝜋𝑚  of permutations 

𝜋𝑥+1 is obtained from 𝜋𝑖  by interchanging 

two of its neighboring terms. 

This means that if 𝜋𝑖 =

𝑦1, 𝑦2, …… . . , 𝑦𝑛    𝑎𝑛𝑑 𝜋𝑖+1 =

(𝑧1, 𝑧2, … , 𝑧𝑛) 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛  𝑖𝑛𝑑𝑒𝑥 𝑘, 1 ≤

𝑘 ≤ 𝑛 − 1, such that  𝑧𝑘 = 𝑦𝑘+1, 𝑧𝑘+1 =

 𝑦𝑘  𝑎𝑛𝑑 𝑧𝑖 = 𝑦𝑖 , 𝑗 ≠ 𝑘, 𝑗 ≠ 𝑘 + 1. 

Because the numbers 𝑥𝑖  do not exceed 
(𝑛+1)

2
 

in absolute value, we have |𝑆(𝜋𝑖+1) −

𝑆(𝜋𝑖)| =  |𝑘𝑥𝑘 + (𝑘 + 1)𝑧𝑘+1 − 𝑘𝑦𝑘 −

(𝑘 + 1)𝑦𝑘+1| = |𝑦𝑘 − 𝑦𝑘+1| ≤ |𝑦𝑘| + |𝑦𝑘+1| ≤

 𝑛 + 1.  It follows that the difference between 

any two consecutive numbers in the sequence 

𝑆(𝜋0), 𝑆(𝜋1),… . , 𝑆(𝜋𝑚)  is at most n +1 in 

absolute value. Recall that the numbers 

𝑆(𝜋0)  𝑎𝑛𝑑 𝑆(𝜋𝑚) = 𝑆(
∼
𝜋
) regarded as points 

on the real line, lie outside of and on opposite 

sides of the interval  [−
(𝑛+1)

2
,
(𝑛+1)

2
] .  

Because this interval has length n +1, it 

follows that at least. One of the numbers  

𝑆(𝜋𝑖) must lie in this interval. For this 

particular 𝜋𝑖  we have |𝑆(𝜋𝑖)| ≤
(𝑛+1)

2
. 

16) Find the number of non-degenerate 

triangle whose vertices lie in set of points 

(s, t) in the plane such that 𝟎 ≤ 𝑺 ≤ 𝟒, 𝟎 ≤

𝒕 ≤ 𝟒,  S and t are integers. 

Sol.: There are 25 points in the given set, we 

can choose 3 out of them in (25
3
) ways. Let us 

count the number of ways in which the 3 

points chosen will lie on a line. L : The given 

set S contains 5 horizontal lines 5 points each. 

We can choose 3 points from any of them in 

(5
3
) ways. 

Hence the number of ways in which L can be 

a horizontal line is 5. (5
3
) = 50. Similarly the 

number of ways in which L can be a vertical 

line is 50. 

As shown in fig.(ii) S contains 5 lines of slope 

1; one line contain 5 points, 2 lines contain 4 

points each and 2 lines contain 3 points each. 

So the number of ways in which L can be line 

of slope 1 is (5
3
) + 2(4

3
) + 2(3

3
) = 20. 

Similarly, the number of ways in which L can 

be a line of slope −1 𝑖𝑠 20. 

As shown in fig (ii) there are 3 lines of slope 
1

2
 

each containing 3 points; and there are 3 lines 

of slope 2, each containing 3 points. So the 

number of ways in which L can have slope 
1

2
 

or 2 is 6 (3
3
)= 6 similarly L can have slope 

−
1

2
 𝑜𝑟 − 2 𝑖𝑛 6 ways. 

Since no other line can contain more than two 

points of S, the number of ways in which the 3 

points chosen will lie is 

50+50+20+20+6+6= 152 
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The required number of triangle is therefore 

(25
3
) − 152 = 2148. 

17) For non-negative integers n, r the binomial 

coefficient (𝒏
𝒓
) denotes the number of 

combinations of n objects chosen r at a 

time, with the convention that (𝒏
𝟎
) =

𝟏 𝒂𝒏𝒅 (𝒏
𝒓
) = 𝟎 𝒊𝒇 𝒏 < 𝑟. 

Prove that ∑ (𝒏−𝒓+𝟏
𝒅
)∞

𝒅=𝟏 (𝒓−𝟏
𝒅−𝟏
) = (𝒏

𝒓
) for all 

integers n, r with 𝟏 ≤ 𝒓 ≤ 𝒏. 

Sol.: We use a combinatorial argument to 

establish the obviously equivalent identity         

∑ (
𝑛 − 𝑟 + 1

𝑑
)

∞

𝑑=1

(
𝑟 − 1

𝑑 − 1
)

= (
𝑛

𝑟
)…… . (∗)𝑤ℎ𝑒𝑟𝑒 𝑘

= min{𝑟, 𝑛 − 𝑟 + 1}. 

It clearly suffices to demonstrate that the left 

hand side of (i) counts the number of ways of 

selecting r objects from n distinct objects 

(without replacements). Let 𝑆2 = 𝑟 − 1. For 

each fixed d = 1, 2, …, k any selection of d 

objects from 𝑆1 (
𝑆

𝑆2
) together with any 

selection of 𝑟 − 𝑑 objects from 𝑆2 would yield 

a selection of r objects from S. The total 

number of such electrons is  (𝑛−𝑟+1
𝑑
) (𝑟−1

𝑑−1
). 

Conversely each selection of r objects from S 

clearly much arise in this manner. Summing 

over d = 1, 2, ….(*) follows. 

 

18) If S be the set of natural numbers whose 

digits are chosen from {1, 2, 3, 4} such that 

(i) when no digits are repeated, find n(s) 

and the sum of all numbers in S and  (ii) 

when 𝑺𝟏 is the set of up to 4-digits 

numbers where digits are repeated. Find 

|𝑺𝟏| and also find the sum of all the 

numbers in 𝑺𝟏. 

Sol.: (i) S consists of single digit numbers, two 

digits numbers three digits numbers and four 

digit numbers. 

No. of single digit number = 4, No. of two 

digit number = 4 × 3 = 12 (since repeatation 

is not allowed, there are four choices for ten’s 

place and three choices for unit’s place) 

No. of three digit number = 4 × 3 × 2 = 24 

No. of four digit number  = 4 × 3 × 2 × 1 =

24 

∴ n(s) = 4 +12+ 24+ 24 = 64. 

Now for the sum of these 64 numbers, sum of 

all the single digit number is 1 +2 +3 +4= 

10. (since there are exactly 4 digits 1, 2, 3, 4 

and their numbers are 1, 2, 3 and 4). 

Now, to find the sum of all the two digit 

numbers. No of two digit number is 12. 

The digit used in units place are 1, 2, 3 and 4. 

In the 12 numbers, each of 1, 2, 3 and 4   

occurs thrice in unit digit (12
4
=   3). 

Again in ten’s  place, each of these digits 

occurs thrice also so, sum of these 12  

numbers = 30 × (1 + 2 + 3 + 4) + 3 ×

(1 + 2 + 3 + 4) = 300 + 30 = 330. No. of the 

digit numbers is 24.  So, the number of times 

each of 1, 2, 3, 4 occurs in each of unit’s ten’s 

and hundred’s place is 
24

4
= 6. 

So, sum  of all these  three digit number is 

100 × 6(1 + 2 + 3 + 4) + 10 × 6(1 + 2 + 3 +

4) + 1 × 6(1 + 2 + 3 + 4) = 6, 000 + 600 +

60 = 6660.   

Similarly for the four digit numbers, the sum 

is computed as 100 × 6(1 + 2 + 3 + 4) +

100 × 6(1 + 2 + 3 + 4) + 10 × 6(1 + 2 + 3 +

4) + 1 × 6(1 + 2 + 3 + 4) = 60,000 +

6,000 + 600 + 60 = 66, 660. 
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[Since there are 24 digit numbers, each of 1, 

2, 3, 4 occurs in each of the four digits in 
24

4
=

6 times] 

So, the sum of all the single digit, two digit, 

three digit and four digit number = 

10+330+6660+66660= 73, 660. 

(i) There are just four single digits 

numbers 1, 2, 3, 4. 

(ii) There are 4 × 4 = 16 two digits 

numbers, as digit can be repeated. 

(iii) There are 4 × 4 × 4 = 64 three 

digit numbers. 

(iv) There are 4 × 4 × 4 × 4 = 256 

four digit numbers. 

So, that total number of numbers up to 4 digit 

numbers that could be formed using the 

digits 1, 2, 3 and 4 is 4 + 16 + 64 + 256 =

340. 

Sum of the 4 single digit numbers = 

1+2+3+4= 10. To find the sum of 16, two 

digit number each of 1, 2, 3, 4 occur in each of 

units and ten’s place 
16

4
= 4 𝑡𝑖𝑚𝑒𝑠. So, the 

sum of all these 16 numbers is = 10 ×

4(1 + 2 + 3 + 4) + 4(1 + 2 + 3 + 4) = 400 +

40 = 440. 

Similarly, the sum of all the 64 three digit 

numbers 100 ×
64

4
× (1 + 2 + 3 + 4) + 10 ×

64

4
× (1 + 2 + 3 + 4) + 1 ×

64

4
× (1 + 2 + 3 +

4) = 16,000 + 1,600 + 160 = 17,760. 

Again the sum of al the 256 four digit 

numbers = 1000 ×
256

4
× (1 + 2 + 3 + 4) =

6,40,000 + 64,000 + 6,400 + 640 =

7,11, 040. 

Therefore, sum of all the number is 10 + 440 

+17,760+ 7,11,040= 7,29,250. 

 

19) Find the number of 6 digit natural 

numbers where each digit appears at least 

twice. 

Sol.: We  consider number like 222222 or 

233200 but not 212222. Since the digit 1 

occurs only once. 

The set of all such 6 digits can be divided into 

following classes. 

𝑆1 = the set of all 6 digit numbers where a 

single digit is repeated 6 times. 

𝑛(𝑆1)= 9.  

Since ‘0’ cannot be a significant number when 

all its digits are zero. 

𝐿𝑒𝑡 𝑆2 be the set of all six digit numbers, 

made up of three distinct digits. 

Here we should have two cases : 𝑆2(𝑎) one 

with the exclusion of zero as a  digit and other 

𝑆2(𝑏) with the inclusion of zero as a digit. 

𝑆2(𝑎) The numbers of ways, three digit could 

be chosen from 1, 2, …, 9 is 9𝐶3 . Each of these 

three digits occurs twice. So, the number of 

six digit number in this case is       

9𝐶3 ×
6!

2! × 2! × 2!
=
9 × 8 × 7

1 × 2 × 3
×
720

8
= 9 × 8 × 7 × 15 = 7560. 

𝑆2(𝑏) the three digits used include one zero, 

implying we have to choose the other two 

digits from the 9 non zero digits. 

This could be done in 9𝐶2 =
9×8

1.2
= 36. Since 

zero can not be in the leading digit. So let us 

fix one of the fixed non-zero number in the 

extreme left. Then the other five digits are 

made up of 2 zeros, 2 fixed non zero number 

and the another non-zero number, one of 

which is put in the extreme left. 
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In this case the number of six digit numbers 

that could be formed is 
5

2!×2!×2!
× 2 (since 

from either of the pairs of fixed non-zero 

numbers, one can occupy the extreme digit) 

= 60. 

So, the total number in this case = 36 × 60 =

2160. 

∴ n(𝑆2) = 𝑛(𝑆2𝑎) + (𝑆2𝑏) = 7560 + 2160 =

9720 

Now, Let 𝑆3 be the set of six digit numbers, 

whose digits are made up to of two distinct, 

digits each of which occurs thrice. Here again, 

there are two cases: 𝑆3(𝑎) excluding the digit 

zero and 𝑆3(𝑏) including the digit zero. 

𝑆3(𝑎) is the set of six digit numbers, each of 

whose digits are made up of two non-zero 

digits each occurring thrice  

∴n[𝑆3(𝑎)] =  9𝐶2 ×
6!

3!×3!
= 36 × 20 = 720 

𝑆3(𝑏) consists of 6 digits numbers whose 

digits are made up of three zeros and one of 

non-zero digit, occurring thrice. If you fix one 

of the nine non-zero digit, use that digit in the 

extreme left. 

This digit should be used thrice. So in the 

remaining 5 digits, this fixed non zero digit is 

used twice and the digit zero occurs thrice. 

So, the number of 6 digit numbers formed in 

these cases is 9 ×
5!

3!×2!
= 90 ∴ 𝑛(𝑆3) =

𝑛𝑆3(𝑎) + 𝑛𝑆3(𝑏) = 720 + 90 = 810. 

Now let us take 𝑆4, the case where the six 

digit number consists of exactly two digits, 

one of which occurs twice and the other four 

times. 

Here, again, there are two cases; 𝑆4(𝑎) 

excluding zero and 𝑆4(𝑏) including zero. 

If a and b are the two non-zero numbers a 

used twice and b four times, then we get 
6!

2!×4!
 

and when a used four times, b twice, we again 

get 
6!

2!×4!
. So, when 2 of the nine non-zero 

digits are used to from the six digit number in 

this case, the total numbers  got is 9𝐶2 × 2 ×
6!

4!×2!
= 36 × 5 × 6 = 1080. 

Thus n[𝑆4(𝑎)] = 1080.  

For counting the numbers in 𝑆4(𝑏). 

In this case we may use 4 zeros and a non-

zero number twice or 2 zeros and a non-zero 

number for times. In the former case, 

assuming the one of the fixed non-zero digit 

occupying the extreme left, we get the other 

five digits consisting of 4 zeros and one non-

zero number. 

This result in 9 ×
5!

4!×1!
= 45 six digit numbers. 

When we use the fixed non-zero digit 4 times 

and use zero twice, then we get 9 ×
5!

3!×2!
= 90 

six digit numbers, as fixed number occupies 

the extreme left and for the remaining three 

times it occupies 3 of the remaining digit, 

other digits being occupied by the two zeros. 

So,  n(𝑆4) = 𝑛 [𝑆4(𝑎)] + 𝑛[𝑆4(𝑏)] = 1080 +

45 + 90 = 1215. 

Hence, the total number of six digit numbers 

satisfying the given condition = 𝑛(𝑆1) +

𝑛(𝑆2) + 𝑛(𝑆3) + 𝑛(𝑆4)= 9+720+810+1215 

= 2754 

 

20) If x = {1, 2, 3, … 4}, where n ∊N, show that 

the number of r combinations of x which 

contain no consecutive integer is given by 

(𝒏−𝒓+𝟏
𝒓
),𝒘𝒉𝒆𝒓𝒆 𝟎 ≤ 𝒓 ≤ 𝒏 − 𝒓 + 𝟏. 

Sol.: From the hypothesis 𝑟 ≤ 𝑛 − 𝑟 +

1,𝑤𝑒 𝑔𝑒𝑡 2𝑟 ≤ 𝑛 + 1. Each such r 
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combinations can be represented by a binary 

sequences 𝑏1, 𝑏2, 𝑏3…… . 𝑏𝑛 where 𝑏𝑖 =

1, 𝑖𝑓 𝑖 𝑖𝑠  a number of the r combinations and 

0, otherwise with no consecutive 𝑏𝑖′𝑠 =1 (the 

above r combinations contain no consecutive 

integers). The number of 1s in the sequence is 

r. Now, this amounts to counting such binary 

sequences. Now, look at the arrangements of 

the following boxes;  

And the balls in them                     

1 2 3 4 5 6 7 
00 000 00 0000 0 0 000 

 

Here, the balls stand for the  binary digits 

zero, and the boundaries on the left and right 

of each box can be taken as the binary digit 

one. In this display of boxes and balls as 

interpreted gives previously how we want the 

binary numbers. here there are 7 boxes, and 6 

left/right boundary for the boxes.. So, this is 

an illustration of 6 combinations of non-

consecutive numbers. 

The reason for zeros in the front and at the end 

is that we can have leading zeros and trailing 

zeroes in the binary sequence  𝑏1, 𝑏2, … . 𝑏𝑛 

Now clearly finding the r combination amounts 

to distribution of (n-r) balls into (𝑟 + 1) distinct 

boxes [(𝑛 − 𝑟)𝑏𝑎𝑙𝑙𝑠 = (𝑛 − 𝑟)] zeros as these 

are r ones, in the n number sequence]. Such 

that the 2nd, 3rd-rth boxes are non-empty.(The 

first and the last boxes may or may not be 

empty in the illustration 1st and the 7th may 

have zeros or may not have balls as we have 

already had 6 combinations!). Put (𝑟 − 1) balls 

one in each of 2nd, 3rd, …., rth boxes. (So, that no 

two 1’s occurs consecutively). 

Now we have (𝑛 − 𝑟) − (𝑟 − 1)  balls to be 

distributed in r +1 distinct boxes. 

21) If 𝑺 = {𝟏, 𝟐, 𝟑, … . , (𝒏 + 𝟏)}𝒘𝒉𝒆𝒓𝒆 𝒏 ≥ 𝟐 

and let 𝒕 − {
(𝒙,𝒚,𝒛)

𝒙,𝒚,𝒛
∊ 𝑺, 𝒙 < 𝑧, 𝑦 < 𝑧}. By 

counting the numbers of T in two different 

ways, show that ∑ 𝒌𝟐𝒏
𝒌=𝟏 = (𝒏+𝟏

𝟐
) +

𝟐(𝒏+𝟏
𝟑
). 

Sol.: T can be written as 𝑇 = 𝑇1 ∪ 𝑇2, 𝑇1 =

{
(𝑥,𝑥,𝑧)

𝑥,𝑧
, ∊ 𝑆, 𝑥 < 𝑧} 𝑎𝑛𝑑 𝑇2 = {

(𝑥,𝑦,𝑧)

𝑥,𝑦,𝑧
∊ 𝑆, 𝑥 +

𝑦 < 𝑧} 

The number of elements in 𝑇1 is the same as 

choosing two elements from the set S, where 

n(S)= (n +1). i.e. 𝑛(𝑇1) =  (
𝑛+1
2
) (as every subset 

of two elements the larger elements will be z 

and the smaller will be x and y.) 

In 𝑇2. we have 2(𝑛+1
3
) elements, other choosing 

3 elements from the set S, two of the smaller 

elements will be x and y and they may be either 

taken as (x, y, z) or as (y, x, z) or in other words, 

every three element subset of S, say {a, b, c} the 

greatest is z, and the other two can be placed in 

two different ways in the first two positions, 

∴n(T) (𝑜𝑟 |𝑇|) = (𝑛+1
2
) + 2(𝑛+1

3
)𝑇,  can also be 

considered as ⋃ 𝑆𝑖
𝑛+1
𝑖=2 ,  

where 𝑆𝑖 = {
(𝑥,𝑦,𝑖)

𝑥
𝑦 < 𝑖, 𝑥, 𝑦 ∊ 𝑆}.  

All these sets are pair wise disjoint as for 

different i, we get different ordered triplets (x, 

y, i). 

Now in 𝑆𝑖, the first two components of (x, y, i) 

namely (x, y) can be any element from the set 1, 

2, 3, …., (i-1) equal or district. 

∴ The number of ways of selecting (x, y), x, y 

∊{1, 2, 3, ….., (i-1)} is (𝑖 − 1)2 

Thus, n(𝑆𝑖)𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 𝑖𝑠(𝑖 − 1)
2, 𝑖 ≥ 2.  
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For example, 𝑛(𝑆2) = 1, 𝑛(𝑆3) =  2
2 = 4  and 

so on 

Now, 𝑛(𝑇) = 𝑛(⋃ 𝑆𝑖
𝑛+1
𝑖=2 ) =  ∑ 𝑛(𝑆𝑖)

𝑛+1
𝑖=2  

(because all 𝑆𝑖
′𝑠 are pair –wise disjoint) 

= ∑(𝑖 − 1)2
𝑛+1

𝑖=2

= ∑𝑖2
𝑛

𝑖=1

 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒, (
𝑛 + 1

2
) + 2(

𝑛 + 1

3
)

=  ∑ 𝑘2
𝑛

𝑘=1

 

 

22) Show that the number of ways in which 3 

numbers in A.P. can be selected from 1, 2, 

3, …., n is 
𝟏

𝟒
(𝒏 − 𝟏)𝟐 𝒐𝒓

𝟏

𝟒
𝒏(𝒏 − 𝟐) 

according as n is odd or even. 

Sol.:  

Let us assume that n is odd, so 𝑛 = 2𝑚 − 1. 

Now, we will count the set of all triplets of 

numbers which are in A.P. 

Observe the following sequence of triplets in 

A.P. with common difference 1. 

1 2 3
2 3 4
3 4 5

 

⋮ ⋮ ⋮ 

𝑜𝑟,
𝑛 − 2 𝑛 − 1 𝑛

2𝑚 − 3 2𝑚 − 2 2𝑚 − 1
 

AP is common difference 2. 

1 3 5
2 4 6
3 5 7

 

⋮ ⋮ ⋮ 

2𝑚 − 5 2𝑚 − 3 2𝑚 − 1 

Thus there are 2𝑚 − 5 A.P.’s here with 

common difference 2. 

Now let us consider an A.P. with common 

difference 𝑚 − 1, then (1, m, 2m-1) will 

be the only Ap with this common 

difference m -1. Thus the greatest value 

for the common difference of the Ap’s in 

equation is d = 𝑚 − 1 

Now, let us taken all the AP’s with 

common difference d,  

1 1 + 𝑑 1 + 2𝑑
2 2 + 𝑑 2 + 2𝑑
⋮ ⋮ ⋮

 

2𝑚 − 1 − 2𝑑 2𝑚 − 1 − 2𝑑 2𝑚 − 1 

Therefore, there are exactly (2𝑚 − 1 −

2𝑑) triplets in Ap with common 

difference d, but d varies from 1 to m -1. 

So, the total number of triplets in AP in 

this case is 

∑(2𝑚 − 1 − 2𝑑)

𝑚−1

𝑑=1

= (𝑚 − 1)(2𝑚 − 1)

− 2
(𝑚 − 1)𝑚

2
 

∴ ∑ 2𝑚− 1 − 2𝑑

𝑚−1

𝑑=1

= (𝑚 − 1)(2𝑚 − 1)

− 2 ∑ 𝑑

𝑚−1

𝑑=1

 

= (𝑚 − 1)(2𝑚 − 1) − 2
(𝑚 − 1)𝑚

2
= 2𝑚2 − 3𝑚 + 1 −𝑚2

+𝑚 

= 𝑚2 − 2𝑚 + 1 = (𝑚 − 1)2 
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𝐵𝑢𝑡 𝑛 = 2𝑚 − 1 ⟹ 𝑚 =
𝑛 + 1

2
⟹ 𝑚− 1

=
𝑛 − 1

2
 𝑎𝑛𝑑 

Hence, when n is odd, the total number of 

A.P.’s is (
𝑛−1

2
)
2
=
1

4
(𝑛 − 1)2 

For the case where n is even, assume = 

2m. In this case also we can show that the 

AP with the biggest value of the common 

difference is again 𝑚 − 1. 𝑓𝑜𝑟 1,𝑚, 2𝑚 −

1, it will form an Ap with common 

difference 𝑚 − 1 𝑎𝑛𝑑 1,𝑚, 2𝑚 − 1 all 

belong to the given set of natural 

numbers up to n. If m is the common 

difference then 1, 1 + 𝑚, 1 + 2𝑚, will be 

triplet in A.P., but 2m +1 does not belong 

to the given set. 

However there are two AP’s with 

common differences 𝑚 − 1 𝑎𝑠 (2,𝑚 +

1, 2𝑚) will from the Ap, with all the three 

numbers belonging to the set, whereas 

there is just one AP with biggest possible 

common difference (m -1) in the case of 

n, an odd number 1. 

Now, consider the Aps with common 

differences d, (1,1 + 𝑑, 1 + 2𝑑), (2, 2 +

𝑑, 2 + 2𝑑), (3, 3 + 𝑑, 3 + 2𝑑),… . , (2𝑚 −

2𝑑, 2𝑚 − 𝑑, 2𝑚) 

So for each d, there are 2𝑚 − 2𝑑 Ap’s d 

varying from 1 to 𝑚 − 1. 

So, the total number of AP’s in this case 

where n = 2m is   

∑(2𝑚 − 2𝑑)

𝑚−1

𝑑=1

= 2 ∑(𝑚− 𝑑)

𝑚−1

𝑑=1

= 2 [𝑚(𝑚 − 1) −
1

2
(𝑚 − 1)𝑚]

= 2 ×
1

2
𝑚(𝑚 − 1)

= 𝑚(𝑚 − 1) 

𝑏𝑢𝑡 𝑚 =
1

2
𝑛 𝑎𝑛𝑑 𝑚 − 1 =

1

2
(𝑛 − 2), 

 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑃′𝑠 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒

=
1

2
𝑛 ×

1

2
(𝑛 − 2) =

1

4
𝑛(𝑛 − 2). 

 

23) There are two boys, each containing m 

balls. A person has to select an equal 

number of balls from both bags. Find the 

number of ways in which he can select at 

least one ball from each bags. 

Sol.: He may choose one ball or two balls ….. 

or m balls from each bags. 

Choosing one ball from one of the bags can be 

done in 𝑚𝐶1𝑤𝑎𝑦𝑠. Then, choosing one ball 

from the other bag also can be done in 𝑚𝐶1 

ways. 

Thus, there are 𝑚𝐶1 ×𝑚𝐶1 ways of choosing 

one ball from each bag. Similarly if r balls, 1 ≤

𝑟 ≤ 𝑚 are chosen from each of the two bags, 

the number of ways of doing this is 

(𝑚𝐶𝑟). (𝑚𝐶𝑟) =  (𝑚𝐶𝑟)
2

 

Thus , the total number of ways of choosing at 

least one ball from both the bag is 

∑ (𝑚𝐶𝑟)
2𝑚

𝑟=1 = ∑ (𝑚𝐶𝑟)
2𝑚

𝑟=0 + (𝑚𝐶0)
2
=

 2𝑛𝐶𝑛−1 =
2𝑛!

𝑛!𝑛!
− 1 𝑎𝑠 𝑚𝐶0 = 1 

[∑(𝑚𝐶𝑟)
2

𝑚

𝑟=0

= 2𝑚𝐶𝑚  ] 
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24) If 𝑨𝒊 = 𝟏, 𝟐,… . , 𝟐 be the vertices of a 21 

sided regular polygon inscribed in a circle 

with centre 0. Triangles are formed by 

joining the vertices of the 21 sided 

polygon. How many of them are acute 

angled triangles? How many of them are 

obtuse angles triangles? How many of 

them are equilateral. How many of them 

are isosceles? 

 

Sol.: Since this is a regular polygon with odd 

number of vertices, no two of the vertices are 

placed diagonally opposite, so there are no 

right angled triangles. Hence number of right 

angled triangles is zero. Let A be the number 

of acute angled triangles. To from a triangle 

we need to choose 3 vertices out of the 21 

vertices which can be done in C (21, 3) = 
21×20×19

6
= 1330 ways. 

Since the triangles are either acute or obtuse 

get A+0 = 133D 

To find A, the number of acute angled 

triangles The 3 vertices of a triangle (say 

𝐴𝑖  𝐴𝑗 𝐴𝑘 , 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 21). Divide the 21 

spaces between the vertices into say x, y, z 

such that x + y +z = 21. We will count now 

the acute angled triangle with 𝐴𝑖  as one of the 

vertices. For 𝐴𝑖 𝐴𝑗  𝐴𝑘 to be acute angled, 𝑗 ≤

11 and the distance between 𝐴𝑗 𝑎𝑛𝑑 𝐴𝑘 is less 

than 10, here 𝑥 = 𝑗 − 1, 𝑦 = 𝑘 − 𝑗𝑎𝑛𝑑 𝑧 =

22 − 𝑘 (as we want the distance from 

𝐴𝑘  𝑡𝑜 𝐴1). The problem can be modeled as 

distributing 21 identical balls’ into 3 boxes 

with each box getting at least one ball. This 

can be done in (21 − 3 + 2)𝐶2 =
20×19

2
= 190. 

But these, note that 𝑗 − 1, 𝑘 − 𝑗, 𝑎𝑛𝑑 22 −

𝑘 𝑎𝑙𝑙 𝑚𝑢𝑠𝑡 𝑏𝑒 ≤ 10. Now, we need to find the 

number of distribution of these balls in 3 

boxes where at least one box gets more than 

10. Note that only one box can get more than 

10 as we have only 21 balls. Also, any one of 

the 3 boxes can get more than 10 balls. To 

find the number of ways where box 1 gets 

more than 10. i.e. at least 11 balls’ in box 1. 1 

each in boxes 2 and 3. We are left with 8 balls 

now. Now, number of ways of distributing 8 

balls unconditionally in 3 boxes in 8 + 2𝐶2 =
10×9

2
= 45 ways. Thus number of acute angled 

triangles with 𝐴1 as vertex  = 190 − 3 × 45 (3 

times, as each box could get at least 11 balls) 

= 55. Now, for each vertex, we get 55 such 

triangles. But a triangle 𝐴𝑖, 𝐴𝑗 , 𝐴𝑘 will be 

counted in 𝐴𝑖  vertex, 

𝐴𝑗 𝑣𝑒𝑟𝑡𝑒𝑥 𝑎𝑛𝑑 𝐴𝑘  𝑣𝑒𝑟𝑡𝑒𝑥. 𝑖. 𝑒. 𝑡ℎ𝑟𝑖𝑐𝑒 so, each 

triangle will be counted thrice. Thus , the total 

number of acute angled triangles. 

𝐴 = 55 ×
21

3
= 385, 0 =  1330 − 385

= 955 

A triangle 𝐴𝑖, 𝐴𝑗 , 𝐴𝑘 is equilateral if 𝐴𝑖 , 𝐴𝑗, 𝐴𝑘 

are equally spaced out of 𝐴1, … . . , 𝐴21. We 

have only 7 such triples 

𝐴1𝐴8𝐴15, 𝐴2𝐴9𝐴16, …… , 𝐴7𝐴14𝐴21. 

Therefore, there are only 7 equilateral 

triangles. 

Consider the diameter 𝐴1𝑂𝐵 where B is the 

point. Where 𝐴1𝑂 meets the circle. If we have 

an isosceles triangle 𝐴1 as its vertex then 𝐴1𝐵 

is the altitude and the base is bisected by 𝐴1𝐵. 

This means that the other 2 vertices 

𝐴𝑗 𝑎𝑛𝑑 𝐴𝑘 , 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙𝑙𝑦 𝑠𝑝𝑎𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝐵. 

We have 10 such pairs, so we have 10 

isosceles triangle with 𝐴1 as vertex of which 

one is equilateral. 

Because proper isosceles triangles with 𝐴1 as 

vertex (non equilateral) are 9. With each 

vertex 𝐴𝑖 , 𝑖 = 1, 2, … . . , 21 we have such 

isosceles triangles. 
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So, total number of isosceles but non-

equilateral triangles are 9 × 21 = 189. But 

the 7 equilateral triangles are also to be 

considered as isosceles. 

∴Total number of isosceles triangle are 196. 

Note this problem can be generalized to a 

polygon having n vertices. Find the number of 

acute, obtuse, right, isosceles and equilateral 

triangles. 

25) Show that for any set of 10 points chosen 

within a square whose sides are of length 

3 units, there are two points in the set 

whose distance most √𝟐. 

Sol.: Divide the square into 9 unit squares as 

given in the figure. Out of the 10 points 

distributed in the big square, at least one of 

the small squares must have at least two 

points by the pigeon hole principle (p.p.). 

These two points being in a unit square, are at 

the most √2  unit distance a part as √2 is the 

length of the diagonal of the unit square. 

 

26) Show that given a regular hexagon of side 

2cm. and 25 points inside it, there are at 

least two points among them which are at 

most 1 cm. distance a part. 

Sol.: If ABCDE is the regular hexagon of side 

2cm and P, Q, R, S, T and u are respectively 

the midpoints of AB, BC, CD, DE, EF, and FA 

respectively, then by joining the opposite 

vertices, and joining PR, RT, TP, UQ, QS, and 

SU. We get in all 24 equilateral triangles of 

side 1 cm. 

We have 25 points so, these 25 points inside 

the hexagon ABCDEF, at least 2 points lie 

inside any one triangle whose sides are 1 cm 

long. So, at least two points among them will 

be 1cm apart. 

27) Find the number of integer solutions to the 

equation 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 = 𝟐𝟖 𝒘𝒉𝒆𝒓𝒆 𝟑 ≤

𝒙𝟏 ≤ 𝟗, 𝟎 ≤  𝒙𝟐 ≤ 𝒑  𝒂𝒏𝒅 𝟕 ≤  𝒙𝟑 ≤ 𝟏𝟕 

Sol.: considered three numbered boxes whose 

contents are denoted as 𝑥1, 𝑥2, 𝑥3 

respectively. The problem now reduces to 

distributing 28 balls in the three boxes such 

that the first box has at least 3 and not more 

than 9 balls, the second box has at most 8 

balls and the third box has at least 7 and at 

most, 17 balls. In first put 3 balls in the first 

box, and 7 balls in the third box. So, now the 

problem reduces to finding the number of 

distribution of 18 balls in 3 boxes such that 

the first has at most (9- 3) = 6, the second at 

most 8 and the third at most (17-7)=10. The 

number of ways of distributing 18 balls in 3 

boxes with no condition is  (18+3−1
3−1

) = (20
2
) =

190. 

[The number of ways of distributing r 

identical objects in n distinct boxes is 

(𝑛+𝑟−1
𝑟
)(𝑛+𝑟−1

𝑛−1
) where ‘n’ stands for the 

numbers of boxes and r for balls. ] 

Let 𝑎1 be the distributions where the second 

box gets at least 7; 𝑑2 the distributions where 

the third gets at least 9; and 𝑑3 the 

distributions where the third gets at lest 11. 

|𝑑1| =  |
18 − 7 + 3 − 1

3 − 1
| =  (

13

2
) 

=
13 × 12

1.2
= 78, |𝑑2| =  |

18 − 9 + 3 − 1

3 − 1
|

= (
11

2
) =

11 × 10

1.2
= 55,  

|𝑑3| =  |
18 − 11 + 3 − 1

3 − 1
| =  (

9

2
) =

9 × 8

1.2
= 36, 

∴ 𝑑1 ∩ 𝑥𝑑2 = 
18 − 7 − 9 + 3 − 1

3 − 1
=  
4

2
= 6,  
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|𝑑2 ∩ 𝑑3| =  (
18 − 9 − 11 + 3 − 1

3 − 1
)

=  (
0

2
) = 0,  

|𝑑3 ∩ 𝑑1| =  
18 − 11 − 7 + 3 − 1

3 − 1
=  
2

2
= 1 

Therefore, |𝑑1 ∩ 𝑑2 ∩ 𝑑3| = 0 𝑎𝑛𝑑 |𝑑1 ∪

𝑑2 ∪ 𝑑3| =  78 + 55 + 36 − 6 − 0 − 1 +

0 = 162. 

So the required number of solutions = 190 −

162 = 28. 

Note that the number of ways the first box 

gets at most 6, the second utmost 8 and the 

third utmost 10= total number of ways of 

getting 18 balls distributed in 3 boxes –(the 

numbers of ways of getting at least 7 in the 

first box, at least 9 in the second box and at 

least 1 in the third box) and 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶) =

𝑛(𝐴′ ∩ 𝐵′ ∩ 𝐶′). 

28) If repetition of digits is not allowed in any 

number (in base 10) show that among 

three four digit numbers two have a 

common digit occurring in them. Also, 

show that in base 7 system any two four 

digit numbers without repetition of digit 

will have a common number occurring in 

their digits. 

Sol.: In base 10, we have ten digits 0, 1, 2, 3, 

4,5 ,6, 7 8 and 9. Thus, for 3 digit numbers 

without repetition of digits, we have to use in 

all 12 digits but in base 10 we have just 10 

digits. Thus, at least at least any two of the 

three 4 digit numbers have a common 

number occurring in their digits by pigeon 

hole principle. Again for base 7 system, we 

have seven digits 0, 1, 2, 3, 4, 5, 6. For two 

four  digit numbers without repetition we 

have to use eight digits and again by 

pigeonhole principle they have at least one 

common number in their digits.  

29) In base 𝟐𝒌, 𝒌 ≥ 𝟏 number system, any 

3non-zero k-digit numbers are written 

without repetition of digits. Show that two 

of them have a common digit among them. 

In base 𝟐𝒌 + 𝟏, 𝒌 ≥ 𝟏 among any 3k +1 

digit non-zero numbers, there is a 

common numbers occurring in any two 

digits. 

Sol.: case (i): in case k = 1, we have the digits 

0, 1 and the k-digit non-zero number (s) is 1 

only.  Thus, all the three numbers in this case 

are trivially the some 1.   

For k >1. There ‘k’ digit (non-zero) numbers 

will have altogether 3k digits and the total 

number of digits in base 2k system is 2k. 

Since repetition of digit is not allowed and 

3k>2k implies that among the digits of at 

least two of the numbers, there is at least one 

digit common among them (by pigeon-hole 

principle) 

Case(ii) in the case of k = 1,2k+1=3, the 

three digits in base 2k+1=3 systems are 0,1 

and 2k+1=1+1=2 and the digits non-zero 

numbers here are 10, 20, 12, 21. So, we can 

pick up 10,20 and 12 or 10,20,20,21,……..in 

each of the cases there is a common  digit 

among two of them. (in fact, any two numbers 

will have to a common digit 1 ) in general 

case, 3 (k+1) digit numbers will have 3k+3 

digits in all. But it is a base (2k+1) system.  

The numbers are written without repetition 

of digits since 3k+ 3 > 2k+ 1. In fact, any two 

k+1 digit numbers could also have the same 

property as 2k+2 >2k+1, again by the 

pigeon-hole principle at least two of the 

numbers, will have at least one common 

number in their digits.    

30) There are certain number of all balls and 

they are painted with the following 

conditions: 
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(i) Every two colours appear on 

exactly one ball. 

(ii) Every two balls have exactly 

one colour in common. 

(iii) There are four colours such 

that any three of them appear 

on one ball. 

(iv)  Each ball has three colours. 

Find the number of balls and 

colour used. 

Sol.: Let us represent each of the balls by a 

line segment with three points to show the 3 

colours. Thus, Roy is a ball with three colours 

red, orange and yellow. We have to have 

three more balls such that on yellow. So, next 

drawn lines through R, O, Y to meet at a 

common point G standing for green colour. 

But the balls with colours RG, OG AND YG 

must have a third colour in them say indigo 

(i), violet (v) and Blue (B). Thus we have 7 

balls and 7 colours in all. 7 colours R, O, Y, G, I, 

V, B and 7 balls. 1. ROY, 2. RIG, 3. RVB, 4. Ova, 

5. YBa, 6. YVI, 7. IBO     

 

Clearly any pair of the above 7 balls have 

exactly one colour in common (satisfying 

condition 2). Each of the balls contribute 3 

pairs of colours. In all, we have 21 pairs of 

columns in all the 7 balls. Now 7 colours lead 

to 
7×6

2
= 21 pairs of colours and each pair of 

colours is found in exactly one ball satisfying 

condition 1. Each ball has 3 colours 

(condition 4 satisfied). Now, consider the four 

colour GRYV. No. three of these colours are 

found on a ball. (condition 3 is satisfied). 

Thus, the total number of colour is 7 and the 

total number of balls is also 7. 

31) A mathematical conjection consisted of a 

part I and part II with a combined total of 

28 problems. Each contestant solved 7 

problems altogether. For each pair of 

problems there were exactly two 

contestants who solved both of them. 

Show that there was a constants who in 

part I solved either no problem or at least 

4 problems. 

Sol.:  We will find the total number of 

contestants. Since for each pair of problems 

there were exactly two contestants let us 

assume that an arbitrary problem 𝑃1 was 

solved by r contestants. Each of these r 

constestants solved 6 more problems, solving 

6r more problems in all counting 

multiplicants. Since every problem, other 

than 𝑃1, was paired with 𝑃1 and was solved by 

exactly two constants, each of the remaining 

27 problems (i.e. other than 𝑃1) is counted 

twice among the problems solved by the r 

contestants. i.e. 6r = 2 × 27 𝑜𝑟 𝑟 = 9. 

Therefore an arbitrary problem 𝑃1 is solved 

by 9 contestants. 

Hence, in all we have 
9×28

7
= 36 contestants, 

as each contestant solves 7 problems. 

From the rest of the proof, let us assume the 

countrary that is every constant solved either 

1, 2, or 3 problems in part 1. 

Let us assume that there are n problems in 

part 1 and let x, y, z be the number of 

contestants who solved 1, 2, and 3 problems 

in part 1. 
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Since every one of the contestants solve 

either 1, 2, or 3 problems in part 1,  

we get 𝑥 + 𝑦 + 𝑧 = 36……… (1) 

𝑥 + 2𝑦 + 3𝑧 = 9𝑛……… . (2) (since each 

problem was solved by 9 contestants).  

Since every contestant among y solves of a 

pair of problems in part I and every 

contestants among z solves 3 pairs of 

problems was solved by exactly two 

contestants, we get the following equations  

𝑦 + 3𝑧 =  2. 𝑛𝐶2 = 2.
𝑛(𝑛 − 1)

2
= 𝑛(𝑛

− 1)…………(3) 

From eq.(1). Eq. (2) and Eq. (3), we get  

𝑧 =  𝑛2 − 10𝑛 + 36 𝑎𝑛𝑑 𝑦 =  −2𝑛2 + 29𝑛 −

108 =  −2(𝑛 −
29

4
)
2
−
23

8
< 0.  

As y < 0 is not an acceptable result, our 

assumption is wrong. Hence, there is at least 

one contestants who solved either no 

problem from part 1 or solved at least 4 

problems from part 1.  

 

32) Find a recurrence relation for the number 

𝒂𝒏 of ten nary sequence of length n that 

contain 2 consecutive digits that are the 

same. What are the initial conditions? Find 

𝒂𝟔. 

Sol.: Clearly, no ternary sequence of length 1 

can contain 2 consecutive identical digits and  

so 𝑎1 = 0. Next the only ternary 2sequence of 

the required type are 00, 11, 22 and so 𝑎2 =

3. 𝐿𝑒𝑡 𝑛 ≥ 3. Every n sequence of the required 

from satisfies exactly one of the following 

conditions: 

(i) It first 2 digits are unequal. 

(ii) It first 2 digits are identical.  

Let (i) hold. Then the sequence starts with 

one of 1, 02, 12, 20, 21. First suppose that it 

starts with 01. Now the condition that the 

sequence contain “2 consecutive identical 

digits” is symmetric w. r. t. all 3 digits 0, 1, 2. 

Hence these are 

𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑎 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑛𝑎𝑚𝑒𝑙𝑦 𝑚 =
1

3
𝑎𝑛−1, of 

sequence of length n -1 and starting with 0, 1, 

or 2. So by appending 0 as first digit to each 

(𝑛 − 1) sequences starting with 1, we get m 

sequence of length n which start with 01. 

Similarly, there are m sequences of length n 

starting with 02, 01, 12, 20 or 21. 

Thus there are 6𝑚 = 2𝑎𝑛−1 sequence in this 

case. Let (ii) hold. Then the sequences starts 

with 00 or 11 or 22 and its remaining 𝑛 − 2 

digits can form any (𝑛 − 2) ternary sequences 

Hence rhere are 3𝑛−2 𝑛 sequence starting 

with 00; and the same holds for 11 and 22. 

Thus there are 3 × 3𝑛−2 = 3𝑛−1 sequences in 

this case. 

Required recurrence relation is 𝑎𝑛 = 2𝑎𝑛−1 +

3𝑛−1 with initial conditions𝑎1 = 0, 𝑎2 = 3. 

Hence 𝑎3 = 15, 𝑎4 = 57, 𝑎5 = 195, 𝑎6 = 633. 

 

33)  For every real number 𝒙𝟏 construct the 

sequence 𝒙𝟏, 𝒙𝟐, … .. by setting 𝒙𝒏+𝟏 =

 𝒙𝒏 (𝒙𝒏 +
𝟏

𝒏
) for each𝒏 ≥ 𝟏. Show that 

there exists exactly one value of 𝒙𝟏 for 

which 𝟎 < 𝒙𝒏 < 𝒙𝒏+𝟏 < 1 for every n. 

Sol.: Let 𝑃1(𝑥) =  𝑥, 𝑃𝑛+1(𝑛) =  𝑃𝑛(𝑛) [𝑃𝑛(𝑥) +

1

2
] 𝑓𝑜𝑟 𝑛 = 1, 2, …. 

(i)  from this recursive definition, we 

see inductively that (i) 𝑃𝑛 is an 

polynomial of degree 2𝑛−1 
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(ii) 𝑃𝑛 has positive coefficients is 

therefore an increasing convex 

function for 𝑥 ≥ 0. 

(iii) 𝑃𝑛(0) = 0, 𝑃𝑛(1) ≥ 1. 

(iv) 𝑃𝑛(𝑥1) =  𝑥𝑛. 

Since the condition 𝑥𝑛+1 > 𝑥𝑛 is equivalent to 

𝑥𝑛 > 1 −
1

𝑛
 

We can reformulate the problem as follows 

show that there is unique positive real 

number t such that 1 −
1

𝑛
< 𝑃𝑛(𝑡) < 1  for 

every n. 

Since 𝑃𝑛 is continuous and increases from 0 to 

a value of ≥ 1 for 0 ≤ 𝑥 ≤ 1, there is unique 

values 𝑎𝑛 and 𝑏𝑛 such that 𝑎𝑛 < 𝑏𝑛, 𝑃𝑛(𝑎𝑛) =

1 −
1

𝑛
, 𝑃𝑛(𝑏𝑛) = 1 …… . . (2) 

By definition (1) 

𝑃𝑛+1(𝑎𝑛) = (1 −
1

𝑛
) (1 −

1

𝑛
+
1

𝑛
) = 1 −

1

𝑛
 

𝑃𝑛+1(𝑎𝑛−1) = 1 −
1

𝑛 + 1
.𝑊𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡 𝑎𝑛

< 𝑎𝑛+1……… . (3) 

𝐴𝑙𝑠𝑜 𝑠𝑖𝑛𝑐𝑒 𝑃𝑛+1(𝑏𝑛) = 1 +
1

𝑛
 𝑎𝑛𝑑 𝑃𝑛+1(𝑏𝑛+1)

= 1 

𝑏𝑛 > 𝑏𝑛+1. Since 𝑃𝑛is convex, the graph of 

𝑃𝑛(𝑥) lies below, the chord 𝑦 =
1

𝑏𝑛
𝑥 𝑓𝑜𝑟 0 ≤

𝑥 ≤ 𝑏𝑛 

𝐼𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑃𝑛(𝑎𝑛) = 1 −
1

𝑛
≤
𝑎𝑛

𝑏𝑛
 from this 

and the fact than 𝑏𝑛 ≤ 1.we find that 𝑏𝑛 −
𝑏𝑛

𝑛
≤ 𝑎𝑛, 𝑏𝑛 − 𝑎𝑛 ≤

𝑏𝑛

𝑛
≤
1

𝑛
 for all n. 

Thus we have2 in finite bounded 

sequences{𝑎𝑛 }, {𝑏𝑛} the first is increasing the 

second decreasing 𝑎𝑛 > 𝑏𝑛 and the different 

between their nth numbers approaches 0 as n 

on creases. We conclude that there is a 

unique common value to that they approach 

𝑎𝑛 < 𝑡 < 𝑏𝑛 ∀ 𝑛. 

Number of uniquely satisfies 1 −
1

𝑛
< 𝑃𝑛(𝑡) <

1∀ 𝑛. 

34) Find the number of isosceles triangle with 

integer sides, if no sides a exceeds 1994. 

Sol.: Let 2 equal sides of an isosceles ∆ be P 

units each and let remaining sides be q units. 

Case I : P > q. q can take values 1, 2, 3, ….., P -1 

(if 𝑃 − 1 > 0) condition for p, q, q be a sides 

of a ∆ is automatically satisfied here, for each 

positive integer P > 1, we can have P -1 

isosceles ∆ is  

∑(𝑃 − 1)

1994

𝑝=2

= 1 + 2 + 3 +⋯+ 1993

=
(1993 × 1994)

2
= 1998721. 

case II: p < q in order that p, q, may be sides 

of ∆ we must have 2p > q. i.e. 𝑝 < 𝑞 < 2𝑝.  

If p is even say 2m, then q can take value 1, 2, 

…., m -1 if p is odd say 2𝑚 − 1 then q can take 

values 1, 2, …., m -1 = (
𝑝−1

2
). Numbers of 

possible isosceles ∆ is 
1−1

2
+
3−1

2
+⋯+

1993−1

2
+ 1 + 2 + 3 +⋯ for q = 1994, p +q >p 

is true. Also, we must have 
𝑞

2
< 𝑝 < 𝑞. If q is 

even there are 𝑞 −
𝑞−1

2
−
𝑞−2

2
=  possible 

values for p. If q is odd, there (𝑞 − 1) −
𝑞−1

2
−

𝑞−1

2
= possible value for p. 

There are in all isosceles ∑
𝑞−2

2𝑞 𝑒𝑣𝑒𝑛 +

∑
𝑞−1

2
 𝑞 𝑜𝑑𝑑 ∆𝑠  1 ≤ 𝑞 < 1994   

1 ≤ 𝑞 ≤ 1994    1 ≤ 𝑞 ≤ 1994  
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𝑖. 𝑒. (1 + 2 +⋯+ 996)

+ (1 + 2 +⋯+ 996)∆𝑠

= 2.
996.997

2
  ∆𝑠 = 993012 ∆𝑠 

Total number of isosceles ∆s = 1998721+ 

993012 = 2991733. 

35) Define a hook to be a figure made up to 6 

unit sequences as shown in the diagram or 

any of the figures obtained by applying 

rotations and reflections to this, figure. 

Find all 𝒎 × 𝒏 rectangles that can be 

covered with hooks so that 

(i) The rectangle is covered without 

gaps and without overlaps. 

(ii) No part of hook covers are outside 

the rectangle. 

Sol.: Consider a covering of an 𝑚 × 𝑛 

rectangle satisfying the conditions. 

For any hook A there is a unique hook B 

which covered the inside square of A with one 

of its end most squares. On the other hand the 

inside square of B must be covered by an end 

most square of A. Thus in a tasting all hooks 

are matched into pairs. 

There are only 2 possible way to place B so 

that it does not overlap with A and no gaps 

occur. 

In one of the base A and B from 3 × 4 

rectangle and the other case their union has 

an rectangle shape with side lengths 3, 2, 1, 3, 

2, 1, 2 

So an 𝑚 × 𝑛 rectangles can be covered with 

hooks and only if it can be covered with the 

12 square titles as discussed above. 

Suppose that such a tiling exists then 𝑚𝑛  is 

divisible by 12. We now show that one of m 

and n is divisible by 4. Suppose on the 

contrary that this is not the case then m and n 

are both even because 𝑚𝑛 is divisible by 4. 

Imagine that the rectangle divided into unit 

squares with the rows and columns formed 

labeled 1, ……, m and 1, ….., n write 1 in the 

square (i, j) if exactly one of i and j is divisible 

by 4. Since the number of square in each row 

and column is even the sum of all numbers, 

written is even. 

Now 3 × 4 rectangle always covers number 

with sum 3 or 7 other 12 square shape always 

covers number with sum 5 or 7. 

Consequently, the total number of 12 square 

shape is even. But the 𝑚𝑛 is divisible by 24 

and hence by 8 country to the assumption 

that m and n are not divisible by 4. Also, 

neither m nor n can be 1, 2, 5 

If a tiling is possible when one of m and n is 

divisible be 4, one is divisible by 4 and m ∉ {1, 

2, 5} 

Conversely, if these conditions are satisfied 

the tilling is possible (using only 3 × 4 

rectangle at that) 

This is immediate if 3 divides m and 4 divides 

n. Let m be divisible by 12 and n ∉ {1, 2, 5} 

then n can be represented as the sum of 

several 3’s and 4’s. 

Hence the rectangle can be partitioned into 

𝑚 × 3 and 𝑚 × 4 rectangle which are easy to 

cover only with 3 × 4 tiles again. 

FUNCTIONAL EQUATIONS 

 

1) If f be a function satisfying 𝒇(𝒙 + 𝒚) =

𝒇(𝒙) + 𝒇(𝒚)∀ 𝒙, 𝒚 ∊ 𝑹 𝒂𝒏𝒅 𝒇(𝟏) = 𝒌, then 

𝒇(𝒙) where n ∊N is 

(a) 𝒏𝒌;   (b) 𝒏𝒌;  (c) 𝒌𝒏;   (d) none 
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Sol.: Since 𝑓(𝑥 + 𝑦) =  𝑓(𝑥) + 𝑓(𝑦). 𝑥 = 1, 𝑦 =

1, 

𝑓(1 + 1) =  𝑓(1) + 𝑓(1)⟹ 𝑓(1) = 27(1)  

𝑥 = 2 𝑦 = 1 𝑓(2 + 1) =  𝑓(2) + 𝑓(1)⟹

𝑓(3) = 2𝑓(1) + 𝑓(1) = 3𝑓(1)  

𝑥 = 2  𝑦 = 2 𝑓(2 + 2) =  𝑓(2) + 𝑓(2)⟹

𝑓(4) = 4𝑓(1)  

𝐼𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑓(𝑛) = 𝑛𝑓(1)  

∴ 𝑓(𝑛) = 𝑛𝑘 𝑓𝑜𝑟 𝑘 =  𝑓(1)  

2) The function 𝒇(𝒙) = 𝐬𝐢𝐧 (
𝝅𝒙

𝒏!
) −

𝐜𝐨𝐬 {(
𝝅𝒙

(𝒏+𝟏)!
)}  𝒊𝒔 

(a) Not periodic;   (b) period (2n!);   (c) 

period (n+1);   (d) none 

Sol.: 𝑓(𝑥) = sin (
𝜋𝑥

𝑛!
) − cos {(

𝜋𝑥

(𝑛+1)!
)} =  𝑡1 −

𝑡2 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 

 𝑡1 =
2𝜋

(
𝜋
𝑛!)

= 2(𝑛!) = 𝐴 (𝑠𝑎𝑦) 

Period of 𝑡2 = 2((𝑛 + 1)!) = 𝐵 (𝑠𝑎𝑦) 

Now, LCM of A and B is 2((𝑛 + 1)!). Hence the 

function 𝑓(𝑥) is periodic with period 

2((𝑛 + 1)!). 

 

3) If 𝒇: [−𝟒, 𝟎] → 𝑹 is defined by 𝒆𝒙 +

𝐬𝐢𝐧𝒙, its even extension to [−𝟒, 𝟒] is given 

by 

(a) −𝒆−|𝒙| − 𝐬𝐢𝐧 |𝒙|;   (b) 𝒆−|𝒙| − 𝐬𝐢𝐧 |𝒙|;   

(c) 𝒆−|𝒙| + 𝐬𝐢𝐧 |𝒙|;   (d) none 

Sol.: To make 𝑓(𝑥) an even function, in the 

interval [−4, 4]𝑓(𝑥) can be re-defined as under 

𝑓(𝑥) = {𝑓(𝑥) − 4 ≤ 0 ≤ 0. 𝑓(−𝑥)0 < 𝑥 ≤

4}  

Hence, even extension of the function from [0, 

4] is 𝑓(−𝑥) =  𝑒−𝑥 + sin(−𝑥) ⟹ 𝑓(−𝑥) =

 𝑒−𝑥 − sin 𝑥 

∴ 𝑓(𝑥) =  𝑒−|𝑥| − sin|𝑥|  

 

4) If 𝒇(𝒙) = 𝒙(𝟐 − 𝒙), 𝟎 ≤ 𝒙 ≤ 𝟐 and the 

definition of f is extended over the set 𝑹 −

[𝟎, 𝟐]𝒃𝒚 𝒇(𝒙 + 𝟏) = 𝒇(𝒙), 𝒕𝒉𝒆𝒏 𝒇 𝒊𝒔 

(a) Period 1 ;      (b) non-period ;     

 (c) period 2 ;       (d) none 

Sol.: In 𝑅 − [0, 2], 𝑤𝑒 ℎ𝑎𝑣𝑒𝑓(𝑥+2) = 𝑓((𝑥+1)+1) 

⟹ 𝑓(𝑥+2) = 𝑓(𝑥+1) = 𝑓(𝑥) {𝑔𝑖𝑣𝑒𝑛}  

Graphically

 

 

5) The value of the b and c for which the 

identity 𝒇(𝒙+𝟏) − 𝒇(𝒙) = 𝟖𝒙 + 𝟑 is 

satisfied, where 𝒇(𝒙) =  𝒃𝒙
𝟐 + 𝒄𝒙 + 𝒅, 𝒂𝒓𝒆 

(a) 2, 1;   (b) 4, -1;   (c) 2, -2;   (d) none 

Sol.: Since, 𝑓(𝑥) = 𝑏 𝑥
2 + 𝑐𝑥 + 𝑑. 

𝑁𝑜𝑤, 𝑓(𝑥+1) − 𝑓(𝑥) = 8𝑥 + 3  

⟹ 𝑏(𝑥 + 1)2 + 𝑐(𝑥 + 1) + 𝑑 − 𝑏𝑥2 −

𝑐𝑥 − 𝑑 = 8𝑥 + 3  

⟹ 𝑏𝑥2 + 2𝑏𝑥 + 𝑏 + 𝑐𝑥 + 𝑐 − 𝑏𝑥2 − 𝑐𝑥 =

8𝑥 + 3  

⟹ 2𝑏𝑥 + (𝑏 + 𝑐) = 8𝑥 + 3  
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Comparing respective coefficients, we have b 

= 4, and c = -1. 

  

6) If 𝒇(𝒙) = 𝐜𝐨𝐬(𝐥𝐨𝐠𝒙), then 

𝒇(𝒙𝟐)𝒇(𝒚𝟐) −
𝟏

𝟐
[𝒇(

𝒙𝟐

𝒚𝟐
) + 𝒇(𝒙𝟐𝒚𝟐)] 

(a) -2;   (b) -1;   (c) 
𝟏

𝟐
;   (d) none 

Sol.: 𝑓 (
𝑥2

𝑦2
) + 𝑓(𝑥2𝑦2) = cos (log

𝑥2

𝑦2
) +

cos{log(𝑥2𝑦2)} = cos(𝑝 − 𝑞) + cos(𝑝 + 𝑞),  

𝑤ℎ𝑒𝑟𝑒 𝑝 = log 𝑥2.  

𝑞 = log 𝑦2 = 2cos 𝑝 . cos 𝑞.  

∴ 𝑅𝑒𝑞𝑑. 𝑣𝑎𝑙𝑢𝑒 = cos𝑝 . cos 𝑞 −
1

2
(cos 𝑝 . cos 𝑞) = 0  

 

7) If 𝒇(𝒙𝟏) − 𝒇(𝒙𝟐) = 𝒇(
𝒙𝟏−𝒙𝟐

𝟏−𝒙𝟏𝒙𝟐
)  𝒇𝒐𝒓 𝒙𝟏, 𝒙𝟐 ∈

(−𝟏, 𝟏), 𝒕𝒉𝒆𝒏 𝒇(𝒙) = 

(a) 𝐥𝐨𝐠
𝟏−𝒙

𝟏+𝒙
;   (b) 𝐭𝐚𝐧−𝟏

𝟏−𝒙

𝟏+𝒙
;   (c) 

𝐜𝐨𝐭−𝟏
𝟏−𝒙

𝟏+𝒙
 ;  (d) none 

Sol.: For (a) is correct is because LHS = 

log
1−𝑥1

1+𝑥1
− log (

1−𝑥2

1+𝑥2
) = log

(1−𝑥1)(1+𝑥2)

(1+𝑥1)(1−𝑥2)
 𝑎𝑛𝑑  

𝑅𝐻𝑆 = log
{1−

(𝑥1−𝑥2)

1−𝑥1𝑥2
}

{1+
(𝑥1−𝑥2)

1−𝑥1𝑥2
}
= log

(1−𝑥1)(1+𝑥2)

(1+𝑥1)(1−𝑥2)
 . 

 

8) If 2 𝒇(𝒙) − 𝟑𝒇(
𝟏

𝒙
) =  𝒙𝟐, 𝒙 is not equal to 

zero, then 𝒇(𝟐) = 

(a) -1;   (b) −
𝟕

𝟒
;  (c) 0;  (d)none 

Sol.: 2𝑓(2) − 3𝑓 (
1

2
) =

 4……… . . (𝑖)𝑎𝑛𝑑 2𝑓 (
1

2
) − 3𝑓(2) =

1

4
…………(𝑖𝑖) 

Thus 2(ii) +3(iii), ⟹−5𝑓(2) = 8 +
3

4
,⟹

𝑓(2) = −
7

4
 

 

9) If 𝒇(𝒙) be defined for all x > 0 and be 

continuous,. Let 𝒇(𝒙)  satisfy 𝒇 (
𝒙

𝒚
) =

 𝒇(𝒙) − 𝒇(𝒚) for all x, y and 𝒇(𝒆) =

𝟏 𝒕𝒉𝒆𝒏 𝒇(𝒙) = 

(a) Bounded;   (b) 𝒙𝒇(𝒙) → 𝟏 𝒂𝒔 𝒙 →

𝟎;  (c) 𝐥𝐨𝐠𝒙 ;    (d) none 

Sol.: If we have 𝑓(𝑥) = log 𝑥 ……… . (𝑖), then 

the conditions 𝑓 (
𝑥

𝑦
) = 𝑓(𝑥) − 𝑓(𝑦) 𝑎𝑛𝑑 𝑓(𝑒) = 1 

are satisfied (i). 𝑓(𝑥) is not bounded as 𝑓(𝑥) is 

increasing function. 

 

10) If 𝒇(𝒙) =
𝟐𝒙−𝟐−𝒙

𝟐
, 𝒕𝒉𝒆𝒏 𝒇(𝒙+𝒚)𝒇(𝒙+𝒚) = 

(a) 
𝟏

𝟐
{𝒇(𝟐𝒙) + 𝒇(𝟐𝒚)};  (b) 

𝟏

𝟐
{𝒇(𝟐𝒙) − 𝒇(𝟐𝒚)};   

(c) 
𝟏

𝟐
{𝒇(𝟐𝒚) − 𝒇(𝟐𝒙)};   (d) none 

Sol.: 𝑓(𝑥 + 𝑦) − 𝑓(𝑥 − 𝑦) = {
2𝑥+𝑦+2−(𝑥+𝑦)

2
} ×

{
2𝑥−𝑦+2−(𝑥−𝑦)

2
} =

1

4
(22𝑥 + 2−2𝑥 + 22𝑦 + 2−2𝑦) 

=
1

2
{𝑓(2𝑥) + 𝑓(2𝑦)} 

 

11) If f is even function defined on the interval 

(−𝟓, 𝟓) then the real values of x satisfying 

the equation 𝒇(𝒙) = 𝒇(
𝒙+𝟏

𝒙−𝟏
) are 

(a) 
−𝟏±√𝟓

𝟐
;   (b) 

−𝟐±√𝟓

𝟐
;   (c) 0;   (d) none 
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Sol.: 𝑓(𝑥) = 𝑓 (
𝑥+1

𝑥+2
) ,⟹ 𝑥 =

𝑥+1

𝑥+2
,⟹ 𝑥2 + 2𝑥 =

𝑥 + 1,⟹ 𝑥 =
−1±√5

2
. Both lie in (−5, 5).  

For an even function: 𝑓(𝑥) =  𝑓(−𝑥),⟹ −𝑥 =
𝑥+1

𝑥+2
;  

⟹ 𝑥2 − 2𝑥 = 𝑥 + 1;⟹ 𝑥2 + 3𝑥 + 1 =

0,   

⟹ 𝑥 =
−3±√5

2
 which lies in (−5, 5). 

12) If 𝒇(𝒙) = 𝒙𝒆
𝒙(𝟏−𝒙), then 𝒇(𝒙) is 

(a) Increasing on [−
𝟏

𝟐
, 𝟏];  (b) decreasing 

on [−
𝟏

𝟐
, 𝟏];  (c) increasing on R;  (d) 

none 

Sol.: 𝑓′(𝑥) = 𝑒
𝑥(1−𝑥). (1 + 𝑥 − 2𝑥2) =

 −𝑒𝑥(1−𝑥). (𝑥 − 1)(2𝑥 + 1) 

𝑎𝑛𝑑 𝑒𝑥(1−𝑥) > 0∀ 𝑥, 𝑓(𝑥) 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔.⟹

𝑓′(𝑥) < 0,   

⟹ (𝑥 − 1)(2𝑥 + 1) < 0,⟹ −
1

2
≤ 𝑥 ≤ 1.  

13) If 𝒇(𝒙) = {𝒙(𝒙 − 𝟑)}
𝟐 increase for the 

values of x lying the interval 

(a) 𝟏 < 𝑥 < 3;   (b) 𝟎 < 𝑥 < ∞;  (c) 

−∞ < 𝑥 < 0;   (d) none 

Sol.: 
𝑑𝑦

𝑑𝑥
= 2𝑥(𝑥 − 3)(2𝑥 − 3) and for 

increasing,  

𝑑𝑦

𝑑𝑥
> 0,⟹ 0 < 𝑥 <

3

2
, 3 < 𝑥 < ∞,  

⟹ 𝐼𝑛  𝑃𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 0 < 𝑥 <
3

2
.  

 

 

(SUBJECTIVE TYPE) 

1) Find all subjection functions f: No → No 

with the property that for all 𝒏 ≥ 𝟎, 𝒇(𝒏) ≥

𝒏 + (−𝟏)𝒏 

Sol.: If we let 𝑔: 𝑁𝑜 → 𝑁𝑜, 𝑔(𝑛) = 𝑥 + (−1)
𝑛, 

then g satisfies the equation. Moreover, g is 

bijective. We will show that for any solution f 

we must have f = g. 

In fact , we will prove a more general 

property, namely that if f and g are two 

functions defined on the non-negative 

integers such that 𝑓(𝑛) ≥ 𝑔(𝑛) for all n, and f is 

subjective and bijective, then f = g. The proof 

is based on the wall ordering of the set of 

positive integers, namely on the fact that any 

set of positive integers has a smallest 

element. 

Assume f ≠ g, and let no be such that 𝑓(𝑛0) >

𝑔(𝑛0) If we let M= 𝑔(𝑛0), then the set A = 

{𝑘, 𝑔(𝑘) ≤ 𝑛} has exactly M +1 elements, since 

g is bijective. On the other hand, since, 𝑓 ≥ 𝑔 

and no does not belong to A, the set B = 

{𝑘, 𝑓(𝑘) ≤ 𝑀} is included in A but has at least 

one less element, namely no. Hence the values 

of f do not exhaust all numbers less than M 

+1. Which contradicts the subjectivity of f. 

Therefore, 𝑓(𝑛) = 𝑔(𝑛) = 𝑛 + (−1)
𝑛 is the 

only solution. 

 

2) Find all function f: N →N with the property 

that 𝒇{𝒇(𝒎) + 𝒇(𝒏)} =  𝒎 + 𝒏 for all m and 

n. 

Sol.: The solution is done by manipulating the 

equation and plugging in particular values for 

the variables. 
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Thinking of 𝑓(𝑚) 𝑎𝑛𝑑 𝑓(𝑛) as positive integers. 

We have 𝑓(𝑓(𝑓(𝑚) + 𝑓(𝑛)) + 𝑓(𝑘)) =  𝑓(𝑚) +

𝑓(𝑛) + 𝑘 on the other hand by using the given 

relation for f 

𝑓(𝑚) + 𝑓(𝑛) + 𝑓(𝑘) 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛  

𝑓(𝑚 + 𝑛 + 𝑓(𝑘)) = 𝑓(𝑓  𝑓(𝑚) + 𝑓(𝑛) +

𝑓(𝑘)) =  𝑓(𝑚) + 𝑓(𝑛) + 𝑘  

For m = n = 0 this reduces to 𝑓(𝑓(𝑘)) =

 2𝑓(0) + 𝑘. 

Also for k = 0 and m, n arbitrary, we have 

𝑓(𝑚 + 𝑛 + 𝑓(0)) =  𝑓(𝑚) + 𝑓(𝑛).  

𝐻𝑒𝑛𝑐𝑒 𝑓 (𝑓(𝑚 + 𝑛 + 𝑓(0))).  

The left hand side of this equality is equal to 

2𝑓(0) +𝑚 + 𝑛 + 𝑓(0) and the right hand side is 

equal to m +n. It follows that 𝑓(0) = 0 and for 

all m, n, 𝑓(𝑚+𝑛) = 𝑓(𝑚) + 𝑓(𝑛), that is, f is 

additive. Choose m = 1 and use induction to 

show that 𝑓(𝑛) = 𝑓(1)
𝑛. From 𝑓(𝑓(𝑚) + 𝑓(𝑛)) =

𝑚 + 𝑛 one obtains 𝑓(1)2(𝑚 + 𝑛) = 𝑚 + 𝑛, for 

all m, n. This can happen only if 𝑓(1) = 1, so 

the only solution to the functional equation is 

the identity function f: N→ N, 𝑓(𝑛) = 𝑛 

3) Find all pairs of functions f, g: N → N 

satisfying 𝒇(𝒏) + 𝒇{𝒏 + 𝒈(𝒏)} =  𝒇(𝒏+𝟏) 

Sol.: One possibility is that f is identically 

equal to 0 and g is arbitrary. Another 

possibility is that g is identically equal to zero 

and 𝑓(𝑛) = 2
𝑛 𝑓(0). 

Let us find the remaining pairs of functions. 

Note that the identically implies 𝑓(𝑛+1) ≥ 𝑓(𝑛) 

for all n; hence f is increasing. If for a certain 

n, 𝑔(𝑛) ≥ 1,  then 𝑓(𝑛+1) ≤ 𝑓(𝑛+𝑔(𝑛));  hence 

𝑓(𝑛) = 0. A backwards induction shows that, 

𝑓(𝑛−1) = 𝑓(𝑛−2) = ⋯ = 𝑓(0) = 0 

Hence in order for f not be identically zero, 

there must exist m such that 𝑔(𝑘) = 0 for all 

k≥ 𝑚. 

Assume m minimal, that is, 𝑔(𝑚−1) ≠ 0, then 

on the one hand, 𝑓(𝑘) = 0 𝑓𝑜𝑟 𝑘 ≥ 𝑚 − 1, and 

on the other hand 𝑓(𝑘) = 2
𝑘−𝑚𝑓(𝑚) 𝑓𝑜𝑟 𝑘 >

𝑚, 𝑠𝑜 𝑓𝑜𝑟 𝑘 ≥ 𝑚 the function is strictly 

increasing. This together with 𝑓(𝑛) +

𝑓(𝑛+𝑔(𝑛)) = 𝑓(𝑛+1) implies that 𝑛 + 𝑔(𝑛) 

cannot exceed m; hence 𝑔(𝑛) > 𝑚 − 𝑛. Thus 

all other solutions (𝑓. 𝑔)𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑓(0) − 𝑓(1) =

⋯ = 𝑓(𝑚−1) = 0,  

𝑓(𝑘) = 2
𝑘−𝑚𝑎 𝑓𝑜𝑟 𝑘 ≤ 𝑚  and a arbitrary, 

and 𝑔(𝑘) ≤ 𝑚 − 𝑘, 𝑓𝑜𝑟 𝑘 ≤ 𝑚, 𝑔(𝑘) =

0 𝑓𝑜𝑟 𝑘 ≥ 𝑚. 

 

4) Let F: N→ be such that 𝒇(𝒏+𝟏) > {𝒇(𝒏)} for 

all n ∊ N. Show that 𝒇(𝒏) = 𝒏 ∀ 𝒏 ∊ 𝑵. 

Sol.: This problem might look easy to people 

familiar with the axiomatic description of the 

set of positive integers. The solution uses 

again the property that every set of natural 

numbers has a smallest element. 

Let us look at the set 

{𝑓(𝑓(1)), 𝑓(2), 𝑓(𝑓(2)), 𝑓(3), 𝑓(𝑓(3)), 𝑓(𝑛), 𝑓(𝑓(𝑛)),… . } 

Note that these are, exactly the numbers that 

appear in the inequality 𝑓(𝑓(𝑛)) < 𝑓(𝑛+1). This 

set has a smallest element, which cannot be of 

the from 𝑓(𝑛+1) because then it, would be 

larger than 𝑓(𝑓(𝑛)). Thus it is of the form 

𝑓(𝑓(𝑛)). The same argument shows that for 

this n, 𝑓(𝑛) =

1. 𝐼𝑓 𝑛 𝑖𝑡𝑠𝑒𝑙𝑓 𝑤𝑒𝑟𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1, 𝑤𝑒 𝑤𝑜𝑢𝑙𝑑 𝑔𝑒𝑡 1 =
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 𝑓(𝑛) > 𝑓(𝑓(𝑛−1)), which is impossible. Hence 

𝑓(1) = 1 𝑎𝑛𝑑 𝑓(𝑛) > 1 𝑓𝑜𝑟 𝑛 > 1. 

Considering the restriction𝑓: {𝑛 ≥ 2} → {𝑛 ≥

2}, the same argument applies maintains 

mutadis to show that 𝑓(2) = 2 𝑎𝑛𝑑 𝑓(𝑛) >

2 𝑓𝑜𝑟 𝑛 > 2. By induction one shows that 

𝑓(𝑘) = 𝑘 , 𝑎𝑛𝑑 𝑓(𝑛)𝑘 𝑓𝑜𝑟 𝑛 > 𝑘 thus the unique 

solution to the problem is identify function. 

5) Find all functions f: N →N with the 

property that for all n ∊ N, 
𝟏

𝒇(𝟏)𝒇(𝟐)
+

𝟏

𝒇(𝟐)𝒇(𝟑)
+⋯+

𝟏

𝒇(𝒏)𝒇(𝒏+𝟏)
=
𝒇{𝒇(𝒏)}

𝒇(𝒏+𝟏)
 

Sol.: The equality from the statement reminds 

us of the well-known identify 
1

1.2
+

1

2.3
+⋯+

1

𝑛(𝑛+1)
=

𝑛

𝑛+1
, which shows that the function f: 

N → N, 𝑓(𝑛) = 𝑛 is a solutions. 

Let us prove that this is only function with the 

required property. 

The ratio 𝑓
(𝑓(𝑛))

𝑓(𝑛+1)
 remainds us of the previous 

problem. In fact, we will reduce the present 

problem to the previous one. 

Plugging in n = 1 into the given relation 

yields  

𝑓(𝑓(1))𝑓(1) = 1;   𝑙ℎ𝑒𝑛𝑐𝑒 𝑓(1) = 1.  

Replacing the given equality for into the one 

for n+1 we obtain 

𝑓(𝑓(1))

𝑓(𝑛+1)
+

1

𝑓(𝑛+1) 𝑓(𝑛+2)
=
𝑓(𝑓(𝑛+1))

𝑓(𝑛+2)
 

𝑇ℎ𝑖𝑠 𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝑓(𝑓(𝑛))𝑓(𝑛+2) + 1 =

𝑓(𝑓(𝑛+1))𝑓(𝑛+1) 𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑓(𝑛+1) =

1 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑓(𝑓(𝑛+1)) = 1;  

ℎ𝑒𝑛𝑐𝑒 𝑓(𝑓(𝑛)) 𝑓(𝑛+2) = 0,  which is impossible. 

Therefore 𝑓(𝑛) 𝑓𝑜𝑟 𝑛 > 1. we use induction to 

show that 𝑓(𝑓(𝑛)) <  𝑓(𝑛+1). The inequality is 

true for n =1, since 𝑓(2) > 1 =

𝑓(𝑓(1)). 𝐴𝑙𝑠𝑜 𝑖𝑓 𝑓(𝑛+1) > 𝑓(𝑓(𝑛)), then 𝑓(𝑛+1) ≥

𝑓(𝑓(𝑛))+1. 

Hence 𝑓(𝑓(𝑛))𝑓(𝑛+2) + 1 ≥ 𝑓(𝑓(𝑛+1))𝑓(𝑓(𝑛)) +

𝑓(𝑓(𝑛+1)). Since  𝑛 + 1 > 1,𝑤𝑒 ℎ𝑎𝑣𝑒 𝑓(𝑛+1) >

1, 𝑡ℎ𝑢𝑠 𝑓(𝑓(𝑛+1)) > 1,  which implies that 

𝑓(𝑛+2) > 𝑓(𝑓(𝑛+1)). 

Therefore the function satisfies 𝑓(𝑛+1) >

𝑓(𝑓(𝑛))  for all N. In view of problem 6, the 

only function with this property is the 

identify function, and we done. 

 

6) Find all function f : No → No satisfying 

following two conditions: (ii) For any m , n 

∊𝑵𝟎, 𝒘𝒊𝒕𝒉 𝒎 ≥ 𝒏, 𝒇(𝒎𝟐) ≥ 𝒇(𝒏𝟐)  (i) for 

any m, n ∊𝑵𝟎, 𝟐𝒇(𝒎
𝟐 + 𝒏𝟐) =  {𝒇(𝒎)}

𝟐
+

{𝒇(𝒏)}
𝟐
; 

Sol.: Substituting successively m = 0 and n = 

0 in (a) and subtracting the two relations 

yields 𝑓(𝑚)2 − 𝑓(𝑛)2 = 2(𝑓(𝑚2)) (𝑓(𝑛2)) 

which together with (b) implies that f is 

increasing i.e. if 𝑚 ≥ 𝑛, then 𝑓(𝑚) ≥ 𝑓(𝑛). 

Plugging m = n = 0 into (b) yields 𝑓(0) =

0 𝑜𝑟 1. 

Case I :  𝑓(0) = 1, 𝑡ℎ𝑒𝑛 2𝑓(𝑚2) = 𝑓(𝑚2) + 1, so 

𝑓(1) = 1 𝑝𝑙𝑢𝑔𝑔𝑖𝑛𝑔 𝑚 = 𝑛 = 1  in (a) we get 

𝑓(2) = 1. 𝐴𝑙𝑠𝑜 𝑓(2𝑛) =
1

2
(𝑓(22𝑛−1)2 + 1). This 

implies that 𝑓(2𝑘) = 1 for all non-negative 

integers k. By the monotonicity of f, we 

conclude that 𝑓(𝑛) = 1for all non-negative 

integers n. 
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Case II : 𝑓(0) = 0. 𝑇ℎ𝑒𝑛 2𝑓(𝑚2) =

 𝑓(𝑚2) 𝑜𝑟
𝑓
(𝑚2)

2
= (

𝑓(𝑚)

2
)
2

 𝑠𝑖𝑛𝑐𝑒 𝑓(2) = 𝑓(1)2 , 

we obtain 

𝑓(22𝑛)

2
= (

𝑓(22𝑛−1)2

2
) =  (

𝑓(22𝑛−1)

2
)

2

= ⋯ = (
𝑓(2)

2
)
2

=
𝑓(1)2𝑛+1

22𝑛
. 

On the other hand, (a) implies that 𝑓(1) =

 𝑓(1)2 . So either 𝑓(1) = 0 𝑜𝑟 𝑓(1) = 2 

If 𝑓(1) = 0,  the above chain of equalities 

implies that 𝑓(22𝑛) = 0 𝑓𝑜𝑟 𝑛 ≥ 0. 

Monotonicity implies that f is identically 

equal to zero. 

If 𝑓(1) = 2, 𝑡ℎ𝑒𝑛 𝑓(22𝑛) = 2. 2
2𝑛. 𝑆𝑖𝑛𝑐𝑒

𝑓
(𝑚2)

2
=

 (
𝑓(𝑚)

2
)
2

 𝑓(𝑚) is always even. We 

have𝑓(𝑚+1)
2 = 2𝑓(𝑚 + 1)2 ≥ 2𝑓(𝑚2 + 1) =

 𝑓(𝑚)2 + 𝑓(1)2 > 𝑓(𝑚)2 . which implies that 

𝑓(𝑚+1) > 𝑓(𝑚). 

Consequently, 𝑓(𝑚+1) − 𝑓(𝑚) − 2 ≥ 0 

𝐵𝑢𝑡 ∑ (𝑓(𝑚+1) − 𝑓(𝑚) − 2)
22𝑛−1
𝑚=0 = 𝑓(22𝑛) −

𝑓(0) − 2. 2
2𝑛 =

0  𝑣𝑎𝑟𝑦𝑖𝑛𝑔 𝑛 𝑤𝑒 𝑐𝑜𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑎𝑡 𝑓(𝑚+1) =

 𝑓(𝑚) + 2 for all 𝑚 ≥ 0. Thus 𝑓(𝑛) =

2𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∊ 𝑁0. 

𝐼𝑛 𝑐𝑜𝑚𝑐𝑙𝑢𝑠𝑖𝑜𝑛, 𝑓(𝑛) identically equal to zero. 

𝑓(𝑛) identically equal to 1, or 𝑓(𝑛) = 2𝑛 for all 

n, are the only possible solutions. 

 

7)  Let P be a given odd prime. Find all 

functions f: z → z satisfying the following 

conditions (i) If m = n (mod p) for m, n ∊ 

z, then 𝒇(𝒎) = 𝒇(𝒏);  (ii) 𝒇(𝒎𝒏) = 𝒇(𝒎)𝒇(𝒏) 

for all m, n ∊z. 

Sol.: Show first that 𝑓(0) = 0 𝑜𝑟 𝑓(𝑛) = 1 

for all n ∊ z consider non constant 

solution of the given equation. Show that 

𝑓(𝑘𝑝) = 0 for all integers k. Using Fermat’s 

little theorem, prove that 𝑓(𝑚) = 𝑓(𝑚)
𝑝 for 

each integer m. This 𝑓(𝑚) = 0 𝑜𝑟 𝑓(𝑚) =

 ±1. Choose m = a,  a primitive root, with 

respect to p, Then 𝑓(𝑎) ≠ 0. Consider the 

cases 𝑓(𝑎) = 1 𝑎𝑛𝑑 𝑓(𝑎) = −1 separately. 

𝑓(𝑛) ≡ 0, 𝑓(𝑛) ≡ 1, 𝑓(𝑛) = {
0          𝑖𝑓 

𝑝

𝑛
1    𝑖𝑓 𝑝 × 𝑛

  

𝑓(𝑛) = {

0                                             𝑖𝑓 𝑝/𝑛
1               𝑖𝑓 𝑝 × 𝑛 , 𝑛 𝑖𝑠 𝑎 𝑠𝑞𝑢𝑎𝑟𝑒
1    𝑖𝑓 𝑝 × 𝑛, 𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑞𝑢𝑎𝑟𝑒

 

The last function is precisely Legendre’s 

symbol. 

 

8) Find all the function f : z → z which 

satisfies the equation 𝒇(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) =

{𝒇(𝒂)𝟑 + 𝒇(𝒃)𝟑 + 𝒇(𝒄)}
𝟑 

Sol.: Show that 𝑓(0) = 0 and hence 𝑓(𝑥) =

 −𝑓(𝑥) for all x∊ z. Prove that 𝑓(1) = −1, 0 𝑜𝑟 1 

and hence 𝑓(2) = 2𝑓(1) 𝑓(3) = 3𝑓(1). 𝐹𝑜𝑟 𝑥 > 3 

prove that 𝑥3 is a sum of five cubes has 

absolute value smaller than x, using the 

identity. (2𝑘 + 1)3 = (2𝑘 − 1)3 + (𝑘 + 4)3 +

(4 − 𝑘)3 + (−5)3 + (−1)3 using this 

representation, prove that 𝑓(𝑥) = 𝑥𝑓(1). 

𝑓(𝑥) = −𝑥, 𝑓(𝑥) = 0 𝑜𝑟 𝑓(𝑥) = 𝑥  

 

9) For what integers k, there exists a 

functions f : N →z which satisfies, (i) 
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f(1995) = 1996 and (ii) 𝒇(𝒙𝒚) = 𝒇(𝒙) +

𝒇(𝒚) + 𝒌𝒇{𝐠𝐜𝐝(𝒙, 𝒚)} for all x, y ∊N? 

Sol.: Using (b), get an expression for 𝑓(𝑥2) 

and hence for 𝑔(𝑥4). Using 𝑥4 = 𝑥. 𝑥3, 𝑥3 =

𝑥. 𝑥2, get another expression for 𝑔(𝑥4). Show 

that k = 0 or -1. Using prime decomposition, 

define if f suitably for these value of k. 

 

10) The set of all positive integers is the union 

of two disjoint subsets : 

𝑵{𝒇(𝟏), 𝒇(𝟐), … , 𝒇(𝒏), … } ∪

{𝒈(𝟏), 𝒈(𝟐), … . , 𝒈(𝒏), … }𝒘𝒉𝒆𝒓𝒆 𝒇(𝟏) <

 𝒇(𝟐) < ⋯ < 𝒇(𝒏)… ,𝒈(𝟏) < 𝒈(𝟐) < ⋯ <

 𝒈(𝒏) 𝒂𝒏𝒅 𝒈(𝒏) = 𝒇{𝒇(𝒏)} + 𝟏; 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 ≥

𝟏. 𝒇𝒊𝒏𝒅 𝒇(𝟐𝟒𝟎). 

Sol.: Show that 𝑓(1) = 1 𝑎𝑛𝑑 𝑔(1) =

2. 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑓(𝑛) = 𝑘 for some n. Show that the 

disjoint sets 

{𝑓(1), 𝑓(2), … , 𝑓(𝑘)}𝑎𝑛𝑑 {𝑔(1), 𝑔(2), … . , 𝑔(𝑛)} , 

together exhaust all the number from 1 to 

𝑔(𝑛). Conclude that  𝑔(𝑛) = 𝑘 + 𝑛. Prove that 

𝑓(𝑘) = 𝑘 + 𝑛 − 1 . Show also that no two 

consecutive integers lie in the set 

{𝑔(𝑚):𝑚 ∊ 𝑁}.  Conclude that 𝑓(𝑘+1) = 𝑘 + 𝑛 

use these three implication to get 𝑓(240) =

388. 

 

11) If f: w → N be a strictly increasing function 

such 𝒇(𝟐) = 𝟐 𝒂𝒏𝒅 𝒇(𝒎𝒏) = 𝒇(𝒎)𝒇(𝒏) for 

every relatively prime pair of natural 

numbers m and m. Show that 𝒇(𝒏) =

𝒏 𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚  positive integer n. 

Sol.: One can easily see that 𝑓(𝑛) = 𝑛 satisfies 

the given property. Let us show this is the 

only function. The proof is based on 

factorizations of positive integers. 

We start by computing the value of 𝑓(3). Since 

the function is increasing, 𝑓(3)𝑓(5) = 𝑓(15) <

𝑓(18) = 𝑓(2)𝑓(9) ℎ𝑒𝑛𝑐𝑒 𝑓(3)𝑓(5) <

2𝑓(9) 𝑎𝑛𝑑 𝑓(9) < 𝑓(10) = 𝑓(2)𝑓(5) = 2𝑓(5). 

Combining the two inequalities we get 

𝑓(3)𝑓(5) < 4𝑓(5) ℎ𝑒𝑛𝑐𝑒 𝑓(3) < 4. We also have 

that 𝑓(3) > 𝑓(2) = 2; thus 𝑓(3) can be equal 

only to 3. 

Since 2 and 3 are relatively prime, we deduce 

that 𝑓(6) = 6, and from monotinicity it follows 

that 𝑓(4) = 4 𝑎𝑛𝑑 𝑓(5) = 5.  We will prove by 

induction that 𝑓(𝑛) = 𝑛  for all n ∊ N. For n = 

1, 2, 3, 4, 5, 6 the property is true, as shown 

above. Let n > 6 and assume that 𝑓(𝑘) = 𝑘 <

𝑛. Let us show that, 𝑓(𝑛) = 𝑛. Consider 

2𝑟(2𝑚 + 1) to be the smallest even integer 

greater than or equal to n that is not a power 

of 2. This number is equal either to n, 𝑛 +

1, 𝑛 + 2 𝑜𝑟 𝑛 + 3, and since n >6, both 

2𝑟 𝑎𝑛𝑑 2𝑚 + 1 are strictly less than n. 

Hence 𝑓(2𝑟(2𝑚 + 1)) =  𝑓(2𝑟)𝑓(2𝑚 + 1) =

 2𝑟(2𝑚 + 1) by the induction hypothesis. 

From monotonicity and the fact that are 

exactly 2𝑟(2𝑚 + 1) values that the function 

can take in the interval [1, 2𝑟(2𝑚 + 1)] it 

follows that 𝑓(𝑘) = 𝑘 𝑓𝑜𝑟 𝑘 ≤ 2
𝑟(2𝑚 + 1). In 

particular, 𝑓(𝑛) = 𝑛, and the proof is finished. 

 

12) Find a bijective function  f: No →No such 

that for all m, n; 𝒇(𝟑𝒎𝒏+𝒎+ 𝒏) =

𝟒𝒇(𝒎) 𝒇(𝒏)+ 𝒇(𝒎) + 𝒇(𝒏) 

Sol.: The solutions, as in the case of the 

previous problem, uses of the factorization of 

positive integers. Suppose that a function f 

having the required property has been found. 

We use f to be defined a function. 
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𝑔: 3𝑁0 + 1 → 4𝑁0 + 1 𝑏𝑦 𝑔(𝑥)

= 4𝑓 (
𝑥 − 1

3
) + 1 

This is certainly well defined and one can 

check immediately that g is a bijection from 

3𝑁0 → 1 onto 4𝑁0 → 1. with the inverse 

function given by 𝑔−(𝑦) =  3𝑓−1 (
𝑦−1

4
) +

1. 𝐹𝑜𝑟 𝑚, 𝑛 ∈ 𝑁0 by using the definition of f 

and g, we obtain 

 𝑔(3𝑚 + 1)(3𝑛 + 1) = 𝑔(3(3𝑚𝑛 +𝑚 + 𝑛) +

1) = 4𝑓(3𝑚𝑛 +𝑚 + 𝑛) + 1  

                                 = 4(4𝑓(𝑚)𝑓(𝑛) +

𝑓(𝑚)+𝑓(𝑛)) +1= (4𝑓(𝑚) + 1) + 1 

                                 = (4𝑓(𝑚) + 1)(4𝑓(𝑛) +

1) = 𝑔(3𝑚 + 1)𝑔(3𝑛 + 1).  

This g is multiplicative, in the case sense that 

𝑔(𝑥𝑦) =  𝑔(𝑥)𝑔(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∊ 3𝑁0 + 1. 

Conversely, given any multiplicative bijection 

from 3𝑁0 + 1 𝑜𝑛𝑡𝑜 4𝑁0 + 1, we can construct 

a function f having the required property by 

letting 𝑓(𝑥) = (𝑔(3𝑥 + 1)). 

It remains only to exhibit such a bijection. Let 

𝑃1 𝑎𝑛𝑑 𝑃2 denotes the sets of primes of the for 

3n +1 and 3n +2, respectively and let 

𝑄1 𝑎𝑛𝑑 𝑄2 denote the sets of primes of the 

form 4n +1 and 4n +3 respectively. Since 

each of these sets is infinite, there exists a 

bijection h from 𝑃1 ∪ 𝑃2 𝑡𝑜 𝑄1 ∪

𝑄2 𝑡ℎ𝑎𝑡 𝑚𝑎𝑝𝑠 𝑃1 bijectively onto   𝑄1 𝑎𝑛𝑑 𝑄2. 

Define g as following 𝑔(1) = 1 , 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑛 >

1, 𝑛 ∈ 3 𝑁0 + 1, let the prime factorization of 

n be n = ∏𝑝𝑖(with possible repititions among 

the 𝑝𝑖′𝑠), then define 𝑔(𝑛) =  ∏ℎ(𝑝𝑖). 

Note that g is well –defined, because if 𝑛 ∈

3 𝑁0 + 1, then there must be an even number 

of 𝑃2 type primes that divide n. Each of these 

primes gets mapped by h to a prime in 𝑄2,  

and since there are an even number of such 

primes, their product lies in 𝑛 ∈ 4 𝑁0 + 1. 

The multiplicavity of g follows easily. 

 

13) Find whether there exists a function f: N → 

N such that 𝒇{𝒇(𝒏)} =  𝒏
𝟐 − 𝟏𝟗𝒏 + 𝟗𝟗 for 

all positive integer n. 

Sol.: Such a function does exist. Let 𝑃(𝑛) =

 𝑛2 − 19𝑛 + 99 𝑎𝑛𝑑 𝑛𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑃(𝑛) =

𝑃(19 − 𝑛)𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 𝑝(𝑛) ≥ 9 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑁. 

we first set 𝑓(9) = 𝑓(10) = 9 𝑎𝑛𝑑 𝑓(8) =

 𝑓(11) = 11. (one could alternatively set 𝑓(9) =

 𝑓(10) = 11 𝑎𝑛𝑑 𝑓(8) = 𝑓(11) = 9) 

Write 𝑃(𝑛)
(𝑘) for the kth composite of P. That 

is 𝑃(𝑛)
(0) = 𝑛 𝑎𝑛𝑑 𝑃(𝑛)

(𝑘+1) =

 𝑝(𝑛)
(𝑘). 𝐹𝑜𝑟 𝑛 ≥ 12, 𝑙𝑒𝑡 𝑔(𝑛) be the smallest 

integer k such that n is not in the image of 

𝑃(𝑘). Such a k exists because a side from 9 and 

11, every integer in the image of 

𝑃(𝑛)
(𝑘) 𝑓𝑜𝑟 𝑘 > 0 is greater than or equal to 

𝑃(12)
(𝑘), and an easy induction shows that 

𝑃(𝑚)
(𝑘) > 𝑛 + 𝑘 𝑓𝑜𝑟 𝑛 ≥ 12. 

Let 12= 𝑆1 ≤ 𝑆2 ≤ ⋯ be the integers greater 

than or equal to 12, not in the image of P, in 

creasing order. Then for every integer 𝑛 ≥ 12, 

there exists a unique integer h(n) such that 

𝑛 = 𝑃(𝑔(𝑛))𝑆(𝑛(𝑛))  

𝐹𝑜𝑟 𝑛 ≥ 12, 𝑠𝑒𝑡  

𝑓(𝑛) = {
𝑃(𝑔(𝑛))(𝑆 ℎ(𝑛) + 1)ℎ(𝑛) 𝑜𝑑𝑑

𝑃(𝑔(𝑛)+1) (𝑆 ℎ(𝑛) − 1) ℎ(𝑛) 𝑒𝑣𝑒𝑛
 

𝐹𝑜𝑟 𝑛 ≤ 7, 𝑝𝑢𝑡 𝑓(𝑛) = 𝑓(19−𝑛). To show that 

𝑓(𝑓(𝑛)) =  𝑃(𝑛) 

We need only consider 𝑛 ≥ 12, and we may 

examine two cases. If h(n) is odd, then 

𝑔(𝑓(𝑛)) =  𝑔(𝑛) 𝑎𝑛𝑑  ℎ(𝑓(𝑛)) =  ℎ(𝑛) +



 Challenging Mathematical Problems  

321 
 

1 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑠𝑜 𝑓(𝑓(𝑛)) = 𝑓 (𝑃
(𝑔(𝑛))(𝑆 ℎ(𝑛) +

1)) =  𝑃(𝑔(𝑛)+1) 𝑆 ℎ(𝑛) = 𝑃(𝑛)   

Similarly, if h(n) is even, then 𝑔(𝑓(𝑛)) =

 𝑔(𝑛+1) 𝑎𝑛𝑑 ℎ(𝑓(𝑛)) =  ℎ(𝑛) − 1𝑖𝑠 𝑜𝑑𝑑,  

𝑠𝑜   𝑓(𝑓(𝑛)) = 𝑓𝑃
(𝑔(𝑛)+1) (𝑠 ℎ(𝑛) − 1) =

𝑃(𝑔𝑛+1)( 𝑠 ℎ(𝑛)) = 𝑃(𝑛) 

 

14) Find all functions f : R→ R which obey the 

equation 𝒇{(𝒙 − 𝒚)𝟐} =  {𝒇(𝒙)}
𝟐 −

𝟐𝒙𝒇(𝒚) + 𝒚
𝟐. 

Sol.: One can easily guess that 𝑓(𝑥) = 𝑥 is a 

solution of this functional equation. Are there 

any other solutions which are not obvious but 

hidden in the equation? Indeed there is one 

more solution, 𝑓(𝑥) = 𝑥 + 1 which is not 

apparent from the equation. We see that for 

the function, 𝑓(𝑥) =  𝑥 + 1 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝑓((𝑥−𝑦)2) = (𝑥 − 𝑦)
2 + 1 = 𝑥2 − 2𝑥𝑦 + 𝑦2 +

1, 𝑎𝑛𝑑   

𝑓(𝑥)2 − 2𝑥𝑓(𝑦) + 𝑦
2 = (𝑥 + 1)2 −

2𝑥(𝑦 + 1) + 𝑦2  = 𝑥2 − 2𝑥𝑦 + 𝑦2 + 1. 

How do we compute these two and other if 

any? Put y = 0 in (1) to obtain 𝑓(𝑥2) =

𝑓(𝑥)2 − 2𝑥𝑓(0) 𝑎𝑛𝑑 𝑝𝑢𝑡 𝑥 = 0 to get, 𝑓(𝑦2) +

𝑓(0)2 + 𝑦
2. 

𝑇𝑎𝑘𝑖𝑛𝑔 𝑦 = 0 𝑖𝑛 (3)𝑤𝑒 𝑠𝑒𝑒 𝑡ℎ𝑎𝑡 𝑓(0)2 =

 𝑓(0) 𝑔𝑖𝑣𝑖𝑛𝑔 𝑓(0) = 0 𝑜𝑟 𝑓(0) = 1. 𝑇𝑎𝑘𝑖𝑛𝑔 𝑥 = 𝑦 

in (1), we obtain 𝑓(0) = 𝑓(𝑥)2 − 2𝑥𝑓(𝑥) + 𝑥
2 =

 (𝑓(𝑥) − 𝑥)
2 

𝐼𝑓 𝑓(0) = 0, then the above relation shows 

that 𝑓(𝑥) = 𝑥  for all x ∊R. If 𝑓(0) =

1, 𝑡ℎ𝑒𝑛 𝑓(𝑥) − 𝑥 =  ±𝑖 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑓(𝑥) = 𝑥 ± 1,  

which sign should we choose here? It may 

also happen that 𝑓(𝑥) = 𝑥 + 1 for some real 

number x and 𝑓(𝑦) = 𝑦 − 1 for some other 

real number y. We have to resolve this before 

concluding anything. 𝑆𝑢𝑝𝑝𝑜𝑠𝑒  

𝑓(𝑥0) = 𝑥0 − 1  

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑥0. 𝑇ℎ𝑒𝑛 𝑢𝑠𝑖𝑛𝑔 (3) 

𝑎𝑛𝑑 (2), 𝑤𝑒 𝑔𝑒𝑡 1 + 𝑥02 = 𝑓(𝑥02)  = 𝑓(𝑥0)
2 −

2𝑥0 = (𝑥0 − 1)
2 − 2𝑥0 = 𝑥0

2 − 4𝑥0 +

1. 𝑇ℎ𝑖𝑠 𝑓𝑎𝑐𝑒𝑠 𝑥0 = 0.  but the we obtain 1 =

𝑓(0) = 𝑓(𝑥0) = 𝑥0 − 1 = −1, which is absurd, 

we concluded that 𝑓(𝑥) = 𝑥 + 1  for real 

number x. 

If follows that 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = 𝑥 + 1 and 

the only solutions of the given functional 

equation.  

 

15) If f : R →R be a function such that (i) 

𝒇(𝒙+𝒚) = 𝒇(𝒙) + 𝒇(𝒚)∀ 𝒙, 𝒚 ∊ 𝑹 𝒂𝒏𝒅 (ii) 

𝒇 (
𝟏

𝒙
) =

𝒇(𝒙)

𝒙𝟐
∀ 𝒙 ≠ 𝟎, 𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝒇(𝒙) =

𝒄𝒙 ∀ 𝒙 ∈ 𝑹  where c is constant. 

Sol.: It is easy to check that (a) gives 𝑓(0) =

0 𝑎𝑛𝑑𝑓 𝑓(−𝑥) = −𝑓(𝑥) for all real x, we know, 

for x ≠ 0 and x ≠ 1, the identity 
1

𝑥−1
−
1

𝑥
=

1

𝑥(𝑥−1)
 

This in conjunction with the property (a) 

gives  

𝑓 (
1

𝑥 − 1
) − 𝑓 (

1

𝑥
) =  𝑓 (

1

𝑥(𝑥 − 1)
) 

Now an application of (b) yields 

𝑓(𝑥 − 1)

(𝑥 − 1)2
−
𝑓(𝑥)

𝑥2
=
𝑓(𝑥(𝑥 − 1))

𝑥2(𝑥 − 1)2
 

𝑇ℎ𝑖𝑠 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑠 𝑡𝑜  



 Challenging Mathematical Problems  

322 
 

𝑥2𝑓(𝑥 − 1) − (𝑥 − 1)2𝑓(𝑥) = 𝑓(𝑥2 − 𝑥)  

If we use (a) and 𝑓(−𝑦) =

 −𝑓(𝑦) ℎ𝑒𝑟𝑒, 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 

𝑓(𝑥2) + 𝑥2𝑓(1) = 2𝑥𝑓(𝑥).  

Replacing x by 𝑥 + (
1

𝑥
) and simplifying, we 

obtain  𝑓(𝑥) = (
𝑓(2)+2𝑓(1)

4
) 𝑥,valid for all x ≠ 0 

and x ≠ 1. 

Putting x = 2 in this relation, we see that 

𝑓(2) = 2𝑓(1) Thus we obtain 𝑓(𝑥) = 𝑓(1)𝑥, for 

all x ≠ 0 and x ≠ 1. 

This remains valid for x = 0 and x = 1 as may 

be seen by inspection. 

The above problems reveal the fact that using 

simple manipulations, we can solve some 

functional equations on R. We have not 

exactly effectively used any structure of R to 

arrive at the solution, next few problems tell 

us how to use the known structure(s) of real 

numbers to solve equations. 

16) Let f : R →R is a function such that 

𝒇 (
𝒙+𝒚

𝒙−𝒚
) =

𝒇(𝒙)+𝒇(𝒚)

𝒇(𝒙)−𝒇(𝒚)
, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ≠ 𝒚. Show 

that 𝒇(𝒙) = 𝒙, 𝒇 𝒙 ∊ 𝑹 

Sol.: we use similar techniques here as in the 

earlier problem but in a more subtle way. We 

start with the observation that such a 

function is one−one and hence cannot be 

constant on any interval. Otherwise the right 

hand side is not defined since the 

denominator reduces to zero. 

Taking y = 0 in (1). We obtain 𝑓(1) =
𝑓(𝑥)+𝑓(0)

𝑓(𝑥)−𝑓(0)
 

This can be solved for 𝑓(𝑥) to get 

𝑓(𝑥)(𝑓(1) − 1) =  𝑓(0)(𝑓(1) + 1).  

I𝑓 𝑓(1) ≠ 1, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑔𝑒𝑡 𝑓(𝑥) =
𝑓(0)(𝑓(1)+1)

𝑓(1)−1
, 

showing that f is constant function. Since we 

have ruled out constant function. We 

conclude that 𝑓(1) = 1 and hence 𝑓(0) = 0. 

Now replacing y by 𝑥 − 2 in (i), we obtain 

𝑓(𝑥−1) =
𝑓(𝑥)+𝑓(𝑥−2)

𝑓(𝑥)−𝑓(𝑥−2)
…… . (2) 

If we replace x by 𝑥 − 1 and y by 1 in (1), we 

get 

𝑓 (
𝑥

𝑥 − 2
) =

𝑓(𝑥+1) + 1

𝑓(𝑥−1) − 1
,…… . (3) 

Where we have used 𝑓(1) = 1. If we use the 

value of 

𝑓(𝑥−1) 𝑓𝑟𝑜𝑚 (2)𝑖𝑛 (3)𝑎𝑛𝑑 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦,𝑤𝑒 𝑔𝑒𝑡 𝑓 (
𝑥

𝑥−2
) =

𝑓(𝑥)

𝑓(𝑥−2)
……… . . (4) 

A comparison of (3) and (4) shows that 

𝑓(𝑥) = 𝑓(𝑥−2) {
𝑓(𝑥−1)+1

𝑓(𝑥−1)−1
}……… . . (5) putting 

x = 3 in (3), we get 

𝑓(3) =
𝑓(2) + 1

𝑓(2) − 1
. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑥 = 4 𝑖𝑛 (4) leads 

to 𝑓(4) = 𝑓(2)2. Taking x = 5 in (5).  

We also obtain 𝑓(5) = 𝑓(3) = {
𝑓(4)+1

𝑓(4)−1
} =

{
𝑓(2)+1

𝑓(2)−1
} {
𝑓(2)2+1

𝑓(2)2−1
} =

𝑓(2)2+1

(𝑓(2)2−1)
2. 

However we can also express 𝑓(5) in a 

different way using (1). 𝑓(5) = 𝑓 (
3+2

3−2
) =

𝑓(3)+𝑓(2)

𝑓(3)−𝑓(2)
 using the expression for 

𝑓(3), 𝑤ℎ𝑖𝑐ℎ we have obtained earlier, we get 

𝑓(5) =
𝑓(2)2+1

1+2𝑓(2)−𝑓(2)
2 
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Comparing two expressions for 𝑓(5), we see 

that (𝑓(2) − 1)
2 = 1 + 2𝑓(2) − 𝑓(2)2 . 

The quadratic equation for 𝑓(2) simplifies to 

𝑓(2)2 = 2𝑓(2). 

We conclude that 𝑓(2) = 0 𝑜𝑟 𝑓(2) =

2.  𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 𝑜𝑛𝑒 − 𝑜𝑛𝑒 𝑎𝑛𝑑 𝑓(0) = 0,  we 

cannot have 𝑓(2) = 0. 

The only possibility is 𝑓(2) = 2. 

This is the most difficult and important step is 

getting a solution of our problem. The set 

follows familiar track. We compute 𝑓(3) =

3, 𝑓(4) = 4 𝑎𝑛𝑑 𝑓(5) = 5. Suppose 𝑓(𝑘) = 𝑘 for 

all natural numbers 𝑘 < −= 𝑛, where n is a 

natural number. 

Then (5) shows that 𝑓(𝑛+1) = 𝑓(𝑛−1) {
𝑓(𝑛)+1

𝑓(𝑛)−1
} 

𝑆𝑖𝑛𝑐𝑒 𝑓(𝑛−1) = 𝑛 − 1 𝑎𝑛𝑑 𝑓(𝑛) = 𝑛, we obtain 

𝑓(𝑛+1) = 𝑛 + 1. We conclude that 𝑓(𝑛) = 𝑛 for 

all natural numbers n. Replacing y by 𝑥𝑧 in 

(1), we get 

𝑓 (
𝑥 + 𝑥𝑧

𝑥 − 𝑥𝑧
) =  𝑓 (

1 + 𝑧

1 − 𝑧
) =

1 + 𝑓(𝑧)

1 − 𝑓(𝑧)
, 

𝑤ℎ𝑒𝑟𝑒 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑢𝑠𝑒𝑑 (1) again, comparing 

these two expressions and solving for 𝑓(𝑥𝑧), 

we obtain 𝑓(𝑧𝑥) = 𝑓(𝑧)𝑓(𝑥). 𝐴 𝑝𝑟𝑖𝑜𝑟𝑖  this is 

valid for x ≠ 0 and z ≠ 1. But since 𝑓(0) =

0 𝑎𝑛𝑑 𝑓(1) = 1, we see that this multiplicative 

property is valid for all x, z in R. Taking 𝑦 =

−𝑥 in (1), we see that 𝑓(0) =
𝑓(𝑥)+𝑓(𝑦)

𝑓(𝑥)−𝑓(𝑦)
, 𝑔𝑖𝑣𝑒𝑛 𝑢𝑠 𝑓(−𝑥) = −𝑓(𝑥). This f is also 

an odd function. Since 𝑓(𝑛) = 𝑛 for all natural 

numbers n, now it follows that 𝑓(𝑘) = 𝑘 for all 

integers k. This with multiplicativity (6) 

implies that 𝑓(𝑟) = 𝑟 for all rational number r. 

Since (6)implies that 𝑓(𝑥2) = 𝑓(𝑥)
2. It follows 

that maps non-negative reals to non-negative 

reals, since f is one-one and 𝑓(0) = 0. We 

conclude that 𝑓(𝑥) > 0. Whenever x > 0. 

Suppose x > y we consider different cases: 

(a) suppose x > y≥ 0. Here we obtain 

𝑓(𝑥)+𝑓(𝑦)

𝑓(𝑥)−𝑓(𝑦)
= 𝑓 (

𝑥+𝑦

𝑥−𝑦
) >  0,  showing that 

𝑓(𝑥) > 𝑓(𝑦). (b) Suppose y< 0<x. In this 

case 𝑓(𝑦) < 0 𝑎𝑛𝑑 𝑓(𝑥) > 0 show that 

𝑓(𝑦) < 𝑓(𝑥). 

(𝑐)𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟  the case y < x < 0. Then 0 <

−𝑥 < −𝑦 and by (a), we conclude that 

𝑓(−𝑥) < 𝑓(−𝑦). 

Using the fact that f is an odd function, this 

reduces to 𝑓(𝑦) < 𝑓(𝑥). It follows that f is a 

strictly increasing function on R. Since 𝑓(𝑟) =

𝑟 for all rational number r, we obtain 𝑓(𝑥) = 𝑥 

for real number x. 

 

17) Find all f : R →R such that 𝒇(𝒇(𝒙) + 𝒚) =

 𝒇(𝒙𝟐 − 𝒚) + 𝟒(𝒙)𝒚 ∀ 𝒙, 𝒚 ∈ 𝑹. 

Sol.: It is easy to check that 𝑓(𝑥) ≡

0 𝑎𝑛𝑑 𝑓(𝑥) = 𝑥
2 are solutions of this problem. 

We show that these are the only solutions of 

the problem. 

Suppose 𝑓(𝑎) ≠ 𝑎
2 for some a. Replacing by y 

in (1) by 
(𝑥2−𝑓(𝑥))

2
, 𝑤𝑒 𝑔𝑒𝑡 𝑓(𝑥)(𝑥

2 − 𝑓(𝑥)) =  0. 

𝑆𝑖𝑛𝑐𝑒 𝑓(𝑎) ≠ 𝑎
2, 𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑓(𝑎) = 0. This 

also shows that a ≠ 0, for then 𝑎2 = 0 =  𝑓(𝑎) 

contradicting the choice of a. We further 

observe that 𝑓(𝑥) = 0 𝑜𝑟 𝑓(𝑥) = 𝑥
2 for any x. 

In any case 𝑓(0) = 0. 𝑇𝑎𝑘𝑖𝑛𝑔 𝑥 = 0 in (1), we 

get 𝑓(𝑦) = 𝑓(−𝑦). 

Putting x = a and replacing y by –y, we also 

see that 𝑓(𝑎2+𝑦) = 𝑓(−𝑦) = 𝑓(𝑦) 
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Thus f is periodic with period 𝑎2. This implies 

that 𝑓(𝑓(𝑥)) = 𝑓(𝑓(𝑥) + 𝑎
2) =  𝑓(𝑥2−𝑎2) +

4𝑓(𝑥)𝑎
2.  Putting y = 0 in (1) we get another 

expression 𝑓(𝑓(𝑥)) =  𝑓(𝑥2) 

Invoking the periodicity of f. we note that 

𝑓(𝑥)𝑎
2 = 0 

However, we have observed that a ≠0 by our 

choice of a. It follows that if 𝑓(𝑥) ≠ 𝑥
2, then we 

must have 𝑓(𝑥) ≡ 0. This completes our claim 

and determines all the solutions of the 

problem. 

 

18) Find all f: (−𝟏,∞) → (−𝟏,∞) such that the 

function 

(i) 𝒇{𝒙 + 𝒇(𝒚) + 𝒙𝒇(𝒚)} =  𝒚 + 𝒇(𝒙) +

𝒚𝒇(𝒙), 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙, 𝒚 ∊ (−𝟏,∞) 

(ii) 
𝒇(𝒙)

𝒙
 is strictly increasing on each of 

the intervals (-1, 0) and (0, ∞) 

Sol.: Let f: (−1,∞) → (−1,∞) be a function of 

the desired type since 
𝑓(𝑥)

𝑥
 is strictly 

increasing on the interval (-1, 0) the equation 

𝑓(𝑥) = 𝑥 can have at most one solution in (0, 

∞). Moreover x = 0 may be a solution in 

𝑓(𝑥) = 𝑥. Thus the equation 𝑓(𝑥) = 𝑥 can have 

at most three solution in (−1,∞). In other 

words, there are at most three fixed points of 

𝑓(𝑥) in the domain (−1,∞). 

Suppose u ∊ (-1, 0) is a fixed point of 𝑓(𝑥). 

Thus we have 𝑓(𝑢) = 𝑢. Taking x = y = u in 

(a). we see that 𝑓(2𝑢 + 𝑢2) = 2𝑢 + 𝑢2. This 

shows that 2𝑢 + 𝑢2 is also a fixed point 𝑓(𝑥). 

We claim that 2𝑢 + 𝑢2 is also a fixed point is 

in the interval (-1, 0). In fact 2𝑢 + 𝑢2 =

𝑢(2 + 𝑢) < 0. Since u <0 and 2+u>1>0 

because u>-1. On the other hand 2𝑢 + 𝑢2 >

−1 because 2𝑢 + 𝑢2 + 1 = (𝑢 + 1)2 > 0. 

Since there can be at most one fixed point of  

𝑓(𝑥) in (-1, 0). We conclude that   

2𝑢 + 𝑢2 = 𝑢. 𝑇ℎ𝑖𝑠 𝑓𝑜𝑟𝑐𝑒𝑠 𝑢(𝑢 + 1) = 0, we 

contradicting the assumption that u ∊(-1, 0). 

It follows that there is no fixed point of 𝑓(𝑥) in 

(-1, 0). Similar analysis shows that 𝑓(𝑥) has no 

fixed in (0, ∞) as well. Thus 0 is the only 

possible fixed point of 𝑓(𝑥) if at all it has any. 

However taking x = y in (i), we see that 

𝑓(𝑥 + 𝑓(𝑥) + 𝑥𝑓(𝑥)) =  𝑥 + 𝑓(𝑥) +

𝑥𝑓(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∊ (−1,∞). Thus each 𝑥 +

𝑓(𝑥) + 𝑥𝑓(𝑥), 𝑥 ∊ (−1,∞) is a fixed point of f. 

We conclude that 𝑥 + 𝑓(𝑥) + 𝑥𝑓(𝑥) = 0 for all 

x∊ (-1, ∞) we see that 

𝑥 + 𝑓(𝑦) + 𝑥𝑓(𝑦) = 𝑥 −
𝑦

1 + 𝑦
−

𝑥𝑦

1 + 𝑦
=
𝑥 − 𝑦

1 + 𝑦
. 

𝑇ℎ𝑢𝑠 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 𝑓(𝑥 + 𝑓(𝑦) + 𝑥𝑓(𝑦))

= 𝑓 (
𝑥 − 𝑦

1 + 𝑦
) =

𝑦 − 𝑥

1 + 𝑦
. 

It follows that 𝑓(𝑥) = − (
𝑥

1+𝑥
) indeed satisfies 

(a) we can easily check that is also satisfied 

(b). 

The fixed points, can also be used in proving 

non-existence of solutions to some functional 

equations. The following problem illustrates 

this point. 

 

19) Find all functions f: R →R such that 

𝒇{𝒙 − 𝒇(𝒚)} =  𝒇{𝒇(𝒚)} + 𝒙𝒇(𝒚) + 𝒇(𝒙) − 𝟏 

holds for all x, y ∊R. 

Sol.: We easily see that 𝑓(𝑥) = 1 −
𝑥2

2
 satisfies 

the equation (1), We show that this is the 

only function which obey the relation (1). Let 

S denote the range of f. Put c = 𝑓(0). Taking x 

= y= 0 in (1), we obtain 
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𝑓(−𝑐) =  𝑓(𝑐) + 𝑐 − 1  

This shows that c ≠ 0. Taking x = 𝑓(𝑦) in (1), 

we also get c = 𝑓(𝑥) + 𝑥
2 + 𝑓(𝑥) − 1. 

This gives 𝑓(𝑥) =
𝑐+1

2
− 𝑥2……… . . (2) 

whenever x = 𝑓(𝑦) 

This determines f on s, the range of f. Taking y 

= 0 in (1), we get 𝑓(𝑥 − 𝑐) =  𝑓(𝑐) + 𝑐𝑥 +

𝑓(𝑥) − 1 

This can be written in the form 𝑓(𝑥 − 𝑐) −

𝑓(𝑥) = 𝑐𝑥 + 𝑓(𝑐) − 1 consider the set 

{𝑐𝑥 + 𝑓(𝑐) − 1; 𝑥 ∊ 𝑅}. Since c ≠ 0, it follows 

that this set is R itself. Thus we conclude that 

{𝑓(𝑥 − 𝑐) − 𝑓(𝑥); 𝑥 ∊ 𝑅} =  𝑅. We use this to 

determine f on R. Fix any x ∊ R. we find 

𝑦1, 𝑦2 ∈ 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝑦1 − 𝑦2. 𝐿𝑒𝑡 𝑦2 =

 𝑓(𝑥2). 𝑇ℎ𝑒𝑛𝑓(𝑥) = 𝑓(𝑦1 − 𝑓(𝑥2)) = 𝑓( 𝑓(𝑥2)) +

𝑦2 𝑓(𝑥2) + 𝑓(𝑦1) − 1 =  𝑓(𝑦2) + 𝑦1𝑦2 + 𝑓(𝑦1) −

1. 

But we know f on s: from (2) we see that 

 𝑓(𝑦2) =
𝑐+1

2
−
 𝑦2

2

2
, 𝑓(𝑦1) =

𝑐+1

2
−
 𝑦1

2

2
. Putting 

these values, we obtain 𝑓(𝑥) =  𝐶 −
(𝑦2−𝑦1)

2

2
=

𝐶 −
𝑥2

2
. 

Comparing these expressions, we conclude 

that c = 1. 

Thus we obtain 𝑓(𝑥) = 1 −
𝑥2

2
, for all x ∊ R 

Alternate Solution: As in the first solution, we 

take c = 𝑓(0).  Putting x = 𝑓(𝑦) in (1), we can 

solve for 𝑓(𝑓(𝑦)): 𝑓(𝑓(𝑦)) =
𝑐+1−𝑓(𝑦)2

2
…… . . (3) 

𝐼𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑔(𝑥) =  𝑓(𝑥) +
𝑥2

2
 it is easy to 

compute 𝑔(𝑥 − 𝑓(𝑦)) = 𝑔(𝑥) +
𝑐−1

2
 

Note that the given equation has no constant 

solutions. Thus we may find 

𝑦0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑦0) ≠ 0. 𝑇𝑎𝑘𝑖𝑛𝑔 𝑥 =
1

𝑓(𝑦0)
 𝑎𝑛𝑑 𝑦 =  𝑦0 𝑖𝑛 (1), 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 𝑓(𝑥 −

𝑓(𝑦0)) = 𝑓(𝑓(𝑦0)) + 𝑓(𝑥). 𝑆𝑒𝑡𝑡𝑖𝑛𝑔 𝑥 − 𝑓(𝑦0) =

𝑎, 𝑎𝑛𝑑 𝑓(𝑦0) = 𝑏,𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛 𝑓(𝑎) = 𝑓(𝑏) + 𝑓(𝑥) 

Thus (4) gives 𝑔(𝑥) +
𝑐−1

2
−  𝑔(𝑥 − 𝑓(𝑎)) =

 𝑔(𝑥 − 𝑓(𝑏) − 𝑓(𝑥)) = 𝑔(𝑥 − 𝑓(𝑏)) +
𝑐−1

2
=

 𝑔(𝑥) + 𝑐 − 1.  

It follows that c = 1 and now (4) shows that 

𝑔(𝑥 − 𝑓(𝑦)) = 𝑔(𝑥), for all reals x, y. Thus we 

obtain that every element in the range of f is a 

period for g. However putting 𝑓(0) = 𝑐 =

1 𝑖𝑛 (3), we obtain 𝑓(1) = 𝑓(𝑓(0)) =
1

2
. Also 

taking y = 0 in (1), we see that 𝑓(𝑥−1) = 𝑥 +

𝑓(𝑥) −
1

2
. We have proved that 

1

2
, 𝑓(𝑥) 𝑎𝑛𝑑 𝑥 +

𝑓(𝑥) −
1

2
 are periods of g. Since a linear 

combination of several periods is again a 

period, x it self is period for g. 

Since this is true for every real number x, we 

conclude that g is constant function. However 

𝑔(0) = 𝑓(0) = 1 𝑎𝑛𝑑 𝑤𝑒 𝑔𝑒𝑡 𝑔(𝑥) ≡ 1. The 

definition of g shows that 𝑓(𝑥) = 1 −
𝑥2

2
. 

Some of the functional equations may require 

a single or a combination of several ideas in 

their solutions. This is illustrated in the 

solution of the following few problems. 

 

20) Find all functions f : [𝟏,∞) → [𝟏,∞) which 

satisfy, 

(i) 𝒇(𝒙) ≤ 𝟐(𝟏 + 𝒙)∀𝒙 ∈ [𝟏,∞); 

(ii) 𝒙𝒇(𝒙+𝟏) = {𝒇(𝒙)}
𝟐
− 𝟏∀ 𝒙 ∈

[𝟏,∞). 

Sol.: It is easy to verify that 𝑓(𝑥) = 𝑥 + 1 

satisfies both (a) and (b). We show that is the 

only solutions.  
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We have 𝑓(𝑥)2 = 𝑥𝑓(𝑥 + 1) + 1 ≤

𝑥(2(𝑥 + 1)) + 1 = 1 + 4𝑥 + 2𝑥2 <

2(1 + 2𝑥 + 𝑥2) = 2(1 +

𝑥)2. 𝐼𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑓(𝑥) < √2(1 + 𝑥) using 

this fresh bound, we obtain  

𝑓(𝑥)2 = 𝑥𝑓(𝑥 + 1) + 1 < √2𝑥(2 + 𝑥) + 1

=  √2𝑥2 + 2√2𝑥 + 1

< √2(𝑥2 + 2𝑥 + 1)

=  √2(𝑥 + 1)2 

Thus we obtain another bound; 𝑓(𝑥) <

2
1

4(𝑥 + 1). 

Continuing by induction, we arrive at 𝑓(𝑥) <

2
1

2𝑘(1 + 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝑁, 𝑎𝑛𝑑 𝑥 ∈ [1,∞). 

It follows that 𝑓(𝑥) ≤ 1 + 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [1,∞) 

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑓(𝑥0) < 1 + 𝑥0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥0 ∈ [1,∞). 

Let 𝑓(𝑥0) = 1 + 𝑥0−∈ 𝑤ℎ𝑒𝑟𝑒 0 <∈< 𝑥0, we 

then have  

𝑓(1+𝑥0) =
𝑓(𝑥0)

2 − 1

𝑥0

=
(1 + 𝑥0−∈)

2 − 1

𝑥0
 𝑥0 − 2

∈ +2 +
∈2− 2 ∈

𝑥0
≤ 𝑥0 − 2

∈ +2+∈ −2 = 𝑥0−∈< 𝑥0 

Using this bound we get    

𝑓(𝑥0+2) =
𝑓(𝑥0 + 1)

2 − 1

𝑥0 + 1
<
𝑥0
2 − 1

𝑥0 + 1
< 𝑥0 − 1. 

This is turn implies that 

𝑓(𝑥0+3) =
𝑓(𝑥0 + 2)

2 − 1

𝑥0 + 2
<
(𝑥0 − 1)

2 − 1

𝑥0 + 2

=
𝑥0(𝑥0 − 2)

𝑥 + 2
< 𝑥0 − 2 

By an easy induction, we see that  𝑓(𝑥0+𝑘) <

𝑥0 − 𝑘 + 1 

If k is large enough, then 𝑓(𝑥0+𝑘) < 1. This 

contradiction forces 𝑓(𝑥) = 1 + 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈

[1,∞) 

In some cases the functional relation may 

reveal some useful information about the 

function. 

 

GEOMETRY 

1) The length of a rectangle is increasing by 

60%. By what percent would the width 

have to be decreased to maintain the same 

area? 

(a) 37.5%  (b) 37%  (c) 75%   (d) 

none 

Sol.: Let the length = x and breadth = y 

∴ Area = 𝑥𝑦 

New length = 
160𝑥

100
=
8𝑥

5
 

Let the new breadth be y  

∴    
8𝑥

5
× 𝑐 = 𝑥𝑦. 

𝑜𝑟,    
8𝑥

5
× 𝑐 = 𝑥𝑦  

∴ decreases in breadth = 𝑦 −
5𝑦

8
=
3𝑦

8
 

∴ 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 % =
3𝑦

8
×
1

𝑦
× 100 = 37.5%  

 

2) On the two square fields, the area of one is 

1 heal are, while the other one is border by 

2%. The different in their areas is 

(a) 𝟒𝟎𝟎𝒎𝟐;  (b) 404𝒎𝟐 ;   (c) 410 𝒎𝟐  

; (d) none 
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Sol.: Each side of a square field is 

√1 ℎ𝑒𝑐𝑡𝑎𝑟𝑒 √10,000 𝑚2 = 100𝑚.  

∴ each side of the second square field is 

(100 + 100 × 1%)𝑚 = 102𝑚. 

Thus the area is (102𝑚)2 = 10,404𝑚2 

∴ Required area = (10,404 − 10,000)𝑚2 =

404𝑚2. 

3) The diagonal of a square A is (x+y). The 

diagonal of a square B with twice the area 

of A is 

(a) √(𝒙 + 𝒚);  (b) √(𝟐𝒙 + 𝒚);  (c) 

√(𝒙 + 𝟐𝒚);  (d) none 

Sol.: If a is a side of the square A, then 2𝑎2 =

 (𝑥 + 𝑦)2…… . . (𝑖) 

∴ Area of the square 𝐵 = 2 × Area of square A 

=2 × (2𝑎2) = 4𝑎2. 𝐵𝑢𝑡 4𝑎2 = 2(𝑥 + 𝑦)2 from 

(i) 

∴ Side of the square B = √2(𝑥 + 𝑦) 

4) If the base of a rectangle is increased by 

10% and the area is unchanged, then the 

corresponding altitude must be decreased 

by 

(a) 10%;   (b) 𝟗 (
𝟏

𝟏𝟏
)%;  (c) 11% ;  (d) 

none 

Sol.: Area of the rectangle is 𝑥𝑦 where x is 

base and y is itself. Second time area is 

(𝑥 +
𝑥

10
)𝑦′ where y’ is height. 

1𝑥

10
. 𝑦′ =

10

11
𝑦 

∴ Altitude decreased = 𝑦 −
10

11
𝑦 =

9

11
𝑦 𝑖. 𝑒.

9

11
% is decreased. 

5) The interior angles of a hexagon are in the 

ratio 1 :2 :2: 3: 2: 2, then the largest angle 

is 

(a) 150°;   (b) 170°;   (c) 180°;  (d) 

none 

Sol.: The sum is interior angles of a hexagon =

(2 × 6 − 4)90° = 720° 

Now let its angles be x, 2x, 2x, 3x, 2x, 2x  

respectively 

∴ 𝑥 + 2𝑥 + 2𝑥 + 3𝑥 + 2𝑥 + 2𝑥 = 720. 

∴ 12𝑥 = 720°, 𝑥 = 60°  

∴ 𝑇ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑎𝑛𝑔𝑙𝑒 = 3𝑥 = 3 × 60° = 180°  

6) The difference between the interior and 

exterior angles of a regular polygon is 60°. 

The polygon is  

(a) Hexagon;   (b) Octagon;   (c) 

Decagon;   (d) none 

Sol.: Let the polygon be n-sided. 

Thus, per the condition given 

(2𝑛 − 4) × 90

𝑛
−
360

𝑛
= 60 

𝑜𝑟, (2𝑛 − 4)90 − 360

= 60𝑛 𝑜𝑟 180𝑛 − 720

= 60𝑛 

𝑜𝑟, 𝑛 = 6 

∴The polygon is a hexagon.  
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7) As ABC and DBC are on the same base BC. 

AL ⊥BC and DM ⊥BC. Then area ∆ ABC : 

Area ∆DBC is 

(a) AO : AD;   (b) 𝑨𝑶𝟐: 𝑶𝑫𝟐;   (c) AO : 

OD ;  (d) none 

Sol.: 
𝐴𝑟𝑒𝑎 (∆𝐴𝐵𝐶)

𝐴𝑟𝑒𝑎 (∆𝐷𝐵𝐶)
=

1

2
.𝐵𝐶.𝐴𝐿

1

2
.𝐵𝐶.𝐷𝑀

=
𝐴𝐿

𝐷𝑀
=
𝐴𝑂

𝑂𝐷
 

(as ∆ALO  ∆ DMO are similar) 

∴ The needed ratio = AO: OD. 

8) If in ∆ABC and ∆ DEF 
𝑨𝑩

𝑫𝑬
=
𝑩𝑪

𝑬𝑭
=
𝑨𝑪

𝑫𝑭
=
𝟐

𝟑
, 

then area ∆ABC : area ∆DEF is 

(a) 2: 3;   (b) 4: 9;   (c) 3: 2;   (d) none 

Sol.: Since ∆ABC ∼ ∆DEF 

 ∴
𝐴𝑟𝑒𝑎 𝑜𝑓 ∆𝐴𝐵𝐶

𝐴𝑟𝑒𝑎 𝑜𝑓 ∆𝐷𝐸𝐹 
=
𝐴𝐵2

𝐷𝐸2
=
𝐵𝐶2

𝐸𝐹2
=
𝐴𝐶2

𝐷𝐹2
=
4

9
  

9) In an equilateral ∆ABC, if AD ⊥ BC, then 

(a) 𝟑𝑨𝑩𝟐 = 𝟒𝑨𝑫𝟐;  (b) 𝟑𝑨𝑩𝟐 =

𝟐𝑨𝑫𝟐;   (c) 𝟐𝑨𝑩𝟐 = 𝑨𝑫𝟐;   (d) 

none 

Sol.:  Let its side be a  

∴ 𝐴𝐷2 = 𝑎2 − (
𝑎

2
)
2

=
3𝑎2

4
=
3𝐴𝐵2

4
 

∴ 3𝐴𝐵2 = 4𝐴𝐷2 

10) The parallel sides of a trapezium  are a and 

b. Then the line joining the mid-points of 

its non-parallel sides will be 

(a) 
𝒂+𝒃

𝟐𝒂𝒃
;   (b) 

𝒂−𝒃

𝟐
;  (c) √𝒂𝒃 ;   (c) none 

Sol.: By rule, 
𝑎+𝑏

2
 

11) The radius of a circle is 5 cm. Two chords 

of length 6 cm and 8 cm, respectively are 

drawn parallel to each other. Then the 

distance between the chord is 

(a) 1cm;  (b) 3 cm;  (c) 4 cm;  (d) none 

Sol.: In the figure, OC = 5 cm = OA 

CM = 
1

2
𝐶𝐷 =

1

2
8𝑐𝑚 = 4 𝑐𝑚 

𝐴𝑁 =
1

2
𝐴𝐵 =

1

2
6 𝑐𝑚 = 3𝑐𝑚  

∴ 𝑂𝑁2 = 𝑂𝐴2 − 𝐴𝑁2 = 52 − 32 =

25 − 9 = 16  

⟹ 𝑂𝑁 = 4  

𝐴𝑔𝑎𝑖𝑛,⟹ 𝑂𝑀2 = 𝑂𝐶2 − 𝐶𝑀2  = 52 −

42 = 25 − 16 = 9  

∴ 𝑂𝑀 = 3𝑐𝑚   

∴ MN = The distance between the 

chords  = ON –OM = 4 -3 = 1 cm. 

 

12) If AB and AC are tangents to the circle with 

centre O, if ∠CAB = 60° then ∠BDC = is  

(a) 60°;  (b) 70°;   (c) 80 °;   (d) none 
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Sol.: Here ∠ACO = 90°; ∠CAO = 
1

2
× 60° = 30° 

∴ ∠𝐶𝑂𝐴 = 180° − 90° − 30° = 60°  

𝐴𝑔𝑎𝑖𝑛 ∠𝐶𝑂𝐴 =  ∠ 𝐵𝑂𝐴 = 60°. 

𝑇ℎ𝑢𝑠, ∠𝐶𝑂𝐵 = ∠𝑂𝐷𝐴 + ∠𝐵𝑂𝐴 = 60° + 60° =

120°.  

𝐴𝑙𝑠𝑜, ∠𝐵𝐷𝐶 =
1

2
∠𝐶𝑂𝐵 =

1

2
× 120° = 60°.  

13) Let A, B, C are three points on a circle with 

centre 0. If ∠AOB = 90° 𝒂𝒏𝒅 ∠𝑩𝑶𝑪 =

𝟏𝟑𝟎°, 𝒕𝒉𝒆𝒏 ∠𝑨𝑩𝑪  is 

(a) 45°;  (b) 55°;   (c) 65°;  (d) none 

Sol.: ∠AOC = 360° − (90° + 130°) = 140° 

∴Also ∠ABC = 
1

2
∠𝐴𝑂𝐶 =

1

2
× 140° = 70° 

14) Let AD, AE, BC are tangents to the circle at 

D, E, F respectively, then 

(a) AD= AB+ BC+ CA;  (B) 2AD= 

AB+BC+ CA;   (C) 3AD = 

AB+BC+CA;  (D) none 

Sol.: Knowing that the tangents drawn to a 

circle from a point outside are equal, on get  

AD = AE, BD = BF, CF = CE  

∴ AD = AB+BD= AB+BF 

Also AD= AE = AC + CE = AC +CF 

∴ 2AD = AB+ AC+BF+ CF = AB +AC +BC. 

15) In the given fig. ∠ABC = 65° and AB = AC, 

then the measure of ∠BPC is 

(a) 115°;   (b) 30°;   (c) 70°;   (d) none 

 

Sol.: In ∆ ABC; AB = AC 

∴ ∠ACB = ∠ABC = 65° 

∴ ∠BAC = 180° − (65° + 65°) = 50° 

But ∠BPC = ∠BAC = 50° 

 

(SUBJECTIVE TYPE) 

1) In a ∆ ABC, AB = AC. A circle is drawn 

touching the circum circle of ∆BC 

internally and also, touching the sides AB 

and Ac at P and Q respectively. Show the 

mid. Point of PQ is the in centre of ∆ABC. 

Sol.: Let ∠ABC = ∠ACB = 𝛽. 

ATS  the angle bisector of ∠A. I is the mid-

point of PQ. Now AP = AQ as the smaller 

circle touches AB and AC at P and Q 

respectively. The centre of the circle PQT lies 

on the angle bisector of ∠A, namely AT; since 
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PQ is the chord of contact of the circle PQT , 

PQ ⊥ AT and the midpoint 1 of PQ lies on AT. 

Now to prove that I is the in centre of ∆ABC, it 

is enough to prove that BI is the angle 

bisector of ∠B. and CI is the angle bisector of 

∠C respectively. By symmetry ∠PTI = ∠QTI = 

𝛼° 

 

Now ∠ABT = 90° (∵AT is diameter of ⊙ABC) 

∴ ∠PBT = 90° Also ∠PIT = 90° 

∴  PBTI is cyclic 

∴ ∠PBI = ∠PTI = 𝛼°(angle in the same 

segment) 

∴ ∠IBD = ∠ABD -∠ABI = 𝛽 –𝛼  

∠TBC = ∠TAC = 90° − 𝛽 

∴ ∠𝐼𝛽𝑇 =  ∠𝐼𝐵𝐷 + ∠𝐷𝐵𝑇 =  𝛽 − 𝛼 + 90° −

𝛽 = 90° − 𝛼  

𝑆𝑖𝑛𝑐𝑒 𝑃𝐵𝑇𝐼 𝑖𝑠 𝑐𝑦𝑐𝑙𝑖𝑐, ∠𝐼𝑃𝑇 =  ∠𝐼𝐵𝑇 = 90° −

𝛼………(1)  

∠𝐵𝑃𝑇 = 180° − ∠𝑇𝑃𝐴 = 180° − ∠𝐴𝑃𝐼 −

∠𝐼𝑃𝑇  = 180° − 𝛽 − 90° + 𝛼 = 90° + 𝛼 −

𝛽……… . (2)  

But APT is a tangent to circle PQT ∠BPT = 

∠PQT = ∠IQT from (1) and (2),  

we get  90° + 𝛼 − 𝛽 = 90° − 𝜶   ∴ 2𝛼 =  𝛽  

∴ ∠𝐼𝐵𝐷 =  𝛽 − ∠𝑃𝐵𝐼 = 2𝛼 − 𝛼 = 𝛼     ∴

∠𝐼𝐵𝐷 =  ∠𝑃𝐵𝐼  

∴ BI is the angle bisector of ∠B.   Hence the 

result. 

2) ABC is a rt. Angled triangle with ∠ C = 90°. 

The centre and the radius of the inscribed 

circle is I and r.  Show that 𝑨𝑰 × 𝑩𝑰 =

 √𝟐 × 𝑨𝑩 × 𝒓. 

Sol.:  

 

Area of the right angled ∆ ACD =
1

2
 𝐴𝐶 × 𝐵𝐶 

=
1

2
(𝑥 + 𝑟)(𝑦 + 𝑟) =

1

2
{𝑥𝑦 + 𝑟(𝑥 + 𝑦) + 𝑟2} 

⟹ 𝐴𝐶 × 𝐵𝐶 = 𝑥𝑦 + 𝑟𝐴𝐵 + 𝑟2 ⟹ 𝑥𝑦

= 𝐴𝐶 × 𝐵𝐶 − 𝑟𝐴𝐵 − 𝑟2 

𝑁𝑜𝑤 𝐴𝐼2 × 𝐵𝐼2 = (𝑥2 + 𝑟2)(𝑦2 + 𝑟2)

= 𝑥2𝑦2 + 𝑟2(𝑥2 + 𝑦2) + 𝑟4 
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= 𝑥2𝑦2 + 𝑟2[(𝑥 + 𝑦)2 − 2𝑥𝑦] + 𝑟4

= 𝑥2𝑦2 + 𝑟2[(𝐴𝐵2 − 2𝑥𝑦)]

+ 𝑟4 

= 𝑥2𝑦2 + 𝑟2 𝐴𝐵2 − 𝑟2 + 2𝑥𝑦 + 𝑟4

= 𝑥2 𝐴𝐵2 + (𝑟2 − 𝑥𝑦)2 

= 𝑟2𝐴𝐵2 + [𝑟2 − 𝐴𝐶 × 𝐵𝐶 + 𝑟𝐴𝐵 + 𝑟2]2

= 𝑟2𝐴𝐵2

+ [2𝑟2 − 𝐴𝐶 × 𝐵𝐶 + 𝑟𝐴𝐵]2 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 ∆𝐴𝐵𝐶 = 𝑟(𝑟 + 𝑥 + 𝑦)

= 𝑟(𝑟 + 𝐴𝐵) =  𝑟2 + 𝑟𝐴𝐵

=
1

2
𝐴𝐶. 𝐵𝐶 

⟹ 𝐴𝐶 × 𝐵𝐶 = 2𝑟2 + 2𝑟. 𝐴𝐵  

∴ 𝐴𝐼2 × 𝐵𝐼2 = 𝑟2𝐴𝐵2 + [2𝑟2 − 2𝑟2 −

2𝑟𝐴𝐵 + 𝑟𝐴𝐵]2 = 𝑟2𝐴𝐵2 + 𝑟2𝐴𝐵2 = 2𝑟2. 𝐴𝐵2  

∴ 𝐴𝐼. 𝐵𝐼 =  √2𝑟2. 𝐴𝐵2 = √2𝑟. 𝐴𝐵.  

3) Let A and B be two points on a circle k. 

Suppose that on arc k’ of a another circle 1 

connects A with B and divides the area 

inside the circle k into two equal parts. 

Show that arc ‘k’ is longer than the 

diameter k. 

Sol.:  Since arc ‘k’ bisector the area of the 

circle k, k cannot entirely lie on the one side 

of any diameter of circle k. 

Hence every diameter ok k intersects k’ Let 

AC be one such diameter and k’ intersects AG 

at D, say. Now the centre O of the circle k lies 

inside the circle L, and hence the radius AO of 

circle k lies inside L and now D lies on the 

radius OC. 

 

Length of arc ABD > AD+ DB 

As we have to prove that arc ABD > AC = AD 

+DC, we should show that DB> DC. 

Now the circle k’’ with centre D and radius 

DC, is a circle touching k internally and B lies 

outside this circle k”, So the radius of k” is less 

than DB i.e. DC <DB or DB >DC. 

⟹ arc ADB > AD +BD > AD+ DC = AC 

⟹ arc ADB > the diameter of k. 

Note that O lies inside the circle k’ since every 

diameter of k meets the circle k’ (i.e. arc AB) 

as k’ bisects area in k. 

 

4) Two given circles intersects in two points 

P and Q. Show how to construct a segment 

AB passing through P and terminating on 

the two circles such that AP. PB is a 

maximum. 
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Sol.: Let 𝑐1, 𝑐2 be two circles. We first show 

that if APB is a straight line such that there is 

a circle c touching 𝑐1 at A and 𝑐2 at B, then A, 

AB is segment giving the required maximum. 

 

Let A’P and P’B be any other chords so that 

A’PB’ may be collinear and the extension of 

these chords meet the circle c at C and D. 

CP. CD = AP. PB > A’P × 𝑃𝐵′ 

∴ AP. PB is maximum. Now we need to 

construct such a chord APB. For this we need 

to construct a circle c touching 𝑐1 𝑎𝑛𝑑 𝑐2 at 

points A and B. So that APB are collinear. Let 

us find the properties of the points A and B. 

Let O be the centre of the circle C and 

𝑂1 𝑎𝑛𝑑 𝑂2 be the centres of the circles  

𝑐1 𝑎𝑛𝑑 𝑐2. Now C and 𝑐1 touch at A. 

∴ A 𝑂1𝑂 are collinear. Similarly B 𝑂2𝑂 are 

collinear. Let AT, BS be the common tangents 

to circles C and 𝑐1  and C and 𝑐2 respectively. 

Let ∠PAT = x and ∠PBS = y since AT is 

tangent to circle c. 

 

∠PAT = x = 
1

2
∠AOB (angle in the alternate 

segment theorem). Since BS is tangent to 

circle c.  

∠PBS = y = 
1

2
∠AOB. ∴ x = y since AT is 

tangent to circle 𝑐1, we get ∠PAT = x = 

1

2
∠𝐴𝑂1𝑃 

Similarly since BS is tangent to circle 𝑐2, we 

get ∠PBS  = y =
1

2
∠𝐵𝑂2𝑃 = 𝑥 ∴  ∠𝐴 𝑂1𝑃 =

 ∠𝐴𝑂𝐵 =  ∠𝐵𝑂2𝑃 

∴ ∆𝐴𝑂1𝑃 ∼  ∆𝑃𝑂2𝐵 

∴
𝐴𝑃

𝑃𝐵
=
𝐴𝑂1
𝑃𝑂2

=
𝑟1
𝑟2
. 

There for the line segment AB must be such 

that P divides AB internally in the ratio 𝑟1: 𝑟2  

Further 𝑃𝑂2 ∥ 𝑂𝑂1 𝑎𝑛𝑑 𝑃𝑂1 ∥ 𝑂𝑂2. 

So join 𝑃𝑂1 𝑎𝑛𝑑 𝑃𝑂2. Through 𝑂2 draw a line 

parallel to P𝑂1 to must the circle 𝑐2 𝑖𝑛 𝐵. Now 

these two parallel lines drawn meet at O. If 

we drawn a circle with O as centre and radius 

OA = OB, then the circle touches 𝑐1 at A and 
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𝑐2 at B. By retracting the arguments we can 

prove that APB are collinear and AB is the 

required chord. 

 

Note→ in the previous problem the line AB 

and 𝑂1𝑂2 meet in a point 𝑆1 say. This point 𝑆1 

divides 𝑂1𝑂2 externally in the ratio 𝑟1: 𝑟2. The 

point 𝑆1  is called the external centre of 

similitude of 2 circles 𝑐1 𝑎𝑛𝑑 𝑐2.  If we draw 

any line 1 through 𝑆1 meeting 

𝑐1 𝑖𝑛 𝑃1, 𝑄1 𝑎𝑛𝑑 𝑐2𝑖𝑛 𝑃2, 𝑄2 𝑡ℎ𝑒𝑛 𝑂1𝑃1 ∥

𝑂2𝑃2 𝑎𝑛𝑑 𝑂1𝑄1 ∥  𝑂2𝑄2. 

Moreover the direct common tangents to the 

two circles 𝑐1 𝑎𝑛𝑑 𝑐2 meet at 𝑆1. 

5) Let A, B, C , D be four given points on a line. 

Contract a square such that two of its 

parallel on a line. Contract a square such 

that two of its parallel sides or their 

extensions go through A and B 

respectively and the other two sides (or 

their extensions) go through C and D 

respectively. 

Sol.: Draw BB’ ⊥ r’ to l and BB’ = CD. Join AB’ 

and extend it to y. Through C and D draw 

perpendiculars to meeting Ay at P and S. 

Through B draw BZ perpendicular to CP and 

SD meeting them at Q and R respectively. 

PQRS is the required square. 

Proof: Draw BL and CN ⊥r to AS and SD 

respectively. 

∆𝐿𝐵𝐵′ ≡ ∆ 𝑁𝐶𝐷 𝑎𝑠 ∠𝐿𝐵𝐵′ =  90° − ∠𝐴𝐵𝐿

=  ∠𝐿𝐴𝐵 =  ∠𝑁𝐶𝐷 𝑎𝑛𝑑 𝐵𝐵′

=  𝐶𝐷 𝑎𝑛𝑑 ∠𝐵𝐿𝐵′ =  ∠𝐶𝑁𝐷

= 90°. 𝑃𝑄 = 𝐿𝐵 = 𝐶𝑁 = 𝑄𝑅

= 𝑃𝑆 

 

Thus the adjacent sides of the rectangle PQRS 

are equal and hence it is a square. 

If B’ is constructed on the opposite half-plane, 

we get P’Q’R’S’,  the reflection on the PQRS 

about the line 1 and lying on the opposite half 

plane. 

This construction exactly follows the same 

procedure BB‘(BB) is perpendicular to CD 

and equal to CD. Join AB’(or AB”) 

Draw CP . DS⊥ r to AB’ produced and extend 

PC and SD. Through B draw BR and BQ 

perpendicular to SR and PQ. PQRS is the 

required square. 
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Draw C𝑃1, 𝐷𝑆1 ⊥ 𝑟 𝑡𝑜 𝐴𝐵′′ and through B 

draw ⊥ r to c𝑝1 𝑎𝑛𝑑 𝐷 𝑆1produced meeting 

them at Q and 𝑟1 respectively. 𝑃1𝑄1𝑅1𝑆1 is the 

required square. Thus there are two 

solutions(The proof is similar to that to the 

former one). 

6) In ∆ ABC, AB ≠ AC. The bisector of ∠ B and 

∠C meet their opposite sides AC and AB at 

B’  and C respectively. The Two bisectors 

intersects at I. Show that, if IB’ = IC’, then 

∠BAC = 𝟔𝟎°. 

Sol.: Let us first prove that the perpendiculars 

from 1 to AB and AC. i.e. IE and ID lie on 

opposite sides of the bisectors CC’ i.e. (points 

E and D lie on opposite, sides of the bisectors 

CC’ , where IE and ID are the perpendiculars 

drawn from the in centre I to AB and Ac.) In 

the figure D and E lie on the same side of CC’. 

IE = ID (in radii of ∆ABC) 

 

IC’ = IB’ (given) 

∠IEC’ = ∠IDB’ = 90°,  

𝑠𝑜  ∆𝑠 𝐼𝐸𝐶′𝑎𝑛𝑑  𝐼𝐷𝐴′ are congruent ∠IC’E = 

∠IB’D ……..(1) 

𝐼𝑛  ∆𝐴𝐼𝐶′𝑎𝑛𝑑 ∆𝐴𝐼𝐵′. AI is the bisector of ∠A 

∴ ∠𝐼𝐴𝐶′ =  ∠𝐼𝐴𝐵′  

∴ ∠𝐼𝐶′𝐴 =  ∠𝐼𝐵′𝐴  

[𝐹𝑟𝑜𝑚 (1)]……… . (2)  

AI is common. So ∆𝑠𝐴𝐼𝐶′𝑎𝑛𝑑 𝐴𝐼𝐵′ are 

argument from(2) 

∠BC’I = 180° − ∠𝐼𝐶′𝐴 = 180° − ∠𝐼𝐵′𝐴 =

 ∠𝐼𝐵′𝐶 

∠𝐶′𝐼𝐵 =  ∠𝐵′𝐼𝐶 (vertically opposite ∠s) 

𝐼𝐶′ =  𝐼𝐵′(𝑔𝑖𝑣𝑒𝑛)  

∴BC’ = CB’ 

∴AB = BC’+C’A= CB’+B’A =AC 

But by hypothesis AB ≠ AC and hence, the 

assumption that E and D are on the same side 

of CC’ is false. 
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In the figure, we have taken AB < AC, and E 

and D lie on opposite sides of CC’. 

If AB> AC, then E and D lie on opposite sides 

of BB’  

Now, for the solution of the main problem. 

 In ∆𝑠 𝐼𝐵′𝐷𝑎𝑛𝑑 𝐼𝐶′𝐸. 𝐼𝐶′ =  𝐼𝐵′, 𝐼𝐷 = 𝐼𝐸 and 

hence ∆ IB’D = ∆IC’E (congruence of right 

angled triangles) 

∠EC’I= ∠BC’I = ∠BC’C = 180° − (𝐵 +
1

2
+ 𝐶) 

∠IB’D = ∠BB’D = C+
1

2
𝐵 

But ∠IB’D = ∠IC’E (since the ∆IB’D = IC’ E) 

proved. 

∴180° − (𝐵 +
1

2
𝐶) =  𝐶 +

1

2
𝐵 

⟹
3

2
(𝐵 + 𝐶) = 180°,   

𝐵 + 𝐶 =
2

3
× 180° = 120°  

⟹ 𝐴 = 180° − 120° = 60°  

7) A circle passes through the vertex c of a 

rectangle ABCD and touches the sides AB 

and AD at M and N respectively. If the 

distance from c to the line segment MN is 

equal to b units, find the area of the 

rectangles. 

Sol.: Let ‘O’ be the centre of the circle. 

OM= ON = OC each being the radius of the 

same circle, end AMON is a square. 

∠CMP = ∠CMN = ∠CND (angle in the 

alternate segment) 

∠CNP = ∠CNM = ∠CMB  (angle in the 

alternate segment) 

∴∠CMP+∠CNP=∠CMP+∠CMB= ∠PMB = 

180° − 45° = 135° 

∠MCN  = 
1

2
∠𝑀𝑂𝑁 =

1

2
. 90° = 45° (∴∠AMN = 

∠OMN = 45° in the square ANON) 

∆𝑠 CPN and CBM are similar for ∠CPN = 

∠CBM = 90° and ∠CNP = ∠CMB …………(1) 

Again ∆𝑠  CPM and CDN are similar for ∠CPM 

= ∠CDN = 90° and ∠CMP = ∠CND 
𝐶𝑃

𝐶𝐵
=
𝐶𝑁

𝐶𝑀
 

(from 1), =
𝐶𝐷

𝐶𝑃
 (𝑓𝑟𝑜𝑚 2) 

∴
𝐶𝑃

𝐶𝐵
=
𝐶𝐷

𝐶𝑃
⟹ 𝐶𝑃2 = 𝐶𝐷. 𝐶𝐵 ⟹ 52 = 𝐶𝐷. 𝐶𝐵, 

i.e., area of the rectangle is CB.CD = 25 sq. 

units. 

8) ABCD is a convex pentagon inscribed in a 

circle of radius 1 unit with AE as diameter. 

It AB = a, BC = b, CD = c, DE = d, Prove 

that 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐 + 𝒂𝒃𝒄 + 𝒃𝒄𝒅 < 𝟒 

Sol.: Since AE is the diameter ∠ACE = 90° and 

𝐴𝑐2 + 𝑐𝐸2 = 𝐴𝐸2 = 22 = 4. 

By cosine formula (for ∆ ABC) 

𝐴𝐶2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos(180° − 𝜃) = 𝑎2 +

𝑏2 + 2𝑎𝑏 cos 𝜃  
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑖𝑛 ∆𝐶𝐸𝐷, 𝐶𝐸2 = 𝑐2 + 𝑑2 −

2𝑐𝑑 cos(90° + 𝜃) =  𝑐2 + 𝑑2 + 2𝑐𝑑 sin𝜃  

∴ 𝐴𝑐2 + 𝐶𝐸2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 +

2𝑎𝑏 cos𝜃 + 2𝑐𝑑 sin𝜃  

𝐼𝑛 ∆𝐴𝐶𝐸,
𝐴𝐶

𝐴𝐸
= sin 𝜃 ⟹ 𝐴𝐶 = 2 sin 𝜃

> 𝑏(∵ 𝐴𝐸 = 2)……… . (1) 

𝑎𝑛𝑑  
𝐶𝐸

𝐴𝐸
= cos𝜃 (𝐴𝐸 = 2) 

⇒ 𝐶𝐸 = 2 cos 𝜃 > 𝑐 …….(2) 

(Because in ∆𝑠 ABC and CDE, ∠B and ∠D are 

obtain angles and AC is the greatest side of 

∆ABC  and CE is the greatest side of ∆CDE) 

∴ 𝐴𝐶2 + 𝐶𝐸2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 +

2𝑎𝑏 cos𝜃 + 2𝑐𝑑 cos 𝜃 = 4 

⟹ 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑎𝑏. 2 cos 𝜃 +

𝑐𝑑. 2 sin 𝜃 = 4  

⟹ 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑎𝑏𝑐 + 𝑏𝑐𝑑 <

4  [𝑏𝑦 (1)𝑎𝑛𝑑 (2)]  

9) A rhombus has half the area of the square 

with the same side length. Find the ratio of 

the longer diagonal to that the shortest 

one. 

Sol.: If a is the side of the rhombus, then area 

of the rhombus is  
1

2
𝑎2 sin2𝜃 × 2.   

 

 

By hypothesis, this area is equal to 
1

2
𝑎2 =

 𝑎2 sin𝜃 ⟹ sin2𝜃 =
1

2
⟹ 2𝜃 = 30° 𝑜𝑟 150°  

⟹ 𝜃 = 15° 𝑜𝑟 75°  

[If the acute angle of the rhombus is 30°, the 

other angle which is obtuse is 150°] 

By sine formula, 
𝐵𝐷

sin2𝜃
=

𝐴𝐵

sin(90−𝛩)
 (𝐼𝑛 ∆𝐴𝐵𝐷) 

⟹ 𝐵𝐷 =
𝑎×2sin𝜃 cos𝜃

cos𝜃
= 2𝑎 sin 𝜃 

𝐴𝑔𝑎𝑖𝑛  
𝐴𝐶

sin(180 − 2𝜃)
=

𝑎

sin𝜃
 (𝐼𝑛 ∆𝐴𝐵𝐶) 

𝐴𝐶 =
𝑎 sin2𝜃

sin𝜃
=
2𝑎 sin𝜃 cos𝜃

sin𝜃
= 2𝑎 cos 𝜃 

𝐴𝐶 ∶ 𝐵𝐷 = cos 𝜃 : sin𝜃 [𝑖𝑓 𝜃 = 15°, 𝑡ℎ𝑒𝑛 𝐴𝐶

> 𝐵𝐷  𝑎𝑛𝑑 𝜃 = 75°, 𝐵𝐷 > 𝐴𝐶]. 

𝐴𝐶: 𝐵𝐷 = cos 15° : sin 15° =

sin75° : sin15° = sin(45° + 30°) : sin(45° −

30°) 

                               

= sin45° cos 30°

+ cos 45° sin30° : sin45° cos 30°

− cos 45° sin30° 

=
1

2
(√3 + 1):

1

2
(√3 − 1)

= (√3 + 1): (√3 − 1) 
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𝑜𝑟,   
𝐴𝐶

𝐵𝐷
=
√3 + 1

√3 − 1
: (2 + √3). 

 

10) From a point E on the median AD of ∆ ABC, 

the perpendiculars EF is dropped to the 

sides BC. From a point M on EF 

perpendiculars MN and MP are drawn to 

the sides AC and AB respectively. If N, E, P 

are collinear. Show that M lies on the 

internal bisector of ∠BAC. 

Sol.: Before proving the main problem, let us 

prove the following: If in ∆ABC, AD is the 

median xy is a line segment parallel to BC 

intersecting the median AD at E, then AE is 

the median of ∆AXY, or in other words XE = 

YE. 

 

∆ AXE similar to ∆ABD ………………..(1) and ∆ 

AYE similar to ∆ ACD ………………(2) 

 
𝐴𝑋

𝐴𝐵
=
𝐴𝐸

𝐴𝐷
=
𝑋𝐸

𝐵𝐷
…………(3)𝑎𝑛𝑑  

𝐴𝑌

𝐴𝐶
=
𝐴𝐸

𝐴𝐷
=
𝐸𝑌

𝐷𝐶
……… . (4) 

From (3) and (4) 
𝑋𝐸

𝐵𝐷
=
𝐴𝐸

𝐴𝐷
=
𝐸𝑌

𝐷𝐶
 

⟹
𝑋𝐸

𝐵𝐷
=
𝐸𝑌

𝐷𝐶
⟹
𝐵𝐷

𝐷𝐶
=
𝑋𝐸

𝐸𝑌
. 

But D is the midpoint of BC and hence BD = 

DC ⟹XE = EY i.e., XE = YE ……….(5). 

Now draw XY parallel to BC through E. join 

AM join the collinear points P, E, N. MPAN is a 

cyclic quadrilateral as  ∠MPA+∠MNA = 90° +

90° = 180°. 

Since EF is perpendicular to BC and XY is 

drawn parallel to BC. ∠XEM = ∠EFB = 90°. In 

the quadrilateral MPXE.  ∠MPX+∠MEX = 

90°+90° = 180° and hence MPXE is a cyclic 

quadrilateral and in the quadrilateral MENY. 

∠MEY = ∠MNY = 90° …………..(6) 

So MENY is a cyclic quadrilateral, since ∠MEY 

and ∠MNY are subtended by MY at E and N 

and they are equal by (6). In ∆𝑠 MEX and 

MEY, XE = YE. 

∠MEX = ∠MEY = 90° ME is common and 

hence ∆MEX ≡ ∆MEY 

∴ ∠MEX = ∠MYE ………….(7) 

∠PAM = ∠PNM (angle on the same segment, 

in the cyclic quadrilateral MPAN) = ∠ENM = 

∠EYM (angle on the same segment in 

quadrilateral EMYN by (7)) = ∠EXM =  ∠EPM 

(angle on the same segment in cyclic 

quadrilateral MPEX) = ∠NPM = ∠NAM 

(cyclic quadrilateral APMN) 
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That is AM bisects the vertical angle A of ∆ 

ABC. That is M lies on the bisector of ∠A. 

 

11) ∆ ABC is an isosceles triangle and XY is 

drawn parallel to the base cutting the sides 

in X and T. Show that is four points B, C, X, 

Y lie on a circle. 

Sol.: Since xy ∥BC, and AB meets them, 

therefore, 

∠BXY +∠XBC = 2rt  ∠S ……….(1) 

Also, since AB = AB, ∠B = ∠C …………(2) 

From (1) and (2), we find that 

∠BXY +∠BCY = 2rt.  ∠S 

Since a pair of opposite angles of the 

quadrilateral BCYX is supplementary, 

therefore it is cyclic. i.e. the points B, C, X, Y lie 

on a circle. 

 

12) Take any point𝑷𝟏 on one side BC of a 

triangle ABC and draw the following chain 

of lines : 𝑷𝟏𝑷𝟐 parallel to AC; 𝑷𝟐𝑷𝟑 

parallel to BC : 𝑷𝟑𝑷𝟒 parallel to AB; 𝑷𝟒𝑷𝟓 

parallel to CA; 𝑷𝟓𝑷𝟔 parallel to BC. Here 

𝑷𝟐, 𝑷𝟓 lie on AB; 𝑷𝟑, 𝑷𝟔 on CA; and 𝑷𝟒 on 

BC. Show that 𝑷𝟔𝑷𝟏 is parallel to AB. 

Sol.: Suppose B𝑃1 = 𝑘 𝐵𝐶, (so that𝑃1 divides 

BC in the ratio k: 1-k).  

Since 𝑃1𝑃2 ∥ 𝐴𝐶, 𝑎𝑛𝑑 𝐵𝑃1 ∶  𝐵𝐶 = 𝑘 ∶ 1 

Therefore, from similar triangles B𝑃1𝑃2 and 

BCA, B𝑃2 = 𝑘, 𝐵𝐴, 𝑃2𝐴 = (1 − 𝑘)𝐵𝐴. 

 

Since 𝑃2𝑃3 ∥ 𝐵𝐶, 𝑎𝑛𝑑 𝑃2𝐴 = (1 − 𝑘)𝐵𝐴, 

therefore from similar triangles 

𝑃2𝐴𝑃3 𝑎𝑛𝑑 𝐵𝐴𝐶,𝑤𝑒 ℎ𝑎𝑣𝑒  

𝐴𝑃3 = (1 − 𝑘)𝐴𝐶, 𝑃3𝐶 = 𝑘 𝐴𝐶  

Since 𝑃3𝑃4 ∥ 𝐴𝐵, 𝑎𝑛𝑑 𝐶𝑃3 = 𝑘. 𝐴𝐶 

Therefore from similar triangles 

C𝑃3𝑃4 𝑎𝑛𝑑 𝐶𝐴𝐵. 

𝐶𝑃4 = 𝑘𝐶𝐵. 𝑃4𝐵 = (1 − 𝑘)𝐶𝐵.  

𝑆𝑖𝑛𝑐𝑒 𝑃4𝑃5 ∥ 𝐶𝐴, 𝑎𝑛𝑑 𝑃4𝐵 = (1 − 𝑘)𝐶𝐵, 

therefore B𝑃5 = (1 − 𝑘)𝐵𝐴. 

𝑆𝑖𝑛𝑐𝑒 𝑃5𝑃6 ∥ 𝐵𝐶,  and A𝑃5: 𝐴𝐵 = 𝑘: 1,  

therefore similar triangle A𝑃5𝑃6, 𝐴𝐵𝐶, 𝐴𝑃6 =

𝑘AC, 𝑃6𝐶 = (1 − 𝑘)𝐴𝐶. In ∆CAB 𝑃1 divides CB 
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in the ratio 1 − 𝑘; 𝑘 and 𝑃6  divides CA in the 

ratio 1-k: M; i.e. C𝑃6: 𝑃6𝐴 = 𝐶𝑃1: 𝑃1𝐵. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑃6𝑃1 ∥ 𝐴𝐵  

(∆s C𝑃6𝑃1 and CAB are similar and hence 

equi-triangular; consequently ∠C𝑃6𝑃1 =

 ∠𝐶𝐴𝐵 which are corresponding angles)      

           

13) Let ABCD be a rectangle with AB = a and 

BC = b. Suppose 𝒓𝟏 is the radius of the 

circle passing through A and B and 

touching CD; and similarly 𝒓𝟐 is the radius 

of the circle passing through B and C and 

touching AD.  Show that 𝒓𝟏 + 𝒓𝟐 ≥
𝟓

𝟖
(𝒂 +

𝒃) 

Sol.: Let O be the centre of the circle which 

touches CD and passes through the points A 

and B, E the point of tangency and F the point 

at which OE meets AB. Since OE ⊥ OC, and AB 

∥DC, therefore OF ∥ AB, Also OF = b-

𝑟1 𝑎𝑛𝑑 𝐹𝐵 =
1

2
𝑎 

 

In right angled triangle OFB, 𝑂𝐵2 = 𝑂𝐹2 +

𝐹𝐵2, 𝑠ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑟1
2 = (𝑏 − 𝑟1)

2 + (
𝑎

2
)
2

 

𝑖. 𝑒., 𝑟1 = (
1

2𝑏
)(
𝑎2

4
+ 𝑏2) =

1

2
𝑏 +

𝑎2

8𝑏
 

Similarly, 𝑟1 =
1

2
𝑎 +

𝑏2

8𝑎
 

Now 𝑟1 + 𝑟2 = (
1

2
𝑏 +

𝑎2

8𝑏
) + (

1

2
𝑎 +

𝑏2

8𝑏
) =

1

2
(𝑎 + 𝑏) +

𝑎2

8𝑏
+
𝑏2

8𝑏
, =

1

2
(𝑎 + 𝑏) +

𝑎3+𝑏3

8𝑎𝑏
 

=
1

2
(𝑎 + 𝑏) +

(𝑎 + 𝑏)[(𝑎 − 𝑏)2 + 𝑎𝑏]

8𝑎𝑏

≥
1

2
(𝑎 + 𝑏) +

1

8
(𝑎 + 𝑏)

=
5

8
(𝑎 + 𝑏). 

𝑇ℎ𝑢𝑠  𝑟1 + 𝑟2 ≥
5

8
(𝑎 + 𝑏). 

 

14) A rigid square plate ABCD of unit side 

rotates in its own plane about the middle 

point of CD unit the new position of A 

coincide with the old position of B. How 

far is the new position of B from the old 

position of A? 

Sol: Let O be midpoint of CD. Since the new 

position of A coincides with the old position 

of B. Therefore, the rotation is in the counter 

clockwise sense (in fig) about O, through the 

angle AOB 

Let  OB and AB’ intersects at P. Then ∠BOB’ = 

∠AOB. Also OA = OB = OB’. Therefore OB is 

the internal bisector of ∠AOB’ of isosceles 

triangle AOB’. Therefore OP ⊥ AB’ and AP = 

PB’ 
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Also, ∠AOB = 
1

2
× 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝐴𝐵𝐶𝐷 =

1

2
. 

𝐵𝑢𝑡, [𝐴𝑂𝐵] =
1

2
𝐴𝑃. 𝑂𝐵, 𝑂𝐵 = √(𝑂𝐶2 + 𝐶𝐵2)

=
√5

2
 

∴ 𝐴𝑃 =
2

√5
, 𝑠𝑜 𝑡ℎ𝑎𝑡 

𝐴𝐵′ =  2𝐴𝑃 =
4

√5
=
4√5

5
 

 

15) Show how will you cut a rectangular sheet 

of paper along two lines segments parallel 

to a side and two parallel to an adjacent 

side, into five pieces whose areas are in 

the ratio 1 : 2 : 3 :4 : 5. 

Sol.: Since 1+2+3+4+5 = 15, therefore really 

speaking the rectangles has to be divided into 

15 equal parts, and then we have to take 1, 2, 

3, 4,  and 5 parts respectively to get the five 

pieces. We take two points E and G in AD so 

that AE = EG = GD and draw GH, EP parallel 

to AB. Also take points J. K, L, M in DC such 

that DJ = JK = KL = LM = MC and draw JP, KQ 

parallel to CD. Clearly areas of rectangles 

DJRG, GSTE, SHFT, JCHR, EFBA are in the ratio 

1 : 2 : 3 : 4 :5. The division has been made by 

two lines GH. EP parallel to DC, and two lines 

JP, KQ parallel to DA. 

 

16) A river flows between two houses A  and 

B, the house standing some distance away 

from the banks , where should a bridge be 

built on the river. So that a person going 

from A to B using the bridge to cross the 

river may do so by the shortest path? 

Assume that the banks of the river are 

straight and parallel, and the bridge must 

be perpendicular to the banks. 

Sol.: Let xy and PQ denote the two banks of 

the river (parallel to each other) at a distance 

d from each other and let A and B be the 

situated on opposite sides of the river as 

shown in the figure. 

Take a point C on the line through A 

perpendicular to the banks and towards the 

bank such that AC= L (two different cases 

arise according as the point C is between A 

and xy, or is between  xy and PQ of course, it 

can even be on xy) join CB. Let CB meet PQ in 

D. It can be shown that if DE be the 

perpendicular from D and xy, then bridge 
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should be built along DE. As is clear from fig 

(a) and (b), the position of the bridge does 

not depend on the position on C. 

 

If the bridge is along ED, the distance 

required to be travelled for reaching from A 

to B = AE+ED+DB+= CD+AC+DB = L+CB. 

In instead of building the bridge along ED, the 

bridge is built along some other line, say E’, D’ 

then the distance to be travelled would be 

AE’+E’D+D’B= CD’+AC+D’B= l+ C’D+D’B. 

In ∆CD’B, CD’+D’B>CB, therefore if instead of 

building the bridge along DE, the bridge along 

some other line the distance required to be 

travelled would be greater. 

 

17) ∆ABC is scalene with ∠A having measure 

greater than 𝟗𝟎°.Determine the set of 

points D on the extended line BC for which 

|𝑨𝑫| =  √{(|𝑩𝑫|)(|𝑪𝑫|)},𝒘𝒉𝒆𝒓𝒆 |𝑩𝑫| 

refers to the (positive) distance o0f B and 

D. 

Sol.: We shall use the following well known 

result. If the tangent to a circle at a point. A 

meet a chord BC at D, then 𝐴𝐷2 = |𝐵𝐷|. |𝐶𝐷| 

 

Draw the circle of the triangle ABC, and let 

the tangent to it at A meet BC produced at D. 

Then D is desired point. In order to prove the 

result stated above, we have only to observe 

that in ∆s ABD and CAD, ∠ABC = ∠CAD 

(angles in the alternate segment): ∠ADB = 

∠ADC so that the triangles are equiangular 

and hence similar consequently  
𝐴𝐷

𝐵𝐷
=

𝐶𝐷

𝐴𝐷
, 𝑤ℎ𝑒𝑟𝑒𝐴𝐷2 = |𝐵𝐷|. |𝐶𝐷| 

 

18) Given any acute−angled ∆ ABC, let points 

A’B’ C’ be located as follows: A’ is the point 

where altitude A on BC meets the onwards 

–facing semicircle drawn on BC as 

diameter points B’. C’ are located similarly. 

Show that [𝑩𝑪′𝑨]𝟐 + [𝑪𝑨𝑩′]𝟐 +

[𝑨𝑩𝑪]𝟐 = [𝑨𝑩𝑪′]𝟐,  

𝒘𝒉𝒆𝒓𝒆 |𝑨𝑩𝑪|𝒅𝒆𝒏𝒐𝒕𝒆𝒔 𝒕𝒉𝒆 𝒂𝒓𝒆𝒂 𝒐𝒇 ∆𝑨𝑩𝑪 

etc. 

Sol.: In right angled triangles are equiangular 

and hence similar. Consequently 
𝐵𝐷

𝐴′𝐷
=
𝐴′𝐷

𝐷𝐶
, so 

that A’𝐷2 = 𝐵𝐷.𝐷𝐶 𝑠𝑖𝑛𝑐𝑒  𝐵𝐷 =

𝐴′𝐷𝑐𝑜𝑡 𝐵, 𝐷𝐶 = 𝐴′𝐷𝑐𝑜𝑡 𝐶,  

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝐴′𝐷
2
= 𝐴𝐷2  cot𝐵 cot 𝐶  
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∴ [𝐵𝐶′𝐴]2 = (
1

2
. 𝐵𝐶. 𝐴′𝐷)

2

=
1

4
𝐵𝐶2. 𝐴′𝐷2

=
1

4
𝐵𝐶2. 𝐴𝐷2 cot 𝐵 cot 𝐶

=  [𝐴𝐵𝐶]2 cot𝐵 cot 𝐶 …… (1) 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, [𝐶𝐴𝐵′]2

= [𝐴𝐵𝐶]2 cot 𝐶 cot 𝐴…… . (2) 

[𝐴𝐵𝐶]2 = [𝐴𝐵𝐶]2 cot𝐴 cot 𝐵………… . . (3). 

 

Adding corresponding sides of (1), (2) and 

(3) and using the fact that in any angle. 

cot𝐵 cot 𝐶 + cot𝐶 cot𝐴 + cot 𝐴 cot𝐵 = 1,   

We get the desire result. 

 

19) Given a ∆ABC, define the equalities x, y, z 

as follows : x = 𝐭𝐚𝐧
𝑩−𝑪

𝟐
. 𝐭𝐚𝐧

𝑨

𝟐
; 𝒚 =

𝐭𝐚𝐧
𝑪−𝑨

𝟐
. 𝐭𝐚𝐧

𝑩

𝟐
; 𝒛 =

𝐭𝐚𝐧
𝑨−𝑩

𝟐
. 𝐭𝐚𝐧

𝑪

𝟐
. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝒙 + 𝒚 + 𝒛 +

𝒙𝒚𝒛 = 𝟎. 

Sol.: By Napier’s analogies, 

tan [
𝐵 − 𝐶

2
] = [

(𝑏 − 𝑐)

(𝑏 + 𝑐)
] cot (

𝐴

2
)  

𝑆𝑜 𝑡ℎ𝑎𝑡 𝑥 =  
(𝑏 − 𝑐)

(𝑏 + 𝑐)
 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑦 =
(𝑐 − 𝑎)

(𝑐 + 𝑎)
, 𝑧 =

(𝑎 − 𝑏)

(𝑎 + 𝑏)
 

𝑁𝑜𝑤, 𝑥 + 𝑦 + 𝑧 =
𝑏 − 𝑐

𝑏 + 𝑐
+
𝑐 − 𝑎

𝑐 + 𝑎

+
𝑎 − 𝑏

𝑎 + 𝑏
,  

= (−
1

𝑝
)∑(𝑏 − 𝑐) {(𝑐 + 𝑎)(𝑎

+ 𝑏)}.𝑤ℎ𝑒𝑟𝑒  

𝑝 = (𝑏 + 𝑐)(𝑐 + 𝑎)(𝑎 + 𝑏) 

𝑁𝑜𝑤 ∑(𝑏 − 𝑐)(𝑐 + 𝑎)(𝑎 + 𝑏)

=  ∑𝑎2(𝑏 − 𝑐)

+∑𝑎2(𝑏 − 𝑐) 

∑ 𝑏𝑐(𝑏 − 𝑐) + ∑𝑎(𝑏2 − 𝑐2)  

𝑁𝑜𝑤,∑ 𝑏𝑐(𝑏 − 𝑐) =  −(𝑏 − 𝑐)(𝑐 −

𝑎)(𝑎 − 𝑏),  

∑ 𝑎(𝑏2 − 𝑐2) = − ∑𝑎2(𝑏 − 𝑐),   

𝑆𝑜 𝑡ℎ𝑎𝑡 ∑ 𝑏𝑐(𝑏 − 𝑐) =   −(𝑏 − 𝑐)(𝑐 −

𝑎)(𝑎 − 𝑏),  

∑ 𝑎(𝑏2 − 𝑐2) = −∑𝑎2(𝑏 − 𝑐).  

𝑆𝑜 𝑡ℎ𝑎𝑡 𝑥 + 𝑦 + 𝑧 = (
1

𝑝
) (−(𝑏 −

𝑐)(𝑐 − 𝑎)(𝑎 − 𝑏)) =  −𝑥𝑦𝑧  

𝐻𝑒𝑛𝑐𝑒 𝑥 + 𝑦 + 𝑥 + 𝑥𝑦𝑧 = 0.  
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20) ∆ABC has in centre I. Let x, y, z be located 

on the line segments that AB. AC 

respectively. So that Bx. AB= 

I𝑩𝟐 𝒂𝒏𝒅 𝑪𝒚.𝑨𝑪 = 𝑰𝑪𝟐. Given that the 

points x, I, y lie on a straight line, find the 

possible values the measure of ∠A. 

Sol.: Since Bx. AB= I𝐵2, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒
𝐵𝑥

𝐵𝐼
=

𝐵𝐼

𝐵𝐴
…………(1) 

In ∆s B x I and BIA, ∠xBI = ∠ABI, and 
𝐵𝑥

𝐵𝐼
=

𝐵𝐼

𝐵𝐴
  

from (1). Therefore ∆s BxI and BIA are 

similar and hence equiangular. 

∴ ∠𝐵𝐼𝑥 =  ∠𝐵𝐴𝐼 =
1

2
∠𝐴……… . . (2) 

Since AI is the interval bisector of ∠BAC (I 

being the in centre) 

 

Similar by considering triangles 𝑐𝑦𝐼 𝑎𝑛𝑑 𝐶𝐼𝐴, 

we have ∠𝐶𝐼𝑌 =
1

2
∠𝐴…………(3) 

𝐴𝑙𝑠𝑜, ∠𝐵𝐼𝐶 = 180° − (∠𝐼𝐵𝐶 + ∠𝐼𝐶𝐵)

= 180° − (
1

2
∠𝐵 +

1

2
∠)

=  180° − [90° −
1

2
∠𝐴], 

= 90° +
1

2
∠𝐴…… . . (4) 

Since 𝑥𝐼𝑌 𝑖𝑠 𝑎 𝑠𝑡. 𝑙𝑖𝑛𝑒, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 ∠𝑥𝐼𝐵 +

∠𝐵𝐼𝐶 + ∠𝐶𝐼𝑌 = 180°…… . . (5) 

Adding corresponding sides of relations (2), 

(3) and (4), and using (5),  

we have  
1

2
∠𝐴 + (90° +

1

2
∠𝐴) +

1

2
∠𝐴 =

180° 𝑆𝑜 𝑡ℎ𝑎𝑡 ∠𝐴 = 60°. 

 

21) The diagonals AC and BD of a cyclic 

quadrilateral ABCD intersect at P. Let O be 

the circumcentre of ∆APB and H be the 

orthocenter of ∆CPD. Show that the points 

H.P.O are collinear. 

Sol.: 

 

 We shall show that if OP is produced to meet 

CD in M, then PM ⊥CD, so that PM is an 

altitude of ∆PCD. This will ensure that the 

orthocenter H of the triangle PCD lies on PM 

and consequently the points O, P, H are 

collinear. To complete the proof join AO, draw 

OL ⊥AP and consider ∆s PLO and PMC. In 
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these two triangles ∠LOP = 
1

2
∠𝐴𝑂𝑃 (because 

O is the circumcentre of ∆ABP, and OL ⊥ 

chord AP) = ∠APB (being the angle 

subtended by the chord AP at a point B of the 

circumcentre of the circle ABP)= 

∠PCD(angles in the same segment of a circle). 

Now in ∆s   PLO and PMC, ∠LOP = ∠PCM 

(proved), and ∠LOP = ∠CPM (vert opp ∠S), 

therefore ∠CMP= ∠PLO = 90° and 

consequently PM ⊥ CD, and the proof is 

complete. 

 

22) Show that there exist convex hexagon in 

the plane such that (a) all its interior 

angles are equal (b) its sides are 1, 2, 3, 4, 

5, 6 in some order. 

Sol.: Suppose there exists a convex hexagon 

ABCDEF such that all its interior angles are 

equal, and the lengths of its sides are a, b, c, d, 

e, f respectively. Produced AB and DC meet at 

x, CD and EF to meet at y, and EF and BA to 

meet at z. It can easily be seen that ∆xyz is 

equilateral. In fact since the hexagon ABCDEF 

us equiangular, each of its interior angles is 

120°, consequently each of its interior angles 

is 60°be ∠XBC= ∠xcB = 60°, ∠EDY =∠DEY = 

60°, ∠FAZ= ∠AFZ = 60°. 

It follows that ∠𝐵𝑥𝐶, ∠𝐷𝑦𝐸, ∠𝐹𝑧𝐴 are each 

equal to 60°. Since ∆BxC is equilateral, 

therefore, 𝐵𝑥 = 𝑥𝐶 = 𝑏,  similarly, 𝐷𝑦 =

𝑦 𝐸 = 𝑑, 𝐹𝑧 = 𝑧𝐴 = 𝑓, 

∴ zx = f+a+b, xy = b +c +d, yz = d+ e +f, 

since ∆xyz is equilateral, 

therefore f+ a +b = b +c +d = 𝑑 + 𝑒 + 𝑓 =

1

3
[(𝑓 + 𝑎 + 𝑏) + (𝑏 + 𝑐 + 𝑑) + (𝑑 + 𝑒 + 𝑓)] 

             =
1

3
(𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓)

+
1

3
(𝑏 + 𝑑

+ 𝑓)……… . . (1) 

We are inserted in contacting a hexagon for 

which a, b, c, d, e, f are numbers 1, 2, 3, 4, 5, 6 

in some order so, that 
1

3
(𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 +

𝑓) =  7. 

We shall choose values of b, d, f out of the 

given values in such a manner (to simplify the 

working) that b +d +f is a multiple of 3. This 

can be done in several ways. One with this 

choice, b +d+ f = 15, so that f +a +b= b +c 

+d = d+ e +f = 7 +
1

3
. 15 = 12 

Using the values b = 4, d = 5, f = 6, we have a 

= 2, c = 3, e = 1. Thus we get a = 2, b = 4, c = 

3, d = 5, e = 1, f= 6 we therefore have the 

following construction: 

Construct an equilateral triangle xyz having 

each side equal to 12 units. Cut of P 𝑥𝑏 =

𝑥𝑐 = 4 units, 𝑦𝐷 = 𝑦𝐸 = 5 𝑢𝑛𝑖𝑡𝑠, 𝑧𝐴 = 𝑧𝐹 =

6 𝑢𝑛𝑖𝑡𝑠 
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Join the pairs of points B, C; D, E; F, A, 

ABCDEF is the desired hexagon. 

Justification for the above construction has 

already been provided by the analysis of the 

problem. 

 

23) Let ∆ABC and circle C’ be drawn lying 

inside the triangle touching the two sides 

AB and AC. Show that the radii of the 

circles C’ and C is equal to 𝒕𝒂𝒏𝟐 (
𝝅−𝑨

𝟒
) 

Sol. 

:  

Let I be the in centre, r the in radius and E the 

point of contact of the in circle with AB. Also 

let l’ be the center of the circle touching AB., 

AC and the in circle, r’ the radius of this circle 

and F its point of contact with AB. Since AB 

and AC both touch this circle and F its point of 

contact with AB. Since AB and AC both touch 

this circle, its centre must also lie on AI. From 

l’ draw I’D  ⊥ IE in ∐ ′𝑑 

𝐼𝐷 = 𝑟 − 𝑟′𝑙𝑙′ = 𝑟 + 𝑟′  

∠𝑙𝐷𝑙′ =
𝜋

2
, ∠𝐷𝑙′𝑙 =

𝐴

2
,   

∴
𝑟−𝑟′

𝑟+𝑟′
= sin (

𝐴

2
) = cos 𝜃 ;   𝑤ℎ𝑒𝑟𝑒 𝜃 =

𝜋−𝐴

2
 . 

∴
𝑟′

𝑟
=
1 − cos 𝜃

1 + cos 𝜃
=  𝑡𝑎𝑛2 (

𝜃

2
) =  𝑡𝑎𝑛2 (

𝜋 − 𝐴

4
). 

 

24) Let 𝜆 be straight line and P.Q two distinct 

arbitrary points lying on one side of the 

line 𝜆, but not lying on l. Determine with 

proof the point T on L such that the sum of 

the distance of P and Q from T shall be 

least. 

Sol.:  

 

Let R be the reflection of P in l, i.e. Let R be a 

point such that l is the perpendicular bisector 

of PR.  Join QR and let T be its point of 

intersection with 𝜆. We claim that T is the 

desired point. 

Let N be the point on 𝜆 other than T. We shall 

show that since 𝜆 is the right bisector of PR, 

therefore every point on 𝜆 is equidistant from 

P and R. In particular TP = TR, NP = NR. 

Therefore PT +QT = TR+QT= QR 
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(Since Q, T, R are in a straight line). 

Also PN +QN = QN+NR. Since two sides of a 

triangle are together greater than the third, 

therefore in ∆ QNR, 𝑄𝑛 + 𝑁𝑅 > 𝑄, 𝑖. 𝑒. 𝑃𝑁 +

𝑄𝑁 > 𝑃𝑇 + 𝑄𝑇.  

Hence the sum of the distances of P and Q 

from T is the least. 

 

25) ABCD is a quadrilateral and P, Q are mid-

points of CD, AB, AP, DQ meet at x and BP, 

CQ meet at y. Show that ∆ADx+∆BCy= 

area of quadrilateral PxQy 

Sol.: As usual we shall denote the area of a 

∆ABC by [ABC] and that of a quadrilateral 

ABCD by [ABCD] join AC and PQ. Since P is the 

midpoint of DC, therefore ∆APD and ∆ACP 

have equal bases PD and CP, and a common 

vertex A. 

 

Consequently, [APD]≠[ACP] ………..(1) Again, 

∆s BQC and AQC have equal base QB and AQ 

(because Q is the mid points of AB), and a 

common vertex C. Consequently, [BQC]= 

[AQC] ………(2) 

Adding corresponding sides of (1) and (2), 

we have [APD]+[BQC]= [ACP]+[BQC]= 

[AQCP], = [AQP]+[PQC]……(3) 

Since Q is the midpoint of AB, therefore ∆s 

AQP and BQP have equal bases AQ and QB, 

and a common vertex P. Consequently 

[AQP]=[QBP] …………..(4) 

Again, since P is the midpoint of CD, therefore 

∆s PQC and QPD have equal bases CP and PD, 

and a common vertex Q. Consequently, [PCQ] 

= [QPD] …………..(5) 

Adding corresponding sides of (4) and (5), 

we have [AQP]+[PQC]= [QBP]+[QPD]= 

[QBPD] …………..(6) 

From (3) and (6), we have [APD]+[BQC]= 

[QBPD] ………..(7) 

Since [APD]= [AxD] +[DxP] …………….(8) 

[BQC] = [BYC]+[BYQ] …………….(9), [QBPD]= 

[QBY]+[PxQY]+[DxP] ………..(10) 

Substituting from (8), (9) and (10), we have 

[AxD]+[DxP]+[ByC]+[ByQ]=[QBy]+[PxQy]+

[DxP] i.e. [AxD]+[ByC]= [PxQy] as described. 

 

26) A ∆ ABC has in centre I. It’s in circle 

touches the side BC at T. The line through 

T parallel to IA meets the  in circle again at 

S and the tangent to the in circle at S’ 

meets the sides AB, AC at points C, B’ 
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respectively. Show that ∆A’B’C’ is similar 

to ∆ABC. 

Sol.:  

 

Let Al produced meet BC in H. Since ∆s ABC 

and AB’C’ have ∠A in common, therefore in 

order to show that ∆s ABC and ∆AB’C’ are 

similar, we should compute ∠B’ (or ∠C’) in 

terms of ∠A, ∠B and ∠C, and show that ∠B’ is 

equal to either ∠B or ∠C. 

Let us denote the point of intersection of B’C’ 

and AH by x. In ∆AB’x, ext. 

∠𝐵′𝑥𝑙 =  ∠𝑥𝐴𝐵′ + ∠𝐴𝐵′𝐶′ 

𝑆𝑜 𝑡ℎ𝑎𝑡, ∠𝐴𝐵′𝐶′ = ∠𝐵′𝑥𝑙 −
1

2
∠𝐴 

= (90° − ∠𝑥𝐿𝑠) −
1

2
∠𝐴 

= 90° − ∠𝐼𝑆𝑇 −
1

2
∠𝐴,  

𝑆𝑖𝑛𝑐𝑒 ∠𝑥𝑙𝑆 𝑎𝑛𝑑 ∠𝐼𝑆𝑇 𝑎𝑟𝑒 𝑎𝑙𝑙. ∠𝑆 𝑠𝑖𝑛𝑐𝑒 𝐼𝑇 =

𝐼𝑆 = 90° − ∠𝐼𝑇𝑆 −
1

2
∠𝐴,=  ∠𝑆𝑇𝐶 −

1

2
∠𝐴 

= ∠𝐼𝐻𝐶 −
1

2
∠𝐴(𝑐𝑜𝑟𝑟𝑒𝑠, ∠𝑆) 

= (
1

2
∠𝐴 + ∠𝐵) −

1

2
∠𝐴,= ∠𝐵 

Since ∠A is common and ∠B’= ∠B, therefore 

∆AB’C’ and ∆ABC are equiangular and hence 

similar. 

 

27) Let ABC be a triangular in a plane∑. Find 

the set of all points P (distinct from A, B, C) 

in the plane ∑ such that the circumcircles 

of ∆s ABP, BCP, and CAP have the same 

radii. 

Sol.: 

 

 If P lies on the circumcircle of ∆ABC, then the 

circumcircles  ∆s BCP, CAP, and ABP coincide 

with the circumcircle of triangle ABC, and 

therefore they are all congruent. Therefore 

every point on the circumcircle of ∆ABC 

satisfies the given condition. 

Let P be a point not lying on the circumcircle 

of ∆ABC and satisfying the condition that 
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circumcircle  of ∆s PBC, PCA, and PAB are 

congruent. 

Let us denote the circles PBC, PCA, PAB by 

𝑐1, 𝑐2, 𝑐3. respectively and their centres by L, 

M, N respectively, Since L and M are the 

centres of two congruent circles 𝑐1 𝑎𝑛𝑑 𝑐2 

respectively. And the points P, C lie on both 

these circles, therefore LC = LP = MC = MP. 

Therefore P, L, C, M are the vertices of a 

rhombus. Similarly P, L, B, N are the vertices 

of a rhombus, and P, M, A., A, N are also the 

vertices of a rhombus. 

Now PL is equal and parallel to BN, and PL is 

also equal and parallel to CM. Therefore BN is 

equal and parallel to CM. Therefore BNMC is a 

parallelogram. Therefore BC is parallel to MN. 

Now MN is the line joining the centres of the 

circles 𝑐2 𝑎𝑛𝑑 𝑐3 and PA is the common chord 

of these circles. Therefore MN ⊥AP. Since BC 

∥MN, it follows that BC⊥ AP. Similarly CA⊥BP. 

AB ⊥CP consequently P is the orthocenter of 

∆ABC. 

Thus we find that if P be a point such that the 

circles PBC, PCA, PAB are congruent, then P is 

either the orthocenter of ∆BC or it is a point 

on the circumcircle of ∆ABC. 

28) Three congruent circles have a common 

point O and lie inside a triangle such that 

each circle touches a pair of sides of the 

triangle. Show that the in centre and the 

circumcentre of the triangle and the point 

O are collinear. 

Sol.:  Suppose three congruent circles with 

centres P , Q, R lie inside a ∆ABC, and are such 

that the circle with centre P touches AB and 

AC, that with centre Q touches BC, and AB, 

and that with centre R touches CA and BC. BC 

and AB, and that with centre R touches CA 

and BC.  

 

Also let the circles pass through a common 

point O. 

Since O lies on all the three circles, therefore 

PO = QO = RO. Therefore O is the 

circumcentre of ∆PQR. Let O’ (not shown in 

the fig) be circumcentre of ∆ABC. 

Since BC is a tangent to the circles Q and R, 

the lengths of perpendiculars from Q and R on 

these circles are equal. 

Therefore QR ∥BC 

Similarly RP ∥CA, PQ∥AB 

Again , since AB and AC both touch the circle 

with centre P therefore P is equidistant from 
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AB and AC. Therefore P lies on the internal 

bisector of ∠A. 

Similarly Q and R lie on the internal bisector 

of ∠B and ∠C respectively. 

Therefore AP, BQ, CR when produced meet at 

the in centre l of ∆ABC. Since QR ∥BC, RP ∥CA, 

PQ∥AB, it follows that l is also the in centre of 

∆PQR. 

29) Let G be the centriod of ∆ABC in which the 

angle at C is obtuse AD, Fare the medians 

from A, C respectively on to the sides BC, 

AB. If the four points B, D, G, F are 

concyclic, show that 
𝑨𝑪

𝑩𝑪
> √𝟐. If further P 

is a point on the line BG extended such 

that AGCP is a parallelogram, Show that 

the ∆s ABC and GAP are similar. 

Sol.: Since chords BF and DG of the circle 

BDGF meet at A (outside the circle), therefore 

BA. FA = DA. GA so that 
1

2
𝐴𝐵2 =

2

3
𝐴𝐷2, 𝑖. 𝑒. 𝐴𝐷2 =

3

4
𝐴𝐵2………… . . (𝑖)  

Again, since chords FG and BD meet at C 

(outside the circle), therefore FC. GC= BC. DC. 

So that 
2

3
𝐹𝐶2 =

1

2
𝐵𝐶2 𝑖. 𝑒. 𝐶𝑃2 =

3

4
𝐵𝐶2…………(𝑖𝑖) 

 

𝐶𝐴2 + 𝐶𝐵2 = 2𝐶𝐹2 + 2𝐴𝐹2  

So that,  
1

2
𝐴𝐵2 = 𝐴𝐶2 + 𝐵𝐶2 − 2(

3

4
𝐵𝐶2), 

𝑖. 𝑒. , 𝐴𝐵2 = 2𝐴𝐶2 −𝐵𝐶2 

Since ∠C is an obtuse angle, therefore A𝐵2 >

𝐴𝐶2 + 𝐵𝐶2, 𝑠𝑜 𝑡ℎ𝑎𝑡 2𝐴𝐶2 − 𝐵𝐶2 > 𝐴𝐶2 +

𝐵𝐶2. 

𝑖. 𝑒. , 𝐴𝐶2 > 2𝐵𝐶2 𝑜𝑟
𝐴𝐶

𝐵𝐶
> √2 

Since AGCP is an 118𝑚, therefore 

∠𝑃𝐴𝐺 = 180° − ∠𝐶𝐺𝐴 = 180° − ∠𝐷𝐺𝐹 =

 ∠𝐶𝐵𝐴……… . . (𝑖𝑖𝑖)  

Also  
𝐴𝐺

𝐴𝑃
=
(
2

3
)𝐴𝐷

(
2

3
)𝐶𝐹

=
𝐴𝐵

𝐵𝐶
 , by (i) and (ii) 

…………(iv) 

From (iii) and (iv), we find that ∆GAP and 

∆ABC are similar, the correspondence G→A, 

A→B, P→C being a similarity.  

30) Let 𝑨𝟏, 𝑨𝟐, 𝑨𝟑, … . , 𝑨𝒏 is n sided regular 

polygon such that 
𝟏

𝑨𝟏𝑨𝟐
=

𝟏

𝑨𝟏𝑨𝟑
+

𝟏

𝑨𝟏𝑨𝟒
. 

Determine n, the number of sides of the 

polygon. 

Sol.: Let each side of the polygon be of length 

a since ∠𝐴1𝐴2𝐴3 =
(𝑛−2)𝜋

𝑛
, 𝐴1𝐴2 = 𝐴2𝐴3 = 𝑎. 

therefore from ∆𝐴1𝐴2𝐴3, 𝐴1𝐴3 = 2𝑎 cos (
𝜋

𝑛
).  

Also from ∆𝐴2𝐴3𝐴4, 𝐴2𝐴4 = 2𝑎 cos (
𝜋

𝑛
) 
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Since the polygon 𝐴1 𝐴2… . . 𝐴𝑛 is regular, its 

vertices lie on a circle. In particular, the 

quadrilateral 𝐴1𝐴2𝐴3𝐴4 is cyclic. 

 

By Ptolemy's theorem𝐴1𝐴2𝐴3𝐴4 +

𝐴1𝐴4. 𝐴2𝐴3 − 𝐴1𝐴3 − 𝐴2𝐴4 

∴ 𝑎2 + 𝐴1𝐴4. 𝐴2𝐴3 = [2 acos (
𝜋

𝑛
)]
2

      ;      𝑖. 𝑒.,

𝐴1𝐴4 = 𝑎 (4𝑐𝑜𝑠
2  
𝜋

𝑛
− 1) 

𝑆𝑖𝑛𝑐𝑒 
1

𝐴1𝐴2
=

1

𝐴1𝐴3
+

1

𝐴1𝐴4
 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,
1

𝑎
=

1

2acos(
𝜋

𝑛
)
+

1

𝑎[4𝑐𝑜𝑠2 (
𝜋

𝑛
)−1]

  

⟹ 2 cos (
𝜋

𝑛
) [4𝑐𝑜𝑠2  

𝜋

𝑛
− 1]

= 4𝑐𝑜𝑠2  
𝜋

𝑛
− 1 + 2acos (

𝜋

𝑛
) 

⟹ 8𝑐𝑜𝑠3  (
𝜋

𝑛
) − 4𝑐𝑜𝑠2  (

𝜋

𝑛
) − 4 cos (

𝜋

𝑛
) + 1 =

0  

⟹ 𝑥 = acos (
𝜋

𝑛
)  𝑖𝑠 𝑎 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  

8𝑥3 − 4𝑥2 − 4𝑥 + 1 = 0…………(1)  

We shall show that the roots of (1) are 

cos (
𝜋

7
) , cos (

3𝜋

7
), cos (

5𝜋

7
) 

𝐿𝑒𝑡 7𝜃 = (2𝑛 + 1)𝜋. 

𝑆𝑜 𝑡ℎ𝑎𝑡 4𝜃 = (2𝑛 + 1)𝜋 − 3𝜃  

∴ cos 4𝜃 = cos[(2𝑛 + 1)𝜋 − 3𝜃] =  − cos3𝜃  

⟹ 2𝑐𝑜𝑠2 2𝜃 − 1 = (4𝑐𝑜𝑠3𝜃 − 3 cos 𝜃 ),  

⟹ 2(2𝑐𝑜𝑠2𝜃 − 1)2 = 1 + 4𝑐𝑜𝑠3𝜃 − 3 cos𝜃 =

0,   

⟹ 8𝑐𝑜𝑠4𝜃 + 4𝑐𝑜𝑠3𝜃 − 8𝑐𝑜𝑠2𝜃 − 3 cos 𝜃 +

1 = 0,  

⟹ (cos𝜃 + 1)8𝑐𝑜𝑠3𝜃 − 4𝑐𝑜𝑠2𝜃 − 4 cos 𝜃 +

1 = 0……… . . (2)  

Now (2) is satisfied by 𝜃= 
𝜋

7
,
3𝜋

7
,
5𝜋

7
, 𝜋, …… 

Rejecting the factor cos 𝜃 + 1 which 

corresponds to 0= 𝜋 and putting cos 𝜃 =y,  

We find that  

cos
𝜋

7
  , cos

3𝜋

7
, cos

5𝜋

7
, 𝑎𝑟𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 8𝑦3 −

4𝑦2 − 4𝑦 + 1 = 0………(3) 

Since equations (1) and (3) are the same, 

therefore the roots of (1) are 

cos
𝜋

7
  , cos

3𝜋

7
, 𝑎𝑛𝑑 cos

5𝜋

7
. But cos

𝜋

𝑛
 is a root of 

(1). Therefore we must have n = 7. 

 


