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ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &
SOLUTIONS

SET-1

. How many zeros are at the end of
1000! ?
(a) 240 (b) 248
(c) 249 (d) None

Ans:- (c) The number of two’s is enough
to match each 5 to get a 10.

So,

51— 200

52— 40

53—38

59— 1

~Thus, 1000! Ends with 249 zero’s.

[Theorem: (de Polinac's formula)
Statement: Let p be a prime and e be the
largest exponent of p such that p®
divides n! , then e=Y [n/p' ], where i is
running from 1 to infinity.]

. The product of the first 100 positive
integers ends with

(@) 21 zeros (b) 22 zeros (c) 23
zeros (d) 24 zeros.

Ans:- 51— 20
(d) 24 zeros .

52— 4

Alternatively, put p=5,n=100,thus from
above theorem we have
[100/5]+[100/25]=24 zeros as

the answer.

3. Let P (x) be a polynomial of degree 11
such that P (x) = ﬁ forx=0(1)11.

Then P (12) =?

@0 ()1 ()5 (d)noneof
these

Ans:- (a) P (X)= ﬁ
= (X+1)[P (X)]-1 = ¢ (x-0)(x-1)....(x-11)

Putting x=-1, 0-1=c (-1)(-2)....(-12)

1
=>Cc=-—
12!

[P (](x+1)-1= - —(x-0)(x-1)....(x-11)

1

>P(12)13-1 =-— 12.11....2.1
=P (12)13-1=-1
=P (12) = 0.

4. Lets={(xq,x3,x3)|0< x; <
9 and x; + x5 + x3 is divisible by 3}.

Then the number of elements in s is

@) 334 (b)333 (0)327 (d)
336

Ans:- (a) with each (x4, x, , x3) identify a
three digit code, where reading zeros are
allowed. We have a bijection between s and
the set of all non-negative integers less than
or equal to 999 divisible by 3. The no. of
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numbers between 1 and 999, inclusive,
divisible by 3is () = 333

Also, ‘0’ is divisible by 3. Hence, the
number of elements in s is = 333 + 1= 334.

5. Letx andy be positive real number
with x<y. Also 0 <b<a<1.

Define E = log, (Jy—c) + log, (g) Then E

can’t take the value
@@ -2 (-1 () V2 (d)2

Ans :- (d) E =log, (%) + log, (%)

_ log% log% _ y 1 1
e o =108 (2) G e
— Y\ ¢_logp—loga

- log(x) {ogatonsy’

1o (z) log(®)

~ 108\ %) Gogwlogy)

_ y log(3)

- log(x)'(loga)(logb)

LogO<a<1,0<b<l .log,andlog, are
both negative.

AlsoZ > 1and= > 1. Thus 1Og(2> and
x b X

log ( %) are both positive. Finally E turns

out to be a negative value. So, E can’t take
the value 2.

6. Let S be the set of all 3- digits
numbers. Such that
0] The digits in each number are
all from the set {1, 2, 3, ...., 9}

(i) Exactly one digit in each
number is even

The sum of all number in S is

(a) 96100
(d) 99800

(b) 133200  (c) 66600

Ans:- (b) The sum of the digits in unit place
of all the numbers in s will be same as the
sum in tens or hundreds place. The only
even digit can have any of the three
positions,

i.e. 3c; ways.

And the digit itself has 4 choices (2, 4, 6 or
8). The other two digits can be filled in 5x 4
= 20 ways.

Then the number of numbers in S = 240.

Number of numbers containing the even
digits in units place =4 x5 x 4 =80

The other 160 numbers have digits 1, 3,5, 7
or 9 in unit place, with each digit appearing

1;0 = 32 times. Sum in units place = 32 (1+

3+ 5+ 7+ 9) + 20 (2+ 4+ 6+ 8)

:3z¥+-ﬂ)xzx$§=32x25+20x

20 =1200

=~ Sum of all numbers= 1200 (1+ 10 +102) =
1200x 111 = 133200.

X

7. Lety=——, Then y*(1)is equals
(@) 4 (b) -3 (c)3 (d) -4

Ans:- (b) Simply differentiating would be
tedious,
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So we take advantage of ‘1’ the square root
of -1’

X 1 1 1
x2+1 2 {(x—i) (x+i)}

y:

dty _ 1 4!
axt 2 {(x—i)s (x— 1)5}

Note that, % {L} _ ot

x+a (x+a)nt1

1!
(x— 1)5 (x )5

So, y*(x) = { 1} Then

oy 1-i
(x )5 (x—i)s}'lz{(—w

}=R{+T=12(5 - =3

v =12{—%
1-i
(20)3

+

8. A real 2x 2 matrix. M such that

M? = (_01 —10—e)

(a) exists for all e >0
(b) does not exist for any €>0

(c) exists for same €> 0
(d) none of the above

Ans:- (b) since M? is an diagonal matrix, so
[ 0
M= [O \/1—6]’

So, M is not a real matrix, for any values of
€. M is a non —real matrix.

, 2008

9. The value of (1+”/§) is

1+iV3
(a) ;

-1-iV3 1+\/_
(© 21 (d) =
Ans:- (¢) A= (B9 g2 = T8 pa
-1- l\/_:

—A

2

-1-iV3
o

A2008 (A4)502 A4 —
10. Let f(x) be the function f(x)=

+P
(sinx)4 f x>0
0 ifx=

Then f(x) is continuous at x= 0 if

@p>qg (b)p>0 ()
q>0 (dp<qg
Ans:- (b) [f(X) - f(0)| = | o 0 < |xP| <

(S

1
Whenever [x-0| < er= § if p>0.

So, f(x)is continuous for p > 0 at x=0.

11. The limit lim log(1 — n—lz)" equals
X—> 00

(@) e (b) e2
(c) e2 d) 1

Ans:- (d) L= (1 - )"

= logL =nlog(1 — n—lz)

= limlogL = lim [—n{n—l2 + 2—7114 +

X—00 X—00

~L=e%=1.

12. The minimum value of the function
f(x,y)=4x% + 9y? — 12x — 12y + 14
is
(@1 (b) 3 (c) 14

(d) none
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Ans:- (a) f(x, y) = 4x% + 9y% — 12x —
12y + 14

= (4x% — 12x + 9)+(9y? —
12y + 4)+1

=(2x—-3)2+ By —2)*+
1>1

So, minimum value of f(x, y) is 1.

13. From a group of 20 persons,
belonging to an association, A
president, a secretary and there
members are to be elected for the
executive committee. The number of
ways this can be done is

(a) 30000 (b) 310080
(c) 300080 (d) none

Ans:- () 20,, X 19, X 18, or ——— =

11113!15!
310080

Cos x—secx

14. The lim ——— is
x—0 x°(1+x)
@) -1 (b) 1 ©0
(d) does not exist
. . COSX—Secx _ . —sin?x
Ans:- (a) ;}ILI}) xZ(1+4x) - ;lgnm cosx (x2)(x+1)

1 sinx 1

=- lim (

2
X—0COSX X ) T(x+1)

=-1.1.1 =-1.

15. LetR = m Then R satisfies

(@ R<1 (b) 2326< R < 2426
(c)1<R<232% (d)R>
24_26

(2.24)52— (2.23)%2 _ 252(2452-2352)

Ans:- (b) R= (4.24)26+ (4.23)26  426(24264+ 2326)

_ 252 (24264 2326)(2426_ 2326)

252 " 24264 2326

= 2426 — 237%6

Also, R= 2426 — 2326 = (1 + 23)26 — 2326

= 2326+ 26,.23%5+ 26, .23%* + ..+ 1-—
2326

= 26. 2325+26C2 .23% + . +1>26.23%°
> 23. 2325 =232

2326 < R < 2426

16. A function f is said to be odd if f (-x)=
-f (xX) V x. Which of the following is not
odd?

(@) f(x+y)=f()+f(y) v,y

(b) £ (=22

1+e*
(©) f(x)=x-[x]

(d) f (x) = x*sinx + x3 cos x

Ans:- (c) f (x+y)=f(x)+ f(y) V x,y
Letx=y=0

= f (0) =f (0) + f (0)

~f(0)=0

Replacing y with —x , we have

f (x- x) = f(x) + f (-x)

= f(0) = f(x) + f (-x)

=>f(x)+f(-x)=0

= f (-x) = -f(x)
Thus f is odd.

- xex/Z
Again for f (x) = T ox
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= (—x)(e‘x/z) _ (—x)(e_x/z) e* _ xe /2 _
()= "= o="
-f (x)

=~ fis odd.
f (X) = x- [X] is not odd.
Counter example:-

f(-2.3)=-23-[-23] =23 (-3)=3-2.3=
0.7

f(2.3)=2.3-[2.3] =2.3-2=0.3

- §(2.3) # f(-2.3)

Thus f is not odd

f(xX)=x?sinx + x3cosx

f(-x) = -x%sinx — x3 cosx = -f(X)
-~ fis odd here.

17. Consider the polynomial x% + ax* +
bx3 + cx? + dx + 4. If (1+2i) and (3-
2i) are two roots of this polynomial
then the value of a is
(a) -524/65 (b) 524/65

(c) -1/65 (d) 1/65

Ans:- (a) The polynomial has 5 roots. Since
complex root occur in pairs, so there is one
real root taking it as m.

So, m, 1+2i, 1-2i, 3+2i, 3-2i are the five
roots.

a

Sum of the roots= — = 8+ m.

Product of the roots= (1+4)(9+4)m= 65

4
m=—
65

4
Sm=—,
65

na= —8 — 64—5= —562—54.

18. In a special version of chess, a rook
moves either horizontally or vertically
on the chess board. The number of
ways to place 8 rooks of different
colors on a 8x8 chess board such that
no rook lies on the path of the other
rook at the start of the game is

(@) 8x |8 (b) L8x L8 (c)
28x |8 (d) 28 x (684)

Ans:- The first rook can be placed in any
row in 8 ways & in any column in 8 ways.
So, it has 82 ways to be disposed off. Since
no other rook can be placed in the path of
the first rook, a second rook can be placed in
72 ways for there now remains only 7 rows
and 7 columns. Counting in this manner, the
number of ways = 82.72.62 ... 12 = (8!)?

19. The differential equation of all the
ellipses centered at the origin is

@ y*+x()>—-yy' =0
b xyy"+x(y)2—yy =0

©yy'+x(y):—xy =0
(d) none

2 2
Ans:- (d) % + Z—z = 1, after differentiating
W.I.t X, we get

2x | 2yyr _ yyr _ x
2t =P =2
n)? LYom _ ot
b2 b2~ q2

! n bZ
) +y0")i=-=

a?’
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20. If f(x)= x+ sinx, then find
%.fjn(f‘l(x) + sinx)dx
(@ 2 (b) 3
(c) 6 (d)9

Ans:- (b) Let x=f(t) = dx= f'(t)dt

= [ 0)dx = [t £ (Ddt =
C[EOD, — [ f(©dt = (4n? —n?) —
[ f®dt

= [7(f 10 +

sinx)dx = fnznf‘l(x)dx + fnzn sinxdx
=3m% — fnzn f(Hdt+ fnzn sinxdx

— 2 2m ,

=3n? — [ (f(x) — sinx)dx

=3m? — fnznxdx = 3n? — %(4712 — 1?)

21. LetP=(a,b),Q=(c,d)and0<a<b<
c <d, L=(a, 0), M=(c, 0), R lies on x-axis
such that PR + RQ is minimum, then R
divides LM

(@) Internally in the ratioa: b
(b) internally in the ratio b: c

(c) internally in the ratio b: d
(d) internally in the ratiod: b

Ans:- (c) Let R = (a, 0). PR+RQ is least
= PQR should be the path of light

= A PRL and QRM are similar

10

LR _ PL
RM QM

= ad- ad=bc —ab

ad+bc

= =
b+d

= R divides LM internally in the ratio b : d
(asg > 0)

22. A point (1, 1) undergoes reflection in
the x-axis and then the co-ordinate axes

are roated through an angle of 7 in
anticlockwise direction. The final position

of the point in the new co-ordinate system
is-

(a) (0, v2)
(c) —V2,0

(b) (0, —V2)

(d) none of these

Ans:- . (b) Image of (1, 1) in the x-axis is
(1, -1). If (x, y) be the co-ordinates of any
point and (x’ , y’) be its new co-ordinates,
then x’ = x cos 6+ y sin 6,

y’=y cosf — X sin 6, where 6 is the angle
through which the axes have been roated.

Here 6=, x= 1, y= -1

K3 X’: 0, y7: _\/E

23.Ifa, x4, x5, ..., X and b, y1, ¥, ..., Yx
from two A.P. with common difference m
and n respectively, then the locus of point

Z:":l Y1 -

(X, y) where x= 1S

k
i=1 X1 =
—2“’: tisandy =

(a) (x-a)m= (y-b)n
(b) (x-m) a= (y-n) b

(©)(x-n)a = (y-m)b
(d) (x-a) n-(y-b) m
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ke © V5 d) V8
X= Z x1+Xk) _ Xi+Xg _ a+miamk
3 3 3
* ’ : Ans. (d)V8 = 22 = (%)‘E =(1- %)—5
or, x =a+ @ ~
= (3 =)V e
or, 2(x-a)= (k+1)m  ...ocoorennnn 1) =1+ () () + 27—+
- _ 4.3 35 357
Similarly, = 1+Z i vert i
2(y-by=(k+1Dn ..o (2) 26. If f(x) = cos x+ cos ax is a periodic

. function, then a is necessaril
We have to eliminate k y

(a) an integer (b) a rational number

From (1) and (2) (c) an irrational number  (d) an event

rra_m number
y—b n

Ans. (b) Period of cos x= 2rr and period of
or, (x-a)n=(y-b)m 2

T
COS axX=—
lal

24. The remainder on dividing 1234567 +
891011 phy 12 s Period of f(x) = L.C.M. of == and == =

|lal
L.C.M.of 2m and 21

H.C.F.of 1and |a|

(@1 (b) 7
©9 (d) none
Since k=H.C.F. of 1 and |a|
Ans:- () 1234=1 (mod 3)= 1234567 =

1 (mod 3)and 89 = —1(mod3) %: an integer= m (say) and %: an integer
= 891011 = _1 (mod 3) =n(say)
n n .

» 1234567 4+ 891011 = ( (mod 3) |a|:; =a=t—-=a rational number.
Here 1234 is even, so 1234°%7 = 27. Let f : R— R defined by f(x)= x3 +
0(mod 4)and 89 = 1 (mod 4) x% + 100x + 5sin x, then f is
= 891011 = 1 (mod 4) (a) many-one onto (b) many-one into

(c) one-one onto (d) one-one into

Thus 1234°67 + 891011 = 1 (mmod 4)

Ans. ()
Hence it is 9 (mod 12)

3 35 f(x) = x% + x? + 100x + 5 sin x
25. The sum of the series 1+Z + 4—'8 +

3.5.7
4.8.12

~ P(x)=3x2 + 2x + 100 + 5cos x

+ - 0S
=3x2+2x+94+ (6 +5cosx) > 0

11
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=~ fis an increasing function and
consequently a one —one function.

Clearly f(—o0)=—o00 , f(c0)=00 and f(x) is
continuous, therefore range f= R= co
domain f. Hence f is onto.

28. Let f(x) = sin’ =, where [x] denotes

L,]+z

the integral part of x is

(a) an odd function
(b) an even function

(c) neither odd nor even function
(d) both odd and even function

Ans. (&) when x=nm, nel, sinx =0 and
E]+2=0
T 2
~f(x)=0
~ when x = nm, f(x)= 0 and f(-x)=0
= f(-%)=(x)

When X # nm,n e I,i # an integer

TNE EENE R-

1 1 1
=[-2l+z=-El-2= - ([ +3)
Now (=) = S = 5 -

[n] =f()

Hence in all cases f(-x)= f(x)

12

29 . If k be the value of x at which the
function

f(x) =7, t(et — 1)(t — 1)(t — 2)3(t -
3)> dt has maximum value and sinx +
cosecx = Kk, then for n eN, sin™x +
cosec"x=...

(@2
©3

(b) -2
(d)m

Ans. (@) P(x)=x(e* —1)(x — 1)(x —
2)*(x —3)°

By Sign Rule we get
f(x) has max. at x = 2
~k=2

Now sin X + cosec x = k = sin x + cosec X
=2

=(sinx —1)?=0 = sinx =1
~cosecx=1
Hence sin™x + cosec™x = 2

30. If f(x+y) = f(x) + f(y) — xy — 1forall X,
y €R and f(1)=1, then the number of
solutions of f(n)=n, n eN is

@20 (b) 1 ()
2 (d) more than 2

Ans. (b)

Given f(x+ y)=f(x)+f(y) - xy-1 Vx,y,e R
............... (1)

f(h)=1.........o (2)

f(2) = f(1+1)= f(1)+f(-1)-1-1= 0

f(3 )= f(2+1)= f(2)+f(1)-2.1-1= -2
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f(n+1) = f(n) +f(1) — n— 1 = f(n)- n< f(n)
Thus f(1) > f(2) > f(3)> ...and f(1)= 1
~f(1)=1and f(n)< 1, forn>1

Hence f(n)=n, n € N has only one solution
n=1

ISI B.STAT/B.MATH

OBJECTIVE QUESTIONS &
SOLUTIONS
SET -2
1_ a1:a2:1,a3: —1,an:
a,_1.a,_3. The value of agg4 IS
(a1 (b) -1
(©o0 (d) none
Ans:-(b)a, =a,=1,a3= a, =as =
_1, a6 = 1,a7 =-1
+1,+1,-1,-1,—-1,1,—-1 ,
1,1,—-1,—-1,—-1,1,—-1, ............

Since 1964= (7x280)+4= 7x280 +4. Thus
we have a;qgg4=-1.

2. If a, b are positive real variables
whose sum is a constant A, then the

minimum value of J(l + %) (1 + %)
is
(@) A-3

(c) 1+ %

(b)A+3

(d) none

13

a+b+1

. 2 = o111
Ans:- (C) E —1+a+b+ab o

1=1+ % it will be minimum when ab

is maximum. Now we know that if sum of
two quantities is constant, then their product
is maximum when the quantities are equal.

2
.-.a+b:/1:>a:b:5
A1 A+2
z =
T

which is the required result.

~E*=1+

2 142
) :>E—1+/1,

Alternative: (c) \/(1 + i) (1 + %) will

minimum when a and b will take the
maximum value.

a+b = 1, then the max. Value of a and b is

A
a= b==,
2

Putting these, we get, \/(1 + i) (1 + %)

min:\/(1+%)(1+ =142,

3. The number of pairs of integers (m, n)
satisfyingm? + mn+ n?=1is
(@) 8 (b) 6
(c)4 (d)2

Ans:- (b) Consider m? + mn + n? — 1

The equation is symmetric in m and n, we
make the substitution

u=m+nandv=m-n

So that u? + v? =2 (m? + n?),u? —
v? = 4mn
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Multiplying the given equation by 4, we
have

4m? + 4mn + 4n? = 4

=4 (m* + n*)+4mn=4
=>2w?+ v)+ur—-vi=4
=3ul+vi =4

Set u? = x,v? = y with x, y > 0, then we
get 3x+y=4

The ordered pairs (X, y) satisfying the above
equation in integers are (0, 4) and (1, 1).

We have,

u’=0and u?>’ =1 & v?=4,andv? =1
l.e.u=0, v=2; u=0, v=-2;
u=1,v=1,u=1,v=-1;
u=-1,v=1Lu=-1,v=-1;

Giving 6 ordered pair solutions (m, n) viz (1,
-1), (-1, 1), (1, 0), (0, 1), (0, -1), (-1, 0)

4. The sum of the digits of the number
10013 — 26, written in decimal

notation is
(a) 227 (b) 218
(c)228 (d) 219

Ans:- (a) 1026 — 26 =100.....0 — 26

=999...974

| —

with 24 9’s

~ The sum of the digits =24 X9+ 7+ 4 =
2217.

14

5. The great common divisor (gcd) of

2222 L 1and 22*** + 1is
222

(@ 1 (b) 22°° +1
© 22" -1 (d)
22%' 4

Ans:- () let E, = 22" + 1, withm>n
F,—2=12""4+1-2=22"-1=
2" H2—1 =" 1) (22" -

=" 1) (22" -
122" % +1) =(22" +1) 22" - 1)
2" 4

=AE,; Now, F, — A F,,=2

Letd | F, and d |F,, then d|2. Then d=1 or 2.
But F,, & E, are both odd, hence gcd = 1.

6. The number of real roots of the
. x  x% i3 x7 _
equation 1+1+7+?+---+7—0
(without factorial) is

@7
()3

(b) 5
(d) 1

Ans:- (d) let f has a minimum at x = x, ,
where then f'(xy) =0

2 3 6
f(x):1+f+x_+x_+...+x_;
1 2 3 6
= 1+ xo + %92 + x° + x0* + x,°=0
x06—1_

= =0
XO—l

(o' Ds) _ g
xXo—1 -

=

=4 (xOZ + xO + 1)( x02 - xO + 1)( xo +
1)=0
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Which has a real root x, = -1
- 1 1 1 1 1
But, f(-1)=1-1+(C— )+ (;—) +>0
The f (x)> 0 and hence f has no real zeros.
x  x%  x3 x7
Now let, g (X)=1+=+—+ =+ -+ =
1 2 3 7

An odd degree polynomial has at least one
real root.

If our polynomial g has more than one zero,
say xq, X

Then by Role’s theorem in (x4, x,) we have
‘x5’ such that g’ (x3) =0

$1+x3+X32+“'+X36:0

But this has no real zeros. Hence the given
polynomial has exactly one real zero.

7. Number of roots between — and & of
. 2 . .
the equation 5 sinx.x= 1is
(@1 (b) 2
(©3 (d) 4

: L _ 3
Ans:- (d) sinx = —

Now, draw the curve of y=sinx and y = %
or xy =3/,

=~ there are 4 real roots. (Draw the graph
yourself)

8. The number a”3®?, a, b are digits, is
divisible by 72 , Then a+ b equals
(a) 10 (b) 9
() 11 (d) 12

Ans:- (b) 72=8x 9, and 8 and 9 are co
prime. As the number a”38°? is divisible by
72, it is divisible by 9 and 8 both. For

15

divisibility by 8, the last three digits must be
divisible by 8.

i.e. 800+ 90+b |8.
so (b+2)|8; ~b=6

For divisibility by 9, the sum of the digits A
+ 7 +3 +8+ 9 +b should be divisible by 9.

i.e.at 7+ 3+ 8+ 9+ 6= 0 (mod 9)
= a+ 6 =0 (mod9)

= a = -6(mod 9)

= a=3(mod9)

~a=3only. Hence a+ b=9

9. 3balls are distributed to 3 boxes at
random. Number of way in which we
set at most 1 box empty is (a) 20
(b) 6 (c) 24 (d) none

Ans:- (c) zero box empty + 1 box empty

= 3 balls in 3 boxes + {3C1 x 3 balls in 2
boxes}

=31 +3x (3), = 24.

10. The value of Max I (a), where I(a) =
a
at+l _ .
J,_, e Mdxis
(a) e? (b) 2- 471 — eo*1
(c) e¥ 1 — et (d) none
Ans:- (b) I (a) = f:_le‘|x|dx +

a+l _
[T e ¥ldx
a

Let 0<a< 1, then f;_le_“"dx = f;_lexdx

+f0a_1e‘xdx
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=1-e% 1 — (eT®*-1) ~0=0,m, 21
And, fa“ “lxlgy = =@ — p—a-1 Hence 3 roots are three between [0, 2]
1(@) =2 - (e9-1 + e-a-1 13 fup= —+——+——+
~l@)=2-(e""+ e e = L T 2 T 3(n-2)
1 .
:_x (@) =0 I D Then nggoun equals
@0 (b) 1
= edl = gatl (c) o )=
=a=0 . = 1 1
Ans:- (a) u, = D [(1 + n) +
- . (¢ x — ,a _ ,a-1 1 1, 1 1
Also, 1<a<0,fa_1e dx = e* —e ( +n1)+(3+n_2)+ + (G +1)]

And f;He_'x'dx = f;exdx +f0a+1e_xdx (n+1) 2(1+ - + +—)

= (e~ (e~ 1) it

. . . n
s lim u, = 2 lim —4—=——2 lim —=
=2 .2 _ a+1 n—oo n—oo n n—oon+1

2.0.1=0.

~l(@)=2-e% 1 —eatl
14. If x+ G) = -1, The value of x?° + (x—;g)
~ 1(a) is maximum at a = 0.

IS

o 1, . (@1 (b) 2

11. The value of [[,-,(1 nz) IS ©) 0 (d) none
@1 (b)0 (c) %
(d) none Ans:- (b) Ifa, = x™ + xin
oo 1 (o]

Ans:- (¢) [I=2 (1 - ﬁ) =[1n=- (1 + Then, a1 = ay.a; —a,_q forn =1
1 1 © nt+tl n-1
;)(1—;):1_[11:27-7 ay=2,a,= —a; —ay=—1,a3 = 2,a,
_ @ 2o e 3 _ T Thes T i s i
(-G ) = =—-1a, ,=—1.
3142 =2
2°2"3"3 2’ 50,099 = 2

12. cos®0 — sin®@= 1. Number of roots
are there in between [0, 2r] is
@1 (b) 2 CI R G
3 (d) 0

Or, apy, = xP° +— = (x98 + x98) (x +

=-ap—Qau1=+1+1=2
Ans:- (c) Note that , cos®0 = 1 + sin®0 is

possible only if, 15. Consider the equation of the formx? +
bx + ¢ = 0. The number of such,
cos®@ = 1 and sin®6 =0 equations that have real roots and

16
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have coefficients b and c in the set {1,
2,3,4,5,6}, (b may be equal to c) is
(a) 16 (b) 19

(c)21 (d) none

Ans:- (b) Let x% + bx + ¢ = 0 has real
roots, then b2 — 4¢ > 0, and also , s= {1, 2,
3,4,5, 6}.

Now s; = {4,8,12,16, 20, 24}= set of
possible values of 4c.

Thus the number of equations will be same
as the number of pairs of elements (a4, a,),

a,€ S, a,€s; such that
a;> —4a, > 0,i.e 1+ 2+ 4+6+6 =19

16. If f: R —R, satisfies f(x +y)=
fX)+f(y)V x,y € R and f(1)=7,
then) ., f(r) is

7 (n+1)
(a) =%

7 n(n+1)

(© O

Ans:- (c) putting x= 1, y=0, then f(1)=
f(1)+f(0)

(b) 7n (n+1)

(d)none

=f(0)=0, = f(1)=7

Again , putting x=1, y=1, then f(2)= 2f(1)=
14, similarly,

f(3)=21 and so on.

_7 nn+1)

n_F(r)=T7 {1+ 2+ 3+....+n}

17. Let f(0)=1, xltoof”(x) =4and f(x) >

f(1). Let f(x) is polynomial v xeR.
The value of f(2) is
(a) 4

(©1

(b)0
(d) none

17

Ans:- (¢) f"(x) = 4 = constant
= f(x)=2x?> +ax+b
f(0)=1 =>b=1
f(1)=3+a
f(x) =f(1) = f(1)=0
=4+a=0
>a=-4
()= 2x2 4+ 4x + 1
~ f(2)= 1.
1-3P 1+4P 1+P

18. Let —, ,—— are the
2 3 6

probabilities of 3 mutually exclusive
and exhaustive events, then the set of
all values of P is

(@) [-1/4, 1/3] ) 0, 1)
(c) (0, =) (d) none
1-3pP 1+4P 14P

Ans:- (a) — >0, = O’T >0 and

3

1—3P+ 1+4P+1+P_
2 3 6

5P e[,

:>—1SP <
4" 3

4

19. IfVEx— x2 -6+ 2 [Fdt >
x f: sin? tdt, then x €
(@ (2,3) (b) (-00,2) U (3, )
(c) (5/2,3) (d) none
Ans:- (@) V5x — x2 — 6 + % >
x  ['(1 — cos2t)dt}

Wl

B V5x — x2—6+n7x>x{%(t—

1 .
> sin 2¢) o}
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VEx — X2 — 6+ >

2
BV5x— x2—6>0

2x? —5x+6 <0,

B (x-2)(x-3)< 0, i.e. , x € (2, 3).

20. If f{(x)= (4 + x)™", ne N and f"(0)
represents the r* derivative of f(x) at

X= 0, then the value of Zﬁ‘;o@ =
(a) 2" (b) e” (©)
5n (d) none

Ans:- (c) f(x)=n (4 + x)"1
f"(x)=n (n-1) (4 + x)" 2

fre)=n-1).... (n-r+1) . (4 + )", r
<n

n! -
fr(O):m.‘l-n r' r<n

=0,r>n

g0 LTO) _

Tar=0 4

5™.

(A4 =1+ " =

21. Thetwo linesr’=a’+ A(b” +c)and r’
=b” + u(c” +a°) intersects at a point,
where A and u are scalars, then

(@) a”, b” and ¢” are non-coplanar
(b) [a7 = [p”] = |c”]

(c)a’.c’=b’.c’
(d) A(b”xc”) + pu(c*xa’)=c”

Ans. (¢)

The two lines intersect

ca’+A0° X&) =b + u(@xad)

18

Taking dot product with ¢” on both sides, we
get

a.c’=b’.c°
22. Let f(x)=
x|x|; x <-1
[x+1]+[1—x]; " 1<x<1
—x |x|; x>1

Then the value of [*, f(x)dx is

8 7
@) -3 (b) -3
(c)g (d) none

(—x?, x <-—1
1, —1<x<0
Ans:- (@) f(x) =< 2, x=0
1, 0<x<1
x?, x =1

« f(x) is an even function, i.e. [*, f(x)dx =

2 [ f(x)dx
=2{f) f)dx + [’ f(x)dx}

_ x32 _ 8

=2 (1 - ?)1 = 3"

23. Area bounded by y = g(x), x-axis and
the lines x= - 2,

Where g (x)=
max{ f(t): -2 <t <xj},
{ min{ f(t):0 <t < x},

where— 2 < x < 0;
where0 <x<3

And f(x)= x? — |x|, is equal to

() 52 (b) >~
(©) % (d) none
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Ans:- (a) g(x)=

2 —2<x<0

1

x% —x; 0<x<-
1 1

—= - <x<3
4 2

1
~ Required area = f_oz 2dx + [2(x —

x2)dx + f© (1) dx = = unit?
> \a 24

24. Total number of positive integral
values of n such that the equations
cos™lx + (sin"1y)? =

2 2
nm a - (3
—, and (sin 19)2 — cos 1x=E

are constant, is equal to
(@)1 (b) 2
(c) 3 (d) none

an+1
— 2

Ans:- (a) Here 2 (sin"1y)? = "

B

I

<n <

Hence, the least positive integral value of n
is1.

25. Radius of bigger circle touching the
circlex? + y* —4x — 4y +4 =0 and
both the
co-ordinate axis is
(a) 3+2v2

(c) 3-2v2

(b) 2(3+2v2)

(d) none

Ans:- (b) Let (h, h) be the centre of the
required circle.

~2COD= ACBEZE . CB=h+2 AND BD=
h- 2.

b2 _ r_1
“hez ST T
_ 2(W2+1) _
= h= D - 2(3+2vV2).

26. Tangents and normal drawn to
parabola at A (at?, 2at), t = 0 meet
the X- axis at point B and D,
respectively. If the rectangle ABCD is
(@) y-2a=0 (b) y+2a=0

(c) x-2a=0 (d) none

Ans:- (c) Evolution of tangent & normal at
Aare yt = X + at?,y = —tx + 2at + at>.

~ B = (-at?, 0) and D= (2a+ at?, 0)
Suppose ABCD is rectangle,

Then midpoints of BD and AC will be
coincident,

~h+at? =2a+ at? —at’and k +
2at =0

i.e. h=2a, k= -2at.

Hence, the locus is X= 2a, i.e. X-2a=0.

27. The series Yp-, (;) converges to

k(k—1)
(a) -1 (b)1 (©)
0 (d) does not
converges

o 1 _t

D= (1-3)
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lim s, = lim (1-3)=1.
oo

28. The limit lim ( )4" equagls
(a1 (b) 0
_8 4
es (d) eo
1—L e_% _8
Ans:- (¢) lim {(—=)*}* = (—)* =e3
X—00 1+§ e3
[since lim (1 +5)* = e¥].
X—00 X
29. Jlriggn (m Tttt ) equals
(a) (b) O ()
log, 2 d1
. im (= 4y
Ans:- () ;Lngo - (1+1 + o + -+ 1+%)
= fo :dx = [log(1 + x)] ; = log, 2.

30. Let k be an integer greater than 1.
Then lim [— t—+ ]

n-oo Lln+1

(a) log. k

(€0 (d)

1]_
n+rl —

= log,. k .

Ans:- (a) lim [Z”Sk 1)

r=1
k-1d
Jy 1+x log(1 + x)]";

(b) (k-1)log. k

(©)

20

ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &
SOLUTIONS

SET -3

1. Number of solutions are possible in
0< x < 99 for the equation

—-X

13— 3% +]1-3%=1-3"-2"jis

4
@) 1 (b) 0 ©) 2
(d) none

Ans:- (b) LHS=|3 — 3*|+|3* - 1| =
3= 3+ (3*—1)| =2
ButRHS=1- (3% +2)
=1-{(37 + —) 2.3z, 3—2}
=2-(3§+322)2<2

= given equation has no solution for any
real x.

2. Iff(x) =log.(6 — |x* + x — 6]), then
domain of f(x) has how many integral
values of x?
(@ 5

(c) infinite
of these

(b) 4
(d) none

Ans:- (b) f(x) is defined only when 6 —
[x2+x—6]>0

e |x2+x—6|<6

=>6<x’+x—-6<6
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>x?+x>0andx?+x—-12<0
= X (Xx+1)>0 and (x+4)(x-3)<0
= (X<-lorx>0)and (-4 <x<3)

= XE€ (_41 -1) U(01 3) = X= _3a -21 11 2as
integral values.

3. The sum of the real solution of 2|x|*+
51=|1+ 20x| is
(@5 (b)0
(c) 24 (d) none of
these

Ans:- (d) 2x2 + 51 = +(1 + 20x)

=x2—10x+25=00rx%+10x + 26 =
0

=>(x—-572?=0o0r(x+5?%+1=
O(impossible)

=>x=55
-~ Sum of the real solution = 5+ 5= 10.

4. The solution set of ||x- 1]-1| +x < 2 is

(@) (=0, 2] (b) [0, 1)
(©) 0,2 (d)[1,2)
Ans:- (a) (i) If x <0, then [1- x- 1|+x < 2
= X+x < 2
=>-X+X <2

= 0 < 2 (true)
~X<0

(i) IfO<x <1,then|1-x- 1+x <
2
= X+tx <2
=>2X< 2
=>x<1,0<x<1

@) MHl<sx<2,then|x-1-1+x<2
= [X-2[+x < 2
= 2-X+X <2
= 2 < 2 (true)
(iv) Ifx>2,then|x-1-1+x <2
=>X-2+X <2
=>X <2
s X=2 [ x> 2]
~ Required solution set is
(_Oo' 2]
5. If domain of f(x)= m be (a, b),
then ([ .] denotes greatest integer
function)
(@) a=1, b=oo
(c)a=-o0,b=1
these

(b) a=-00, b=0
(d) none of

Ans:- (c) we must have, [x-1> [x]....... (1)
X1 [X]Ex e [X]>x—1.......... )

=~ on combining (1) and (2), we have |x -1|>
x-1

Thisistrue only if x-1< 0, i.e. ifx <1, i.e. if
X € (-00,1)

Df = (—00, 1) =>a=-—oo0,b=1

6. If there are 4 distinct solutions of ||x -
2012| +log, a|=3,thena e

(a) (—o0,—6) (b) (—0,3)
() (—oo, — %) (d) none of
these

Ans:- (b) we have | x -2012|+log, a = +3
= | x-2012| = -log, a+ 3, -log, a — 3

=~ If there are 4 distinct solutions of the
above equation, then we must have
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-log, a+3>0and -log,a —3>0

i.e.log,a<3andlog,a<-3=>a<23
1
~ae (—oo,g)

7. The number of value of k for which
the equation x> — 3x + k = 0 has two
distinct roots lying in the interval (0,
1) are
(@ 3 (b) 2 (c) infinitely many

(d) no value of k satisfies the
requirement

Ans:- (d) Let there be a value of k for which
x3 — 3x + k = 0 has two distinct roots
between 0 and 1. Let, a, b are two distinct
roots of x® — 3x + k = 0 lying between 0
and 1 suchthata<b

Let f (a)= f(b)= 0. Since between any two
roots of a polynomial f(x) there exist at least
one roots of its derivative f'(x).

Therefore, f'(x) = 3x3 — 3 has at least one
root between a and b

But f'(x) =0 has two roots equal to + 1
which don’t lie between 0 and 1 for any
value of k.

8. IfX=f(x)+ [, f(x)dx then the

equation of the curve y=f(x) passing
through (0, 1) is

2e*—e+1
(a) f(x)= === (b) f(x)=
3e*-2e+1 _e*-2e+1
2(x—e) (C)f(X)— e+1

(d) none of these

Ans:- (a) £'(x)= f(x)

22

fr(x) _
fr(x)

1

On integrating f'(x) = c e*
Which gives f(x)=c e*+D
Butf())=1=c+D=1
~f(x)=ce*+1-c

So, f'(x)= ¢ e* putting it in f'(x)=
f00+ f, £ (x)dx

=>cex=cex+1—c+f01(cex+1—
c)dx
= ¢ = So, f(x)= 22=*1
3—e 3—e
9. Astaircase has 10 steps, a person can
go up the steps one at a time, or any
combination of 1’s and 2’s . The

number of ways in which the person
can go up the stairs is

(a) 89 (b) 144
(c) 132 (d) 211
Ans:- (a)

x+ 2y= 10, where x is the number of times
he takes single steps, and y is the number
times he takes two steps

Case Total no. of ways
1 | X=0,y=5 51/51=1
2 | X=2,y=4 6! /21 41 =15
3 | X=4,y=3 71/3141= 35
4 | X=6, y=2 8! /216!=28
5 | X=8,y=1 91/81=9
6 | X=10, y=0 101 /10! =1

)
1

(e

©
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10. The remainder when 16902698
26081690 s divided by 7 is

@1 (b) 2 (c)
3 (d) none

Ans:- (a) 1690= 7x 241 + 3;
2608= 7 x372 +4

Let s =169026%8 + 26081690

= (7 X 241 + 3)26%8 4 (7 x 372 +
4)1690

= a number multiple of 7+32608 4
41690

Let s'= 32608 + 41690

Clearly remainder in s and s’ will be same
when divided by 7.

g'= 3 33%X867 4 4 x 43%563

=3x 27867 + 4 x 64563

=3(28 — 1)%7 + 4 (63 + 1)

= 3[multiple of 7- 1]+ 4[ multiple of 7+ 1]
= multiple of 7+ 1

-~ Hence remainder is 1.

1 .
11. The value of 20 XjZ0 Xr=0 33737 1S

(i #j#k)
(a) 80/207 (b) 81/208
(c) 1/208 (d) none

Ans:- (b) Let us first of all find the sum
without any restriction i, j, k.

02 20 Lke 0313,3;{_(21 031) =2

For the requirement sum we have to remove
the cases when i= j= k or when any two of

23

them are equal and not equal to other
variable (say, i= j# k).
Case —I:- when i= j=k

1

In this case ¥i2o XjZ0 Xk=035/3% =

_ 27
S203

16
Case—Il:-i=j# k

. 1
In this case, X720 X720 Xm0 Tk =

3373k
(Zl 0 321) (Zk 0 3k)
_ 1.3 1
=Yizo5 G 3

39_27_ 135
T2'8 26 826
) 27 27 135
Hence required sum == — = — (—) 3=
8 26 8.26
81
208

12. The solution of the differential
equation f(x) % + f'(x)y = 1isgiven

by f(x) =
(@ yx+c

(c) yc
Ans:- (b) f(x)dy +f'(x)ydx = dx
i.e.d(f(x),y)=d(x)

Integrating we get, y. f(x) = x+ ¢

x+c

(0) =~

(d) none

xX+c

or, f(x) = X<

13. If f:f(x)sintdt = constant, 0 < X <
2m and f(m)= 2 Then find the value of
)

(a) 2
(d)8

(b) 4 (c) 6
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Ans:- (b) Differentiable both sides, we get

f'(x) (1- cosx)+ f(x)sinx= 0

=>ff'(—x)dx=f SIX_ 1y

f(x) 1-cosx

= In(f ()| = -2In sing + Inc

= f ()= (—_) = f(1)=2 = ¢c=2: f(g):4
14. For a e R if [x+ a-3| + |x- 2a]=|2x —-a -
3| is three for all x eR, then exhaustive
setof ais
(@) ae[-4, 4]
(c)ae{-2 2}

(b) a € [-3, 2]
(d)ae{l}

Ans:- (d) x|+ [yl = [x+y]

= Xy = 0, therefore (x- (3- a)) (x- 2a)=>
OVxeR

=>x2— x(3+a)+ 2a(3—a)=0Vxe
R

=>(@+3)?-8a(3—a)<0=
(a—1)2<0=a=1whichistrue Vx e
R

15. If A is skew—symmetric matrix, then
B=(l-A) (I +A) Lis (wherelisthe
identity matrix of the same order as
A)

() idempotent matrix  (b)
symmetric matrix  (c)orthogonal
matrix (d) none

Ans:- (c)B=(I-A) (I + A)71

>BT=U+A") U +AT)=( -
AT+ A)

B Bt=1las (I- A) (I+ A)= (I+ A) (I-A)

24

16. If f(X)= max (% cos~1(cosmx),{x})
and g (x) min
(% cos I(cosmx),{x}) (wWhere { .}
represents fractional part of x). Then
find the value of [, f(x)dx/
flz g(x)dx is

@1
(d)7

(b) 3 ©)5

Ans:- (b)
=>f12f(x)dx = % and flzg(x)dx = i
= Ratio = 3

17. If sin (Sinx +cosx)= cos (COSX- Sinx)
. - - T
and largest possible value of sinx is P

then the value of k is
(@2 (b) 3
(c)4 (d) none

Ans:- (c) sin (sinx +cosx)= cos (CosX- Sinx)
cos (cosx- sinx) = cos (g — (sinx + cosx))
~cosx — sinx = 2nm + (g — (sinx +
cosx))

Taking + ve sign

cosx — sinx = 2nm + % — sinx — cosx

cosx=nm + % ,forn=0, cosx = % , Which

is the only possible value

V16— 2 :
PRRRLLLERRRRRRRRRRRRR (1)

= sinx =

Taking —ve sign
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From (i) & (ii) , we get %as the largest 20. Leta, b, ¢ be any real numbers such
value. Hence k= 4. that a? + b% + c¢? = 1 then the
guantity
18. The number of solution(s) of the ab +bc+ ca satisfies the conditions
equation zZ — z — |z|? — % = 0is/ (a) ab+ bc+ ac = constant
are (b)-¥%2<ab+bc+ca <1
-1
(@) 0 (b) 1 ©) 2 (©) /4Sab+bc+ca1S1
(d) 3 (d)-1<ab+ bc+ca =3
Ans:- (b) z =2 is the only solution. Ans:-(@) (a+b+c)>=0
So there is only one solution of the given = a?+b?+c? > —2(ab + bc + ca)
equation. )
; :52—(ab+bc+ca)$(ab+bc+
. _ i DX
19. If function f(x) = cos(nx)xsm(n ), ca) > _%
satisfies f(x+ 3m)= f(x), then find the
number of integral value of n 21. The maximum value of xyz for +ve X,
8 b) 9 10 y, Z subject to condition that xy + yz+
(3) 1 (b) () zx=121is
@ (@9 (b) 6 (©) 8
Ans:- (@) f(x+ 1) = f(x) (d) none
Xy +yz+ zx 1
= cosn(x+ ) Sin(S(x;A)) _ Ans:- (C) AR Las 3; > (xy.yz. zx) /3
cos(nx) sin(%) = (xy2)< 8
At x = 0, cos(nA)sin (2): 0 22. Let a, b, c are 3 positive real numbers
n such that a+ b+ c= 2, then the value of
_ — ™ e b e ;
If cos(n1)=0, nA= M+, 1 € I T T TS always
T (a)>8 (b)<8
n (3m)= M+ (+A=3n) (c) 8 (d) none
(3n- r)=% [not possible] Ans:- (a) Let1-a=x,1-b=y,1-c=z
s cosnd # 0 wsin(B)=0=2 = 3-(atbtc)=x+y+z=1(vatb+tc=2)
n n
Pr(P e =>n=2 Now 1% 1=¥ 1=z
P x Ty "z
For P= +1,+3,+5,+15 _ytz z4x y+x
x "y oz

n=+15,45,43,+1

25
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=) E) ) 5>
JyzVzx [zy .- (By AM> GM
inequality)

a
= —

b c
1-a ' 1-b 1-c

> 8

23. Let a+ b +c =1 then the value of the
quantity is always vV4a + 1 +
Vab+1++Vac+1
(a) equals 21 (b)<21

(c)>21 (d) none

Ans:- (b) 4a+ 4b+4c =4
=(4a+ 1)+ (4b+ 1)+ (4c +1) =7

Applying c-s inequality:- a; = V4a + 1,
a, =v4b+1, a3 =+V4c+1 &b;=1

D) <Ol aHEi 1)

where a;=a4, a,, a;

> W4a+1+Vab+1+V4c+1)2 <

(ha+1+4b+1+4c+D)x(A+1+1)

=3x7=21

24. If f(x)is a polynomial function

satisfying f(x)f(%): f(x)+ fG) and
f(3)=28 then f(4) is
(a) 28 (b) 65

(c) 78 (d) none

Ans:- (c) The given functional equation is
satisfied by f(x)= + x™ + 1

f(3)=+33+1 =128
Hence, n=3

So, f(4)= 43 + 1 = 65.

25. If 2x+ 4y= 1, then prove that the
quantity x? + y? is always greater
than equal to
(@) 1/20 (b) 5/64

(o1 (d) none

Ans:- (a) Maximize x2 + y? subject to 2x+
4y -1=0 by

Method of Lagrange multiplier—
F=x?+y2+A2x+4y — 1)

oF oF
S =2XT22=0,2=2y+21=0

s X= A ~y= 22

2X+4y =1 Xpax = +E' Ymax = 5

-1
> A==
10

1 4 5 1
axPyre ——= —=—
100 100 100 20
26. If a, b, c are positive real numbers 3

a+ b+ c= 1. The value of aZ + b? + c?

is always
(@) % (b) 1/3
(c) Ya (d) none

Ans:- (b) Using C-S inequality,

L xy) " < (B (Ty) Taking
yi=1&Xi=a,b,c.

>(a+b+c)?<(a?+b?+c?).3

=>a’+b*+c*>

Wl

27.1f a, b, ¢, x are real numbers such that

xb+(1-x)c _ xc+(1-x)a
abc# 0 and - = - =

xa+(1-x)b
c
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Then prove that a+ b+ ¢ equals to

@1 (b) 2
(©0 (d) none
Ans:- (C) xb+(1 x)c __ xc+(1-x)a _
b
xa+(1-x)b —1
c
)= g bm@ ,_ eb
- b—c'x - c—a'x ~ a-b

The solutions are : a= b=c or a+ b+ c=0.

28. If f: R —Ris given by f(x)=

4%+2

Hence the value of f(1997) + f (19297) +

1 (3557) i

(a) 998 (b) 1996
(c) 1997 (d) none
_ 4/4"
Ans:- (a) f(1- x)= _x+1+2 ke f(x)+
f(1- x)= 1.
2 3 998

Now, putting X =

1997’ 1997 1997’ """’ 1997

1996

S0, fli357) + f (5a57) + + F Gaod)

=(1+1+-+1)

998 terms
=998
29. If gcd (a, b)=1, then gcd (a+b, a-b) is
(@ aorb (b)lor2
(c)lor3 (d) none

Ans:- (b) let d = gcd (a+ b, a- b)then

27

d|(a+ b)and d|(a-b).
~d|(a+b+a-b),=d|2aand
~d|(a+b-a+h),=d|2b

Thus d |(2a, 2b), = d|2(a,b)

Hence d=1 or 2, because gcd(a, b)=1

30. The number of solution (positive
integers) of the equation 3x+ 5y = 1008
is
(a) 61

(©)79

(b) 67
(d) none

Ans:- (b) X,y € N, then 3 |5y = 3y, y = 3k
Vk €N

Thus 3x + 15k = 1008

=> X +5k=336 >5k<335 k<67

ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &
SOLUTIONS

SET -4

1. If §,,denotes the sum of first n terms of
an A.P. whose

(@) PXroqT (b) N¥p-1P
(c)axr_,r (d) none of
these

Ans. (d)

Snx _ %[2a+(nx—1)d] _ n[2a—1]+nxd

Sy ’Zﬁ[za+(x—1)d] T (2a-d)+xd
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For iﬁ‘—x to be independent of x (@) AP. (b) G.P. (c)
x H.P. (d) none of these

2a-d=0 Ans. (€)

~2a=d

) , 1-a 1-x
Now, S, =~ [2a + (p — 1d] = p*a . y z
Similarly, b:E’C = —

1-z

Now, a, b, c are in H.P.

. in(2n—1
2.ifa,- f”sm(_n )dx, then
0 sinx =>ﬂ 1+_y liare in A.P
a;aas........ are in x 'y’ z T
111 .
() A.P.and H.P. =-,=,-arein A.P.
X'y z

(b) A.P. and G.P. but not in H.P.

(©) G.P. and HP =X, Y, zarein H.P.

(d) APP.,G.P.and H.P. 4. If a, b, ¢ be the pt*,q** and rt" terms
respectively of an A.P. and G.P. both,

Ans. (b) then the product of the roots of equation
Qi1 — Oy a® b°c®x?* - abcx + a‘b®c?=0 is equal to
Tsin(2n + 1)x —sin(2n — 1)x
= fo e dx (@)-1 (b)1 (©2
™2 cos 2nx.sinx 2sin2nx|m (d) (b-c)(c-a)(a-b)
- fo sinx x= [T] 0 Ans. (b)
=0

a= x+ (p- 1)d, b= x+ (g-1)d, c= x+ (r-1)d
"'an+1 = an —1 al =a; = a3 = ...
Alsoa, =T #0

a=mnP 1 b= mn?tc= mn"!

Hence ay, a,, ... a, are in A.P. and G.P. but PrOd‘iCE of 230'[5 = 1 ) 1 )
not in H.P. (Equal numbers cannot be in (mnP~ 1)~ (mna-1) P14 (mpr-1)@-pd =
H.P) m®.no=1,

5. 1f a, b, ¢, be the pt* g and rt" terms

respectively of a G.P. then the equation-
3. If a, b, c are proper fractions and are in
H.P. and Xx=3%_, a®, y=Y*_, b", alb"cPx? + pgrx + a"b™c? = 0 has

=1 € (a) both roots zero
then x,y, zare in (b) at least one root zero
(c) no root zero
(d) both roots unity

28
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Ans. (c)
Product of roots= a"~9pP"c?T P =1 # 0
= no root is equal to zero.

6. If (r),denotes the number rrr..... (n
digits), where r=1, 2, 3,...9 and a=(6),,,
b=(8),, c=(4),,, then

(@) a®+b+c=0
(b) a?+b-c=0

(c) a?+b-2¢=0
(d) a2+b-9¢=0

Ans. (b)

A=(6),=666..6(ndigits) = 6 X1+
6XxX10+6x10% +---6x 10"1

=211o0m - 1) = 210" — 1)

9 3
b=2 (10" - 1),c = (10%* — 1)
Now a? + b= (10" — 1)2 +§(10" -

1) = (10" - D2(10" — 1+ 2) =
S0 -1 =c

7. Leta=111.....1(55 digits),
b=1+10+10%+...10%,
c=1+105+101%+1015+...+105%, then

(a) a=b+c (b) a=bc

(c) b=ac (d) c=ab

Ans. (b)

a= 1+ 10+ 10% + - + 105 = 22 =
10-1

1055-1 105-1
105-1 " 10-1

= bc

29

n 1

r=1 Z -
(a) == (b)
(o)== (d) =
Ans. (b)

k=1 Z?=1 Z{=1 2=k Z?=1 2j=

. k(k+1)
22;(1:12?:1] = 222:17 = Yh=1k*+
Yi=1k
_n(n+1)(2n+1) | n(n+1) _ nn+1)(n+2)
a 6 2 3
. nn+1)(n+2)
~ S, = -

— = Sr _ Sr—1 _ r(r+1;(r+2) _
(r—l);‘(r+1) _ T‘(T‘ + 1)
11 11 e 1
tr r(r+1) r r+1 r=1¢
1 _n
n+1  n+l
9. Ifa= r=1,2 then Zr=1(2rT)4_

16 a
(a) za (b)5

15 14
() e (d) =2
Ans. ()

oo r 1.t

Xrz1 (2r-1)* 1+ 34 tatottow
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24-
a 15
—_—=—q
16 16

10. If a; a; as,...are in G.P. having
common ratio r such that

21,:=1 aZk_1=Z’,:=1 a2 # 0, then number
of possible values of r is

(@1 (b) 2
()3 (d) none of these
Ans. (c)

Given aq + as + asg + -+ drpn—1 = a4 +
a6 + a8 + -+ Arn+2

=r3(a; +az+as+ -+ ayy_q)
=ri=1=r=1 0 w?

11. If x%- x + a - 3= 0 has at least one
negative value of x,then complete set of
values of ‘a’ is

(@) (=, 1)
(€) (=,3)

Ans. (c) x2-x +a - 3=0 has at least one
negative root and for real roots,

(b) (=0, 2)
(d) none

1- 4@-3)=0

>as—
4

=>ae€ (—00,1:3)

Now, both root will be non-negative of D >
0,=a—-3>20>a=>3

13
. ad € (3,:)

13 13
S dad € (—OO,T)U a € (3,:)

&(—o0,3)
12. Let a, B are the roots of the equation

x2+ax +b=0, then maximum value of the
expression - (x?+ax +b) - ('J‘T_ﬁ)2 will be

(a) ; (a® — 4b) (b) 0
(©1 (d) none

Ans. (b) let z= - (x2-ax +b)

D _ a?-4b _ 4b-a®

NOW, Zmax. = =30 = ==~ =3
a=B\2

+(=5)

~Thus the maximum value of the given
equation is 0.

13. Let P (x) = x2+bx +c, where b and ¢
are integers and P(x) is a factor of

both x* + 6x2 + 25 and 3x* + 4x2 +
28x + 5, then P(1) is

(a) 4 (b) 8
(c) 24 (d) none

Ans. (@) -~ P(x) is a factor of 3 (x* + 6x2 +
25)- (3x* + 4x? + 28x + 5)= 14(x? —
2x +5)

“P(X)=x*—-2x+5
= P(1)= 4.

14. The value of a for which (a? — 1)x? +
2@a—1)x+2>0Vxare

(@ a=1
(c)a>-3

(b)ya<1
(d) none

Ans. (d) we know, Px%2 + gx +c¢ > 0ifP>
0,and g% — 4Pc < 0,

s@@=-1Dx*+2(@a—Dx+2>0Vx
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Now,a?—1>0and4 (a —1)? —
8(a*-1)<0

=a’—12>=0and-4(a-1)(@+3) < 0
2a<-lora=landa<-3o0ra =>1

ie,a< -—-3o0ra =>1.

15. The sum of real roots of the equation
221011 _ 1) =0is
(a) 22006 (b) 22007
(C) 22006+22007 (d)
none

Ans. (b) - (x — 22006)2 + |x — 22006| _
2=0

= |x — 22006|24 |5 — 22006| _ 2=0 = x=
22006+1 22006 -1.

~The sum of real roots are =22007

16. Consider an expression x? + y? +

2x + y= constant. If for two constants «,
B, the conditions x> a and x >  imply the
same limits for the value of y, then a +f is

(a) -2 (b) -4
(©1 (d) none

Ans. (@) x> +y2+2x+y=k

S@+D2+ G+ =k+2

= x= -1+ /(k +2)2 = (y +3)?

Now, the two values of x corresponds to «
and B as y takes the same limits of values.

Hence a +8=-2.

a*+b* b*+c* c*+at

17. aZ+b2 * b2+cz  cZ+a2 T
(@) a+ b+c (b) a? + b% +
c? (c) ab+ bc+ ca
(d) none

Ans. (b) (a? —b?)?2 >0
= a* + b* > 2a?%.b?

=2a* + 2b* > a* + b* + 2a%.b%* =
(a? + b?)?

a*+b* _ a?+b>?
ezt (1)

} : b4-+ 4
Similarly, ﬁ

> )

d c*+a* _ c?+a? 3)
el —Re TR PPPPPPRITTEE PP PPPE

(1)+(2)+(3) implies

An

4,14 4, .4 4, 4
a*+b b*+c c*+a

> a?+ b%+c?.
a?+b?2 = b2+c?2  c2+a?

18. Letm>1, n eN, then 1™ + 2™ +
22m + 23m + o0 4 UMMy

(a) ntm
(C) nl—m(zn—l)

(b) 1 —m)"
(d) none

1M 42M422M423M .4 (21 )™

Ans. () >

142+4+--+2771
———"

n

n

[+~ m>0and AM of mth power > mth power
of AM]

= 1M 4 2M 4 22M 4 237 4.}

(Zn—l)m > n(%_l)m > nl—m(zn—l)m
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19. Let x2 + y? = ¢?, then the least value
of x 2+ y2is

(a) c (b) ¢?
(c) c3 (d) none
Y —2 _ xHyr
Ans. (d) Letz=x"*+y™* = X2y T xy?

and

It will be minimum when x2y? will be
maximum.

As x? + y? = ¢?, then x2y? is maximum

when x? = y? = CZ—Z
“ Zmin, = ij = ;iz

(n+1)2n

(a) n! (b) (n})?

(c) (n)3 (d) none.
Ans. (c) M > (13,23, ....n3)%
[~AM> GM]

= 2 ()

=" () > ()’

21. If a,,aas,....,
and a,,aas,....,a,

a, are non- negative
=1,
then (l+a1)(1+a2) ...(1+an)2

(a) 2™
(c) 4"

(b) 3"
(d) none

Ans. (a) (1";‘1") > +/ai, where i= 1(1)n.
(AM = GM)

32

Putting the all I value and then multiplies the
in equations,

(1+a,)(1+ay) ... (1+a,)=
2" Jay, a5, a3, ..., ay

= (1+ay)(1+ay) ... (1+a,)=
2"(vaq, ay, s, ..., a4y = 1)

22. If a4, ...., a, are positive real nos.
whose product is a fixed number c, then
the minimum value of a; + a, + --- +
A1+ 24,1

(b) (n + D
(d) done

€)] n(ZC)%

1
(c) 2ncn
Ans. (a) AM > GM

So, LHS = n(ay ... 2gn)n =n(2c)n

23 1F1(x) = [ —cost+e costdt then 2f(m) =
(@0 (b) ™ (c) =
(d) none of these
Ans. (b)
ecost
f(m) = fo Wdt .......... ()
e—cost
f(m) = fo Wdt ............ 2)

[ since cos (m-t)= - cost]

2 2f(m)= [ dt=m
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24. Let [x] denotes the greatest integer 1 3
[X] g g W+@=5<9g@2) <

less than or equal to x, then [# sinx d(x — o _ _
~ g(2) satisfies the inequality 0< g(2) < 2.

[x])=
1 26. The tangent at point P of a curve
(@) ¥ (0) 1- vz meets the y- axis at B, the line through P
(o1 (d) none of these parallel to y-axis meets the x-axis at A. If
/4 the area of AAOB is constant, the curve is
Ans. (b) [, sinx d(x — [x]) = a
/4 . _ % _ 1 _
Jo" sinx dx=—[cosx]¥ = — [ﬁ - 1] = (a) parabola (b) hyperbola
_1 Il ircl
1 % (c) ellipse (d) circle
Ans. (b
['.'0<x<§.'. [x] = 0] ns. (b)
Let P=(x,y)

25. Let g(x) = f; f(t)dt, where; <

f(H) <1,t€[0,1]land0 < f(t) < Equation of tangent to the curve at P(X, y) is
s 1, , an < <

> forte(1,2]. Then (a)—><g(2)< Y-y=2((x -2

1 3

= b)0<g(2)<?2 c)=<g2) <

2 2 g ©z<9 WhenX:O,Y:y—xZ—y
> (d)2<g@)<4 *

2 1 ~B= (O’y — xZ—y)
Ans. (b) g(2) = [ f(t)dt = [ f(t)dt+ *

fff (t) dt as% <ft)<1for0<st<l, Area of AAOB ant=k
.1 L ay _ x*dy _
jlédt < jlf(t)dt < 111 dt "szx (3’ xdx) = Xy _Zx = iZli =
i = = ay AR
’ ° 0 2 —xy=t2k=c=> =+ x)_
1 2
OT,ES X_Z
1
Jyfde<1..... (1)

IF.= e-logx = 1
X

1
as 0 < f(t)S§f0r1<t <2,

1 C
solution is given by y,— = f—3dx +a
2 2 21 X X
.'.detS jf(t)dts J —dt

1 1 1 2

C
oryzx(—ﬁ>+ax
or, 0 <
— 2
[f®de<t ) or2xy = —C + 2ax

33
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or2ax?—2xy—C=0............. (1)
Here h=-1,a=4a, b=0

~ h?> ab.
hyperbola

Hence curve (1) is a

27. The function f(k) = % :%

satisfies the differentiable equation

(8) 2L + 2f (k). cotk = 0
(b) %+ 2f(x).cosk=0

(©) L —2f (k). cos?k =0
(d) none of these
Ans. (a)

1
1-coskcotk

fx) =

= cosec’k

Yy = 2 cosec k (- cosec k cotk)

dk
= —2f(k)cotk

f

- 2 =

or - + 2f(k)cotk = 0

28. The largest value of ‘¢’ such that there
exists a differentiable function f(x) for —c<
X < ¢ that satisfies the equation y; =1 +
y? with f(0)= 0 is

(@)1 (b)

©F OF

Ans. (d) Z—z=1+y2 =tan"ly = x+
k

~ f(x) satisfies the equation
~tanlf(x) =x+k

Now, f(0)= 0= k=0

34

= x=tan"1f(x) - —g <x< g

_ 2+sinx (dy\
29. If y=(x) and e (E) =

—cosx, y(0)=1, y (g) equals:

(@) 1/3
1/3

(b) 2/3
(d) 1

(©) -

2+sinx dy
— = —CO0SX
y+1 dx

y(0) =

Ans. (a) Given,
........... (1) &

CoOS x

y
1 —= = —
W= y+1 ,[2+sinxdx

= log(y + 1) = —log(2 + sinx) + logc
c

>>y+1l=——
Y 2 +sinx

Cc

=y = -

" 2+4sinx

c
Alsogiveny(0)=1=>1=§—1:»c

=4
2 —sinx
3),y(x) = ——o
from (3),y(x) 2 +sinx
T 2—1 1
"y_(i)_2+1 3

30. If I; and 1, are the side length of two
variables squares s; and s,, respectively.
If I, = I, + 1> + 6, then the rate of
change of the area of s, with respect to
rate of change of the area of s; when
l,=1is

(a) 3/2
() 4/3

(b) 2/3
(d) none
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Ans. (d) Let A; and A, be the area of the

sequences s; and s,,
Alzllz and AZZ l22
dA dA
o —L = 2l1 and —2 = 212
dl, dl,
dy _Lbody_lp 1
dA, 1y dly 1y 1430

_ — as; _ 1
Whenl, = 1,1; = 8, then TR

ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &

SOLUTIONS
SET -5
Esi 2nx
L1f a,=[2———dx, then
a, 4as; Qo1
[az as; a102] =
asz dsz Qqo3
(@1 (b)0
(c)-1 (d) none of these

Ans. (b) anyr +a, —2a,,, =0
= a4,0a,,a3,...are in A. P.

o a1 + a101 = 2a1 + 2a1 + 100d ==
2((11 + 5()Ci) = 2(151

a; + aq92 = 2as3,a3 + aq193 = 2as3

2. 1f ,=27/3+277/3 then
100 100 —
r=1 tr3 -3 r=1lr +1=

35

2101+1 2101—1
(@) <o (b) <z

2201—1
(©) 100~ (d) None of these
Ans. (c)

t,3=2"+27"+3t,

1
sLpdi e = i 2t + A+ 320t

Lo 1
=2(21%° — 1 + o _21"“) +3¥Y1%9%¢ =

2
1
+ 3319 ¢t,

2100

2101 —2+1—

_ 2201_1
- T,100

1+3%:29¢,

3. 1f Y r.r =100! - 1, then n equals

(a) 100 (b) 101
(c) 99 (d) none of these
Ans. (c)

t=r.r 1= (r+1 -1)r!= (r+1)! —r!

S t=(m+DI—1l=m+1DI—-1

4. 1fm=Y7_pa", n=);_,b" where
0<a<1,0<b<1,then the quadratic equation
whose

roots areaand b is
(@) mnx?+(m+n-2mn)x+mn-m-n+1=0
(b) mnx?+(2mn-m-n)x+mn-m-n+1=0

(c) mnx?+(2mn+m+n)x+mn+m-+n+1=0
(d) mnx?-(2mn+m-+n)x+mn+m-+n+1=0

Ans. (a)

1 m—1 .. n—-1
m=— = a=—-,similarlyb = —
1—-a m
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Required quadratic equation is
x?—(a+b)x+ab=0

or, x? — (22 4 220) e D
m n mn

or, mx? —(2mn—-m-—-n)x+mn—m —
n+1=0

5. 1f Y r*=a,, then X", r* (2r —

1)4=
(a) Azptay (b) Az2n-ap
(C) az,-16a, (d)a2n+16bn

Ans. () X  2r—1D* = 1*+3* +5* +
ot (2n—1)*

=[1*+2*+3*+--+ (2n)*] - [2* +
4* + 6% + -+ (2n)*]

=ay, —2*(A1*+ 24+ 34 + 4+ n?) =
a, — léa,.

6. If positive numbers a, b, c be in H.P.,
then equation x? — kx + 2b101 — 101 =
0 (k € R) has

(a) both roots positive
(b) both roots negative

(c) one positive and one negative root
(d) both roots imaginary.

Ans. ()
a, b,carein H.P.

=H.M. of aand c= b=+ac >b (~G.M.>
H.M.)

Since A .M. > G.M.

a1°1+01°1

> (\/E)lOl > plo1 [ \/& >

b]

2

36

—yopl01 _ 4101 _ +101
Let f(x)= x? — kx+2p101 — 101,101

Then f(—) = 0 > 0, f(0) = 2b1°1 —
al®l — 101 < 0, f(e0) = o0 > 0.

Hence equation f(x)= 0 has one root in (-
oo, 0)and other in(0, o).

7. If the sum of the series Y _o 7™, |r|<1, is
s, then sum of the series Yo_o 2" is

2s

(a) 2 (b) =
O3 (@5
Ans. (d)

1 s-1
r=1-—=—
S S
2
Zoo rzn — 1 — 1 — S
n=0 1-r2 [ _G6=D2 7 25-1

s2

8. The limit of the product 3/5,%5,....°3/5

as n—o is

1
(@ s (b)log10 5
©1 (d)5
Ans. (d) Required limit=
Lt 52.55.53...57% = Lt 5atat ¥am =
n—oo n—oo
1
5-2- =5

9. If numbers p, q, r are in A.P. , then
m’, m’4, m’" (m>0) are in
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(a) A.P. (b) G.P.
(c) H.P. (d)none of
these
m74 _ m7T B
AnNs. (b) 7P = m7(q p)'m7q — m7(r 7))

~(-p=r-q
~m’,m’9,m’ are in G.P.
10. Let n be a positive integer and
1+x+ xz)" =ayg+a;x+ -+ aznx2n1
then the value of ag® — a,* +
azz s +a2n2 iS

(@0

(c) a,

(b) ao
(d) azn

Ans. (c) Replacing x by (- 1/x), we get

or, (1 —x + x?)" = aqgx®"® — a;x*" 1 +
azxzn_z + + az-n ................... (1)

And given (1 4+ x + x*)" = ay + a;x +
o QX ()

Multiplying corresponding sides of (1) and
(2), we have

(1 +x%+x)" = (ag + ayx + ax® +
. azann) X (anZn _ alen—l +
A x? 2t et ayy ) e 3)

(1 +x2+xH" = (ag + a;x% + ax* +
o QX et Ay x™) 4)

Equating coefficient of x2™ on both sides of
(3) and (4)

ap? — a;? + ay? ... +az,%=a,.
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11. The set of all real number x such that
[|3-X]|-|x+2||=5 is

(@) [3, =) (b) (-0, —2]
(€) (-0, —2] U[3, ) (d) (-
0,—3] U[2, )

Ans. (©) (|13 = x| — |x + 2|)? = 25
(3 — )2 + (x + 2)2 — 2[3-X|[x+2|= 25
Bx?—x—|-x*+x+6/=6

So, itis clearthat —x* + x + 6 < 0 ,
ie.—x2+x+6=0
(Xx-3)(x+2)=>0.S0o,x< —2&x =3

~X € (-00, —2] U[3, ).

12. The differential equation of the system
of circle touch the y — axis at the origin is

2402 _
@ x“+y nydx 0
(b) x% + 2 + 2xy 2=0
dx
2 _ 2 y _
(c) x* —y* — 2xy ™ 0
2 _ .2 dy _
(d)yx*—y +2xydx—0
Ans. (d) x + y% — 2ax=0
dy
2X+2y— — 2a=0
dx

x%+y?
)

=2(xk Yy )=2 (5

22x2 + 2xy 2 = x2 4 2
dx
2 2 dy
PXc —y +2xyE=O.

13. Let y(x) be a non-trivial solution of the
second order liner differential equation
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d%y dy _
@+2ca+ky =0,wherec< 0,k >
0,c? — k. Then

(@) ly(x)|—o as x — oo
(b) ly(x)|—0 as x — oo

(© ligrn ly(x)] exists & is finite
x—+too

(d) none

Ans. (@) m?+2cm+k =0

m = —2ctV4c?—4k _ —2c+q/4 (c?-k)
2 - 2
—-2ct2a
— [“c?—k=a%*= c*—k]

2

The general solution of the given L.D.E. isy
ct+a
= ce™¥ 4 c o™X = ¢ e” T ¥ 4

ce (T
So, |y(X)|—o0 as x = o

14. Let y be a function of x satisfying

% = 2x3,/y — 4xy. If y(0)= 0 and then
y(1)equals
1
@ 2 (b) /e
(c) e'/2 (d) 32

Ans. (a) Z—Z (4x)y=2,/yx® (Bernoulli’s
Equation)

Putting,/y = z, the equation reduces to
£ 4 (2x)z= x%(linear in 7)

«|.F=ef 2xdx = e**

Multiplying and integrating

38

ze®" = [x3e®’dx (putx? =u)
=%(x2 —1e* +¢

= General solution is given by:- \/y =
%(x2 —1) 4 ce™

Since y(0)=0, so, c= %

2= ()% = —

15. Let x; are non -ve reals and s= x4 +
Xy + -+ x,, then x{x, + x,x3 + ...+
Xn-1Xn <

(b)%

(d) none

(&%
©%

Ans. (C) (x1 + X3 + Xg + "’)(xz + Xg +
Xo + )= XXy + XXz + o F X1 X

As when expanding LHS, we must get RHS
and many additional non- negative terms
since x; # 0.

Thus maximum achieved by taking x; =
x,x, = s — a and all other terms 0, but

X(s-x) < %With equality when x :§ (using
AM > GM)
16. For any positive reals x, y, zand a is

the arithmetic mean of x, y, z then x*yYz?*
is

(b) < (xyz)*
(d) none

(@) = (xyz)*
(c) >(xyz)*
Ans. () Let > y > z, then x*yY > xYy*,

as (g) x> (g) Y is obviously true.
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Similarly, yYz% > y?zYandz*x* > z*x?

Multiplying all these, (x¥yYz%)? >

z+x _x+y

XYtz y?tx gz

=>x%yYz? X (x*yYz?)? >

xXty+z, yx+y+z_ ZXty+z

= (x*yYz%)° = (xyz)**
= x*yYz? > (xyz)?

17. The number of integers between 1
and 567 are divisible by either 3 or 5, is

(a) 200
(c) 300

(b) 250
(d) none

Ans. (d) Letz={1,2,3, ....,566, 567}
P={xe g devides x} and

Q:{xeg devides x }

Here, |P|= 189 [ 567= 189x% 3]

And |Q|= 113 [+ 567=113x 5 + 2]

P n Q= set of multiple of both 3 and 5,

|P N Q|=37; |P UQ|= 189+ 113- 37= 265.

18. Sets A and B have 3 and 6 elements
respectively. The minimum number of

elements inAUB s
(@3 (b) 6
(©)9 (d) none

Ans. (b) n(A U B)=> max{n (4),n (B)}
Thus n (A U B)> max {3, 6} = 6.

19. A has n elements. How many (B, C)
aresuchthat#BC Cc A”?
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(a)2n (b) 3™

(c) 4™ (d) none

Ans. (b) There are (1) choices for a subject
B with m elements.

Then each of the remaining n-m elements
can be in C or not, so there are 2"~ ™
choices for C

Thus the total no of pairs (B, C) is
x2nmmon, =x2m.n, =(1+2)"=3"
(from binomial theorem) [~n. =n. ]

20. The value of the integral
2[x]
f_010 |3§fx[]" I dx, where [.] denotes greatest
3x—[x]

integer function is

@20
(c) -10
these

(b) 10
(d) none of

Ans. (d)

‘ 2[x]
Let f(x) = 5750

2[x]
3x—[x]

Clearly f is not defined if x= 0 and when
3x=[X]

So in (-10, 0), f is not defined at x= —g.
When xe(—10, —%)

[X] <0and 3x- [x]<0

[x]
3x—[x]

So,

>0 = f(x) =1

When x € (—é,O)

[X] <0 and 3x- [y] > 0= f(x)=-1
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-1/3 0

dx = d -1)d
_10f(x) x f x+f_1/3( )dx

-10
1

[x] 3 ()O
=[x -(x) 1
—-10

3

bsinx

21. The equation f“ (alsmxl +—

1+cosx

c) dx= 0 gives a relation between

(@) a,bandc
(c)bandc

(b)aandb
(d)aandc

Ans. (d) I =2a#|sinx|dx + 0 +
[*ecdx = 2a [ sinx dx + c.%
4

T

- T
= -2 44—
alcosx] 0 + > c

2a(—-1)+%
NG 2

22. Let f(x) = max. {2- x, 2, 1+ x} then
1 —
Jo f(x) dx=

(@0 (b) 2 (©)
9/2 (d) none of these
Ans. (c) «~ f(x) =2-x, x<0

=2, 0=<x<1

=1+x, x>1

= [} f)dx = [° foodx +
folf(X)dx = f_ol(Z — x)dx + f012 dx
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gt

( 2—%)+2(1—0)

N| O o

23. Let f(x) be a continuous function such
that f(a-x)+f(x)=0 for all x €[0, a].

Then f equals

1+ f(x)

(@) a

f(a)
Ans. (b) Given, f(a- x)= - f(x)

(b) a/2
(d) none of these

(c) ¥

_ra dx a dx _
Now 21= fo 1+ef(x) fo 1+efla—x) —

a dx a dx a
Jo 11/ Jy Tre—f00 — Jydx=a

.I_a
s l=3

24. Let f(x) be an integrable odd function
in [-5, 5] such that f(10+ x)= f(x),

10+x

then [ f(t)dt equals
(@) 0 (b) 2 f(x)dx
(c)>0 (d) none of these

x+10

Ans. (a) Lety= [ " f(t)dt...... (1)

Then, Z—z = f(x+10).1—f(x) =0 [~
f(10+x)= f(X)]

=~y is independent of x.

Putting x=-5in (1), we get

y=[2f(©dt =0 ..o )
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Since y is independent of x, therefore y has
same value for all x.

AL F ) dx=0
1 2 1 ,2
25.1f [ xe* dx = k [, e dx, then

@ k>1
(c) k=1

(b) 0<k<1
(d) none

Ans. (b) Here0<x <1

1
=0<xe* <e¥’ = 0< N xe* dx <

fole"zdx =0< kfolexzdx < fol e’ dx

=0<k
1

<1 [dividing by f e**dx]

0
26. Consider the parabola 3y% — 4y —
6x + 8=0. The points on the axis of this
parabola from where 3 distinct normals
can be drawn are given by

18
1 19
(b) (h, 5) ,Where h > s

(@) (g h),where h > i

2 29
(© (h, 5) ,where h > s
(d) none of these

Ans. (c)

Given parabola is (y - 2)2 =2 (X - 1?,0)

-0y _ 2
Let X=x 9,Y—y .

~Y? = 2x becomes the equation of parabola
with reference to the new origin.

Hence equation of normal will be
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3
Y:mX—m-x—mT

[~ three normals are drawn from point on
the axis (H, 0) (say)]

2
H:1+"‘T = m=+V2H — 1
Formtobereal, H>%
Sh-2>iop>2
9 2 18

[where h is the abscissa w.r.t. the previous
co-ordinate system]

Hence the points are given by
(h, 3) ,where h > s
3 18

27. A (x1,y1) and B (x5, y») are any two
points on the parabola y= cx? + bx + a.
If P(x3, y3) be the point on the arc AB
where the tangent is parallel to the chord
AB, then

(a) x5 is the A.M. between x;and x3
(b) x5 is the G.M. between x;and x3

(c) x5 is the H.M. between x;and x5
(d) none of these

Ans. (d) Slope of tangent at p=

dy _ _Y2=V1
—at (x3,y3) = 2ax3+b = po—

cyr— Yo = [alxg +x) (% — x3) +
b](x; — x3)

L Y2—V1
X2—X1

=a(x;+x,)+ b
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~ From (A),a(x; +x,) + b =2ax;+ b

+
x12x2 — x3
28. Let P (a,p) be any point on parabola
y? = 4x(0 < B < 2). M is the foot of
perpendicular from the focus S to the

tangent at P, then the maximum value of
area of

(@)1 (b)2 (c)

3 @5

Ans. (a) Let a=t%,5 = 2t

2 0<2t<2 = 0<t< 1

Equation of tangent at (t2, 2t) is yt = x +
tZ

If S be the focus, then S =(1, 0)

SM= |1+e2] _

WD V1 + t2

PS=/(t2 — 1)2 + 4t2 = (t? + 1)
PM=+vPS2 —SM2 = tVt2 +1

Area of A PMS=Y% PM.SM=%
W2 +1.4Vt2+ 1

_t(t%+1)
T2

Which is an increasing function hence its
maximum value occurs at t= 1

~ Maximum area= 1 sg. unit.

29. The point A on the parabola y? = 4x
for which |AC-AB | is maximum, where

B=(0,a) and C = (—a,0) is

42

(@) (a, 2a) (b) (4a, 4a)
(c) (a- 2a) (d) none of
these
Ans. (a)

For any three points A, B, and C
JAC - AB|< BC

=~ required point A will be on the
intersection of BC and the parabola.

~ A= (a, 2a) [ AB ia tangent to the
parabola]

30. Let f : R —R be a function defined by
F)=="" then

x|_e
eX+e~x '
(a) ‘f* is one-one and onto
(b) ‘P is one-one but not onto

(c) “f* is not one-one but onto
(d) “f is neither one-one nor onto

Ans. (d)

e

fG) = 7=

Since f(x)=0, forall x <0

= f(x) is a many —one function

eX—e™*
eX+ex’

>0

Lety= X

eX—e™*

1
eX+e~X y

e  1+y
e™x _-1—y
1+ 1+
—e2X = — x =-]og=>
1-y 1-y
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eX—e™* e**—-1

= = , X >0
Y e T e 1

Clearly e?* > 1 forx =0
~y>0 forx >0

~ Range f = [0, o) # co domain f.
Hence f is not onto.

Thus f is a many-one into mapping.

ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &
SOLUTIONS

SET-6

1. Ifxe={1, 2, 3,...... ,9}and
fn(X)=XxxX...... x (n digits),then
frB3)+fa(2) =

(@) 2f2n(1)
(b) F2(1)

(©) f2a(1)
(d)=f2n(4)

Ans. ()
fu(@) =x.1+x.10% + x.103 +

cex.10m 1 = (ao'-1) _ 5(10" -1)
10-1 9

FE@+ L@ = [Fao -] +
3(10n —1) = 1(10" — D" —1+2) =
2 = (D)

2. If a;eR-{0}, =1, 2,3,4and x e R and
X3, a?)x? - 2x(Xia;a;+1) + Y1, af >
0,

Then a4,a;,a3,a, arein

(@) A.P. (b) G.P.
(c) H.P. (d) none of these

Ans. (b) Given quadratic expression=> 0 ..
D<O

= (S e, + 1) -
(Zl 1a12)(21 102) <0

=(a,ay + ayaz + azay)? — (a;? + ay? +
as;?) (a2 + az? +a,?) <0

=(a,® — a;a3)* + (a3® — aa,)* +
(azaz — a1a4)2 =0

=(a? — a;a3)* = 0, (az® — aya,)* =
O, (a2a3 - a1a4)2 == 0

d2 _ % _ Q4

a az as

1 -1 T 1
.L =—+ Y —— b=—+
3. Leta n! =1 G11)r m!

m-1_7T
r=1 G11) then a+b equaals

(@0 (b)1 (c)2
(d) none of these

Ans. (c)

r _r+1-1 1 1

(r+1)! @+ 1l (r+1)!

n-1 s _ 1 1 _
Z =1—-—=a=1
=1 (r41)! n!

Slmllarly + 30, (r+1)' =

~a=1 b=1=a+b=2
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4. 1If Zﬁﬂ[% + %] =21, where [x] denotes
the integral part of x, then k=

(a) 84 (b) 80
(c) 85 (d) none of these
Ans. (b)

21=yk_| E + %] ,where m = k!

[t 2] o] 2]
e O P

=(0+0+--to59terms).+(1+1+
--to (k — 59)terms)

=~ 21= k- 59= k= 80.

5. Let f: R—R such that f(x) is
continuous and attains only rational value
atall real x  and f(3)=4. If
a;,a,,az,a,4,as are in H.P., then

g:l Ay Ari1=
(a) f(5).a,as (b) f(3).a,as
(©) f(3).a1a; (d) £(2).a1a3

Ans. (a)

Since f(x) is continuous and attains only
rational values

=~ f(xX)= constant= 4
~f(2) =f(3) =1f(5) =4
SII’]CG aq,qay,03,04,05 are in H.P.

o al a2 + a2a3 + a3 a4_ + a4_ a5 ==
4a, as = f(5).a, as

6. If three successive terms of a G.P. with
common ratio r >1 from the sides of a

44

triangle and [r] denotes the integral part
of x, then [r] + [-r]=

(a) 0 (b) 1
(c)-1 (d) none
Ans. (b)

Since root of equation

F(X)=x% + 2(a — 3)x + 9 = 0 lie between-
6and 1

~(i) D= 0 (ii) f(-6)>0 (iii) f(1) >0 (iv) -
6<2L v)1>2F

Hence 6 < a < 24—7

~|al =6

6—2
21

1 1 22 1 2 3
—=-418.|&2)=-—-==—
hig 2 21 2 7 14

18 14
o a3h13 = 7? =12

a;=2+3d=2+3.

I
\S}
_|_

N
I

I

7. 1f x4, x5, x3, X4, x5 are in H.P. then
1 . .
— (Xk—1 Xk Xk41) is a root of equation
145

(@x*-3x+2=0
(b)x* —5x—4=0

(©)x2—9x+20=0
(d) x*2—6x—8=0

Ans.(c)
X1, X2, X3, X4, Xg are in H.P.

.4 _
S =1 Xk Xp+1 = X1Xp + Xp X3 + X3xy +
X4 X5 = 4X1X5
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XX =4
xlx Zk 1 Xk Xk+1

Clearly, 4 is a root of equation

x% — 9x + 20 =0.

8. Letf: (0, 0)—>R and F(x)= [, f(t) dt
If F(x?) = x*(1 + x), then f(4) =

(a) 5/4 (b) 7
(c)4 (d) 2
Ans. (c)

Given, F(x)= [, f(D)dt ......... (1)
F(x*) = x2(14+x) ..c.o...... (2)

From (1), F’(x)= f(x)
2 @=F @), 3)
From (1),

F’(x2).2x= 2x+ 3x?

= F(x?) =22

= F'(4) = 22 = 4 [Putting x= 2]
=~ from (3), f(4)=4

9. Ifn>1thenf0 (x+m)n:

(b) ™ 12
(d) ==
Ans. (a)
Put z= x+V1 + x2
-x=V1 + x2

[+0<x< wox #0]
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z%-1
2z

=>z2+x?—-2zx =1+x*=>x =

1[z.2z—(z?=-1).1
-'-dx=—[ ( ) ]dz

2 72
_zz+1

272

dz

When x=0, z=1 and when x= o0,z = o0

o 1 z2+1 1,0, _
== = —f (Z n4
1 zn 2z2
2 n+1 0
z ") dz = —[ ]
n+1 -n-—1

=30~ (=)

_ 1( 2n ) _n

"2\ 1+n2) n2-1

10. If f(x)= ae®+ be* +cx satisfies the
conditions f(0)= -1, f’(log 2)= 28,

5[ () — exldx =2, then

() a=5, b=6,c=3 (b) a=5, b=-6,
c=0 (c) a=-5,b=6,c=3 (d)
none

Ans. (b)

Given f(x)= ae®* + be* + cx ...... (1)
given, f(0)= —1=a+b= —-1....Q2)
£(x)=2 ae?* + be* + cx

~f (log 2)= ael®8e4 4 peloge2 4 .

Given 8a+ 2b+c=28.......... 3)
Given, flog e?* + be*) dx = 32_9
E 2x X 10g4 — g
= [2 e“* + be 0 =3
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= Zelog16 4 pelogt — (9 + b) =2
2 2 2
= 15a+6b=39.......... &)

Thusa=5, b=-6,¢c=0

sm X

11. Let —f(x)— i

0. 1f [{2dx = £ - £QO),
then one of the possible value of k is
(a) -4 (b) 0

(©) 2 (d) 16
Ans. (d)

Given, %(f(x)) = es;jx >0

now [ = f“e

1
2x dx]

dx [put z=x2,dz =
o= f4 Zej::xz do = f116 eSiandz _

[f@177 =f16) - f(1)

=~ f(k)=f(16)

= one possible value of k= 16

12. All the values of a for which flz [a? +
(4 — 4a)x + 4x3] dx < 12 are given by

(a) a=3 (bya<4
(c)0<a<3 (d) none
of these

Ans. (a)

46

2
f [a? + (4 — 4a)x + 4x3] dx
1

2[x 2+(2—2a)[x2]2
1 1

=a?+ (2-2a)3 + 15, Given,a? — 6a
+21<12

=a’-6a+9<0= (a—3)*<0
= (a—3)2=0=>a=3

13. Lt Y7 1(2,21,k + —1, is equal to
2k 2k
@, (b) —
1 2k
©a @)

(2r)k

nk+1

Ans. (d) Reqd. limit = Lt )L

n n
= Lt 2k = Lt 2"2 —
n—oo n—oo n
r=1 r=1
= Zkf x®dx
0
Xk+1 1 Zk
= 2k =
o= re
14. Lt {(k )n} n, k # 0, is equal to
k e
(@) (b) %
(©) ﬁ (d) none of these
Ans. ()
_ 1/an\Y" 1 a\/m
Letp= Lt 2(5) " =3 () =
15. Lt 37 Vn

e
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(a); (b)
(© ﬁ (d) none of these
Ans. (c)
Required limit
N
= Lt Zn=1—2:
o (o )

n 1 1

X TR
(34 o)

1 1
:fox/E(SﬁH)zdx

_ _ 3
Put z= 3vx + 4, then dz= o dx

When x=0, z=4, whenx=1, z=7
. imit=2 7% =2[_1]7 =
~Reqd. limit== [ ' —= = 3[ Z]4 =
2]1 1 2 3 1
SE-d- 522
16. If f(x) = e*cosx.sin x, [x|< 2 =
2,otherwise then f; f(x)dx is equal to

(@0 (b) 1
(c)2 (d)3
Ans. (c)

J_if(x)dx= ]:f(x)dx+ J:f(x)dx
= jzecosx.sinx dx
-2
+f32dx=0+2(3—2),

=2

[ve€*.sinx isan odd function = 2]

47

18. The area of the region enclosed by the
curves y= xe* and y= xe ~ and the line x=
1,is

(a) /e (b) 1- 1/e

(c) 2/e (d) 1- 2/e
Ans. (c)

y=xe* ....... (1)

y=Xxe *...... ()

equating y from (1) and (2) we get
xe* =xe™* = x(e*—e*)=0
=x=0
~ Required area=
1 1
f (y1—y2)dx = f (xe® —xe™) dx
0 0
= [xe* —e*—xe™*
—e™) 1
0
=(e—e)—(0—-¢)
+[(et+e ) —(0+1)]

[N )

19. The area bounded by y = xeX and the
lines |x|=1, y=01s

(@1 (b) 2

(c)4 (d) 6
Ans. (b)

For x >0, curve is y=xe*........ (1)

For curve (1), Z—z =e*(1+x)> 0

~ y is increasing.
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d>y
E = ex(2 +X) >0

-~ curve is convex downward.

Forx <0, y=xe™™

LAY —xq _
= 1-x)>0

=~y is increasing

Y _ o s
—=e*—e*1-x)>0

dx?
= —e*2-x)<0
-~ curve is concave downward.

Required area = 2f01 xe*x dx =
2[xe* — e*] é =2[(e—e)—(0—e%)] =2

20. A bag contains unlimited number of
white, red, black, and blue balls. The
number of ways of selecting 10 balls so
that there is at least one ball of each color
is

(a) 180
(c) 192

(b0 270
(d) none

Ans. (d) Number of ways= coefficient of
XOinX+X*+Xx3+-)*

= coefficient of X1%in X*(1 — X)™*
= coefficient of X6in (1 —X)™*

_ (6+1)(6+2)(6+3)
- 1.2.3
_(r+1)(r+2)(r+3)

X)= 1.2.3 ]

[-coefficient of x"in(1 —

_ 7X8X9 _
1x2x3

84.

21. The number of ways of selecting r
balls with replacement out of n balls
numbered

48

1,2,3,....,100 such that the largest
numbered selected is 10 is 271, then r=

(a) 3
(©)5

(b) 4
(d) none

Ans. (a) from the given condition, we can
write

10" —9"= 271,

Applying Trial and error method:-

r=1, 10-9=1

r=2, 10%2-92=19
r=3, 103-93=271
~r=3.

22. N men and n women sit along a line
alternatively in x ways and along a circle
in y ways such that x= 10y, then the
number of ways in which n men can sit at
a round table so that all shall not have
same neighbors is

(a) 6 (b) 12
(c) 36 (d)
none

2. lnln —n
ln-1 Ln

X
Ans. (b) 5=
= Xx=2ny=10y =n=5
Hence the required number = % x | 4=12.

23. A contest consists of predicting the
result (win, draw or defeat) of 10
matches. The number of ways in which
one entry contains at least 6 incorrect
results is
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(a) X12¢10,,.3" (b)
Y-110..27 (c)
2610, (d) none

Ans. (d) Since total number of ways
predicting the results of one match is 3, so
results of 10 match is 31°, now number of
ways that the result of one match is correct
is 1 and also number of ways to predict
wrongly of one match is 2 .

No. of ways to predict wrongly exactly r
matches =10, . 2" 119"

= The required number is 310 —
YF-110.,.27

24. Let 1 to 20 are placed in any around a
circle. Then the sum of some 3
consecutive numbers must be at least

(a) 30 (b) 31
(c) 32 (d) none
Ans. (C) Suppose x4, X3, ...., X5, be the

numbers placed around the circle. Now the
mean of the 20 sums of 3 consecutive
numbers such as (x; + x, + x3), (x, + x3 +

X4)y oenns

(x19 + X20 + X21), (X20 + X1 + x3) IS

1 3%x20x21
5{3(951 +x2+---+x20)}= =

2x20
31.5

Thus from Pigon hole principle that at least
one of the sums must be > 32.

25. The number of different seven—digit

numbers can be written using only there
digits 1, 2, 3 under the condition that the
digit 2 occurs twice in each number is

49

(a) 512
(c) 672

(b) 640
(d) none

Ans. (c) We have to put 2 twice in each
numbers, so any 2 out of the 7 places can be
chosen in 7c, ways. The remaining 5 places
can be filled with the other two numbers in
25 ways.

The required numbers of numbers are 7¢, X
25=672.

26. The value of {Z120(*) ([ "l)(mo 9}/
(), where M - k > 100, k >100, is

(a) + (b) %

OF (d) none

Ans. (8) {2120 (1) =Y ()

_k 100[(k)(1ﬂgokz)_ 100 i(’f)(l"g;fi)]

:(M—100) i=oL (M) =0 (mM-100)(;1 )

k
M.IOO (11\(;10) _k

R x
(M—loo)(;go) M

- M-100" (1A(;10)

27. Let n be an odd positive integer. If
i1,iy,....,1, isapermutation of 1, 2, 3,

ooy I,

Then (1-i4)(2-i)....(n-i,,)is

(a) Odd
(c) prime

(b) even
(d) none

Ans. (b) since nis odd, let n=2m+ 1, where
m is a non-negative integer.
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Then set s ={1, 2, ..., n} contains m+ 1 odd
nos, namely 2, 4, ..., 2m.

This is also true for the
permutation iy, i,, ...., i,, of .

Consider m+ 1 numbers1 —i;, 3 — i3, .... N
- i,, which are of the fromr - i,., where r is
odd.

Since ic is even for only m values of s, by
P.H.P., one of the m+ 1, numbers,

iq,1p, ., 1, SAY it is 0dd, where t is also
odd. Hence t-i; is even and the product (1-
i1)(2-i5)....(n-i,,) is even.

© . _1Vﬁ—vn—1__
28. The value of };,_; sin Jri
T T
(@) (b) 5
Tl' T
©-3 (d)3
I Vn— Tl—l)
Ans. (b) t,, = sin (m
cr —cin—1 L _ -1t
“ly = SinTC = —sinT o=
- g 1
~S, =sin"1(1) — sin 1\/ﬁ
~S,= Lt S, = sin"1(1) —sin"1(0)
n—-oo

29. The number of ways to give 16
different things to 3 persons, according as
A<B<C sothatB gets 1 more than A
and C get 2 more than B, is

4!5!7!
16!

(d) none

(a) 41517 (b)

16!
(C)MSW!

Ans. (c) Here x+ y +z=16, Xx=y+1, y=z+2

~X=4,y=5,7=7

50

=~ Required number of ways = 16c¢, X
16!

12C5 X 7C7 = _4!5!7!

30. For how many positive integers n less
than 17, Ln+ Ln+1+ [ n+2 is an integral

multiple of 49? (a) 4
(b) 5 (c)6
(d) none

Ans. (b) Ln+ Ln+1+ [ n+2=
Ln{1+(n+1)+(n+2)(n+1)}= Ln(n + 2)?

Since 49 divides (n + 2)? Ln, so either 7
devides (n+2) or 49 divides [n. Thus n=5,
12, 14, 15, 16, i.e. number of integers are 5.

ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &
SOLUTIONS

SET -7

1. Let x, y, z be different from 1 satisfying
x+y +z = 2007,

Then the value of 1 + 1 + 1 is
1-x 1-y 1-z

@0 ()1 (92008 (d)5—

1 1 1
Ans:-(@) —+ —+ —
1-x 1-y 1-z
_ 3-2(x+y+2)+ (xy+yz+zx) _ 3-2X2007+4011 _

T -00-y@-2) T A-0)0-y)(1-2)
0

2.InaAABC,ifr=1r, + r; +
ri, and angle(A) >
g then the range of 2 is equal to

(@) (%2, 2)
(c) (2, 3)

(b) (2, )
(d) (3, )
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Ans. (a)

r = T2+T3—7”1

A_ A A _ A
s s-b s—c s—a
1 1 1 1
S s—a s—b s-—c
2s—a s(s—a)

:>25—b—c:(s—b)(s—c)

2s—a 2A S
= cot*— = —
a 2 a

1( t2A+1) >
= — — - —
2\ 3

a
27
E —
2)

=

3. Ifaq, a,, ...., a, are positive real nos,
then 22+ 2 4 ... 4 2014 Mg always

ap as a, aq
N=>n i)<n ii)n /n iv) none of
these.

Ans:- AM > GM gives

ﬂ+...+£+a_n >

az an a

n az An-1 Qan _ 1
g ....—an .—al
an

oLy o> g

az an a

gt
4. The maximum possible value of xy?z3
subject to the condition xyz > 0 and
X+y+z=31is
i) 1

27 /16

Ans:- x+y+z=3

i) 1/g i1/, v

51

>x.2432=3
2 3

Applying AM > GM,

2y z
x+2°2432
T R / V2 (%3
So, 1+2+43 =6 x(z) (3)

3 xy?z3
= (5)6 = 133

27
= xy?z3 < =

5. If y(t) is a solution of (1+t)% —ty=1
and y(t) then y(1) equals

(@) Y
(d)- %2

(b)e+ % (c)et+*%

Ans:- (d)d—y—Ly =

dt 1+t 1+t

ALF. = e~ Tt — o-(t-loga+t)) —
e t.(1+10)
Multiplying and integrating

ac 4
(1+t)_e T

ye tl.(1+t)=fet.(1+10)
c
When y(0) =-1, = c=0.

wye t.(1+t)=—et

Y=~ =y(1)=-%2.

1+t

6. If the quadratic equation x* + ax +
b + 1 = 0 has non- zero

Integer solutions, then

a) a? + b? is a prime number
b) ab is prime number
¢) Botha)andb)
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d) Neither a) nor b)
Ans:- (d) a+p=-a, af= (b+ 1)
~a*+b*= (a+B)*+ (af — 1)?

=(a®?+1)(p*+1)

7.Letu= (V5 —2)/3 — (V5 + 2)/3 and
v= (V189 — 8) /3 — (V189 + 8) /3,

Then for each positive integer n, u™ +
vn+1 =7

(a) -1
©1

Ans:- (D) u® = (V5 -2) - (V5+2) —
3(V5 - 2)1/3(\/§ + 2)1/3. (w)

(b)0
(d) 2

ie.ud=—-4-3u

= U-1)(u?—u+4)=0

u? —u + 4 is always +ve. So, u=1
Similarly v3 + 15v + 16 = 0

= (V+1)(v2—v+16)=0
=>v=-1

So, foreach n, u™ + v™**1 =0

8. The number of real values of x
satisfying the equation

x.Zl/x + %.sz 4is/are

@1
(©)3

(b) 2
(d)4

52

Ans:- (a) if x <0, LHS = -ve but RHS= +ve
If x =0, LHS= not defined.

If x >0, use AM > GM inequality
x. 2% 4 2. 2% 2 2V 2 etx 2 2,427 =4

= x.2%x= i 2% 180, x=1.

9. Let f (x) and g (x) be functions, which
take integers as arguments. Let

f(x+y) =1 (x)+f(y)+8forall integers x
andy. Let f (x) = x for all negative
numbers x and let g(8)=17, then f (0)="?

(@ 8 (b) 9 (©)
17 (d) 72

Ans:- (C) put X = -8, y= 8 in the given
functional equation.

2007.2006.2004.2003
%x (2005)*

denotes the greatest integer integer less

((x+1).x2)+1 is
(x2+1)

10. Letx = [

1, where [X]

than or equal to x. then

(a) 80
(c) 80.5

(b) 80.2
(d) 81

2007 2006 2004 2003]
2005 2005 2005 2005

Ans:- (b) x=[3.

7009 13005 ) L3009 L g009)]

)(1 )]

= [3(1+

4
(2005)2

1
(2005)2

= [3(1

= X=2.
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11. A graph defined in polar co —
ordinates by r (8) = cos 0+§. The smallest
X —C0- ordinates of any point on this
graph is

(a) 1/16
(c) 1/8

(b) -1/16
(d) -1/8

Ans:- (b) x =r cos@
=cos? 6 + %cos@
= (cost) +)% = 1/16

12. A monic polynomial is one in which
the coefficient of the highest order term is
1. The monic polynomial P(x) (with
integer coefficient) of least degree that

satisfies P (V2 + V5)=0 is

(@) x* — x3 — 14x% + 9=0
(b) x* —14x*> +9=0

(©) x* + x3 — 14x% + 9=0
(d) x* + 14x% -9

ANS:- (b) Let x=v2 + /5 . Squaring, x? =
7 +2V10

= x? — 7 = 24/10. Squaring again, x* —
14x% 4+ 9=0

13. The number of distinct real roots of
the equation x* + 8x2% + 16 = 4x? —
12x+9is

@) 1 (b) 2
(©)3 (d) 4
Ans:- (@) (x? +4)2 = (2x—3)? =>x%+

4 =+(2x—3)

Giving x> —2x + 7 =0and x?+2x +1 = 0.

53

Solving x = - 1 only one real root.

14. If in an isosceles triangle with base ‘a’,
vertical angle 20° and lateral side of each
wih length ‘b’ is given then the value of
a3 + b3 equals

(a) 3ab
(c) 3a?b

(b) 3ab?
(d)3

Ans:- (b) sin 10° = % = sin30° =

3 sin10° — 4sin310°

1_ 3a 4a®
2 2b 8b3

= a3 + b3 = 3ab?.

15. If a® + b% + ¢? — 2ab = 0, then the
point of concurrency of family of lies ax+
by+ c=0 lies on the line

(b)y=x+1
(d)3x=y

(@) y=x
(©y=-x

Ans:- (€) (a—b)*—c?=0

= (a-b -c)(a- b+ ¢)=0

If a- b= ¢ = ax + by+ (a-b)=0

= a (X+1)+b(y-1)=0=> x=-1,y=1
If a-b = -c = ax+ by+ (b-a) =0

= a (x- 1)+ b(y +1)=0

= x=1, y=-1.

16. The value of k for which the
inequality kcos? x — kcosx +1 >0V x €
(—o0, 0)holds is
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() k<-5 (b) k > 4
(©—5;<k<4 (d)
1
ESkSS
Ans:- (c) kcos? x —kcosx+1>0Vx €

(=00, )

= k (cos?x —cosx)+1>0............ (i)

1 1
But cos? x — cosx = (cosx — 5)2 -3

=>—i£ cos?’x —cosx <2
From (i) we get 2k+1 >0 = k > —%

:>—E+120
4
>k<4

:—%sks4

17. The remainder obtained when 1! +2!
+3!+....+ 95! is divided by 15, is

@ 3 (b)5
(©7 (d) none

Ans. (a) here 1! +21 +3! +4!1 =33 and n! is
divisible by 15 where n > 5.

The remainder is same as the remainder
obtained by dividing 33 with 15, i.e., 3.

18. The value of Lt o js
x—-0 tanx—x

(@0 (b) 1

(c)e (d) none

tanx_ ,x tanx_
Ans.(b) Lt === Lte*(—)=
x—0 x—0

-0 tanx—x tanx— x

e.log.e =1

19. Total number of solutions of sinx = %

is
(@ 0; (b)3; (c)4; (d)none

Ans. (d) Two graphs meet exactly 6 times,
hence, it has 6 solutions. Draw graph
yourself.

20. A rigid body is spinning about a fixed
point (3, -2, -1) with angular velocity of 4
rad/sec., the axis of rotation being in
the direction of (1, 2, -2), then the velocity
of the particle at the point (4, 1, 1) is

(a) 4/3 (1, -4, 10)
() 4/3 (10, -4, 1)

(b) 4/3 (4, -10, 1)
(d) 4/3(10, 4, 1)

Ans:- (c)

5> _ af1+2j-2k\ _ 4/, R 7~
w —4(m)—§(1+2]—2k)

rr=0"P-O0"A
= (41+j+k)-(31-2§-k)= 1+3j+ 2k
A - 4 A N i a a
V=w3<r=§(1+2]— 2k)><(1+3]+
2k) = §(1Oi — 45+ k)
21. A particle has an angular speed of 3
rad /sec and the axis of rotation passes
through the point (1, 2, 2) and (1, 2, -2),
then the velocity of the particle at the
point P(3, 6, 4) is

3 3
@ 5282 (0)75(2202)

3
(©==(22-8-2)  (d

3

=+ (22,-8,2)

Ans:- ()
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O’A=i+j+ 2k

OB =i+2j— 2k

~ A’B=j-4k

= |AB |= V17

AP = (31+6j+4k)- (1+j+2Kk)
= 21+55+2k

ww” = —=(j-4k

o= \/ﬁ(]' )

V= W = =(-4k)x (21 + 5 + 2K) =
= (221 - 8) - 2k)

22. In a group of equal number of boys
and girls, 20% girls and 35% boys are
graduate. If a member of the group is
selected at random, then the probability
of this member not being a graduate is

(a) 55 (b) > ()
E

29
20 Clbms

Ans. (d) Let A and B denotes the events that
the member selected at random is a boy and
a girl respectively. Let E denotes the event

that the member selected is a graduate.
Reqd. prob.

=1- [P(A).P(E/A)+P(B).P(E/B)]

—q- |35 120 55y _ 11y _2°
=1- [2 *T00 T 27700 200] - (1 4-0) T 40
23. for any two events Aand B in a

sample space

P(A)+P(B)-1
P(B)

(a) P (A/B)=

always true.

,P(B) #01is

55

(b) P (ANB) = P (A)- P(ANB) does not
hold

(c) P (AUB) =1-P (A).P(B) if A and B are
independent

(d) P (AUB) =1-P (A).P(B) if A and B are
disjoint

Ans. (c)
P(A/B)+P(A/B)=1,
~. P(A+B)= 1-P(A/B)

1-P(AuB) P(AUB)

P(B) P(B")
_P(A'NnB) , A’
~ P(BHY <§>

24. one hundred identical coins, each with
probability P, of showing up heads are
tossed. If 0 < P <1 and the probability of
heads showing on 50 coins is equal to that
of the heads showing on 51 coins, then p=

(a)3 OF=
(©) o (d) -
Ans. (d)

Here n=100, p=p, g= 1-p
Given, p(50) = p(51)

=100, p°(1 — p)>° = 100, p5'(1 —
p)*°

100! 100!
= 501501 L P T 5112017
=51(1-p)=50p =p
51
~ 101
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25. A box contains 24 identical balls of
which 12 are white and 12 are black. The
balls are drawn at random from the box
one at a time with replacement. The
probability that a white ball is drawn for
the 4% time on the 7t draw is

(b) %
(d) 5

(a) =
(©) =

Ans. (c) Probability of drawing a white ball

. 12 1
in any draw=— = =
24 2

A white ball will be drawn for the 4™ time
on the 71" draw ball is drawn in the 7" draw
and 3 white balls are drawn in the first 6
draws.

». Required probability = 6.,p*q>.p =
13 /131 s
20.(;)-(3) 2=%

26. If [x]denotes the integral part of x,
then the domain of the function

f(x)= sin"![2x% — 3] + log,{log /2 (x* —
5x + 5)} is

0(f) o
©) (— g,—1>u<1, g) (d)

none of these
Ans. (d)
For f(x) to be defined
(i) [2x? —3]=-1,0, 1
=-1<2x?-3<2=2<2x*<5

5
=>1§x2<5

56

1 <x?*=x<-lorx >1

5 5 5
x2<—=>—\/:<x<\/:
2 2 2
5 5
=>—\/;<xs—1or1Sx<\/;

(i) x2-5x+5>0 = x<

5-V5

== orx
2 2

logi (x> —5x+5) >0
2

(iii)
=x2—5x+5<(%)0

= x?—-5x+5<1 = x?—-5x+
4 <0

= 1<X<4d oorie. (©)

From (A), (B) and (C), 1 <x <22

27.1f f(x)= Lt Lt cos*™n!mx, then

m—oo n—-oo

range of f(x)is

(@) [0, 1] (b) [0, 1]
(c) (0. 1) (d) {0}
Ans. (b)

When x is rational say p/q , then n! xm is a
multiple of = and cos?n!xm = 1

Lt 1m=1

m—oo

~ Lt cos®™nlxm =
m—0o

1

- f(x)=

When x is irrational,
n! Xxm #a multiple of

~cos®nlxm # 1



Challenging Mathematical Problems

~0<cos’nlxmr <1

Lt cos®™nlxm =

m—oco

Lt (cos?n!xm)™ =0

m—oo

Thus f(x) = 0, when X is rational
=1, when X is irrational
~ Range f= {0, 1}

28. The normal at any point P (¢2, 2t) on
the parabola y? = 4x meets the curve
again at Q, the area of APOQ, O being the

origin is%(l + t%)(2 + t?) then

@k>2
(c)k<2

(b) k=2
(d) k=1

Ans. (b) Given P = (t?, 2t)

Given parabolais y? = 4x ........... (1)
Here a= 1.

Let Q=(t,2,2t;)

Since normal at P meet the curve again at Q.

2 t?42
—t—?— R PETTEEpY (2)

tl =
Now O= (0, 0), P= (t2, 2t), Q=(t,?, 2t;)
Given,

%(1 +t2)(2 + t2) = area of APOQ

= -[t2.2t; —2t.t,%] = |t?t, — tt,?| =

|—t2 (t2+2) _¢ (t2+2)°

2 t2

@| = (t2+2)|t+

= (t2+2)|t+

(t2+2)] _ /.o (14t)?
e |—(t +2)2 -

57

k=2

29. If {x} denotes the fractional part of X,
3200

then { } =

8

1 3
@) 8 (b) s
© g (d) none
Ans. (d)
3200 9100 (1 4 g)100

8 8 3

_ 1+100,8+ 100, 8% + - 4 8100
- 8

1 3
= § + an integer

3200 1
- {T} T8
30. Which of the following function does
not obey mean value theorem in [0, 1]

(@) f(x)= % - X, X <Y%; f(x):G — x)z'x > %

(b) () =% x % 0; f(x) = L,x = 0

(©) f(x)=x [x|
(d) f(x)= Ix|

Ans. () Let f(x) =x3 —3x + k
Then £(x) =3(x2 — 1) < 0in (0,1)
= f(x) has no root in (0, 1)

But f(x) = 0 has two distinct roots aand g in
0.1)

= f’(x)= 0 has at least one root in (a, £).
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ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &
SOLUTIONS

SET -8

1. If [x] denotes the integral part of x,

then Lt sin[cosx] _

x—0 1+[cosx]

(b) 1 (c) ==

() 0 .

(d) does not exist

Ans. () x_)IE)t_O[cos x]=0

[+ whenx —0-0,0<cosx<1]and

Lt [cosx] =0
x—>0+0

[ whenx —0+0,0<cosx<1]

. sin[cosx] _ sin0 __
" x50-0 1+[cosx] 1+0
sin[cos x sin 0
0 Lt Snlcosd_sin0_
x—0+0 1+[cosx] 1+0

~Required limit =0

then

— n-1 x
2. Letf(x)= Lt Yot e s ey

(a) f(x) is continuous but not
differentiable at x=0

(b) f(x) is both continuous and
differentiable at x= 0

(c) f(x) is neither continuous nor
differentiable at x=0

(d) f(x) is a periodic function

Ans. (c)

X

bl = T DG Dx+
B r+Dx+1-(0x+1)
C (rx+ D[(r + Dx + 1]

1 1
T Ox+1) T+Dx+1

=1,x+0=0,x

ALt S, = Lt (1-——)

n—oo n—oo nx+1

1,x+0

Thus, f(x)= {o o

xl_.:cof(x) =1land f(0) =0

Hence f(x) is neither continuous nor
differentiable at x= 0

Clearly f(x) is not a periodic function.

log(2+x)—x%"sinx

3. Let f(x)= n];Eo T then f(x) is
discontinuous at
(a) x=1only (b) x=-1 only
(c)x=-1,1only (d) no point
Ans. ()
Lt X?* = Lt (x?)"
n—oo n—-oo
0, x2>1
=<0, 0<x*<1
1, x> =1
o, x< —lorx>1
=10, -1<x<1
1, x= +1
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~ f(x) 5. If f(x) = p [sin x|+ge!*! +
—sinx, x< —lorx>1 r|x|? and f(x) is differentiable at x=0,
log(2 + x), —1<x<1 then
log(2 + x) — sinx
= 4
2 ’ = A () p= 4= r=0
b) p=0, q=0, r==any real number
Lt f(x) = —sinl, Lt f(x) (b)p=0.9 Y
x-14+0 x—=1-0

=log3, Lt f(x) (¢)9=0,r=0,p i_s any real number
X140 (d) r=0, p=0, q is any real number
= LEllog(Z +x) =0,
i Ans. (b)
x—»lit—of(x) = x_l;'El(— sinx) = sinl AX=0,
Clearly f(x) is discontinuous only at two L.H. derivative of p [sin x|= - p
points x=-1, 1

] R.H. derivative of p [sin X|=p
4. The function f(x) = max {(1-x), (1+x), 2}

is, where X €(-0, ) =~ For p [sin x| to be differentiable at x= 0, p=
-porp=0

(a) discontinuous at all points

(b) differentiable at all points At x= 0, L.H. derivative of ge*I=q

(c) differentiable at all points except -1 For ge!*lto be differentiable at x= 0, -q = q

and1 (d) continuous at all points org=0

except-1and 1
dc.of r|x|3atx=0is0

Ans. (c)

= for f(x) to be differentiable at x=0, p=0,
We draw the graph of y=1- X, y= 1+ x and y g= Oand r may be any real number.
=2

Second method:

f(x)= max.{1-x, 1+x, 2} s ©)
=2 -

plsin h|+qe™M+r|n|3-q

£(0-0)= Lt
A f(X)=1-x,x<-1=2, -1<x<2 = 14X, X > h—0-0

2 Lt
h—0-0 h
From graph |_t IS clea_r that f(x) is continuous —psinh+ geh —rh3 —g
at all x and differentiable at all x except x= - =, Lot . .
land x=1 _ L sinh
"~ h—0-0 h
qe" —1)
_ _vh?
—h r
= -pP—dq
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Similarly, f* (0+0)=ptq

Since f(x) is differentiable at x=0
~ £(0- 0) = £(0+ 0)= - p- g= p+ q
= p+0=0

Here r may be any real number.

6. Letf(x)=a3 —x2+x+1,
gx)=max.{f(t),0<t<x},0<x<1
=3 —-x1<x <2

then in [0, 2] the points where g(x) is not
differentiable is (are)

(@1
(c)land?2
these

(2)2
(d) none of

Ans. (@) f(t) = t3—t?+t+1
2P @M)=3t2-2t+1>0

=~ f(t) is an increasing function.
Since 0<t<x

smax fit)=f(x)=x3 —x?2+x + 1

Thusg(X)=x3 —x2+x+1,0<x < 1=3-
X, 1<x<2

The only doubtful point for differentiability
of g(x)in [0, 2]isx=1

Clearly, Lt glx)=13-12+1+4+1=
x—1+0
2
x_)th+0g(x) = x[;t1(3 —x) =2and g(1)
=2
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= g(x) is continuous at x= 1

Alsog (x)=3x?—-2x+1,0<x<1=
-1,1<x<2

# g (1-0=3.12 - 2.1+ 1 = 2 and
g (1+0)=-1

Hence g(x) is not differentiable at x= 1.

7. If [x] denotes the integral part of x and
sinﬁ+sin m[x+1]
f(x)=[X] , then

1+[x]

(a) f(x) is continuous in R
(b) f(x) is continuous but not
differentiable in R

(c) f*(x) exists for all x in R
(d) f(x) is discontinuous at all integer
points in R

Ans. (d)
Sinm [x+1]=0
Also [x+1]=[x]+ 1

T

. S _
= f(x)= 0 S e atx =n,n €
I, f(x) =£—nsin% forn—-1<x<

n[x]=n-1
« f(x)= “=sin

Lt n—1 .
x—»n—Of(x) n St 4’

Hence

S i
= (m)= T o

=~ f(x) is discontinuous at all n € 1
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tan?x]-1
[

8. Let f(x) = Lo =1

nm + g then f(x) is

,x;tmti%:O,x:

(a) continuous at all x
Y3
X==
4

none

(b) continuous at
(c) discontinuous at x= % (d)

Ans. (c)
Since tan x is not defined at

X=(2n+1)Z,n €
I, therefore f(x)is discontinuous at x =
2n+1) g,n el

Now f G) =0
L f= Lt [tan?x] — 1
x_,z_of XE E tantx — 1
4 4
0—-1

Lt ——— = o
X2 —0 tan’x — 1

Hence f(x) is discontinuous at x= %

9. Letf(x)= [, ¢ sin%dt, then the number
of points of discontinuity of f(x) in (0, i) is

(@0 (b)1
(c)2 (d) more than 2
Ans. (a)

X

1
tsin—dt
t

foo= |

0
- P(x)= x sin =
~ f(x)=x sin -

Clearly f°(x) is a finite number at all x in (0,
).
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=~ f(x) is differentiable and hence continuous
atall x in (0, m)

10. if [x] denotes the integral part of x and
in (0, m), we define

2(sinx—sin™x)+|sinx—sin™x|
f(x)= [oma-siw s Siil) _ 3y =
2(sinx—sin"x)—|sinx—sin"x|

gxigthenforn>1

() f(x) is continuous but not

differentiable at x= g

(b) both continuous and differentiable
at x= g

(c) (c) neither continuous nor
differentiable at x= >

(d) x]ltf f(x) exist but xlltz f(x) #

3
Ans. (b)

ForO0<x < §0r§<x< T0 <sinx <
1

~ forn>1,sin x> sin*x

- f(x)= [3(sin x—sin*x)

sin x—sin"x

]= 3,x ¢E=3,x=
2

2

Thusin (0, m), f(x) =3

Hence f(x)is continuous and differentiable at
X= >

11. If[x] denotes the integral part of x and
f(x) = [n+ psinx],0<x<m, nelandpisa
prime number, then the number of points
where f(x) is not differentiable is

(a) p-1 (b) p

(c) 2p-1 (d) 2p +1
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Ans. (c) [X] is not differentiable at integral
points.

Also [n+ p sin x]=n+ [p sin X]

=~ [p sin x] is not differentiable, where p sin
X is an integer. But p is prime and 0 < sin X
<I[+v0<x<m

=~ p sin x is an integer only when

Sinx = %’ where 0<r<pandre N

Forr=p, sin x=1 = x= g in (0, m)
. T
ForO<r<p, smx:;
~x=sin"'< orm—sin"1=
p p

Number of such values of x=p- 1+p- 1=2p
-2

=~ Total number of points where f(x) is not
differentiable

=1+2p-2=2p-1
sec 9 tan* 0
12. If - then
() |bl=|al (b) Ib[< |a]
(©) |b|= |a] (d) none of these
Ans. (b)
sec*6 N tan*o 1 sec?@ — tan?6
a b a+b a+b
sec?6

20 _
=(@tD) [(a + b)sec0 — a] +

tan?0 2 _
(i [(a+ b)tan“6 + b] =0

= atan®6 + bsec?9 =0

62

=sin?f = —Z is non-negative and < 1=
HEE!

a

13. If ¢ be a positive constant and [f(y)-
f(x)|< c(y — x)? for all real x and y, then

(@) f(x)=0 for all x
(c) P(x)=0 for all x
X

(b) f(x)=x for all x
(d) P(x)=c for all

Ans. (c)
Given, [f(y)- f(x)| <c(y —x)%,¢c¢ >0

— |f(Y) )

=If(y)- fx)| <cly — x|

cly —x| = Lt |M| <Lt cly — x|
y-x

y-x
= ') <0
=|f"(x)| < 0 for all real x

= f(x)=0vxe R
3
14. Let f(t)in t. then =~ { [ f(t)dt}

(a) has a value 0 when x=0
(b) has a value 0 when x=1, x=4/9

(c) has a value 9e? — 4e when x=e
(d) has a differential coefficient 27¢ -8
when x=e

3
Ans. (c) % [ f®) dt = f(x%).3x% -
f(x?).2x
= logx3.3x% —logx?.2x

= 9x%logx — 4x logx
= x logx(9x — 4)
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dz
let z = xlogx (9x — 4)thena

=(1+logx)(9x — 4)
+ 9x log x

A
— =2(9e —4)+9e
dx
=27e —8

atx = e,

15.Ifa, a4, a3, ...a3,_1, b arein A. P,

a,B1,B2 ...B2n-1,b arein G.P.and a,
Y1, Y2 - Y2n-1, b arein H.P., where a, b
are positive, then the equation

a,x* — Bpox + vy, = 0 has

(a) real and equal roots
(b) real and unequal roots

(c) imaginary roots
(d) roots which are in A.P.

Ans. (c)

The middle terms of the A.P., G.P. and H.P.

are a,,, B, and y, respectively
s~ ap,=AM. of aand b,
Bn=G.M. of aand b,
¥n=H.M. of aand b,

AH:GZ

o ¥ = B’

Now, discreminant of given equation
:ﬁnz —4anyn = 30y, <0 (“an, Yn

are positive)
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16. If a,, = the digit at units place in the
number 1! +2! +3! +...+n! for n=> 4,

then a4, as, ag, ... are in

(@) A.P.only (b) G.P. only (c)
A.P.and G.P. only (d) AP., G.P,
and H.P.

Ans.(c)

11421431 +41 =33

The digits at units place in each of 51,6 !,...
is0

Ny =as=ag=--=3

Clearly a4, as, ag, ... are in A.P. and G.P. but
not in H.P. as they are equal.

17. Letp, q, r € R* and 27pqr >
(p + q + r)3 and 3p +4q +5r = 12 then
p3 + g* + r5 isequal to

(@ 3
(d) none of these.

(b) 6 (c) 2

Ans. (c)

11+21+3 1441 =33

The digits at units place ineach of 5!, 6 !,...
is0

Ny =0ag = ag =+ =3

Clearly a,, as, ag, ... are in A.P. and G.P. but
not in H.P. as they are equal.

18. If (2+ x)(2+x%) (2 + x3) ... (2 + x100) =
r_ox", then n equals

(a) 2550
(c) 28

(b) 5050
(d) none of these.
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100x101
Ans. (b) xn — x1+2+3+-~+100 — XT —

XSOSO

= n= 5050

19.If p, q, 1, s € R, then equation (x% +
px +3q)(- x* + rx + q)(- x* + sx — 2q)=
0 has

(a) 6 real roots
(b) at least two real roots

(c) 2 real and 4 imaginary roots
(d) 4 real and 2 imaginary roots.

Ans. (b)

Di+D,+ Dy =p*—12q + 7% +4q +
s2+8g=p?+r?+s2=0

= at least one of D;,D,,D; > 0

20. If a, b, c, d, are four non-zero real
numbers such that (d + a — b)? +

(d + b — ¢)?= 0 and roots of the equation
a(b-c) x2 + b(c-a)x + c(a-b)= 0 and real
and equal, then a, b, ¢

(a) are equal (b) are not equal
zero  (d) none of the above

(c) are

Ans. (a) Equation a(b — ¢)x? +
b(c — a)x + c(a — b)= 0 has equal roots

2ac
= b= =5
a+c

(d+a-b)>+(d+b—-c)*>=0
= a-b=b-c=-d = 2b=a+c

= —=a+¢ = (a—c)’=0=a=c
a+c

From (2), b=a
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Thus a= b= c.

21. If p, q be non zero real numbers and
f(x)= 0in [0, 2] and [ £(x). (x? + px +
q)dx = foz f(x).(x* +px+q)dx =0
then equation x* + px + q= 0 has

(a) two imaginary roots
(b) no root in (0, 2)

(c) one root in (0,1) and other in (1,2)
(d) one root in (-0, 0) and other in (2,00)

Ans. (c)

Let F(x) = [ f(x)(x? + px + q)dx,
Then according to question

F(1) -F(0) =0, F(2) - F(1) =0

« F(0) = F(1) and F(1)= F(2)

Hence, equation F’(x)= 0 i.e. equation
fx). x?+px+q)=0

i.e., equation x? + px + q = 0 has at least
one root (here exactly one root) in (0, 1) and
exactly one root in (1, 2).

22.1fa,b,c,eR,a=0and (b—1)? <
4ac, then the number of roots of the
system of equation (in three unknowns
X1, X2, X3)

ax.>+bx, +c=x,
ax;* + bx, + ¢ = x5
ax;*+bx;+c=1 s

(@ 0 (b) 1 (©)
2 (d)3

Ans. (a) Let f(x) = ax? + (b — 1)x+c
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Given system of equation is equivalent

fx1)=x2—%1
to f(x2)=x3—x2}

flxz)=x1—x3
= f(x) + f(x) + f(x3) =0

~af(x) +af(xy) + af (x3) =0 (not
possible)

As (b —1)? —4ac < 0.

~af (xq),af (x2),af (x3) > 0.

Hence given system of equation has no real
root.

23. If a, B are the roots of the equation
x%-ax +b=0and 4,, = a™ + B then
which of the following is true?

(@) An+1 = ad, + b4, 4
(b) An+1 = bAn + aAn—l

(€) Apy1 = ady — bAy, 4
(d) Apy1 = bA, — ady, 4

Ans.(a)

a+f=a, af=b

Given, A, = a™ + "

Now, Apyq = a4+ pgntl

=(a" +p")(a+p)-ap(a™t + ")
=ad, + bA,_,

24. If x satisfies |[x-1|+|x-2|+|x-3|= 6, then

(a)0<x <4
(c) x<0orx =>4

(b)x<—-20rx =>4
dx=0

Ans. (c)
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Forx<1,-3x+6>26=>x<0

Forl<x<2,—x+4 = 6= x< -2
(not acceptable as 1< x < 2)

Forx>3,3x—6>26 =x>4

From (A) and (B) all positive value of x are
givenbyx< 0or x > 4

sinx cosx 1_ i
25.2 + 2 =2 5

(a) only for x =0
(c) for all real x

(b) only for x< 0
(d) only for x #0

Ans. (c)

Since A.M. > G.M

zsin X 4pCOSX

> 4/2sinx 9cosx —
> =

2(%)(Sinx+cosx) — 2(\/%) Sin(x+%)

1. 1
— 2sinx 4 ycosx > 21+\/_551n(x+%) > 21—ﬁ
. T
[ least value of sin (x + Z) = —1]

26. How many different nine digit
numbers can be formed from the number
223355888 by rearranging its digits so
that the odd digits occupy even positions?

(a) 16 (b) 36
(c) 60 (d) 180
Ans. (c)

Number of digits=9
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Number of odd digits = 4, number of even
digits=5

Number of even places= 4

Odd digits can be arranged in even paces in

12 ways. Even digits can be arranged in

1212
.. . 5
remaining 5 places in IL? ways
. 4 5
~ Required number = 12 15 _go
1212 |23

27.For2<r <n, ('r’) + Z(r'_ll) + (rf2) =

(a) (™1 () 2(;
©) 2(™*%) ) ("%
Ans. (d)

() stands for nc,
Now ng + 2n¢ _ +nc,_,
= (nCr + nCr—1) + (nCr—1 + nCr—z)
= n+1cr+n+1cr_1 =n+2(;r

28. I1f Y10 sin"1X; = 5m,then Y, X, =

(@0 (b) 5
(c) 10 (d) none of these
Ans. (c)
10
s
z sin"lx; = 5m = 10.5

i=1

- 3 . .
= sin 1xi=5,‘v’l:>xi=1 Vi =

10 2
= xic=1
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29. Range of f(x) = sin?%x + cos*®x is

(@ [0, 1] (b) (0, 1)

(c) (0, ) (d) none of
these

Ans. (b)

0<sin’x <1 = sin®%x < sin’x
Thus 0 <sin?°x < sin’x
Again 0 < cos*®x < cos?x

sin®%x and cos*®x cannot be zero at a time

]

= 0 < f(x) < 1. Hence range of f(x) = (0,
1)

30. Letx,y, z=105, whereX,y, z €N.
Then number of ordered triplets (x, y, z)
satisfying the given equation is:

(@) 15 (b) 27

(c)6 (d) none of these
Ans. (b)

105=3x 5% 7

When no 1 is taken as a solution, number of
solutions=[3 =6

When only 1’ s taken, number of solutions=
3¢,-13 =18

When two 1’s are taken, number of solutions
_ 3 _
=3¢, T 3

-~ Reqd. number= 6+18+3 =27
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ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &
SOLUTIONS

SET-9

1. 1ff(x) = (pa — a?® — 2)x —

J; (cos* t + sin®t — 2) dt is a decreasing
function of x for all x eR and ae R, where
a being independent of x, then

(a) pe (-0, 1) (b) pe (-1, V3)
(c) pe (1, ) (d) none of these
Ans. (b) Given, f(x) = (pa — a? — 2)x —
fox(cos“t + sin’t —2)dt .......... (1)
~f'(x) = pa—a*—2— (cos*x +

sin®?x —2) = —a? + pa — (cos*x +
sin’x)

= —a? + pa — (cos*x + cos?x + 1)

— %+ pac = |(cos? 1)2+3
= —Qa pa CoS™X ) )

_2+ 3
=—a”+pa—7

1\ 2
— 24
(cos X 2)
Clearly £(x) < —a? + pa — % [~
. 2 1\2
Min.value of (cos X — E) = 0]

For f(x) to be decreasing for all real x, i.e.,
fx)<0

#—a? +pa—2<0=4a% —4pa+3 2
O,VaeR
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~D<0=>16p?-48<0= —/3<p<
V3

2. Consider the following statements S
and R. S: both sinx and cosx are

decreasing function in (;,n) &R:Ifa

differentiable function decreases in (a, b)
then its derivative also decreases in (a, b).
Which of the following are true?

(a) both S and R are wrong
(b) Sis correct and R is wrong

(c) both S and R are correct but R is not
the correct expiation for S

(d) Siis correct and R is the correct
explanation for S

Ans. (b) From the trend of value of sin x and
cos X we know sin x and cosx decrease in

% < x < 1. So, the statement S is correct.

The statement R is incorrect cos x is a
differentiable function which decreases in

(E, n) but its d.c. —sin x is increasing in

x2+1

3.1 f(x)= [, e* dt, then the interval
in which f(x) is increasing is

(@) (0, ) (b) (-0, 0)
(©) [-2, 2] (d) none of these

Ans. (b)
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x2+1 5 5 Iff 22 ~
— -t 1 . =
f(x) - LZ e dtf (x) (x4+5x2+4)tan—1(xzx_+2)
= o (+1)" oy _ pmxt oo log|f(2)| + ¢, then
2x
T G [1 (@) f(z) =tan™'z,where z = Vx + 2
_ e—x4+(x2+1)2] (b) f(z) = tan~1z,wherez = x +§
2x (©) f@)=sin"1z, where z = &2
P [1 _ er2+1] "
e(x* 1)’ (d) none of these
2(62x2+1 _ 1)
=~ () Ans. (b)
2_2
2x%+1 = x .
But e<* + >1 f(x4+5x2+4)tan_1(xzx—+2)

= £°(x)> 0 in (-0, 0) and hence f(x) is

_ s Dividing numerator & denominator by x?
increasing in (-co, 0)

we have
-2
:f . x2 5 dx =
_ 2 2454+— -1 Z
4. The value of [ = dt is equal to (324 +x2)2tan ()
1+t 1-5
_ _ | dx
(@) 4(x-tan~1x)ifx<0  (D)0if>0 [(x+2 241  tan2(x+2)
(c)log(1+x%)ifx>0 (d) none of 2
these let tan™?! (x + ;) =u
Ans. (a) 1 2
:—2(1__2> = dx = du
I—Jx(t_ltl)zdt 1+ (x+3)2 x
)y 1+¢2 .
Casel:x > 0,then0 <t <ux,|t| =t Now I'= fﬂdu = loglul +¢
2
— (xa=v? = log |tan‘1 <x + —>|
sl= [l dt =0 x
= tan"! z, where z
Case Il: x <0, then x <t< 0= [t|= -t 2
= (x+3)

o= fx (t+1)? dt = fx 4t2 dt =

0 1+t2 0 1+¢t2 1
6. [xlog(1+-)dx = f(x)log(x+ 1)+
4[5‘(1— 12)dt=4[t—tan_1t]x J g( x) Jloglx + 1)
1+t 0

g(x)x* + Lx + ¢, then

= 4(x — tan_l x) (a) L=1 (b) f(X) = %xz

(c) g(x) = log x (d) none of these

68



Challenging Mathematical Problems

Ans. (d)

I:fxlog(1+i) dx = [xlog (x +
dx — [ xlog x dx

2 1 2 2
=x710g(x+1) —Eflji—xdx—%logx+
1 x? x?
Efxdx =log(x +1) — = logx —
1 1 1
Ef(x—1+m)dx+5fxdx

2 2

x x 1
= 710g(x +1) —710gx —Elog(x +1)

+24

St
=21 9w = -1
fx)= A% 5 1ogx
L_1
=5

d

1. [—5——==

(x—1)3(x+2)%

@3() +c (b)§\/%+

1

© (22) +

(d) none of these

Ans. (a)
dx
_ f —
2 (X 24
(x—1) (x — 1)
x+2
put z = ,then

(x—1.1-(x—-2).1
dx = =12 dx
3

—(x ~1)2 dx
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1 4
Now I = §fz_5/4dz = §Z_1/4 +C

4 (x—1>1/4+c
3 \x+2
8 f x1+nx" 1 xZ"
' (1-xm)y/1- xZ"
X _+2n X —
(@) o+ (b) =X
X _+2n
(c) < 1:; +c (d) none of these
Ans. (c)

_ 1-x2" ™™
1= fe [(1 —xM)V1—x2n

1—xn

]dx— [ e* lm

f'(x0)]dx,
— y2n
where f(x) = |7 =e" f(D)+C
1-— xZn
=et T atC

[ 2 dx = log|—f(0)] + f@) +

cthen f(x) =
1

( ) x+ex (b) x+xe*
(© o +xex)2 (d) none of
these
Ans. (b)

Put z= xe”*, then dz = (e* + xe”*) dx

_ dz _ l _ 1 1 _
1= fz(1+z)2 o f [ 1+z (1+z)2] dz =
log—=— t+ C =log |

1+z

1+xe* 1+xe*
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1

+ +C
1+ xe*

=log|1—

1+ xe*

10. |fl _ fz sm(Zn Dx

fz sinné

dx,and a,, =

—a) 2do,thena, ., — a,=

@) I
©orI,+1

(b) 21,
(d)o

Ans. (€) anyq —
f_ 2 sin?(n+1)x—sinnx
sin?x

a, =

s
zsin(2n + 1) xsin x

= — dx
0 sin?x

f%sin(Zn + 1x
———dx
0 sin x

= I4q

11 If n# 1, [#(tan™x + tan2x) d(x —
[x])=

1
@) (b) m
1

©- (d) E

Ans. (a)

Let I, = foz(tan”x + tan™ 2x) d(x — [x])

T

hereO<x<Z-'- [x]=0 «x—[x] =x
V3
2

now I, = f tan™ 2xsec?x dx
0

1
= f z""2 dz, putting z
0

=tanx
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12. If f(a)=f(B) and n €N, then the value
of [£(g(f®)) g'(f@).f () dx =

@1
(C) ﬁ"+1 ant1

these

(b) 0

(d) none of

Ans. (b)

Put z = g(f(x)), then dz = g’(f(x)) f’(x) dx

7‘L+1

= [z"dz =

n+1

= {g(f(x))]

n+1[ lo(r@)™"
[+ fc)=1(6)]

wvwm”1=o

13. Let [x] denotes the integral part of a
real number x and {x} = x- [X], then
solution of 4{x}= x+ [x] are

() 3,0
©0,2
Ans. (c)

4{x}=x+ [x]= [X]+ {x} +[x]
= {x}= g x] .. (1)

Since0<{x} <1

(b)£3,0
(d) £2,0

I

~0<Zx]<1=0<[x] <

w
N | W

Hence [x]=0, 1
+x3=0,2  [from (1)]

x= X =0,
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14. The maximum number of real roots of
the equation x?® — 1=0 (n eN) is

(@2 (b) 3
©n (d) 2n
Ans. (a)

x"—1=0= x>*=1=cos0+isin0
2 . . 2
%X = COS—— + isin—— = cos— +
2n 2n n
isin%,r =0,1,...,2n—-1)
x will be real only when sin rn—” =0
T
or—=mn
n
or r = mn = a multiple of n
But,=0,1,2,,...,2n-1
~r=0,n
- x?" — 1 = 0 has only two real root 1, -1.

Second method: Let f(x) = x2™ — 1

Then, °(x) = 2nx?"1
Sign scheme for (x) is

Hence graph, of y= f(x) will either intersect
X —axis at two points or touch x-axis or will
not interest x-axis or will not interest x-axis.
Therefore eqn. f(x)= 0 has two distinct real

roots or two equal real roots or no real root.

15. The roots of equation 7 '087(x*~4x+5)
are

(@4,5 (b) 2,-3
(©) 2,3 (d)3,5
Ans. (c)
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Given, x> —4x+5=x—-1

=x2-5x+6=0=x=2,3

) 2 2 2
16. Equation — + — 4+ — = m — n%x
x-a x—f x-y

(a, b, ¢, m, n €r) has necessarily

(a) all the roots real
(b) all the roots imaginary

(c) two real and two imaginary roots
(d) two rational and two irrational roots

Ans.(a)

Let p + iq be a root of given equation, then

a? b2 c? 2
=m-—-n
p—a+iq p-B+iq p-y+iq ®+
iq)
_.a*[p-a-iq]  b*[(p-p)-iq] | c*[(p-y)-iq] _
(r—a)?2+q? (»—-B)?+q? (p-v)2+q?

m —n?p — in%q

Equating imaginary parts we get

a? b? c?
1 [{(p—a)2+q2 + (P-P)?+q? + (p—y)2+q2} +
nz] =0
~g=0.
Hence p +ig= p= a real number.

17.1fa,b,ce {1, 2, 3, 4, 5}, the number
of equations of the form ax? + bx + ¢ =
0 which have real roots is

(@) 25 (b) 26
(c) 207 (d) 24
Ans. (d)

b2
For real roots ac < ”



Challenging Mathematical Problems

B | b? | Possible value No. of
4 | of ac such that possible pairs
ac<Z @ c)

2 |1 1 1

3 225 |12 3

4 |4 1,2,3 4 8

5 (625 |1,2,3,4,5,6 12
Total 24

Value of ac | Possible pairs (a, )

1 (1, 1)

2 (1,2),(2,1)

3 (1,3),(3,1)

4 (1,4),4,1),(2,2)

5 (1,5), (5,1)

6 (2,3),(3,2)

Hence number of quadratic equations
having real roots = 24

18.If X, a4,a5, a3, ...,a, € Rand (x —
a;+ a)2 + (x—a; + az)® + -

+(x —a,_, +a,)? =0,
then ay,a,,as, ...,a, arein

(@) A.P. (b) G.P. (c) H.P. (d) none of
these.

Ans. (@) (x —a; +ay)?+ (x —a, +
az)?+ -+ x—a,1+a)?=0

=01 — 0y = A —A3 == Ap_q —
a, =X

= a4, a,, ds, .... a, are in A.P. with
common difference x.

19. Let f(x) = ax? + bx + c and g(x) =
af(x) + bf'(x) + cf”’(x) If f(x) > 0 for all x ,
then the sufficient condition for g(x) to be
>0vXis
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(@c>0 (b)b>0
(c)b<O (dyc<0
Ans. (d)

g(X)= a(ax? + bx + ¢) + b(2ax + b) +
¢+ 2a = a’x? + 3abx + b? + 3ac

discriminant of its corresponding equation ,
D =9a?b? — 12a3¢

= 9a?b? — 36a3c + 24a3c
= 9a?(b? — 4ac) + 24a3¢c
Since f(x)>0,Vx € R
~a>0and b? — 4ac<0
Forg(x)>0VxeR,a?>0andD <0
But from (1), D<0whenc<0

20. The constant term of the quadratic

. 1
expression Yy_q (x — m) (x —

1 .
—)asn — © IS

k
(@) -1 (b) 0
(©1 (d) none of these
Ans. (c) Constant term
c= 1 + L 1 _4__1
1.2 23 nn+1) n+1
limc=lim(1— >=1
n-oo n-oo n+1

21.1f 9, € [O,%]j =1,2,3,4,5 and
sin@,z* + sin@,z3 + sinf;z* +
sinB@,z + sin@s = 2 then z satisfies

3 1 1 3
@lz>; ) zl<; (c) ;<lzI<y (d)
none of these



Challenging Mathematical Problems

Ans.(a) Atx=2,3* —x+2=9

SinceOs@i,s% Forx>2,3* —x+2>9

. . 1 (As 3* — x + 2 is an increasing function for
~ 0< sing;, < >

X>2)

From given condition N
For x=-2, (5) +2+x=9

2= |sinfs + zsinb, + z*sinf; +

. . X
z3sin, + z*sind, | For x < -2, (g) +24+x<9

= 2< |sinfg| + |z||sinb,| +

1\* , )
2|2 |sinBs|+|z|3|sinb, | +|z|*|sinb, | < % n [as (5) + 2 + x is decreasing]

%IZI + % |z|? + % |z|3 + % |z|*| < % |z] + Hence given equation has only two solutions
|z|% + -+ to oo ...(1) -2and 2.
When|z| < 1, from (1), 23. The number of real roots of the
1
gl 1 equation (9 + sinx)1-x + (10 +
2" 1-|z|

1 1
sinx)1-x = (11 + sinx)1-= for x € (0, 1)

a1zl <i= |z| >3 1S
4 4
(a) exactly one (b) at least
3
When |Z|> 1, Clearly |Z| > Z one (C) at most one (d)

5 none of these
Thus |z| > 1, clearly |z| > Z
Ans. (a)

i Xl = 12 —
22. Number of solutions of 3 |2 Given eqn. is f(x) = 1,

|x|| is
(@0 (b) 2 where f(x) = (1 + 10+;nx)§ —
(c)4 (d) infinite 1
(1 _ 1. )1—x
AnNS. (b) 10+sinx

Given equation is Clearly

f(0):§ <land f(1-0)= o

X
(l) =2—-x, —oo<<x< =2
3
Also f(x) is an increasing function
=2+X, -2<x<0 ) g

=~ f(x)=1 only for one value of x.
3¥=2-x0<x<2

=X-2, 2<x <
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24. If0<ar<1forr=1,2,3,...,kand m
be the number of real solutions of
equation

k_,(a,)* =1 & n be the number of real
solution of equation Y*_,(x — a,)1°! =
0, then

(@ m=n (b)m<n
(c)m=n (d)m>n
Ans. (b)

Let a be a root of eqn.

alx + azx + -+ akx =

Then when x < e, L.H.S. of (1)>1
And when x> a, L.H.S. of (1)< 1

Hence, eqn. (1) cannot have more than one
root.

~m<1

Let f(x) = (x — a))°r + (x — ax)? "1 + .- +
(X - an)lol

=~ (x) > 0 = f(x) is an increasing function

Also f(—o0) = —0 < 0 and f () = 00 >
0

=~ f(x) = 0 has exactly one real root
~n=1
Hencem < n.

25. If m be number of integral solutions of
equation 2x% — 3xy — 9y* — 11 = 0 and
n be the number of real solutions of
equation x3 — [x] — 3=0, thenm =
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@n (b) 2n
(c) ni2 (d) 3n
Ans. (b)

Given, 2x? —3xy —9y?2 —-11=0
= (2x +3y)(x- 3y)=11

.2x+3y=1} 2x+3y=11}
“x—-3y=11)" x—-3y=1

2x + 3y = —1} 2x+3y=—11}
x—3y=-11)" x—3y=-1

sX=4,y=1,x=-4,y=-1

am=2

Again, given
x3—[x]-3=0=x3-(x—-a)—3=0,
Where a= {x}= x-[X]
=x3—x=3—-a.But0<a<1
n2<x3—-x<3

Forx > 2,
x3—x=x(x*-1)=>22%°-1)=6
Forx< —1,x3—x=x(x?-1)<0
For-1<x<0,x3—x<1<2
ForO<x<1x*-x<x3<1<2
Forx=0,x3—-x=0<2

nl<x<2 ~ [X]=1

~Given equation becomes

1
x3 —4=0=x=43

~n=1
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Thus m=2, n=1
26. If [X] denotes the integral part of x 27. If [X] denotes the integral part of x
. _q 1427 . — [ 1=l _
and k = sin™?! —; > 0, then integral and m= [1+x2].n =
value of a for which the equation (x- integral values of . then
. . 2-sin3x
[K])(x+a) - 1 =0 has integral roots is
(@ m#n (b)m>n
(@)1 (b) 2 ©m+n=0 (d)n™ =0
(c)4 (d) none of these
Ans. (a)
Ans. (d)
, , 0<-*L :
For sin"' X ¢o be defined, |1+—t| <1 1+x2
2t 2t
<m= |
N 1+t2 <1 o 1+x2]

2t
Again 1< 2 —sin3x <3
= 1+ |t|? < 2|t|
1 1

=< . <1
— (l+ |t|)2 < 0 3 2—sin 3x

» n= integral value of ——=
= (L [t)* =0= |t] =1 = Integral value of 3= 2=
=t=+1 ~m= n is the correct choice.

~k=sin"11 = g (k> 0)

28. If 1 lies between the roots of equation

~[K=[(]=1 2 _

2 y“ —my + 1 = 0 and [x] denotes the

m
Given equation is (x-1)(x-a)-1=0 integral part of x, then [(xﬂxll 6) ] =
= X-)x+ta)=1 ... (1) (a) 1 (b) 0 ()
We have to find integral value of « for undefined (c)2
which equation (1) has integral roots. Ans. (b)
~ X and «a are integers. Since 1 lies between the roots of equation
From (1), (i) x-1=1=x=2 y2—my+1=0,
X+a=1=a=1-x=-1 ~f(1)<0
(i) x-1=-1=x=0 =2m<0=m>2 .. (1)
X+a=-1=a=-1 _ Alxl _ 4lx] _ 4z —
Lety= e = |x|2416 z2+16' where z= [x|
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nyzZ —4z+ 16y =0

Since z is real,
~ 16- 64y% = 0 = —%gyg%
20y <5 [vy>(]

A0S ym < <1

~[y™=0

29. Equation sin x + 2sin 2x +3 sin 3x = %

has at least one root in

@ (=) ® (0.3)
(©) (g n) (d) none of these
Ans. (b)

Let f(x) = %x + cos x + cos 2x + cos 3x

8
then f'(x) = ;x — sinx — 2sin 2x

— 3sin3x

f(x) is continuous and differentiable at every
point

Also #(0)= f(g) ~ By Rolle’s theorem
f’(c)= 0 for at least one ¢ in (O, g)

30. Let f(x) and g(x) be differentiable
functions for 0< x < 1 such that f(0) = 2,
g(0)= 0, f(1)= 6.Let there exist a real
number c in (0, 1) such that £(¢)= 2g’(¢),
then g(1)=

(@1 (b) 2
(c)-2 (d) -1
Ans. (b)
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Let ¢(x)= f(x)+Ag(x)
Then ¢’(x)= '(x)+ Ag’(x)
Choosing A such that ¢(0)= ¢(1),

= OO
We have A= 7()-90)

for this value of A using Rolle’s theorem for
¢(x) in (0, 1), we have

¢’(c)=0 for some c € (0, 1)

fllo_ , _fA-f0

g 7 g —g)
_6-2 _ . 4
g(1)—0 g1
=g(1) =

ISI B.STAT/B.MATH
OBJECTIVE QUESTIONS &
SOLUTIONS

SET -10

1. Let
f(x) = cosx(sinx + VsinZx + sin28),

where ‘@’ is a given constant,

then maximum value of f(x) is

(@) V1 + cos? 0 (b) V1 + sin% 0
(c) |coso| (d) none

Ans. (b) {f (x)secx — sinx}? = sin’x +
sin?e,

B f2(x)(1 + tan®x) — 2f (xtanx) =
sin?6
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B f2(x)tan’x — 2f (xtanx) + f?(x) —
sin?6 =0

BA4f2(x) = 4f*(){ f*(x) — sin®6}
Bf2%(x) <1+ sin?6

i.e. [f(x)|< VI + sin26.

14+v2+3V3++nvn

2. lim "
(a) equals 0 (b) equals 1
(c) equals (d) none

Ans. (b) Cauchy’s First limit theorem:-
Iflimu, = [, then lim 22X bn —

n—->0oo n—->oo

1
Here limu, = limnn» =

n—oo n—-oo

1, so, by Cauchy’s first limit theorem

hm uqtux+-- '+un:
n—-oo

lim

n—-oo

1.

1+V2+3V3++nvn
n

3. If 0 < x <1, then the sum of the infinite

.1 2 3 .
series ;x% +Sx% + Jat 4 - is

() logr=  (b) = +log(1 +x)
(©=+log(1—x)  (d) =+
log(1 —x)

Ans. (b) 2x% +2x3 + 3x% 4 ...

2 3 4
= (1-3) 24 (1-3) 23+ (1-1) x4
—(12)x +(13)x +(l4)x +....

= {2 +x3+xt+ }-{%x2 + §x3 + %x" +
-}

= {txta {4+ o
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= i +log(1 —x)-1

_x
—E+log(1—x)

4. The polar equation r= acos@ represents

(a) aspiral
(c) acircle

(b) a parabola
(d) none

Ans. (¢) 2 = arcos

~x?2+ y2=ax (sincer=x%+ y%x=
acosf )

wx?tax+ y =0
(x4 D2 4 2 = 2P
L+ 4 y2 =

This is a circle of radius % and centre (-g, 0).

(1+sinmx)t-1

5. 1ff(x) = lEEo FERT—— then range of
f(x) is
@ {-1, 1} (b) {0, 1}
() {-1, 1} (d){-1,0,1}
Ans. (d)
_ (1+sinmx)t-1
f(X)_ tEEo (1+sinmx)t+1
bl
(—(1+S’1“”x)i sintx > 0
1+(1+sin7wc) _
g, sinmx <0
| 1-1 .
L sinmtx =0
1, sinmtx > 0
{—1, sintx <0
0, sintx =0

~ Range f= {-1, 0, 1}
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6. If f: (O, %) — R,defined by f(x) =
Yk=1[1 + sin kx], where [x] denotes the
integral part of X, then range of f(x) is

(@) {n-1, n+1}
(c) {n, n+1}

(b) {n-1, n, n+1}
(d) none of these

Ans. (c)

f(x)=Yr=1(1 + [sinkx]) = n + [sinx] +
[sin2x] + ...+ [sinnx] ....... (1)

case 1: when kx # gforkz 1,2,3,...,n
since 0 < kx < and kx # =
~0<sinkx<l1,fork=1,2,....,n

~ [sinkx]=0, fork=1,2,3,.....,n

=~ from (1), f(x)=n

When exactly one of x, 2x, 3x, ..., nx is g

Here not more than one of x, 2x, 3x, ..., nx
s
can be >

In this case one of sin x, sin2x, ..., sSinmnx is

1 and other lie between 0 and 1
~ From (1), f(x)= n+1

Hence range of f={n, n+ 1}

X

7Ff(x) = Lt =+

n—oo x+1 (x+1)(2x+1)
X
@G T T to n terms, then range
of f(x) is
(a) {0, 1} (b) {-1, 0} ©)
{-1,1} (d) none of these
Ans. (a)
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Sn (1 N E) + (ﬁ N 1+12x) +

(1+12x o 1+13x) o (1+(n1—1)x -

1
o)
B 1
B 1+ nx
but Lt nx = 0, x > 0= —o0,x <0 =
n—-o0o
0,x=0

~f(x) = Lt S, =1,whenx #0
n—>oo
=0, when x =0

Hence range f= {0, 1}

8. Period of f(x) = sin —)' + cos—’f is
@n! (b) 2 (n)
(c) 2 (n-1)! (d) none of these

Ans. (b) sm is a periodic function with

)
o= 2(n—1)!

period 2m+ (n_

. X s
Period of cos— = 2n + — = 2n!
n! n!

L.C.M.of 2(n — 1)!and 2(n!)is 2(n!)
~ Period of f(x)is 2(n!)

9. Period of the function cos {(x+3)-[x+3]},
where [X] denotes the integral part of x is

(@1 (b) 2 (©)
.4 (d) 2w
Ans. (a)

x- [x] is a periodic function with period 1.

= (x+ 3)- [x+ 3] is a periodic function with
period 1.
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= cos {(x+ 3)}- [x+ 3]] is a periodic function
with period 1.

10. If f(x) = 2sin’mx+x=[xl \where [x]
denotes the integral part of x is a periodic
function with period

@1 (b) 2 ()
T (d) none of these
Ans. (b)

Period of x- [x] is 1 and period of sin3mx is
2.

LC.M.ofland2is?2

=~ f(x) is a periodic function with period 2.

11. If f(x)= cos x+ cos ax is a periodic
function, then a is necessarily

(a) an integer (b) a rational number
(c) anirrational number  (d) an event
number

Ans. (b) Period of cos x= 2mr and period of

2m
COS axX=—
lal

Period of f(x) = L.C.M. of = and |277T| =
L.C.M.of 2 and 21

H.C.F.of 1and |a|

Since k= H.C.F. of 1 and |a

%: an integer=m (say) and %: an integer
=n (say)

w[aj="=> a = £ =arational number.

n
m
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12. If fis an increasing function and g is a
decreasing function such that g(f(x))
exists, then

() g(f(x)) is an increasing function
(b) g(f(x)) is an decreasing

(c) nothing can be said
(d) g(f(x)) is a constant function

Ans. (b)

£ (x)> 0 (+ f(X) is an increasing function)
2’ (x)<0

(~g(x) is a decreasing function)
(g(f(x)))’=g" (f(x)).£(x) <0

~g(f(x)) is a decreasing function.

13. f: R— R, f(X)=x|x] is

(a) one-one and onto
(b) one-one but not onto

(c) not one-one but onto
(d) neither one-one nor onto

Ans. (a)
_ (—x%x<0
f) = {xz,x >0
ren [—2x%,x<0
f(x)—{ 2x,x =0

~ £2(x)=>0 - f(x) is an increasing function
and consequently it is a one —one function.

Also f(—o0)= -0, f(c0)=00, Hence range f=
R
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14. Let f(r) = 1+ % +§ + =~ Period of f(X) is 4

%, then Y., f(D)= 16. If f(x) = (a — x™)¥/™, x > 0 and g(x)> X

Vx eR, then forall x>0
(@) (n+1) f(n)-(n- 1) (b) (n+1) f(n)-n

©nfn)-(n-1)  (d) (n-1) f(n) (@) 9@(x)=f(f(x))  (b) g(g(x))>2
f(f(x)) (©) g(g(x))< f(f(x))  (d)
Ans. (b) 9(g00)> F(f(x))
f(1)+ F2)+ . 4Hm)= 1+ (14 2) + Ans. (d)
(143+2)+ (1431454 +3) f(X)= (@ — xM)Mm x> 0
L@ _ D, _ 2, .. < £(f(x))= f(y), where y=f(x)= (1~ y")n =
+[n—(n—1)] {1-(a—xM}n=2xx>0
n Given, g(x)->0V x e R
1 1 1
=n<1+§+§+---+5) ~9(9(x))-9(x)> 0V xeR
_ (1+E+...+n_ 1) [Putting g(x) in place of X]
2 3 n
Adding we get, g(g(x))-x>0
= =|(1-3) +1<1 -3)* = g(g()> X =g(aX)> (X)), x>0
+(1-7) [+ f(F(<))= X, x > 0]
=nf(n)—(m—-1)+f(n) -1 17. Given, y=sgn(x), then
=n+1)f(n)—n
(a) [x[=x sgn(x)
15. The period of f(x) = esi™¥} 4 (b) sgn(sgn(x)) = sgn(x)
sin (g [x]) is ([.]) and {.} are the greatest (€) x= [Xsgn(x)
integer function and fraction function (d) all of (a), (b), (c)
(a) 1 (b) 4 Ans. (d)
(c)2 (d) not periodic Lx>0
Ans. (b) f(x) = sgn(x) = { 0,x=0
—-1,x<0
Period of {x} i.e. x- [X] is 1 and period of
. (T . x, x>0
sin (5 [x]) is 4 xsgn (x) = { 0,x=0 = |x|
—x,x<0

L.C.M.ofland4is4
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sgn(1),x >0
sgn (sgn(x)) = { sgn(0),x =0
sgn(—1),x <0
1, x>0
= { 0,x =0 =sgn(x)
-1,x <0
x,x>0
|x|sgn(x) = {O,x =0=x,VxeR
x,x <0

18. For positive real numbers
aq,ay, .......Aq90, et P= Y1 a; and q =
D1sisj<100 @i Q; , then

P2 P2
(@) q=+ (b) ¢* <=
2
(©g< P? (d) none
AI’IS (C) a1 + az + +a100 = P,
P2: (a1 + az + +a100)2: 32? aiz +

2%} aiq;
#P2-2q 20312 a;” > 0]
P2

19. Number of integral terms in the

expansion of (V6 + v7)3%=
(@) 15 (b) 17
(c) 19 (d) none
Ans. (b) (V6 +V7)32 =
32032, .62, vars
For integral terms ~ and 2> both are

integers and w is in turn possible ifg is an
integer.

~1=0,2,4,...,32 means r can take 17
different values.
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20. Let P is an odd prime and n= 1+p!,
then total number of prime in the list n+1,

n+2, n+3, ...... , n+p-1is equal to
(@) P-3 (b) P-5
(©0 (d) none

Ans. (c) ~ n=1+p!
son+ = (r+1)+p!

Ifl1<r <p—-1then2<r+1<pand
clearly,

(n+r) is divisible by r+1. . n+ rcan’t be a
prime

Hence, there is no prime in the given list.

21. Letf: (0, +0) > Rand F(x) =
Jy F©dt if F(x?) = x*(1 + x), then f(4)
equals

(a)5/4 (b) 7
(c)4 (d) 2
Ans. (c)

We have, f(x?)= f(fzf(t) dt = x? +x3
Differentiating both sides, we get;
f(x?).2x = 2x + 3x?

= f(x?)= 1+(3/2)x

= f(4)= 1+3/2(2)= 4

22. The equation of a curve is y= f(x). The
tangents at (a, f(a)), (8,f(B)) and (y, f(y))
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make angles =, %, = respectively with the

positive direction of the x- axis. Then the
value of

[y F'GO.f" ()dx + [ £ (x)dx is equal
to

(@) - (b)
(©0 (d) none of
these

Ans. (a)

Given, f'(@) = =, f'(B) = V3,// () = 1

Now fg/f'(x)f”(x) dx + f;/f"(x) dx =
B0 eo)’]+ el = (o)) -
SFEP+0) - f@)=31-3)+

1 1
1-5=-%

23. A rod of length 10ft sides with ends on
the co-ordinates axes. If the end on x-axis
moves with constant velocity of 2ft/
minute, then the magnitude of the velocity
of the middle point at the instant the rod
makes an angle of 30° with x-axis is

(a) 2ft / sec
(c) V3 ft/ sec

(b) 3ft/sec
(d) none of these

Ans. (a)

Let AB be the position of rod at any time t
and p be its middle point.

Let OA=x, OB=y, then P = (;‘C%)

x2+y% =102
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Y _

dx
--2x5+ 2y Fri

dy_
dt

x dx X

ydt y

X
when 6 = 30°,; = cot30° = V3
cdy

i —2V3ft/sec

- (1 dX)2 N (1 dy)2
nowv = \2ae 2 dt

1
= E\/ZZ + 12 =2 ft/sec

24. Two persons are moving on the curve
x3 + y3 = a3. When the position of first
and second persons are (a, B) and (y, 8)
the second persons is in the direction of
the instantaneous motion, then

Yy 8 = a B_4_
(a);+E+1—O (b)y+8 1=
0 C)ay+pd=1 (d) none
of these
Ans. (a)

Givencurveisx3 +y3 = a3.......... (1)

Let P=(a,B),0Q = (v,96)
Since P and Q lie on(1)

~ad+ B3 = a?andy3 + 6% = a?

ad —y3 =833 ()
dy _ _ﬁ
From(1), il
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Equation of tangent at P(e, B) isy — B =

According to question, (3) passes through
Qua?(a—y)=p%(6-p)...... 4)

a2+y2+Dy_ﬁZ+62+/35

az ﬁz
=>1+Z—z+£
_1+—2+§
p? B
Y\ 2 5\? y 6 y 6
=) ~(5) =G-5)=5-5*
y 0
=0['-'E¢E]

25. The triangle formed by the tangents to
the curve f(x) = x% + bx — b at the point
(1, 1) and the co-ordinate on the first
guadrant. If its area is 2 then the value of
bis

(a)-1
(c)-3

(b)3
d1

Ans. () Z—z =2x+b
=~ The equation of the tangent at (1, 1) is
y-1=(2+b)(x-1)

or (2+b)x-y=1+Db

~OA=_" and 0B = —(1+b)

2+
Since 4 AOB lies in the first quadrant,

2 M S 0and1+b <0
2+b

~14b<0,24b<0=Db<-2.......... (1)
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Now, area (AAOB)=2

2222 Z2{—(1+ b))
or, 4(2+b)+ (1 +b)2 = 0
or, b2+6b+9=0
Or(b+3)2=0

~b=-3>1

26. If 2a+ 3b +6¢ = 0, then equation ax? +
bx + ¢ = 0 has at least one root in

(@) (-1, 1) (b) (1,2)
(©) (-1,0) (d) (2,3)
Ans. (a)

Let £(x) = ax? + bx + c, then

3 2 3 2
f(X) — % + b% ¥ cx = 2ax +316)x +6cx
2a + 3b + 6¢
f) =————=0f(0)=0

= f(0)=f(1) - there exists a, 0< a <1 such
that f* (a)=0

i.e., equation ax? + bx + ¢ = 0 has at least
one root in (0, 1).

27. If ur denotes the number of one-one
functions from

{xll xZF ey xr} to {yl, y2l e ,yr} SUCh that
f(x;) # yi, fori=1,2,3, ..., r then uy =

(@9 (b) 44
(c) 265 (d) none of these
Ans. (a)
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u, = number of ways of putting
X1, X5, ..., X IN 1 CcOrresponding place so that
no x, is put in the corresponding place

D"

Iz

Il
=

mies | =
+

mmiss | =

oS |

+
M

N~

12-4+1

$
Il
=~
.

s | =

28. Number of positive unequal integral
solutions of equation x+ y+z =6 is

(a) 4! (b) 3!
(c) 6! (d) 2x4!
Ans. (b)

Givenx+y+z=6....... (1)
X, Y,z € N and are unequal.
= X,Y,z€{1, 2,3} and are unequal

~ Required number of solutions= 3! =6

29. The plain containing the two straight
lines r’=a™+ Ab” and r’=b™+ ua’ is

@f[r a” b1=0

(b)[r" a a’xb’]=0
[ b axb]=0
(d) none
Ans. (a)
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lines (1) and (2) intersectat (3° + b™)
Then the plane passes through (a” + b™)

Also, line (1) is parallel to b” and line (2) is
parallel to a” = (a” xb”) is normal to plane
containing these lines.

=~ Eqgn. of reqd. plane is

[F-@ +b”)].@" xb™)=0

r’@ xb”)-(a +b”).(a" xb")=0
= [rra’b’]=0

30. Leta’=2i+j-2kand b”=i+j.Ifc”is
a vector such that a”.c = |c”, [c™-a"| = 2v/2

and angle between | (@*x b”) X ¢”| =
(@) 2/3 (b) 1/3

(©) 3/2 d 1

Ans. (c)

Givena’ =21i+j-2k

b™=1+]j

a .CE[CT] (1)

Ic-a7]=2vV2 .o )

Angle between (2" xb”) and ¢’= =
Now,

|(@> xb”)x c’|= [a~ xb” ||c”]sin % =
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From (3), |c —a’|> =8

= —a).(—a)=8

=|¢]2 +|a’|? - 2d.¢ = 8

= |¢]? + 9 — 2|c| = 8 (from (1))
~ ¢l =1

From (3), |(@” xb”)x ¢’ | = ;

ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET-1

Q1. How many natural numbers less than
108 are there, whose sum of digits equals 7?

Solution:-

We need to count the no. of solutions of x; +
Xp+ ot xg=7

Which satisfies 0 <x; <7,i=1,2,3, ..., 8

The number of solution of (1) is= coefficient of
x”in(1+x+x%+--+x7)8

= coefficient of x” in (1 —x%)8 (1 —x)8

= coefficient of x” in (1 — 8x8)(1 + 8¢, x +
4c,x% + 10c3k + +++)

= 14C7

= 3432. (Ans)
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Q2. Find the number of positive integers
less than or equal to 6300 which are not
divisible by 3, 5and 7.

Solution:- S= {1, 2, 3, ..., 6300}

Let A: Set of integers divisible by 3
B: Set of integers divisible by 5
C: Set of integers divisible by 7

We are to find:- n(s) - n(Au BU C) =n(S) —
[n(A)+n(B) +n(C) — n(A N B)- n(B N C)-
n(A N C)+n(AN BN C)]

= 6300 — {[63300] N [63500] + [63700] B
o Bl e Bl e Rl Ereerd |

i.e.,n(AU B U () = 2880.

Q3. If cis a real number with 0 <c¢ <1, then
show that the values taken by the function

_ x%+2x+c
" x2+4x+3c
range over all real numbers.

, as X varies over real numbers,

Solution:-
3 x’+2x+c
= x2 +4x + 3¢’

= x%y+4xy +3cy = x>+ 2x +c¢

=y —Dx2+2xQ2y—1)+cBy—1)
=0 [vxisreal]

~2Qy-1DP -4y —-1).c3y—-1)=0

2y — 1)?
=c < v0<c<l,
-DBy-1
S 1< <1
o0, 3 y .
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Q4.LetX=1{0,1,2,3,...,99}. For a, b in X,
we define a * b to be the remainder obtained
by dividing the product ab by 100. For
example, 9%18 = 62 and 7*5 = 35. Let X be an
element in X. An elementy in X is called the
inverse and write down their inverses.

Solution:- x*y = 1, = xy = 100k +1 for x = {0,
1,2,...,99}

(1) Forx=1,y=1,x*y =100k + where x
=c

~ Inverse of 1is 1.

(2) There is no integral multiple of 2, 4, 5, 6
having 1 at unit place, = 2, 4, 5, 6 have
no inverse.

(3) 3 and 7 can have inverses

(1 Forx=3,3y=1i.e. 3y =100k +1

The least k satisfying is 2, i.e. 3y =201,y = 67
and the next k satisfying is 5, i.e. 3y = 167 but
167 ¢ X.

=~ 3 has only inverse = 67.
(i) Forx=7,y=1,ie. 7y =100k +1
The least k satisfying is 3, i.e. 7y =301, y 43

The next k satisfying is ID, i.e. 7y = 1001, y =
143 but 143 ¢ X.

=~ 7 has only inverse = 43.

: 1
Q5. Evaluate }ll—{g {H + m + ...+ m}

Solution:-

1
—1+ 2+ t+—
n—»oon 1+— 1+;

n 1
-1 1 1 _f dx
- awaz T 1+«
n 1+n 0

1
= [log.(1 + x)] 0= log, 2.

Q6. Tangents are drawn to a given circle
from a point on a given straight line, which
does not meet the given circle. Prove that the
locus of the mid-point of the chord joining the
two points of contact of the tangents with
circleis acircle.

Solution:- Slope of OM =k/h [taking centre

(0,0)]
~Slopeof AB=-h/k. [+ AB _| OM]

=~ Equation of AB, whose slope is —h/k and
which passes through the point (h, k) isy -k =

h
< (x—h)
of hx +ky= R2+ k2 ... (1)

And equation of AP, the tangent is xx; + yy; =

&Y Q)

~ From (1) and (2) , we have,

2

w_n__a
h k h2 + k2
ha? _ ka?

T g 1T e

=~ Put these values of x; and y, in lx; + my; +
n=20

We get, L. h2+k2 +m

= lha? + mka? + n(h®> + k%) =0
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2 2
= h?+ k2 + 2 h+ Tk =0, Qe the
required focus of M.

So, the equation of the circle is x2 + y? +

lZ 2
Lx+%y:0.

Q7. Draw the graph (on plain paper) of f(x) =
min {|x| - 1, [x-1]- 1, |x- 2| - 1}.
Solution:- y = | x| -

_{x—l,whenx =0
—x —1,whenx <0

Z=|X-1|-

_{x—l—l,whenx >1
“|l-x+1-1,whenx <1

W= |x-2]-1

_{x—Z—l,whenx =2
“|—x+2—-1,whenx <2

2 4
SSTAN - 7 S
X S, S P /// /
B ey
Rt = o’
g 2 N\ ,«/ ) N X
5 {#, - = —On

Q8. Let {C,,} be an infinite sequence of circles
lying in the positive quadrant of the XY —
plane, with strictly decreasing radii and
satisfying the following conditions. Each C,,
touches both X-axis and the Y-axis. Further,
for all n > 1, the circle C,,, 1 touches the circle
C, externally. If C4 has radius 10cm, then
show that the sum of the areas of all these

circles is

\/_ ——s(. cm.

Solution:-
Rl\/i o OPZ = Rl\/i - Rl

001 =

% 0Q= RN2+Ry =R (V2+1)

0Q
~ R, =—— now,OP = R,(\2+1),R
1 \/§+1 2( ) 2
_op_ V2-1
vz N2 +1
_ V2-1 VZ-1\°
* R3 RZ\/_+1 1(ﬁ+1)

~ Area = m(Ry* + Ry* + -+ 4 )

VZ-1 V2-1 4
_ H{Rl PR () R ()
- +o<}

st o () () e

i g () -
V2+1
e (22
= g R,? (;3;2) —% 100.3\/5;_4 sq.cm |
R, = 10cm.]

_ 25w

sq.cm [proved]

T 3y2-4

Q9. Consider the system of equations x +y =
2, ax +y =Db. Find conditionson aand b
under which
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(i) the system has exactly one solution; From (1) And (2), we get k, = 4,k, = 0.
o\t 1
(ii) the system has no solution; A =4 (E) - ne?

(iii) The system has more than one solution.

Solution:- ISI B.STAT & B.MATH
1 1 2 1 SUBJECTIVE QUESTIONS &
a=| c|=1-wa =7 |=2a-
a 11 ) b a SOLUTIONS
b; A2=|a b|=b—2a.
SET -2
(1) For exactly one solution, 4# 0 i.e. 1
-az0=a#1.
(i) For no solution, A =0, i.e.a=1, . .
A, # 0,4, #0.ic 2a#b. Q1. A vessel conta!ns x gallons of wine
(iiiy  For more than one solution, A= and another contains y gallons of water.
A= A,=0,a=1b=2 From each vessel z gallons are taken out

and transferred to the other. From the
resulting mixture in each vessel, z gallons
are again take out and transferred to the
other. If after the second transfer, the
guantity of wine in each vessel remains
For n>2. Find an expression for x;, . the same as it was after the first transfer,
then show that z (x +y) = x y.

Q10. Let {x,,} b e a sequence such that x; =
2, xp=1and2x, —3x,_1+x,_,=0

Solution:- x; = 2,x, = 1,2x, —3x,_1 +

Xn-2 = 0. Hints:- = = §

Let, x, = ka", - 2ka™ — 3ka™ 1 + ka" % =0 z(x + y) [Proved]

Xy — zy = ZX DXy =

or,2a?—3a+1=0
or, (2a-1)(a-1) =0 Q2. Suppose k, n are integers > 1. Show that

1 (k. n)!is divisible by (k™.
or, a; = E,az =1.

Solution: We write the numbers from 1 to kn in

wxy = kya™ + kpa,® = ky G)n + Iy (D)™ k rows of n numbers each as follows:
Again, x; = 2 = ky (3) # k(1) =22+ b23 e
Ky oooooeeaean (1) nt+l, n+2,n+3,....,2n
1\2 2n+1,2n+2, 2n+3,........ ,3n
And x=1=ky(5) +ha(DP =2+ k,
............. @)
kn—n+l,kn—n+2, kn-—n+3, ...... , kn
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Since each row has n consecutive positive
integers, the product of the numbers in each row
is divisible by nl. The product of all the numbers
(kn)! Is divisible by (n!)k.

Q3. All the permutations of the letters a, b, c,
d, e are written down and arranged in
alphabetical order as in a dictionary. Thus
the arrangement abcde is in the first position
and abced is in the second position. What is
the position of the arrangement debac?

Solution:-

Words starting with ‘a” — 4!
" " "h 4l
‘¢’ — 4!

‘d>— 31+31+31+3!
(i.e.da— 3!,db — 3!, dc — 3!, de — 3)

Total no. of words before debac including it is =
3X4!'+3x3!'+3=093.

Q4. (i) Determine m so that the equation x* —
(3m + 2)x% + m? = 0 has four real roots in
arithmetic progression.

(ii)Let a and b be two real numbers. If the
roots of the equation x?2 — ax — b = 0 have
absolute value less than one, show that each
of the following conditions holds:

(i) |b] <1, (ii)a+b<1 and (iii))b -a<l.
Solution:-
(i)x*— Bm+1)x2+m?=0

Let four roots

AlB[C [D[E [F
Alxl0 @ 0 @ @ bea-3ﬁ,a7
B2 [x|2 |20 |2 | BatBat
clo|o| x 0 | 3B
D[2]0of0 [x]2 [2

E[0[2|0 [0] x |2

Floflo[2 [o]o | x
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So, sum of roots = coefficient of x =0
~a=0.
So, roots are -38, -8, B, 36.

~—3B%+3B%*—9B% - B* —3B* +3p* =
—-Bm+1)

= —108% = —(3m + 1)

) 2_3m+1
B =
Also, 9% = m?
9(3m+1)2_ )
w0 /- "
3
9I9m+3=1+10m |:>m=3,—E.

(i)x? —ax—b =0

Let roots be a, B, lal <1, 18] <1,

sla+pl <lal + 181 <2, as |al <2, or |al |B] <1
or, lapl <1

~ bl <1

Again, ab <2, |b| -lal <1, and [b] -lal <| b- a]

~b-a<landb+a<l.

Q5. Let a and b be real numbers such that the
equations 2x + 3y =4 and ax — by = 7 have
exactly one solution. Then, show that the
equations 12x — 8y = 9 and bx + ay = 0 also
have exactly one solution.

Solution:-
2x+ 3y = 4} i
ax—by =7 (M)



Challenging Mathematical Problems

) 3 Final
WA = i score
= I *0,since 8
it has only one solution. )
= - (3a+2b) # 0= (3a+2h) g
#0. 2
12x -8y =7 2
bx+ay=0 }
(i)

. _ 112 -8y _ -
n A4, = | b a | = 4(3a + 2b), since
(3a+2b) #0,

S0, 4,#0; So, the equations in (ii) has only one
solution.

Q6. In a competition, six teams A, B, C, D, E,
F play each other in the preliminary round —
called round robin tournament. Each game
ends either in a win or a loss. The winner is
awared two points while the loser is awared
zero points. After the round robin
tournament, the three teams with the highest
scores move to the final round. Based on the
following information, find the score of each
team at the end of the round robin
tournament.

(i) In the game between E and F, team E won.

(ii) After each team had played four games,
team A had 6 points, team B had 8 points and
team C had 4 points. The remaining matches
yet to be played were

(i)Between A and D;
(ii)Between B and E; and
(iii)Between C and F.

(iv)The teams D, E and F had won their
games against A, B and C respectively.

(v)Teams A, B and D had moved to the final
round of the tournament.

Solution:-
Steps:-

1. Firstuse (i) then (iii)

2. Since after 4 games, B had 8 pts. And B
lost to E later, so B had won against A,
C,D,F.

3. Since A had 6 pts. After 4 games and A
had lost to B had D, so A won against C,
E and F.

4. C had 4 pts. After 4 games. So, C won
against D and E.

5. Since A, B and D moved to final round
and total 4 pts, so D must have won the
games against E and F.

T Ccosx
Q7. If A= [ 5 dx,

m/2 sinx cosx

then show that | dx =

0 (x+1)
Gtz 4)

Solution:-

T
J‘E sinx cosx d
——dx
o (x+1)

1 %siand
== —dx
2)y (x+1)

1f"sinz dz
2) 7.7
0 2+1

_1f”sinzdz_ 1 % coSsz p
o z+2  2), @+22™

_1( 1 +1) 1A
" 2\r+22) 2

~3G+m-)
T 2\2 'm+2
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Q8. If a, b and c are the lengths of the sides of
atriangle ABC and if p;, p, and p; are the
lengths of the perpendiculars drawn from the
circumcentre onto the sides BC, CA and AB
respectively, then show that

a b c abc

——=—
P1 P2 P3 4p1P2p3

Solution:- As Py, P,, P; are the lengths of the
perpendiculars drawn from the circum centre O
to the sides of length a, b, ¢ respectively, then
from the diagram. D, E, F are the mid points of
BC, CA, AB respectively.

Hence , in ABOD and ACOD,

=BDO =_-CDO, BD = DC & OD is common.

~ ABOD = ACOD.

Similarly, ACOE =

AAOE and AAOQF =

ABOF,

= ~BOD = -COD= 6, say
=COE = ~AOE= ¢, say

~ AOF = _BOF= v, say.
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~ «BOD +.-COD +.-COE +-AQOE +-AOF
+-BOF = 2(6+ ¢+ y) = 211

=0+ p=TII-
= tan (6+ ¢)=tan (/I- )= - tan .

Hence we can show, tan 6+ tan ¢ +tan ) =
tandtamyptang

. a b c abc a

e, —+—+-—= or,—+
2p1  2p2  2p3  8pi1P2b3 P1

b c _  abc

P2 D3 4P1P2Ps

Q9. (a) Study the derivatives of the function
_ x+1
) = o)
behavior of the function as x ranges over all
possible values for which the above formula

for f(x) is meaningful.

to make conclusions about the

(b) Use the information obtained in (a) to
draw a rough sketch of the graph of f(x) on
plain paper.

ion: - xr 1t r 1
Solution:- f(x) = e - 3aitiis

1 1 4 1
3" (x+1)2 37 (x-7)2

() P(x) =
For, 0 < x < —1, f (x)is positive;
For, -0 < x <0, f (x) is negative;

For, 0 < x <7, f'(x) is

negative;
X o |
2 | For, 7<x<w, f'(x) is
z 0 |m .
negative.
(b)
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Q10. Show that there is exactly one value of x
which satisfies the equation

2cos?(x3 +x) = 2¥ + 277,

Solution:- -1 < cos?(x® + x) < 1 implying
—2<2cos?(x3+x) <2

By AM > GM inequality we have 2* + 27% > 2

S0 2cos?(x3 + x) = 2% + 27 = 2 satisfies
when x = 0.

So there is only one value of x = 0 which satisfy
the given equation.

ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET -3

QL. LetP(X) = x™+ a,_(x™ 1 +
a,_2x" % + .-+ ayx + ag be apolynomial
with integer coefficients, such that, P(0) and
P(1) are odd integers. Show that:

(a) P(x) does not have any even integer roots.
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(b) P(x) does not have any odd integer roots.
Solution:-

P(0) = ag=odd, P(1) = 1+ ap_q + ap_p + -+
ag = odd

(a) Case-I:-
If x = 2m, then

P(X)=x™ + a,_,x™ 1 + -+ a,=0dd, as all
the term containing x will be even but a, = odd.

= X = 2m cannot be a root of the equation P(x)
=0 [proved]

(b) Case-IlI:-

Ifx=2m+1

Dy = x4+ an—lxn_l +.4ag= x™ +
a,_1(even+ 1)+ a,_,(even+1) + -+
a,(even + 1)ay = x™ + ay + (a,_,even +
a,_,even + .-+ ajeven) + (a; + b, + -+ +

an_1) = x" + (a,_1even + a,_even + -+ +
aseven) + (ag +ay + -+ an_1)

= 0dd = x = (2m +1) cannot be a root of the
equation P(x) = 0 [proved.]

Q2. Let ay and b be any two positive
integers. Define a,, b,, for n > 1 using the
relationsa, = a,,_1+2b,,_1,b, = a,_1 +
b,,_, and let c, = %, forn=0,1,2, ...

(a) Write (\/f — Cn—l) in terms of (\/_ —

Cn)-
1
(b) Show that |2 — ¢,44] < % V2 — cpl.
(c) Show that limc,, = V2.
n-oo

Solution:-
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an = Au_q +2by_1,by = an_1 +by_1,¢y

=5
(@) V2= cpoy = V2322
bTL+1
aTl
a, +2b b_+2
~ -t gl
n n +1
n
=\/§+Cn+2
Cn-1
_\/fcn+\/§—cn—
Cn+1
(V2= 1)en —VE(WZ - 1)
- cp,+1
(-1~
(cn+1)
[V2—cut1| _
(b) \/_ | | cn+1| (1+\/_)(cn+1)
1+\/5

= |\/§—cn+1|<ﬁ§|\/7—cn|

V2

Cn+1 — 1
n—w Cny1tV2

now 1—V2

(©)

Q3. Let ABC be any triangle, right —angled at
A, with D any point on the side AB. The line
DE is drawn parallel to BC to meet the side
AC at the point E. F is the foot of the
perpendicular drawn from E to BC. If AD=
x1, Db = x,, BF = x3, EF = x4, and AE = xg,
then show that

ﬁ_}_ﬂ _ X1X3 + X4Xs
Xs X5 X3X5— X1Xg
Solution:-
X X xX1+x
LHS==2+Z2=""2=tanf =tan(¢ +¢) =
X5 Xs5 X5
tanc+tang

1-tanc tang
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X X
1,474
X5 X3
- X1 Xy
X5 X3

X1X3 + X4Xs5
X3X5 — X1X4

&

Q4. Let [x] denote the largest integer less than
or equal to x. For example, [4 %] =4;[4] =

Draw a rough sketch of the graphs of the
following functions on plain paper:

(1) ) =1[x] ;
(i) g(x) =x = [x];
(iii) h(x)= %

Solution:- (i)

X

[0, 1)
[1,2)
[2,3)
[3,4)
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3 1
1 % 2
3 1
3
3 ¢
H29
: = |
{1+ gl
l/ . e
. y?s s Lz
(ii) () = x— [x] = {x}. . . . .
X 9(x)
0 0
1 1
i i Q5. Show that the area of the bounded region
2 2 enclosed between the curves
4 4 )
1 0 y}=x*andy=2-x?% is 2—.
11 1 15
4 4 .
11 Y Solution:- y3 =x2 ............. (i)
y=2—x% ... (i)
Ey=2-y3
ﬂ =y -1) (7 +y+2)=0
2y =1,y =% (-14V3)
~ X = =+1, since y is real & equal to 1. Point of
intersection of the two curves are (1, 1) and (-1,
g P A o 1).
5
_ i
(iii) h(x) = ™
X h(x)
1 1
11 1
1 1
2 1 : 1
13 1 « Area of shaded region = [~ (y; — y,)dx =
24 % 1 2 2 2
T 5 I, [2 —x? - x3] dx = 2 sq.units.
2

94
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Q6. We say that a sequence {a,} has
property P, if there exists a positive
integer m such that a,, <1 for every n >
m. For each of the following sequences,
determine whether it has the property P
or not. [Do not use any result on limits.]

200
0.9+— ifniseven
; _ n
D) a,= 1
- if nisodd

if nis even

(i) a, = 1

- if nisodd.
Solution:- (i) For every even number n >
2000,a, <1

And for every odd positive integer, a,, < 1.

Here, {a,} is a decreasing sequence and

200
azooo = 09 + m =1.

= ay satisfies property P.
(ii) Let n = 4k (even)

ie,ay =1+ icos (M(Tn) =1+

1 1
acos(an) =1+ e 1.
[+ cos (2km) = 1] So, here a,, does not

satisfy P.

Q7. Suppose that the roots x* + px + q = 0
are rational numbers and p, g are integers.
Then show that the roots are integers.

Solution:-

The roots of the equation x + px + g = 0 are X

_ Zptyp?-4q
2 .
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As roots are rational, hence D is a perfect
square.

i.e.p?—4q = k% wherekel.
or,p? = k? + 4q.
Now, when p = even, k? + 4q = even.

= k2= even, so k = even.

—even teven
2

B X=
(i)
Again when p = odd, k? + 4q = odd

el 1115105

= k%= odd, so k= odd.

—odd todd
B X=-

(i)

Hence the proof is complete.

Sl 11115724 SR

Q8. Consider the set S of all integers between
and including 1000 and 99999. Call two
integers x and y in S to be in the same
equivalence class if the digits appearing in x
and y are the same. For example, if x = 1010,
y=1000 and z = 1201, then x and y are in the
same equivalence class, but y and z are not.
Find the number of distinct equivalence
classes that can be formed out of S.

Solution:-

If ‘a’ is a member of some equivalence class
then it’s distinct digit determine the equivalence
class completing. Hence, no. of equivalence
classes are the number of ways in which ‘i’
integers can be selected from {1, 2, 3, ..., 9} for
2<i<5and{l,2,3,...,9} fori=1.

Now, this can be done in 9+ ¥:7_, (%) =

Z?:l(lio) -1
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n_ n-1
Q9. For x > 0, show that %11 >nx z,
where n is a positive integer.

Solution:-

Let us take the sequence of numbers as
{xn—l xn—z xO}

Applying AM > GM inequality:-

l (xn_l,x"_z, . xO) > ’Vx(n—l)+(n—2)+-~~+0

n x—1

x" -1 n-1
or, >nx 2

x—1

4 5

Q10. Show that + + 4+

124 235 346
n+2 _1[29 4 1 1]

n(n+1)(n+3) T 6

. _ n+2
Solution:- t, = T r)
=l ]+ 2

6ln+1 n+2 6n+2 n+3
3n n+1
1 1
50,5 = EpaTo =3 31CH1—55)+
1

Iyn L__) (l__)
6 n=1(n+2 n+3 t3 Z n n+1/)’

_1(1 1 )+1(1 1 )
6\2 n+1) 6\3 n+3
1

+3(1-79)
3 n+1
1729 4 1
“6l6 n+l n+2
1
_n+3] (proved)
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ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET -4

Q1. If f(x) is a real-valued function of a real
variable x, such that 2f(x) + 3 f(-x) = 15 — 4x
for all x, find the function f(x).

Solution:-
2f(x) + 3f(-x) = 15 — 4x

Put x = -x, 2f(-x) + 3f(x) = 15 + 4x

Solving, we get, f(x) = 3 + 4x

Q2. Show that there is exactly one value of x
which satisfies the equation

2cos?(x3 +x) = 2¥ + 277,
Solution:-
We know cos?(x3 + x) < 1.

2X +27%
+T > 2% 2%
=2 +27%>2
2cos?(x3 +x) =2 4+27%

~cos?(x3+x)=1

For x = 0, the equation is satisfied.

Q3. There are 1000 doors D4, D, ...
and 1000 persons P4, P,, ...

»D1000
, P100o- Initially
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all the doors were closed. Person P4 goes and
opens all the doors. Then person P, closes
doors D,, Dy, ..., D1pge @nd leaves the odd-
numbered doors open. Next, P3 changes the
state of every third door, that is,

D3, Dy, ..., Dggg. (FOr instance, P closes the
open door D5 and opens the closed door D,
and so on.) Similarly, P,,, changes the state of
the doors D,,,, D3, D3y - » Dy - While
leaving the other doors untouched. Finally,
P1000 0pens Dqgqp if it were closed and closes
itif it were open. At the end, how many doors
remain open?

Solution:- By the problem, the persons B, will
change the state of the door D,,, where m | n i.e.
m is one of the factors of n.

At first, all the doors were closed and we are to
determine the no. of doors remaining open, i.e.
we are to determine the no. of doors whose
states are finally changed.

Now, for the door D,,, n will either have even or
odd no. of factors.

It is obvious, for even no. of factors, state of
doors remain same, so whenever no. of fact (n)
odd, state of OrD,, changes.

= n)=2k+l, keIt =o0(n)=2p+
DR2q+ ) x..2r+1)...;=>n=
a?? p?4 c?" . Forprimea,b,c.....

=Square numbered door remains open.
~No. of doors remaining open = (+/1000) = 31

Q4. Find the maximum and minimum values
of the function f(x) = x? — x sinx, in the

closed interval [0, g]

Solution:-

f(x) = x? — x sinx

97

~f(0) = 0 and ’(x) = 2x —Sin X —X €OS X
= (x=sin x) + x (1 —cos x)

In the interval [0, %],x —sinx =>20and 1 —

cosx = 0.

~ f(x)> 0 ~ f(X) is an increasing function of x
. n
|n[0, E]

It’s min value will be f(0) = 0, maximum value
n? n

willbe £ (3) =5 -2,

Q5. Let A and B be two fixed points 3 cm
apart.

(a) Let P be any point not collinear with A
and B, such that PA = 2PB. The tangent at p
to the circle passing through the points P, A
and B meets the extended line AB at the point
K. Find the lengths of the segments KB and
KP.

(b) Hence or otherwise, prove that the locus
of all points P in the plane such that PA =
2PB s acircle.

Solution:-

(@) AB=2a=3cm, letP(h, k) be the co-
ordinate of P and PA = 2PB

~(h+a)? + k? = 4{(h — a)?® + k?}

= 3h%? +3k?—10ha+3a%? =0

LocusofPin2+y2—§ax+a2 =0

= (x — ga)z +y% = (%)2 which is a circle

with centre at (g a, O) and radius = 43—a.

«. Co-ordinates of K are (53—a 0) &KP = 43_“,
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~KB=0K-0B=2—q=2=2x2=1cm. i) [ x[- |y[>1.
There are four cases:- (I) x—y>1whenx> 1,y
>0
w.,” (I) x + y>1 when x
7 >1, y< 0
y
(1) X —y > 1 when
x<0,y>0
\ \ % (IV) x+y>1
when x< 0, y <0
. a,n :
ca.0) - |
" Graph of (i):-
Q6. Sketch, on plain paper, the regions i
represented on the plane by the following: . :‘"\3;_' =1 @ >
(i) lyl=sin x; T !
(i) x| - [yl = 1.
. Q7. Show that the larger of the two areas into
Solution:- . . 2 2 o
which the circle x* + y* = 64 is divided by
(i) y=sinx,wheny>0.................. [case -I] the curve y? = 12x is% (81t - \/§)
=0, when y= O [Case '”] Solution:- x2 + yZ =64 .. (1)
2 — .o
=-sinx, wheny<O0................. [case -111] YE=12X (i)
[case -1]
[case -11] =64 —x2=12x = (Xx-4)(x+16)=0 ~x
X (4n +1) Nm+(=1)" % =-16.4
1 v But x = -16 is not possible as radius of a circle is
y ’ /64 units.
X (4n +1)7 Nr+(=1)"
-1 -1

Avrea of the shaded region is

Foralln=0, +1,4+42,+3,.....

98
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4 64
=2[, (0 —y2)dx + Tn, where y; =
“64'_952;)72 = 2V3x

4
= zf (\/64—x2—2\/3x) dx + 321
0
_Z[x—\/64—x2
=2

+ 62—45in‘1 (g) —2v3.

N|w| N
o b

+ 32m

16
== (8m — v/3)sq. units.

> %

2 p
= 22

135 2n—-1
(?8.Let Xn —-E.Z.g.".. o

. Then show

that x,, < \/%,for alln=1,2,3, ...

2n—-1

Solution:- x, = —

1.2.3.4...2n-1)(2n) ()
(2.2...to 2n times)(1.2.3.n)%2 221 (nl)2

N |-
Bl w

5
PENE

(2n)! 1

We need to show that > < Vne

2n (p1)2 = \3n+1
N.

By induction, P(1) is true.

2m)! < 1
22m (mh2 — 3m+1

Let P(m) is true, i.e.,

_ 2m+2)! _
P 1) = i =

cm)!2m+1)(2m+2)
4.22m (mN2(m+1)2

(2m)! (2m+1)
T 422m (M2 2(m+1) T

1 2m+1 1 [show it]
\V3m+1' 2(m+1) "V3m+4 ’

~ P(m+1) is true.

So, by induction x,, < L_vneN.

T W3n+1

Q9. Show that if n is any odd integer greater
than 1, then n® — n is divisible by 80.

Solution:-

Take n=2k + 1,

Forn=3,3%—3=240 | g0.

Now, P(n) =n®> —n = 2k +1)> — 2k + 1)
={Rk-1D+2}’-Qk-1)+2

= (2k —1)° + 5.2k — 1)*.2
+5¢,(2k — 1)3.22
+5¢,(2k — 1)2.23
+5¢,.(2k —1).2 4 2°
-QRk—-1)+2

={2k-1)°- 2k -1)}+ 102k — 1)*

+ >4 x 42k — 1)
2.1

+ >4 8(2k)? +5
2.1

x 16(2k — 1) + 30
= Mutiple of 80 + 10(16k* — 24k? + 16k)
= Mutiple of 80 + 80(2k* — 3k? + 2k)

« 2k — 1)5 — (2k — 1) iis divisible by 80.
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=~ By induction method, for all odd integer n,
n® — n is divisible by 80.

Q10. If any one pair among the straight lines

ax+by=a+b, bx-(atb)y=-a, (at+ b)x-ay
= b intersect, then show that the three
straight lines are concurrent.

Solution:-

Let 1% two lines intersect.
ax+by=a+bh () xb
bx—-(atb)y=-a (ilx a
abx + b%y = ab + b?

abx —a(a + b)y = —a?

a+b-b
ax =20 —
a

In the third line, (a+ b) x —ay = LHS = b = RHS.

So, there straight lines are concurrent.

ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET -5

Q1. If aand b are positive real numbers such
thata + b =1, prove that

(+1)2+<b+1)2>25
a a b) — 2°

Solution:-

100

LetS:(a+%)2+(b+%)2

(a?® + b?)

— g2 4+ p2
=a“+b*+ 2p2

+4
251+52+4'.

1
S, = a2+b225[(a—b)2 >0

= a?+b?—2ab>0
= (a + b)? > 4ab = 4ab

<1 = ab
1 1
<- q? b221—2<—)
z &7 4
1
2
a? + b2 1
_ 212
2 sz ,ab SE
1
a2b2216.
S, >8

Q2. Suppose that P(x) is a polynomial of
degree n such that

P(k) = ﬁ for k=0, 1, ..., n.

Find the value of P(n + 1).
Solution:-

Given that, P(x) is a polynomial of degree n
such that

PK)==Vk=01,...., n

Let, Q(x) = (x +1) P(x) —x
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The polynomial Q(x) vanishes fork=0, 1, ....,
n

i.e. (x+1) P(xX) x=a(x) (x-1) (x-2) ... (x-n)
Puttingx=-1, 1 =a(1) (-2) (-3) .... (-1 -n)
=l=aC-D"'n+1D1l=a=

1 1

ax(x—1Dx—-2)..(x—n)+x

PG = G+
CED" (- D= 2) . (x —n)
= (n+ 1! X

(n+1)n(n-1)..3.2.1}4x+1
(n+1)!
(n+2)

o P(n+ 1)= (—1)n*1 L

n+1)
_ gyt (m+ D!
==0m (n+2)
=DM 4+

- (n+2)

+(n+1)

1 —
- forn = odd

n+2 forn=even

~P(n+1)= {

Q3.Suppose x; = tan~12 > x, > x3 > -
are positive real numbers satisfying
sin(x,11 — x,) + 2™ Vsinx, sinx,,, =
0 forn > 1.Find

cotx,.Also,show that lim x,, = %.

n—oo

Solution:-

SiNXp4q COS Xy, — COSXy — COS Xpyq SINXp4o
—(n+1)sinx,sinx,; =0

= sinx,41 {cos x4, — (M + 1) sinx,}
= COS X, 41 Sinx,

101

=cotx,.; = cotx,,, — (n—1) [dividing
bysin x;, .4 + sinx,, ]

~cotx, = cotx,_q +27" = cotx,_, +
27D L 27 =

=cotx; +272 423 4. 427"
=271 42724234427

=1- (%)n [+ tan™12 = x]

1 n
~cotx, = 1— (E) .

It cotx, =1.= cot( It xn) =1
n —oo n —oo

I1

= nl_tmxn = Z
Q4. Consider the circle of radius 1 with its
centre at the point (0, 1). From this initial
position, the circle is rolled along the positive
x-axis without slipping. Find the locus of the
point P on the circumference of the circle
which is on the origin at the initial position of
the circle.

Solution:-

Let ‘P’ be the point on the circle NP, let the line
OMX on which the circle rolls is X-axis and the
point ‘O’ is origin. Radius of circle is one unit,

A

t [N

O »

Let P=(x, y) and =PCM= 6, where 6 is the
angle through which the circle turns as the point
P tracts out of the locus.

0l .
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~OM=PM=1.0=6,letPL | OX, x=0OL=
OM-LM = 6-sin 6.

Y =PL=NM =CM - CN = 1- cos 6.
Q5. Sketch, on plain paper, the graph of y =

x2+1
x2-1"

Solution:-

_x2+1  (x2-1)%+2
x2-1 x2-1

2 Ldy 4x
x2-1 dx (x2-1)2

Ly=1+

For, —o < x < —1,y'is positive.
For, -1 <x <0, y’ is positive
For, 0 <x <1, y’ is negative

For, 1<x <00, y’ is negative.

vy’

Q6. Find the area of the region in the xy-
plane, bounded by the graphs of

y=x}(x+y=2andy=—/x.

Solution:-
y=x% ... (1) X+y=2
..................... (i1)

=—Vx . (ii1)

So, x* =x,0or,x (x*—1)=0,50,x=0, 1,
from (i) & (ii)

And, (2 —x)* = x,0r x> —5x +4 = 0 or, X
=1, 4, from (ii) & (iii)

So, point of intersection is x = 1.

Area of the shaded region is =
| fol(yz - yl)dx |'Where Y= _\/’—" v, =
2

X

| fol(—\/;— Xz)dx | = 1 sq.units.

Q7. Let x and n be positive integers such
that 1 + x + x2 + .-+ x® Lis a prime
number. Then show that n is a prime
number.

Solution:-

x"—1

P=1+x+x*+ - +x"1=
x—1

If Pisprime, thenx—-1=1=x=2.

_ 2"
2-1

~P

= 2" —1isaprime.

Let n is not a prime, then n = pq [p, q are
+Ve integers]

So, 2™ — 1 is divided by both 2P — 1 and
29 -1

i.e.,, 2™ — 1 is not a prime.



Challenging Mathematical Problems

But we know 2™ — 1 is prime, so, by
contradiction n is also prime.

Q8. Show that for every positive integer n, 7
divides 327+1 4 2n+2,

Solution:- 327+1 4 2n+2 — 3 321 4 4 1 —
32+ 7)" + 4.27

=3[2" +n, . 2" LT 4+ T + 4,27
=7.2"+ 3.7.n¢. 2" + -+ 3.7

=7(2" +3.n¢. 2" 4+ -+ 3.777)
multiple of 7.

Q9. If a, b, ¢ are positive numbers, then show
that

b2+c%2 %2+ a* a?+ b?

+ >a+b+ec.
b+c ct+a a+b a ¢
Solution:-
b 2
b2+022ﬂ

b>+c®> b+c

=
b+c 2
N cz+a2>c+a a’? + b?
similarly, >
Y ¥a 2 a+b
a+b
= .
2

b?>+c*> c*+4+a?> a?+b?
+ +

b+c c+a a+b

>a+b+c

Adding, we get

Q10. Out of a circular sheet of paper of
radius a, a sector with central angle @ is cut
out and folded into the shape of a conical
funnel. Show that the volume of the funnel is

. 2
maximum when @ equals 21:\/;.

Solution:-

Perimeter of the marked region of the circle =
2na—a (2 -0) = ab

Perimeter of the base of the cone = 2xr

P
J2nr=afd =r==
2T

Volume of the cone =V = %nrzh

1 a’6? X a26?
~3" a2 |V T a2

a3 5
= 92/4n? - 62
2472 T
Cdv ad N ey 63
T de 24m? 4 42 — 92

For V to be max or min,g—; =0

. - 7 a2z _ 0>  _
20 =vV4m 0 m_o

—8m2 —20%2—-02=0

(~0#0)
9=2n\/§
d*v ad
a7 = 2\ 4n? — 62
do? =2 \F 2412
=27 §
1 46 36°
2+4n2 — 92 an? - 62
264
+

3
2 _p092)2
(2 =02z,

= The volume of the funnel is max. when 8

equals 2r \E [proved]
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ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET -6

Q1. Show that if n >2, then (n))? > n™
Solution:-

2(n-2)>n-22n-4+2>ne2(n-1)>n

.............. @)
3(n-3)>n-33n-9>n-3=3(n-2)>n
............... (ii)
Similarly, we have 4 (n-3)>n
.................. (iv)

S5(n-4)>n..cccceeiinini

Multiplying all these up to (n- 2) terms, we get

[1.2.3......(n — 1D]? > n"2

B [(n-11?% > Z—TZL
B [n!]? > n™

Q2. Show that for all real x, the expression

ax? + bx + ¢ (where a, b, ¢ are real constants

_n2
with a > 0), has the minimum value M.

Also find the value of x for which this
minimum value is attained.

Solution;-

LetP=ax?®+ bx +c

1
=12 [4a®x? + 4abx + 4ac]
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1 1
= —[(2ax)? + 4axb + b?] + —[4ac — b?]
4a 4a

_(2ax+b)2+ 1 . )2

B 4a 4a[ ac ]

P is minimum when (2ax + b) =0, i.e. x = —%,
4ac—b?

and Py, = “Z—a_

Q3. A pair of complex numbers z4, z, is said
to have property P if for every complex
number z, we can find real numbers r and s
such that z =r z; + sz,. Show that a pair
z4,2Z, has property P if and only if the points
z4,2Z, and 0 on the complex plane are not
collinear.

Solution:-
Now, z; =a+ib,z, =x+iy,0=0+1i.0

And let z;, z,, 0 be collinear then
0 0 1
ax
la b 1|=0I=>;3—/=k(say)
x y 1

w2y = bk +ib = b(k + 1), 2, = y(k + i)

S0, 3 some real ‘r’ or‘s’ such that z=rz; +
szy =rb(k+i)+sy(k+i)=(b+sy)k+
0,

Which does not hold good.

So, z;, z, and 0 should not be collinear.

Q4. In a club of 80 members, 10 members
play none of the games Tennis,
Badminton and Cricket. 30 members play
exactly one of these three games and 30
members play exactly two of these games.
45 members play at least one of the games
among Tennis and Badminton. Determine
the number of Cricket playing members.
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Solution:-

Let n(U) = Number of elements in universal
set =80

n(NM) = Number of non-playing members
=10

n(PM) = Number of playing members= 80-
10=70.

Given that number of members playing
exactly one of the three games = t; + b, +
= 30.

Number of members playing exactly two of
these three games =tb + bc + ct =
30.Number of members playing there games
=10.

=~ No. of members playing cricket=c; +
tc + thc + bc

=25+12+10

=47 .

Q5. Each pair in a group of 20 persons is
classified by the existence of kinship relation
and friendship relation between them. The
following table of data is obtained from such
a classification.

KINSHIP AND FRIENDSHIP RELATION AMONG 20 PERSONS

Friendship— Yes No
Kinship |

Yes 27 31
No 3 129

Determine (with justifications) whether each
of the following statements is supported by
the above data:

(1) Most of the friends are kin.
(i) Most of the kin are friends.
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Solution:-

Friend | Yes No. Total
Kin
Yes 27 31 58
No. 3 129 132
Total 30 160 190

1. Most of the friends are kin because 3 of
30 friends are not Kkin.

2. Most of the friends are kin, which is not
true.

Q6. Evaluate lim

i {(1+2)(1+3) 1+
=) (1 + 22

Solution:-

1

o= 10 {(12) (14 3)-(1+ 2

1 3
1 grfton (1457) +10s(147)

)

logP =

+ ---+log<1 +

r—l)

== It

> it nzlog(l +

1
since It —=0.
n-wsLN

1 1
=—j log(1 + x) dx
2 Jo

[xlog(1 + x) — x +log(1 + x)] !

NI»—k
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l 4\2
= g ;)

1
ez

Q7. The circles €4, C, and C3 with radii 1, 2
and 3, respectively, touch each other
externally. The centres of C; and C, lie on
the x-axis, while €3 touches them from the
top. Find the ordinate of the centre of the
circle that lies in the region enclosed by the
circles €4, C, and C5 and touches all of them.

Solution:-

Q40 ,.4)

— (%)

———

o (o,q‘

cy(31%)

For simplicity, centre of C; = (0,0); C, =
(3,0); C3=(0,4)

Let (x, y) be the co-ordinates of the centre of the
circle touching Cy, C, and C3 and letr be its
radius.

Then, (r+1)%2 = x24+y2.................. (1)
r+2)2=((x—-3)2+y%. i ()
r+3)2=x2+(@—4)2 . .
3

Solving these there equations, we will get the
following equation:-

23x%2—-90x+63=0

90+ V902 — 4.23.63 21

RS = — , 3
* 2.23 23 7"
By the diagram, x can’t be 3, so, x = %, Ly =
20
23’

= Required centre of the circle is (%g)

Q8. Using calculus, sketch the graph of the
following function on a plain paper: f(x) =

5-3x2
1-x2’

A _5-3x2 _ 3(1-x%)+2 _ 2
Solution:- f(x) = —— = ——=— =3+ —
() = 4x
“f )= (1 _x2)2’

For, —o < x < —1, f (x)is negative;
For, -1 <x <0, f (x) is negative;
For, 0 < x <1, f'(x) is positive;

For, 1< x <o, f'(x) is positive;

X -3 |3 -2 2 0 |2 1
> | 5
f(x) |23 |23 |21 |21 |5 |17 | 17
4 | %4 |53 3 3| 3

\ /

\L/
L, .

__;x
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Q9. Let ABC be an isosceles triangle with AB

=BC =1 cm and A = 30°. Find the volume
of the solid obtained by resolving the triangle
about the line AB.

Solution:- Here AB=BC=1

BD = BC Cos 60° = 15:%

@

CD = BC Sin 60° = 1.7=“2—§

~AD = AB+ BD = 1+§ = %

. 1 3
= Required volume = 375

3 1 . 1 3w . T .
S|\ —<)sq.unit = -.—sq.unit = —sq.unit.
2 2 3 4 4

Q10. (a) Prove that, for any odd integer n, n*
when divided by 16 always leaves remainder
1.

(b) Hence or otherwise show that we cannot
find integers nq,n,, ..., ng such thatn,* +
n24 + -+ n84 = 1993.

Solution
(@ Letn=2a+1
n*= (2a+ 1*
= (4a® + 4a + 1)?
= [4a(a + 1) + 1]?
=16a’(a+1)?+8a(a+1)+1

=16[a(a+ 1D]*+8a(a+1) +1
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Now, a (a+ 1) is divisible by 2.
-n* =1 (mod 16).
(b)Solution:-

Now, n;* = 1(mod 16)

n,* =1 (mod 16)

ng* = 1 (mod 16)

n* +ny* + -+ ng* = 8 (mod 16)
But 1993 = 9 (mod 16)

So, the value of ny* + ny* + -+ + ng* can’t be
1993.

ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET -7

Q1. Let x be a positive number, A sequence
{x,} of real numbers is defined as follows:

1 5 1 5 -
X1 =E(x+;),x2 =E(x1 +x—1),..., and in

general,

Xni1 = %(xn + %) foralln = 1.

(a) Show that, for alln > 1,

Zn
- (=9
Xn+V5 x+V5

(b) Hence find lim x,,.
n—-wo

Solution:-
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1 5 \/g - \/g " : N a: —x i -
@) x, = E(xn—1 t 1) - T(X_\/El " 1) Shaded ma\m] rebneiend {
n— n— ‘a‘é |=] . = —— X
= x—n = 1<xn_1 + \/g ) Now, 4+Re awabh 0{ \x| ¢ 1"t as ;f““"mzz
\/g 2 \/g Xn-1 Shaded woejion wepraserts ’]
N 1 L |l .ﬂﬂﬂ o
By componendo-dividend, we get- . "g MPINPIRRIEeE
0. A4Re combmud gmnabh o 2 b e .
1 V5 sl et &
Xn_1 arert} *

Z(Zn=t 4 V2 ) q aded moion wehrerera
xn—\/§_2<\/§ xn—l) N ‘\3 z\\a B o{fﬂm "
xn+\/§ 1<xn_1+\/§)+1

2 5 Xp—

V5 Zn 1\/§ NG Q3. Sketch on plain paper, the graph of the
_ Xno1 VS = 2V5 Xn functiony = sin(x?), in the range 0 < x <
xn_]_z + \/g + 2\/§ xn—l \/E
2 .
B <xn_1 _ \/§>2 ~ <xn_2 _ \/§>2 ~ Solution:-
Xp—1t \/g Xn—2 t \/g

ot Taking different values of x, we get different y.

x =5
:<x1+\/§> X 0 \/n_/ll- \/n_/Z T w/371/2 V2m

Zn
= <z ; \/\é) (proved)

(b)Since x is a positive number, x — /5 < x +

V5

x5

x+\/§<1

=

C;ﬁ)z — 0asn — oo,

= mid —0E=x—V5—0
x+V5
Q4. If nis a positive integer greater than 1
It x, = /5.

" s such that 3n + 1 is perfect square, then show

. . ] that n + 1 is the sum of three perfect squares.
Q2. Draw the region of points (X, y) in the

plane, which satisfy |y| <|x| < 1. Solution:-
Solution:- As 3n + 1is a perfect square, so let
3n+1=a?

= ais not a multiple of 3.
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= a may be of the form either 3k + 1 or 3k + 2,
kel

Takinga=3k+1, 3n+1=3k + 1)? =
9k%+ 6k +1;

Or,n=3k? + 2k

Oo,n+1=3k*>+2k+1=k*+k*+
(k+1)2

i.e., sum of three perfect squares.

Takinga=3k+2,3n+1=(3k + 2)2 =9k? +
6k + 4,

Or,n=3k?+4k + 1

or,n+1=3k?+4k+2= k?+ (k+1)*+
(k + 1)?

i.e. sum of 3 perfect squares. [Proved]

Q5. Letx = (xq,X2, ..., Xpn), Y=

(Y1, Y2, -, Yn) » Where x4, x5, ..., x,

Y1, Y2, -, Yn are real numbers. We write
x >y, if for some k, 1< k<(n-1),x; =
Y X2 =Y2, -, Xk = Vi butxk+1 >
Yi+1- Show that for u = (uy, ..., u,),
V=(Vq, o, Vp), W= (Wq, ..., Wwy) and z =
(z4, ..., 2,), Ifu>vandw >z, then (u +w)
> (v +2).

Solution:-u>v

&. ul == 171
uZ = 172
Uy = Vg

But Up+1 > Uiy

Againw >z
&W1 = Zl

W2: ZZ

Wy > Zy
But wgi1 = Zg4q

SO, U+ W= v+ z, & (U+ W)k: (V+
2)k

But up41 + Wis1 > Vps1 + Zgsa
So,u+w>v+z

Q6. Consider the set of points S = {(x, ¥): X, ¥
are non-negative integers < n}.

Find the number of squares that can be
formed with vertices belonging to S and sides
parallel to the axes.

Solution:-

The number of squares with sides of unit length
=nXxn= n?

The number of squares with sides of length 2
unitsis=(m—1)x(n—1)= (n—1)%and so
on.

- Total number of squares = n? + (n — 1) +

w4 27 12 = MDD

s 4 4
Q7. If S"; XX 1b, then show that

b a+
sin®x cos®x _ 1
a2 b2~ (at+bh)?’
Solution:-
sin*x cos*x 1

a + b~ a+b
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sin*x (1 — sin®x)? 1
or, + =
a b a+b
or, (a + b)?sin*x — 2asin®x(a + b)

+a?=0

~{(a+b)sin’x —a}>* =0

. sin?x = ¢ . cos’x=1-— ¢
a+b a+b
— b .
T a+b’
sinéx cos6x a® b3
T2 T Tarb?  @rb)?
a? b2
1
“(@+b)?

Q8. Suppose there are k terms playing a
round robin tournament; that is, each team
plays against all the other teams and no game
ends in a draw. Suppose the ith team loses I;
games and wins w; games. Show that
k k
liz = ZWiz.
=1 i=1

4

4

Solution:-

By the problem, every team will play k -1
matches. As the i-th team loses [; & wins w;
matches, they play a total of [; + w; matches, as
no match ends in draw.

Obviously, total no. of wins in the tournament
= total no. of loses in the tournament
= 2;{:1 li =

T Wi e, )

Now, ¥&, ;% = K w2 = 3K, (1,7 - w;?)
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K
= Z(li +w)(l; —w;)
=1

= i(k— 1
i=1

—wy) [from (1)]

=k -D{ZE -} = (k= 1).0[from (2)]
=0

Q9. Let P4, P,, ..., P,, be polynomials in X,
each having all integer coefficients, such that
Py = P>+ P2 + -+ P,% Assume that P,
is not the zero polynomial. Show that Py =
land P = P3=--= P, =0.

Solution:-

According to the question, p; = p;? + p,% +
p3® + -+ pp?

This is possible when the degree of p; is0.

2 2 2
2 D2 tp3°t++pn

P1” 2P, 2 24... 2 =0

D1°tD2°++Dn

P12+ttt pt = pLpit =
pr#0 - p =1

given that

And p22 + p32 + -+ pnz =0

i.e., pp = p3 = p,=0[Proved]

Q10. Let P(x) = x* + ax® + bx? + cx + d,
where a, b, ¢, and d are integers. The sums of
the pairs of roots of P(x) are given by 1, 2, 5,
6, 9 and 10 find P(%2).

Solution:-
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P(x) = x* + ax® + bx? + cx + d, now sum of
the roots= -a

= a+ f+y+td=-a

Again,a+pB=+1,y+6=10,a+y=2,a+6 =
6, 8 +y=5, B +6 =9, Adding, 3(at+ S+ y+ ) =
33

=a+f+y+6=11
=a=-11
Solving, the equations,

a =-1 [Note: (a+ y) and (a+ &) both should be
either

B = 2 even or both should be odd, else a, b, ¢, d
y = 3 will not be integers.]

§=7

We know, a8 +8y + v +6a +ay +B5 =D
afy+ Byd+ yda+ affé = -

afyd=d

Putting the values of a, 8, y, 8, b=29,c=-1,d
=-42,a=-11.

~ a, b, ¢, d any integers.

~P(X) = x* — 4x3 + 29x% — x — 42 and,

P(12) =22

ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET -8
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Q1. Sketch the set A N B in the Argand Plane,
where A = {z: |§| <1}and B={z:|z|-Rez<
1}.

Solution:-

Letz=x+iy,then|§|§1,

= |z+1] < |z- 1],

B x+1+iy)?’<(x+iy—-1)?2 =24x<0
= x <0.

Also, |z| -Re(z) < 1

B x2+y2 <x+1 x2+y?2< x2+

20+1 = y? <2 +1=2(x+3)

2

Lys = 2 (x + %) is a parabola, having its vertex

at (— % 0) and axis on X-axis.

I e
Bl Ao

Q2. A function f from a set A into a set B is
rule which assigns to each element xin A, a
unique (one and only one) element (denoted
by f(x)) in B. A function f from A into B is
called an onto function, if for each element y
in B there is some element x in A, such that
f(x) =y. now suppose that A = {1, 2, ..., n}
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and B ={1, 2, 3}. Determine the total number
of onto functions from A into B.

Solution:-

Number of onto functions from {1, 2, 3, ..., n}
to {1, 2}is 2™ — 2.

Here, A=1{1,2,3,...,n},B={1, 2, 3}, for each
i € A have 3 possibilities, so total no. of f(n)
from A to B is 3™.

But there are (3)(2™ — 2)f(n) image consist of

2 points and 3 f(n) whose image is singleton.
Hence, total number of onto functions f(n) from

AtoBis{3" - (3)(2" - 2) - 3}.

Q3. Let D=a? + b? + c¢?,where aand b are
successive positive integers and ¢ = ab. Prove

that VD is an odd positive integer.
Solution:-

Leta=2n

b=2n+1

c=2n(2n+1)

=4n® + 2n

D=a?+ b%?+ c?

~D=16n*+ 16n3+12n?+4n+1
D-1=2(8n* + 8n3 + 6n? + 2n)

~ D —1is an even number.

~ D is an odd number.

So, VD is an odd number.
Also,D=16n*+ 16n3 +12n?+4n+1
= (4n% + 2n +1)?

wVD=4n? + 2n+1
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=2(2n? +n)+1
~+/D is an odd positive number.

Q4. Show that a necessary and sufficient
condition for the line ax + by +¢ = 0, where a,
b, ¢ are non-zero real numbers, to pass
through the first quadrant is either ac <0 or
bc <0.

Solution:-

ax+hby+c=0

ax+c

5 >0.

By=—

ax+c acx?+c?
’ <0 —
b bc

<0.

There will be at least one point on the line for
which x >0 and y >0 [ If passes through the 1*
quadrant]

(i) If acx? + ¢% > 0, then bc <0, now,
x>0, c? > 0.
~ac>0.

(i) If acx + c? < 0, then bc >0, now, X

>0, ¢?2 > 0.

~The necessary and sufficient conditions for the
line to pass through the 1% quadrant is either ac
>0 or, bc >0.

Q5. The sum of squares of the digits of a
three digits positive number is 146, while the
sum of the two digits in the unit’s and the
ten’s place is 4 times the digit in the
hundred’s place. Further, when the number
is written in the reverse order, it is increased
by 297. Find the number.

Solution:-
Let the no. be (xyz), i.e. N = 100x + 10y +z

Given x2 + y? + z2 = 146,
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Solving (i), (ii) and (iii), we have x =4,y=9, z
=T7.

So, the number is 497.

Q6. Show that there is at least one real value
of x for which ¥x + vx = 1.

Solution:-
Lety=1-vVx ......o.oo..... (i)
Andyo =3/x ..o (ii)

For function (i) x=0,y=1; x=1,y =0; x=
11

Z;y - 2!

This is a continuous function curve which
decreases from 1 to 0

For function (i) x=0,y, = 0; x=1,y, = 1;
_1 1
X_E’yo - 2’

This is also a continuous function curve and it
increases from 0 to 1 in the interval 0 <x < 1.

Hence, they must meet each other, i.e. their

value will be some at some points between 0 < x
<1

Hence, the given equation has only one real root.

Q7. Suppose S = {0, 1} with the following
addition and multiplication rules:

0+0=1+1=0 0.0=01=10=0
0+1=1+0=1 1.1=1

A system of polynomials is defined with
coefficients in S. The sum and product of two
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polynomials in the system are the usual sum
and product, respectively, where for the
addition and multiplication of coefficients the
above mentioned rules apply. For example, in
the system,

(x +1).(x*+x+1)
=2 +@+Dx%*+ 1+ 1Dx
+1=x3+0x2+0x+1
= x3 + 1.

Show that in this system x3 + x + 1 =
(ax + b).(cx? + dx + e) can't hold.

Where a, b, ¢, d and e are elements of S.
Solution:-
Let us try to write,

x3+x+1=(ax+b)(cx?+dx +e)
= acx® + (bc + ad)x?
+ (bd + ae)x + be;

= ac=1,bc+ad =0,bd +ae=1,be=1
“a,b,c,d, e € s,aswe have assumed.
~ Fromthe givenrule,a=1,c=1,b=1,e=1
~ be+ ad = 0, substituting the rules,
1+d=0 =>d=1(v1+1=0)
Again, bd +ac = 1, substituting the values,

1+ 1=1, but, by the rule 1+ 1 = 0, which
contradicts over assumption.

= x3 + x + 1 cannot be factorial in this
system.

Q8. Show that [J/* |12 dx > 2 (1+3+
b4 2
1
)
Solution:-
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fn | sin hx
0

|dx as x ranges from [0, r], so A

Letusputnx=z . ndx=dz

szonrrlsinz %zfnn'lsmzld

zn ! n 0

f | sinz | d +f | sinz | d + +
| dz

sinz

f(n—l)n | z

NOW f | San| d — le'SandZ >

le.' sinz

, ——dz ——f sinz dz

Now, fnzn| Si:Z| dz = f: | _;inyy | dy , where

T+y=2,
(ii) PD_L BC, PE | AC, PF | AB.

T siny

= yzif:sinydyzi .
Tty 2 2n So, from (i) =PAF = _PAE = 30°,
Proceedmg in this way, [, | *2% | dz _PCE = _PCD = 30°, .PBD= -PBF= 30°.
f | E | > i PF 1 AF
(n-1) : — = °o— — ==
nl z nm ~In APAF, I tan 30 7 or, PF 7
2 1
R e E(l totot Similarly, for APBD, we get PD =
1 1 1
n). ﬁBD, and for APCE, we get PE= N CE.
. PD+PE+PF _ \/%(BD+CE+AF) 1
] ] ] " BD+CE+AF  BD+CE+AF 3
Q9. Inside an equilateral triangle ABC, an
arbitrary point P is taken from which the As each of the PD, PE, PF can be represented
perpendiculars PD, PE and PF are dropped w.r.t. BD, CE, AF respectively, so the specified
onto the sides BC, CA and AB, respectively. ratio does not depend upon the choice of the
Show that the ratio BDICETAF does not depend Y
upon the chice of the point P and find its Q10. AB is a chord of a circle C.

value.
(a) Find a point P on the circumference of C

Solution:- We have (i) AB=BC =CA & - B such that PA. PB is the maximum.

=-C=-A=60°
_ _ (b) Find a point P on the circumference of C
[~ AABC is equilateral] which maximizes PA+ PB.

Solution:- (a) Let PA=xand PB =y

# PAPB =xy = (’”y) (%)2
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Xy is maximum when x = y.
i.e. PA=PB =A4PAB will be an isosceles one.
Position of P:-

P will be the point of intersection of the
perpendicular bisector of AB and the circles.

AP BP AB

(b\ = =
/sinB sinA sin P

AP . AB .
AP =——XsinB;BP = —— X sind4;
sinP sin P

AB . .
~AP+BP= s (sinA +sinB) =
B . A+B ___A-B
— X 2sin—cos— =
sin P 2 2

AB P A-B
— .2 C0S—C0S—.
sinP 2 2

-+ AB = constant, -P = constant,

. A—-B
~AP + BP = maximum when cos -
maximum =1.

|=>AZ;B=O|=>A=B = PA = PB.

= P lies on the point of intersection of the
bisector of AB.

ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET-9

Q1. Let PQ be a line segment of a fixed length
I with its two ends P and Q sliding along the
X- axis an Y-axis respectively. Complete the
rectangle OPRQ where O is the origin. Show
that the locus of the foot of perpendicular
drawn O is the origin. Show that the locus of
the foot of the perpendicular drawn from R
on PQ is given by x2/3 + y2/3 = [2/3,
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Solution:-

/TY

R(a,%)
S
—fL—— =
0 P(C\/ 0) %
Equation of PQ: §+% =1.
~bx+ay—ab=0................ (D

AsPQ=L,s0,a®? +b?>=1L1%...............
2

Equation of the line through R(a, b) and
perpendicular to PQ is

_a

y-b—;(x—a)

or,ax —by—(@?>—b*)=0...............
3

Both the lines PQ & RS meet at point S,
whose locus we are to find, the variables
being a, b, which are connected by a? +
b? =12

Solving (1) and (3), we have

ve _ y
—a3 + ab? —ab?  —a?b+ a%b — b3
1
~Tpz _ g2
x y 1 1
= = = — = —
—a3  —p3 b2 +a2 I2’

1 1
= a= (L?x)3&b = (L*y)3;
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1 1
= a = (L?x)3&b = (L*y)3;
X aZ + b2 — LZ
2 2 2
s (L)% + (L?y)3 = (L7)3
2 2 2 - .
~ x3 4+ y3s = L3 which is the required locus

of S.

Q2. Let [x] denote the largest (positive,
negative or zero) less than or equal to x. Let

y=f(x)= [X]+ \/x — [x] be defined for all real

numbers X.

(i) Sketch on plain paper, the graph of the
function f(X) in the range -5 <x <5.

(ii) Show that, given any real number y,,
there is a real number x,, such that y, =

f(x0)-

Solution:- y =f(x) = [X] + x — [x] = [X] +
V@

(i) We know 0 < {x} <1
=/ {x} = {x}
=]+ = X+ {x)
= f(x) > x

‘=" holds when x takes integral values.
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(i)  Again,y=f(x) = [X] + /{x}
As 0 < {x} < 1, hence \/{x} is always real,
= f(x) is always real.

= thereisa x5, Vy, € R&x, € R,3y, =

f (x0)

Q3. A troop 5 metres long starts
marching. A soldier at the end of the file
steps out and starts marching forward at
a higher speed. On reaching the head of
the column, he immediately turns around
and marches back at the same speed. As
soon as he reaches the end of the file, the
troop stops marching, and it is found that
the troop has moved by exactly 5 metres.
What distance has the soldier travelled?

Solution:- Let Vel. Of troop =V,
Vel. Of soldier =V

Now, distance travelled by troop, when the
soldier reached that point = x m.

. _ x __ distance
=~ Time taken = o=

w  velocity’

So, distance traveled by soldier = length of
troop + X = x+5

. +5
- Time taken = xV .

N

Giventhat X = X2 o Y5 — 243
Vi Vs Ve X

Again, the soldier retreated x units.

= Time taken by him to retreat = —

N

The troop travelled = {10 — (5+ x)}m = (5-
x)m.
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- Time taken by them to travel= Sv;x

t

So, by the question, we have % = 5;—’“
t

N

x+5  x
X _5—x
B X= >

7z

= The soldier travelled = 5+ x+ x= (5+ 5v/2)
m.

Q4. Given m identical symbols, say H’s, show
that the number of ways in which you can
distribute them in k boxes marked 1, 2, ..., K,

so that no box goes empty is (’,?_‘11 :
Solution:-

(a) Put 1 ball in each box, so we have m-x
identical balls to be distributed in k boxes.

Let, the jth box got i j balls out of (m - k) balls,
wherej=1,2,3,...,k; 0<i,j <m-k.

So, we need to find the no. of solutions of the
equation iy + i, + -+ + i, = m — k, where each
i j is non-negative integers.

~ Total number f solutions = coefficient of
x™tin(1—x)7k

_ (m - 1)

- \k-1/
Q5. Show that for every positive integer n, Vn
is either an integer or an irrational number.
Solution:-
When ‘n’ is perfect square,

Then +/n is an integer.

When ‘n’ is not a perfect square, then let

Vn is a rational number= 2, where gcd (p, )= 1.
q

2
: _D
|.e.n—;

p and q are relatively prime to each
other, p% and g2 should be relatively prime to

2
each other and z—z can’t be an integer. Hence, vn

is not a rational number.

Q6. Show that 2% — 3n — 1 is divisible by 9
for alln > 1.

Solution:-

22" _3p—1=4"—3n—-1
=(1+3)"-3n-1

={1+3n+9n,,+--+ 3"} -3n—-1
=9(nc, +3.n¢, + -+ 3"7?)
i.e., 22" —3n—1 isdivisibleby9vn > 1.

Q7. Find the set of all values of m such that y

2_
=2 (can take all real values.
1-mx

Solution:-
B x% —x
= 1—mx

B y—mxy=x*—x
Bxli+my—Dx—y=0
~(my—1)2+4y >0 [+ xisreal]
= m2y?+ (4—-2m)y+1=>0
~(4-2m)?—4m? >0 [+ yisreal]
= 2-m?2-m2=0

=2-2m>20Bm <1.
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Q8. If A, B, C are the angles of a triangle,
then show that sin A +sin B - cos C < %

Solution:-

Sin A + sin B —sin C = Sin A + sin B-sin
(t-o)
2

Il
=sinA + sinB + sin (C _E)

I1
=sinA +sinB +sinD, D=C—§.
I1
Now,A+B+C = II; .'.A+B+C—§
I1
=A+B+D=E.

Let, f(X)=sin X, we plot its graph such that
taking the abscissa A, B,DasA+ B+ D = %

or, plotting in the interval [O, g]
=~ Centroid of APQR=G=

(A+B+D sin A+sin B+sin D)
3 3

We take a point f(x) = sin X, such that it is of the
same abscissa that of G, but of greater ordinate.

_ (A+B+D . A+B+D
M= 3 ,Sin 3

-~ Ordinate of G < ordinate of M,

sin A+sin B+sin D . A+B+D
< sin

3 3 !

Or,sinA +sinB + sinD < ;

When A, B, D are not distinct, i.e., A= B=D= %
equality holds. = sinA + sinB + sin D <

3, . 3
E,smA +sinB —cosC < >
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Q9. Let X be a point on a straight line
segment AB such that AB.BX = AX?. Let C
be a point on the circle with centre at A and
radius AB such that BC = AX. Show that the
angle BAC= 36°.

Solution:- Let, a = radius of the circle,
AX = x = BC. Since, AB. BX = AX?,

=aa-X)=x?=a?—ax —x? =0,

() +i-1-0

X —14+/5
a2
Now, x =BC =2a Sing Sing _ X _ —1+5 _
2 2 2a 4
sin 18°
= 18°= 0 = 36°
':>ABAC: 360'

Q10. Let a, b, ¢, d be positive real numbers
such that abcd = 1. Show that (1+ a)(1+ b)(1+
o)(1+ d)> 16.

1+b

Solution:- —> Va, > Vb, 1tc > Ve

1+d > \/—

Multiplying corresponding sides of the above
inequalities, we have,

(1+ a) (1+ b) (1+¢) (1+d) > 16 Vabed > 16.



Challenging Mathematical Problems

ISI B.STAT & B.MATH
SUBJECTIVE QUESTIONS &
SOLUTIONS

SET -10

Q1. For a real number X, let [x] denote the
largest integer less than or equal to x and <x>
denote x — [x]. Find all the solutions of the
equations 13[x] +25 <x> = 271.

Solution:-
13 [x] + 25 (x) = 271

_ 271-13[x]
or, (X) = BT
We know 0 < (x) <1,

271-13
[x] o
25

=0< 1

= 13[x] - 271> -25
= [x]>18.9

The nearest integers in this interval are 19 and
20.

Putting [x] = 19, (x) = w =0.96

Putting [x] =n 20, (x) = w = 0.44

~ X =19.96, 20.44 (Answer)

1
Q2. Consider the function f(t) = e ¢.t > 0.
Let for each positive integer n, p,, be the

. dn 1\ 1
polynomial such that Wf(t) =P, (;) e ¢ for
all t > 0. Show that

d
Pn+1(x) = x? (Pn(x) - apn(x))

Solution:- f(t) = e~/ t > 0

n

d 1\ 1
== (F®) = h(5)e

Now, P44 <—> = et
-t B+t (2)n ()
|

-aB @+ #n )
Cdtl "\t t2 "\¢/

1 d dt
Letus put - =X, Ppyq () = —{F(x)} /- +

x2.

2 Py() = 22 Py(x) — 22 (B, (1)} =
22 (P00 - L)

Q3. Study the derivative of the function f(x) =
x3 — 3x? + 4, and roughly sketch the graph
of f(x), on plain paper.

Solution:- f(x) = x3—3x2+4
f(x) =3x? — 6x = 3x(x — 2)
f(x) > 0 for -0 ,x <0

f(x) <0 for 0<x <2

f(x) >0 for 2 < x< o

-2 -1 0 1

N
w

X
fx) |-16 |0 |4 2 0 |4
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,/.l

Q4. Study the derivative of the function

f(x) =log,x — (x — 1), for x > 0, and
roughly sketch the graph of f(x), on plain

paper.

Solution:-

f(x) = log,x — (x — 1), for x > 0.

, 1
f(x)=;—1=

1—x

)

fx)>0for0<x<1

fx)<0forl<x<ow

0.5

1

2

X
f(x)

0.2

0

-0.7
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Q5. (i) Find the number of all possible
ordered k- tuples of non-negative integers

nq,Nny, ..., Ny such that Zk= n; = 100.
i=1

(ii) Show that the number of all possible
ordered 4- tuples of non-negative integers
(ny,nz,n3,n,) such that ¥ n; <

100 is (19°).

Solution:-

(i) Let S={nq,n,, ..., n;} be a set with k distinct
elements. Given n; > 0 and ¥, n; = 100.

So, total number of all possible ordered k —

tuples of such kinds are = (“~ 3 1%°

(i)Here k = 4, and Y¥_, n; < 100
So, no. of such possible cases are = (*7'71%1) =
(104)
o
Q6. Let P be the fixed point (3, 4) and Q the

point (X, V25 — x2). If M(x) is the slope of the
line PQ, find linng(x).
x—

Solution:-

P(3,4); Q (x, V25 — x?)

_ V25-x?—4

x—-3

Slope, M(X)= 3::3:2

Now, liné M(x) = lim V25—x 4
xX—

x—3 x-=3
= —% [Do yourself applying L’Hospital Rule]
.o0lve 6x” —25x+ 12 +—+5=0.
Q7. Solve 6x% —25x + 12+ 22+ 5 =0
Solution:-
6x2 —25x + 12+ 2+ 2 = 0;
X X

2 6 25 _
= 6x°+ 12+ 5 25x + =0
x x
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6 25
|=>6x2—12+—2—25x+—+24=0
X X
1\2 1
I:>6<x——) —25(x——)+24=0
X X
Let, x — = = y; 50, 6y? — 25y + 24 = 0

_ 25+V625-576 _ 8
3

2X6

Q8. (i) In the identity

n!
x(x+1Dx+2)...(x+n)

n
_Z Ay
B x+ K

k=0

Prove that 4, = (_1)k(z) .
i ) 1 1
(i) Deduce that.(’g) i ('11) ¥
1 1 1
Solution:-

(i) Fromn! =Y2_ A, (x + 1) (x +
2)x+k—-1Dxx+k+1)...(x+n)

Putting x = - Kk,
n =Y (—1)7* Ap. k! (n — k)!
B A = (=D (7).

(ii)Considering (1 + x)™ = ng, + n; x +

ne,x? + -+ ng x™

Integrating w.r.t.x, we have
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2

(1+ x)"+?! Ne, X
—— = N, X+ + -
n+1 co 2
N, xn+1
+ ————+ constant
n+1
Putting x = 0, then constant = =
n+1
So, L™ _ 4Ty
"on+1 ‘o 2
nCnxn+1 1
n+1 n+1’
(1 +x)n+2
(n+1D(n+2)
2 3
et Ta¥
1.2 2.3
n, x"*? X

+ = +
n+1Dn+2) n+1
+ constant .

1

Putting x= 0, then constant = iDm D

2
1+x)™2 neyx nC1x3

= +
" (n+1)(n+2) 1.2 2.3
ncnxn+2 x 1

(n+1)(n+2) n+1 + (n+1) (n+2)’

+ ..+

Putting x= -1, we get

e O G | . ——
2.3 3.4

= o
0 (n+1)(n+2)

T 12
1 1

n+1)  (m+1)(n+2)

0.5 Dozt Qg+t

1 1
") T i (Proved)

Q9. A regular five pointed star is inscribed in
a circle of radius r. Show that the area of the

1072 tan(%)

region inside the star is ———>=%.
g 3—tan2(1£0)

Solution:-
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Suppose, O be the centre of the circle which lies

in the star and whereas -MOL = 6, so, =LAM =
0

>

Here 5. R. 6 = 27tr

From AOAL,

AOL=2Z=1=C
5 2 5

_LAO=1_4a0L =L
2 10

<OLA = 7- (<AOL+-LAO)

- (+3)

Let, AL =a, OL =b & OA=R (given)

i
~ 10

a b R
~ From A OAL, we have, —w =7 = g
sin-  sin—  sin—
10 10
sinZ sin>
~a=R—% &b =R—32
SIDE Sll’lﬁ

Thus area of AAOL = = ab sin = = 1 R2
2 10 2

SlnSSHllO

. 7 7T
X sin7 —
2 T 10
sin 710
—1R22' T T 0w
=3 smlocoslosm10
7 - R251'1121—7Bc051n—0
[ sin— =sin3—| =
10 10 351n£—4sin3—n
10 10
2 pan L
_ R tan10
_ 2 1T
3 —tan 10

widi T T . 2T
[Dividing N & D" by sin—cos 10]

. 10R? tanl1
Hence, required area of the star = TO

2
10

[proved]
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Q10. For the following function f study its
derivatives and use them to sketch its graph
on plain paper:

-1 +1
f(x) =fm+f:f0rx¢—l, 1.

x+l
x—1
1= 2(x%+1) 4

' —-8x
—1| = (x’-1) 2+ -1 f (X) = m

Solution:—f(x)zi—:+ [forx #1,x #

For, —oo < x < —1, f'(x)is positive;
For, -1 <x <0, f '(x) is positive;
For, 0 < x <1, f (x) is negative;

For, 1< x < oo, f'(x) is negative.

X 31-21]0 - Y Y12 |3
f(x) |21 |31 |- |3t 31312
2|73 5| 73 3|73

>X



Challenging Mathematical Problems

PROBLEMS WITH SOLUTIONS FOR
L.A.1. / C.M.I. ENTRANCE TESTS

1. Prove that for all natural numbers n =3
there exist odd natural numbers x,,, y,,
such that 7x,,% + y,% = 2™

Sol: For n = 3, we have x3 = y; = 1. Now
suppose that for a given natural number n we
have odd natural numbers x,,, y,, such that

7x2 + y2 = 2™ we shall exhibit a pair (X, Y)
such that 7X? + Y2 = 2™ we shall exhibit a pair
(X, Y) such that 7x,,2 + y,%2 = 2™*1 In fact,

X, + 2 7x,, + 2
7(”;}1”) +(”—_y”) — 2(7xn2 _|_yn2)

2 2
— 2n+1
One of &2t g E is odd (as their

sum is the larger of x,, and y,, which is odd),
giving the desired pair.

2. Thecircles k; and k, with respective
centers O and 0O, are externally tangent
at the point C, while the circle k with
center O is externally tangent k; and k,.
Let | be the common tangent of k; and k,
at the point C and let AB be the diameter
of k perpendicular o I. Assume that O and
A lie on the same side of |. Show that that
the lines A0,, BO4, l have a common
point.

Sol.: Let r, 1, 1, be the respective radii of
k,kq,k,. Also let M and N be the intersections
of AC and BC with k. Since AMB is a right
triangle, the triangle AMO is isosceles and

2AMO = £0AM = £0,CM = £CMO,

Therefore O, N, O, are collinear and AM / MC =
oM / M01 = T/T‘1
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Similarly O, N, O, are collinear and BN / NC =
OM/N02 = T/Tz.

Let P be the intersection of | with AB; the lines
AN, BM, CP concur at the orthocenter of ABC,
so by Ceva’s theorem.

AP / PB = (AM / MC) (CN / NB)=1, /1. Now let
D, and D, be the intersections of | with

€D, 0,C
B0, and AO,.Then— = -+ =

D,P _ PB
r . cD, r cD
-+ and similarly—2 = %, Thus — =
PB D,P  PA D,P

% and D; = D,,and so A0,,B04,l have a
2

common point.

3. Leta, b, c be real numbers and let M be
the maximum of the function y = | 4x3 +
ax? + bx + c| inthe interval |-1,1].
Show that M > 1 and find all cases where
equality occurs.

Sol.:a=0,b=-3,c=0, where M = 1, with the
maximum achieved at -1, -1/2, %, 1. On the
other hand, if M < 1 for some choice of a, b, c,
then

(4x3 + ax? + bx + ¢) — (4x3 + 3x)

Must be positive at -1, negative -1/2, positive at
%, and negative at 1, which is impossible for a
quadratic function. Thus M = 1, and the same
argument shows that equality only occurs for
(a, b, c) =(0, -3, 0). (Note: this is a particular
case of the minimum deviation property of
Chebyshev polynomials).

4. Thereal numbersaq, a,, ...,a,(n = 3)
from an arithmetic progression. There
exists a permutation
a1, iz, ..., Ain Of A4, a5, ..., a, whichis a
geometric progression. Find the numbers
a,, a,, ... a, if they are all different and the
largest of them as equal to 1996.
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Sol.: Letay <a; < —< a, =1996andlet q
be the ratio of the geometric progression

Qi eevee een a;, ; clearly g# 0 + 1. By reversing
the geometric progression if needed, we may
assume |q| >1,andso |a;1 1< |ap| <-|aip].
Note that either all of the terms are positive, or
they alternate in sign; in the latter case, the
terms of either sign form a geometric
progression by themselves.

There cannot be three positive terms, or else
we would have a three term geometric
progression a, b, c which is also an arithmetic
progression, violating the AM —GM inequality.

Similarly, there cannot be three negative terms,
so there are at most two terms of each sign and
n <4.

Ifn=4,wehavea; <a, <0<a;z<

asand 2a, = a, + az,2a; = a, + ay. In this
case, g < -1 and the geometric progression is
either as, ay, a4, ay or a,, as, a;, a,. Suppose
the former occurs (the argument in similar in
the latter case): then

2a3q = azq® + a3 and 2a3 + azq3 + asq?,
giving q =1, a contradiction.

We deduce n = 3 and consider two possibilities.
Ifa; <a, <0<az=1996,then 2a, =
a,q*>+ayq, soq*+q—2=0and q = -2,
yielding (a;, a;, as) = (—3992,—-998,1996). If
a; <0<a, <az =1996, then

2a, = a,q + a,q?, so again q = -2, yielding
(a1,ay,a3) = (—998,499,1996).

5. Find all prime numbers p, q for which pq
divides (57 — 2P) (57 — 29).

Sol.: If p | 5P — 2P, thenp | 5 -2 by Fermat’s
theorem,
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So p = 3, suppose p, q #3; then p | 59 — 24
and q | 5P — 2P, Without lose of generality
assume p >q, so that (p,q-1) = 1. Thenifais
an integer such that 2a =5 (mod q), then the
order of amod q divides pas well as q -1, a
contradiction.

Hence one of p, q is equal to 3. If q # 3, then
q| 53 — 23 = 9.13.50 q = 13, and similarly p
€(3,13).

Thus the solutions are (p, q) = (3, 3), (3, 13),
(13, 3).

6. Find the side length of the smallest
equilateral triangle in which three dises of
radii 2, 3, 4 can be placed without overlap.

Sol.: A short computation shows that dises of
radii 3 and 4 can be fit into two corners of an
equilateral triangle of side 11v/3 so as to just
touch, and that a disc of radius 2 easily fits into
the third corner without overlap. On the other
hand, if the discs of radii 3 and 4 fit into an
equilateral triangle without overlap, there exists
a line separating them (e.g. a tangent to one
perpendicular to their line of centers) dividing
the triangle into a triangle and a (possibly
degenerate) convex quadrilateral. Within each
piece, the disc can be moved into one of the
corners of the original triangle. Thus the two
discs fit into the corners without overlap, so the
side length of the triangle must be at least

11+/3.

7. The equilateral ABCD is inscribed in a
circle. The lines AB and CD meet at E, while
the diagonals AC and BD meet at F. The
circumcircles of the triangles AFD and BFC
meet again at H. Prove that ZEHF=90°.

Sol.: (We use directed angles modulo 1.) Let O
be the circumcenter of ABCD; then £ZAHB=
£AHF+4FHB=2£ADF+4FCB= 2£ADB=
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£2AOB, so O lies on the circumcircle of AHB,
and similarly on the circumcircle of CHD. The
radical axes of the circumcircles of AHB, CHD
and ABCD concur; these lines are AB, CD and
HO, so E, H, O are collinear. Now note that

£0HF = £0HC+4CHF= 2£0DC+4CBF = % -

£CAD + £CBD.So £EHF = £OHF = gas
desired. (Compare IMO 1985/5.)

8. A7 X 7 chessboard is given with its four
corners deleted.

(a) What is the smallest number of
squares which can be colored black so
that an uncolored 5 squares (Greek)
cross cannot be found?

(b) Prove that an integer can be written in
each square such that the sum of the
integers in each 5 squares cross is
negative while the sum of the
numbers in all squares of the board is
positive.

Sol.: The 7 squares
(2,5),(3,2),(3,3),(4,6), (5, 4), (6,2),(6,5)

suffice, so we need only show that 6 or fewer
will not suffice. The crosses centered at

(2,2),(2,6),(3,4),(5,2),(5,6), (6, 4)

are disjoint, so one square must be colored in
each, hence 5 or fewer squares do not suffice.
Suppose exactly 6 squares are colored. Then
none of the squares (1, 3), (1, 4), (7, 2) can be
colored; by a series of similar arguments, no
square on the perimeter can be colored.
Similarly, (4, 3) and (4, 5) are not covered, and
by a similar argument, neither is (3, 4) or (5, 4).
Thus the center square (4, 4) must be covered.

Now the crosses centered at

(2,6),1(3,3),(5,2),(5,6), (6, 4)

are disjoint and none contains the center
square, so each contains one colored
square. In particular, (2, 2) and (2, 4) are not
colored. Replacing (3, 3) with (2, 3) in the
list shows that (3, 2) and (3, 4) are not
colored. Similar symmetric arguments now
show that no squares beside the center
square can be covered, a contradiction.
Thus 7 squares are needed.

(a) Write -5 in the 7 squares listed above
and 1 in the remaining squares. Then
clearly each cross has a negative sum,
but the total of all of the numbers is 5
(-7) + (45-7) = 3.

9. Ifa,f,y are the roots of x3-x-1=0,
a, 12 1-v

1_
compute — .
P 1+a 148 14y

Sol.: The given quantity equals

(el )
a+l pf+1 y+1
Since P(x) = x> — x — 1 has roots a, f3, ¥, the

polynomial P(x — 1) = x3 —3x%2+2x — 1
has roots a+1, f+1, y+1.

By a standard formula, the sum of the
reciprocals of the roots of x3 + ¢c,x% + ¢y x +
Co IS — ¢1 /¢y, so the given expression equals
2(2)-3=1.

10. Find all real solution to the following
system of equations:
4x?
1+4xz 7Y
4y*  _
1+4y2 7
4z2

1+422  *

4x?
(1+4x2)
1), so x, y, z must lie in that interval. If one of x,

Sol.: Define f(x) = ; the range of f is [0,

y, Zis zero, then all three are, so assume they
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are nonzero. Then]E =2 —isatleast1 BC = sina BD = sina AD = sin
x (1+4x%) sin2p’ sin3p’ sin3p

but the AM —GM inequality, with equality for x
=% . Therefore x <y < z < x, and so equality Thus we are seeking a solution to the equation
holds everywhere, implyingx=y=z="7%.Thus sin(m — 4f) sin3p = (sin(mr — 4p8) +
the solutions are (x,y,2)=(0,0,0), (%, %,%). sin B) sin 2.
11. Let f(n) be the number of permutations Using the sum-to-product formula, we rewrite

aq, ..., a, of the integers 1, ..., n such that this as

(i) a; =1;

(i) |ai_ai+1| <2i=1..n-1 cosfB —cos7f = cos2fB —cos6f + cosf

— cos 3.

Determine whether f(1996) is divisible by

3 Cancelling cos 8, we have cos 38 — cos 78 =

cos 28 — cos 6f3, which implies

Sol.: Let g(n) be the number of permutations of

sin2f sin58 = sin 2 sin 4.
the desired form with a,, = n. Then either b b g g

ap-1 =n—1ora, 1 =n—2;inthe latter Now sin58 = sin4f,s098 = mand f§ = %-
case we musthavea,_, =n—1land a,_3 =

n — 3. Hence g(n) = g(n-1) + g(n -3) for n >4. In 13. Letrq, 13, ..., T,;, be a given set of positive
particular, the values of g(n) modulo 3 are g(1) = rational numbers whose sum is 1. Define
1,1,1,2,0,1,0,0..... repeating with period 8. the functionfby f(n) = n —

Y, Llrgn]] for each positive integer n.
Now let h(n) = f(n) —g(n); h(n) counts Determine the minimum and

permutations of the desired from where n maximum values of f(n).

occurs in the middle, sandwiched between n-1

and n -2. Removing n leaves an acceptable Sol.: Of course L|rgn|] < men,so f(n) =0,
permutation, and any acceptable permutation with equality for n =0, so 0 is the minimum
on n -1 symbols can be so produced except value. On the other hand, we have ryn —
those endinginn-4,n -2, n -3, n-1. Hence h(n) Lingnld <1,s0 f(n) <m-—1.

=h(n-1)+g(n -1) —g(n -4) = h(n -1)+ g(n -2); one
checks that h(n) modulo 3 repeats with period
24,

Here equality holds for n =t- 1 if t is the least
common denominator of the 7.

14. Let H be the orthocenter of acute triangle
Since 1996 = 4 (mod 24), we have f(1996) = &

ABC. The tangents from A to the circle with
f(4) = 4(mod 3), so f(1996) is not divisible by 3. € tansents from A to the circie wi

diameter BC touch the circle at P and Q.
12. Let AABC be an isosceles triangles with AB Prove that P, Q, H are collinear.
= AC. Suppose that the angle bisector of
4B meets AC at D and that BC = BD + AD.
Determine ZA.

Sol.: The line PQ is the polar of A with respect to
the circle, so it suffices to show that A lies on
the pole of H.

Sol.:leta =24, 4 and assume AB = 1. Let D and E be the feet of the altitudes from A

Then by the Law of Sines and B, respectively; these also lie on the circle,

126



Challenging Mathematical Problems

and H = AD NBE. The polar of the line AD is the
intersection of the tangents AA and DD, and the
polar of the line BE is the intersection of
tangents BB and EE. The collinearity of these
two intersections with C = AE N BD follows from
applying Pascal’s theorem to the cyclic
hexagons AABDDE and ABBDEE. (An elementary
solution with vectors is also possible and not
difficult.)

15. Find the smallest positive integer K such
that every K-element subset of (1, 2, ..., 50)
contains two distinct elements a, b such
that a+b divides ab.

Sol.: The minimal value is k = 39. Suppose a, beS
are such that a + b divides ab. Let c = gcd (a, b)
and puta=caq, b = cby, so that a; and b,are
relatively prime. Then c(a; +

by)divides c?a;by,so a; + by divides ca,b;.

Since a; and b, have no common factor,
neither do a; and a, + by, or byand a; + by.In
short, a; + b, divides c.

Since S € {1, ...,50}, we have a +b <99, so

c(a; + by) <99, which impliesa, + b; <9, on
the other hand, of course a; + b; = 3. An
exhaustive search produces 23 pairs, a, b
satisfying the conditions.

a, +by =3 (6,3),(12,6), (18, 9), (24, 12), (30,
15), (36, 18), (42, 21), (48, 24)

a, +by =4 (12,4), (24, 8), (36, 12), (48, 16)

a, + b, =5 (20,5), (40, 10), (15, 10), (30, 20),
(45, 30)

a, + bl =6 (30, 6)
a,+ by =7 (42,7), (35, 14), (28, 21)

aq + bl =8 (40, 24)
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aq + b1 =9 (45, 36)

Let M = {6, 12, 15, 18, 20, 21, 24, 35, 40, 42, 45,
48}and T ={1, ..., 50} —M. Since each pair listed
above contains an element of M, T does not
have the desire property. Hence we must take k
= | T | +1 = 39. On the other hand, from the
23 pairs mentioned above we can select 12
pairs which are mutually disjoint:

(6,3), (12, 4), (20, 5), (42, 7), (24, 8), (18, 9),
(40, 10), (35, 14), (30, 15), (48, 16), (28, 21),
(45, 36).

Any 39-element subset must contain both
elements of one of these pairs. We conclude
the desired minimal number is k = 39.

16. Eight singers participate in an art festival
where m songs are performed. Each song is
performed by 4 singers, and each pair of
singers performs together in the same
number of songs. Find the smallest m for
which this is possible.

Sol.: Let r be the number of songs each pair of
singers performs together, so that

(4) (8>
m =r
2 2
141 . .
Andsom = o in particular, m >14. However,

m = 14 is indeed possible, using the
arrangement

{1I 2' 3' 4} {5I 6' 7' 8} {1I 2l 5I 6} {3I 4’ 7’ 8}
{3I 4' 5' 6} {1I 3' 5' 7} {ZI 4[ 6[ 8} {11 3[ 6’ 8}
{2I 4' 5' 7} {1I 4' 5' 8} {ZI 3[ 6[ 7} {11 4[ 6’ 7}

{1I 2' 7' 8} {2' 3' 5' 8}
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17. In triangle ABC, £C = 90°,£4 =
30° and BC = 1.Find the minimum of the
length of the longest side of a triangle
inscribed in ABC (that is, one such that
each side of ABC contains a different
vertex of the triangle).

Sol.: We first find the minimum side length of
an equilateral triangle inscribed in ABC. Let D be
a point on BC and put x = BD. Then take points
E, F on CA, AB, respectively, such that CE =

@ and BF =1 — % A calculation using the

Law of Cosines shows that

7
DF2:DE2:EF2:Zx2—2x+1

1Y
A

Hence the triangle DEF is equilateral, and its

L3
7

minimum possible side length is \/g

We know argue that the minimum possible
longest side must occur for some equilateral
triangle. Starting with an arbitrary triangle, first
suppose it is not isosceles. Then we can side
one of the endpoints of the longest side so as to
decrease its length; we do so until there are two
longest sides, say DE and EF. We now fix D,
move E so as to decrease DE and move F at the
same time so as to decrease EF; we do so until
all three sides become equal in length. (It is fine
if the vertices move onto the extensions of the
sides, since the bound above applies in that
case as well.)

Hence the minimum is indeed \/%, as desired.
18. Prove that if a sequence {G(n)}, -, of

integers satisfies
G(0)=0,
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G(n)=n — G{G(n)} (n=1,2,3,

)

then

(a) G(k) = G(k — 1) for any positive
integer k;

(b) No integer k exists such that G(k -
1) = G(k) = G(k +1).

Sol.:

(a) We show by induction that G(n) —

G(n —1) € {0,1} for all n. If this holds

up to n, then

G(n+1)—Gn)

=1+G6(G(n—1))
-G(GM)).

IfG(n—1) = G(n),thenG(n+ 1) —

G(n) = 1; otherwise, G(n —

1)and G(n) are consecutive integers

not greater than n, so G(G(n)) —

G(G(n — 1)) € {0, 1}, again completing

the induction.

Suppose that G(k -1)= G(k) = G(k+1)+A

for some k, A. Then

A= G(k+ 1)=k +1 —G(g(k))= k+1-G(A)

And similarly A = k —=G(A) (replacing k +1

with k above), a contradiction.

(b)

Note: It can be shown that G(n) = |nw|

for w = (\/52_—1)

19. Let ABC be an acute triangle with altitudes
AP, BQ, CR. Show that for any point P in
the interior of the triangle PQR, there
exists a tetrahedron ABCD such that P is
the point of the face ABC at the greatest
distance (measured along the surface of
the tetrahedron) from D.

Sol.: We first note that if S is the circumcircle
of an acute triangle KLM, then for any point X
#S inside the triangle, we have

min{XK, XL, XM} < SK = SL = SM,
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Since the discs centered at K, L, M whose
bounding circles pass through S cover the entire
triangle.

Fix a point V in the interior of the triangle PQR,
we first assume the desired tetrahedron exists
and determine some of its properties. Rotate
the faces ABD, BCD, CAD around their common
edges with face ABC into the plane ABC, so that
the images D,, D,, D5 of D lie outside of triangle
ABC. We shall choose D so that triangle D; D, D5
is acute, contains triangle ABC and has
circumcenter V; this suffies by the above
observation.

In other words, we need a point D such that AV
is the perpendicular bisector of D; D3, BV that of
Dy D,, and CV that of D, D3. We thus need
2D{D,D; = m — £BV( and so on. Since V lies
inside PQR, the angle BVC is acute, and so
2D, D, D5 is fixed and acute. We may then
construct an arbitrary triangle D;'D,'D5’
similar to the unknown triangle D;D,D; let V'
be its circumcenter, and construct points A’,
B’, C’ on the rays from V through the
midpoints of

D;'D,',D;'D,', D,' D3’ respectively, so that
triangle A’'B’C’ and ABC are similar. We can
also ensure that the entire triangle A'B’C’ lies
inside D,'D,'D5". Then folding up the hexagon
A'D,'B'D,'C'D3" along the edges of triangle
A’B’C’ produces a tetrahedron similar to the
required tetrahedron.

20. An acute angle XCY and points A and B on
the rays CX and CY, respectively, are given
such that | cX| < |cA|=|cB|< | cY].
Show how to construct a line meeting the
ray CX and the segments AB, BC at the
points K, L, M, respectively, such that

KA.YB=XAMB=LALB#0
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Sol.: Suppose K, L, M have already been
constructed. The triangle ALK and BYL are
similar because

ZLAK = 2YBL and ¥4 = 8 Hence £ALK = ZBYL.
LA YB

Similarly, from the similar triangles ALX and
BML we get ZAXL = £ZMLB. We also have ZMLB
= £ALK since M, L, K are collinear, we conclude
£LYB = £AXL.

Now £ZXLY = £XLB + £BLY = ZXAL +£AXL +
£ABM -£LYB =22ABC

We are construct the desired line as follows
draw the arc of points L such that ZXLY =
2£ABC, and let L be its intersection with AB.
Then construct M on BC such that £BLM =
£AXL, and let K be the intersection of LM with
CA.

21. For which integers k does there exist a
function f : N —»Z such that
(a) f(1995) = 1996, and
(b) f(xy) = f(x) + f(y) + kf(gcd(x, y))for
allx,y e N?

Sol.: Such fexists for k = 0 and k = -1. First
take x = y in (b) to get f(x?) = (k + 2)f (x).
Applying this twice, we get

fOx*) =k +2)f(x?) = (k+2)*f(x).
On the other hand,

fOh) =f0) +f(x*) + kf (x)
= (k+Df(0) + f(x*)

=k +DfC) + ) + f(*) + kf(x)
= 2k + 2)f () + f(x?) = Bk + D f (x).

Setting x = 1995 so that f(x) # 0, we deduce
(k + 2)? = 3k + 4, which has roots k=0, -1.
For k = 0, an example is given by

[ .pp) = e1g(p1) + -+ + eng ().
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Where g(5) = 1996 and g(p) = 0 for all
primes p #5 for k = 1, as example is given by

f@1% .pn®) = g(p1) + -+ g(pn)

22. A triangle ABC and points K, L, M on the
sides AB, BC, CA respectively, are given

such that
AK _BL M 1
AB BC CA 3
Show that if the circumcircles of the
triangles of the triangles AKM, BLK,
CML are congruent, then so are the in

circles of these triangles.

Sol.: We will show that ABC is equilateral, so
that AKM, BLK, CML are congruent and hence
have the same in radius.

Let R be the common circumradius; then
KL = 2R sin A, LM = 2R sin B, MK = 2R sin C,

So the triangles KLM and ABC are similar.
Now we compare areas:

[AKM] = [BLK] = [CLM] = Z[ABC],

So, [KLM] = g[ABC] and the coefficient of

similarity between KLM and ABC must be \E

By the law of cosines applied to ABC and
AKM.

a® = b%?+c?—2bccosA

1 2p\? Cy\2 2bc

So2_ (4P oY 22

3a —(3) +(3) 233cosA.
From these we deduce a?® = 2b? — ¢?, and
similarly b? = 2¢? — a?,a? = 2a? — b2
Combining these gives a? = b? = ¢?,so ABC
is equilateral, as desired.
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23. Let ABC be a triangle and construct
squares ABED, BCGF, ACHI externally on
the sides of ABC. Show that the points D, E,
F, G, H, I are concyclic if and only if ABC is
equilateral or isosceles right.

Sol.: Suppose D, E, F, G, H, I are concyclic; the
perpendicular bisectors of DE, FG, HI coincide
with those of AB, BC, CA respectively, so the
center of the circle must be the circumcenter
O of ABC. By equating the distances OD and
OF, we find

(cos B + 2sin B)? + sin?B
= (cosC + 2sinC)? = sin?C

Expanding this end cancelling like terms, we
determine sin?B + sin B cos B = sin?C +
sinC cosC.

Now note that

2(sin%6 +sinfcos) = 1 — cos 26 + sin O
_ T
= 1+\/§sm(29—z).

Thus we either have B=C or 2B — % + 2C —%

—morB+C=F
=T, or —4

In particular, two of the angles must be equal,
say A and B, and we either have A=B =, so
the triangle is equilateral, or B + (m — 2B) =

3m . . .
Tn, in which case A=B = g and the triangle is

isosceles right.

24. Let a, b be positive integers with a odd.
Define the sequence {u,} as follows: uy, =
b&neN.

—Uu
Upi1 = 2"

u,+a otherwise
(a) Show thatu,, < a for some n eN.
(b) Show that the sequence {u,,} is
periodic from some point onwards.

if u,iseven
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Sol:

(a) Suppose u,, > a, ifu, iseven, u,, 1 =
% < Uy; ifu,is odd, up,, = (u";a) <
u,. Hence for each term greater than
a, there is a smaller subsequent term.
These form a decreasing subsequence
which must eventually terminate,
which only occurs once u,, < a.

(b) Ifu,, < a, then for all n > m, either
u, < a,or,u, is even and u, < 2a, by
induction on n. In particular, u,, <
2a for all m = n, and so some value
of u,, eventually repeats, leading to a

periodic sequence.

25. (a) Find the minimum value of x* for xa
positive real number.

(b) If x and y are positive real numbers,
show that x* + y* > 1.

Sol.:

xlogx and e* is an

(a) Sincex* = e
increasing function of x, it suffices to
determine the minimum of x log x.
This is easily done by setting its

derivative 1+ log x to zero, yielding
X = é The second derivative % is

positive for x > 0, so the function is

everywhere convex, and the unique

extremum is needed a global
minimum. Hence x* has minimum
value e~/

(b) Ifx>1,thenx¥ > 1fory > 0, so we
may assume 0< x, y<1. Without loss
of generality, assume x <y; now note
that the function f(x) = x* 4+ y* has
derivative f'(x) = x*logx + y*~ L.
Since y* > x* > x¥ forx <
y andi > —logx, we see that

f'(x) >0 for 0 <x < yandso the
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minimum of f occurs withx =0, in
which case f(x) = 1; since x > 0, we
have strict inequality.

26. Starting at (1, 1), a stone is moved in the
coordinate plane according to the
following rules:

)] From any point (a, b), the stone
can move to (2a, b) or (a, 2b).
From any point (a, b), the stone
can move to (a-b,b) ifa > b, or to
(a,b-a)ifa<b.

For which positive integers x, y can

the stone be moved to (%, y)?

(i)

Sol.: It is necessary and sufficient that gcd(x,
y) = 2* for some nonnegative integer s. We
show necessity by nothing that gcd(p, q) =
gcd(p, q -p), so an odd common divisor can
never be introduced, and nothing that initially
ged(1, 1)=1.

As for sufficiency, suppose ged(x, y) = 2%. Of
those pairs (p, q) from which (x, y) can be
reached, choose one to minimize p +q.
Neither p and g can be even, else one of

(g, q) or (p, g) is an admissible pair. If p > q,

then (p, q) is reachable from (@, q), a

contradiction; similarly p < q is impossible.
Hence p = q, but gcd(p, q) is a power of 2 and
neither p nor q is even. We conclude p =q =
1, and so (x, y) is indeed reachable.

27. Suppose S is a union of finitely many
disjoint subintervals of [0, 1] such that no

two point in S have distance 1—10. Show that
the total length of the intervals comprising

. 1
S is at most 7

Sol.: Cut the given segment into 5 segments of
length é Let AB be one of these segments and

M its midpoint.
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Translate each point of AM by the vector MB.
No colored point can have a colored image, so
all of the colored intervals of AB can be placed
in MB without overlap, and their total length

therefore does not exceed %. Applying this

reasoning to each of the 5 segments gives the
desired result.

28. Prove that every integer k> 1 has a
multiple less than k* whose decimal
expansion has at most four distinct digits.

Sol.: Let n be the integer such that 21 < k <
2™. For n <6 the result is immediate, so
assume n > 6.

Let S be the set of nonnegative integers less
than 10™ whose decimal digits are all Os or 1s.
Since | S| = 2" > k, we can find two
elements a < b of S which are congruent
modulo, k, and b — a only has the digits 8, 9, 0,
1 in its decimal representation. On the other
hand,

b—a<b<1+10+--+10"1< 10"
<16™1 < k4,

Hence b - a is the desired multiple.

29. Let ABC be ab acute triangle, AD, BE, CZ its
altitudes and H its orthocenter. Let Al, A@
be the internal and external bisectors of
angle A. Let M, N be the midpoints of BC,
AH, respectively. Prove that

(a) MN is perpendicular EZ;
(b) If MN cuts the segment Al, A@ at
the points K, L, then KZ = AH.

Sol.:

(a) The circle with diameter AH passes
through Z and E, and so ZN = ZE. On
the other hand, MN is a diameter of
the nine-point circle of ABC, and Z and
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E lie on that circle, so ZN = ZE implies
that ZE LMN.

(b) As determined in (a), MN is the
perpendicular bisector of segment ZE.
The angle bisector Al of ZEAZ passes
through the midpoint of the minor arc
EZ, which clearly lies on MN;
therefore this midpoint is k. By
similar reasoning, L is the midpoint of
the major are EZ. Thus KL is also a
diameter of circle EAZ, so KL = MN.

30. Given 81 natural numbers whose prime
divisors belong to the set {2, 3, 5}, prove
there exist 4 numbers whose product is
the fourth power of an integer.

Sol.: It suffices to take 25 such numbers. To
each number, associate the triple (x,, x3, x5)
recording the parity of the exponents of 2, 3
and 5 in its prime factorization. Two numbers
have the same triple if and only if their
product is a perfect square. As long as there
are 9 numbers left, we can select two whose
product is a square, in so doing, we obtain 9
such pairs. Repeating the process with the
square roots of the products of the pairs, we
obtain four numbers whose product is a
fourth power.

31. Prove the following inequality for positive

real numbers x, y, z:
1

1
Gty? ro?

(xy +yz + zx) (

4 1 >>9
(z+x)2) 4

Sol.: After clearing denominators, the given
inequality becomes

Z 4x5y — x*y? — 3x3y3 + xtyz — 2x3y%z
sym
+x2y2z2 >0

Where the symmetric sum runs over all six
permutations of X, y, z. (In particular, this
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means the coefficient of x3y3 in the final
expression is -6, and that x2y?2z2 is 6.)

Recall Schur’s inequality:

x(x=y)x—-2)+yy -2y —x)
+z(z—x)(z—y)=0

Multiplying by 2xyz and collecting symmetric
terms, we get

Z x*yz — 2x3y?%z + x%y?2z2 > 0

sym

On the other hand,

Z(xSy —x*y?) +3(x°> —x3y3) >0

sym

By two applications of AM-GM; combining the
last two displayed inequalities gives the
desired result.

32. Prove that for every pair m, k of natural
numbers, m has a unique representation in
the from

m= () + () ()

wherea, >ay_1>-->a,2>2t>1.

Sol.: We first show uniqueness. Suppose m is
represented by two sequences a, ..., a; and
by, ..., b;. Find the first position in which they
differ, without loss of generally, assume this
position is k and that a;, > by. Then

ms () + () e () <

(bk1+ 1) < m, a contradiction.

To show existence, apply the greedy
algorithm: find the largest a; such that

((rlr’lc) < m, and apply the same algorithm with
m and k replaced by m — (‘;{") and k — 1.
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We need only make sure that the sequence
obtained is indeed decreasing, but this
follows because by assumption, m <

ar+1 a a
( m ),and som — (kk) < (k—kl :

33. Let P(x) be a polynomial with rational
coefficients such that P~1(Q) < Q. Show
that P is linear.

Sol: By a suitable variable substitution and
constant factor, we may assume P(x) is monic
and has integer coefficients; let P(0)= c,. If p
is a sufficiently large prime, the equation
P(x)=p +c¢( has a single real root, which by
assumption is rational and which we may also
assume is positive (since P has positive
leading coefficient). However, by the rational
root theorem, the only rational roots of P(x) -
p - ¢g can be +1 and + p. Since the root must
be positive and cannot be 1 for large p, we
have P(p) -p -¢g = 0 for infinitely many p, so
P(x) = x +c¢y is linear.

34. For each positive integer n, find the
greatest common divisor of n! +1 and
(n+1)L.

Sol: If n + 1 is composite, then each prime
divisor of (n+ 1)! is a prime less than n,
which also divides n! and so does not divide
n! +1. Hence f(n) = 1. If n +1 is prime, the
same argument shows that f(n) is a power of
n+1,andinfactn +1 | n! +1 by Wilson’s
theorem. However, (n + 1) does not divide
(n +1)!, and thus f(n) =n +1.

35. For each positive integer n, let S(n) be the
sum of the digits in the decimal expansion
of n. Prove that for all n,
S(2n) < 2S5(n) <10S5(2n) & show
that there exists n such that S(n) =
1996S(3n).
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Solution: It is clear that S(a +b) < S(a) +
S(b), with equality if and only if there are no
carries in the addition of a and b. Therefore
S(2n) < 2S(n). Similarly S(2n) < 55(10n) =
5S(n). An example with S(n) = 1996S(3n) is
133 ... 35 (with 5968 threes).

36. Let F be +the midpoint of side BC of
triangle ABC. Construct isosceles right
triangles ABD and ACE externally on sides
AB and AC with the right angles at D and E,
respectively. Show that DEF is an isosceles
right triangle.

Solution: Identifying A, B, C with numbers on
(B+C)

2 D=
B+ (A—-B)r,E =A+ (C— A)r,wherer =

QD rhenE—F=24D_ B ¢ ndp—
2 2 2 2

the complex plane, we have F =

A(1+i) Bi

F= ——— £; in particular, D — F =
2 2 2

i(E — F) and so DEF is an isosceles right
triangle.

37. Show, with proof, how to dissect a square
into at most five pieces in such a way that
the pieces can be reassembled to from
three squares no two of which have the
same area.

Solution: We dissecta 7 X 7 square into a 2 X
2 square A, a 3 X 3 square B, and three pieces
C, D, E which from a 6 X 6 square, as shown
below.

CCCCCAA
CCCCCAA

ccceebpp
cccecebpbp
CCCCBBB
CCCCBBB
EEEEBBB

38. Let F,, denote the Fibonacci sequence, so
that Fo = Fy=1andF,,, = F,,1 + F,
for n >0. Prove that

6] The statement “F,,, — F,, is
divisible by 10 for all positive
integers n” is true if k = 60 and
false or any positive integer k
< 60;

(ii) The statement “F,,,, — F,, is
divisible by 100 for all positive
integers n” is true if t = 300
and false or any positive
integer t<300.

Solution: A direct computation shows that the
Fibonacci sequence has period 3 modulo 2
and 20 modulo 5(compute terms until the
initial terms 0, 1 repeat, at which time the
entire sequence repeats), yielding (a). As for
(b), one computes that the period mod 4 is 6.
The period mod 25 turns out to be 100, which
is awfully many terms to compute by hand,
but knowing that the period must be a
multiple of 20 helps, and verifying the
recurrence Fy, g = tF, 4 + F,, where tis an
integer congruent to 2 modulo 5, shows that
the period divides 100, finally, an explicit
computation shows that the period is not 20.

39. Prove that for all positive integers n,
21/2 4174 | (2m)1/2" < 4,

Solution: It is sufficient to show

X
n
272

n=1
X X X X
n 1 1
Zz—n=222—k= Zzn—lzz-
n=1 n=1n=1 n=1

40. Let p be a prime number and a, n positive
integers.
Prove thatif 2P + 3P = a",thenn=
1.



Challenging Mathematical Problems

Solution: If p = 2, we have 22 + 32 = 13 and
n=1.If p > 2, then pis odd, so 5 divides 2P +

3% and so 5 divides a. Now if n > 1, then 25

.. .. 2P 43P _
divides a™ and 5 divides S = 2p-1 _

2P72.3 4+ ...+ 3P71 =p2P~1 (mod 5),a
contradiction if p # 5. Finally, if p = 5, then

25 + 35 = 753 is not a perfect power, son = 1
again.

41. Let ABC be an acute triangle and let D, E, F
be the feet of the altitudes from A, B, C
respectively. Let P, Q, R be the feet of the
perpendiculars from A, B, C to EF, FD, DE,
respectively. Prove that the lines AP, BQ,
CR are concurrent.

Solution: It is a routine exercise to show that
each of AP, BQ, CR passes through the
circumcenter of ABC, so they all concur.

42. On a 5 X 9 rectangular chessboard, the
following game is played. Initially a
number of discs are randomly placed on
some of the squares, no square containing
more than one disc. A turn consists of
moving all of the discs subject to the
following rules:

6] Each disc may be moved one
square up, down left, or right;

(ii) If a disc moves up or down on one
turn, it must move left or right on
the next turn, and vice versa;

(iii)  Atthe end of each turn, no square

can contain two or more discs.
The game stops if it becomes
impossible to complete another
turn. Prove that if initially 33 discs
are placed on the board, the game
must eventually stop. Prove also
that it is possible to place 32 discs
on the board so that the game can
continue forever.
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Solution: If 32 discs are placed in an 8 X 4
rectangle, they can all move up, left, down,
right, up, etc. To show that a game with 33
discs must stop, label the board as shown:

121212121
232323232

121212121
232323232
121212121

Note that a disc on 1 goes to a 3 after two
moves, a disc on 2 goestoa 1 or 3
immediately. And a disc on 3 goes to a 2
immediately. Thus if k disc start on 1 and k >
8, the game stops because there are not
enough 3s to accommodate these disc. Thus
we assume K <8, in which case there are at
most 16 squares on 1 or 3 at the start, and so
atleast 17 on 2. Of these 17, at most 8 can
move onto 3 after one move, so at least 9 end
up on 1; these discs will not all be able to
move onto 3 two moves later, so the game
will stop.

43. Among triangles with one side of a given
length | and with given area S, determine
all of those for which the product of the
lengths of the three altitudes is maximum.

Solution: Let A, B be two fixed points with AB
=], and vary C along a line parallel to AB at

distance 21—5 The product of the altitudes of

ABC is 853 divided by the lengths of the three
sides, so it suffices to minimize AC, BC, or
equivalently to maximize sin C. Let D be the
intersection of the perpendicular bisector of
AB with the line through C. If 2D is not acute,
the optimal triangles are clearly those with a
right angle at C.

Suppose 4D is acute and C # D, and assume C
is on the same side of the perpendicular

bisector of AB as B: we show 2D > 2C, and so
the optimal triangle is ABD. The triangles DAC
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and DBC have equal base and height, so equal
altitude. However, AC > BC since 2CAB >
£CBA, sosin 2DAC > sin 2DBC, and since the
former is acute, we have 2DAC < 2DBC.
Adding £CAB + 2ABD to both sides, we get
2DAB + 2DBA < £CAB + 4CBA, and so £ADB
> £ACB, as claimed.

44, Prove that the equation a? + b%> = ¢? + 3
has infinitely many integer solutions (a, b,

).
Sol.: let a be any odd number, letb =

2_ 2_
(a”-5) and ¢ = (az—l) Then

c2—b?=(c+b)(c—b)= a®-3.

45. Let A and B be opposite vertices of a cube
of edge length 1. Find the radius of the
sphere with center interior to the cube,
tangent to the three faces meeting at A and
tangent to the three edges meeting at B.

Solution: Introduce coordinates so that A =
(0,0,0),B=(1,1,1) and the edges are
parallel to the coordinate axes. If r is the
radius of the sphere, then (r, 1, r) is its center,
and (1, 1, 1) is the point of tangency of one of
the edges at B. Therefore r?2 = 2(1 —

)2, givingr? —4r+2 =0andsor=2 —+/2
(the other root puts the center outside of the
cube).

46. Given an alphabet with three letters a, b, ¢
find the number of words of n letters
which contain an even number of a’s.

Solution: If there are 2k occurrences of a,
these can occur in (27;() places, and the

remaining positions can be filled in 272
ways. So the answer is
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YW

k

To compute this, note that
A+ + (1 —x)" = ZZ(n)xz".
- 2k

So the answer is

el o3

47. What is the minimum number of squares
that one needs to draw on a white sheet in
order to obtain a complete grid with n
squares on a side?

Solution: It suffices to draw 2n -1 squares:
in terms of coordinates, we draw a square
with opposite corners (0, 0) and (i, i) for
1 <1i < nand a square with opposite
corners (i,1) and (n, n) for 1 <i<n-1.

To show this many squares are necessary,
note that the segments from (0, i) to (1, i)
and from (n-1,i) to (n,i) for 0 <i<nall
must lie on different squares, so surely 2n
-2 squares are needed. If it were possible
to obtain the complete grid with 2n -2
squares, each of these segments would lie
on one of the squares, and the same
would hold for the segments from (i, 0) to
(i, 1) and from (i, n-1) to (i, n) for 0 < I <
n. Each of the aforementioned horizontal
segments shares a square with only two
of the vertical segments, so the only
possible arrangements are the one we
gave above without the square with
corners (0, 0) and (n, n), and the 90°
rotation of this arrangement, both of
which are insufficient. Hence 2n -1
squares are necessary.

48. Consider a triangulation of the plane, i.e. a

covering of the plane with triangles such
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that no two triangles have overlapping
interiors, and no vertex lies in the interior
of an edge of another triangle. Let A, B, C
be three vertices of the triangulation and
let 8 be the smallest angle of the triangle
AABC. Suppose no vertices of the
triangulation lie inside the circumcircle of
AABC. Prove there is a triangle ¢ in the
triangulation such that ¢ N AABC # 6 and
every angle of ¢ is greater than 6.

Sol.: We may assume 6 = 2A. The case where
ABC belongs to the triangulation is easy, so
assume this is not the case. If BC is an edge of
the triangulation, one of the two triangles
bounded by BC has common interior points
with ABC, and this triangle satisfies the
desired condition. Otherwise, there is a
triangle BEF in the triangulation whose
interior intersects BC. Since EF crosses BC at
an interior point, ZBEF < ZBAF < £BAC, so
triangle BEF satisfies the desired condition.

49. Let m and n be positive integers with
gcd(m, n) = 1. Compute gcd(5™ +
7™, 5" + 7M.

Sol.: Lets,, = 5" + 7".If n > 2m, note that
Sn = SmSn-m — 5" 7" Sn—2m,

So gcd (S, Sn) = gcd(Sm, Sp—2m) --- Similarly,
if m <n < 2m, we have gcd(s;,, 5,)=

gcd (S, Sn—2m)- Thus by the Euclidean
algorithm, we conclude that if m + n is even,
then gcd(s,,, s,) = gcd(sy,sp) = 12, and if m

+ n is odd, then gcd(s,,, sp) = gcd(sg, 1) = 2.

50. Let x > 1 be a real number which is not an
integer.Forn=1,2,3, ..., leta, =
L|x™*t]J — x L|x"]. Prove that the
sequence {a,} is not periodic.

137

Solution: Assume, on the contrary, that there
exist p > 0 such that a,,,, = a, for every n.

Since |x,|] — w0 asn — oo,we have
L[x™*P|] — L|x™]] > 0 for some n; then
setting a,,, = a, and solving for x, we get
n+p+1J _ lxn+1J

lx™P] — [x7]

_lx

And so x is rational.
Puty = xP and

p—-1

— -k-1
by, = xP Amp+k

&

=0
L[x™*P| — xP [ |x™r]]
Lly™ ] —y Lly™IJ .

Since ap4n = a,, we have b4 = by, andy
is also rational number which is not an
integer. Now put¢,,, = L[y™*! —

y™| ] ;then cpy1 = Yy = y™cy. This means
¢, cannot be an integer for large m, a
contradiction.

51. Let 0 be the maximum of the six angles
between the edges of a regular
tetrahedron and a given plane. Find the
minimum value of @ over all positions of
the plane.

Sol.: Assume the edges of the tetrahedron I
= ABCD have length 1. If we place the
tetrahedron so that AC and BC are parallel to
the horizontal plane H. We obtain 8 = 45°,
and we shall show this is the minimum angle.
Leta, b, ¢, d be the projections of A, B, C, D to
the horizontal plane H, and [;, ..., [ the
projection of the edges L1, ..., L¢. Since the
angle between L; and H has cosine ], it
suffices to consider the shortest [;.

If a, b, ¢, d from a convex quadrilateral with
largest angle at a, then one of ab or ad is at
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1 . N .
most N3 since bd < 1. Otherwise, it is easily

shown that one of the [; originating from the

vertex inside the convex hull has length at
most —.
3

5

52. Let q be a real number with

2. For a number n with binary
representation
n= Zk + ak_l.Zk_l + -+ aq. 2+ Qg

with a; € {0, 1}, we define P,, as follows
p"=q*+ ar_1q* 1+ -+ a;q + a,.

Prove that there exist infinitely many positive
integers k for which there does not exist a
positive integer 1 such that p,;, < p1 < P2k+1-

Solution: Define the sequence a,, as follows:

m m
— 2k — 2k+1
aZm—ZZ 1a2m+1—22 :
k=0 k=0

We will show that k = a,, satisfies the given
condition by induction on n. The casen=0, 1
follow by noting 1 < q<q+1<q? < q¢*+
1<q’+q<q*+q+1

andp,; = qP = ¢®*>q*+q= Ps for1=8.

Now suppose n > 2, assume the induction
hypothesis, and suppose by way of
contradiction that there exist 1 such that

P2a, < P1 < Pz2a,,,- The argument falls into
six cases, which we summarize in a table. The
first column gives the conditions of the case,
the second gives a lower bound of p,,_, the
third is always equal to p;, and the fourth
gives an upper bound for p,, . ; from these a
contradiction to the induction hypothesis will
become evident.

neven,l = 2r + 1qp,,,_, + 1qp, +
1qp2a,, +1
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neven,l = 4r
1

4*P2a,_,9°Pr-4°P2a,_, +

neven,l = 4r + 2q2p2an_2 +qq°py +

49°P2a,_, +q
nodd, ! = 2r qP2a,_, 9Pr qP2a,,_,-1

neven,l=4r +1

19%paq, ,+1+1

4°P2a,_, +1 q¢*pr +

neven,l=4r +3q%py, _, +q+1¢°p, +
q+1q°paq, ,+1+q+1

53. Find all pairs (n, r), with n a positive
integer and r a real number, for which the
polynomial (x + 1)" — r is divisible by
2x% 4+ 2x + 1.

Sol.: Lett = % be one of the roots of 2x? +

2x + 1; then (x + 1)™ — r is divisible by
2x2% + 2x + 1 for r real if and only if
(t + 1)™ = r. Since the argument of t + 1 is %,

this is possible if and only if n = 4m, in which
case (t + 1)*m = (—4)* Hence (4m, (—4)™)
are the only solutions.

54. Let ABC be a triangle and P a point inside it
such that ZPBC = 2PCA < 2PAB. The line
PB cuts the circumcircle of ABC at B and E,
and the line CE cuts the circumcircle of
APE at E and F. Show that the ratio of the
area of the quadrilateral APEF to the area
of the triangle ABP does not depend on the
choice of P.

Sol.: Note that ZAEP = £ZAEB = ZACB =
2CBP, so the lines AE and CP are parallel.
Thus [APE] = [ACE] and [APEF][ACF]. Now
note that ZAFC = - £EPA = £APB and £ACF
= £ACE = £ABE. Therefore triangles ACF and

= ()

independent of the choice of p.

ABP are similar and
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55. Let ABCD be a tetrahedron with 2BAC =
2ACD and £ABD = «£BDC. Show that
edges AB and CD have the same length.

Sol.: Assume AB # CD. Draw the plane
through AC bisecting the dihedral angle
formed by the planes ABC and ACD, then
draw a line 1 in that plane perpendicular to AC
through the midpoint O to AC. Now let B’ and
D’ be the images of B and D, respectively,
under the half-turn around the line I; by
assumption, B’ # D and D’ # B; since 2BAC =
2ACD, B’ lies on CD and D’ lies on AB. Now
note that the quadrilateral BB’D’D has total
angular sum 2m. However, a non-polar
quadrilateral always has total angular sum
less than 2 (divide it into two triangles,
which each have angular sum 7, and apply the
spherical triangle inequality) 2ABC 4+ 2CBD
> £ABD, so the lines AB and CD are coplanar.
Contradicting the assumption that ABCD is a
tetrahedron.

56. For a natural number k, let p(k) denote the
smallest prime number which does not
divide k. If p(k) > 2, define q(k) to be the
product of all primes less than p(k),
otherwise let q(k)= 1. Consider the

X X,
sequence.xg =1, x,,1 = nP (Xn) n=

q(xy)
0,12, ..
Determine all natural numbers n such
thatx,, = 111111.

Sol.: An easy induction shows that if

Do, D1, --» are the primes in increasing order
an n has base 2 representations ¢y + 2¢; +
4cy + -+, then x, = py°p;“t ... in particular,
111111 =3.7.11.13.37 =

P1P3P4PsP10, SO X, = 111111 if and only if n
=2104+2%+2% +23 + 2! =1082.

57. Find the greatest positive integer n for
which there exist n nonnegative integers
X1, X3, ..., Xp, Dot all zero, such that for any
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sequence €4, €3, ..., €,, of elements of {-1,
0, 1}, not all zero, n3 does not divide
€1X1 + €z2X9 + -+ EnXn.

Solution: The statement holds for n = 9 by
choosing 1, 2, 22, ..., 28, since in that case

ler + - +€g28| <1+2+ - +28 <93

However, if n = 10, then 21° > 103, so by the
pigeonhole principle, there are two subsets A
and B of {x, ..., x;0} whose sums are
congruent modulo 103. Let €; = 1 if x; occurs
in A but not in B, -1 if x; occurs in B but not in
A, and 0 otherwise; then ! €;x; is divisible by
n3.
58. Let x, y be real numbers. Show that if the
set

{cos(nmx) + cos(nmy) | n € N}
[s finite, then x, y € Q.

Sol.: Leta,, = cosnmx and b, = sinnmx.
Then

(an + byp)? + (an — by)? = 2(ay? + b,”)
= 2 + (azn + bZTL)'

If {a, + b,} is finite, it follows that {a,, — b, }
is also a finite set, and hence that {a,} is
finite, since

n = 5 [(an + by)(an — by)].

And similarly {b,, } is finite. In particular,

an = a, for some m <n, and so (n -m)7nx is
an integral multiple of 7. We conclude x and y
are both rational.

59. Let ABCD be a cyclic quadratilateral and
let M be the set of incenters and excenters
of the triangles BCD, CDA, DAB, ABC (for a
total of 16 points). Show that there exist
two sets of parallel lines Kand L, each
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consisting of four lines, such that any line
of KU L contains exactly four points M.

Solution: Let T be the midpoint of the arc
AB of the circumcircle of ABC, I the
incenter of ABC, and I, I the excenters of
ABC opposite B and C, respectively. We
first show TI = TA = TB = TI.. Note that

LTAI = £TAB + £BA] = 46444 _

LICA+ £IAC = £TAI

So TI =TA, and similarly TI = TB.
Moreover, in the right triangle

A T
Alcl, LAICT = 5 = LAIT = = — LTAI

= £TAl;,soTA =Tlalso

We next show that the midpoint U of Izl
is also the midpoint of the arc BAC. Note
that the line Iz 1 bisects the exterior
angles of ABC at A, so the line Izl -passes
through the midpoint V of the arc BAC.
Considering the right triangles

1Bl and I5Cl,, we note BU = Y210 —
CU, so U lies on the perpendicular
bisector of BC, which suffices to show U =
V. (Note that I and I lie on the same

side of BC as A, so the same is true of U).

Let E, F, G, H be the midpoints of the arcs
AB, BC, CD, DA. Let Iy, Ig, I, I be the
incenters of the triangles BCD, CDA, DAB,
ABC, respectively. Let Ag, Ac, Ap be the
excenters of BCD opposite B, C, D,
respectively, and so on.

By the first observation, I.I,Cp D is a
rectangle with center E, and the
diagonals, which contain the points C and
D, have length 2EA = 2EB. Similarly, we
obtain rectangle centered at F, G, H.
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Now consider the excenters of the from
Xy where X and Y are opposite vertices in
ABCD. We shall prove the claim with K=
{BcCp, Iclp, Ipla, ApDa}, L =

{ApBa, Lals, IcIp, Cp D).

Consider the rectangle B-IpB4P, where P
is an unknown point. From the second
observation above, the midpoint K of
diagonal B4 B is the midpoint of arc CDA,
so it lies on the internal bisector BK of
triangle ABC. Again by the first
observation, we conclude M = Dy,

soD, lies on the lines B;Cp and B4Ag, and
so on, proving the claim.

60. Let n = 3 be an integer and x4, x5, ...
nonnegative integers such that
X1+x2++ x1=n
x1+2x+ -+ (m—1)x,_¢
=2n-—2.
Find the minimum of the sum
n-1

F(xl, ...,xn_l) = Z kxk (Zn - k)
k=1

» Xn—-1

Sol.: The desired sum can be written as

n—-1
2n(2n —2) — Z k2xy,.
k=1

Now note
n-1 n-1
Z k2x, = Z xie + (k = 1)k + Dy
k=1 k=1
<n+n

Zn—l(k—l)xk=n+n(2n—2—n)
k=1
=n?-n

Hence the quantity in question is at most
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2n(2n — 2) — (n? — n) = 3n? — 3n, with
equalityforx; =n—1,x, =+ = x5 =
O,xn_l =1.

61. Let n, r be positive integers and A a set of
lattice points in the plane, such that any
open disc of radius r contains a point of A.
Show that for any coloring of the points of
A using n colors, there exist four points of
the same color which are the vertices of a
rectangle.

Sol.: Consider a square of side length L =
4nr? with side parallel to the coordinate axes.
One can draw (2nr?) = 4n?r? disjoint disks
of radius r inside the square, hence such a
square contains at least 4n2r? points of A.

The lattice pointin Alieon L -1 = 4nr? — 1
vertical lines; by the pigeonhole principle,
some vertical line contains n +1 points of A.
Again by the pigeonhole principle, two of
these points are colored in the same color.

Now consider an infinite horizontal strip
made of ribbons of side length L; some two of
them have two points in the same position in
the same color, and these four points from the
vertices of a rectangle.

62. Find all prime numbers p, q for which the
congruence a3P? = a(mod 3pq) holds
for all integers a.

Sol.: Without loss of generality assume p < q;
the unique solution will be (11, 17), for which
one many check the congruence using the
Chinese Remainder Theorem.

We first have 2379 = 2(mod 3), which means
p and q are odd. In addition, if « is a primitive
root mod p, then @3P9~1 = 1 (mod p) implies
that p -1 divides 3pq -1 as well as 3pq -1-
3q(p-1) = 3q -1, and conversely that q -1
divides 3p -1. If p = q, we now deduce p=q =

3, but 427 = 1(mod 27), so this fails. Hence p
<q.

Since p and q are odd primes, q = p +2, so
Bp-1)
(g-1)
and it is clearly greater than 1, it must be 2.
Thatis, 2q = 3p +1. On the other hand, p -1
divides 3q -1= @ aswellas (9p +1) -(9p
-9) =10.Hencep=11,q=17.

< 3. Since this quantity is an integer,

63. Letn >3 be an integerand p > 2n-3 a
prime. Let M be a set of n points in the
plane, no three collinear, and let f: M —{0,
1, .., p -1} be a function such that:

6] Only one point of M maps to 0,
and

(ii) If A, B, C are distinct points in
M and k is the circumcircle of
the triangle ABC, then

f(P) = 0(mod P).
P eMnk

Show that all of the points of M lie on a
circle.

Solution: Let X be the point mapping to 0. We
first show that if every circle through X and
two points of M contains a third point of M,
then all of the points of M lie on a circle.
Indeed, consider an inversion with center at
X. Then the image of M - {X} has the property
that the line through any two of its points
contains a third point; it is a standard result
that this means the points are collinear.
(Otherwise, find a triangle ABC minimizing
the length of the altitude AH; there is another
point N on BC, but then either ABN OR CAN
has a shorter altitude than AH, contradiction).

Now suppose the points of M do not lie on a
circle. By the above, there exists a circle
passing through M and only two points A, B of
M. Let f(A) =i, so that by the hypothesis, f(B)
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= p -i. Let a be the number so circles passing
through X, A and at least one other point of M,
let b be the number of circles passing through
X, B and at least one other point of M, and let
S be the sum of f(P) over all P in M. By adding
the relations obtained from the circles
through X and A, we get S + (a-1) i = 0 (mod
p), and similarly, S + (b -1) (p -i) = 0 (mod
p)- Therefore a + b -2 = 0 (mod p) ; since a +
b<2n+4<p,wehavea+b=2andsoa=Db
= 1, contradicting the assumption that the
points do not all lie on a circle.

64. Letx, y, z be real numbers. Prove that the

following conditions are equivalent.
. 1,11
) x,y,z>Oand;+;+;S1.
(ii) For every quadrilateral with
sides a, b, c,d, a’x + b%y +
c’z > d?.

Sol.: To show (i) implies (ii), note that
a’x + b%y + c%z

1 1
> (2 b2 2 (_ =
> (a*x + by + c“z) x+y

1
+E)2(a+b+c)2>d2.

Using Cauchy-Schwarz after the first
inequality.

To show (i) implies (ii), first note thatifx <0,

we may take a quadrilateral of sidesa=n, b

=1,c=1,d=nandgety +z>n?(1—x),a

contradiction for large n. Thus x > 0 and

similarly y > 0, z > 0. Now use a quadrilateral

of sides =,~,~ and = + = + = — =, where n is
X'y z X y z n

XYz (Ayii1s
large. We then get +y2 +t=> ( + 5 +-

X
N
2
Since this holds for all n, we may take the
limit as n—o0 and get
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1 1 1 /1 1 1 1\°
—+—+—z(—+—+———)
X y z X y z n

Andhencel+l+ls 1.
x vy z

65. Let n be a positive integer and D a set of n
concentric circles in the plane. Prove that
if the function f: D —D satisfies

d(f(A), f(B)) = d(A, B) for all A, B, €, D,
then d(f(A), f(B)) = d(A, B) for every
A, B, eD.

Sol.: Label the circles Dy, ..., D, in increasing
order of radius, and let r; denote the radius
D;. Clearly the maximum of d(A, B) occurs
when A and B are antipodal points on D. Let
ABCD be the vertices of a square inscribed in
D,,; then f(A) and f(C) are antipodal, as are
f(B) and f(D). In addition, each of the minor
arcs f(A) f(B) and f(B) f(C) must be at least a
quarter arc, thus f(B) bisects one of the
semicircles bounded by f(A) and f(C), and
f(D) bisects the other. Now if P is any point on
the minor arc AB, then the arcs f(P) f(A) and
f(P) f(B), which are at least as long as the arc
PA and PB, and up to the quarter arc f(P) f(B).
We conclude f is isometric on D,,.

Since f is clearly injective and is now bijective
on D, f maps D, U ....UD,,_, into itself. Thus
we many repeat the argument to show that f
is isometric on each D;. To conclude, it
suffices to show that distances between
adjacent circles, say D; and D, are preserved.
This is easy; choose a square ABCD on D; and
A’, B, C, D’ be the points on D, closet to A, B,
C, D, respectively. Then A’'B’C’'D’ also from a
square, and the distance from A to C’ is the
maximum between any point on D; and any
point on D3. Hence the eight points maintain
their relative position under f, which suffices
to prove isometry.
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66. Letn > 3 be an integerand X< {1, 2, ...,
n3} a set of 3n? elements. Prove that one
can find the distinct numbers a4, ..., aq in
X such that the system

a;x+ a;y+azz=0
aux+asy+agz=20
azx+agy+agz=20
Has a solution (xg, ¥¢, Z¢) in nonzero
integers.

Sol.: Label the elements of X in increasing
order x; < --- < as,2, and put

Xy ={xq, e, xn2}, Xo = {Xp200, e, X2}, X3

= {xnz+1, ...,x3n2},

Define the function f: X; X X, X X3 - X X X
as follows: f(a, b, ¢) = (b -a, c -b).

The domain of f contains n® elements. The
range of f, on the other hand, is contained in
the subset of X X X of pairs whose sum is at
most n3, a set of cardinality.

3

-1
nz k_n3(n3—1) <n6

B 2 2"
k=1

By the pigeonhole principle, some three
triples (a;, b;, ¢;) (=1, 2, 3) map to the same
pair, in which case x =b; — ¢;,¥y = ¢; —

a4,Z = a4 — by is a solution in nonzero
integers. Note that a;, cannot equal b; since X;
and X, and so on, and that a; = a, implies
that the triple (a4, b1, ¢1) and (a,, b, c;) are
identical, a contradiction. Hence the nine
numbers chosen are indeed distinct.

67. Which are there more of among the
natural numbers from 1 to 1000000,
inclusive: numbers that can be
represented as the sum of a perfect square
and a (positive) perfect cube,
or numbers that cannot be?

143

Sol.: There are more numbers that not of this
form. Let n = k% + m3, where k, m, n € N and
n <1000000. Clearly k <1000 and m < 100.
Therefore there cannot be more numbers in
the desired from than the 1000000 pairs (k,
m).

68. Letx, y, p, n, k be natural numbers such
that
x™ +y" = pk,

Prove that if n > 1 is odd, and p is an odd
prime, then n is a power of p.

Sol.: Let m = gcd(x, y). Thenx =mx;,y =
my,; and by virtue of the given equation,
m™(x,™ + y;™) = p¥, and so m = p“ for some
nonnegative integer a. It follows that x;™ +

nt=p (D)
Since n is odd,
xln + yln _ n-1 n-2
- . =X —X1 "N
X1+ Y1
+x," 3y =

n-—2 n-1
— X1Y1 +y1i

Let A denote the right side of the equation. By
the condition p > 2, it follows that at least one
of x;,y, is greater than 1, so sincen > 1. A >
1.

From (1) it follows that A(x; + y;) = p*™,
so since x; + y; > 1, A>1, both of these
numbers are divisible by p, moreover, x; +
y; = p# for some natural number S.

Thus

A — xln—l _— X1n_2(pﬁ — xl) + ase
—x;(pP — x)" 72
+ (PP —x)" 1

=nx,"" ! + Bp.
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Since A is divisible by p and x; is relatively
prime to p, it follows that n is divisible by p.

Let n = pq. Then xP9 + yP4 = pk or (xP)4 +
(yP)4 = pk.1f q > 1, then by the same
argument, p divides q. If ¢ =1, then n = p.
Repeating this argument, we deduce thatn =
p' for some natural number .

69. In the Duma there are 1600 delegates, who
have formed 16000 committees of 80
persons each. Prove that one can find two
committees having no fewer than four
common members.

Sol.: Suppose any two committees have at
most three common members. Have two
deputies count the possible ways to choose a
chairman for each of three sessions of the
Duma. The first deputy assumes that any
deputy can chair any session, and so gets
16003 possible choices. The second deputy
makes the additional restriction that all of the
chairmen belong to a single committee. Each
of the 16000 committees yields 803 choices,
but this is an over count; each of the 16000

16000-1) . . .
(16000-1) pairs of committees give at most 33

overlapping choices. Since the first deputy
counts no fewer possibilities than the second,
we have the inequality

3 ; 16000.15999 .
1600° = 16000.80 —fii.

However,

16000.15999

1600.80° — — 33
> 16000.80°

16000.15999 4*

2 2

_ 16000.43

2 + 213,10 — 212,106 > 212 10°

= 16003.

We have a contradiction.

70. Show that in the arithmetic progression
with first term 1 and ratio 729, there are
infinitely many powers of 10.

Sol.: We will show that for all natural
numbers n, 108" — 1 is divisible by 729. In
fact, 108" — 1 = (1081)" — 1" =

(1081 —1).4, and

108" —-1=9..9

~——
81

=9..9..10..0110...01... 10...01
9 8 8 8

=91..9..10..0110..01..10..01
9 8 8 8

The second and third factors are composed of
9 units, so the sum of their digits is divisible
by 9, that is, each is a multiple of 9. Hence
108" — 1 is divisible by 93 = 729, as is

108" — 1 for any n.

71. Two piles of coins lie on a table. It is
known that the sum of the weights of the
coins in the two piles are equal, and for
any natural number k, not exceeding the
number of coins in either pile, the sum of
the weights of the k heaviest coins in the
first pile is not more than that of the
second pile. Show that for any natural
number x, if each coin (in either pile) of
weight not less than x is replaced by a coin
of weight x, the first pile will not be lighter
than the second.

Sol.: Let the first pile have n coins of weights

X1 = Xy =+ = Xp,and let the second pile
have m coins of weights y; = y, = - >
Ym,Where x; = -+ > x3 2 x = x5,1 kand

Y1 =SV =X > Vepq =000 = Y. (If there
are no coins of weight greater than x, the

result is clear). We need to show that xs +
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Xgpq + o+ Xy = Xt + Ypyq + - + Y. Since
X1+ o+ X =y + o+ Yy = A, this
inequality can be equivalently written xs +
(A =3y = =) Zxt+ (A= Y1 ==,
which in turn can be rewritten

X+t xs+x(t—8) <y + -+,
This is what we will prove,
Ift > s, then

Xg++xs +x(t—s)
= Gy + -+ Xp)
+(x+ -+ x)
t—s
SO t+-+ys)
+ User + 0+ 1),

Since x; + -+ xg < y; + -+ + ys (from the
given condition) and ys4q = - = y, = x.

Ift<s,thenx; + ..+ x;+x(t—s)< y; +
.-+ y, is equivalent to

xteotxs <yt tyet(x+ o+ x)
~—— ———

t—s

The latter inequality follows from the fact
that

X1+ +x, <y +eo+ys
=1+ +y)
+ Wesr + -+ ysdand ys < -
S Yey1 S X

72. Can a 5 x 7 checkerboard be covered by
L’s (figures formed from a 2 X 2 square by
removing one of its four 1 X 1 corners),
not crossing its borders, in several layers
so that each square of the board is covered
by the same number of L’s?

Sol.: No such covering exists. Suppose we are
given a covering of a 5 X 7 checkerboard with
L’s such that every cell is covered by exactly k
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L’s. Number the rows 1,..., 5 and the columns
1, ..., 7, and consider the 12 squares lying at
the intersections of odd numbered rows with
odd numbered columns. Each of these cells is
covered by k L’s, so at least 12k L’s must be
used in total. But these cover 3. 12k > 35k
cells in total, a contradiction.

73. Points E and F are given are given on side
BC of convex quadrilateral ABCD (with E
closer than F to B). It is known that ZBAE
= £CDF and £EAF = £FDE. Prove that
<FAC = £EDB.

Solution: By the equality of angles EAF and
FDE, the quadrilateral AEFD is cyclic.
Therefore £AEF + £FDA = 180°. By the
equality of angles BAE and CDF we have

2ADC + 2£ABC = £FDA +2CDF +£AEF -2BAE
= 180°

Hence the quadrilateral ABCD is cyclic, so
¢<BAC = «2BDC. It follows that 2zFAC = 2EBD.

74. Find all natural numbers n, such that there
exist relatively prime integers x and y and
an integer k >1 satisfying the equation
3" = xk + yk

Sol.: The only solution is n = 2.

Let 3" = x* + y*, where x, y are relatively
prime integers withx >y, k>1,andna
natural number. Clearly neither x nor y is a
multiple of 3. Therefore, if k is evenx*and y*
are congruent to 1 mod 3, so their sum is
congruent to 2 mod 3, and so is not a power
of 3.

Ifkis odd and k> 1, then 3" = (x +
y)(x*1t — -+ y*71). Thus x + y = 3™ for
some m = 1. We will show that n = 2m. Since

% (see the solution to Russia 3), by putting



Challenging Mathematical Problems

x; = x*3 and y, = y*/3 we may assume k =
3.

Then x3 + y3 = 3™ and x + y = 3™ To prove
the inequality n > 2m, it suffices to show that
x2+y3> (x+y)orx?—xy+ y?=>x+
y.Sincex>y+1,x2 —x=x(x—1) >
xy,and (x? —x+xy) + (y? —y) =

y(y — 1) = 0, and the inequality n > 2m
follows.

From the identity (x + y)3 — (x3 + y3) =
3xy(x + y) it follows that 32Mm~1 — 3n-m-1 —
xy.

But2m-1>1,andn-m-1>n-2m >0.If
strict inequality occurs in either place in the
last inequality, then 32™m~1 — 3n="m~1 g
divisible by 3 while xy is not. Hencen -m -1 =
n-2m=0,andsom=1,n=2and 3% = 23 +
13.

Note: The inequality x?2 —xy + y> > x +y
can alternatively be shown by nothing that

x2—xy+y*—x—y= (x—y)*+

Since (x —y)? > 1.

75. Show that if the integers a4, ..., a,, are
nonzero and for eachk =0, 1, .., m(n <m
-1),

a, + ay2* + az3% + - + a,,m* = 0,

Then the sequences a4, ..., a,, contains at least
n + 1 pairs of consecutive terms having
opposite sings.

Solution: We many assume a,, > 0, since
otherwise we may multiply each of the
numbers by -1. Consider the sequence
by, ..., by, where b; = Z?:o c]-ij for an
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arbitrary sequence of real numbers c, ...
From the given condition,

, Cn.-

m m
Zaibi = ZalZC]l‘l = ZciEQilj =0.

n
i=1 i=1 j=0 j=0 j=1

Suppose now that the sequence a4, ..., a,, has
k pairs of neighbors that differ in sign, where
k <n +1, and letiy, ..., i; be the indices of the
first members of these pairs.

Leth; = f(i) = (i —x1)({ — x3) ... (I — xy),
where x; = i +5 (i = 1,2,...,k). The
function f changes sign only at the points
X1, ..., Xy, and so b; and b;,, have different
signs if and only one of the x; falls between
them, which means i = i;. We deduce that the
sequences ay, ..., 4, and by, ..., by, have the
same pairs of neighbors of opposite sign.
Since a,, and b,, are positive, we have that
a; and b; have the same sign fori =1, ..., m,
so i, a;b;>0, a contradiction.

76. At the vertices of a cube are written eight
pair wise district natural numbers, and on
each of its edges is written the greatest
common divisor of the numbers at the end
points of the edge. Can the sum of the
numbers written at the vertices be the
same as the sum of the numbers written at
the edges?

Sol.: This is not possible. Note that if a and b
are natural numbers with a > b, then gcd(a,
b) < band gcd(a, b) S%.It follows thatifa # b,

then ged(a, b)<“*2 . Adding 12 such

inequalities, corresponding to the 12 edges,
we find that the desired condition is only
(a+Db)
3
in this case the larger of a and b is twice the

smaller; suppose a = 2b. Consider the

in each case. But

possible if gcd(a, b) =
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numbers c and d assigned to the vertices of
the other end points of the other two edges
coming out of the vertex labeled a. Each of
these is either half of or twice a. If at least one
is less a, it equals b; otherwise, both are equal.
Either option contradicts the assumption that
the numbers are distinct.

77. Three sergeants and several solders serve
in a platoon. The sergeants take turns on
duty. The commander has given the
following orders:

(a) Each day, at least one task must be
issued to a soldier.

(b) No soldier may have more than
two tasks or receive more than one
tasks in a single day.

(c) The lists of soldiers receiving tasks
for two different days must not be
the same.

(d) The first sergent violating any of
these orders will be jailed.

Can at least one of the sergeants,
without conspiring with the others,
give tasks according to these rules and
avoid being jailed?

Sol.: The sergeants who goes third can avoid
going to jail. We call a sequence of duties by
the first, second and third sergeants in
succession a round. To avoid going to jail, the
third sergeant on the last day of each round
gives tasks to precisely those soldiers who
received one task over the previous two days.
(Such soldiers exist by the third condition).
With this strategy, at the end of each cycle
each soldier will have received either two
tasks or none, and the number of the latter
will have decreased. It will end up, at some
point, that all of the soldiers have received
two tasks, and the first sergeant will go to jail.
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78. Can the number obtained by written the
numbers from 1 to n in order (n >1) be
the same when read left-to-right and right-
to left?

Sol.: This is not possible. Suppose N = 123
...321 is an m digit symmetric number,
formed by writing the numbers from 1 to n in
succession. Clearly m >18. Also let A and B be
the numbers formed from the first and last k
digits, respectively, of N, where k = |m/2] L.
Then if 107 is the largest power of 10 dividing
A, then n> 2. 10P*1, that is, n has at most p
+2 digits. Moreover, A and B must contain the
fragments

99...9100...01 and 100...0199...9
p p p p

Respectively, which is impossible.

79. Do there exist three natural numbers
greater than 1, such that the square of
each, minus one, is divisible by each of the
others?

Sol.: Such integers do not exist. Supposea = b
> c satisfy the desired condition. Since a® —
1is divisible by b, the numbers a and b are
relatively prime. Hence the number c? — 1,
which is divisible by a and b, must be a
multiple of ab, so in particular ¢ — 1 >
ab.Buta>candb >c,soab > c? a
contradiction.

80. In isosceles triangle ABC (AB = BC) one
draws the angle bisector CD. The
perpendicular to CD through the center of
the circumcircle of ABC intersects BC at E.
The parallel to CD through E meets AB at
F. Show that BE = FD.

Solution: We use directed angles modulo .
Let O be the circumcircle of ABC, and K the
intersection of BO and CD. From the equality
of the acute angles BOE and DCA having
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perpendicular sides, it follows that ZBOE =
2KCE (CD being an angle bisector), which
means the points K, O, E, C lie on a circle.
From this it follows that ZOKE = 20CE; but
£20CE = 2£0BE, so OB = 0C, and hence 2BKE
= ¢«KBE, or in other words BE = KE.
Moreover, 2BKE = 2ZKBE = ZKBA, and so KE
[ AB. Consequently, FEKD is a parallelogram
and DF = KE. Therefore, DF = KE = BE as
desired.

81. Does there exist a finite set M of nonzero
real numbers, such that for any natural
number n a polynomial of degree no less
than n with coefficients in M, all of whose
roots are real and belong M?

Solution: Such a set does not exist. Suppose
on the contrary that M = {a,, a4, ..., a,}
satisfies the desired property. Let m = min
{|a1|,..., |an|}andM:max{|a1|,...,

| an | }; the condition implies M = m > 0.

Consider the polynomial P(x) = by x* + --- +
by x + by all of whose coefficients by, ..., by are

roots X, ...., Xg lie in M. By Vieta’s theorem.
b4
— = X +...x
by 1 k
by
X1Xp + X1 X3+ 0+ XX, =
by,
And so
br_1> by
X2t = 22
bk bk
It follows that
br_1> by
km? < x2 + -+ x,% = k; — k2
bk bk
2
< —2+ 2—
m m
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M?  2M .
Hence k < i + — contradiction the fact that

P may have arbitrarily large degree.

82. The natural numbers a and b are such that
a+1 E

b a

is an integer. Show that the greatest common
divisor of a and b is not greater than va + b.

Solution: Let d = gcd(a, b) and put a =

md and b = nd. Then we have (md+1) +

(nd+1) _ (m?d+m+n?d+n)
md mnd
that in particular, d divides m?d + m +

n?d + n and also m + n. However, this
meansd <m+n,andsod <

Jdm+n)= va+b.

is an integer, so

83. Let G be the centroid of the triangle ABC.
Prove that if AB + GC = AC + GB, then ABC

is isosceles.

Sol.: Let a, b, ¢, be the lengths of sides BC, CA,
AB, respectively. By Stewart’s theorem and
the fact that G trisects each median (on the
side further from the vertex), we deduce

9GB? = 2a® 4 2¢? — b?,9GC?
= 2a% + 2b?% — 2.

Now assume b > c. Assuming AB + GC = AC +
GB, we have

3(b—c) = \/2a2+2b2—c2
—2a? + 2¢% — b2

B 3(b?% — ¢?)
v2a? + 2b%2 — c2 +V2a? + 2¢? — b?

3(b? —c?)

<
J2 (b —c)2+2b2—c2+ /2 (b—c)? + 2c% — b2

Since a? > (b — ¢)? by the triangle inequality.
However,
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2(b—c)?+2b%—c?=(2b—c)? sowe
have

3(b%-c?)
2b—c+ | 2c-b |

3(b—c) <

If b <2c then the two sides are equal, a
contradiction. If b < 2c we get 9(b — ¢)? <
3(b? — ¢?); upon dividing off 3(b -c) and
rearranging, we get 2b < 4c, again a
contradiction. Thus we cannot have b > c or
similarlyb < c,sob =rc.

84. Find all real solutions of the equation

VX2 —p+2Jxt-1=x
For each real value of p.

Sol.: Squaring both sides, we get

x2=5x2—4—p+4/(x2-p)(x2 -1

Isolating the radical and squaring again, we
get

16(x* —p)(x? —1) = (4x* —p—4)?,

Which reduces to (16 — 8p)x? = p?> —8p +
16. Since x > 0(it is the sum of two square
|p—4|

J16-8p

If a solution exists. We need only determine
when this value actually satisfies. Certainly
we need p < 2. In that case plugging in our

roots), we have x =

claimed value of x and multiplying through by

+/ 16 — 8p gives |3p-4|+2|p| =4 -p.

Ifp thhis becomes 6p = 8, or p =§; if0<p
< %this holds identically; if p < 0 this

becomes 4p = 0, or p = 0. We conclude there
exists a solution if and only if 0< p < 4/3, in
which case it is the solution given above.

85. At port Aventura there are 16 secret
agents. Each agent is watching one or
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more other agents, but no two agents are
both watching each other. Moreover, any
10 agents can be ordered so that the first a
watching the second, the second is
watching the third, etc., and the last is
watching the first. Show that any 11 agents
can also be so ordered.

Sol.: We say two agents are partners if
neither watches the other. First note that
each agent watches at least 7 others; if an
agent were watching 6 or fewer others, we
could take away 6 agents and leave a group of
10 which could not be arranged in a circle.
Similarly, each agent is watched by at least 7
others. Hence each agent is allied with at
most one other.

Given a group of 11 agents, there must be one
agent x who is not allied with any of the
others in the group (since allies come in
pairs). Remove that agent and arrange the
other 10 in a circle. The Removed agent
watches at least one of the other 10 and is
watched by at least one. Thus there exists a
pair, u, v of agents with u watching v, u
watching x and x watching v (move around
the circle until the direction of the arrow to x
changes); thus x can be spliced into the loop
between u and v.

86. Let [1229%(1 + nx®") = 1 + agxk1 +
ax*z + - + ayxkm,

where a4, a,, ..., a,, are nonzero and k; <

kz < < km Find A199¢6-

Sol.: Note that k; is the number obtained by
writing i in base 2 and reading the result as a
number in base 3, and q; is the sum of the
exponents of the powers of 3 used. In
particular, 1996 = 210 4+ 29 + 28 + 27 + 26 +
234+ 22,5001996 =10 +9+8+6+6+3+
2 = 45.
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87. In a parallelogram ABCD with £A <90°,
the circle with diameter AC meets the lines
CB and CD again at E and F, respectively,
and the tangent to this circle at A meets BD
at P. Show that P, F, E are collinear.

Sol.: Without loss of generality, suppose B, D,
P occur in that order along BD. Let G and H be
the second intersection of AD and AB with the
circle. By Menelaos’s theorem, it suffices to
show that

CE.BP.DF _
EB.PD.FC

Find note that

BP AD _ sin/ZBAPsin£ZAPD __ sinZBAP
ABDP ~ sinZAPBsinzDAP  sinzDAP

Since AP is tangent to the circle, ZBAP =
£HAP

=1 - LHCA = r -£FCA; similarly, ZDAP =
£2GCA = 2EAC. We conclude

BP AD _ sinZFAC _ FC
ABDP ~ sin<EAC  EC

Finally we note that % = % because the right

triangles AFD and AED have the same angles
at B and D and are thus similar. This prove
the claim.

88. Given real numbers 0= x; < xp, < -+ <
X2n < Xon+1 — 1 with Xi+1 — X < hfor1l
. 1-h
<i<2n,show thatT <

1+h
Yiz1 X2i (X241 — X2i-1) <~

Sol.: The different between the middle
quantity and % is the difference between the
sum of the areas of the rectangles bounded by
thelinesx =x5;_1,x = X3;41,y =0,y = xy;
and the triangle bounded by the lines y = 0, x

=1, x =y. The area contained in the
rectangles but not the triangle is a union of
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triangles of total base less than 1 and height
at most h, as is the area contained in the
triangle but not the rectangles. Hence the sum

. 1 h .
differs from 5 but at most > as desired.

89. In a convex quadrilateral ABCD, triangles
ABC and ADC have the same area. Let E be
the intersection of AC and BD, and let the
parallels through E to the lines AD, DC, CB,
BA meet AB, BC, CD, DA atK, L, M, N,
respectively. Compute the ratio of the
areas of the quadrilaterals KLMN and
ABCD.

Solution: The triangles EKL and DAC are
homothetic, so the ratio of their areas equals

(%) (%) = (%)2 = i, since B and D are

equidistant from the line AC. Similarly the
ratio of the areas of EMN and BCA is %, so the

union of the triangles EKL and EMN has area%
that of ABCD.

As for triangle EKN, its base KN is parallel to
BD and half as long, so its area is one-fourth
that of ABD. Similarly EML has area one-
fourth that of BCD, and so the union of the
two triangles EKN and EML has area one
fourth that of ABCD, and so the quadrilateral
KLMN has area one-half that of ABCD.

90. Find the maximum number of pair wise
disjoint sets of the from S, ;, =

{n*+an+ b:n € Z}witha,b € Z.

Solution: Only two such sets are possible, for
example, with (a, b) = (0, 0) and (0, 2) (since
2 is not a difference of squares). There is no
loss of generality in assuming a € {0, 1} by a
suitable shift of n, and the sets generated by
(0,a) and (1, b) have the common value
(a—b)>+a= (a—b)?+ (a—b)+ b.Thus
we have a = 0 or a = 1 universally.
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First suppose a = 0. If b -c # 2 (mod 4), then
(0,b) and (0, ¢) gives a common value
because b -c is a difference of squares, clearly
this precludes having three disjoint sets. Now
suppose a = 1. If b -c is even, we can find x, y
such thatb -c = (x +y +1) (x -y), and so x? +
x + b = y? + y + c, again, this precludes
having three disjoint sets.

91. For which ordered pairs of positive real
numbers (a, b) is the limit of every
sequence {x,,} satisfying the condition.

lin‘11 (axpi1 —bx,) =0

n -

Sol.: The holds if and only if b < a, if b > a, the
sequence x, = (g)n satisfies the condition
but does not go to zero, if b = a, the sequence
X, =1+ % + -+ % does likewise. Now
suppose b < a. If L and M are the limit inferior
and limit superior of the given sequence, the

condition implies M < (g) L; since L< M, we

have M < (2) M, and so L, M > 0. Similarly,

the condition implies L > (b) M, and since M

a
>L,wehaveL > (s) L,so L, M < 0; therefore

L =M = 0 and the sequence converges to 0.

92. Consider the pair of four -digit positive
integers (M, N) = (3600, 2500). Notice
that M and N are both perfect squares,
with equal digits in two places, and
differing digits in the remaining two
places. Moreover, when the digits differ,
the digit in M is exactly one greater than
the corresponding digit in N. Find all pairs
of four -digit positive integers (M, N) with
these properties.

Sol.: If M =m? and N = n?, then (m+ n)
(m -n) €{11, 101, 110, 1001, 1010, 1100}.

Since M and N are four-digit numbers, we
must have 32 <n<m <99, and so 65 <
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m +n < 197. Moreover, m +n and m -n
are both odd or both even, so 11,110 and
1010 lead to no solutions. From this we
get exactly five acceptable factorizations.

101=(m+n) (m-n)=101x1
1001 = (m +n) (m -n) =143 x 7
1001 = (m +n) (m-n) =91 x 11
1001 = (m+n) (m-n) =77 x 13
1100 = (m+n) (m-n) =110 x 10

Giving the solutions (M, N) = (2601,
2500), (5625, 4624), (2601, 1600),
(2025, 1024), (3600, 2500).

93. A function f defined on the positive
integers satisfies f(1) = 1996 and
fO+fR)++f(n) =
n?f(n)(n > 1).

Sol.: An easy induction will show that

) 2 X 1996
n)=—-——
f nn+1)
Namely,
1 3992 3992
f(n) T n2-1 (? teet (n—l)n)
3992 1 1 1 1 1

= (g5 )

3992 1
T (D (n-1) (1 N Z)

3992 n—1 _ 3992

- (n+1)(n—1)T T n(n+1)

In particular, f(1996) = ﬁ

94. Define q(n) = llnﬁlj n=1,2,..).

Determine all positive integers n for which
q(n) >q(n +1).
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Sol.: We have q(n) > q(n+1) ifand only if n
+1 is a perfect square. Indeed, if n +1 = m?,
then

m?—1 m?
q(n)zl 1J=m+1,q(n+1)=lzj

m —

=m
On the other hand, for n = m? + d with 0 <
d<2m,q(n) = lm2+dJ =

m

m+ liJ
m
Which is non-decreasing.

95. Let a, b, c be positive real numbers.
(a) Prove that4(a3 + b3) > (a + b)3
(b) Provethat9(a® + b3 + ¢3) >
(a+b+c)3

Sol.: Both parts follow from the Power Mean
inequality: for r > 1 and x4, ..., x,, positive,

)

<x1r + -+ xnr>1/r St

n n

Which in turn follows from Jensen’s
inequality applied to convex function x".

96. Find all Solutions in non-negative integers
x, y, z of the equation.
2% +3Y = 72

Sol.:Ify=0,then2* = z2—1=(z+ 1)(z —
1),s0z +1 and z -1 are powers of 2. The only
powers of 2 which differ by 2 are 4 and 2, so

xv,z)=(30,3).

Ify > 0, then 2% is a quadratic residue modulo

3, hence x is even. Now we have 3Y = z2% —

2% = (z + 25) (z — 22). The factors are
powers of 3, say z+2%/2 = 3™ and z —2%/% =

3", but then 3™ — 3" = 22%1, Since the right
side is not divisible by 3, we must have n = 0

and 3™ — 1 = 22%1,
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If x =0, we have m = 1, yielding (x, y, z) = (0,
1, 2). Otherwise, 3™ — 1 is divisible by 4, so m

is even and 22" = (37 + 1) (37 - 1). The
two factors on the right are powers of 2

differing by 2, so they are 2 and 4, giving x =
4and (x,y,z) = (4, 2,5).

97. The sides a, b, c and u, v, w of two triangles
ABC and UVW are related by the
equations.

u+w-—u) = a?

v(w+u—v) = b?
wu+v—w)=c?

Prove that ABC is acute, and express the angles
U,V,Winterms of A, B, C.

Sol.: Note that a? + b% — ¢? = w? —u? —
v2+2uv=w+u—-v)(w—u+v)>0by
the triangle inequality, so cos C > 0. By this
reasoning, all of the angles of triangle ABC are
acute. Moreover,

a® 4+ b? — c?

C =
CoSs 2ab

4uv

_\/(w+u—v)(w—u+v)

=—+V1—cosU

V2

B w2—u2—v2+2uv_ 1
B 4uv

From which we deduce U = 1 — 2cos?A =
cos(m — 24).

Therefore U = r -24, and similarly V = r- 2B,
W = - 2C.

98. Two circles S; andS, touch each other
externally at K; they also touch a circle S
internally at A; and A,, respectively. Let
P be one point of intersection of S with the
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common tangent to §; and S, at K. The
line PA, meets S, again at B4, and PA,
meets S,again at B,. Prove that B1B; isa
common tangent to $; and S,.

Sol.: It suffices to show that 2B,B,0; =
2B{B,0, = %, where 0; and 0, are the
centers of S; and S,, respectively. By power -
of-a-point. PA;.PB; = P K? = PA,.PB,, so
triangles PA; A, and PB,B; are similar.
Therefore £PB, B, = £PA,A; = £POA,

where O is the center of S.

Now note that the homothety at A, carrying
S to S takes O;to O and Byto P,so £POA; =
£B;0,A;. From this we deduce 2PB; B, =
£B;0,N, where N is the midpoint of A; B;.
Flnally, LBzB]_Ol = T — LPBIBZ - LOlBlN =
Vs .

2 as desired.

99. Find all solutions in positive real numbers
a, b, c, d to the following system of
equations:

a+b+c+d=12
abcd = 27 +ab +ac +ad +bc +bd +cd.

Sol.: The first equation implies abcd = < 81 by
the arithmetic geometric mean inequality,
with equality holding fora=b=c=d = 3.
Again by AM-GM,

abcd > 27 +6 (abcd)'/?

However, x2 — 6x — 27 = 0 for x <

—3orx =9,s0 (abcd)'/? = 9, hence abcd >
81. We conclude abcd = 81, and hence a = b=
c=d=3.

100. Prove that the average of numbers n
sinn°(n=2,4,6,...,180)is cot 1°.

Solution: All arguments of trigonometric
functions will be in degrees. We need to prove
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2sin2 4+ 4sin4 + -+ 178sin178
=90 cot1 2)

Which is equivalent to
2sin2sin1+ 2(2sin4.sin1) + ...+ 89
3)

Using the identity 2 sina.sinb = cos(a — b) —
cos(a + b), we find

(2sin178.sin1) =90cos 1.

2sin2.sin1+ 2(2sin4.sin1) + -+ 89
(2sin178.sin1)

= (cos1—cos3) + 2(cos3 —cos5) + --- +
89(cos 177 — cos 179)

=cos1l+cos3+cos5+:-+cosl75
cos177 —89cos 179

=cos1+ (cos3 +cos177) + -
+ (cos89 + cos91)
—89cos179

=cos1+89cos1 =90cos1,
So (1) is true.

Note: An alternate solution involves complex
numbers. One expresses sin n as

min  —min
<e180—e 180 >
@ and uses the fact that

x+2x% 4 nx™ =+ x™) +
(X% 44 x™) + o+ 1"

x—1
(xn—l _ xn)]
natl X1y
T x-1 (x-1)2°
101. For any nonempty set S of real

numbers, let g(S) denote the sum of the
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elements of S. Given a set A of n positive
integers, consider the collection of all
distinct sums g(S) as S ranges over the
nonempty subsets of A. Prove that this
collection of sums can be partitioned into n
classes so that in each classes, the ratio of
the largest sum of the smallest sum does
not exceed 2.

Sol.: Let A={a,, ay, ...,a,} where q; < a, <
- <ay.Fori=1,2,.,nlets; = a; +a, +

-+ + q; and take sy = 0. All the sums is
question are less than or equal to s;,, and if g is
one of them, we have

Si—1 <O'<Si

(1

For an appropriate i. Divide the sums into n
classes by letting C; denote the class of sums
satisfying (1). We claim that these classes have
the desired property. To establish this, it
suffices to show that (1) implies.

1

_Si< O'<Sl'

> @

Suppose (1) holds. The inequality a; + a, +
«++a;_1 = S;—1 < oshows that the sumo
contains at least one addend a;, with k > i.
Then since then a;, = a;, we have

§i;—0<s;—Si_1= a; < ag < g, which
together with o< s; implies (2).

Note: The result does not hold if 2 is replaced
by any smaller constant c. To see this, choose n
such that ¢ < 2 — 27(™=D and consider the set
{1, ..., 2" 1}, If this set is divided into n subsets,
two of 1,......, 2" 1 1+ ...+ 2" L must lie in
the subset, and their ratio is at least (1+.....+
2/ =2-2D s ¢,

102. Let ABC be a triangle. Prove that there
is aline |l (in the plane of triangle ABC) such
that the intersection of the interior of
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triangle ABC and the interior of its
. . 2
reflection A’B’C’ in | has area more than 3

the area of triangle ABC.
Solution :

In all of the solutions, a, b, c denote the lengths
of the sides BC, CA, AB, respectively, and we
assume without loss of generality thata < b <
C.

Choose | to be the angle bisector of ZA. Let P be
the intersection of | with BC. Since AC < AB, the
intersection of triangles ABC and A’B’C’ is the
disjoint union of two congruent triangles. APC
and APC'. Considering BC as a base, triangles
APC and ABC have equal altitudes, so their
areas are in the same are in the same ratio as
their bases:

Area (APC) PC
Area (ABC) BC

Since AP is the angle bisector of £A, we have
BP _ ¢
¢ p°

PC _ PC B 1

BC BP+ PC %+ 1

Thus it suffices to prove

2 2
¢ 3

(D

But 2b = a + b > c by the triangle inequality,
SO % < 2 and thus (1) holds.

103.
which each term is either 0 or 1 is called a
binary sequence of length n. Let a, be the
number of binary sequences of length n
containing no three consecutive terms
equal to 0, 1, 0 in that order. Let b,, be the
number of binary sequences of length n

An n —term sequence {Xxq, X5, ..., X, } in
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that contain no four consecutive terms
equalto0,0,1,10r1,1,0,0in that order.
Prove that b,,.; = 2a,, for all positive
integers n.

Sol.: We refer to the binary sequences counted
by (a,,) and (b,) as “type A” and “type B”,
respectively. For each binary sequence

(%1, %5, ..., X,) there is a corresponding binary
sequence (Yo, V1, ---, Yn) Obtained by setting
Vo=0andy; = x;+x, +--+x;mod2,i=
1,2,..,n.(2)

(Addition mod 2 is defined as follows: 0 +0 = 1
+1=0and0+1=1+0=1.)Then

X;=y;+yi_1mod2,i=1,2,..,n,

And it is easily seen that (1) provides a one-to —
one correspondence between the set of all
binary sequences of length n and the set of
binary sequences of length n +1 in which the
first term is 0. Moreover, the binary sequence
(x1, %3, ..., X,) has three consecutive terms
equal 0, 1, 0 in that order if and only if the
corresponding sequence (Y, ¥1, ---, Yn) has four
consecutive terms equalto 0,0,1,10r1,1,0,0
in that order, so the first is of type A if and only
if the second is of type B. The set of Type B
sequences of length n +1 in which the first term
is 0 is exactly half the total number of such
sequences, as can be seen by means of the
mapping in which 0’s and 1’s are interchanged.

104.
property: there is an interior point P such
that £PAB =10°, .PBA = 20°,2PCA =
30°, and £PCA = 40° . Prove that
triangle ABC is isosceles.

Triangle ABC has the following

First Solution :
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All angles will be in degrees. Let x = £PCB. Then
£PBC = 80 —x. By the Law of Sines,

__ PAPBPC _ sin/ZPBAsin£PCBsin £ZPAC
~ PBPCPA  sin<PABsin £PBC sin 2PCA

__ sin20sinxsin40 _ 4sinxsin40cos 10
" sin10 sin(80—x) sin 30 - sin(80—x)

The identity 2sina.cos b = sin(a — b) +
sin(a + b)now yields

__ 2sinx(sin30+sin50) _ sinx(1+2cos40)

1 sin(80—x) sin(80—x)

)

So,

2sinx cos40 = sin(80 — x) —sinx =
2sin(40 — x) cos 40.

This gives x = 40 —x and thus x = 20. It
follows that ZACB = 50 = £BAC, so triangle
ABC is isosceles.

105. Solve the system of equations:

\/ﬁ(1+$)= 2
Sy (1-1) = avz

Sol.: Letu =vx,y = [y, so the system
becomes

4 u _2
u u2+v2_\/§
v 42

Ve ——=—
u?+v? 7

Now let z = u +vi; the system then reduces to
the single equation

s 1_,(1 N 2V2
z+—-=2—=+—i|.
z V3 V7
Let t denote the quantity inside the
parentheses; then

z=t+Vt? -1
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= 5t ()

From which we deduce

:(iii)z’ <\/__\/_>

V3T V21 V7

106. Let ABCD be a tetrahedron with AB =
AC = AD and circumcenter O. Let G be the
centroid of triangle ACD, let E be the
midpoint of BG, and let F be the midpoint

of AE. Prove that OF is perpendicular to BG
if and only if OD is perpendicular to AC.

Sol.: We identify points with their vectors
originating from the circumcenter, so that A. B =
A.C=ADand

A2 =B?= (C*= D2
Now (0 —F).(B - G)

=%(A+E).(B—G)

[(2A+ B + G).(B — G)]

-MH

[184.B — 6A.(A + C + D) + 9B2
—(A+C+D)?

%lH

1
2A.D—2C.D
=3¢l ]

Therefore OF L BF if and only if OD L AC.

107.
number of permutations of the set {1, 2, ...,

Determine, as a function of n, the

n} such that no three of 1, 2, 3, 4 appear
consecutively.

Sol.: There are n! permutations in all. Of those,
we exclude (n -2)! Permutations for each
arrangement of 1, 2, 3, 4 into an ordered triple
and one remaining element, or 24(n -2)! in all.
However, we have twice excluded each of the
24(n-3)! Permutations in which all four of 1, 2,
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3, 4 occur in a block. Thus the number of
permutations of the desired fromis n! -24 (n -
2)! +24(n -3)!

108. Determine all function f: N —N
satisfying (for all n €N)

fm)+f(n+1)
=f(n+2)f(n+3)
—1996.

Sol.: From the given equation, we deduce

f)—f(n+2)
=f(n+3)[f(n+2)
—f(n+4)]

If f(1) > f(3), then by induction, f(2m -1) > f(2m
+1) for all m > 0, giving an infinite decreasing
sequence f(1), f(3), ....
contradiction. Hence (1) < f(3), and similarly
f(n) < f(n +2) for all n.

Of positive integers, a

Now note that

0=1996+f(nM)+f(n+1)—f(n
+2)f(n+3)
<1996 + f(n + 2)
+f(n+3)

—f(n+2)f(n+3)
=1997 — [f(n +2) — 1][f(n + 3) — 1].

lorf(n+3) <
1997, and vice versa. The numbers f(2m+1) —

In particular, either f(n +2) =

f(2m-1) are either all zero or all positive, and
similarly for the numbers f(2m+ 2) —f(2m). If
they are both positive, eventually f(n +2) and
f(n+3) both exceed 1997, a contradiction.

We now split into three cases. If f(2m) and f(2m
+1) are both constant, we have [f(2m) -
1][f(2m+1)-1] = 1997 and so either f(2m) =

and f(2m +1) = 1997 or vice versa. If f(2m +1) is
constant but f(2m) is not, then f(2m + 1) =1
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forallmand f(2m + 2) = f(2m) +
1997,s0 f(2m) = 1997(m — 1) + f(2).

Similarly, if f(2m) is not constant, then f(2m)=1
and f(2m +1) =1997m + f(1).

109.
and £BAC has a fixed measure a > g

Consider triangles ABC where BC=1

Determine which such triangle minimizes
the distance between the incenter and
centroid of ABC, and compute this distance
in terms of a.

Sol.: If we fix B and C and force A to lie above
the line BC, then A is constrained to an arc. The
centroid of ABC is constrained to the image of

that arc under a % homothety at the midpoint of

BC. On the other hand, the incenter subtends
(m/a)
2
to lie on an arc, but its arc passes through B and

an angle of at BC, so it is also constrained

C. Since the top of the incenter arc lies above
the top of the centroid arc, the arcs cannot
intersect (or else their circles would intersect
four times). Moreover, if we dilate the centroid
arc about the midpoint of BC so that its image is
tangent to the incenter arc at its highest point,
the image lies between the incenter arc and BC.
In other words, the distance from the incenter
to the centroid is always at least the
corresponding distance for ABC isosceles. Hence
we simply compute the distance for ABC
isosceles. Hence we simply compute the

distance in that case. The incenter makes an

(/@)

isosceles triangle of vertex angle — SO its

_r
2 cot(m—a)

altitude is

Meanwhile, the distance of the centroid to BC is

gthat of A to BC, or The desired

1t
6 cot(a/2)
distance is thus
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Zcot™% —Leotl
2 4 6 2
110. Leta, b, ¢, d be four nonnegative real

numbers satisfying the condition
2(ab + ac+ ad + bc + bd + cd)
+ abc + abd + acd
+ bcd = 16

Prove that

2
a+b+c+d2§(ab+ac+ad
+ bc + bd + cd)

And determine when equality occurs.

Sol.: Fori=1, 2, 3, define s; as the average of
the products of the i-element subsets of {a, b, c,
d}. Then we must show

35, +s3 =4 =51 = 55.

It suffices to prove the (unconstrained)
homogeneous inequality

35,25.% + 535,32 = 45,3,
As then 3s, + s3 = 4 will imply
(51— 53)3+3(s;3 —s5,3) > 0.

We now recall two basic inequalities about
symmetric means of nonnegative real numbers.
The first is Schur’s inequality:

35.3 + 553 = 45:5,.
While the second,
512 > Sy

s a case of Maclaurin’s inequality s;'*1 >

S;+1"-These combine to prove the claim:

5,253

355%5:% + 535.3 > 35,252 + > 45,5,

S1
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Finally, for those who have only seen Schur’s
inequality in three variables, note that in
general any inequality involving s4, ..., S Which
holds for n > k variables also holds for n +1
variables, by replacing the variables x4, ..., X 41
by the roots of the derivative of the polynomial

(x = x1) o (X = Xp—1).

111. Let ABCD be a quadrilateral with AB =
BC = CD = DA. Let MN and PQ be two
segments perpendicular to the diagonal BD
and such that the distance between them

is d >BZ—D, with M € AD, N € DC, P EAB, and

Q € BC. Show that the perimeter of the
hexagon AMNCQP does not depend on the
positions of MN and PQ so long as the
distance between them remains constant.

Solution: The lengths of AM, MN, NC are all
linear in the distance between the segments
MN and AC; if this distance is h, extrapolating
from the extremes MN=ACand M=N=D
gives that

2AB - AC

AM + MN + NC = AC
+ MN + + BD/3

In particular, if the segments MN and PQ
maintain constant total distance from AC, as
they do if their distance remains constant, the
total perimeter of the hexagon is constant.

112. Let m and n be positive integers such
that n < m. Prove that
(m+n)!
2"l < ——— < (M2 +m)™
(m —n)! ( )
Sol.: The quantity in the middle is (m + n)(m +
n—1)..(m—n+ 1). If we pair off terms of
the form (m + x)and (m + 1 — x), we get
products which do not exceed m(m + 1), since
the function f(x) = (m+x)(m+1—x)isa

. . 1
concave parabola with maximum at x = > From
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this the right inequality follows. For the left, we
need only show (m + x)(m + 1 — x) = 2x for

x <n; this rearrangesto (m —x)(m+ 1+ x) =
0, which holds because m > n > x.

113.
circle, and let I; be the incenter of the
triangle P, P3P,4, I, be the incenter of the
triangle P;P3P,4, I3 be the incenter of the
triangle P, P, P, and I, be the incenter of
the triangle P1P;Ps. Prove that Iy, I, I3 and
I are the vertices of a rectangle.

Let P4, P,, P3, P, be four points on a

Sol.: Without loss of generally, assume

Py, P,, P5, P, occur on the circle in the order. Let
M5, My3, M34, My, be the midpoints of arcs

P, P,, P, P, P;P,, P, P,, respectively.

Then the line P; M, is the angle bisector of
24P, P;P; and so passes through I,. Moreover,
the triangle M, ,, P,1, is isosceles because
2I4,M,P, = 2P P,P;

=1 — 24P1P214 - 24M12P2P1
=T — 24M12P214_

Hence the circle centered at M passing through
P; and P,also passes through I, and likewise
through I5.

From this we determine that the angle bisector
of £P;M;,P, is the perpendicular bisector of
I31,. On the other hand, this angle bisector
passes through My, so it is simply the line
M;,Ms3,; by symmetry, it is also the
perpendicular bisector of I;1,. We conclude
that 1115151, is a parallelogram.

To show that I, 15131, is actually a rectangle, it
now suffices to show that M, M3, L My3M,;,.
To see this, simply note that the angle between
these lines is half the sum of measure of the
arcs My, M,5 and M3,M,q, but these arcs
clearly comprise half of the circle.
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114. The national Marriage Council wishes
to invite n couples to from 17 discussion
groups under the following conditions:

(a) All members of the group must be
of the same sex, i.e. they are either
all male or all female.

(b) The difference in the size of any
two groups is either 0 or 1.

(c) All groups have at least one
number.

(d) Each person must belong to one
and only one group.

Find all values of n, n < 1996, for which this is
possible. Justify your answer.

Sol.: Clearly n < 9 since each of 17 groups must
contain at least one member. Suppose there are
k groups of men and 17 —k groups of women,;
without loss of generality, we assume k < 8. If
m is the minimum number of membersin a
group, then the number of men of women is at
most k(m + 1), while the number of women is
at least (k + 1)m. As there are the same
number as men as women, we have k(m +

1) = (k+ 1)m,som < k < 8, and the
maximum number of couplesis k(k + 1) < 72.
In fact, any number of couples between 9 and
72 can be distributed: divide the men as evenly
as possible into 8 groups, and divide the women
as evenly as possible into 9 groups. Thus 9 < n
< 72 is the set of acceptable numbers of
couples.

115. Leta, b and c be the lengths of the
sides of a triangle. Prove that

Va+b—-c+Vb+c—a
+Vvec+a—-b
< va+vVb+e

Sol.: By the triangle inequality, b + ¢ —
a and ¢ + a — b abc positive. For any positive
X, ¥, we have

2+ y) zx+y+2,/xy = (\/§+\/§)2

By the AM-GM inequality, with equality for x =
y. Substitutingx =a+b—c,y=b+c—awe
get

Va+b—c+Vb+c—a<2/a

Which added to the two analogous inequalities
yields the desired result. Inequality holds for
a+b—c=b+c—a=c+a—-b,i.e.a=
b=c.

116. Let k >1 be an integer. Show that
there are exactly 31 positive integers n
with the following properties:

(a) The decimal representation of n
consists of exactly k digits.

(b) All digits of k are odd.

(c) The number n is divisible by 5.

(d) The number m = g has k odd

(decimal) digits.

Sol.: The multiplication in each place must
produce an even number of carries, since these
will be added to 5 in the next place and an odd
digit must result. Hence all of the digits of m
must be 1, 5 or 9 and the first digit must bel,
since m and n have the same number of
decimal digits. Hence there are 3¥~1 choices for
m and hence for n.

117. A convex hexagon ABCDEF satisfies the
following conditions:

(a) Opposite sides are parallel (i.e. AB
[IDE, BC |IEF, CD [IFA).

(b) The distances between opposite
sides are equal (i.e. d(AB, DE)=
d(BC, EF)= d(CD, FA), where d(g, h)
denotes the distance between
lines g and h).

(c) The angles £FAB and £CDE are
right.
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Show that diagonals BE and CF
intersects at an angle of 45°.

Sol.: The conditions imply that A and D are
opposite vertices of a square APDQ such that B,
C, E, Flie on AP, PD, DQ, QA, respectively and
that all six sides of the hexagon are tangent to
the inscribed circle of the square. The diagonals
BE and CF meet at the center O of the square.
Let T, U, V be the feet of perpendiculars from O
to AB, BC, CD; then TOB = £BOU by reflection
across OB, and similarly £ZUOC = £COV.

Therefore% = 24£B0C, proving the claim.

118. The polynomials P, (x) are defined by
Py(x) =0,Py(x) =xand P,,(x) =
xP,_1(x)+ (1 —x)P,_2(x) n>2.

For every natural number n = 1, find
all real numbers x satisfying the
equation P,,(x) = 0.

Sol.: One shows by induction that

P (x) = [(x =D -1]

X
x—2
Hence P,(x) = 0ifandonlyifx=0orx =1+
e2mk/n for some k €41, ..., n -1}.

119. The real numbers x, vy, z, t satisfy the
equalitiesx + y +z+t = 0 and x* +
y? + z% + t?> = 1. Prove that
-1<xy+yz+zt+itx<0.

Sol.: The inner expressionis (x + z)(y + t) =
—(x + 2)?, so the second inequality is obvious.
As for the

first, note that

1=(x%+2z%)+ (y?+t?) 2%[(x+z)2+
G+ = [(x+2)(y+1)]

By two applications of the power mean
inequality.

120. A convex polyhedron P and a sphere S
are situated in space such that S intercepts
on each edge AB of P a segment XY with

AX=XY = YB = %AB. Prove that there

exists a sphere T tangent to all edges of P.

Sol.: Let AB and BC be two edges of the
polyhedron, so that the sphere meets AB in a
segment XY with AX =XY =YB and meets BCin a
segment ZW with BZ =ZW = WC. In the plane
ABC the points X, Y, Z, W lie on the cross-section
of the sphere, which is a circle. Therefore BY. BX
= BZ. BW by power —of-a point; this clearly
implies AB = BC, and so the center of S is
equidistant from AB and BC. We conclude that
any two edges of P are equidistant from S and
so there is a sphere concentric with S tangent to
all edges.

121.  Natural numbers k, n are given such
that 1 <k < n. Solve the system of n
equations.

3 (%2 + o+ Xpe1®) = X421 <
i<n

in n real unknowns x4, ..., x,,. (Note:
Xo = Xp, X1 = Xp41,€lc)

Sol.: The only solution is x; = - x,, = k~1/3,
Let L and M be the smallest and largest of the
x;, respectively. If M = x;, then

RMPL? <22 (% + o+ Xigg-1?) = X1
< M?

1 - el _ o
Andso M < T} Similarly, if L = Xj, then

kIPM® = x3 (% + -+ + Xj_pea1 ) = %217
> 2
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1
andso L = ——

Z o)y Putting this together, we get

L>— >kL*
kM?2

Andso L > k=1/3; similarly,M > k=/3,
Obviously L < M, sowe have L=M =
k_1/3 and Xy = =Xp = k_1/3_

122.
nonnegative integers k and m such that k!
+48=48 (k + 1)™.

Shows that there do not exist

Sol.: Suppose such k, m exist. We must have
48 | k!, so k = 6; one checks that k = 6 does not
yield a solution, so k = 7. In that case k! is

divisible by 32 and by 9, so that (k!::S) ic

relatively prime to 6, as then is k +1.

If k +1 is not prime, it has a prime divisor
greater than 3, but this prime divides k! and not
k! +48. Hence k +1 is prime, and by Wilson’s
theorem k! +1 is a multiple of k +1. Since k! +48
is as well, we find k +1 = 47, and we need only

check that % is not a power of 47. We check

that%i!1 = 29(mod 53) (by cancelling as many

terms as possible in 46! Before multiplying), but
that 47 has order 13 modulo 53 and that none
of its powers is congruent to 29 modulo 53.

123.
rectangular bricks, no one of which is cube.

We are given a collection of

The edge lengths are integers.

For every triple of positive integers (a,

b, c), not all equal, there is sufficient

supply of a X b X c bricks. Suppose

that the bricks completely tile a 10 X

10 X 10 box.

(a) Assume that at least 100 bricks
have been used. Prove that there
exist at least two parallel bricks,
that is, if AB is an edge of one of
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the bricks, A’B’ is an edge of the
other and AB ||A’B’ then AB = A’B’.

(b) Prove the same statement with
100 replaced by a smaller number.
The smaller the number, the better
the solution.

Sol.: We prove the claim with 97 bricks. For
each integer up to 16, we tabulate the number
of nonparallel bricks that volume (disallowing
cubical bricks and bricks with a dimension
greater than 10) and their total volume:

Volume 2345678910 12 14 15 16

Number [ 33639396 9 156 6 12

Total 6 9 2415 54 217254 90 180 74
90 192

Assuming no two bricks are parallel, the 90
smallest bricks have total volume 891. The 7
other bricks each have volume at least 18,
giving a total volume of at least 1017, a
contradiction.

We have not determined the optimal constant
(one can improve the above bound to 96
easily), but we note that an arrangement with
73 nonparallel bricks is possible.

124. Let O and G be the circumcenter and
centroid, respectively, of triangle ABC, If R
is the circumradius and r the inradius of

ABC, show that
0G < /R(R —2r).
Sol.: Using vectors with original at O, we note
that 0G2 = Z(A+ B +C)? =ZR% +
%Rz(cos 2A + cos 2B + cos 20).
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2 2 2
Hence R? — 0G? = w. On the other

hand, by the standard area formula K=7rs =

abc abc
—, we have 2rR =

. We now note that
4R (a+b+c)

(a® +b%+c®)(a+b +c) =9abc

By two applications of the AM-GM inequality,
so 2rR < R? — 0G?, proving the claim.

125. Let ABCDE be a convex pentagon, and
let M, N, P, Q, R be the midpoints of sides
AB, BC, CD, DE, EA, respectively. If the
segments AP, BQ, CR, DM have a common
point, show that this point also lies on EN.

Sol.: Let T be the common point, which we take
as the origin of a vector system. Then A X P =
0, or equivalently A X (C + D) = 0, which we

may write A X C = D X A.

Similarly, wehave BX D = E XB,C XE =
AXC,D X A =B X D. Putting these equalities
together givesE X B = C X E,or E X

(B + C) = 0, which means the line EN also
passes through the origin T.

126. Show that there exists a subset A of
the set {1, 2, ..., 1996} having the following
properties:

(a) 1,219% —1 € 4;

(b) Every element of A, except 1, is the
sum of two (not necessarily
distinct) elements of A;

(c) A contains at most 2012 elements.

Sol.: We state the problem a bit differently: we
want to write down at most 2012 numbers,

2199 _ 1 such

starting with 1 and ending with
that every number written is the sum of two
numbers previously written. If 2™ — 1 has been

written, then 2™(2"1) can be obtained by n
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doublings, and 2™ — 1 can be obtained in one
more step.

Hence we can obtain 22 — 1,2% — 1, ..., 2256 —

Tin(I+ 1)+ Q+1) ++(128+1) =
263 steps. In 243 steps, we turn 2256 —

1 into 2499 — 2243 Now notice that the
numbers 2243 — 2115 115 _ 951 51 _
219,219 — 23,23 — 21 21 — 1 have all be
written down; in 6 steps, we now obtain 24%° —
1. We make this into 2°°8 — 1 in 500 steps, and
make 2199 — 1 in 999 steps. Adding 1 for the

initial 1, we count
14263+ 243+ 6+ 500+ 999 = 2012
Numbers written down, as desired.

127. LetZ" denote the set of nonzero
integers. Show that an integer p > 3 is
prime if an only if for any a, b € Z™, exactly
one of the numbers
p—1
Ny =a+b—6ab+T,

p+1
N2=a+b+6ab+T

belongs to Z™.

Sol.: If N; = 0,thenp = (6a — 1)(6b — 1) is
composite; similarly, N, = 0 implies p =
—(6a + 1)(6b + 1) is composite. Conversely,
suppose that p is composite. If p=0, 2,3 or 4
(mod 6), then N; and N, are not integers.

Otherwise, all divisors of p are congruent to +1
(mod 6). So there exist natural numbers c, d
such that

p = (6¢c +1)(6d + 1)or(6¢c — 1)(6d
—1Dor(6c +1)(6d — 1).

In the first case, N, is not an integer and N; = 0
fora= —c,b = —d.
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In the second case, N, is not an integer and
N, =0fora=cb=d.

In the third case, N; is not an integer and N,=0
fora=c,b= —d.

128. Let M be a nonempty set and *a binary
operation on M. That is, to each pair (a, b)
€M X M one assigns an elementa * b.

Suppose further that for any a, b €M,

(a*b)*b =aand a*(a*b) =b.

(a) Showthata*b=b*aforalla,b
EM.

(b) For which finite sets M does such a
binary operation exist?

Sol.:

(a) First note that [a* (a* b)] *(a* b) =a by
the first rule. By the second rule, we
may rewrite the left side as b* (a *b), so
b* (a *b) =aand so b *a=b*[b* (a* b)].
b* a = b*[b*(a* b)]. By the second rule
this equals a *b, so a* b = b* a.

Such sets exist for all finite sets M.
Identify M with {1, ..., n} and define
a*b=c&a+b+c=0(modn).

It is immediate that the axioms are

(b)

satisfied.

129. Determine whether there exist a
function f: Z—Z such that foreach k=0, 1,
..., 1996 and for each m €Z the equation
f(x) + bx = m has at least one solution x
€L.

Sol.: Each integer y can written uniquely as
1997m +k with m €Z and k € {0, ..., 1996}.
Define the function f by f(y) = m — ky; then
f(x) + kx = m has the solution x = 1997m +
k, so the condition satisfied.
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130.
given. The set A contains 2m — 1 intervals,
every two of which have a common

Two sets of intervals A, B on a line are

interior point. Moreover, each interval in A
contains at least disjoint intervals of B.
Show that there exists an interval in B
which belongs to at least m intervals from
A.

Sol.:Leta; = [a;, b;](i =1, ...,2m — 1) be the
intervals, indexed sothata; < a, < -+ <
Aym—1- Choose k €{m, ..., 2m — 1} to minimize
by. By assumption, the interval a; contains two
disjoint intervals from B, say ; =

[c1,d1] and B, = [c3, d,]. Without loss of
generality, assume

ap < 1 <di<cy<dy < by

Ifd, < b;fori=1,2,.., m,thenf; C a; fori=
1,2, ..., m, so 3; satisfies the desired property.
Otherwise, d; > b, for some s €{1, 2, ..., m}. By
assumption, ¢, > dq > bg. Since no two of the
a are disjoint, we have bg > q; for alli, soc, >
a;. On the other hand, by the choice of k, b, <
by fori=m, ..., 2m,. Therefore q; < ¢, < d, <
by < b;foreachi e {mm+1,..,2m—

1}, and so B, has the desired property.

131.
sides AC and BC respectively, of a triangle
ABC. Let F be the intersection of the lines
AD and BE. Show that the area of triangles

The points E and D lie in the interior of

ABC and ABF satisfies.
SaBc _ | ac| |BC|_
Sasr  |BE| |BD|

Sol.: Let the line parallel to BC through F meet
AB at Kand AC at N, Let the line parallel to CA
through F meet BC at ME and AB at P; let the
line parallel to AB through F meet BC at L and
CA at O. Let v and vg be the distances of C
and F, respectively, to the line AB. Then
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Sapc Ve _BC BL+LM+MC

SABF_UF_ﬁ_ FK

Under the homothety through B carrying F to E,
the segment PM maps to AC. Thus

LM FM EC AC

FK FP AC AE
And similarly

CM NF (D BC 1

FK FK BD BD
The required assertion follows by putting this all
together and nothing BL = FK.

132. Let n be a natural number. A cube of
side length n can be divided into 1996
cubes whose side lengths are also natural
numbers. Determine the smallest possible
value of n.

Sol.: Since 1996 >123, we must have n > 13,
and we now show n = 13 suffices, Inside a cube
of edge 13, we place one cube of edge 5, one
cube length 4, and 2 of length 2, and fill the
remainder with cubes of edge 1. The number of
cubes used is

133-G3-1D)-@43-1)-223-1) =
2197 — 124 — 63 — 2(7) = 1996, as desired.

133. Let M be the midpoint of the median
AD of triangle ABC. The line BM intersects
side AC at the point N. Show that AB is
tangent to the circumcircle of NB if and
only if the following equality holds:

BM BC(?
BN ~ BN?

Sol.: First note that (by the Law of Sines in
triangles ABM and AMN)

BM _ sinZMAB sin ZMNA
BN ~ sin 2ABM sin zZNAM
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Then note that (by the Law of Sines in triangle
ABD and ADC)

sinzZMAB _ BD sin 2ABD
sinZNAM — DC sin 2DCA’

By the law of Sines in triangle BNC,

BC? _ sin*2BNC
BNZ  sin22BCN’

__ BC?

Therefore 2= = > if and only if
MN BN

sinzZABD _ sinzZBNC
sin£ABM ~ sin 2BCN’

Which if we put
a = £ABM,f3 = £BCN,0 = £NBC becomes
sin(a + 8) sin § = sin(f + 8) sina.

Rewriting each side as a difference of cosines
and cancelling, this becomes

cos(a +6 — ) =cos(f —a+0).

Both angles in this equation are between -
and 7, so the angles are either equal or
negatives of each other. The latter implies 8 =0,

which is untrue, so we deduce a = 3, and so
BM _ BC?
MN ~ BNZ?
AB is tangent to the circumcircle of BNC.

if and only if ZABM = £BCN, that is, if

134.
corners of an equilateral triangle of side n.

Three counters A, B, C are placed at the

The triangle is divided into triangles of side
length 1. Initially all lines of the figure are
painted blue. The counters move along the
lines, painting their paths red, according to
the following rules:

(i) First A moves, then B, then C,
then A, and soon in
succession. On each turn, each
counter moves the full length
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of a side of one of the short
triangles.

No counter may retrace a
segment already painted red,
through it can stop on a red
vertex, even if another counter
is already there.

Show that for all integers n >0
it is possible to paint all of the
segments red in this fashion.

(i)

Sol.: The cases n =1, 2, are trivial; we use them
as the base cases for an inductive proof. We
describe the moves for A, understanding that
the moves for B and C are the same moves

2 4 . )
rotated by ?ﬂ and ?”, respectively. To fix

directions, imagine the triangle is oriented with
one side parallel to the horizontal and the third
vertex above it, and suppose A starts at the
bottom left. We first move A right forn—-1
steps. We then alternate moving it up to the left
and down to the left for a total of 2n -5 steps.

We then trace a path through the inner triangle
of side n =2 using the induction hypothesis,
ending at another corner. Finally, we follow the
unused edges from that corner, ending three
steps later.

135.  Fifty numbers are chosen from the set
{1, ..., 99}, no two which sum to 99 or 100.
Prove that the chosen numbers must be
50, 51, ..., 99.

Sol.: In the sequence

99,1,98,2,97,3,..51, 49, 50, any two adjacent
numbers sum to 99 or 100, so both cannot
occur. Grouping the numbers into 49 pairs plus
one extra, we see at most 50 numbers can
occur, and 50 must be one of them. Since we
must step at least two terms along the list to
make the next choice, the numbers must
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indeed be 50, 51, ..., 99. Clearly we maximize
the number of chosen numbers by taking them
two apart, and the list has odd length, so taking
99,98 ..., 50 is the only draw a graph with {1, ...,
99} as vertices, where two numbers are
adjacent if they sum to 99 or 100.

136. Let M be the intersection of the
diagonals of the trapezoid ABCD. A point P
such that ZAPM = 2DPM is chosen on the
base BC. Prove that the distance from C to
the line AP is equal to the distance from B
to the line DP.

Sol.: Since M lies on the internal angle bisector
of angle £APD, it lies at the same distance from
the lines AP and DP. The ratio of this distance to

the distance from Cto AP is %, while the ratio
of this distance to the distance from B to DP is
%.Butﬁ =31 by similar triangles, so the
MD MC MD

latter two distances are indeed the same.

137.
acquainted with each other and some are

In a group of several people, some are

not. Every evening, one person invites all
of his acquaintances to a party and
introduces them to each other. Suppose
that after each person has arranged at
least one party, some two people are still
unacquainted. Prove that they will not be
introduced at the next party.

Sol.: We claim that two people unacquainted
after each person has held at least one party lie
in different connected components of the
original (and final) graph of acquaintance. If two
people are connected by a path of length n,
they will be connected by a path of length n -1
after one person along the path (including
either of the two people at the ends) holds a
party, by a path of length n -2 after two of them
hold a party, and so on. After each person holds
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a party, the two people on the ends will be
acquainted.

138. There are n parking spaces along a one
—way road down which n drivers are
travelling. Each driver goes to his favorite
parking space and parks there if it is free;
otherwise, he parks at the nearest free
place down the road. If there is no free
space after his favorite, he drives away.
How many lists a4, ..., a,of favorite
parking spaces are there which permit all
of the drivers to park?

Sol.: There are (n + 1)™ 1 such lists. To each
list of preferences (ay, ..., a,) which allows all
drivers to park, associate the list (b,, ..., by,),
where b; is the difference mod n+ 1 between
the numbers of the space driver i wants and the
space the previous driver took. Clearly any two
lists give rise to different sequences of b;.

We now argue that any list of b; comes from a
list of preferences. Imagine that the n parking
spaces are arranged in a circle with an extra
phantom space put in at the end. Put the first
driver in any space, then fori=2, ..., n, put
driver i in the first available space after the
space b; away from the space taken by driver i-
1; this gives a list of preferences if and only if
the one space not taken at the end is the
phantom space. However, by shifting the
position of the first driver, we can always
ensure that the phantom space is the space not
taken. Thus the sequences of b; are equal in
number to the lists of preferences, so there are
(n + 1)™ ! of each.

139. Find all positive integers n such that
371 4+ 571 divides 3™ + 5™

Sol.: This only occurs forn=1. Let s,, = 3" + 5"
and note that

Sp =3 +5)s,_1 —35.5,_,

So s,_1 must also divide 3.5.s,_,. If n >1, then
Sp—1 is coprime to 3 and 5, so s,,_; must divide
Sn—2, Which is impossible since s,,_; > S,_».

140. Let M be the midpoint of side BC of
triangle ABC, and let r; and r, be the
radii of the incircles of triangles ABM and
ACM. Prove that ry < 21,.

Sol.: Recall that the area of a triangle equals its
in radius times half its perimeter. Since ABM
and ACM have equal area, we have

rn_ AC+AM+CM
r, AB+ AM + BM

And it suffices to show AC + AM + CM <2AB +
2AM +2BM;

Since BM = CM, this simplifies to AC < 2AB + AM
+CM.

In fact, by the triangle inequality, AC < AM +CM,
so we are done.

141. Several positive integers are written on
a blackboard. One can erase any two
distinct integers and write their greatest
common divisor and least common
multiple instead. Prove that eventually the
numbers will stop changing.

Sol.: If a, b are erased and c < d are written
instead, we have ¢ < min (a, b) and d = max (a,
b); moreover, ab = cd. From this we may
conclude a + b < ¢ + d by writing ab + a? =
cd + a? < ac + ad (the latter since (d —

a)(c — a) < 0) and dividing both sides by a.
Thus the sum of the numbers never decreases,
and it is obviously bounded (e.g. by n times the
product of the numbers, where n is the number
of numbers on the board); hence it eventually
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stops changing, at which time the numbers
never change.

142.
gon meet in a point. Prove that the

No three diagonals of a convex 1996 -

number of triangles lying in the interior of
the 1996-gon and having sides on its
diagonal is divisible by 11.

Sol.: There is exactly one such triangle for each
choice of six vertices of the 1996-gon: if A, B, C,
D, E, F are the six vertices in order, the
corresponding triangle is formed by the lines
AD, BE, CF. Hence the number of triangle is
(19696) ; since 1991 is a multiple of 11, so is the

number of triangles.

143.
px + q with integer coefficients, there

Prove that for every polynomial x% +

exists a polynomial 2x2 + rx + s with
integer coefficients such that the sets of
values of the two polynomials on the
integers are disjoint.

Sol.: If p is odd, then x? + px + q has the same
parity as g for all integers x, and it suffices to
choose r even and s of the opposite parity as g.
If p=2miseven, thenx?+px +q =

(x + m)? + (g — m)? which is congruent to

q —m? or ¢ — m? + 1 modulo 4. Now it
suffices to choose r even and s congruent to

q —m? + 2 modulo 4.

144. Sergey found 11 different solutions to

the equation f (19x - %) = 0. Prove that

if he had tried harder, he could have found
at least one more solution.

Sol.: The equations 19x — 9x_6 =t can be

rewritten 19x2 — tx — 96 = 0; since t> +
19.96 > 0, it always has two real roots.
Therefore the number of zeroes of f (if finite) is
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an even integer, so Sergey can find at least one
more zero.

145.  Find all quadruples of polynomials
P{(x), P5(x), P3(x), P4(x) with real
coefficients such that for each quadruple
of integers x,y, z, tsuchthat xy — zt = 1,
one has

P1(x)P;(y) — P3(z)P4(t0 = 1.

Sol.: If P;(1) = 0, then P;(z)P,(t) = —1 for
each pair of integers z, t, and so P; and P, are
constant functions; moreover, P; (x)P,(y) = 0,
so one of P; and P, is identically zero. Ignoring
such cases, which are easily enumerated, we
assume P;(1) # 0 for all i.

We first note that P; (x)P,(1) = P;(1)P,(x)
for all nonzero integers x, so that P, and P, are
equal up to a scalar factor; similarly, P; and P,
are equal up to a scalar factor. Now note that
P;(x)P,(ay) = P;(ax)P,(y) for all nonzero a,
X, ¥, so that the difference between the two
sides is identically zero as a polynomial in a. In
particular, that means no term in P; (x) P, (y)
has unequal exponent in x and y, and the same
is true of P; (x)P; (y) on the other hand, if

P; (x) has term of more than one degree, then
P; (x)P; (y) contains a term with different
degrees in x and y. Hence P, (x) = cx* for
some integer k and some constant ¢, and
similarly P, (x) = dx*, P;(x) = ex™, P, (x) =
fx™.

Thus we must determine when cdx*y* —
efz™t™ = 1 whenever xy — zt = 1in
integers. Clearly k = m since otherwise one of
the two terms on the left dominates the other,
and cd =1 by settingx=y=1andz=t=0, and
similarly ef = 1. Now note that (xy)* — (zt)* =
1 can only happen in general for k = 1, since for
k >1, there are no consecutive perfect k-th
powers. We conclude P; (x) = cx, P,(x) =
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%, P;(x) = ex, Py(x) = gfor some nonzero real

numbers ¢, e.

146. Two players play the following game
on a 100 X 100 board. The first player
marks a free square, then the second
player puts a 1 X 2 domino down covering
two free squares, one of which is marked.
This continuous until one player is unable
to move. The first player wins if the entire
board is covered, otherwise the second
player wins. Which player has a winning
strategy?

Sol.: The first player has a winning strategy. Let

us say a position is stable if every square below
or to the right of a free square is free. Then we

claim the first player can always ensure that on
his turn, either the position is stable or there is

a free square with exactly one free neighbor (or
both).

Let us label the square in the i-th row and j-th
column as (i, j), with (1, 1) in the top left. We
call a free square a corner if is not below or to
the right of another free square. Let

(a1, b1), (ay, by), ..., (ag, by) be the corners
from top to bottom.

First notice that if (a, b) is a corner such that
both (a+ 1,b — 1)and (a —1,b + 1) are
nonfree (or off the board), then the first player
may mark (a, b), and however the second player
moves, the result will be a stable position. More
generally, if (a,b),(a+ 1,b—1),...,(a +

k,b — k) are cornersand (a —1,b +

Dand (a+ k + 1,b — k — 1) are both nonfree
or off the board, the first player can be sure to
return to a stable position.

To show this, first note that we cannot have
both a=1and b—k =1, or else the number of
non-free squares would be odd, which is
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impossible. Without loss of generality, assume
that b —k # 1 is not the final corner. The first
player now marks (a, b). If the second player
covers (a, b) and (a, b+1), the position is again
stable. Otherwise, the first player marks (a +
1,b — 1) and the second player is forced to
coveritand (a + 2,b — 1). Then the first player
marks (a + 2, b — 2) and the second player is
forced to coveritand (a + 3,b — 2), and so on.
After (a + k, b — k) is marked, the result is a
stable position.

(Note that the assumption b —k # 1 ensures
that the moves described do not cross the edge
of the board.) To finish the proof, we need to
show that such a chain of corners must exist.
Write the labels (a4, by), ..., (ak, by) in a row,
and join two adjacent labels by a segment if
they are of the form (a, b),(a + 1,b — 1). If
two adjacent labels (a, b), (a + i,b — j) are not
joined by a segment, then eitheri=1orj=1
but not both. If i =1, draw an arrow between
the labels pointing towards (a + i, b — j);
otherwise draw the arrow the other way. Also
draw arrows pointing to (a,, b;)and (ay, by).
There is now one more chain of corners (joined
by segments) than arrows, so some chain has
two arrows pointing to it. That chain satisfies
the condition above, so the first player can use
it to create another stable position.
Consequently, the first player can ensure
victory.

147.
triangle ABC. The circumcircle of triangle

Let BD be the bisector of angle B in

BDC meets AB at E, while the circumcircle
of triangle ABD meets BC at F. Prove that
AE =CF.

Sol.: By power-of-a-point. AE .AB = AD. AC and

CF.CB =CD.CA, so ?—i = (?—g) (%). However,
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48 _ 4D by the angle bisector theorem, so AE =
CB~ CD

CF.

148. A 10 x 10 table consists of positive

integers such that for every five rows and
five columns, the sum of the numbers at
their intersections is even. Prove that all of
the integers in the table are even.

Sol.: We denote the first five entries in a row as
the “head” of that row. We first show that the
sum of each head is even. We are given that the
sum of any five heads is even; by subtracting
two such sums overlapping in four heads, we
deduce that the sum of any two heads is even.
Now subtracting two such relations from a sum
of five heads, we determine that the sum of any
head is even.

By a similar argument, the sum of any five
entries in a row is even.

By the same argument as above, we deduce
that each entry is even.

149.
integers a and b such that for each pair p, q

Prove that there are no positive

of distinct primes greater than 1000, the
number ap + bq is also prime.

Sol.: Suppose a, b are so chosen, and let m be a
prime greater than a +b, by Dirichet’s theorem,
there exist infinitely many primes in any
nonzero residue class modulo m; in particular,
there exists a pair p, g such that p = b (mod m),
g = -a (mod m), giving ap + bq is divisible by m,
a contradiction.

150.
each pair of which is linked by a road. The

There are 2000 towns in a country,

Ministry of Reconstruction proposed all of
the possible assignments of one way traffic
to each road. The ministry of
Transportation rejected each assignment

169

that did not allow travel from any town to
any other town. Prove that more of half of
the assignments remained.

Sol.: We will prove the same statement for n >
6 towns. First suppose n = 6. In this case there
are 215 assignments, and an assignment is
rejected only if either one town has road to all
of the others in the same direction, or if there
are two sets of three towns, such that within
each town the roads point in a circle, but all of
the roads from one set to the other point in the
same direction. There are 5.211 had
assignments of the first kind and 20.8 of the
second kind, so the fraction of good

. . 5
assignments is at least Py

For n = 6, we claim that the fraction of good
assignments is at least

n—i
5 1
51_[ (1 - zi—1>'
i=6

We show this by induction on a good

assignment or r h -1 vertices can be extended to
a good assignment on vertices simply by
avoiding having all edges from the last vertex
pointing in the same direction, which occurs in
2 cases out of 2™ 1,

Now it suffices to show that the above

. . 1
expression 1s more than E

In fact,
2) = 21
i=5 i=5
1vi+1 1w 1
=1tg) Sr=ltE) Y
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Thus the fraction of good assignments is at least
()6 =5>2
151.  Find all real numbers satisfying

6~ + 2%* + 24* — 36" — 16" = 1.
Ans:- Rewrite the given relation as:
6* +4* —36% + 24* —16%=1
Let 6* = a,4* = b, we have
atb-a?+ab—-b%=1
=a?—ab+b*—a—b+1=0
= 2a? — 2ab + 2b% — 2a — 2b + 2=0

= (a? — 2ab + b?)+ (a? — 2a + 1)+ (b? —
2b + 1)=0

= (a—b)>+(a—1)*+ (b—-1)2=0
~a=1and b=1whena=h.
= 4* = 1 and 6* = 1, giving x=0 only.

152. Two boxes contain between them
65 balls of several different sizes. Each
ball is white, black, red, or yellow. If
you take any five balls of the same
colour, at least two of them will always
be of the same size (radius). Prove that
there are at least three balls which lie
in the same box, have the same colour
and are of the same size.

Sol: We will make repeated use of pigon—
hole- principle (PHP). As there are 65 balls
and 2 boxes , one of these boxes must

contain at least [§]+1 = 33 balls.
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Consider that box, now we have four colours
(white, black, red, yellow) and hence there

must be at least (§)+1 = 9 balls of the same

colour.

There can be at most 4 different sizes
available for these 9 balls of the same
colour, For if there were 5 (or
more)different sizes, then collection of 5
balls, all of different sizes, would not satisfy
the given property.

Thus of these 9 balls there must be at least 3
balls of the same size.

153.  Find all continuous function f : (0,

00)—(0, ©0)3f(1)=1and

1 r* 1 x 2
2} d@rde= 2
Ans:- Define , F (x) = [, f()dt and G
)= [, (F(£))%dt
Since f: (0, ) — (0, )
we have F(X)>0V x > 0

Also, %G(x) = i{F(x)}z, from the given
condition on differentiation, we have

16'(0)= 2. 2F(0).F'(0) = = (F(x))?

This means that %(F(x))zzf—cF(x) F'(x) —
1

x2(F(x))?
1 xF' () _ - xF'(x) _
or, 2( F(x) ) =2 F(x)

Solving this equation as a quadratic in
xF'(x)

00 we have
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xF'(x)
F(x)

=2+ 2 = k(say)

dF(x) E
F(x) =k f x

= In F(x)=kInx + InA = F(x)= Ax*

On integration, we obtain [

=>f(X)=lkx*1=f(1)=1
= k=1

f(X): xk—1 = x1+\/2—/x1'ﬁ

154, Letx>1, f(x) = %

where [.] denotes G.1.F. and { }
denotes fractional part. Determine the
smallest number k 3 f(x)< k for each
x=>1

Ans:- Let x = a+ b where a= [x], b= {x}

f(x )_ \/_+\/—
2 _ a+b+2\/_ 2vab
(fx))* = =1+ 5

Using AM> GM, < 1+1 = f(x) < V2.

155.  Solve the equation (v2 + V2)* +
(V2 -+2)* = 2*

Ans:- 1+§= 1 +cos%= 2c052§

2+ 2. x 2—+2.x
)2+ (5

= (cos g)x + (sing)x
= X=2

156. Maximize x+ y subject to the
condition that 2x2 + 3y% < 1.
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Let z=x+vy

dy dy 2x
+ 7 = =5 = =
Now, 4x 6ydx 0 o >

At the touching point. i—; =-1

= 2x=3y and 2x2 + 3y?=1 =>2( 2z 4
By =1

=>15y2=2 =y=+ Z

()
f Ji= %

For any positive a, b prove that
(a+;)2 + (b+;)2 > 8.

o X=

N w

Ans: AM = GM
1.2 1.2
(@a+-)"+(a+-)" =

2\/(a+§)2 + (b +7)>

1 a b
= 2(ab+5 + ™ + E)
>2(2+2) [+ ab+—-2>2]

158. Find the following limit:

1
4+
v n2+n)

lim (

1
+
x—00 \/n2+ \/n2+2

Ans:- Let Uy = m

= lim

n2+n X—00

By Cauchy’s first theorem:-
. ugtootup)
lim (—n ) =1.

X—00

~limu, = lim

X—00 X—00



Challenging Mathematical Problems

+ ot

S0, lim (== + 7= ==L

159. For any real number x and for any
positive integer n show that

XDt + [+ 2]+ [+ 22 =
[nx]
Ans:- Let x= [x]+y, where 0 <y <1,

Let p be an integer such that P-1 < ny < P

k k
Now, X+— = [x] +y +—

P+k-1 +k

Also, <y+ < 2K

So, long as == **<1,ie k< n-(P-1)
So,y + S < 1 and consequently

[x+§] = [x]fork=0, 1,2, ..., n-P.

But [x+:] = [x]+1 for k= n-P+1, .._.n-1.
~[x]+ [x+%]+. . ‘+[X+nT_1]

= ([x] + [x] + -+ [x]) +
(A + D+ (x]+ D+ -+ ([x+ 1))]

=n[X]+H(P-1).eiei (1)
Also, [nx]=[n[x]+ny]= n[x]+(P-1)
Since P-1 <ny<P...... (2)

From equation (1) & (2),

[x]+[x+%]+. . .+[x+”T_1] = [nx].

160. Prove that for n > 1, 1+Zl2 + 3l2 Fot

1 1
—<2-=
n n

172

Ans:- P(l): 1+i2=E< 2—12529
2 4 2 2 4
The statement is true for n= 2.

Let , the statement is true for n= m.
~P(m)= 1+—+ =+ +—< 2_5

Now, we need to show that the statement is
also true for n=m+1.

1

P(m+1) 1+—+ >+ +—<2—m

<2—i+ i [~

m(m+1)

1
(m+1)2

vm>1]

m(m+ 1)

<21

m+1

~ The statement is true for n= m+1
So, for all n € N the statement is true.

Hence proved.

161InaAPQR“‘R:§Jf

Q

tang and tan; are the roots of

equation ax? + bx + c= 0 (a#0), then
show thata + b =c.
Ans:- (a) tan§ + tan% =

b P c
Ctanftanl =S¢
a 2 2 2

N | o
N[

B

tan® + tan¥
2 2

T
o > g = tan—-=1
1 - tans tan 4

b

& =1 =b=c—a =a+

a

b=c
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162. If A and B are real orthogonal

matrices of the same order and |B|+|A|= 0.

Prove that |A+ B|=0
Ans:- |A|+|B|=0
= |Al= -8

|Al.IB]=—1 [+ |B|=|B~1|as they are
orthogonal]

Let, C=A (AT + BT)B

= |C|=|AATB + ABTB| = |B + A|

........... (1)

And [C|= |AIAT + BT||B] = —|A" + BT|
=>-|(A+B)T|= —|[A+B|..c......... (i)
|A+ B| = —|A+ B]

= 2|A+B|=0

= |A+ B|=0

163. Determine whether there is a one —to
—one function f: R— R such that

f(x2)-[f(0)]2 2 7V x

Ans:- Take x= 0, then f(0) - (f(0))? = ;
= (f(0))? + ()? = 2.5.f(0) < 0

= (f(0) —9)2 < 0

= f(0) —2=0=f(0) = -

Also, taking x=1 we have f(1) - % =0
f(0) = f(1)=~

~ This is not one -to —one function.
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164. If0<u<landu,,s =1-—
1-u, vn>1,

Prove that (i) {u,,} converges to zero

(ii) lim 2=

n—o Uy 2
Ans- ()0<u; <1
=50</1-u <1
=>0<1-J1—-uy; <1
ie.0<u, <1

Similarly, 0 <u; <1 ..... and so on.

LetO<u, <1,then0<1-,/1—-u, <1,
ie.0<u,,,<1

Thus {u,,} is bounded.

Again, u,1 —u,=1-/1 —-u, -u,
=(1- u)- 1T =y

= (1w ) = 1—uy
=J1-u, (J1-u, —1)
<0as0<,1-u, <1
as0<.1—-u,<1

= {u,} is monotonically decreasing. - {u,}
converges two zero.

S Unpr < Up

(i) Let lim u, = [, then lim —*

n—oo n—oo Un
o lim 28 = i ——=—2 =1
.n—>oo _n—>ool(1+\/1—_l) 1+\/1——0_2

; Since u,, converges to zero.
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165. Let g: R— R be a continuous
functiona3 g(x) =g (x;—l) v X.

Show that g must be a constant function.
Ans:- g(x) = g (5-)

x—1

=9 (5) =0

. x-3
)=9 ()
Again putting x= xz;l

g (xT_l): g (’%7) and so on

x(2

Generally we have, g(—) g (EEC D)
fg(=g(E—1+5)

= lim g () =g (=1)

= g (X)= g (-1)= constant V x.

166. Find the greatest and least value of
the function f (x)= x3 — 3x* + 2x + 1in
[2, 3].

Ans:-f(x)=x3 —3x2+2x + 1

P(x)=3x2—6x+2;, f(2)=2>0; f
(3)=11>f (2)

=~ f(x) is an increasing function
Note that f"(x) =6x -6 >0V X € [2, 3]
=~ f(x) is concave.

Thus the function has min. value at x= 2 and
max. Value at x=3

~ minimum value= f(2)=1 .. maximum
value =f(3) =7

167. Let F (x) =yn_
satisfy Yo~ k = 0 so that there exists a

0 axx® , where a;

real root of f (x) =0 in the interval (0,
1)

Ans:- F (X) = foxf(t)dt =

X
fo (Zﬁ:o aktk)dt = Z:O ak '

Xk+1

k+1

Clearly F (x) satisfies the conditions of
Rolle’s Theorem as F (0) = 0 and

F (1) =Ei0irs =

Hence 3 a‘c’€(0,1) 3 F'(c)=0=F(c) =0

168. Show that 1+ + 2+ 2 4 ... 4+ Zcan
2 3 4 n
never be an integer value.

Ans:- We are to show:- 1+ % + % + i +

1 an odd number
=———vVn>1

n aneven number

.t

Let, P (N): 1+ =+ 24>+ . +
2 3 4

an odd number

S|k

vn>1

an even number

- — 1 __ 3 _ anoddnumber
When n=2, LHS= 1+ =S E

an even number

= P (2) is true. Let P (m)be true

NI SI S SRR S
2 3 4 m

an odd number

= Z(say)

an even number

Now, P (m+1) = = + L
m+1

m is odd or even,

But in case, it can be shown that

P (m): an odd number

an even number

=P (n) is true for all n eN
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169. Let f: R — R be differentiable and
assume there isno x in R 3 f(x) = f’(x) =
0. ShowthatS={x|0<x < 1;f(x) = 0}
is finite.

Ans:- Consider f~1({0}). Since {0} is
closed and f is continuous f~1({0}) is
closed. Therefore, S=[0,1]n f~1({0}) is
closed and bounded subset of R. Hence, S is
complete.

Assume S is infinite.
Then there is a limit point x € S;

i.e. there is a sequence {x, } of distinct
points in S which converges to Xx.

Also, as all pointsare in S, f(x,) = f(x) =
OvVneN.

We now show that f(x) =0.
Since.|x,, — x|—0,

SO

f’(X) - llm f(x+(xn_x))_f(x)

n—oo Xn—X
= iy LG
n—oo Xn—X

=0

The last equality holds since f(x) = f(x,,) =0
holdsv n € N.

170. The four digit number aabb is a
square. Find the number.

Ans:- aabb = n?
Then n?=1100a+ 11b

= 11(100a + b)

175

=11(99a +a+bh)

Since, n? is divisible by112, we see that 11 |
(at+b)

i.e. a+b=11. Since n? is a square , bcan’t be
0,1,2,3,5,7 or 8 . Checking the remaining we
see that 7744= 882

171. Find the maximum value of
CcoSay.CoSa;. cosa,, under the
restrictions

0<ay,ay, ..a, <2 cota,.cota,.cota,
=1

Ans.
Given, (cota,). (cotay) ... (cotay,) =1

=>C0S Q1 .COS Ay ....COS A, =
sina;.sina, ....sin@q ................ (1)

Now, (cos a; .cos a; ....COS @,)? =

(cosa;.cosa;, ....cos a,)(cosa; .cosa, ....Ccos @)

(cosay .cos ay ....cos ay)(
sina, .sina, ....sin a;,) [from (1)]

1 . . . 1
= 5 sin 2a4 .sin2a, ....sin 2a, < o

1
» (cos @y .coS @y ....cOS @)% < —

1 1
5COS Q1 .COS Ay ....COS Ay < ’2— <=
22

[“cosa; = 0]

172. Let f(x, y) =0 is a circle such that f(0,
A) = 0 and f(4,0) = 0 have equal roots and
f(1,1)= - 2 then the radius of the circle is

(a) 4
(c)2

(b)8
(d) 1
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Ans. (c) 174. Prove that
Let f(X,y) =x? + y2 +2gx + 2fy+c = 1 1 1 4
( y) x . Y . gx fy ¢ 1< 1001 + 1002 Tt 3001 <
0 be the required circle
Ans:- consider 2001 numbers % 1001 <
k <3001

fO,N)=2+2fA+c=0 ocovvrn... (1)

f(1,00=22+2gA+c=0................ ()
Using AM- HM inequality, we get
(1) and (2) have equal roots.

~ D=0 (X001 k)(ZiOOllom > (2001)?

=f2=g2=c¢ But Y.323001 k = (2001)?
. . 1
SfX YY) =x2+y2+2gx £ 2fy+ g% =0 Hence we get the inequality Y3750, > 1

f(1,1)=-2 = g*+29g+29g+4=0 On the other hand grouping 500 terms at a
time, we also have

when f = - g, g2 = —4 (not possible)
g= Z3n+1 1 500 n 500 500 500 n

~f=gandg=f=-2andc=4 k=n+1j k 1000 1500 ' 2000 ' 2500
1 _ 3851
< it -
3001 3001 3000 3

-~ Radius of circle is 2.

173. Let s=V1 + V2 + /3 + .- + /10000

[Remarks:- if S =y3001 1 — there are (2n+

1) terms in the sum and the middle term is
and 1= flOOO\/de. Showthatl<s<TI+ )
100. :
2n+1 27
. y_ 1000 1 .
Ans- 1= Vxdx = [ Vxdx + 175. Let A be a set containing n elements.
f Vx dx + -+ [0 T dx If the number of elements in the set,
9999

B={(x,y,2):xeA , yeA, zeAandx,Y, z,
are not all distinct} is equal to 280,

—>f10 dx + [T dx

10000 1
tooitfoge V9999 dx ST < [ 1.dx +

i )
f V2 dx + -+ f;‘;‘;""m dx then find the value of n*
Ans: According to question n3 — (?).3! =
VI V2 +....4/9999 < I < VI +V2 o gtoq n®—(3)
+v/10000

.3 _ _ ) —
i<s ~n’—nn—-1)mn-2) =280

= n(n® —n?+3n—2)=280
Also, S<T1++/10000 ( )

= n(3n- 2)= 280= 10(3.10- 2)
2 1SS <1+100

176
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TOPIC WISE SOLVED
PROBLEMS

INDUCTION
(Objective Type)

1. The sum of n terms of the series 1.3% +
2.524+3.72+ .. s

@ 4n3 +4n’ +n (b) g (n+1)(6n? +
(d) none.

n(n+1)

14n+7) (o)—

Sol.:Letp(n):1.32 + 2.52 + 3.72 + - +
n)(2n + 1)

~P(M):¥nn+1)?% =
P(n):¥n(4n®+4n+1)

= P(n): Yn(4n’> + 4n? +n) =
P(n):4Yn®+4¥n*+3¥n ~P(n) =
%n(n +1)(6n? + 14n + 7).

2.10™ + 3.4™*% + K Kis divisible by 9 for all
n €N. Then the least +ve integral value of k is-

@ 5 @®)3, (¢)1, (d) none.

Sol. Let P(n): 10™ + 3.4™*2 + k =
91 (where A € 1)

= P(1):10+3.43+k=9 A,
= P(1):202 +k

= Ay e (DAlso, P(2): 100 + 3.4* + k
=91,
= P(2):868+k =9y e v e . (2)

From (1) and (2), then minimum value of k is
5 such that P(n) is divisible by 9.

3. x™ — 1is divisible by k — k. Then the least
+ve integral value of k is

@1 (b)2, (c)3, (d)none

177

Sol:Let P(n):x"—1= A(x — k)

Now,P(1):x —1
= 1, (x — k) Also, P(2): x?

—1= A,(x—k)
=P2:x—-1Dx+1)
= A(x — k)

- Least value of k which the proposition P(n)
istrueisk =1.

4.If1+5+12+ 22+ 35+ ---tonterms =
n?(n+1)

, ith term of series is

(2n-1)

@&

none.

n(3n-1)

, ()2,

2n(2n+1)

© 2

» (D)

Sol.:LetP(n):1+5+12+224+35+ - (n
terms)

_ n?%(n+1)

— nthtermof LHS = Py — Pn-1)

n?(n+1) _ (n-1)%n
2 2

=Pm —Pm-1 =
= Py — Pn-1) = g{n2 +n—-n%+2n-1}

“Th= Pm) = Pn-1) = %(371 -1

513+23+3%3+...4100% = k%, thenk =
(a) 1010, (b) 5050, (c)10501, (d)none

Sol:13+23 433 +...+100%3 = k? =
Y100 3 = g2
n=

~100.101
2

100(100 + 1))?
ﬁ{%} =k’=k

= 5050

Note that k here will not be negative as k is
sum of cubes of +ve integers.



Challenging Mathematical Problems

13 13423
6. Sum till n terms of the serlesT+ T3
13423433
1+3+5
4n%+3 nn+1)3 n(2n2+9n+13
@, =L ©X L (@)
6 24
none
1 13423 | 13423433
Sol: Let Peny = T 1+3 14345
-+ (n terms)
134234403
—1 H
P(n) Z1+3+5 ....... (n terms)

Po: {27}

1 1
ﬁP(n) Z{n(n-'-)}ﬁ
2n+1)

1
P(n):ZZ(nZ +

= {n?+ 280+ X(1)

n(n+1)

= Py 4{ + = n(n+ D(2n+1) +n}

= P35, Ln B3n+1D+2n+1)2n+1) +

6}

& Plnyigzn(2n? + 9n + 13)

7. < +1+—2+

equal to

Ti2o3 T up to(n+1) terms is

@ nz%' ) — — ( 02~ (d) none

n+2

Sol.: LetP(n) 1+—+ +-(n+

1+2 1+2+3

1)terms

1 2
th = = =t
" 1+4243+-+n nn+1) "

_2[1 1 ]

" Tln o n+1
1 1 1

= Poy{(1-3)+(3-3)+~

+(%_n-1}-1>}
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1) 2n

aPoy=2(1- =
) ( n+1) n+1

7 sin 2nx

8.ForallneN, [,

(@-m (b)0, (c)g (d) none

7 sin2nx

Sol.: Let P(n) = f

sinx

STEP1: =P(;y = [1 “ X dx = 2 [ cosx =
0
Forn=1

STEP II: = For n = n,, Let us assume that the
proposition is true forn = m

= [T Q.

“ Py = (D

sinx

STEP III: Let us prove the proposition for n =
m +1. If the proposition is true for n = m+1,
then it was also true for n = m. Thus the
proposition will be true for all ne N.

Pan+1) = Pam
J‘”sin[z(k + 1)x] — sin 2kx
= dx
0

sinx
Pan+1) + Pan)
B J‘"Z cos[(2k + 1)x] — sinx p
A sin x x

sin(2k + D x|«
= Ponen = Fo0 = |7 51 o

= Pty —Pm) =55—=(0—-0)=0

2k +1

“ Ptm+1) = Pm)

Since the proposition is true forn = m+1,
thus it was also true for n = m. Hence the
proposition is true ¥V n € N.



Challenging Mathematical Problems

1

9'ﬁ+_+m+ - ton terms

@55 O ©g (d)none

1, 1 1
Sol.: Let P(n):ﬁ +o o tonterms

p 1(1 1)+1<1 1>+1(1 1)
= =(1—=)+=(-—z)+=(z——
()3 4) "3\4 7)"3\7 10

+ -+ (n terms)

b 1{1 LN SR
= HE —_t - —— -
"3 A R
1
3n+1}
1

1 n
= Pyi=3{1 — o Py ,
) 3{ 3n+1} MW 30 +1

5
10. For every positive integer n= + +

2n3 n

3 105

(a) aninteger (b) arational number (c) an
odd integer (d) none
n5  2nd n

7
Sol.: Let Ij(n):n?-l-?-{—T—E

p 1 1+2 1 Py
= —_——— =
W7 +t5+3 7105 O
_15+21+70—1
- 105
16 4 2 2
=1= Poy8(F g tg) g =15

~ By induction Py is an integer V n € N.

(SUBJECTIVE TYPE)

1) Givena,,; = 3a, —2a,_,and ay =
2,a, = 3,showthata,, = 2"+ 1VvVneN

Sol.:Step.Forn=1 a; = 2'4+1=3

n=2

A141 =3a; —2a9 =333 —2¢2) =5

Therefore, the result is true fora, = 22 +
1 n=1and?2

Step II: Assume that the result is true for n =
k.

a,= 2F+1
Step IlI: forn =k +1

A1 = 3a; — 2054 =3(2F+1) -
221 +1)=3.2F+3-2k-2=22F+
1= 2141

(By the induction assumption)

This shows that the result is true for n = k
+1. Hence by the principle of mathematical
induction. The result is true for all n € N.

2) Prove that::—z = (-D)" L. (n-

1)!sin {ng - y} sin™ {g + y}Vn €
1

N,wherey = tan™ " x.
Sol.: Let P(n) = Z— (-~ 1 .(n—

Dtsinfn (5 =)} sin” {5+

Y} o (1)

Stepl: Forn=1

@ _d -1, =t
LHS of (1) - ptanT i x =t
1

1+tan?y

1
sec?y
= c0S%Y v i e (2)

= sin (g - y) sin (g - y)

= (=D (1 - 1)!

(~y=tan"1x) =

sin(g—y)sin(%+y) =R.H.Sof (1)
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Therefore, P(1) is true.

Step II: Assume it is true for n =k, then
ak _ .

Pay: 2= (~1)*"1(k - 1)! sm{k%—
.k s

v} sin* {5 +}

Step III: For n = k+1.

Pk +1): 2 = (~1)*k!sin i+
1(5-v)} s 5+ )
L.H.S.

)= e

dxk+1 T ax laxk

. T . k[T
1)!sin {k; - y} sin {E + y}}
(by assumption step)

= (=) 1(k — 1)! j—y [sin {k (g

—))surt Go)

= (=D (k- 1)!

[sin {k (g - y)}.;—ysink (g + y) +

sin¥ (g + y) ;—ysin {k (g — y)} Z—z

= (—Dk 1k — Dt [sin{k (5 -
st (2 y)eos(E ) -
sink (g + y) cos {k (g -

y)}] .cos?y from (2)

= (-DF k- 1) sk (34

) snfe (5~ 5))eos(2+3) -
s )cofi (5=t (£ )

= (=1)*"1k! sink+1 (g +)sin {=-
ky -7 -y}

= (~1)F k! sin®*? (S y)sin{(k -
17— (k+ 1)y

= (—1)F k! sink*? (g + y) X
—sin{n + (k — 1)%— (k + 1)y}

= (—1)F"1k! sink*? (g + y) sin {(k +
17— (k+ 1)y}

= (—=1)* k! sink*? (g + y) sin {(k +
(E-7)}
= R.H.S.

This shows that the result is true for n =
k+1. Hence by the principle of
mathematical induction the result is true
foralln e N.

3) Given that a,, b,., and c,. are (+) ve real
numbers forr=1, 2, 3, ..., n and that
a?=b2+c,r=12..,n

A,=a+a;+--+a, B,= by +
by + -+ by;
C,=c1+cp++c¢,

Prove that A’n > B?n + C?*n

Sol.: Let P(ny: A>n = B?n+ C*n
Stepl: Forn=1,4; = a,B; = b;,C; =
Since,a;? = by* +

c,% therefore,A,*> = B> + C,*
So the resultis true forn=1
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Step II: Assume it is true for n = k, then 4, * >
Bi* + C*

Step III: For n = k+1

Now Ajyy1 = Ag + Qg41,Brr1 = B +
bri1,Crs1 = Ci + Cppn
Let B, =rcosf and C;, = rsinf

C
%~ B?k + C?k = r?tan™! (B_k) =0
k
B2k + C%k < A%k (by assumption

step)
r2 < A%k i.e.r < Ay
Further, since a4, = bk+12 +
Cre12(forr=k+1)
b Z 2
1= ( k+1) +( k+1)
Ap+1 Ape+1
b c

k+1 k+1
Put =cosa,
Ak+1 Ak+1

So that Bk+1 = Bk + bk+1 =
rcosf + agyicosaand Cpyq = C +
Cx41 =TSin6 + ap,q sina then

=sina

Bri1? 4 Cryqr? =1c0SO +
ags105(0 —a) < r? +ap 2+
2rag,, (v cos(@ —a) <1) =

(r + ars1)?

= Apsr” (57 < Ap)

Thus Biy1? + Cier” < Apar”

This shows that the result is true for n = k+1.
Hence, by the principle of mathematical
induction the result is true for all n € N.

(IOfx) _ (-1D)"n! (lng _

xn+1
—)VnENandx=0
n

4) Prove that
1- E

. . _ i logx\
Sol.: Step I: Forn =1 L. H. . dx( : ) -
1-logx

x2

_ (D11
T o xl41

(logx — 1) R. H. S. which is true

forn=1

Step II: Assume it is true for n = k.
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i.e. :—;C (lofx) = (;1:1](! (logx -1-
11
10

Step III: Forn =k +1

We have -4 ak+1 (logx) _d [d_k (logx)]

axk+1\Ux ) T axlaxk\ x
d [(=1D*K! 1 1
= a W(logx -1 —§E>
(by assumption)

= (-1)k K'[ k+1(x)+(logx—1—%.....%)—

()

1,3+2K [1 -(k+1) [logx -1-= —ﬂ]
—% [(k+1)(logx—1——— ~—%)—
1]

e g 1)

This shows that the result is true for n = k+1.
Hence by the mathematical induction, the
result is true for all n € N.

5) Letf.R —» Rsuchthatf(x+y) =
f(x).f(y)Vx,y € R,toshowthat f(n) =
k™, where k is real number and n is non-
negative integer. Hence or otherwise show
that f(x) = k* for all rational x.

ol:v f(x+y)=
FOFO) i (D)

Putting x = 0,y = 0 we get f(0) =
1,letk = f(l)

We will show that f(;;) = k™ foralln =0

StepI: Forn = 0, f(0) = k°1, so the
result is true for n = 0.
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Step II: Assume it is true for n = p, when p

is positive integer f,) = kP
Steplll: Forn=p+1

forn = foyfwy = kP k= kP (by
assumption step)

This show that the result is true for all
non-negative integers.

Again if p is negative integeri.e.p = —m.
Where m is positive integer. Then we can

write

foy = form) = forfom) =
1 (by assumption step)

- f(p)km =1

= fo) =k ™ = fp) = kP itis true for
negative integer

Finally let n = gwhen p, > 0 and then
fo) = fing) = f(n + n + -+ q times)
2
= fay fay ) ---a factors = [f]
“fp) = [f(n)]q (by assumption step)
P
=>f(n) = ka= k™

Hence the result is true for all rational
number.

Show thatforalln € N,

\/a+\/a+ a+-+as 0

where ‘@’ is fixed positive number and n
radical signs are taken on L.H.S.
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Sol.:LetP(n)= \]a+\/a+ a++\/a<
1+ /(4a+1)

Step I: For n = 0, then va < 1ty(@aty)

2

=2Ja<1+ \/m = 4a <
1+4a+1+2/(4a+1)

= ZW + 2 > 0 which is true
Therefore, Py is true

Step II: Assume it is true for n =k,
then

P(k):ja+Ja+ a+-++Va<
1+,/(4a+1)

2
K-radical signs

Step III: For n = k+1

P(k+1):\/a+\/a+ a+-++a<
1+/(4a+1)

2
(k + Dradical signs

For assumption step

\/a+\/a+ a+...+\/a<1+—\/(4a+1)

2

k-radical signs
=

a+\/a+ /a+---+\/5

1+J(@a+1)

2

<a-+
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= |a+ a+\/a+ /a+--~+\/5

<

1+ 4a+1
JH¥

_\/2a+1+ (4a+1)
B 2

(k + 1) radical signs

B \/4a+2+2 (4a+1)
B 4

_ J(\/4a +2) +1+2/(4a+ 1)

4

_ <1+‘/(4a+1))2 _ 1+/(4a+1)

2 2

= |a+ a+\/a+ /a+---+\/5

14+/(4a+1
< ( )

2
(k + 1) radical signs

Which is true forn =k +1
Hence by the principle of

mathematical induction the result is

true for all n € N.

7) Showthatforalln > 1, (XY),, =
r=oM¢, Xn_r Y, whereXandY are
functions of x and x,, denotes the nth

derivation of X with respect to x.

Sol.: Step I: Forn =1,

(XY)]_ = XYl + YXl = XOY1 + YOX1 =

Yoo 1¢, X1-+Y, which is true for alln = 1

Step II: Assume it is true for n =k, i.e.
XY = ZI;:O kCr Xi—rYr

Step III: For n = k+1, we have (XY),41 =
[kc Xi—oYo + ke, Xi—1Y1 + k¢, Xk—2Ya +
b + kaXOYk]l

= ke, (X1 + YoXps1) + ke, (X1 Y2 +
YiXi) + ke, (X—o Vs + Vo Xpe ) + - +
ke, (XoYes1 + Y1Xi)

= kCOXk+1Y0 + (kCO + kcl)Xkyl +
(ke, + ke,)Xi-1Ya + (ke, + ke, ) Xie—1 Yz +
L kaXOYk+1

= k + 1C0Xk+1Y0 + k + 1C1XkY1
+ k + 1C2Xk—1Y2 + b
+k+ 1, XYkt

= Zfzé k + 1CT X1 Y

This shows that the result is true for n =
k+1. Hence by the principle of
mathematical induction, the result is true
foralln e N.

Suppose the natural number are divided
into groups (1); (2, 3); (4,5, 6); (7, 8,9,
10); e and that every second group is
deleted. Prove that the sum of the terms of
the first k groups, which remain after
deletion, is always k*.

Sol.: The remaining groups are (1); (4, 5,
6); (11,12,13,14,15); .......... step L. Sum
of the terms in first group = 1 = 1* and
sum of the terms in the terms in the 1st
two groups = 1+(4+5+6)= 16= 2*. The
resultis true fork =1 and k= 2 step Il
Assume that the sum of the terms of the
first k groups k*

Step III. Now considering the (k + 1)th
group
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1st term in the 1st group = 1
1stterm in the 2nd group = (1+2)+1=4

1st term in the 3rd group =
(1+243+4)+1=11

1st term in the (k+1) th group =
(1+24+3+..+2k)+1

=k(1+2k)+1 = (2k?+k+1)

The number of terms in the (k+1)th
group = (2k +1)

= The sum of the terms in the (k+1) the
group

_ 2k +1)

> [2 (2k? + k + 1) + 2k]

=QRk+1DQRk*+2k+1)

= 4k3 4+ 6k? + 4k +
R ¢ )

Sum of the terms in the first (k+1) groups
= (sum of first k group) + (sum of terms
in the (k+1)th group) = k* + 4k3 +

6k? + 4k + 1 by assumption step and (1)
= (k+ 1%

This show that the result is true forn =
k+1. Hence, by the principal of
mathematical induction, the result is true

for all n eN.
z T
9) Show that foz cos"xcosnxdx = Py
T
Sol.: Let I, = [2 cos™x cosnx dx = T

Stepl: Forn=1,1; = [2cosxcosxdx

1 (2
=—f (1 + cos2x) dx
2Jo

1 sin2x\ Z
= —(x -|-—) 2
2 2 0

1
-G =%

Therefore, the result is true for n -1

Step II: For n = k+1
n
2
Iypr = f cos®*1x cos(k + 1)x dx
0
VA

2

=f cos®x (cos(k
0

+ 1Dx dx)dx

NIE]

cos®x {cos(k + 1)x cos x

Igyr — Iy = f
0

= Jzcos*x{cos(k + 1)x cos x —
cos(k + 1)x cosx — sin(k +
1)x sinx}dx
{~ coskx = cos[(k + 1)x — x]
=cos(k + 1)xcosx
+ sin(k + 1)x sinx}
= sin(k + 1) x. cos*x(— sinx)dx

— cos kx}dx

Integrating by parts

cosk+1ly %
ek

Ik+1 - Ik = [Sln(k + 1)x

7
—f (k + 1)

0
k+1
(k+1)

1 = T
lev1 =5 1le =5 Spz1 - Ik = 5732

cos(k + 1)x dx =0 — I

This shows that the result is true for n = k+1.
Hence, by the principal of mathematical
induction, the result is true for all n € N.
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10) Show that Y'3_o k* n¢, = n(n +
1)2" 2 forn> 1.

Sol.: Let P(ny = Yi—o k® ng,
=n(n+1)2"2% forn > 1.

Stepl: Forn=1

1
Pay= ) k*1,, =0+11, =1

k=0
=1(1+1)2'?

which is true forn=1

Step II: Assume it is true for n -m

m
i.e.Pamy = Z K?m¢, = m(m+1)2m2
k=0

Step III: Forn =m+1

m+1 m+1

P(m+1)= z k2m+1ck =0+ZK2
k=0 k=1

m
m+1ck ZZkzm‘{'lck
k=1
+(m+1)*m+1,

m
Y
=1
(m¢, +me,_,) + (m +1)?

m
— 2
k=1

m

+ k*me,  + (m+1)?

k=1

m+1
= P(m) + kZ mck_l
k=1
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m
= Py + Z(k + 1)?mc, (Replace k by k
k=0
+1)

m
=P + Z(k2 + 2k + 1) mg,

k=0
m
= P(m) + z k? me,
k=0

m m
+22kmck+2mck
k=0 k=0

= 2P() + 22"
+ 2™(from binomial theorem)

=2m(m +1)2m2 4+ 2,.2m"1 4 2 2m-1
=(m+ 1)(m+2)2m1

This show that the result is true for n = m+1.
Hence, by the principal of mathematical
induction, the result is true for all n € N.

11) Show that the sequence {a,,}, where a,, =

135..(2n-1) _ _
246..2n (2n + 1) is a monotonic
decreasing sequence.

1.3.5.....(2n-1)

2.4.6...2n (27’1 + 1)

Sol.: ~a, =

StepL Forn=1,2 a, = ?,az _

13 _3V5

Herea; > a; (2> 1)

It is monotonic decreasing function which is
trueforn=1, 2

Step II. Assume it is true for n =k, then
Ak—1 > ak('-' k>k-— 1)

Step III. For n = k+1
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Ak+1

_135....(2k— D2k + 1)
T 246...2kQ2k+2) @k +3)

a  Qk+1)-2k+3)
J@k+1) (2k +2)
= k41

_ag 2k + 1)(2k + 3)
- (2k + 2)

(1)

JQ2k +1)(2k + 3)
2k +2)
<l.......(2)

Assume

then (2k + 1)(2k + 3) < (2k + 2)?

= 4k?>+8k+3<4k?+8k+4 =0<
1 which is true.

From (1) and (2), we getay,1 < ax(~ k +
1>k)

This show that the result is true for n = k+1.
Hence, by the principal of mathematical
induction, the result is true for all n € N.

12) If ‘@’ fixed real number > 2, then show

1+a+a®+-+a® _ n+1
>—,n eENn>1.

a+a?+--+a®1 T n-1

that

C1+a+a?+-+a™  n+l
" a+a?++a™l T on-1

Sol.: let P(n)

1+a+a? _ 3
Step . Forn =2 P(,y: " 2;.1+a+
a? > 3a
a2 =2a+120 :(a—-1)2=0

which is true forn = 2
Step II. Assume it is true for n =k, then

k+1
=
k-1

l+a+a?+-+a*
O g+ a2 + -+ ak 1

Step IIL. For n = k+1, we have to show that

1+a+a?+-+a*+akt?

a+a?+--+akt4ak
k+2
>

~k
orl+a+a®+-+ak+akt?
k+2
>

Prs1):

~k
(a+a?+-+a") .. (D)
By assumption step, we get

1+a+a?+-+a*
k+1

> (—k_1>(a+a2
+ 4 ak71)
Adding a*** to both sides, we get
1+a+a®+-+ak+akt?

k+1
S (kT2 2
_<k_1>(a+a
+ o+ gkt
+aktt (2)
k+1
assume (k — 1) (a +a’+-+ ak_l)
k+2
k+1>( )
+a > —k
(a+a?+-+a") .3
k+1 (k+2) ,
then(k_l— . >(a+a + .
+ k1) + g+
k+2
2( K )ak
:L(a+a2+~-+ak‘1)
k(k—1)
_(k+2)a220

=2(a+a?*+ - +ak?)
+ k(k — 1Dak*?

2
kA ak >0

=2(a+a®+ - +ak?t)
+ a*{(k — 1ka
—(k+2)}=0
=2(a+a%+-+ak 1)
+a*(k — 1D (k(a—1)
—2)>0
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Which is true
{ vaz=2andk =2
~k=1>21k(a—1)—22>20
From (2) and (3), we get

1+a+a?+-+ak+akt?

k+2 )
> () (0 a
+ -+ ak)

1+a+a?+-+ak+att

a+a?+--+ak
k+2

Hence, the statement (4) is true for n = k+1
and by the principle of mathematical
induction, it is true for all natural numbers.

13)Leta,, ..., a,, be positive integers s.t. a; <
< ap.

Prove that — + +al =

1= a,<2"
a n

Sol.: Suppose a,, = 2™! By backward
induction, we prove that a, > 2*! for k =
1,...,n

Suppose that the assumption is proved for
k=nn-—1,....,m+ 1. Then,
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. 1 1
It remains to be observed that e + 7 +

B
14) The positive integers
X1,X2, ..., Xp and y4,¥,, ..., ¥, are given.
The sums x; + x5 + -+ x, and y{ +
yo + -+ y, are equal and less than mn.
Prove that one may cross out some of the
terms in the equality x; + x5 + -+ + x,, =
y1 + ¥z + -+ ¥,. So that one, again gets
an equality

Sol.: The conditions of the problem imply that
S=x1++xy,=y,+ -+ y,isatleast 2
(sincem <s,n<s,s<mn).lffm=n=

2,2 < § < 3, the assertion is easy to check.
We prove in the general case by induction on
m+n==k,ifk > 4.Let x; > y,be the largest
numbers among x; and y; respectively (1 <
i<m,1<j<n).Thecasex; = y;is
obvious. To apply the induction hypothesis to
the equality (x; —y1) +x; + -+ xp, = Yo +
-+ y, withk —1=m+n—1 onboth
sides, it is sufficient to check the inequality
S'"=y,+-+y, <m(n—1).Since,y; >

2 wehaveS' <S—3>= mn 820 —
n n
m(n — 1).
NUMBER THEORY
(Objective Type)

1) Ifthe unit digitin 459 X 46 X 28 X 484 is
2, then the digit in place of * is
@3 ()5 (¢)7; (d) none

Sol.: (9 X 6 X 4) = 216.In order to obtain 2 at
the unit place he must multiply 216 by 2 or 7.

=~ of the given numbers, we have 7.
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2) If the unit’s digitin (3127)173 is
@1 (b)3; (©7; (d) none

Sol.: Unit digit is (3127)173= unit digit in 7173,
Now, 7# gives unit ......digit 1.

~ 173 = (7%)*3 x 71. Thus 7173 gives unit
digit 7.

3) 461 + 462 1 463 4 454 s divisible by
(@ 3; (b)10; (c)11; (d)none

Sol:4%1(1+ 4+ 42 +43) = 451 x 85 =
459 x 340 which is clearly divisible by 10.

4) A number when divided successively by 4
and 5 leaves remainders 1 and 4
respectively. When it is successively
divided by 5 and 4, then the respectively
remainder will be

(@23 (32 ()41, (d)none

Sol.:
~y=0Bx14+4)=9
~X = (4x+1)=4 X 9+1=37

Now, 37 when divided successively by
5and 4.

=~ Respectively remainders (2, 3)

5) When thesum 1% + 25+ 35 4+ ...+ 995 +
100° is divided by 4, then remainder is
@1 (M2 (c)3; (dnone

Sol.: We see that the unit of 5th power of any
no. is the unit digit of the same no............. So,
the sum of the unit digit of 5t powers of
numbers from1to 100=(0+1+2 + -+
9) x 10 = 450

The remaining parts of the given sum will be
divisible by 4. Now, if we divide 450 by 4,
then the quotient is 112 and the remainder is
2, which is the required remainder.
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(6) The last two digits in 191%%1 is
(@) 17; (b)18; (c) 19; (d) none

Sol.:

Because 191° = 1 (and 100), 19191 =
(1919)199,19 = 1.19 (mod 100). The last two
digit number is 19.

(7) The sum 11999 4+ 21999 4 ... 4 200019 is
multiple of
(a) 1998; (b) 1999; (c) 2000; (d)
none

Sol.:

Because }'2559i1999 = 1000, 4

1000)1999 :Z%OOO(]' _ 1001)1999 —
2%000(_]{)1999

»1000(1)1999 (mod 2001), it follows that

2000 1000 2000
g i1999 — Z i1999 + Z i1999
1 1 1
1000 1000

— i+ (_i)1999
22
= 0 (mod 2001)

(8) January 1, 2000, falls on a Saturday, the
day of the week will January 1, 2020 is
(a) Sunday; (b) Wednesday; (c)
Friday; (d) none

Sol.: Because there are 20 years in the
range 2000-2019 of which five are
leap years, January 1, 2020, falls on
day 20+5= 4 (mod 7) i.e. Wednesday.

(9) The number Zeros at the end, if 100! Is
fully expanded and written out is
(@) 23; (b) 24; (c) 25; (d)none

Sol.: Highest power of 2 in 100! is 97.
Similarly power of 5 in 100! is 24.
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Each pair of 5 and 2 will give rise toa 10 or a
zero at the end. Hence the number of zero in
100! is equal to 24.

(10) Ifnis positive odd integer., then n3 —
n is divisible by
(@) 15; (b) 20; (c) 24; (d) none

Sol.. n3 —n = (n — 1n(n + 1)= product of
three consecutive positive intergers and is
divisible by 3!= 6.

Also (n — 1)and (n + 1) are consecutive even
integers and their product is divisible by 4.

Hence n® — n is divisible by 6 X 4 = 24 if n s
positive odd.

(11) Sum of all the divisors of 360
excluding 1 and itself is
(@) 1170; (b)924; (c) 809; (d) 723

Sol: N =360 = 23 x32x5! =
p, %1, p,%2 p,*s

The sum of all the distinct positive integral
divisor of 360

_ P1(Z1+1_1 P2a2+1_1 P36{3+1_1
Pl_l Pz_l P3_1
24 -1 33-1 52—1_

“2-1'3-1"5-1_
= 1170

15 26 24
12 4
This includes 1 and the number 360. Thus

sum of all the divisors of 360 excluding 1 and
itselfis 1170 — 361 = 809.

(12) The sum of all cubes of three
consecutive integers is divisible by
(@ 9; (b)12; (c)18; (d)none

Sol.: Try by trial method
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13+23+33=36

23 4+ 33 4 43 = 36 All these numbers are
3% +4%+5%=36

divisible by 9.

(13) 22" + 1 where n is a positive integer
greater than one ends in

@35 ()7 (©9 (d) none

Sol.. For22" 4+ 1 forn>1,22" +1= 2%+
1=17 forn=2

22" 4+1=2841=257forn=3,22"+1=
216 + 1 =56537 for n = 4 and so, on we
observe that it ends with 7.

(14) When 2™ — 1 is a prime, then the sum
of the reciprocals of all the divisors of the
number 2™(2" — 1) is

1 1 1
@ 5w (Mg (95 (d)none
Sol.: Sum of all reciprocals of all the divisors

of the number 2™(2™ — 1). Sum of all divisors
including

_ landitself 2"'(2" — 1)

2n-1, (2" — 1)
_o2n2r-1) )
C2nl (2 —1)

(Subjective Type)
13
1) Prove that 7 + 37°

Sol.: Observe that 279 + 370 = 435 4 935 3pd
that 35 is odd. Now a™ + b" is divisible by
a + b when n is odd.

From this is follows that 43> + 935 is divisible
by 13.

2) Find the number of positive integer n less
than 1991 for which % +3n+ 2.
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Sol. Notethatn?+3n+2=Mn+1)(n+2)
and that 6 = 2 X 3. So if 6 is to be a divisor of
n? + 3n + 2, then either (a) 6 is divisor of n +
1; or (b) 6 isadivisor ofn + 2; or (c) 3isa
divisor of n + 1, and 2 is a divisor of n + 2; or
(d) 2 is adivisor of n + 1 and 3 is a divisor of
n+ 2.

Possibility (a) holds forn =5, 11, 17, .............
, 1991, or 332 values in all. Possibility (b)
holds for n =4, 10, 16, ....., 1990 another 332
values. Possibility (c) holds forn = 2, 8, 14,
...... , 1998, another 332 values, and
possibility (d) holds forn=1, 7,13, ...,
1987, yet another 332 values. So there are

4 x 332 = 1328 values of n between 1 and
1991 for which n? + 3n + 2 is divisible by 6.

3) Prove that the positive integers that have
an odd number of divisors are the squares.

Sol.: We know this by exhibiting a pairing
between the divisors of an integer. Let n be a
given positive integer and let d be any
divisors of n. Then n/d is an integer, and it is
also a divisors of n because n = (d X n/d). If
n is not a square, then each divisors acquires
one and precisely one mate The divisors now
get grouped into pairs, and this tell us that the
number of divisor is even (for it is twice the
number of pairs.)

4) Given that a, b, c are positive integers with
1,1 _1
no common factor and such that Sty =o

then prove that (a+ b) is a square.

Sol.: This is clearly to be analyzed along the
same links as problem 7, but it is an trickier

one. From the relation % + % = % We obtain
cla+b)=aborab—c(a+b)=0.

Adding c? to both sides and factorizing we get
(a=c)(b—c)= c2

So a — cand b — c are a pair of
complementary factors of c2. Suppose that
a — c and b — c share a prime factor P.

Then p? is a divisor of ¢?, so p is a divisor of c.
This means that P is a divisors of aand b as
well which cannot happen as aand b are
coprime.

Since the product of the coprime numbers

a —cand b — c is asquare, each of them is a
2

c
squares. Leta —c =u?,b—c ==

> where u

is a divisors of c. Thisleadstoa + b =c¢c +
2 c? 2 c? )2
u“+c+—5=1u +2c+—2=(u+—) ,and
u u u

so a+ b is a square.

5) Find the number of pairs (%, y) of integers
for which 2xy — 5x + y = 55.

Sol.: We need to find all pairs (%, y) of integers
such that 2xy — 5x + y = 55. Write the

equation as y(2x + 1) = 5x + 55,0ry =
5x+55
2x+1°

1 is a divisor of 5x + 55. Since 5x +55=
2(2x + 1) + (x + 53), it further follows that
2x + lis a divisor of x +53 and therefore
also of 2(x+53) = 2x +106. Since 2x +106=
(2x + 1) + 105, this means that 2x +1 isa
divisors of 105.

From this equation it follows that 2x +

Next, since 105 = 3 X 5 X 7, the divisors of
105 are +1,+3,+5,+7,+15,+35,and + 105.
Since 2x +1 may assume any of these values,
the possible values of x are

0,-1,1,-2,2,-3,3,—4,7,-8,10,—11,17,—-18,52 and —

53. The values of y are readily found from the
(5x+55)
(2x+1)

following pairs (%, y), that solve the given

and we obtain the

relation y =

equation
(=53,2),(-18,1),(-11,0), (-8,-1),(—4,-5),

(=3,-8),(—=2,-15),(—-1,-50),(0,55),
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(1,20),(2,13),
(3,10),(7,6),(10,5),(17,4)and (52,3)
or sixteen pairs in all.

6) Nisa 50 digit number (in base -10). All
digits except the 26t (from the left) are 1.
Given that N is divisible by 13, find its 26t
digit.

Sol.: Let x be the 26t digit of N. In base —10.

N =
11111111 ...... 1111 x 11111111 ......

1111

showing that v/2 is not rational), that ¢ is not
rational; that is, it does not equal the ratio of
two non-zero integers. This has the following
implication. If c and d are integers such that
c¢ +d = 0, then c and are both 0. For if c¢p +d

= 0 and c # 0 then we have ¢ = —%,a

rationed number. Since this can’t be, we must
have c = 0; but this forces d to be 0 too.

By definition, substituting 0 for x in x%—x—
1 yields 0, Since ax'” + bx'® + 1 is a multiple
of x2 — x + 1, substituting ¢ for x in ax'” +

bx'® + 1 must yield 0; thatis a ¢17 + bp® +

25 ones 24 ones

We now apply the ‘alternating 3-digit sum’
testing divisibility by 13. Recalling that the
sum has to be computed starting from the
right. We computer the All sumas A + 11x —
B + 11, where

A= 111-111+.--111 B
8 blocks
=111 -111+--+111
7 blocks

Clearly A= 0and B = 111. So, the All sum is
11x — 100 or 1x, which obviously is divisible
by 13 only for x = 3.

Hence, the 26t digit of N is 3.

7) Find integers a,bsuchthatx? —x — 1isa
divisor of the polynomial ax!” + bx1® + 1

Sol.: This is a difficult problem, and its
solution should be studied with great care. A
few new ideas are used in the analysis, which
were not discussed in the earlier chapters.

Consider the equation x> — x — 1 = 0. It has

two solutions of which one is the number ¢

VE+1 _
==
1.6180339 ............. It can be shown (by

arguments similar to those used earlier, in

(the ‘golden ratio”) given by ¢p =

1 = 0. Since the result of substituting ¢ in
x% — x — lyields 0, we must have ¢p2 = ¢ +
1. This relation allows us to express all
powers of ¢ in the form c¢ +d where c and d
are integers. For example, ¢3 = ¢ + ¢2 =
dpx(p+1)= ¢p?+ ¢ =2¢+1,the
relation, ¢ = ¢+ I being used repeatedly.
Similarly, p* = ¢ X p3 = px 2¢p +1) =
2¢2 + ¢ = 3¢ + 2. In general, if we have
expressed ¢™ ! in the form c¢+d, then, we
have ¢ = ¢ x " 1 = p X (cp +d) =
cp>+dp=clp+1)+dp=(c+d)p+c

Since we have already expressed ¢* in the
stated form, We may now do the same for any
higher power of ¢ . We display below some of
the results of these computations,

$°=50+3, ¢$°=8¢p+5,
¢’ =13¢p+8,  ¢®=21¢+
13, ...

$15 = 610¢ + 377,

P16 =987¢ + 610, @17 =

1597¢ + 987,

As already noted that if c and d are integers,
such that c¢p +d = 0, then we have c =0 and d
= 0. Since a and b are integers, so are

191
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1597, + 987, and 987, + 610, +
1 and thus we deduce that

1597, + 987, = 0,987, + 610, =
-1

This is a pair of simultaneously equations in a
and b, and it is easily solved (by the usual
elimination technique) we obtain a =987, b
= -1597. We thus obtain the required answer
and we see that there is just one pair of
integers (a, b) such thatx? —x — lisa
divisors of ax'” + bx® + 1; namely (a, b) =
(987,-1597).

8) Find all prime numbers P such that the
number P? + 11 has exactly 6 divisors.

Sol.: We first note that the choice p =2 does
not workas 22+ 11 = 15 =3 x 5 has 4 and
not 6 divisors. So P must be an odd prime,
implying that P? + 11 is even and therefore
contains the prime 2 as a factor.

We know now use the formula for d(n), the
divisor function. Since 6 = 3 X 2, there are
precisely two categories of number with 6
divisors, those of the kind q° (with q prime)
and those of the kind g?r(with g, r unequal
primes). So, if P2 + 11 has 6 divisors, then
P2 +11 = q° or q?r where q, r are primes, q
# r. The 1st case is quickly ruled out, our
earlier observation tells us that q = 2, but this
does not work, as there is no prime P with

P2 +11= 25

Now we shall consider P? + 11 = g*r.
Observe that P = 3 works; for 3% + 11 = 20 =
22 x 5, which has 6 divisors. We need to only
consider the case when P>3. Since P is prime,
it is indivisible by 3, so p =41, which means
that p2 = 1 (mod 3) and therefore that P? +
11 = 0 (mod 3) so, 3 is a divisor of P? + 11.
This means that g, r are 2, 3 in some order.
However, neither possibility works; for
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neither 223 = 12 nor 322 = 12 is the form
P2 + 11 for any time P.

9) Find the positive integer n for which the
following holds if its divisors are listed in
increasing order as
dy d, ds, .., withd; =1thenn =
di3 +dys +dysand (ds +1)3 = dqig +
1

Sol.: An impossible problem? Not quite; Let

n n n .
a=-—,b =—and c = —. Thensince d;; +
d13 d14— d15

d14 + d15 =nand d13 < d14 < d15, we
deduce thata > b > c,and%+%+%= 1.

In this equation we musthavec > 1.(If ¢ =

1,the left side would exceedl.) If c = 3,

thena>b>3,andl+l+l<l+l+l= 1;
a b ¢ 3 3 3

the above equation could never hold good so

we must have ¢>3, which implies that ¢ = 2

1

and therefore that a>b>2 and é + % =3 Next,

suppose that b = 4. Then a >4 and % + % <
1,1 1 o111

sti=3 the equation —t, =3 could never
hold good so, b<4, which means that b= 3.
Since % + % = % We get a = 6. So the values of

a, b, c are now all known using these values
n

we see thatd3 = %, diy = g and d;5 = .

Three deductions now follows:

(a) nis divisible by 6, so %%

(b) asn cannot have a proper divisor
greater than g (this is true for any n),
there can be only divisor after d5,
namely n itself; implying that n has
exactly 16 divisors, with d,¢ = n;

(0 g + 1is a cube (its cube rootis ds + 1)

Next, suppose that 5 is a divisor of n. Then,
depending upon whether n is divisible by 4 or
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not, the first five divisors of n are eitherl, 2, 3,
4,50r1,2,3,5,6.S0eitherds = 5o0rds = 6.
The first possibility leads to g +1=

(5 + 1)3 = 216 or n = 430. while the second
leasts to~ + 1= (6 + 1)* = 343 or n = 684.

But 430 is not divisible by 6 (whearas, it is
already know that %) and 684 is not divisible

by 5. This contradictory state of affairs tells
us that n does not have 5 as a prime factor.
Since 16 has following five factorization; 16
=8X2=4X4=4X2X2=2X2X2X2,
there are five classes of numbers with 16
divisors; those of the kinds p'°,p” X q,p3 X
q3,p3 X qgXrandp x qxrxswherep,q,T,
s are distinct primes, each greater than 5. We
shall now consider each of these cases in turn.

We already know that n is divisible by the
primes 2 and 3, so the possibility n = p*° is
ruled out.

Ifn = p’ x q.then we must haven = 27 X
3=3840rn= 37 x2=4374;whileif n =
p3 x q3,then we must haven = 23 x33 =
216. In one of these three cases is g +1a

cube. So, this possibility too is ruled out.

If p X qXrXs,then,asearlier,2,3€{p,q,rT,
s}. So, n is of the form 6pq where p, q are
distinct primes, say with 5 < pq. The 16
divisors of n are in this case 1, 2, 3, 6,

P(= ds), .., pq(= di3), 2pq(dya,3pq =
dys), 6pq. The relation % +1= (ds+1)3
reducesto3pg+1= (p+

1)3, which yeilds 3p = p? + 3p + 3. Since 3
is a divisor of each of the quantities 3q, 3p
and 3, we must have ;—2, which is absurd as p
is a prime number greater than 5. So this

possibilities is also ruled out.

Ifn= p3xqxr,then2,3 € {p,q,r},sonis
one of the following forms: 24p, 54p, 6p3,
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where p is a prime number greater than 5.
Each of these cases must now be considered.
In each case, the first four divisors of n are 1,
2,3, 6. We quickly ascertain that p = 7 does
not yield a solution because none of the
numbers 12 X7+ 1=85,27Xx7+1=
190,3 x 73 + 1 = 1030 is a cube. Therefore,
p> 7, which in facts means thatp > 11. If n =
24p then the next divisor after 6 is d5 = 8,
yieldingZ+ 1= (8+1)* =729,0rn =
1456, but this cannot be, as 24 is not even a
divisor of 1456.

If n = 54p then the next divisor after 6 is

ds9, yeilding g+ 1=09+1)3=

1000,0r n = 1998 = 54 x 37. Therefore p =
37. Does this fit the given condition the 16
divisors of 1998 are 1, 2, 3, 6,9, 18, 27, 37, 54,
74,111, 222,333, 666,999 and 1998,
therefore ds = 9,d;3 = 333,d,, = 999. The
conditions do indeed hold good!

Finally, of n = 6p3,withp > 11,thends = p.
So we obtain the equation 3p3 +

1(p + 1)3,0r 3p3® = p3 + 3p? + 3p. This
implies that %, an absurdity. So there is no

solution to be found here.

Thus there is just one number which fits the
given conditions: n = 1998 = 2 x 33 x 37.

10) Letn be the positive integer with at least
4 divisors and let its divisors is be
dy d; dj3, dy,..., wheredq; <d, <djz <
d, < ---,with d{ = 1.find all possible
values of n it is known thatn = dlz +
d,” +d5* +d,*

Sol.: Obviously d; = 1.If n were odd, then all
its divisors would be old and 1+d,* + d3* +
d42 would be a sum of four old numbers,
therefore even; a contradiction. So n is even,
which means that d, = 2. Let d; and d, be
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denoted by a and b, for the case of writing;

thenn =5 + a? +b2,with%,%, 2<a<h.

Suppose that ais even. Then a = 22 = 4 (the
only possibility) son = 21 + b? and since b
must be old, it is the least odd prime divisor
of n. Since b it follows that b + b?,s0 L2 and

n 21 21
therefore b = 3 or 7, which means thatn = 30
or 70. It may be checked however that neither
30 nor 70 fits given conditions.

So ais odd, and therefore is even, can be 4?

Then it can only be the case thata = 3 and

n =5+ 3% + 42 = 30. But 30 does not fit the
conditions so b > 4, and since b is first even
divisors of after 2, it must happen that b = 2a.
So,n= 5+a?+ (2a)2orn=>5+ (1+a?).
Since % we must have % + (1 + a?).Since a
and 1+a? have no factors in common, we
conclude that% ~a=>5,forcingn =5 X 26 =
130. And this does fit the given conditions:
The first four divisors of 130 are 1, 2, 5, 10
and indeed 130 = 12 + 22 + 52 + 10%. So
there is precisely one number which satisfies
the given conditions.

11) Let p > 2 be a prime suppose, the sum 1 +
1,1 1 Ap
gzt ot Ebe denoted byB—pwhere
Ap and Bp are co-prime positive integers.
For example, when p = 5, we get the sum
%,so As = 25,B; =12 and whenp =

7381
2520’

11 we get the sum
7381, B11 =

2520 observe thati and g. Show
As A1

SO A11 =

that Ai is always hold.
p

Sol.: Since P — 1 is an even number, we pay
pair the numbers 1, 2, 3, ..., P -1 thus;

{1,p —1},{2,p — 2} ......., the sum of the
numbers in each pair being P. Now observe
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p 1 1 P
— 7 — Y = a
p-1'2  p-2 2(p-2)
more generally, foranyi(l1 <i<p—1)

that 1 + 1= nd
1 p-1

2+ =P _sothesum=+2+ -+
i p-i i(p-i) 1 2

may be written in the from ﬁ +

1
-1
_|_

_r
2(p-2)

P . With@ fractions in all, each

o3
with a numerator p. The 1cm of the

denominators of these fraction is not divisible
by p, as the numbersp — 1,2(p — 2),3(p —
3), ..., are not divisible by p(each is a product
of number less than p, therefore not divisible
by p). So the p in the numerator remains-it
does not get cancelled away with anything in
the denominator. It follows that the
numerator of sum contains a factor of p. In
other words, 4, is divisible by p. In fact, for

primes p greater than 3, A, is divisible not
just by p but by p?; but this is lot harder to
prove and we shall not attempt it here. The
reader should refer to the text by Hardy and
wright for a proof.
1,1 1 1

12) If the sum 1 totgt ---+§+mbe

computed and written as %. Where A and

B are positive integer with no common
factors. Show that neither A nor B is
divisible by 5.

Sol.: We start by grouping the denominators
1, 2, .., 100 into different, subsets depending
upon their divisibility by 5. Specifically for k
=0, 1 and 2, let S; be the set of numbers n
between 1 and 100 (both inclusive) for which
power (5, n)= k. That is, so has all the non-
multiple of 5, §; has the multiples of 5 which
are not multiplies of 25, and S, has the
multiplies of 25:

SO =

(1,2,3,4,5,6,7,8, ..., 97,98, 99}
S1

= {5,10, 15,20, 30, ..., 85,90, 95}
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S, = {25,50, 75,100}

Next, let Aj, for k =0, 1, 2 be defined thus:

A —1001(1|+1+1+1+1
0T\ T273 7276
+ U
99/
A —1001(1+1+1+1
1= ‘\5 15
+1+ +1)
30 95

A, = 100! ( ! —+ ! + ! )

25 50 75 100
(The bracketed expressions on the right are,
respectively the sums of the reciprocals of the
of the numbers in sy, s; and s;) obviously,

Ay, A4, A, are integers (multiplication by 100!

“clears the function”) and - 001

Now observe that 4, = 100: (1 + - + + )

2p implying that power (5 A,)= power (5,

100") since power (5, 100!) = [@] [100]

20 + 4 = 24, we deduce that power (5, 4;) =
24.

Next, let us consider A;. We shall make
repeated use of the following readily-verified
identity

1 4 1 N 1
5n+1 5n+4+2 5n+3
1
+
S5n+4

3 502n+ 1)(5n%2 +5n+1)
T 5n+1)Gn+2)(5n+3)(5n+ 4)

Observe that the denominator on the right is
indivisible by 5, as is the quantity 512 + 5n +
1. So, if the sum on the left is written as %

where a, b are coprime, then b is indivisible
by 5, and power (5, a) is at least 2(by virtue
of the factor of 50). Now rewrite the
expression for A; as
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100! (1+1+1+1)+
5 1\172 4

1 1 1 1

(6 7+ 15" 1)
The dots represent two more bracketed
expressions (there are four such expression
in all). Each bracketed expression on the right
yields a fraction with a numerator which is a
multiple of 25. So it follows that, power (5,
Ay) = 24 — 1+ 2 = 25. When the same

argument is applied to the defining
expression for Ay, it yields the following sum:

100![(1 += ! +1+1)
1 2 3 4
1 1 1 1

* (96+¥+9_8+99)]
And as each bracketed expression on the
right yields a fraction with denominator
invisible by 5 and a numerator which is a
multiple of 25, we have power (5,4,) = 24 +
2 = 26. Summarizing our finding, we have
power (5,4,) = 26,

Power (5,4,) == 25,
Power (5,4,) = 24

From which it follows that power
(S,AO + A1 + Az) = 24,

Finally using the fact that power (5, 100!) =

. . A

24, we deduce that in the fraction 5=

Ap+A;+A,
100!

divisible by the same power of 5. This means

that when common factors are cancelled
away, 5 is not present as a factor in either the
numerator or denominator; that is both A and
B are indivisible by 5.

the numerator and denominator are

13) Show that if the positive integer n is such
that 2n 41 and 3n +1 are both squares,

40
then —.
n
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Sol.: Let 2x + 1 = x? and 3x + 1 = y? where

x and y are n for which these equations holds
are shown in the following table:

x 1 9 89 881

y 1 11 109 1079 .......

n 0 40 3960 388080.........

This table is full of tantalizing patterns!

We need to so that n is a multiple of 40. Since

(-1 L .
n=-— this is the same as showing that

x2 — 1 is a multiple of 80. So, it suffices to
show the following if x, y are integers such
that 3x? — 2y? = 1,then x?> — 1 (mod 80).

To show this, it is enough to show that x? =
1(mod 5)and x? = 1 (mod 16); for if% -

1 and also 1—§ — 1then certainlys—g -1.
X X

First we note that x must be odd; for 3x2 =
1+ 2y2, an odd number. Next, note that since
(+1) = 1(mod 5)and(+2) = 4 mod, all
squares are congruent to 0, 1 or 4 (mod 5);
and since (+3)? = (+5)? = 9 (mod 16) all
odd suppose that x2 = 0 (mod 5); then 3x2 —
1=1,

~2y% = —1,s0 y? = 2 (mod 5); but this is
not possible. The possibility x? = 4 (mod 5)
is ruled out similarly it leads to y? = 3 (mod
5). Therefore, x? = 1 (mod 5). Next, suppose
that x2 = 9 (mod 16); then 3x2 — 1 = 10
(mod 16) therefore 2y? = 10, leading to y? =
5 (mod 16) or y? = 13 (mod 16). But both
these are impossible! All odd squares are
congruentto 1 or 9 (mod 16)

Therefore, x? = 1 (mod 16)

Since x? = 1 (mod 5) and x? = 1 (mod 16), it
follows that x? = 1 (mod 80), and therefore

that 22,
n

14) Let T be the set of all triplets (a, b, c) of
integerssuchthat1 <a < b < ¢ < 6.For
each triplet (a, b, c) in T, take the number
ax b X c and odd all these nmubers
corresponding to all the triplets in T. Show
that this sum is divisible by 7.

Sol.: If (a, b, ¢) is a valid triplet then (7 —
c,7—Db,7 —a)isalsoavalid tripleas 1 <
(7—¢c)<(7—b) <(7—a) <6. Note
(7 — b) + b etc.

Let S = Y 1<q<p<c<6(@ b, ) then by the above

28 = [(a,b,c)
1<asbsc<6
+ (7 —-a)(7-b)(7
—c)]

In the R. H. S. every term is divisible by 7. i.e.

7 7
— and hence, -
2s S

15) A sequences of numbers a,,n — 1,2, .... is
defined as follows: a; =
iand foreachn = 2,a, =

2n-3
(Z—n) a,_1 show that Y}_; a; <

1foralln = 1.
Sol.: Given: a; = % forn=>2

2k -3

So,a, = T

ap_q fork = 2.

or 2kq, = (2k —3)ax_4
= 2kg,
— 2k -3)ay_, =0

== Zkak - Z(k - 1)ak_1 —Aag_1 = 0

= 2kq, — 2(k — Day_,
= _ak—l fee wes osws wmn s (1)
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Now adding up Eq. (1) fromk=2to k= (n
+1), we have

4'(12 — 2(11 = _al\
6a3 - Zaz = —Qa, L
8a4 —6a3 = —az (2)

2na, —2(n — Da,,_4
= —a,_1,2(n
+ 1a,yq1 — 2na,

= —a, summing, Eq. (2),we get,2(n
+ a1 — 2a4

Zal - 2(7’1 + 1)an+1
1-2n+ a4

(1 3)1 1 1 1
. = —_—— )= X ===
42 4)2°°274" 3
(1-3)z
= — —_ )=
3 6)8
1 1 1 3 .
=oXs= 14 an.(l—ﬁ)an_1 is

positive as (1 - %) foralln>2 is

positive and a4, a,, ds, ... ... .... are all
positive. Since each

a; is a product of (1 -
23) a;_1 and a; > 0 implies that a, >
i

0.... a;_1 > 0 and hence,

Zak =1-2n+1ay, <1
k=1

w2n+ a1 >0
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16) Prove thatn = %{(17 + 12\/§)m +

(17 - 12\/7)"1} + 6 is an integer for all n

€ N and hence, show that both
(n — 1)(2n — 1) are perfect squares for
allneN.

Sol.: As is problem 73, the terms containing
/2 vanishes in the expansion of (17 +

12\/7)m + (17 - 12\/7)m and integral terms
are all multiplies of 8 and hence, n is an

integers, (proveit) n —1 = % X [(17 +
12v2)" + (17 - 12v2)" + 6 - 8] =1
[(17 +12v2)" + (17 - 12v2)" - 2]

comparing the above expansion from the
result of problem 71. We get,

174+ 12V2 = 3+ 2v2)%,17 — 12V2
= (3 — 2v2)? again both (17
+12v2)(17 — 12v2)and (3
+2v2)(3 — 2v2)are equal to 1.

1
so,  5x|(17+12v2)"

+(17-12v2)" - 2|
=1x{[G+2v2)" ]+
[(3—2v2)"?| -2 x (3 +2V2)(3 -
2v2)}

_1 |G+ 22" +(3-2v2)"
- 8 2V2

and2n—1 = % X [(17 + 12\/7)m +
(17 - 12v2)" + 6 — 4

= 2x [(17 +12v2)" + (17 -
12v2)" + 2]
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= [(3+2ﬁ)m;(3_2ﬁ)m and hence the {(1 + \/z)n -(1- \/f)n}z

result show that (3 + 2\/7)"1 - 4

(3 _ Zﬁ)m and (3+2ﬁ)m:(3—2ﬁ)m Are consecutive integers. For any n,

are and so W is also an (1 + \/E)n - (1 - \/E)n and (1 + \/E)n + (1 — \/E)n
integer and hence, their sum is also an 2 2

integer. Thus, Are integers (prove) and hence

~[(7 +12v2)" + (17 - 12v2)" - 14+v2)" - (1-v2)")

2] is a square integer. To show that { 2 }

Exp. (1) can be written as %m(m +1) f(+ \/f)n -(1- \/f)n ’

consider the Exp. (2) % X - { 4 }

[(17 +12v2)" + (17 - 12v2)" - 2]
and {
2

(1+v2)" - (1~ ﬁ)”}z

) {(1 sk e ﬁ)nr {(1 * ﬁ)”z;zu . ﬁ)“}z

_ {(1 ) (1 m”}z

N

are integers. Now

_ {(1 +v2)" - (1- \/Z)”}

4

[{(uﬁ)”—(l—m"}z]

2

4

{(A+v2)" +(1- ﬁ)n}zl
4

A +v2) "+ (1-v2)" -2
a 4

For all n, we shall show that

_(B+2v2)" +(3-2v2) -2
S ;

(2"} e +a-a)') qE)
4 4
are consecutive integers clearly, for n n 2
=1, we get and similarly, (1++2) ; (1=v2)
n ny2
(t+v2)' -(1-v2)"} s n n
2 =2 _(3+2v2) +(3-2v2) -2 @
{(A+v2)" +(1- \/i)n}z *
=2and 2 = From Exp (3) and (4), we find that
4
=2 = land hence forn =1 {(1+\/§)n+(1—\/§)n}
an

(A+vD)" +(1-vD)'} *
4

and
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(A+v2)" - (1-v2)"}

4

k-2

. 2 2k+2
are integers of the formT and

1and % (k + 1) and hence, they differ
by (k+1) -5 (k—1) =1.

So —>< {17 +12v2)"
- (17 -12v2)" - 2}

_L1 {(1 +v2) - (1 _ﬁ)n}z
2

4

{(1+\/_) +(1- x/f)n}z

RIS NS Y
2 2 2
1)m or equivalently ) and

hence, the result.

Note: This [ (17 + 12v2)" +
(17 - 12\/§)n - 2] gives you an

infinite family of square and
triangular numbers.

17) Show that for f(m) = %{(3 +

2\/E)2m+1 n (3 _ 2\/E)2m+1 _
6} both f ;,y + 1 and 2f i,y + 1 are

perfect squares for all ne N by showing
that f(m) is an integer.

Sol.: First let us show that the expression

Fim) = %[(3 +2v2)"
+(3- 2\/_)2m+1 ]
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or —(k—

form= 1 [(3 + 2\/—)2m+1

+(3- 2\/_)2"1+1 ]

=%x[2x3cox33+2x362><31
x (2v2)" - 6

——><[54+144—6]=%><[192]=

24 and hence, is an integer. For any

m>1 let us prove that the expression,

fan+1)=2[(3+ 2v2)" 4
(3 — Zx/f)szr1 - 6] is an integer.

Expanding and cancelling the terms,
we get

fm+1) = % X [(3 +2v2) "
n (3 _ 2\/§)2m+1 _

X [32m+1 +2m+
1¢,.35m1(2v2) + 2m +

.32’"‘3.(2\/_)4 +ot
2m +1¢,.3(2v2)"" - 3]

=1x [2m + 1,32 (2v2)" +
2m+ 1¢,.32m73, (2\/5)4 +ot
2m + 1g,,.3(2v2) " + 37+ - 3]

All the terms in the above expression

32m+1 _ 3 are multiplies of 4,

except
as the even power of (2\/2) isa
multiple of 4. 32M*1 — 3 = 3[9™ — 1]

is also multiple of 4.

Now, f(m) + 1 =%>< [(3+
2\/§)2m+1 n (3 _ 2\/§)2m+1 _ 6] n 1

d
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2m+1 2m+1 2m+1
- % X [(3 + 2\/?) e (3 - Note that (1+2) zz/él_ﬁ) is an
Zx/f)zm+1 -6+ 8] integer, as all the left over terms
contain 2v/2 as a factor in the
- % % [(3 + 2\/5)2"”1 +(3- numerator.
2m+1
2v2) + 2] Now,2f(m) +1 = i X [(3 +
2m+1 2m+1
Now,3 +2vZ = (1++2)",3 - VD) "4 (3-22) T —6f 1
2
2V2= (1-v2) =ix[(3+2\/§)2m+1+(3—
50,% X [(3 + zﬁ)zmﬂ + 2\/7)2"1+1 - 2] Since n is shown. Now,
(3 _ 2\/2)2"”1 n 2] (2n +1) can be written as
2m+1y2
R -
8 2
Jn2mt1 {(1 _ ﬁ)2m+1} _ 2]
(-2} +2]
2m+1y2
8 2
2mi1y2 1-v2)"" ) +2x{(1+
(0-2"") +]
V31 -2
2
=1x [{(1 +v2) " 4 ,
2m+1 2m+1
2m+1)2 _ (1+\/§) +(1_‘/§)
{(1-v2™} - 2(-1)] 2
1y [{(1 n \/E)Zm’fl}z n By a similar reasoning, the expression
8
2 2m+1 2m+1
{(1 - ﬁ)zmﬂ} —2X (1 + (1+2) :(1_ﬁ) is an integer.
ﬁ)zmﬂ(l _ \/E)Zm’fl] Hence, the result.

Since (1 + ﬁ)zmﬂ(l — \/E)zm+1

18) Suppose f is a function on the positive

_ [(1 n \/E) (1- \/E)]Zmﬂ in.tegers, which.takes integ.ers (ie.f: N-Z)
with the following properties
= (-1)2mtl = 1 @ fz2)=2, ®) fann) = fFan)-fm)
© f(m) > f(n) if m > n. Find
So the given expression is equal to £(1983).
(1+ \/f)szr1 -(1- \/7)2m+1 i Sol: foy = 2, f) = fe) = fl2)- fo) = 2.2 =
2V2 4,
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fie) = fea) = f2)-fay = 24 = 8. Thus we 19) Letasequence xq, X3 + X3, ... .... of

infer f(,4) = 2" thatlet us use M. for complex numbers de defined by x; =

proving f ;1) = 2 by hypothesis......... (D 0,Xns1 = Xp_1” forn > 1 where i’ =
—1. Find the distance of

Assume f(2™") = 2™ .. (2) X2000 fTOM X1997 in the complex plane.

@MY = f£(2.2™) = fofem = Sol.: Leta sequence x; = 0,x, = 0% — i,

2.2 i (3)

x3=(—D)*—i=-1-i=—(1+1),
By hypothesis and Eq. (1) and (2), we need to

— [_ N12 s 9 s
find f(n) for all n. x, = [-FA+DP-i=2i-i=i
(V2 = 1=
Let us see that happens for xs = () —i=—-1-i= x3,
f(l);f(3) at fiTSt f(l) < f(Z)- Xe = (_1 _ i)z
Now, f2) = faxz) = fay X fy = fn =1 —i=1i= x4 % =x, and hence x, =

Xsand soonx,, =iforn=1,%,41 =

imilarl < < ,2 < <4
stmilarly f) < fz) < f f& —1—1ix3000 =1=1(0,1) inthe complex

But the only integer lying between 2 and 4 is plane, x;997 = (=1,~i) = (=1, ~1) in the
3. Thus f(3) = 3. So, again we guess that f,,) = complex plane.
n, for all n. Let us prove by using the strong

So the distance between X2000 and X1997 is
rinciple of mathematical induction. 5 =5 =

Let f(ny = n foralln <a, fixed m € N.

20) Show that F(P;** X P,*?) = F(P{*) X

Now, we should prove that f,;;y = m.If m is
o F(P,™%)

an even integer, then f(;;,) = 2k, and k < m.

Sol.: Any divisors of P;“tis P,"*,where 0 <
So, fmy = fey = fo) X fay = 2%k =2k = ! !

r<a;
m. So all even m, f;) = m. If mis an odd
integer, let m = 2k +1, and fox) < fraks1) < F(Py™) = ¥rt T (P) = Yeto(r+ 13 =
fak+2) 2k < fak+1) < fk+2) sum of the cubes of the first a; + 1 natural
numbers,
(Because the function f(;,) = n s true for all
even integer n). But only integer lying _ (e + D)(ay +2) ’
between 2k and 2k + 2 is 2k + 1,(since the 2
range of f is integer) X
. (a1 + D(a; +2)
Thus, fes1) = 2k + 1,0 €. fmy = m, in the similarly, F(P,**) = >
case of odd m also. Thus, f(n) =n, for all ne
N_ F(Plal.Pzaz) = z T3(P1T.PZS)
0sr=a,
'-'f(1983) = 1983 Osrsa;
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a; az

- ;;(r +1)3 (: +1)3
Y
r=0

FD3 D (s +1)?
s=0

< (ay + (@ + 2T
= rZO(r +1)3 [ >

F(PZ“Z).Z(r +1)°
=0

_ F(p,%) [(a1 + 1)2(a2 + 2)]3

= F(P,%*?) F(P,“?) . Hence proved.

21)If n; and n, are two numbers, such that
the sum of all the divisors of n; other than
n, is equal to sum of all the divisors of n,
other than n,, then the pair (n4,n,) is
called an anticable number pair. Given a =
3.2™ — 1, primes numbers, then shows
that (2™ab, 2™¢) is an anticable pair.

Sol: IfN = P,%*1,P,%2, ..., B,%", then sum of

the divisors N is given by the formula.

P16Z1+1 _ 1 P2a2+1 _ 1
d(N) = X
Z () P, —1 P,—1

Pnan+1 _ 1

B, —1

X e

So the sum of the divisors of 2" a.b =

a?-1p%?

™1 —1) x P @™ -1 (a+
)b +1)

— (2n+1 _ 1)(9 (2211—1)

But,2™ ab = 2™[9.22""1 —9 21 4
1](on simplification)
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The sum of the divisors of 2™ ab other than
2"a.bis

9.22771(2+1 — 1) — 27(9.22%"1 — 9,21 4
iy

=9.23" —9,22n"1 _ 9,23n-1 4 9 p2n-1 _
2" =9,23n"1 _ gn

=2"(9.22""1 - 1) = 2".c.

Thus the sum of the divisors of 2". ab other
than itself is 2. c.

Now, sum of the divisors of 2"¢ other than

2n+l_q c2-1 _ Zn c = (2n+1 _
c+1 '
D(c+1)—-2"c¢

itself is X

= (21 - 1)9.22n~1 — 2n(9,22n-1 _ 1)
=9.,23" -9, 2214 )
= 2M[9.22""1 — 9,271 4 1]
= 2" ab

i.e. the sum of the divisors of 2™ ¢ other than
2™c equal to 2™ ab.

22)Ifn = P4, P5, P; and Py, P; and P; are
distinct prime numbers. If }a d =

3N or Oc(N) = 3N, then show that
N 1 _
i=1g; =
Sol.: The divisors of N are
1, Py, Py, P53, Py Py, P; P3, P, P3, P, P, P5. It is given
that

1+ P, + Py +Ps+ PP, + PPy +
P2P3+P1P2P3:3N

1 1 1 1 1 1 1
NOW'izla=I+P_1+P_2+P_3+P1P2+P1P3
1 1
+P2P3 +P1P2P3
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_ PiP,P3; + P,P; + PP+ PP, +P; +P, + P +1

Py P Ps

But the numerator is the sum of the divisors
of N.

i.e.z d = 3N = 3P, P,P; and hence,
d

n

1 3PP,P;
di  P,P,P;

N

i=1

23) Determine with proof all the arithmetic
program with integer terms with the
property that for each positive integer n,
the sum of the first n terms is a perfect

square.

Sol.: When n = 1, the first term itself is a
perfect square

Let it be k2. The sum to n terms of the Ap is

S, ==[2a+ (n —1)d],where a = p?

NS

Since S, is a perfect square for every n, the
nth term 2a + (n — 1)d > 0, for every n and
hence d>0.

If nis an odd prime, say P, then

S, = g[Za +(n—1)d]

Since S, is a perfect square P[2a+ (p — 1)d]
. P
L T2a—a)+pal

B tP P
v pd'so (2a—d)

24) All two digit numbers from 10 to 99 are
written consecutively, that is N= 101112

2
Show that % From which other two digit

number you should start so that N is
divisible by (i) 3 and (ii) 3.

Sol.: N is divisible by 9, if the digit sum is
divisible by 9. The digit sum of N:

The number of 1° occurring in the digits from
10 to 19 = 11 and from 20 to 99 = 8

So, that of ones is 114+8= 19. Similarly,
No of 25,35, ....9 are all equal to 19.

So, sum of all digits = 19(1 + 2 +3 + - +
9) = 19010 =19 x 5% 9 = 855 and hence,
1011....... 99 is divisible by 9.

When the numbers start from 12, the sum of
the digits becomes 855 — 3 = 852 (since 10,
11 account for the digital sum 3) and, hence is
divisible by 3

(a) For divisibility by 3, it could start
from 13,15, 16, 18, 19, 21, 22, 24,

(b) For divisibility by 32 = 9 the
numbers may start from any of 18,
19,27, 28,36,37 .........

25) When the numbers from 1 to n are written
in decimal notation, it is found that the
total number of digit in writing all these in
1998, find n.

This is possible for all prime p, if and only if 2a = go].: To write the first nine single digit

d = 0or 2a =die.d=2k?

So, the required A.p is k?,3k?2,5k?, ..., (2n —
1)k? where k is any natural number.

number from 1 to 9 both inclusion the no. of
digit used =9

To write the two digits number from 10 to 99,
no of digit used = (99 — 9) x 2 = 180.
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So, the number of digit used to write numbers

from 1 to 99 is 189.

Total number of digit used in writing up to n
is 1998.

The total no. of all three digits numbers =
(999 x 99) x 3 = 2700 > 1998. So, n should
be less than 999.

No. of digits used to write the three digit
numbers up to N is 1998 — 189 = 1809.

In each 3 digit number, we use three digits.

So, the number of three digits number in N =

% = 603
3

So, therefore N =703 —1 =702

Since up to 702, there are 603, three digit
numbers 90 two digit numbers and 9 one
digit numbers.

26) Find all integers values of a such that
quadratic expressions (x + a)(x +
1991) + 1 can be factored as (x + b) (x +
¢) where b and c are integers.

Sol.: (x + a)(x + 1991)+= (x + b)(x + ¢)

= 19914+ a=b+cand 1991a+1
= bc

“(b=c)?=(b+c)*—4bc
= (1991 + 9)?
— 4(1991a + 1)
= (1991 + a)? — 4 x 1991a — 4
= (1991 — a)? — 4

or (1991 —a)?—(b—-c)? =4
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If the difference between two perfect square
is 4, then one of them is 4 and the other is
zero. Therefore, 1991 —a = +2,(b — ¢)? = 0.

=a=1991+2=1993andb —c
=0o0ra=1991-2
=1989 and b
=c.Butb+c=2b
=1991+a
= 1991
+ 1993 or 1991
+1989 = b=c
= 1992 or 1990.

So, the only 2 values of a are 1993 and 1989

27) Find the last two digit in (56789)*!

Sol: 56789 = 89 (mod 100) =
—11 (mod 100)

~ (56789)*° = (—11)** (mod 100)
= (—11)*°
X (—=11)(mod 100)
= (11)*° x (=11)(mod 100)

112 = 21 (mod 100),11* = 21 x

4 (mod 100),116 = 21 x 41 =

61(mod 100),111° = 41 x 61 =

01(mod 100),11* = (01)* =

1(mod 100), (—11)*! = 11%° x

(=11)(mod 100) = 1 x (—11)(mod 100) =
—11 = 89 (mod 100).

That is the last two digits of (56789)*! are 8
and 9 in that order.

28) Prove that [x] + [2x] + [4x] + [8x] +
[16x] + [32x] = 12345 has no solution.

Sol.: 12345 < x4+ 2x + 4x + 8x + 16x +
32x = 63x
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12345
X =

- 195 % whenx = 196, the LH S

of the given equation becomes 12348.

~ 195 % < x < 196. Consider x in the

interval(195 %, 196). The L H S expression of

the given equation= 195+ 0+ 390+ 1 +
780 + 3 + 1560 + 7 + 3120 + 15 + 6240 +
31 = 12342 < 12345.

When x < 195 % the LHS is less than 12342.

=~ For no value of x. The given equality will be
satisfied.

29) Consider the following multiplication in
decimal notation 999 X abc = def 132.
Determine the digits a, b, ¢, d, e, f

Sol.: Since 999 X abc = def 132,
therefore (1000 — 1) X abc = def132.
i.e.abc 000 = def132 + abc

This implies that c =8, b = 6,a = 8, so that
abc = 868

Now, 86800 — 868 = def132.i.e.867132 =
def132,so that def867.

This digits a, b, c,d, e, fare = 8,6, 8,8, 6,7
respectively.

30) Given with justification, a natural number
n for which 3% + 312 + 315 + 3"isa
perfect cube (of an integer).

Sol.:3% 4312 4315 43" = 39(1 + 3% +3° +

3779) = (3%)3(1+3.32 + (32)° + 3777 —
3.3%)%

= (3%)3(1 + 32)3, provided 3"° —
35 =0 = (270)3, Provided 3" °=3°>

i.e, provided n = 14.

31) Two prime’s numbers P4, P, with (P{ <
P,) are called twin primes if they differ by
2.(e.g. 17,19 or 41, 43). Prove that if
P4, P, are twin primes with P, bigger
than 3, then P, + P, is always divisible by
12.

Sol.: Since Py, P, are twin primes with P; < P,
and P; < 3, therefore P;, P; + 1, P, are three
consecutive integers P;, P, are both odd and
neither of them is divisible by 3. Therefore P;
is of the form 6k — 1 and P, is of the form

6k + 1. Therefore P, + P, = 12k.i.e. P, + P,
is a multiple of 12.

32) Determine with proof all the arithmetic
progressions with integer terms with the
property that for each positive integer n,
the sum of the first n terms is a perfectis a
perfect square.

Sol.: Let a be the first term and d the common
difference.

The sum of n terms, S,, say, is given by

Sp = g{Za + (n—1)d}
Since S; (= a) must be a perfect square,
therefore a must be a perfect square, say k2,
where k is an integer. Also since S, isa
perfect square for every n, therefore 2a +
(n — 1)d > 0 for every n. Consequently d
must be a integer.

Let us consider the case when n is an odd
prime, say p.



Challenging Mathematical Problems

Then S, = §{2a + (p — 1)d}

Since S, must be a perfect square, and %,

2

therefore I;—, so that P|{(2a — d) +
P

pd}i.e.P|{2a — d}.

This is possible for all primes P, if and only if
2a—d =0

i.e, ifand only if d = 2k?2. Therefore the A.P. is
k?, 3k? 5k? 7k?, ........

33) How many zeros are there at the end in
the product of the numbers 1, 2, 3, ...,
1994?

Sol.: We are required to find the highest
power of 10 contained in the product 1994!

If P be the highest power of 5 contained in
1994! And q be the highest power of 2
contained in 1994! Then highest power of 10
contained in 1994! = min{p, q}

Since 2 < 5, therefore the highest, power of 5
contained in 1994! Is less than the highest
power of 2 contained in 1994!i.e. p< q
therefore min{p, g} = p. To find p we proceed
as follows: let [x] denote the greatest integer

not exceeding x. Then the highest power of 5

contained in 1994! [s equal to Y3, [1:%]

observe that the above expression is not an

infinite series because [%] =0,
Whenever 5% > 1994.

Therefore, P = [1994] [1(;;34] + [1224] +

+=398+79+15+3 +

[1994

1994]
= 495

Hence the highest power of 10 contained in
1994! = 495.
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34)If a, b, x, y are integer greater than 1, such
that a and b have no common factor except
1and x® = y? showthatx = n?,y = n®
for some integer n greater than 1.

Sol.: Since x® = y?, therefore if a prime, say
p, divides x, then it must divide yb, and
consequently it must divide y as well.
Similarly, if a prime, say q, divide y, then it
must divide x as well. Thus we find that
exactly the same primes must occur in the
prime factorization of x and y.

Letx=Plel Pzez P3a3 .......
y= P % P, P3d3

Then x* = y? = (P, P,%2 ...)% =
(PP )"

= cia= dib,c,a = dyb,... ...

Since a prime to b, therefore it follows that a
divides d; and b divides c; i.e ....,

c; = u;b, which givesd; = uyq,
similarly we have

Ccy = Uyb,d, = u,aq, ..., for some
positive integers uq, U5 .... etc.
Letn =
p* ptz p¥s | thennP =
x,x%=y.

35) Letmy, m,, m3, ..., m,, be are-

arrangement of numbers 1, 2, 3, ..., n. Let
that n is odd. Prove that the product

(my —1)(m, — 2) ...(m,, — n) is an even
integer.

Sol.: Since n is odd, we have n = 2m +1 for

some positive integer m. Out of the integer 1,
2, .., n, there are m+ 1 odd ones namely 1, 3,
, (2m+1) and m even ones, namely 2, 4,
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6, ...2m. Consider the pairs
(ml; 1)1 (mz, 2)1 ey (mn' n)

Since there are m +1 odd integers among
my,m,, ..., m, and only m even integers
among 1, 2, ..., n therefore at least one of the
odd m;'s must be paired with an odd i,
consequently, for some positive integer i,
m; — i must be even, and therefore the
product (m; — 1), (m, — 2), ..., (m,, — n)
must be even.

36) Determine, with proof; all the positive
integers n for which (i) n is not the square

of any integer and (ii) [\/ﬁ]3 divides n?.

Sol.: Suppose [\/ﬁ] = t. Since n is not the
square of any integer, therefore v/n must lie

strictly betweentand t+1ie.t < Vn <t +
1.So that t? <n < (t + 1)2.

By hypothesis (ii), t3 divides n?. This implies
that t2 must divide n?, and consequently t
must divide n. Now t2 + t and t? + 2t are
the only positive integers lying between

t? and (t + 1)? which are multiples of t.
Therefore we must have eithern = t2 +
torn= t%+2t.

Caselin= t’+ 1,t3|n®* = t3|(t* + t)* =
t
(t+1)2

t
:I:t=1=>n—2.

Casell: n = t? + 2t,t3|n? = t3|(t3 +
2t)? =

(t+2)2

t
>-=t=120r4 =n

4
= 3,8 or 24.
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Thus the possible values of n are 2, 3, 8, 24.
By actual verification we find all these values
of n satisfy the given conditions.

Thus n=2, 3,8, 24

37) Determine the largest 3-digit prime factor
of the integer 2000, .-

2000.1999...1001

Sol.:2000¢,,,, = 1.2.3...1000

Every three digit prime is a factor of 1, 2, 3,
., 1000. Also 2000¢, , is an integer. So
every three digit prime occurs in the prime
factors of the denominator at least once. The
greatest three digit prime factor of 2000, .
is the one which occurs once in the
denominator and at least twice in the
numerator.

Therefore it must be less than % x 2000. i.e.

less than 666 and as close to it as possible.
(Because then only will it occur twice in the
numerator and once in the denominator).
Checking the numbers 666, 665, ... for
primality we find that 661 is the first prime in
this sequences, which is the desired answer.

38) Prove that any number N written in base 7
will be even or odd according as the sum
of its digits is even or odd.

Sol.: Let us first observe that for P = 2,

p—1_
(2 > 1) is not an integer. Therefore 2 cannot
satisfy the given condition. Next, let p be a

21"1—1) _

m?, for some odd integer m. It is obvious that

prime of the form 4k +1. Suppose (

m cannot be even. Then 2% — 1 =
(4k + DHm?,

Since every perfect square leaves a remainder
1 when divided by 4, therefore R. H. S. will



Challenging Mathematical Problems

leave a remainder 1 when divided by 4. But
the L. H. S will leave a remainder 3 when
divided by 3. This is not possible. Therefore p
cannot be of the form 4k +1. Let now p be of
the form 4k 4 3. First consider the case p = 3

(i.e. k= 0)in this case (Zp_pl_l) = (23_31_1) =
1

Which is a perfect square. Therefore p = 3 is
one of the primes t that we are looking for.

LetNow P = 4k + 3,withk > 0,2P"1 -1 =
24k+2 __1(22k+1 __1)(22k+1 +_1).

Since 22¥*1 — 1 and 22¥*1 + 1 are relatively
prime, therefore if their product is of from
Pm?, one of them must be Pu? and the other
must be v2, where u and v are relatively
prime, Since 22k+1 _ 1 is of the form 4, +

3 and v? must be of the from 4, + 1,
therefore it follows that 22¥*1 — 1 cannot be
of the form v2. Therefore we must have
22k+1 _ 1 = py2 p2k+1 4 1 = 2,

Now, 22K*1 41 = 2 = 22k+1 =
(v—1)(v+1),sothatv — 1 and v + 1 must
be both powers of 2. Suppose v+ 1 = 2%, v —
1= 2b.So that 2% — 2P = 2.20+b = 2k+1

Now,2¢ -2V =2= 20(20°P -1)=2 =
2P =1

200b _1=1=b=1a=2 ~v—-1=
2,v+1=4,

v2=92%+1 41 =9=k+1=P=7

Therefore the only possibility for P is 7. Since

7-1_
(2 - 1) = 9 which is a perfect square,

therefore 7 is another prime that we are
looking for.

Thus the only primes satisfying the given
condition are 3 & 7.
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39) Each of the positive integers a4, ..., a,, is
less than 1951. The least common multiple
of any two of these is greater than 1951.

Showthatl + -+ 1 < 2.
ay a

n

Sol.: The numbers of integers from 1 to m,
which are multiple of b is [%] From the

assumption, we know that none of the
integers 1, ..., 1951 is simultaneously divisible
by two of the numbers a4, ..., a,,. Hence the
number of integers 1, ..., 1951 divisible by

22| e+ [ This

oneofay,...,a,is [—
1 yUn a, an

1951

number does not exceed 1951. Hence "
1
1951 1951

T+ +21<1951 22 4y
an a; an

n+ 1951 < 2.1951.

<

L 4.+ < 2. This problem was used at
aq an

the MMO 1951. It is due to paul Erdos. The 2
can be replaced by g, but even this is not the

best possible bound.

40) If the positive integers x, y satisfy 2x% +
x = 3y% + y, then show that x — y, 2x +
2y +1,3x + 3y + 1 are perfect square.

Sol.: (a) From 2x2 + x = 3y? +

y,we get x> = x —y + 3x? — 3y? =
(x—y)Bx+3y+1),y>?=x—y+2x*—
2y% = (x —y)(2x + 2y + 1). Since
3(x+y)+1and 2(x + y) + 1 are prime to
each other and x — y = ged(x?,y?) =
ged(x,y)?, the integers3x + 3y + 1 =

b? and 2x + 2y + 1 = a® must also be
squares. This proves (a) (b) with x =

d.b,y =d.a,gcd(a,b) = 1,we get d*> = x —
y From (a) we get 3a® — 2b? = 1 and d? =
db—da=d=b—a,x=((b—-a)by=

(b — a)a. The solutions of 3a? — 2b? = 1 can
be obtained from.
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(V3+v2)"™" = @y +V3+b,VZ by
powering or, simpler, by recurrence . From
ansr t V3 + bn+1\/7 = (an\/§ + bn\/i)(s +
2v/6) we get a,,q = 5a, + 4by, byyq =

6a, + 5b,,a,; = 1,b; = 1. The next solutions
a, =9,b, = 11 yeilds x, = 22,y, = 18.

41) Several different positive integers lie
strictly between two successive square.
Prove that their pair wise products are
also different.

Sol:Letn?<a<b<c<d<(n+1)?%ab=
bc. Thend — a < 2n our aim is to produce a
contradiction to (1).

From ad = bc, we conclude that

alla+d)—(b+c)]=(@—-b)(a—c)>0.
Hence

a+d>b+c.Now(a+d)?—(d—a)=
4ad = 4bc < (b +

c)? .We conclude that (d — a)? >
(a+d)?>—-(b+c)>=(@+d+b+c)(a+

d — b + ¢). Each term of the first factor on the
R. H.S.is larger than n?, and the second is

n? > 1.

Thus we have d — a > 2n, which contradicts

(1).

42)Leta, b, c, d be integers witha > b >c >d
>(0. Suppose that
ac+bd=(b+d+a—-c)(b+
d —a+ c).Prove that ab + cd is
not prime.

Sol.: Three different arguments are presented
hence. The first is the most elementary, using
only number theory and counting arguments,
and a detailed proof is given. The second
arguments uses technical topic, so only a
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sketch of the proof is provided. The third
argument, which only a sketch, is a lovely
hybrid of algebra, number theory and
combinatory. It was discovered by a
Bulgarian contestant who received a special
prize for his creativity.

For any p-element subset A of {1, 2, .......... 2p}
denote the sum of the elements of A by I'(A)

of the (%p) .such subsets,L =

{1,2,...,p}andR={p+1,p +
2, ...,2p}satisfy T (L) =I'(R)= 0 (mod P). For
A#LR.wehave ANL#¢p #ANR

: 2
Portion the (?p) — 2p elements subsets other

than L and R into group of size p as follows.

For any set E of integers, define x @E =

{x + e(mod p): e € E}, where the sums are
positive and no greater than P. Let A be any p-
element subset other than P. Let A be any p-
element subset other than L or R. Define 4; =
ANLand Ar = AN R. (Note that both of
these sets are non empty). Then the group of
P subsets in which A liesis A; U Ay, (1 &
ADVUAR, Q@A) UAR (P—-1D A UAg

(In more sophisticated language, we are
partitioning the subsets into equivalence
classed where two subset A and A’ are in the
same class if and only if A’\NR= An Rand A’
NL is a cyclic permutation of A N L within L.)
This method of grouping subsets has the
following properties.

e Each group contain P distinct subsets,
and each subsets has a different
element sum modulo P. To see this,
assume that (x @A) UAg =
(y © AL) U Ag
This implies thatx @ A, =y D
A;.Let A; have n elements. This we
have a(x @ A;) = a(y @ A,). But this
implies that nx — ny = 0 (mod P),
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which forces x = y because P is prime
and 0<n<p.

e Every subset other than L or R lies in
exactly one group. Assume that two
groups shared the same subset E. In
other words, assume that
E=((x®A,)UAgrand E(y @ B;)Bg.

Since both x @ A; and y® B, are
subsets of L, we have A, = ENR =
Br.Thusx@ A, =y @ B orB, =

(x +y) @ A;. This shows that the
collection of subsets (y@ B;) U
Br,y=0,1,2,....,P — 1 will be the
same as the collection (x @ A;)U
Ag,x=0,1,2, ..., P — 1. It follows that
exactly one subsets A in each group
satisfies d(A) = 0 (mod P), and the
total number of such sub sets is
Pl(5)-2]+2

In fact, we have proved a little bit
more than for any r #0 (mod P), there

are exactlyl [(z—p) - 2]

P 2
Subsets with element sum congruent
to r modulo P.

43) Let p, q, n be positive integers with p +
q < n. Let (xg, X4, ..., X,) be an (n+1)
tuple of integers satisfying the following
conditions.
(a) xo = x, = 0, (b) For each i with
1<i<mn,eitherx; —x;_1 =
Por x; —x;_1 = —q.Show that
there exist indicates i > j with (i, j)
# (0, n) such that x; = x;.
Sol.: Let d be the greatest common factor of p

and g; then the problem with p, q x; replaced
by %, %, g is equivalent to the original problem.
Hence without loss of generality, we may
assume p and q are relatively prime.

210

Let r = p+ g observe that x;,; = x, +

p(mod r). Since —q = p(mod r). By induction,
Xiyx = x; + pr(mod r). In particular, x,, =

Xo +ny, (mod p + q). Since x,, = xo = 0, we
deduce that r divides up. However, by
assumption p is relatively prime to 9 and hence
also to r, and so n = mr for some integer m.
Since n > ris assumed, we have m > 1.

Lets; = Xj4p — x; for1=0,.., (m — 1)r. By the
previous observation, s; is a multiple of r,
Moreover ;11 — §; = (Xipr41 = Xigr) —

(Xi4+1 — x;) < p—q = r and similarly s;;, —
S; > —r.

It suffices to show that s; = 0 for some |, for
then we can take our pair to be (i,i + r).If s, =
0, we are done so assume that sy > 0 (the
argument for sy > 0 is similar). Let s; be the
first non-negative term among s, ..., Stm-1)r =
X, — Xo = 0. Then s; — 1 is negative and s; is
non negative, but both are multipliers of r and
they differ by at most r. This can only occur if
Si_1 = —rands; = 0.

44) For any positive integer n, let d(n) denote
the number of positive divisors of n
(including 1 and n itself). Determine all

ees e d(n)?
positive integers k such that A k for

some n.

Sol.:Letn=P;% ........P.%

Thendy) = (a; + D(az + 1) ....(ar +
1), and

d(n?) = 2a; + 1QRaz + 1) ... .. ... (2a, + 1).
So the a; must be chosen so that

a; +1)2az +1) v Qe + 1) =
K(a; + D(a, + 1) ...(a, + 1)
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Since all (2a; + 1) are odd, this clearly mplies
that k must odd. We know that conversely,
given any odd k, can find a;.

We use a form of induction on k. First, it is true
for k = 1 (take n = 1). Second, we show that if it
is true for k, then it is true for 2™k — 1. That is
sufficient, since any odd number has the form
2™k — 1 for some smaller odd number k. Take
a; = 2™ - Dk —1]fori=0,1,..,m— 1.

Then2a; +1 = 2¥1(2™ — DK —
(2”1 — 1)and

a;+1=2!2™ - 1K - (2" -1).

So the product of the (2a, + 1)'S divided by
the product of the (a* + 1)'S is 2™ (2™ —
1K — (2™ — 1)divided by (2™ —
DK, or m.

k
Thus if we take these a;s together with those
giving k, we get 2™k — 1 which completes the
induction.

45) Find all pairs (n, p) of positive integers,
such that :P is prime; n < 2p; and (p —
1)" + 1 is divisible by nP~1

Sol.: Evidently (1, P) is a solution for every prime
p. Assume n >1 and take g to be the smallest
prime divisor of n. we first show that g = p. Let x
be the smallest positive integer for which

(p — 1)* =1 (mod q). Certainly y exists and
indeed y < q.

Since (p — 1)771 = 1 (mod q). We know that

(p — 1™ = —1(mod q) so x exists also.

Writingn = sy +r,with0 <r <y, we
conclude that (p — 1) = —1(mod q) and
hence x < r < y (r cannot be zero sine 1 is not
-1(mod q))
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Now writen = hx + Kwith0 < k < x.

Then—1= (p—-1"= (-D"(p -
1)*(mod q). h cannot be even. Because then
(p — 1)¥ = —1(mod q), contradicting the
minimality of x. so h is odd and hence
(p—-1DF=1modq)with0 <k <x<y.
This contradicts the minimality of y unless k =0,
son = hx.

Butx<g,sox=1,so0(p—1) = —1(modq)p
and g are primes so q = p as claimed.

So p is the smallest prime divisors of n. We are
also given that x < 2p. so eitherp=n,orp=2,
n = 4. The latter dues not work, so we have
shown that n=p Evidentlyn=p=2andn=p =
3 work. Assume now that p > 3 we show that
there are no solutions of this type.

Expand (p — 1)P + 1 by the binomial theorem,
to get (since (—1)? = —1):

, 1
1+-1+p°—5pl

p(p—Dp -2
- 1)p2 ?
p

The terms of the from p* withi > 3 are
obviously divisible by p3.

Since the binomial co-efficient by are integral.
Hence the sum is P% + (a multiple of P3). So
the sum is not divisible by P3. But forp >

3, PP~ 1 s divisible by p3. So it cannot divide

(p — 1P + 1, and there are no more solutions.

46) Determine whether or not there exists a
positive integer n such that n is divisible by
exactly 2000 different prime numbers, and
2™ + 1 is divisible by n.

Sol.: Note that for a odd b, we have
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292 +1=(*+1)R*b-1)—-2%b—-2) +
-++ 1) and so 2% + 1 is a factor of 292 + 1. It is
sufficient therefore to find m such that (1) m
has only a few distinct prime factors (2) 2™ + 1
has a large number of distinct prime factors (3)
m divides 2™ + 1 (but not m), so that km has
exactly 2000 factors then km still divides 2™ +
1 and hence 2¥™ + 1.

The simplest case is where m has only one
distinct prime factor P, in other words it is a
power of P. But if P is a prime, then p divides
2P — 2, so the only p for which p divides. 2P +
1is 3. So the questions are (1) whether a,, =
2™ + 1 is divisible by m =

3* and (2)a,, has a large number

of distinct prime factor a, ;1 =

a,(2™ —2M+1),wherem = 3" but2™ =
(an-1),So apy1 = an(anz —3an +

3).Now a; = 9, so an induction show that
3™+1 divides a,,, which answer (1) affirmatively.

Also, since a,, is a factor of a,, .1, any prime
dividing a,, also divides a,; 1

Put a, = 3™ bn. Then byy,b, (321 b,* —

3"*2p, + 1)

Now (3%2"*1 b, ? —3"*2p, . 1) > 1, So, it must
have some prime factor p > 1.

But P be 3 or divide b,, since (32"*1 b,? —
3"+2p 1) is a multiple of 3b,, plus 1.50 b,
has at least one prime factor p >3 which does
not divide b,,.s0 b, 41 has at least h distinct
prime factors greater than 3, which answers (2)
affirmatively. But that is all we need we can

take m in the first paragraph above to be 32090,

(1) m has only one distinct prime factor.
(2) 2m*l = 32001p, .o has at least 1999
distinct prime factors other than 3.
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(3) mdivides 2™ + 1. Take k to be a product of
1999 distinct prime factors dividing byg0-
Thenn = k,, is the required number with
exactly 2000 distinct prime factors which
divides 2™ + 1.

47) Let a4, a,, ... be a sequence of integers
with infinitely many negative terms
suppose that for each positive integer n,
the numbers a4, a,, ..., a,, leave n different
remainder on division by n. Prove that
each integer occurs exactly once in the
sequence.

Sol.: Let 4,, = {ay, ..., a,}. Elements of A,, are
distinct because they are distinct modulo n.
Observe that, for a;, a; € Ap, k = |a; — a;| <
n, because, otherwise, a; a € a and A; =

a; mod k. Therefore max 4, — min4, <n.

But A,, consists of n distinct integers. Therefore,
form, = mind,, A4, = {m, my4q, ..., my +
n—1}

There are infinitely many negative and positive
numbers in the sequence, therefore all integers
have to appear in our sequence. This finishes
the proof.

48) Determine all pairs (x, y) of integers such
that 1 + 2% + 22**1 = y2,

Sol.: If (x, y) is a solution then obviously x = 0
and (x, —y) is a solution too. For x = 0, we get
the two solutions (0, 2) and (0, —2)

Now let (x, y) be a solution with x > 0, without
loss of generality confine attention toy > 0. The
equation rewritten as 2¥(1 + 2**1) =

(y —1)(y + 1). Shows that the factors y —

1 and y + 1 are even exactly one of them
divisible by 9. Hence x = 3 and one of these
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factors is divisible by 2*~1 but not by 2*.Soy =
2**1m*e modd, e = +1. Plugging this into

the original equation we obtain.

2°(A+2"*) =" 'm+e)? -1=
22%¥72m? 4+ 2% me or equivalently, 1 + 2¥*1 =
2*2m? + me

Therefore, 1 —em = 2*72(m? —

8) .o coveee . (i) for e = 1 thisyields m? — 8 <
0 i.e. m =1, which fails to satisfy (ii) Fore = -1
equation (ii) gives us.

1+m= 2*2(m?-8)=>2(m? -
8)implying

2m? —m — 17 < 0 hence m < 3; on the other
hand m cannot be 1 by (ii). Because mis odd .
these values indeed satisfy the given equation.
Recall that then y = —23is also good. Thus we
have the complete list of solutions
(x,v):(0,2),(0,—-2),(4,23), (4,—23)

49) Let n be a positive integer and
P4, P,, ..., P, be n prime numbers all
larger than 5. Such that P12 + PZZ + -+
P,2 is divisible by 6. Prove that 6 divides n.

Sol.: Through possible remainders when divided
by6are0,1,2,3,4,5,p; being prime p;?2 will
have to leave only remainder 1 or 5. i.e. p;? is of
the from 6m” + 1: so should be pi, Hence p;?
is of the form 6m” + 1:s0 p;2 + -+ p, 2 is
divisible by 6 only when n is divisible by 6.

50) Find all pairs (m, n) of (+) integers such that

— is ve integer.
2mn?-n3+1 (+) 9

Sol.: The denominatoris 2mn? —n3 +1 =
n?2m-n)+1,s02m=n>0.Ifn=1,
then m must be even, in other words, we have

the solution (m, n) = (2k, 1). So assume n > 1.

mZ

Putn = ———.
2mn2-n3+1

Then we have a quadratic equation for m,
namely m? — 2hn?m + (n® — 1)h = 0. This
has solutions hn? + N, where N is the positive
square root of n?x* — hx® + h. Sincen>1,n >
1, n is certainly real. But the sum and product of
the roots are both positive, so both roots must
be positive. The sum is an integer, so, if one
root is a positive integer, than so is the other.

The larger root hn? + N is greater than hn?, so
h(n3-1)
n2
2m —n > 0, then since n >0, we must have

the smaller root < < n. But note that if

the denominator (2m — n)n? + 1 smallest than

the numerator and hence m — n. So for the

smallest root we cannot have 2m — n > 0. But

2m —n = 0 for the smaller root. Hence hn? —
n

N = >

2
Now N? = (hnz—g) = h?n*—hnd +

h,so h = nTZThus n must be even, put n = 2k
and get the solutions (m,n) =

(k, 2k)and (8k* — k, 2k). We have shown that
any solutions must be of one of the three forms
given, out it is trivial to check that they are all
indeed solutions.

QUADRATIC EQUATIONS
AND EXPRESSIONS

(Objective Type)

1) f0<a<p<y< g, then equation
1 1 1
x—sina x—sinf = x-siny
(a) Imaginary root, (b)real and equal
roots, (c) real and unequal root,

(d) rational roots.

= 0 has
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Sol.:Since, 0 < a< B <y < g(given)

= sina < sinf < siny
Now the given equation is

(x —sinB)(x — siny)
+ (¥ —sina)(y — siny)
+ (y—sina)(y —sinf) = 0

Let f(x) = (x —sinB)(xy —siny)
+ (x —sina)(y
—siny)
+ (x —sina)(x
—sinB)= 0

= f(sina) = (sina —sinB)(sina —
siny) >0

= f(sinf) = (sinf —sina)(sinf —
siny) <0

= f(siny) = (siny —sina)(siny —
sinf) > 0

Hence equation f(x) = 0 has once root between
sina and sin§ and other between
sinf and siny.

2) Ify= then

cotxtan3x’
(a) y<§ory>3; (b)%SyS3;
(y<zory>3; (v;<y<1

_ 1-3¢2
T 3-t2

tanx 1-3tan®x
Sol..y = =

" tan3x  3—tanZx

s(y—=3)t*+1-3y=
0 sincetisreal = A= 0

20—4(y—-3)1-3y)=20=
y—-3)1-3y)<0

=>y£§ory23 =>y<§ory>3.

(Herey * %, 3)

214

1 1-3t* _ 1
Casel:Fory=-=—-=-=3-9t?=
3 3-t 3

3—t?
=t=0

1-3t?
Casell:For=3=—-=3=1-3t>=

9 — 3t?
{not possible}
D P

k-1
Zr=o X"

values p and q of k, then roots of equation,

3) If is a polynomial in x for two

x% + px + q = 0 cannot be
(a) Real; (b) positive (c) rational; (d)
irrational

yhkodxor o .
1 is a polynomial in x. i.e.

r=0%

Sol.:

{1+4x%+x*+ -+ 220D} s
divisible by {1 + x + x? + -+ x¥~1}

1-x2k
1—x2) _ 1+x¥

(1:{5) T o14x
1-x

and only if: (1 + x*) is divisible by (1 +
x)if x = -1

(x # 1) is a polynomial in x if

But it is not possible, because the equation is
not defined forx = —1.

Hence, there are no real values of x for which
the equation is defined.

Thus, it can be easily said that the roots of the
equation cannot be Rational.

4) If one root of the equation ax? + bx +
¢ = 0 is reciproed of the other root of the
equation a;x% + b;x + ¢; = 0, then
(a) (aaq —ccy)? = (bey —
bia)(b,c — a;b)



Challenging Mathematical Problems

(b) (aby — a1b)? = (bcy —
bic)(ca; — c1a)

(c) (bey —bic)* = (cay —
asc)(aby — ayb)

(d) None

Sol.: Let a be a root of the equation ax? + bx +
c=0

1

Then,—is a root of ax*+bx+c¢, =0
=aa’+ba+c=0...... (&2 +
a
by -
. + Cr = 0

=ca’—bat+ta; =0 ......

-(2)

Since (1) & (2) have one root in common,

a? a 1

P

e’ = =
ba,—b4c cci—aaq ab{—c1b

ba,—bsc
= a=—"—",
ab{—c.b

,Now,a? = (a)?

cci—aa,

abl—Clb

= (ba1 - blc)(abl - Clb) =
(cc; — aay)?

5) If a and B are the roots of the equation
x> —ax+b=0andv, = a® + " then
which of the following is true?
(@) vpi1 = av, + bvy,q; (b) vy =
bv, + av,_1; () V1 = avy, —
bvy,_1; (d) Vi1 = by, —avy,_4;

Sol..a+pBex?—ax+b=0a’+aa+b=
orB+af+b=0........(2)
Multiplying (1)by a™ ! and (2)by p™1

= a" 1 —aa + ba1 =
0 (3)
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— ’Bn—l _ aﬁn + bﬁn_l —

Adding (3) & (4), we have

(an+1 + ﬁn+1) _ a(an + 'Bn) +
b@ 44 =0

= vy —av, +bv,_1 =0
S Unp1 = QUp — bupyg

6) Leta, b, c be non-zero real numbers, such
that
fol(l + cos®x) (ax? + bx +
c)dx = foz(l + cos®x) (ax? +
bx + c)dx

Then the quadratic equation ax? + bx + ¢ =
0 has

(a) Norootin (0, 2); (b) at least one root in (0,
2); (c) tworootin (0, 2); (d) two imaginary
roots

Sol.: Consider the function

P(x) = fx(l + cos®x) (ax? + bx
0

+c)dx = f(1)
=f(2)u....()

Obviously, (a), ¢(x) is continuous on [1, 2] and
(b) differentiable on (1, 2), (c) Also, ¢(1) =
b2 (given)

Therefore, by Rolle’s theorem there exists at
least point k € (1, 2) such that ¢’(k) =0

Now, ¢(x) = (1 + cos®x)(ax? + bx + ¢)
~P'(k)=10

= (1 + cos®x)(ak? + bk + ¢) =
0
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= ak?+bk+c=0{-
(1 + cos®x) # 0}

= kisarootof ax?+bx+c=
0in (1,2)

7) If2a+3b+ 6c =0 (a,b,c € R) then the
quadratic equation ax? + bx + ¢ = 0 has
(a) Atleastonein [0, 1]; (b) at least
one rootin [2, 3]; (c) at least one
root in [4, 5]; (d) none

Sol.: (A) Let f(x) = §x3 + gxz + cx. We have
f0)=0and f(1) =5+7+c =222
0

(w2a+3b+6¢c=0).
Thus, 0 and 1 are two roots of f(x) = 0. So,

f'(x) =0i.e.ax? + bx + ¢ = 0 has at least
one real root between 0 and 1.

8) If a, B be the roots of the equation 6x? —
6x+1= 0,then%(a+bx+cx2 +
dx®) +3(a+bp +cp? +dp?) =

(a) S+:+3+= (b)12a+6b+
a b c  d
4c + 9d; (C)I+E+§+Z' (d)

none

Sol.:Herea + B =1,af = %. Thus the given
expression %{(a +b)+b(a+p)+
c(a®+ B2 +d(@® +p}=242+542

after calculation of values.

9) If ais a positive integer, the number of
values of a satisfying
TZ—I 2 (cos3x 3 ) . _
Jg {a (—4 +5cosx)+asinx
a2
20 cosx} dx < Y

(a) Only one; (b)two; (c) three; (d)
none

s
. = cos 3x 3 .
Sol.: Given [2 {az (T + 3 cos x) + asinx —

a? sin3x 3 .
20 cosx}dx =5 = {az (T+Zsmx) -

3 2
. z a 1
acosx —20sinx{| z < —— = a? (——+
0 3 12
2

3 a
Z)—0—20+aS?

2
=Za?+a-20+5<0 =a’+

a—20<0
= (@a+5)(a—4)<0
Thus,a=1,2,3,4 {~ael}

10) If (x — c) is a factor of order m of the
polynomial f(x) of degree n (1 < m < n),
then x = cis a root of the polynomial

(@) f™x); (b) f™1(x); (c) fM(x);

(d) none

Sol.: since (x — ¢) is a factor of order m of the
polynomial f(x)

S fO) = (x— M)

Where ¢(x) is a polynomial of degree (n —m)

= ), f' (%), ., F™ D (x) are all

zero forx=chbut f™(x) # 0at x = c.

11) The value of a for which one root of
(a®>-5a+3)x>+x(3a—1)a+2=0
is twice as large as the other is

(a) 3 (b) =3 (c), (d) none

Sol.: Let a and 2a be the two roots of the given
equation. So,

3a-1

a+2a=— and
a?-5a+3
2
202 =———— = a =
a?-5a+3
3a-1
nd

———a
3(a2-5a+3)
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, 1 1
@ T @ _5a+3  a®—5a+3
. Ba-1)
" 9(x2 —5a+3)
[+ a? = (2)?],= 9(a® —5a + 3)
= (3a-—1)?
(v~ a®—5a+3+#0),= —39+26
2
=0,=>a=-=-
=3
. a? b2 cz _
12) Equatlonm+ﬁ+m—m—

n%x (a,b,c,m,n € R) has necessarily

(a) All the roots real; (b) all the roots

imaginary; (c) two real and two
imaginary (d) none

Sol.: Let P + L, be a root of given equation

a? b? c?

+ +
p—at+ly  p-B+lg  p-v+l

a*{p—a+ly} | b*{(0-B)-14}
(p-a)?+q? (p-B)?+q?

cH{(p-1)-lq}
(p—y)2+q2q =m=n’p—In’q

According to law of equality of complex
numbers, we have

a? b2
+
No-—a?+q @-p2+¢2
C2
+——————+n
(p—v)2+q?
= Oq:()

Hence p + lq = pis a real number.

B)fx=PB-yV)(a@-8),y=F-a)(B—
6) z = (a — 8)(y — &) then the value of
x3+y3+23—3xyzis

(a) 0; (b) a® + B° +¥° + 8% (c)
a®B%y°6°; (d) none

2
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Sol.: Since on solving, we havex + y+2z =10
~ x3 4+ y3 + z3 = 3xyz (by definition)

14) The range of values of a for which all the
roots of the equation
(a—1D(1+x+x%) =
(a+1)(1+x2+x*)are

imaginary is
(@) [—oo,—2]; (b) [2,0]; () -2 < a < 2;
(d) none

Sol.:
A+x+x)[(a-1DA—x+x%) -
(a+1)(1 —x+x3)]

=0(1+x+x?=
0 has imaginary roots)

= —2 (1 + x2) + 2ax = 0, must have
imaginary roots.

= x3 — ax + 1, must have imaginary roots
=a’-4<0 = -2<a<?2

15) If a, b, c are non-zero, unequal rational
number then the roots the equation
abc?x? + (3a® + b?)cx — 6a® — ab +
2b? = 0 are

(a) Rational; (b) imaginary; (c)
irrational; (d) none

Sol.:

A= c?(3a? + b?)? — 4abc?(—6a? —
ab + 2b?)

= A= c?(3a® — b? + 4ab)?

16) If the equation x2 — 3xk + 2e2l08k — 1 =
0 has real roots such that the product of
roots is 7, then the value of k is

(@) £1; (b) £2; (c) £3; (d) none

. 2
Sol.: Since, e2108k glogk® — |2
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= The given equation is x? — 3kx +
(2k?-1)=0

Now, product of roots = 7 (given)
=2k?—-1=7 ~ k= 42

17) Product of real root of t2x2 + |x| + 9 = 0,
(a) Is always positive; (b) is always
negative; (c) does not exist; (d)
none.

Sol.: Since the equation t?x% + |x| + 9 = 0 is
always positive for all x € R.

-~ The equation does not possess real root.

18) If a, b, c are real and x3 — 3b%x + 2c3 is
divisible by (x — a)and (x — b), then
(a) a= —b= —c; (b)a =2b = 2c;
(da=b=c,ora= —2b =
—2c¢; (d) none

Sol.: Since, f(x) = x33b%x + 2¢3 is divisible by
x—aandx—b ~f(a)=0

= a® -3b%a+2c3 =
0ooeee..(Dand f(b) = 0

= b3 —-3b3+2c3 =
0.... (2)and = —2b3*+2c3 =0

~ b = c. Putting, b = c in (1), we get.

a®—3ab?>+2b*=0= (a—-b)(x* +
ab—2b*) =0

= a—bora®+ab+2b%Thus,a =
b=c

ora’+ab=2b>=a=>b=cand

(a+2b)(a—b)=0=a=b>b=
canda = —2b

csa=b=canda= —-2b= —2c¢
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19) Both the root of the equation
x—-b)x—c)+x—c)(x—
a)+ (x—a)(x+b) =0are
always:

(a) Positive; (b) negative; (c) real; (d)
none

Sol.: The given equation can be written as
3x2=2x(a+b+c)+ab+bc+ca=0.

Now,A4(a + b + c)? —12(ab + bc + ca)

=A=2[(b-c)*+(c—a)*+
(a — b)?] = A= 0. Hence the roots are
real.

20) If x denotes the set of real number p for
which x? = p(x + p) has a its roots
greater than P, then x is equal to

1 11
(a) (_2;_5), (b) (_E'Z)' (C) null
set, (d) (—,0)
Sol.: Since the roots are greater than p, i.e. p

lies outside both the roots, such that af (p) >
0

= 1(p? — 2p?) > 0 = p? > 0 which
is impossible.

Hence,x = {p|p € ¢}

21) If a and b are rational and a, 8 be the roots
of x2 + 2ax + b = 0, then the equation
with rational coefficients are one of whose

rootsina+B+mis
(a) x% + 4ax + 2b = 0; (b) x* +
4ax —2b = 0; (c) x* — 4ax +
2b=0;(d)x*—4ax—2b=0

Sol.: Since, a, B € x% + 2ax + b = 0(given)

~a+f = —2aandaf =Db

Lety=a+ B+ a?+p?
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= @y +2a)?=a?+p%=
(a? + B?)? —2af =4a®—-2b

= y% +4ay +2b =0.
The required equation is x? + 4ay + 2b = 0

22) Let f(x) = x3 +x% + 100x + 7 sinx,
2 3

then the equation +
9 y—-fay y-f@

0 has

(a) No real root; (b) one real root;

(c) two real roots; (d) more
than two real roots.

Sol.: f(x) = x3+x% + 100x + 7sinx

“ f'(x) =3x% + 2x + 100 + 7 cos x

= f'(x) =3x2+2x+93+7(1 4+ cosx) >0

=~ f(x) is an increasing function.

= fo) < fo) <feletfoy=a fz) =
b,fz =c thena<b<c...... (@Y

. L1 2 3
Now given equationis—+—+—=10
y-a y-b y-c

= -bHy-o+2(0-a)y—c) +
3(y-—a)(y—-b)=0

Let

g =@-bHy—-o)+2(0—a)y—c) +
3(y —a)(y — b)

= gl@)=(@a—-b)(a—c)>0
=gb)=2b-—a)(b—c) <0
= g(c)=3(c—a)(c—b)>0

= given equation g(y) = 0 has one real root
between a and b and other between b and c.

y-f@3) B
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Sol.: Since f(x) = (2x —1)(4x —3) ~x = %,

23) If sin a and cos «a are roots of the

equation px% + qx + r = 0, then
(a) p* - q* +2pr = 0; (b)
+1)?=q*—1% (p* +
q* —2pr=0; (d) (p —1)* =
4 + 12

Sol.: sina,cosa px?+qx+r =20

= sina + cosa = —%and since

T
acosa = —
p

qZ
= (sina + cosa)? = 7

q° r
:>1+Zsinacosa=?:>1+—

q2
p

“P2—q*+2pr=0

24) The roots of the equation 8x% — 10x +

1 .
3 =0areaand BZ > 2 then the equation

whose roots are (a + iﬁ)100

iB)190 is
(@) x> —x+1=0; (b)x?+x+1=
0; (c) x2 — x — 1 = 0; (d) none

and (a —

|l w

1 2 _3(. p2
Now,a = -and B —4{--ﬁ >

1, .
E(glven)}
1 3 . i
a+if==-+—=ref = e3 =7
2 2
—land@—E
3

in
Also,a —if =e— ) (conjugate)
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. It
(a + iﬁ)lOO — 8—3 — el.3.3T[.e?

Also, (a — )10
I
= —e 3 (conjugate)

n Im T
Sum = —<e3 +e3>= —2cos§

= -1
Product=1

=~ Required equationisx? +x+1 =10

(SUBJECTIVE TYPE)

1) If theroot of f,) = ax® + bx* + cx +

d = 0 are a4, ay, a3z and the root of ¢(y) =

ay + IO o (y)

(y)
y +f yZ+f(y)—

0 are B4, B2, B3, then show that
a; — 1= a; — Bz = az — PBs.
Sol.: Consider f,y = ax® 4+ bx* + cx +

") f )
y

) = ay® +—= y* +—
+fo)
=0 (2)

Now f,y = ay® + by? +cy + df' =
3ay? +2by + ¢

f”(y) = 6ay + 2b

Substituting above values in equation (2), we
get

b = ay? + ——— (eay+2b) y? + (Bay? + 2by +
c)y + ay® + by? +cy+d

= ay3 + (3ay + b)y? + (3ay? + 2by +
¢)+ay3®+by?+cy+d collectingalla, b, & c
terms

=aly? +y3 + 3y%y + 3yy?] +
bly? +y?+2yyl+c(y+y) +d

=a(y+y)>*+b(y+y)*+cly+

= ¢(y) = fiy+y) key point. Lety +y = x =
y=x-y

Hence which means the roots of (1) are
decreased by quality y.

~ If a4, @y, a3 a are the roots of (1), and
B1, B2, B3, are the roots of (2), then a; —

y=P1; a,—y =0y a3 —y=p3
=S a—p=Y a—Br=Yy az—pFz3=Yy

= a;—f1 = a, — P, = az — 3 Proved.

2) Iifa,pB, B, Y, Y, aare the roots of a;x* +
b;x + c; = 1,2, 3; then show that

(a+B+y)+ (ap + By +ya)+aBy =
{ i‘o'=0—ai_:::ﬂi}E - 1.

Sol.: Since a, 8 are roots of a;x? + bjx + ¢; = 0

-b c

1 a;
by
l+a+f+af=1——+—
a; a;

(st
=0+ +p)
_ (m) (D)

a
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similarly (1+ B)(1+y)

a, — b, + ¢,
= <a—2) (Z)and
A+ +a) = (%ﬁr%) (3

Multiplying equation (1),(2) and (3). We get,
1+a)?(1+p)2A+y)? =
3. (—ai_sii”i) =1l4+a+p+y+ap+
1

By +va + apy = (T, (B=229) )?

aj

= (a+p+y)+(af + Py +ya) +aBy
1

3 2
-([Je=2) -
i=1 4
3) Ifa,b,c, dare the roots of the equation
xt+px3 +px?+py=0,
then show that (1 + a®)(1 + b?)(1+
)1 +d*) =1 -pz+pa)+
(p3 — P1)2

Sol.: As a, b, ¢, d are the roots of the given
equation

2 x* 4+ pix® 4 pax? + pax +py =
x—a)(x—=b)(x —c)(x—
7)) ISR €

Equation (1) is an identity, so we put x =i on
both sides

= i4 +p1i3 +p2i2 +p31 +p4, =
(—-a)(i-b)(i-c)—-d)

= A —py+ps) tilps —p1) =
(—-a)(i-b)(i—-c)@i—4a)...... 2

Again putting x = —i on equation (1), we get

(1=p2+ps) —i(ps —p1) =
(=i — @) (=i — b) (=i — &) (—i -
d)iuee...(3)
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Multiplying equation (2) and (3), we get

{(1—py+py) +ilps —p)HA -
P2 +ps) —i(ps —p1)}

=({-a)i-b)@i-o)i-d)(-i-
a)(—i —b)(—i—c)(—i—d)

= 1 —p+p)*+ (s —p1)° =
(i+a®)(i+b>(+c?)(1 + d?).

4) If B+ cos’a,B +

2a aretheroots of x* + 2bx +c =
0 and y + cos*a, y + sin*a are the roots
of x2 + 2bx + ¢ = 0, the prove that b? —
B*=c-C.

sin

Sol.: If , 8 are the roots of equation ax? +

bx + ¢ = Othen (a — B)? = (a + B)? —
b2  4c _ b%—4ac

4ap =L %

a? a a?

since

(B + cos?a), (B + sin?a) are roots of equation
x2+2bx+c=0

~{(B + cos?a),—(B + sin®a)}?

4b?% — 4c
= l—z
= c0s?2a = 4(b?> = ¢) .. ce..... (1)
Also, [(y + cos*a) — (y + sin*a)]?
4B? — 4c
= l—Z

= (cos*a — sin*a)? = 4(B? —

C) .. (2)

= (cos?a + sina)(cos?a —
sin®a) = 4(B? - C).

From equation (1) and (2), we get
4(b%2 —c) =4(B%*-10)

= b2 —-B%2=¢—C Proved
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5) Show that for any real numbers
asz, ay, ..., ags, the roots of the equation
agsx® + agyx® + -+ agx® + 3x% +
2x+ 1 =0 arereal.

Sol.: Let

P(x) = agsx® + -+ azx3 +3x% +
2% 41=0 . (1)

since Py = 1, then O'is not a root of (1).

Let aq,a,, as, ..., ags be the complex root of (1)

Then the f; (let ai) are the complex roots of

the polynomial

Q) = ¥® +2y%° + 3y + azy®2 + - +

dgs.

It follows that Y8, B; =
—2and 32 BB =3

2
Then Y55, B;* = (Z?=51 ﬁi) —2%i<jSiS; =
-2<0

Thus, the B;'s are not real and then the ;'s are
not all real.

Conclusion: The equation agsx8° + ag,x%* +
o+ azx3 + azx? + a;x + ay = 0 are not real
root, if ay # 0 and a;? < 2a,a,.

6) Supposethata; > a, > a3 > a4 > as >
agandp = a; +a; +az+a,+as+
ag,q = aiaz + azas + asaq + aa, +

a,ae + (171 5) andr = ajaszas + A,04Q¢.

Then show that all the roots of the
equation 2x3 —px? + qx—1r =10
are real

Sol.: let fiz) = 2x3 —px? + qx —r = 2x3 —
(a; + a, + -+ ag)x? + (a,a3 + azas +
asa; + aya, + azag + agay)x — (aazasg +

(y040¢)

222

From (a;azas +
a,asag)we can write fi,) in form of

foy =p(x —a))(x —az)(x —as) +
q(x —az)(x —ay )(x — ag)

= f =& —-a)x—az) (x—as) +
(x—ay)(x—a,)(x—ag) .....(1)

foo >0V x>ay,foy<0Va, >x>a
fooy > 0Va,>x>a6f) <0 Vag>x

So from properties of continuous function we
say that equation f,y = 0 have three real
roots.

7) Suppose the root of the equation
X" —apx™ 1 +apx™ 4
a,_1x + a, = 0 arereal

Show that if a is a real root, then
1

(a1? — 2na,)|?
“T T wm-
(as? ) z
a;® —2na,)|?
<na+a;+ [W

Sol.: Let f(y) = x™ —ayx™ 1 + ax" 2 4 - 4

ey

After differentiating (n — 2) times, we get

a, =0 .......

Mn—-1DNn-2)......3]x2 = [(n—1D(n -
2)...2]

ax+[(n-2)..1la, =0
>nn-Dx*-2(n-1)

ax+2a,=0
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= roots of this equation is

_a(n—-1D+ Jn—1)2a.2 = 2n(n — Da,

nn—1)

If « is a root of equation (1)

[ 2na ]
1| (alz_(n_i))l
=>£|[a1—(n—1) =12 J|Sa'
[ 2na |
1] (alz = i )|
< E aq + (n ) (n (ni)z ) |
| |
a,% —2na,
= T na
a,? — 2na
<a;+ =D proved

8) If all the coefficient of the equation f,) =
X"+ p x4 pox™ 24+, =
fw=0

223

Be whole number and if (0) and f ;) be each
odd integers, then prove that the equation can
not have integral root.

Sol.: fioy = pn =o0dd, f;y =1+ p; +p, +
-+ p, =odd

Case I: If x = 2m, then fi) = x" +pyx" ™" +
odd
-+ p, =odd - x=2m cannot be a root of
odd
the odd equation f(,) = 0

Case ll: x = 2m + 1, then, f(,) = &” +
odd
p1x™ 4 py
[
odd
= x" +p; (even+1) +py(even+1) + -
+ pp—1(even + 1) + p,

=x"+p, + (p, even + p, even + -+ +
DPn_ieven) + (py +py + -+ pp_1)

= acjj +p,even+ -+ p,_,even +
odd
pr+ -+ Prg

even

even

= x = (2Zm + 1) cannot be a root of the
equation fi,y =0

Therefore equation cannot have an integral
root.

9) If the equations ax? + 2bx + ¢ =
0 and x* + 2p*x + 1 = 0, has one root
commons. If a, b, c are in arithmetic
progression and p? # 1, then find the
second root of second equation.

Sol.: Let a is the common root of both

equations
caa?+2ba+c=0........(0)
a’?+2p%a+1=0........(2)
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Now by cross multiplication, we get

2

. a o«
"2b—2p%c c—a
- ©
S 2ap?—2b"" T
2 2
, 2b—-2p°c  (c—a)

== 2ap? —2b  (2ap? — 2b)?

~ (2b — 2p%c)(2ap? — 2b)?
= (c — a)*(2ap?

—2b)

= 4acp* — 4b(a + c)p? + 4b?
+(c—a)*=0

= p? =

4b(a+c)+/16b2(a+c)?2-16ac{4b?+(c—a)?}
8ac

Let d is the common difference of A.P.
a,b,c =a=b—d,c=b+d,

s0,p? =

4a(2b)+ +/16b2(2b)2—16(b—d)(b+d)(4b2+4d?)
8(b—-d)(b+d)

bzi /b4_(b4_d4) bzidz
= bZ_dZ =

bZ_dZ

, b*+d?( , b?- ,
So,p =—b2—d2 1% 7'—'b2_d2 asp

)

. __‘f-*

From equation ()a = 2ap? — 2b
_ 2d

a:
b% +d?
Z(b—d)ﬁ_%
B (b+d)_ ¢
~ \b-d/ a

Let second root of equation (2) be 8
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1 1 a
.-.aﬁ:l:) Bzaz_c/az —E

10) If a, B are the roots of the equation ax?® +
2bx + ¢ = 0 and a* B* are the roots of
the equation Ix?2 + mx +n =
0,then prove that the roots of
the equation a?1x? — 4aclx + 2¢%1 +
a’m = 0 are always real and opposite in
sign (a, B are real and different).

Sol.: Wehavea + 8 = _Z; aﬁg&a4+ﬁ4 =

m
1

)

n m
=7,Nowa4+ﬁ4 = -7

= [(@® + B*)? — 2a°p?]
= = = [{(a + B)?2ap}* — 2a°p%] =

{bz Zc} 2c?
a? a a?

=(&) O ) (@) -

b\ . .
It shows ( 2) is a root of the equation x? —

4(§)x +2 (;—z) +2=0 (D)

i.e.,a’lx?® —4aclx + 2c?l+ma? =0

a‘%""

... b2 Y
It show one of the equation (i) is prs (positive)

2 4¢ (b2—4ac

b
Now,y + = =—=y= —(— )<0

Hence roots are real and opposite in sign.

11) Iftanx —tany =aand x+y = 2b,
prove that tan z and tan y are the roots
of the equation x2 — (1 —a)tan2b.x +
a=0

Sol.: Let tan x, tan y are the roots of the
equationx? — (1 —a)tan2b.x +a =0
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tanx + tany = (1 —
a)tan2b andtanx.tany =

Ao (1)

andtanx —tany =
a (it is given).Givenx +y =
2b e (2)

Taking tan on both sides of equation (2)

tanx + tany tanx + tany

1—tanxtany 1—ay

So, equation (1) is true

= Our assumption that tan x, tan y are the
roots of the equation x> — (1 — a).tan2b.x +
a =0,is true.

12) Let p,,(x) be the polynomial, p,,(x) =
1+2x+3x%+ -+ (m+1)x", show
that p,,(x) has no real root if n is even and
exactly one real root if n is odd and root
lies between -1 and 0.

Sol: pp(x) = 14 2x +3x%2 4+ -+ (n + 1D*"
(where x >0; p,,(x)>0) so, p,,(x) have no
positive real root.

pa(x) =14 2x+3x%+ -+
(n+ 1x™,

xpp(x) = x +2x2 + -+ nx* +
(n+ Dx™*1

S A-0p,x)=1+x+x*+x3+
ot xt — (n 4 Dxm
1(1 _xn+1)

_— +1 n+1
1= (n )x

1-(n+2)x™ 1+ (n+1)x™+2
= pn(x) = (1—X)2

negative values of x, p,, (x)will vanish

when ever
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n=1—Mn+2)x"1 + (n+ 1)x"*?
(€3]

feo =1—(m+2)(-0)™" +
(n + 1)(—x)"*2,

If nis even, there is no change of sign in this
expression and so there is no negative real root.
If nis odd, there is one charge of sign. So there
can be one negative real root.

Inthiscase f_y=1-(n+2)—(n+1) =
—(n+1) = —(2n+2) < 0& f(5) > 0.

So we can say that when n is odd, the real root
lies between 0 and -1.

13) Show that the roots of the equation x™ +
ax" ' +a™ i+ ta, 1 x+a,=0
can not be real if (n — 1)a,% — 2na, < 0.

Sol.: If fy = x™ + agx™ 1+ apx™ 2+ +
ap =0............(1) has n roots, then f'(,) =
0 has (n — 1)roots. f' () has (n — 2) roots.

So differential equation (1) (n — 2) times we
get,

nn—-1Dn-2)..3x2+(n—1)(n-—
2)..21x+(m—2)(n—3)...1.a, = 0 has
two roots.

AWANN
\ARVAENES

(IVv)

(I

If equation (2) not has two real roots, then
equation (1) not has n (all) real roots.

Equation (2) not has two real root if B — 4Ac
(discriminant of (2) <0)
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=[nh-1Dn-2)....2]%aq?>

—4.n(n—1)(n
—2)n.3.(n
-2)(n—3)....2.1.a,
<0.

= (n—1).a,%2 — 2na, < 0 Proved.

14) a, b, c, d are four distinct real numbers and
theyarein A.P.If 2(a — b) + x(b — ¢)* +
(c—a)@=2(a-1)+(b-d)?*+
(c — d)3 then prove that x > 16 or x <
-8.

Sol.: Since a, b, ¢, d are in A.P.

~(b-a)=c—-b=d-c= Letd
(common difference)

~d=a+3D =a-d=
—3Dandd =b+ 2D

=b—d=-2Dc=a+2D =c—
a=2D.

=~ Given equation,2(a — b) +
x(b—c¢)*+ (c—a)3

=2(a—d)+ (b —-d)?+ (c—
d)3 becomes

—2D + xD? + (2D)3 = —6D + 4D? —
D3

=9D?2+ (x—4)D +4 =
0 since D is real

=>(x—-4)?%2-494>0 = x*—
8x—128=>0

= (x—-16)(x+8)=0 ~x >
16 or x < —8 proved.

15) Find the value of ‘a’ for which the equation
x+x+2)?%—(a-3)(x*+x+
2)(x*+x+1)+ (a— D% +x+1)%=
0, has at least one real root.

Sol.: The given equation can be written as

X2 4+x+2 X2 4+x+2
) (@-3) [ =——=
x2+x+1 x2+x+2

+(a+4)
= 0. (D
x> +x+2
x2+x+2=t =t
1
- x2+x+1

Sl w

1
Since (x? +x+1) = <x+z) +

= x24+x+1>

B w

7 .
=1t € (1,5) now equation (1)
becomes;
t?—(a—3)t+(a—4) =
0.ue...(2)
At least one root of this equation must
lie in (1,%) from equation (2),t = a —
4,2.

For one root lie in (1,2),W€ has1 <

7 19
aS§$5<aS?.

16) Let f(,) be a polynomial leaving
remainder, A1, when divided by (x — a;).
The remainder A, when divided by (x —

[ 1) J—- And finally

A, if divide by (x — a,;,). Find the
remainder left by the polynomial, when
dividedby (x —a;)(x — ay) .....(x — a,;)

SOI-:f(al) = Al’f(az) = Az, 'f(am) =
A

foo=@—a)x—az)..(x —
am)Q(x) +R(X) oo .. ()
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Here R(,) will be a polynomial of degree
(m—-1)

R(al) = Al,R(az) = AZ: ---JR(am) =
Ay

R(x) = Pm-1— x™ 14 Pm-2 —
x™2 4.+ pyand,

Ry = Bi(x —az)(x —az) .. (x —
am) + By (x —ap)(x — az)(x —apm) +
Bs(x —a))(x —ay)(x —ay) ..+ +
Bp(x —a))(x—ay) ..(x —

A1) e e (1)

Putting x = a;on both sides, we get

R,
(a; —az)(a; —az) ...(a; — apy)
= B,
Similarly B,
Ay

(az —ay)(a; —az) ... (az — ay)

Am

(am —ay)(@m — az) .. (@ — A1)

B, =

R
A (x—ax)(x—az) .. (x —ay)
(a; —az) ... (a1 — am)
Ay (x—a))(x—az)...(x —a,)

(az - al)(az - a3) ...... (az - am)
+ ces
m m
koo = 2| | [ G=ar)
= = .
) < l a; — ag
=1 k=2
k*1
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17) Given that a, y are the roots of the
equation Ax?2 —4x +1 = 0 and f3, § the
roots of the equation Bx*> —6x+1 =10
find values of A and B such that , 3, y and
d arein H.P.

Sol.: Given equation are Ax? —4x + 1 =

0o (1)

Bx? —6x+1=0..........(2)
A+y=—n. @ B+6
6
=§.....(ii) ay
1 S
= e iii) B
=g iv)
Given a, 8, v, 6 are in H. p.
2ay 1 28 1
e = = — d —-_— = =
p a+y Zan v +46 3

Since £ is a root of equation (2)

“BB*—6B+1=0

B ! 61+1
=B X——6.=
4 2

=0 =>B=28

Since y is a root of equation (1) o Ay? —
4y+1=0=:-2+1=0=4=3

18) If a, B are the roots of the equations x? —
px + q = 0 then find the quadratic
equation whose roots are

@) (a® — B%)(a® - p3)and a3B* +

aZﬂZ
®) (a? + p?)(a® + B3)and a°B3 +
aBBS _ 2(14B4

Sol.:

(@) a,Barerootsof x> —px+q =0
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Lta+B=p&af=q......(1)

Now (a? — p*)(a® = B*) = {(a + p)(a —
B}(a = B)((a? = B (a® + af + )}

= (a - B)*(a + B)(a*+ B* + aB)
={(a + B)? — 4ap}(a + B)*{(a +

B)?* — ap?}
= (@*-49p(*—q) = p°> —5p3q +
4pq*

B+ a2 = P (a+f) =
(@)%.p = pq?

-~ Quadratic equation whose roots are
(a,z _ ﬁZ)(a3 _ ﬁ3) &a,3ﬁ2 + 0(2,83 is

x? —[{(a? = BA)(a® - B*)}
+ {a3B? + a?B3}]x
+ (a? = B*)(a® - ) {a®p?
+a?B3}=0

= x% — [(p® — 5p3q + 4pq™) + pq®lx —
(p® — 5p3q + 4pq™)

pq? =0=x?— (p°>—5p3q+4pq* +
pq®)x — (p°q* — 5p*q> + 4p*q®) =0

() (@® + > (@® + %) = {(a + B)* -
2afH(a + B)(a? — af + B*)}

={(a + B)? - 2ap}{(a +
B){(a +B)* — 2ap — ap})
= (@*-2q)(p*-3pq) =
p(p? = 2q)(p* — 3q)
aSIBS + a3,85 _ 2a4ﬁ4 —
alB3(a® + p? — 2ap)
=a*B*{(a + B)* —4ap} =
q*(m? — 49)

~ Quadratic equation whose roots are
(az +,82)(CZ3 +,83) &(XS,BZ + a3‘85 _
2a°B* is
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x? = [{(a® + ) (a® + )} +
{a5ﬁ3 + a3ﬁ5 _ 20(4[34}]
x + {(a?+ B?)(a® + 3).a°B3 +
a3p®—2a*p*}1 =0
= x’—[p(* - 29)(»* +3q) +
a*(p* - 4pq)]
x+p@* - 29)(p* +3q) +
*(P*-49) =0
19) Let p(x) be a polynomial of degree n>1
with integer coefficients and letk be a
positive integer. Consider the polynomial

Qx)=p (p. (p(p(x)))>, where p occurs k

times. Prove that there are at most n
integer t such that Q(t)=t.

Sol.: The claim is obvious of every integer
fixed point of Q is a fixed point of p itself. For
the sequel assume that this is not the case.
Take any integer x, such that Q(x;) =

Xo, P(xy) # xo and define inductively x;,, =
P(xy) fori=0,1,2,......., thenx; = xg.it
is evident that p,,;y — p() is divisible u — v for

distinct integer u, v ........(1)

[Indeed, if p(x) = Y a;x; then each q;(u; —
v;) is divisible by u — v].

Therefore each term in the claim of (non-
zero) differences.

Xg — X1, X7 — Xgy ooy X1 — Xy Xjp —
Xk41 - - (i0) is a divisor of the next one; and
since x; — Xx41 = Xo — xq; all these
difference have equal absolute values. For

Xy = min(xy, ...., x;) this means that x,,,_; —
Xm = —(Xm = Xm41)- Thus X 41 (F x) It
follows that consecutive difference in the
sequence (ii) have opposite signs.
Consequently xg, X1, X5 ... o.e is an alternating
sequence of two distinct values. In other
words, every integer fixed point of Q is a fixed
point of the polynomial P(p(x)). Out task is to
prove that there are at most n such points.
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Let a be one of them so that b= p(a) # a (we
have assumed that such an a exists); thena =
Pv)- Take any other integer fixed point a of

P(p(x))and let piay = B,sothat ppgy = a;
the numbers a and 8 need not be distinct (a
can be a fixed point of p), but each of , £ is
different from each of a, b. Applying property
(1) to the four pairs of integers (a, a) (5, b),
(a, b), (B, a) we get that the members a —

a and B — b divide each other, and also a —
B and B — a divide each other.

Consequently,a — b + (B —a),aa =
+(B —b) e er e e (D)

Suppose we have a plus in both in stances :
a—b=f—aanda—a= [ —b.

Subtractionyieldsa —b =b —a,a
contradiction, as a # b therefore at least one
equality in (iii) holds with a minus sign. For
each of them this means that a+f = a +b;
equivalently a+ b -a =p(4) = 0.

Denote a +b by c. We have shown that every
integer fixed point of Q other thataand b is a
root of the polynomial. Fi,) = ¢ — X — p(y).
This is of course true for a and b as well. And
since p has degree n >1, the polynomial F has
the same degree. S, it cannot have more than
n roots. Hence the result.

20)If ¢ areal rootof x> — x3 + x —2 =0,
then show that [a®| = 3 (for any real
number we denote by [x] the greatest
integer not exceeding x)

Sol.: If ¢ is solution of x°> —x3 + x =2 =0,
then we have a(a* — a? + 2) = 2. Now,

2

at—a?+1= (az—l) +3>0.50,
2 4

we must have a> 0. Also 0 < x <

1= x5—x3—x+2

32 -1D+x—-1-1=
—[1+ @ —=x)+x3(1—x)?]

~ a < 1.Again aisasolution of the
given equation implies that a® — a3 +
a—2=(@—-1D(a*+a3+1)-1=
0

If a > 2,then (a — 1)(a* + a3 +
D-1>24

ta<2wehavel <a<2,a®=
a* —a? + 2a.

We want to prove that [a®] =
3or3<a®<4

ora*—a?+2a—-3>0and a* —
a’+2a—-4<0

Buta® —a®=2—a.

So that want to prove that 2a? —
S5a+2<0

Now,2a? —5a+2 = (a+2)(2a —
1) <0 for

% < a < 2. We have already seen that
1<a<?2.

Hence a® < 4.

Againa*—a?+2a—3=0is
equivalent to

a® — a3+ 2a? — 3a = 0 is equivalent

to

203 —4a+2=2(a—-1)>=>0

~ we proved 3 < af

21) Let @ and f be the roots of the equation
x*> —mx — 1 = 0 where m is an odd
integer. LetAn = a™ + B" forn >
0.Show that forn >0
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(a) A is an integer
(b) ged(An, 4,,,) = 1

Sol.: a and f3 are the root of the equation x? —
mx —1we have a®? + ma—1 =
0evee . (DF?+mMB—-1=0..........(2)

Multiply Eq. (1)by a™ 2, a™ + ma™ ! —
a®?2=0.......3)

Multiply Eq. (2) by B2, 8" + mp™~! —
P2 =0..cun....(4)

Adding Equations. (3) and (4), we get

a+ p" = —m(a™ 1+ g 1) +
(a™2 + p™2) Which gives a recurrence
relation forn = 2 i.e,,

An=-mi, 1+, forn=>
2. (4)

@Aqg=14+1=2414=a+=—m
Thus 4y and A, are integers. By
induction, it follows from (A) that A,, is
an integer for eachn > 0.

(b) We again use (A) to prove by production
that gcd(An, 4,,41) = 1. This is clearly
true for n = 0 as gcd(—2,—m) =
1Let gcd(Ay_p, A1) =1,n > 2.

It were to happen that gcd(4,_1,4,) > 1

Take a prime p, that divides both
An—1 and A,,. Then from A, we find that p
divides 4,,_, also.

Thus ¢ is a factor of gcd(A,,—,,4,-1) @
contradiction, so gcd(4,,_,,4,) is equal to 1.

Hence we have gcd(4,4,,41) =1V n = 0.

22)If p, q, r be positive real numbers, but not
all equal such that two of the equations.
px?+2qx+1=0,qx* + 2rx +
p=0,7rx* +2px +q = 0 havea
common root say a. Show that
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(a) aisreal and negative,
(b) The third equation has non -
real roots.

Sol.: Consider the discriminantes of three
equations.

px?+2qr+r=0.......(1)
qx*+2rx+p=0........(2)
rx?+2px+q=0......03)

Let us denote by D;,D,, D
respectively.

So, we have

Dl = 4(q2 - Tp)'DZ =
r(r* —pq),Dz = 4(p* — q")

Adding we get
Di+Dy+D;=4(p*+q*>+71r?—
pq —qr —1p)
=2{p—-*+(q@—-1)?+
(r—p)?}>0

=, q, r are not all equal.

Hence at least one of D,.D,. D; must be
positive we may assume D; > 0.

Let us suppose D, < 0 and D3 < 0. In this
case both the equation (2) and (3) have only
non -real roots but equation (1) has only real
roots. Hence, the common roots @ must be
between (2) and (3).

But then the conjugate @ of a is the other root
of both (2) and (3).

Hence it follows that (2) and (3) have same
set of roots
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= g = % = s. This p= q=r contradicting the

given condition. Hence D, and D5 cannot be
negative we may assume D, > 0.

So we have g% —rp > 0,72 — pq = 0. which
give q?r? > p2q"

~p, q, r are all positive
Hence, we get gr > p2.0or D3 > 0

We conclude that the common root must be
between egs. (1) and (2),. Thus pa? + 2qa +
r =0,qa? + 2ra + p = 0. Eliminating a?, we
get

2(q* —pr)a = p* —qr - q* —pr > 0,p* -
qr < 0.

So we conclude a < 0.
= (B) as only non-real roots.

23)If a, b, c are three positive real numbers
suchthata + b + ¢ = 1 and Let

2 = min{a® + a®bc,—b® +
ab?c, c® + abc?}

Show that the roots of the equations x? + x +
4A = 0 arereal.

Sol.: Suppose the equation x2 + x + 44 = 0
hasnorealroots.Then1 —16A<0 =1 —
16(a3® + a®bc) < 0,

1—16(b3® +ab?c) <0and 1 —16(c3 +
abc?) < 0.

Now1—16(a® +a’bc) <0=1-—
16a?(a + bc) <0

=1-16a?(1—b—c+bc) <0

=>1—16a2(1—b)(1—c)<0=>i<
a’(1-b)(1-r0)
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Similarly 1—16 <b’(1-0)(1- a)and% <
c?(1 — a)(1 — b) Multiplying these we get,
a?b?c?(1 - a)2(1 - b)2(1 — )* > —
However,0 <a<1l=a(l—a) < 7
Hence,a’b?*c?(1 —a)?(1 —b)?*(1 —¢c)? =

2 2 2 1
(a(l — a)) (b(l - b)) (c(l - c)) <1z a

contradiction.

So, we conclude that the given equation has
real roots.

24) Let f(x), 9 and h(x) be three
polynomials such that

Jo Sw —
h(x) ) h(x) ) (f(x)p g(x)) - 1, ShOW that

Fa 2
)
) hy)

Sol.: Since % is a polynomial p(y) such that

(%)

h(x) = G(x)-D(x) v vervee oo (1)

Eled)
hx)

h(x) = q(x)-g(x) ......... (2)

Again is a polynomial gy such that
Further '-'(f(x),g(x)) =1

~ 3 polynomial a(,) and by

Such that f(x)a(x) + g(x)b(x) =1.....(3)

Multiplying by h,) on both sides, we get

feoh@aw + 9eohabe = hex) using (2)
and (1), we get

= foolIwdw]aw + 9w feorewlbe =
hixy = f 90 ldmam + Prbw] =
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25)If m, nintegers = 0 and f ), g () are
polynomial such that (x — a)™f ) =
(x— (X)ng(x) with f(x) * ng(x) * 0.
Showthatm =nand f,) = g.

Sol.: Given (x — @) f(,y) = (x —

A)"9x) fa) # 0,9(a) # 0. We want to prove
that m=n and f(y) = g(x). If possible let m#n,
without loss of any generality. Let m>n.

~ n —misa +ve integer, so that
x—a)"f(x) = (x—a)" ™"g(x)

(x —a)
fwo

i.e. = alisarootof fiy) =0
= f(a) = 0 which is contrary to the given
hypothesis.

=~ Our supposition is wrong, Hence m = n and
x—a)"f= (x—O)"g) = ) = 9w

26) The root of the equation x3 — ax? + bx —
¢ = 0 are a, B, y from the equation whose
rootsarea + 8,8 + v, ¥ + a. Also express

1 1

1.
+ —intermsofa,b,c.
a+f  B+y  v+a

Sol.: Roots of the equation x3 — ax? + bx —
c=0..c.....(Darea,B,y,ify=a+p =
(@+B+y)-yv=a-y

[+ a+B+y=al
s~y =a—xorx = a—y.Putting this value

ofxin (1) we have (a — y)® —a(a — y)* +
b(a—y)—c=0

or, y* —2ay? + (a®* + b)y + (c — ab) =
0.........(2)

Which is required equation. Its roots are a +
B,B + v,y + a. Changing into % and

Multiplying by y3, we get (¢ — ab)y3 +
(a®+b)y>?—2ay+1=0......(3).
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Roots of this equation are the reciprocals of
the roots of (2), - Roots of (3) are

1 1 1
a+B'B+y’'yv+a

1 1 1
Now, oy + e + e sum of roots of (3)

_—a2+b_a2+b
"~ ¢c—ab ab-c

27)If a, B, y are the roots of the cubic equation
x3 + 3x + 2 = 0 from an equation whose
roots are (B — y)%, (¥ — a@)?, (a« — B)? and
hence show that x> + 3x + 2 = 0 has
imaginary roots.

Sol:x3+3x+2=0.......(1)

~Itrootsarea, B,y

ca+f+y=0af+By+ya=
3,afy = —2.

Let y be a root of the transformed equation

cy=0B-v)?*= B+v)*—4By
4afy
= (P -——

~2]

Replacing a by x, = y
= x? +§0rx3 —xy
X
+8=0......(2)
Subtracting (2) from (1) 3+ y)x—6 =0

X = %. Putting this value of x in (1), we
get

6 \3 6
(—) +3.——+2=0
3+y

3+y
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216 +18(3+¥y)2+2(3+y)2 =0.y3 +
18y2 + 82y + 216 = 0. Which is the required
equation product of all its roots = —216

s(@=pPB-v)?y—-a)?=-216
R H S being - ve, one of the factors.

=~ that will make all the three roots imaginary
which is not possible. Every odd integer
equation with real coefficients has at least
onereal rootonthe LHS (a — B)? is — ve.

~ a — B is purely imaginary.

~ a and B are conjugate complex roots. Hence
two roots of (1) are imaginary.

28) The roots x4, x5, x3 of the equation x3 +
ax + a = 0, where a is a non zero real,

2 2 2

. X X X =

satisfy =~ + -~ + =~ = —8. Find

X2 X3 X1

X1,X2,X3

Sol.: We are given x;3x5 + x,3x; + x33x, =
8x1x2%3

X1+ X3 +x3 =0; x1%; + X3%3 +X3%1 = @;
X1Xx3 = —aand fori=1,2,3.
x2>+ax;+a=0,x3+ax;+a=0

Now,x,% + ax, + a = 0,x33 + ax; +
a=0.

= (x3x3 + 2331 + x33x,)
+ a(xyx3 + x1x3
+ x,%1 + X3x,)
+a(x;+x; +x) =0.

i.e.,8a+a*=0=a= -8

So, given equation is x3 — 8x — 8 =
0,one root is — 2, other roots are given by
x2—2x—4=0iex=1++5

So,{xy, %2, %3} ={-2,1— V5,1 + \/g}

29)Ifa, b, ceR, a # 0, then solve the system of

equation: ax;% + bx; + ¢ = x;;ax;? +
bx; + ¢ = X3} ...QXp_1?> +bx,_ 1 +c=
x, and ax,? + bx, + ¢ =
X4 is nunknowns x4, x5, x,, then

) (b —1)? < 4ac;

) (b-1)?%=4ac

Gii) (b—1)%>4ac

Sol.: Given system of equation can be written
as

ax;?+ b —Dx;+c=x,—x; =
faxp say

ax,?+(b—1Dx,+c= x3—x, =
fx,) Say

ax,_12+ (b —Dx,_y+c= x, —
xn—l = f(X(n_l)) Say

ax,?+(b—Dx,+c=x; —x, =
f(x(n)) say

fo T foy T+ fae) =0 (D)

Case 1: When (b — 1)? < 4ac. Each roots of
ax,% + (b — 1)x; + ¢ = 0 are imaginary. Ifa
> 0, then

foy + fop + o+ fiay > 0.1f a <
0, then

fop T fop -+ fay #0
~No solution.

Case 2: When (b — 1) = 4ac. In case 1 and 2
all of

fay foey o o) 2
0, fxe) fapyr oo Floe) < 0
From equation (1),

fon o+t fa =0,
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foe) = foe) = = fa) =0

But fzy = 0= ax? + (b= Dx; +c = 0

_—(b—l)iO
= 2a
1-b
— b_12
——[ (=1
= 4ac]
" _ o _1-b
encex; = Xy, =+ = X, = 5

Case 3: When (b — 1)? > 4ac. Roots of ax;? +
(b — 1)x; + ¢ = 0, are real and unequal. Let a
and f be roots.

Ifa<0Vx, €la,Blax;?+(b—1)x; +c =
0

i.e.f(x;) =0

Similarly for all x; € [a, B],
(i=1,23.n)iefr)=0

But fey + fay + o+ fe) =0,

fo) = foe) = = fa) =0

theneach ax;> + (b—1)x; +c =0

S0,x1 = X, == xp
= —(b—-1)
b—-1)2—-4
LV —1)* —dac

- 2a

Also,V x1 € (o, £)(i =1,2,3,..n)i.e. f(x;)
<0

but foe) + fo) + o+ fla) = 0,

SO fx) = fla) = = fa) = 0
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X Xy = e =
X, theneachax;?+ (b — 1)x; + c =
0

Sox1= x2=---= X

_ (@-b)£(—-1)*>—4ac

when a > 0 we get

x1: x2=-'-= X.
_ (@-b)£(—-1)*>—4ac

30) Let P(,) = 0 be a fifth degree polynomial
equation with integer coefficients that has
at least one integer root. If Py =
13 and P4y = 5. Compute a value of x
that must satisfy P, = 0.

Sol.: Let P(x) = (X - 2) CI(x) + P(Z)' Q(x) would
have integer coefficients.

Letr be an integer such that P,y = 0

2
Then Py = (r —2).q) + 13 =0,Sor — o

Thus,r — 2 can only equal + or + 13. Leading
tor=3,1,15,0or —11.

Let P(x) = (X = 10); F(x) + P(lO)' Leads tor —
E
"

Sorcanonlybe 11,9, 15 or 5. Thus, r = 15.

31) If x4, x5, x5 are the roots of x3 — x% + 4 =
0, from the equation whose roots are x; +
X2+ x3% xp + x3%2 + x1% x5+ 2% +

xzz

Sol.: x4, x,, x5 are the roots of equation
x3—x24+4=0........(1)

S X1 + Xy + X3 = 1, X1Xo + X2X3 +
X3X1 = 0,
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If the transformed equation is in terms of y,
then

y=X1+x22+x32 =x1+
(X2 + x3)% = 2x5%3

2X1X5X3

=x;+(1—x)* — X

, 8
=X1+(1_x1) +x_
1

8
.-.y:x+(1—x)2+;
5 8
=x“—x+1+-
x
orx3—x*+x—xy+8=0.... (2)
Subtracting (2) from (1), we get xy — x —
4
4=0=x=—
y-1
Putting this value of x in (1), we get

64 16
-1 (-1

= @y-1°2-4@y-1)+16=0

S +4=0

32)If @, B, ¥ be the roots of the equation x3 +
3x + 2 = 0, find the equation whose roots

are(a—B)(a—vy),B-vV)B-—a), ¥ -
a)(y — p).

Hence show that the above equation has two
imaginary roots.

Sol:Letz=(a—B)(a—y) = a’? —af —
ay + By
=a2—2aﬁ+@ oraz= a®—3a+

2(=2) e (1)

[~ YaB =3; afy = —2]alsoa® +3a+2 =
0,we get

a? —3a = —6a — 2 on putting this value
in(1)
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az= —6a—6o0ra(z+6)= —6,a
6

z+6

Butaisarootofx3+3x+2=0

= ]3+3[ © J+2-0

h z+ 6 z+ 6 -

(z+6)>—9(z+6)? —108
=0,z3+9zz—216=0

let z, z,, z3 be the roots of above equation
then;

Z1,22,23= (@a—B)a—y) (F—y)(B —
a)(y —a)(y — B) = 216

or — (a = B)*(B —v)*(y — a)* = 216,
(@ — BB -7)*(y —a)* =216

Hence, one of the factors in R H S must be
—ve say (a — B)%is —vei.e.a — B =pure
imaginary showing that a and f are conjugate
complex. Hence, the given equation has two
imaginary roots.

33)Ifa, B,y be theroots of x3 — x% + 4 = 0,
find that the equation whose roots are a —
a*+ (T a?), BB+ (Za?)y —v* +
(X a?)

Sol:Ya=1,Yaf =0 ~Ya?= Ya?—
25 aB =1....(1)

Also a® — a? + 4 = 0 [~ais a root of the
given equation]

4
a’—a= ——ora—a?
== @)

Let y be a root of the new equation

cy=a—at+ (@ +BE+y) =
=+ 1[by (1)and (2)]
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Since a is aroot of x3 — x2 + 4 = 0, we get

64 16 4

-1 F-12
:0!()/_1)3
—4(y—-1)+16
=0

or, y>—3y2—y+19=0

34) A polynomial f ,, with rational
coefficients leaves remainder 15. When
divided by x — 3 and remainder 2x + 1,
when divided by (x — 1)2. Find the
remainder when f ) is divided by (x —

3)(x — 1)2.
Sol.: Let quotient be g, and remainder be

T(xy When fi, is divided by (x — 3)(x — 1)2.

Now as divisor is a polynomial of degree 3 the
remainder must be polynomial of degree at
most 2. i.e, it must be of the form ax? + bx +
c; a, b, c are some rational numbers.

ax’+bx+c=a[(x—-1) +1)*+
b[(x—1)+1]+¢

=a(x—1)2?+Qa+b)(x—1)+a+
b+c

By division algorithm,

foo = Qe (x —3)(x —1)% +
alx—1)?+QRa+b)(x—1)+a+
b+c.....(1)

Now according to given condition f,, leaves a

remainder 15 when divided by x — 3
.'.f(3) = 15

Now putting x = 3 in (1), we have

Ra+b)(x—1)+(@+b+c)=2x+
1

Puttingx=1,wegeta+bc=3...........(3)

Putting x = 0, throughout, we get-a + ¢ =

From (2), (3) and (4), wegeta = 2,b =
—-2,c=3

Remainder = ax? 4 bx + ¢ = 2x% — 2x + 3.

35) If p(xy) = x* + ax + b be a quadratic
polynomial in which a, b are inters. Given
any integer n, show that there is an integer

M such that p)Pm+1) = P

Sol.: Let the zero’s of p(y) be a, § so that
P = (x —a)(x — B).Thenp =
(n—a)(n—-p.)

Pns1) = M+ 1—a)(n+1— ) we have to
show that p(,)Pn+1) can be written as

(t — a)(t — B) for some integer t (which will
depend upon)

PP+ = M—a)(n—p.)(n+1-
a)(n+1-p)

={n-a)(n+1-PHHn-Ln+
1-a)}

={nn+1) —n(a+p)—a+aB}x
fnn+1)—n(a+p)—pB + aBf}

={n(n+1) +na+b—a}ffn(n+
1)}+na+b—ﬂ}

=t-a)t—-pB;t=n(n+1)+an+
b= puw

Thus, pm)Pm+1) can be written as p(y for
pmM=n(n+1)+an+b
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36) If n is an odd integers no divisible by 3,
show that xy(x + y)(x® + xy + y?)isa
factor of (x + y)™ — x™ — y™

Sol.: We have

xy(x +y)(x* + y* + xy) = xy(x + y)(x —
wy)(x —w?y)

2

[w, w* are non real cube roots of unity]

It is enough to show that (x + y)" —x™ — y"
vanishes forx =0; y = 0. Now,x = —y;x =
wyand x = w?y

The polynomial obviously vanishes for x =
wy

wy +y)" = (wy)" —y" = y*(w+ D" -
wht —1]

=y (=AY - Wt = 1] =
wht —1]

—y"lw+ 1" -

— yn[(_WZ)n _ Wn _ 1] — _yn[WZn + Wn +
1]

(** nis odd)

Letn = 3p + 2, then w" = w3P*1 2" =
W6p+2 — W2

= Above expression = —y"*[w? +w+1] =0

If n =3p+2, then 0" = w?, w?" = w and the
above expression is zero. We can similarly
prove that the given polynomial vanishes for
x = w?y.Ifnis an odd positive integer not
divisible by 3, then (x + y)"* — x™ — y? is
divisible by xy(x? + y? + xy).

37) Find out at what n the polynomial 1 +
x% + x* + - + x?"2 is divisible by the
polynomial 1 + x + x% + x®1

xZn—l

Sol.: 1+x2+x4’+...+x2n—2 =X _
x4—=1
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x" =1

T+x+x2+-+x"1=
x—1

It is required to find out at what n.

x2N_q
x2-1

=]

we find,

will be a polynomial in x,
2T
e
=]
For x™ + 1 to be divisible by x +1, it is

necessary and sufficient that (—=1)"+1 =10
i.e.nis odd.

x"+1
x+1

Thus, 1 + x + x™ + -+ + x2""2 s divisible by
1+4+x+x%+--+x"1 ifnis odd.

38) Find out at what values of p and q where
x* + 1is divisible by p? + px + q?

Sol.: Let us suppose

x*+1=0C%+px+qx?+p'x+q")
= x*(p +p")x3(q
+q'pp")x?. (pq' + qp')x
+qq’'

For determining p, q, p’ and q’ we have four
equations.

p+p’=0,pp'+q+q =0,pq" +
qp’ =0,qq' =1
From(1) and (3), we findp' = —p(q' — q) =

0 assume

Casel:p=0,p'= 0,q+q'=0,qq' =
1,2 = -1

q= ti;q' = +i.
The corresponding factorization has the from
x*+1=0O2+D)(x%-10)

Case2:q' = q,q°> =1,q = +1, suppose first
q =q=1thenpp' = —2,p+p' =0,p? =
2,p= +V2,p' = +V2
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The corresponding factorization is
x*+1=(x*-V2x+1)(x* —V2x + 1)

Assume then,

Factorization will be

x*+1=(x*+2x; - 1)(x* -
2x1 —1

39) Show thatif a4, a,, ..., a,, are all distinct,
then the polynomial (x — a;)?(x —
a;)?....(x — a,;)? + 1 can never be
written as the product of two polynomials
with integer coefficients.

Sol.: Suppose that there exists polynomial
fo- 9x) With integer coefficients such that

foo- 9w = (x —a)?*(x —
a))? . (x—ap)?+ 1. (D)

~ RH Sisalways +ve.
* f(x) can never vanish.
So its sign never changes.

Similarly g(,) can never vanish and its sign
never changes.

“fx) 9(x) are always +ve, so f(,) and g are
both always +ve.

Substituting x = a4, a,, ..., a, in (1) we get

fa) 9@ = Ly 9ia) =
1, .....,f(an) g(an) =1

“ flap» - - fa,) are all +ve integers.
It follows that
fap = flap = = fla =1

238

Similarly gy = @) = = Ya, =1

“ fo) — L. 9x) — 1 vanish when x =

a;, ay, ..., ay

o —1=pw—a)x —az) ... (x —ay)
By factor theorem,

9o — 1= qux—a)(x —ay)...(x —ay)

P(x), 4(x) are polynomial with integer
coefficients.

v foo-9x) Is a degree of 2n,p(yy. q(x) Mmust
be both constants. Suppose p(y) = a, ) =b

Then f) = a(x —a))(x —az) ...(x —ay) +
1

g =b(x—a))(x—ay)...(x —a,) +1

(substituting these conditions these
conditions imply a? = —1,b% = —1)

=~ There is a contradiction and given
polynomial cannot be expressed as the
product of two polynomials with integer
coefficients.

40)If a3 = 1, and a # 1, find an equation,
whoserootsare a + a3 + a* + a™* +
al+atlanda®+a® +ab+a®+
ad+a?

Sol.: LetA=a+a3 +a4'_|_a,—4+a,—3 +a_1

=a+al+a*+a’+al®+
a2+ a3 = 1)

B=a*4+a’+a®+a®+a>+a?=
al+a’+a®+a’ +a+all

A+B=a+a’+al+a*+a’+a®+a’ +
a+a’+al®+all+al? =1 +a+a?+

(at3-1) 1-1

34 ... 12y _ 1 —
a’+--+a)—1 D
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AxXxB=(a+a®+a*+a’+al®+al?)x
(> +a’+a®+a’” +al +a'h)

=3(@+a?+ad+-+a'?) <
3(-1)= -3

Required equationis x? + x —3 = 0

41) Show that f(,y = x100 — x500 4 x100 4
x + 1 = 0 has no rational roots.

Sol.: If there a rational root. Let it be S, where

(p,q) =1,q # 0.Then q should divide the
coefficient of the leading term and p should
divide the constant term.

Thus,%ﬁ q= %1 and? =p= =1
p p
Thus,a = +1.If the roota =1, then

f(1)=1—1+1+1+1=3¢0.
So 1is notaroot.

P_ _ =
If p 1, then f(—l) 1+0

Hence, -1 is not a root. Thus, there exists no
rational roots for given polynomial.

42)If p(, be areal polynomial function p,, =
ax3 + bx? + cx + d. Show thatif [p(,)| <

1 for all x such that |x| < 1, then |a| +
|b| + [c| + |d| < 7.

Sol.: Considering the polynomials +p 4. We

may assume without loss of generality that a,
b>0

Casel:Ifc,d>0,thenpyy=a+b+c+d <
1<7

Case2:Ifd < 0andc < 0,then |a| + |b| +
lcl + |d|

=a+b+c+d=(@+b+c+d) -
2d =P — 2P <1+2=3<7

Case3:d = 0,c > O then |a| + |b| + |c| + |d]

=a+b+c+d
4 1
= §P(1) - §P(—1)
8 +8
3°(2) ' 3
- +1+8+8_21_7
PH)=373737373 "

Case 4: If d< 0, c< 0 then |a|+|b|+|c|+|d| =
a+b—-c—d

_5 4<1>+4 1)

—3P T P\3) T3P (73
<5+4+4_21_
~3 373

43) If all the coefficients in the equation f ) =
X"+ px™ 1+ pyx® 24+ -+ p, = 0be
whole numbers and if f o) amd f 1) be
each odd integers. Show that the equation
cannot have a common measurable root.

Sol.: Given x™ + pyx™ 1 4+ ppx™ 2 4 - 4
Prn=f) =0 (1)

Cannot have fractional root as all coefficients
are integers and coefficients of x™ is 1.

It cannot have even roots as of f(¢ i.e.,p" is
odd.

Hence f(;m) will be odd

«- all the terms expect the last term are even.
In the given equation it cannot have odd
roots, for it x is odd. Then x™ = an odd
number = an even number + f(,)= an odd
number, as so it cannot vanishes. Thus
equation (1) cannot have common surable
roots.
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44) Find all polynomials f ., with real
coefficients which satisfy the equality
f(a—b) + f(b—c) + f(c—a) = f(a + bC)V
real numbers a, b, c such that ab + bc +
ca=0

Sol.: Let f(y) be a polynomial which satisfy the
equationifa=b=20

Thenab + bc +ca =0 foreachc €

R sowe get fo—o) + flo-c) T fic—0) =
27(0+0+c),VceR

= fo) + fico) t fioy = 27,V C €R

= fioy+ fce) = fi VC €RLetc =
O we get fioy =0

sothat fioy = fio)VC €R.
Hence, fis even which must be of the from

fo = anx®™ + a1 x*7% 4o 4

a,x? withaq,ay,as, .......,a, € R

For any real number u and v the triplet (a, b,
c) will satisfy ab + bc + ca.

Leta=uv,b=(1—-wv,c=Ww?—-uv
= ab + bc + ca will becme (a + b)c + ab

=v+@-uwrv+wl-wr=v2+
@ —-uw)+v:u—-u)=v?+@W? -u)+
v2(u?—-u) =0

~The given equation results
flQu— D] + f[(A = u?)v] + f[(W? — 2u)v]
=27w?—u+Duvu,veRr........(1)

[“(a@a=b)=Qu—-Dv,(b—2c) =
(1 —=u®)v,(c —a) = (u? — 2u)v]

Let us fix u regard this is as a polynomial with
variable v.
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fou-nv — Qu —1)*"v*" + (2u —
1)2n—2U2n—2

f(l_uZ)U = (1 — uz)znvzn + (1 —
uZ)ZTl—Z

f(uz_Zu)U = (uz — Zu)Z” + 24
fuz—urn? = @ —u+ D2 4.

How equality the leading coefficients of both
sides of (1), we get 2u — 1) +
1-u?>)"+@W? -2 =2W?-u+
1)?"vVu €R

Letu = —2,then (=5)?" + (=3)?" + (8)*" =
2(7)211

5™ + 32" 821 = 2(7)*"

Now above result is true only for x =1 and x
=2

“fex is either an® forn = 1.or Bx* forn =
2

Hence f() can be written as a linear

combination i.e. fi) = ax? + fx*

Hence, f(y) = ax? + Bx* is a polynomial
which satisfies the given equation for @, § € R

45) If a+ S+ y= 0, then show thata™*3 +
ﬁ"+3 _|_yn+3 — aBy(a”+B"+y")+
%(az + Bz + YZ)(an+1 + ﬁn+1 + yn+1)

Sol.: a+ S+ y=0i.e, Letq, §, y denote the
roots of equationx3 + qy + r =0i.e.x =
aorfory

Multiplying this equation by x™. We have
xn+3 + qxn+1 +7rx" =0

Substituting in successionx=a, f y
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We have a3 + ga™*! + ra™ =
0. (),

ﬁn+3 +q'8n+1 +T,8n —
0. (2),

yn+3 + qyn+1 +ryn —
0 (3)

Adding (1), (2) and (3)

an+3 +ﬁn+3 +yn+3
+ q(a,n+1 + Bn+1 + yn+1)
+r(@™+ " +y™)
=0.....(4)

Butby x3 + gx + r = 0, we haveaf + By +
ya =gq,afy = —r.

> af = ap+ By +ya

i.e.,
= %(Zaﬁ + 2By + 2ya)
=%[(a+ﬁ+y>2—(a2+ﬂ2+y2)]
= @4 Y atp
+vy =0]

(4)gives an+3 +'Bn+3 + yn+3
— _q(an+1 + Bn+1 + yn+1)
—r(a™+ " +y™)

1
— E(az + ’32 + YZ)(an+1 + Bn+1 + yn+1)
+apy(a® +B* +y*

MISCELLANEOUS EQUATIONS
AND INEQUATIONS

(OBJECTIVE TYPE)

2
1) The solution |ﬁ| + x| = |xx_—1| is
@ x=0; (b)x>0; (c)xe(1,0); (d)
none
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x2

Sol.: Let oD

~a+b=

and b = x

x
(x-1)

The given equation becomes |a| + |b| =
|a + b|.

But his equality holds if ab = 0

2

-.c (x_l)

= 0 critical points are 0, 1

~xe{0}u (1,

2) The number of solutions of the equations
+21+31+ -+ (x—D!+xl =
k? and k € Iare

@ 2; (b)3; (c)4; (d) none

Sol.: The given equation is 1! +2! +3!
+.t(x—Dix! = k2

We can readily check that for x < 4 the given
equation has the only solutions = 1,k =
+landx =3,k + 3.

Now let us prove that there are no solutions
for x > 4.

11+ 21+ 3!+ 4! =33
1'+2I+3M..+5'=153
1'+2'+--+6! =873
1 +2!+ -+ 7!'=5913

The expressions

End with the digit 3.

Now for x > 4 the last digit of the sum 1! 42!
+...+x! is equal to 3 and therefore this sum
can not be equal to a square of a whole
number k (because a square of a whole
number cannot end with 3)

3 X
3) The solution set of (E) =x—x%>-9is
(@) ¢; (b)allreal; (c)allxeN; (d) none
Sol. Wehavex —x2—9= —(x3—x+9) =

—{(x—%)2+§}< OVx €eR
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But (g)x > 0 for each x € R. Thus (g)x =Xx—

x? — 9 has no solution.
4) If0 < p < m, then the quadratic equation
(cosp — 1)x% + (cosp)x +sinp = 0,

(a) Real roots; (b) imaginary roots; (c)
nothing can be said, (d) none.

Sol.: The discriminant D of the quadratic
equation (1) is given by D= cos?p —
4(cosp — 1) sinp

= cos?p —4cospsinp + 4sinp =
(cosp — 2sinp)? + 4sinp — 4sin’p =
(cosp — 2sinp)? + 4sinp (1 — sinp)

AsO0<p <msinp <0.Also1—sinp =
OVp €R.

Therefore, D > 0. Hence (1) has real roots.

5) The range of values of a for which all the
roots of the equation

(a—1D)(1+x+ xz)2 =(a+1)1+

x2 + x*) are imaginary is

@ (2,0); (b) (=0, =2]; (c)-2<
a < 2; (d) none

Sol: (1 +x +x?)[(a— 1A +x +x?) —
(a+1)(A—-x+x3)]=0

(1 + x + x%) = 0 has imaginary roots

= —2(1+ x?%) + 2ax = 0, must have
imaginary roots

= x? —ax + 1 = 0, must have
imaginary root.

=0a’-4<0,=>-2<a<?2.
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6) Letf(x) =(1+ b?)x*+ 2bx + 1 and let
m(b) be the minimum value of f(x). As b
varies, the range of m(b) is

@ [0.1; ®)[03]; ©[7.1] (@ none

Sol: f(x) = (1 + b?)x? + 2bx +

y N ¢ §)
fb0=2ﬂ+bﬁx+2b=0::x
B b
1+ b?

fQ@=2u+b%>0

* f(x) has min. value at

b . .
X = — 5 min. value of f(,) i.e,,

b? 2b?

Mo =Ty TrpE

b2 1
1+b%2 1+ b2

ormpy =1

clearly,0 < mgy < 1.[+ b?
= 0 max.value of mg) = 1]

7) fy=2[x]+3=3[x—-2]+
5,then [y + y] is [x] denotes the integral
part of x
(@) 10; (b) 11; (c)12; (d)none

Sol:vy=2[x]+3=3[x—-2]+5.......(0)

or, 2[x]+3=3[x—2]+5= 2[x] +
3=3{[x]-2}+5

= 2[x]3=3[x]-6+5=[x] =
4 from (1)

y=24+3,y=11

~4<x<5
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=4+y<x+y<5+4+y =15<x+
y <16

(+y =11)

~(x+y)=15

8) The solution set of the following equation

is 4log22x+ 1=2log,y
log, x* > log, y

@ (vV2,2); () (2,2); (©) (V2,1); (d)

none

Sol.: The system of equation is 4log,* x + 1 =
2logy v e v e . (1)

log, x2 = log; ¥ 0 ... ev e o (2)
Substituting log, y from (1)in (2)
2log, x > G) (4 log,*x + 1)

= 4log, x = 4(log, x)* + 1=
(2log,x —1)2 <0

Hence 2log, x —1 =0, x =

V2 from (1)y = 2
Hence solutions set of system is (v2,2)

9) Values of a for which exactly one root of
5x2 + (a + 1)n + a = 0 lies in the
interval 1 < x < 3is
@a>0 b)a>2; (c)-12<a<-3;

(d) none

Sol: f;y=5+a+1+a=6+2aq,
fey=45+3(a+1)+a=4a=48
“fay-f) <0,(6+ 2a)(4a + 48) <0,
(a+3)(a+12)< 0

w—=12<a< -3
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10) The number of real roots of (6 — x)* +
8—x)*=16is
(@) 0; (b) 2; (c)4; (d) none

[(6—x)+(8-x)]

Sol.: Consider y = .

Let y = f(—x). Then the given equation
becomes

+D*+(y-D*=16 = y*+6y% -
7=0

= -1DH*+7)=0=y2-1=0
2
cyc+7+0

=y=11=7-x=+t1=x=6,8

11) All solutions of equations x* + y? — 8x —
8y = 20 and xy + 4x + 4y = 40 satisfy
the following equations (s).

@x+y=10; ) Ix+yl=0; (0
|x —y| = 10; (d) none

Sol.: Given, x? + y2 — 8x — 8y =
20 . (1)

xy +4x +4y =40....(2)

M+2.2)=>(x+y)2=100=>x +
y = +10 Y (x+y) = 10.

12)If5{x} =x+ [x] — {x} =
%, where {x}and [x] are fractional and

integral part of x then the number of
solutions f the equation is

@ 1; (b)2; (c)3; (d) none
Sol: 5{x} =x + [x] e.. cc. ..... (1)

[x] — {x} = % e (2)
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~x = [x]+{x} .. (3) from (1) & (3)
we get
[x] + 2{x} ... ... ..... (4). Solving (2) & (4)

3

we get [X] =1, {X}% ~ from (3) x = >

13) Let F(x) be a function defined by F(x) =
x — [x], R where [X] is the greatest integer
less than or equal to x. Then the number of

solutions of F(x) + F G) = 1is
@ 0; (b)1; (c)2; (d)none
Sol: F(x) =x—[x] 0#x€R ~pyu+

X.

=>x—[x]+%—[%]= 1

- (x : 1) - ([x] + ED = 1 (D)

=>x+%=[x]+[%]¢1

~ RH Sisan integer. Hence LHS is also
integer

Let [x] + E] + 1 = A (Integer)
The equation (1) becomes x + % =A

A2 —4
2

2 At
=x*—Ax+1=0 ~x=

Forrealx,A> —4>0

ZA>22&AL-2,A=28&A= —2does
not satisfy of (1)

LA>2&A<-28&A€l.

Then equation (1) has infinite many
solutions.
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14) Number of solutions of 3"l = |2 — |x|| is
@0 (b2 (c)4; (d)none

1x
Sol.: Given equation is (5) = —2—x,
—o<x< —2+4x,-2<x=<0
¥ =2—x0<x<2=x-2,

2<x<oatx=2,3*—-x+2=9

(as 3¥ — x + 2 is an increasing function for
x>2)

Vv

p
(0.2)

0 (2,00

1 X
Forx = —2,(5) +24+x=9 forx<
—2,(§)x+2+x=9 (as G)x+2+
X is decreasing)

Hence given equation has only two solution -
2 and 2.

15) The system of equation [x — 1| + 3y =
4,x —|y—1| =2 has
@1 (b2 (c)3; (d)none

Sol.: The given equations are |[x — 1| + 3y = 4
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x+3y=5x=>1....(0)
{—x+3y=3,x<1 ......... (2) 4ndx
—ly—-1l=
{x—y=1y21.............(3)
x+y=3x<1.....(4)

Solving (1) & 3) wegetx=2,y=1

Solving (1) & (4) wegetx=2,y=1no
solution

(~x=1y<1)

Solving (2) & (3) wegetx=3,y=2no
solving

(x=21y=>1)
Solving (2) & (4) we get x = g,y = %
No solving (~x<1, y<1)

Here solution is x = 2,y = 1 (a unique
solution)

16) The number of integral roots of the
equation

J(x+3)—4Vx—1+
J(x+8)—6Vx—1=1is

(@ 1; (b) 2; (¢) 3; (d) none

Sol.: TakingvVx — 1 = t(t = 0) the equation
reducestoVt2 +4 —4t+Vt2 —6t+9=1

=[t-2|+[t-3|=1
It is necessary for t to satisfy 2 < t < 3.

W2<—Vx—1<3 =24<(x-1)<9=
5<x<10

17)If a, B, y be the roots of f,) =
0.where f,;) =x3+x* - 5x—1=
0,then [a] + [B] + [y], where |.| denotes,
the greatest integer is equal to

(@ 1; (b)-2; (c)-c; (d)none
Sol: Let fi,y = x3 + x> —5x — 1

“f ) =3x*+2x—5
Now the sign scheme for 3x2 + 2x — 5 is

AlSOf(OO): —00<0;f00: o > 0; f(l):
—4

5 148
f(‘§) =27
“f(=3)= —27+9+15-1

=—4<0 o fiy=—-8+4+10—1>
0;

f(—l):4'>0'f(0): —-1<0; f(z): -1>0
L=3<a< -2, -1<B<K<01ly<?2
flal+ B+ )= —3-1+1= -3.

18) If S be the solution of the equation (x)? +
[x]?> = (x — 1)%[x + 1], where (x) = least
integer, [x] = greatest integer, R=real
numbers, Z = integer, N = natural
numbers, then
@S=R;, b)S=R=-Z; (c)S=R=

—N; (d) none

Sol.: Here (x)= least integer > x and [x] =
greatest integer < x, so (x) — [x] = 1, ifxis
not integer and [x] = (x) if x €z.

Now, (x —1)=(x) —1,[x + 1] = [x] + 1, so,
()? + [x]? = (x —1)* (x + 1)?,
= )2+ [x]?= (x)?=2(x)+1+[x]*> +

2[x] +1
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=x-®)+1=0= -1+1=0ifx
€z,and 0+ 1+ 0if x € z,

Hence the solution set S= R -Z.

19) The number of triplets (%, y, z) satisfying
the equation x* + y* + z* — 2x%y? —
2y*z? — 2z*x* = 24 is (wherex, y, z are
integer)

(@0 (b1; (c)2; (d)none

Sol.: Since 24 is even number x* + y* + z*
has to be even

Two cases arise:

(i) All of X, y and z are even which is
not possible since in that case 16
divides each term of (and hence
the whole of) the left hand side
while 16 does not divide 24.

(i) Two of x, y and z are odd and one

of them is even say, x is even.

We have that: x* + y* + z* — 2x2y? —
2y%z% —2z%x? =x* = 2x*(y* +z%) +
(22 — y2)?

= x*—2x?2(y2 +z%) +
(z=)?(z+ )

Here again 16 divides each term since y and z
are odd.

Thus in either case the equation has no
solutions in integers.

(SUBJECTIVE TYPE)

1) Solvez + ay + a*x + a® = 0;z+ by +
b’x+b3=0;z+cy+c*x+c3=0.

Sol.: The given equation show that the
polynomial a® + xa3 + ya + z vanishes at
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three different values of @ namely at a= a, a=
b and at @ = c (assuming that a, b, c are not
equal to one another)

Set up different a® + xa? + ya + z —
(e —a)(a —b)(a —c)

This differences also becomes zero at a equal
to a, b, c. Expanding this expression in powers
ofa,weget(x+a+b+c)a’+ (y—ab—
ac —bc)a + z + abc this second degree
thrinomial vanishes at three different values
at « and therefore it equals zero identically
and consequently, all its coefficients are equal
to zero.i.e.x+a+b+c=0;y =ab —ac —
bc=0;z+abc=0

Hence,x = —(a+ b +c),y =ab + ac + b,

z = —abc is solution of our system.

2) Solve:x; +x; = aq; X3 +x3 = ay; x3 +
Xq4 = A3;....Xn_1 + Xnp = Ap—1 X +
X1 = a,

Sol:wehavex, = a; —x1,X3 = a, —x, =
az_a1+x1 X4= ag_X3= a3_a2+
a; = Xq .o

Xp = Op-g—Apn2t-tayta; *x

It should be noted that in the last quality the
upper signs will occur when n is odd and let
the lower signs when n is even.

Consider the two cases separately.

1. Letnbeodd, thenx, = a,,_1 —a,_, +
-+ a, — a; + x; on other hand x,, +

X, = a, from these two equalities we get
aAn—Apy1+an—z...—azy+a,

X1= 2
4 —aptap_q...—a3 1t
Xy = 5
a, —aq+a,...—ay+aj
X3 = 2
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2. Letnownbeeven,thenx, = a,,_; —
ap_y + -+ —a, + a; — x; on the other
hand x,, = a, — x; consequently for the
given system of equations to be
compatible the following equality must be
satisfied.

ap_q1 —Qpp+:+—a,+a; = a,
lL.eapta, ,++a,=a,_1+
Ap_z + -+ a;

(The sum of coefficients with even
subscript must equal the sum of
coefficients with odd subscript) Itis
apparent that in this case the system
will be indeterminate. i.e. will allow
an infinite number of solutions
namely.

X1=Ax,=a;—A x3=a,—a; +
Axg=a3—a,+a;—4 x, =
Ap1— Ao+ +az—a,+a; —1
Where 4 is an arbitrary quantity

3) Solve: xsina + ysin2a + zsin3a =
sin4a xsinb +ysin2b + zsin3b =
sin4b,xsinc + ysin2c + zsin3c =
sin4c

Sol.: We have sin2a = 2sinacosa,sin3a =
sina (4 cos?a — 1) sin4a =
4sina (2 cos®a — cos a).

The first equation of our system is rewritten
in following way. x + 2y cos a + z(4cos?a —
1)=4

(2 cos3a — cos a) The remaining two are

similar. Expand this equation in powers of

cosa,we have

8 cos3a — 4z cos?a — (2y + 4) cosa +
z—x=0

Putting cos a = t and dividing both
members by 8, we get t3 — gtz - yT"LZt +

ZZX _

Our system of equations is equivalent to
the statement that the equation has three
roots:

t=cosa;t=cosb;andt =
cos c,which follows:

z
E= cosa + cosb + cosc

——= —(cosacosh+ cosacosc
+ cos b cosc)

X —Z

2 = cosacosbcosc

~The solution of our system will be

x = 2(cosa+ cosb +cosc) +
8(cosa + cosbh + cosc)

y= —2—4(cosacosbh + cosacosc +
cos b cosc)

z =2(cosa + cosb + cosc)

4) Solve:x+y+z=14; x*> +y*> + z* =
91; y? = zx

Sol: Wehavex +y+z=14.......(1)
x2+y?+2z2=91......(2)
y2 =2zx.....(3)

Squaring the 15t we get x + y2 + z2 + 2xy +
2yz + 2zx = 196 Putting the values of x? +
y? + z? from (2)

And of zx from (3), we get 91 + 2xy + 2yz +
2y% =196.2xy + 2yz + 2y? = 105, 2x(x +
y+2z) =105

105 15

2y(14) = 1 ===
v(14) 05o0rv o8 2
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15
Hence,x +z = 14 — T from (1)or x

tg= 41

T
il B <15)2 225 ,
s0,zx = | orzx—mfrom( )

Hence, x and z are the roots of the
equation

t? — (x + 2)t + (x2)

o2 M, 225
sror 4" " 16
=0

or 16t%2 — 164t +225=0

_ 164 +,/(164)2 — 4 x 16 x 225

32
41 4++412 — 900
=t= 5

_ 41+./(41+30)(41 - 30)
B 8
_41+V71x 110
h 8
_ 41++781
B 8

V78I 15
8 YT’
_ 41+781

8

Hence,x =

5) Solve:x+y+z=ab; x 1 +y14+2z71=

a lb;xyz = a3

b

Sol.:x+y+z=ab,l+l+l: 3
x y z a

,XyZ = a

By (2) and (3), we have xy + yz + zx = a?b

Now by (1), (3) and (4), itis clear that x,y, z
are roots of t3 — abt? + a?bt — a® = 0 we
see that the above equations vanishes for t =
a, i.e. (t — a) is a factor of (5).

So by remainder theorem (5) is

t?(t —a)+at(t —a) + a®(t —a) —
abt(t—a) =0

or (t —a)(t? — at + a? — abt) =
Oor (t—a)

{t? +t(a—ab) +a*} = Oi.e.,eithert =
a.

or,
[ —(a — ab) + \/[(a — ab)? — 4a?]
B 2

1
i.e.,x,y,zare a,za [b -1

+ b2—2b—3]

%a [b —1—+b%2-2b— 3] respectively.

6) Examine X, y, z from the equations
x+y—-z2)(x—y+z)=ayz;(y+2z—
x)(y—z+x)=bzx;(z+x—-y)(z—x+

y) = cxy
Sol.: Given equationare (x + y —z)(x —y +
Z) = AYZ oo ver v v (1)
+z—x)y—z+x)
=DZX e e e e e (2)
C+x—y)z—x+y)=cxy..c....(3)

Multiplying (1), (2), (3) we get

(x+y—2>2x—y+2)>2*(y+z—x)?
2.2.2

= abcx“y“z
or, (—x3—-y3—234+y%2z+yz®+ 7%
+ zx? + x%y + xy? — 2xyz)?

= abcx?y?z? .........(4)

Or, dividing both sides of equation (4) by

x2y2Z2
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< x> y* z¢ y z
or, abc =|————-— —+=+-
yZ zZx Xy X X
X X
+24Z42
y z z
—2) ..(5)
By equation (1) may be written as
X2 —y2 72492 2
St e ) LA S B
yz yz z 'y
x? z
ora—2=——X——
yz z 'y
y2
Similarly,b —2=—————and c— 2
zx
z2 Xy
Txy oy «x

Now from equation (5)
abc=[2-a)+2-b)+(2—¢c)—2]*

abc= (4—a—-b—c)?

7) Eliminate x, y, z from the equations ax? +
by’ +cz* =ax+by+cz=yz+zx+
xy=20

Sol.: Given equation are ax? + by? + cz? =
0. e (D)

(2)
(3)

ax+by+cz=0..........
vZ+zx+xy=0...........
Multiplying (2) by (x+ y+ z), we have

(ax +by+cz)(x +y+2z) =0o0r,ax? +
by? + cz? + xy

(a@a+b)yyztb+c)+zx(c+a)=0

But ax? + by? + cz> =0
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8)

sxyl@a+b)+yz(b+c)+zx(c+a)=0
Alsoxy+yz+zx =0

H xy yz zx 1
enceb—a_c—b_a—c_ﬁ(say)

Dividing each ratio by xyz,

T 111
Z(b—a)_x(c—b)_y(a—c)_E

k ko k
-0’ @-o" b-0

S X =

Substituting these values in (2)

k k k
a +b +c
c—b a—c¢

=0
b—a

a(b—a)(a—c)+b(c—b)(b—a)+
c(c=b)la—c)=0

oral+b3+c3—(a+b)b+c)(c+
a) + 5abc =0

oral+b3+c3—-3(a+b)(b+c)(c+
a)—4(a+b)(b+c)(c+a)+5abc =0

or(a+b+c)d—4(@+b)b+c)c+
a) + 5abc =0

Solve: (12x —1)(6x — 1)(4x — 1)(3x —
1)=5

Sol.: We can write the equation in the

from

(=) (=) (-3 (x—3)
x——)lx—=){x—=)lx—=)=

12 6 4 3

5

Toe (D

1 .1 _1 _1 1 1 1
—<o<-<zand:——==-—-
12 6 "4 3 6 12 3 4

We can introduce a new variable
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Substitutex =y + % in(1), we get

)0zl -2) -2

5
©12.6.43
2 2
=)o) -
24 24 12.6.4.3
, 49 7 , 7
So,y =55 i.e.yq =5 and y© = e
) 1 1
corresponding roots are — 7 and >

Note: An equation of the from (x — a)(x —
b)(x — ¢)(x — d) = Ax? where ab = cd can
be reduced to a collection of two quadratic

equations by a change of variable y = x + a?b.

9) Solve the equation x3 — [x] =
3 where [x]denotes the greatest
integer.

Sol.:~ x = [x] + f,0 < f < 1. And given
equationisx3 —[x]=3 = x3 - (x—f) =
3=x3—-x=3-7,

Hence it follows that 2 < x3 — x <
3 further for x = 2.

Wehavex3 —x=x(x?-1)>2(4-1) =
6>3

forx < —1wehavex3® —x=0<2;

For—-1<x<Owehavex?®—-x< —x <
1 and

forO0<x<1lwehavex® —x<x<x3<1
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Therefore x, mustbe 1 <x < 2.

10) Solve:

x+2\]x+2\/x+~~+2 x + 2vV3x
=X

Sol.: The given equation

x+2\/x+2\/x+~~+2 XxX+2Vx+2=
X ... (1)

On replacing the last letter x on the L H S of
equation (1) by the value of x, expressed by
(1)we obtain

X = x+2\/x+2\/x+---+2\/x+2x

(2n radical signs)

Further, let us replace the last letter x by the
same expression, again and again yields

X =\/x+2\/x+2\/x+~--+2\/x+2x

(3x radical signs)

x+zjx+zjx+---+zM=...

we can write = x

= \]x+2 /x+2\/m
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12) Find the number of roots in the equations
sinx = logx

N—-oo

= lim x+2\/x+2\/x+---+2\/x+2x
Sol.: sinx =logx thenx < 10 (because if
otherwise the LH S < 1 and RHS >1). Since
2.2m > 10, the interval of the axis on the from
It follows that x = 0 to x = 10 contains only one wave of the
since curve y = sinx and a part of the next

wave (see the figure). The graph of the
= \/x AR C i function y = log x obviously intersects the

\/x P ( Xt 2vx T ) —JxT2x first wave of the since curve at one point.

Further, 2w + % < 10, for the point x = 52—7T

we have sinx = 1 > logx,the graphof y =
Therefore x = 0, 3. log x also intersects the first half of the
second positive half wave of the since curve;
further since at the point x = 10. We have
logx = 1 > sinx, the graph of y = log x must

(N radical signs)

Hencex? =x4+2x =x2—-3x=0

. x x(x-1)  x(x-1)(x-2)
11) Solve: 1 — T - 3! Tt intersect the second half wave as well. We see
(- X D=D)-(=x4D) _ that the total number of the roots of the
|
" equation sin x = log x is equal to three.
Sol.: The given equation is
x x(x—1) x(x—1(x-2)
1- T + TR 3 + 13) Solve: 4lx*-8x+12|-log4” _ =2y-1
x(x—-Dx-2)—(x—-x+1) and |y - 3| -3yl -2(y +1)? > 1
+ (—D" - =0
' Sol.: The equation of the system is equivalent
Putx=neN.1-=+ "—(nzT & to the equation 41** ~8¥+12| = 72y
B n(n—1)n-2) Its both sides are positive, and therefore it is
3! equivalent to the equation |x? — 8x + 12| =
_1q1\n
D (2)logs 7
Mgy ne, +ng, —ng, + -+ (=1)"n¢, =0 Since log, 7 > 0 and x? —8x + 12 = 0 for
' >
n(n—1)(n - 2) any x, it follows t.hat y= 0 Ther_efore we
' =0 should solve the inequality of given system
n!
only for two cases,0 <y < 3andy <
~ (1—-1)"=0o0r0" = 0itis true for all 3.For 0 < y < 3 the equality of given system
natural numbers assumes the from 3 —y — 3y — 2y? — 4y —
_ 2—1=>0i.ey*+4y >
Hence solutionx & N 0,whence we find —4 <y < 0.

Nothing that 0 <y < 3, we find thaty =0
for y > 3 the inequality of the given system
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assumes the fromy — 3 — 3y — 2y? — 4y —
2—1>0ie.—-2y?—6y—6>=0.

This inequality has no solutions. Substituting
the value y = 0 into the equation of given
system, we obtain

b et
x>—8x+12=0

I
(x=2)(x—6)=0

N {x:2, {x=6
[y:O’ y:O

Thus two pairs of numbers (2, 0) and (6, 0)
are the solutions of given system.

14) Find a, where the equation a® +
a’|la + x| + |a®x + 1| = 1 has no less
than four different integers solutions.

Sol.: Given equation is a® + a?|a + x| +
la?x +1| =1 ... (1)

We can write equation (1) as |a®x + 1| +
la® + a%x| = (a®?x + 1) — (a® + a®x)

It follows from the properties of modulus that
the inequality |A| + |B| = A — B holds true if
A = 0and B < 0, equation (1) is equivalent
to the system

{a2x+120 (2

a3 +a2x S 0 see ses sss ses ses mas wsw

The values a = 0 satisfies the hypothesis since
in this case system (2) and consequently
equation (1) have all x € R as their solutions.
Let a # 0. Then system (2) is equivalent to

..(3)

{x > —q7?
N g
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Thus we have to find all values of a for which
system (3) has no less than four different
integer solutions.

1
Let us compare the numbers - a and — — we

find their difference, — % —(—a)= —— % +

a’-1

a?

__ (a-Da%+a+1

= sincea’ + a+ 1> 0foranya,

it follows that a® + a + 1 does not efect
the sign of the dif ference of the numbers

being compared. In accordance with the
method of intervals, we have —a™2 <
—aifa<l,a #0,—a™?>= —a= —lifa=
1,—a"? < —aif a > 1. Consequently; (a) ifa
> 1, then system (3) has no solutions. (b) Ifa
= 1 then (3) = x = -1, there is a unique
solution and the condition of the problem are
not satisfied, (¢) if 0 < a < 1, then —1 <
—a<
0,and therefore the interval[—a™2, —a]
contains no less than four integers provided
that the inequality —a™2 < —4 holds true.
0<ax1
Let us solve the system {_ % <4
{ 0<axl1
1—4a*=>0

“lg-ade=o=e

{0<a

Thusif0 <a < % then the given equation has
no less than four different integer
solutions.(d) if -1 < a < 0,then0 < —a <1
and the interval.

[—a™2, —a] contains at least four integers.

Provided that the inequality -a~? < —3 holds
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-1<a<0_
—a7*< -3
{—1<a<0 {—1<a<0

true Let us solve the system {

-1 < —3a? 3¢ -1<0
{ -1<a<0
1 1
=
a—— a+—>£0
(a-5) e+ 5
—-1<ax<0
1 1
:>{——Sa§—
3 3

.. —V3 .
if T\/_ < a < 0, then the equation has no less

than four integer solutions. (e) ifa = -1, then
the interval [-1, 1] contains only three
integers i.e. conditions of the problem are not
satisfied. (f) ifa <-1,then —1 < —a™2 < 0,
and for the interval [-a™2, —a] to contain no
less then four, it is necessary that the
inequality —a = 3 hold true, i.e. the inequality
a < —3 be valid. Thus, for a < —3, the given
equation has no less than four integer
solutions.

Combining all the results, we get the set of
required values of the number a namely the
V3 1]

interval (—oo, —3)and the interval |— >3

15) Solve:log ;1 (2 —y) >0
and log—,(2x—2) >0

Sol.: If the numbers x and y satisfy this
systems them they also satisfy the conditions.
2—-x>02—-x#1,2x—-2>04—-y>
0,4—y +# 1.2 -y > 0.i.e. the system of
inequality 1 < x < 2,y < 2. On this domain
for the bases of the logarithms of the initial
systemwehave 0 <2 —-x<1,4—y> 2.

Thus the original system is equivalent to the
system
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1<x<?2 5

y <2 :{E<x<2
0<2-y<1 1<y<?2
2x—2>1

Consequently, the set of all solutions of
the original system is the set of pairs (x,

y) where x belongs to the interval (;, 2)
and y belongs to the interval (1, 2).

16) Find out whether the system of equations
x+y=0x%+y?=0andsin(x +y) =
0,x% + y? = b are equivalent for (i) b =2
and (ii) b=>5.

Sol.: It is clear that both for b= 2 and for b =
5 the second system is a consequence of the
first. Since the equation sin(x + y) = 0isa
consequence of the equationx +y =0

The first system has solutions
(1,-1),(-1,1)whenb =

2 and [\/E—\/E] \F\F] whenb =5
2 2 2 2

Let us find the set of solutions of the second
system.

From its first equation we have x + y =
nm(n € Iand, consequently, it is equivalent
to the collection of system
{ x+y=nn

x2 _|_y2 —bnelT «.(D

Consequently, the collection of system (1) is
equivalent to the collection of systems

()

To find the set of solutions of (2), x and y are
the roots of the quadratic equation.
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1
t2 +nnt+z(n2n2 —b)=0,n €l.
Discriminant D > 0i.e.,n?m? —

2(n?n? — b) = O ie. when x? < 22,
A

It follows that for b = 2 the collection of
system (2) has a solutions only for n = 0 and
forb=5ithasasolutionforn=-1,n=0,n
= 1. Thus, for b = 2 these systems are
equivalent.

Comparing the sets of solutions for b = 5, we
find that the initial system are not equivalent.

17) Solve the equation (144)* — 2(12)* +
a = 0 for every value of the parameter a.

Sol.: The given equation can be written as
(12)2%1 - 2(12)¥ + @ = 0. Let us write y =
(12)21,

Then the above equations becomes y? — 2y +
a=0

=1+vVl—-a.....(1)

The equation (1) isvalidif1 —a > 0i.e.a <
1.

No solution is possible ifa > 1.1f a =
1,theny = 1.

=12 =1 =x|=0=x=0

let us consider the case when a <
1. From (1)we have 12¥1 = 1 +
Vi—a....(2and 12Xl =1 —
..(3)

But the equation (3) is unacceptable, since
12X > 1.

Hence, we have 121 = 1 + V1 —a
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= |x| = log12(1 ++v1 —a) =X =
ilog12(1+v1—a)

Whenevera < 1.

18) Solve: x% 2**1 4 21x=3142 — x2 lx-3l+4 4
2x—1

Sol.: We consider two cases according as x =
30r x < 3.As we know, if x > 3, then [x —
3]=x-3

Casel: Let x = 3.Then |x — 3| = (x — 3).
Hence the given equations becomes

x2_2x+1 + 2x—3+2 — x2_2x—3+4 + 2x—1

= x2.2%F1 4 2X71 = »2 2x+1 4 2X=1 \whjch

is satisfied for every x.

Hence the given equations is satisfied for
everyx = 3

Casell: Let x < 3,then |x — 3| = —(x — 3).
Hence the given equations becomes,

X2, 2%+l 4 9=(x=3)42 = 52 o—(x-3)+4 4 px-1
= x2. 271 4 257% = x2,277% 4 2% 71
— 2. 2X+1 _ gx+1 — 52 27-X 4 95-%
= x2. 2871 27l = 52,22, 257X — 257X

= 2% 1(4x* - 1) = 257%(4x* - 1)

= 2" 1(4x? - 1) =25 (4x* - 1) = 0

(2
(1)=>4x2=1=>x2=i=>x=1%

RQ=22¥1=25* =x-1=5-x=
2x=6=>x=3
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Butxis < 3.

Hence the x = 3 does not give the solution of
the equations. Hence the solutions of the
original solutions are x > 3. (from case 1)

andx = + %(from case 2)

19) Solve the inequality

log—g 14

25 — x? <14 —2x— x2>

>1
Sol.: As we know, if the log function log, x is
meaning ful then its base a should be > 0 and

a # 1.Also x > 0 therefore we shall discuss
25—x2
1

two cases according as the 0 < <

25-x2
16

1 and > 1.

Casel:Let > 1.

25-x?
16

This=25—-x?>16 = x?<9,=
x?2-9)<0

S x+3)(x-3)<0=25-x2>16=
3<x<3u ()

In this case, the given inequality is equivalent
to

24 —2x —x% 25 —x? 24 — 2x — x?
> =
14 16 7
25 — x?
8

>

= 192 — 16x — 8x2 > 175 — 7x?* =
x24+16x—17<0

S x+17Nx-1D)<0= -17<x<

255

25—x?
16
original inequality is equivalent to the double

inequality.

Case2:Let0 <

< 1. In this case, the

24 —2x —x% 25 —x?
<

0< 14 16

Thus in this case, we have to solve the
following system of double inequalities:
.2
25—x <1
16

. 24—-2x-x% _ 25-x?
(i) 0< <
14 16

@ o<

The first inequality is reduced to 0 < 25 —
x%2and 25 —x? <161i.e.9 < x? < 25.But
9<x?=>x>-9>0=>(x—-3)(x+3)>0

= x<—-3o0orx>3andx® <25 =
x2—-25<0=(x-5)((x+5)<0

= —-5<x<5.

Hence taking together 9 < x? < 25 = -5 <
x<-3and3<x<5.......(4)

The second double inequality is equivalent to
the system of inequalities (iii) 24 — 2x —
x2>0= x%+42x—24 <0and (iv)x?* +
16x—17>0

(i) = @x+6)(x—-4)<0=—-6<
x <4
iv) (+1D)x-1)>0=>x<
—17 or x > 1.
Thus (ii)+ (iv) =1 <x <4 ... (5)

Finally (4) +(5)ie.,3<x<5and 1 <x <
4) together = 3 < x < 4.

Hence combining the two cases we have the
solution of the original inequality which
consists of two intervals : =3 < x <
land3 <x < 4.
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Vx2-2x3+1 1-x . n+1\ 4 1\%
20) Solve : G) < G) Sol.: we have (T) = (1 + ;) <
1\% 3\4
. . (1+3) =) <10
Sol.: Since the base of the exponential 2 2
inequality (i.e. %) is less than 1, hence the [“n>2]=Mm+1)*<n%10<
original inequality is equivalent to the 10™.10 = 10™*!

inequality. Vx6 —2x3+1>1—x

i 6 _ 9.3 — 3 _ 1\2],3 _
Since Vx 2x>+1= \/(x 1?lx 11, 2) Ifa,b, care the sides of a triangle, then
1 1 1, .
= the above inequality can be written as vie’ ora’ app IS also the sides of the
%3 =1 >1 =X v e (1) triangle is,

(a) Always false; (b) always true; (c)

If 1—x < 0i.e.x > 1, then the inequality Sometimes; (d) none

(1) is automatically satisfied since the left
member is non negative. Sol.: Assume that a = b = c. We must have

b+c>a.
= The solution of the inequality (1) is the set

of all x >1 we now consider x < 1. In this case Also,notethatb+c<c+a<a+b»b
x3<1liex3-1<0andso|x3-1|=

(x3 — 1) and then we can write the inequality
Mas—-x3-1)>1-x=-x3+1>1-
x=x3-x>0=2x(x*-1)>0=

x(x —1)(x + 1) < 0 Solving this inequality
by the method of intervals we find that it is

1 - 1 - 1
-
b+c c4+a a+b

1 1 1 .
To show that —,——,—— are sides of a
b+c c+a a+b

. oy . . 1
triangle, it is sufficient to show that =

true for x < —1 and for x located in the ﬁ > ﬁ
interval 0 < x < 1.......(3) Hence combining ¢ ‘
(2) and (3), we concluded that the original Asa=b=c,weget2a=a+b,and 2a >
inequality is valid for x < 1,0 < x < 1 and a+c
alsox < 1.

1 1 1 1

= —=< o <
2a  a+b 2a a+c
1 1 1 1 1 1
INEQUALITIES . + >4 =>
a+b a+c 2a 2a d b+c
(OBJECTIVE TYPE)

[+ a < b < c] -~ itrepresents a triangle.

1) Ifn* <10"forafi itive i
) lin or a fixed positive integer 3) The product of three positive reals is 1 and

n = 2,then . . their sum is greater then sum of their

@ ®m+1) < 10" b)(n+ 1" = reciprocals. Exactly one of them is greater
10" (9n*+1<10™; (d) than
none (@) -1; (b) 0; (c)1; (d) none

Sol.: Let three positive reals be a, b and a—lb,

256
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: 11,1
Wearegivena + b +—>—+-+
ab........(1)

Now (a—1)(b — 1) (— - 1)

=1+ <a+b+1b>
~(ar+ —) 1
<a+b+ )

1
(ab+ + )>0
a b

Using (1)= either all thesea — 1,b —
1 and ﬁ — 1 are positive or exactly one of

them is positive.

Buta >1,b > 1 and ﬁ > 1. Thus exactly one

of a, b exceed 1.

4) Ifa+b+c=6,thenv4a+1+
V4b +1++4c +1is
@<9 (B)>9 (6)<9; (d)none

Sol.: By the Cauchy Schwarz inequality,

(Vaa+1+Vab +1+Vac+1) <
1+1+1)

(4a+1+4b+1+4c+1) =
3[4(a+ b +c) + 3]

=03)27) =>V4a+1++V4b+1+
Vdc+1<9

5) Ifa,b,ceR, then
\/a2+b2+cz—bc—ca—ab2
@ maX{lb—CI lc —al,|a—bl};
(b) max{lb —c|,|c—al,|a—bl}

al,la - bl}

(9 {maxlb — |, Ic -

(d) none

Sol.: We have, a® + b> + c?> —bc—ca —ab =
1

2
[(b? + c? — 2bc) + (c? + a® — 2ca) +
(a? + b2 — 2ab) = 2 [(b — )% +
(c—a)’+(a—-hb)*1=0
Also,a? + b?> + c?> —bc—ca—ab
—E(b—c)2
4

[4a% + 4b? + 4c? — 4bc — 4ca — 4ab
— 3(b? + ¢? — 2b0)]

-Plr—\

1
=Z[4a2 + b% + c% + 2bc
—4a(c+b)]
= %[4a2 + (b +¢)?
i2a—(b+0))? =

—4a(b+c)] =

Similarly,a® + b? + ¢> — bc — ca — ab

3
27|c—a|anda2+bz+c2
3
—bc—ca—ab = 7|a—b|

= a’?+b%*+c>—ab—bc—ca
3
27max{|b —cl,]c

—al,la—bl}

6) Ifx>0,)l>Oandlx+§— 1 is always

non-negative, then the least value of 1 is:

1 1 1
@3 ®3 ©3 (@ none
Sol.:/1x+%—120=>/1x2—x+120

1
—4A41<0=>21=>2-

= (—1)? 2

257
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~ least value of 11is %.

x2
(1+x%)
@0<y<z BMO0<y<1 (90<

y < 2; (d)none

7) IfxeRandy= then

Sol.:y + yx* = x2,wherey > 0,yx* — x? +
y=0

Y
x? = @, for this exists. 1 — 4y2 = 0

—_

1 1
= ——<y<-buty=0=0<y<—-
2 =Y =3 ouY =Y=3

1

8) Ifxq,xy, ..., x, are any real numbers and n
is position integer, then
@ Xiix? 2nXx)% d)nyx? <
C1x)% ©nYi % = (X1 x)?
(d) none

2 2 2 2
Xy 24224t Xq+2p et
Sol.: Here, 2—=2 > ( =2 ")

n

9) Ifx,y, z are positive real number, such that
x+y+z=2, then
@ 2-x)(2-y)(2-2) <8xyz;
M 2-x)2-y)x(2—-2)<8xyz

© @-02-N2-2)23;
(d) none

Sol:x+y+z=2 ~(2-x)2-y)2—-2)=
+2)(z+x)(x+y)

= (y +2) 2 2,/yz,(x +y) = 2Vxz,
Cc+y) = 2,/xy.
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~(y+2)z+x)(x+y) = 8xyz

x1+yt4z71
Also, 3

X 3, A -1
3

-1

=x1+yt4+z71>3 (§)

N| ©

=xt+yt+z71>

10) If the product of n positive numbers is n",
them their sum is

(@) &n? (b)=n+ %; (c) > n; (d) none

Sol.: Letaq, as, ... oo ... , @, be n positive
integers such that a; a,, ..., a, = n™. Since
AM=GM

aptateta, 1

> (aqay,...a,)n
n (12 n)

a1+a2+"'+an

=n
n

=aq ta;+--+ay
> n?

11) For positive real number a, b, ¢ such that a
+b +c = p which one holds?
bc  ca  ab
(@ " + n + - = p;
(b) (P —a)(P —b)(P —c) < 8abc
(© (P—a)(P—b)(P—c) =5 p*;

(d) none
Sol.: Using A.M = G.M one can show
(b+c)(c+a)(a+b) =8abc

= (p—-a)(p—->b)(p—c) =8abc =
(b)holds
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Als

. @P-a)+@-b)+(@-c)
’ 3
2 [@-a)@-b)p

—oP

3p—(a+b+c)
= 3

2 [@-a)@-b)p

1
I
2
== [0~ -hp-OF

83
= @-0@-HE-) <

= (c)does not holds
Aoain. si 1(bc+ca>> (bc ca) .
gain, since - T t3)2 i etc
~Adding the inequalities, we get

bc+ca+ab> thtc=
a b c_a €=p

= (a) does not holds.

12)If0 < a < B <7 then

(@ ptana < atanp; (b) ftana >
atanf; (c) ftana < asinf; (d)
none

Sol.: We know, f(,) = % is decreasing
7 sinf
f(ﬁ)< f(a):0<a<ﬁ<§. ﬁ

sina

<

or asinf

< Bsina. Also,f(x)

tanx . . )
=— is increasing

f(/;) > flpasa<p.
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tanf tana

B

>

oratanf > ftana.

13)If x,y, z are real, distinct and u = x% +
4y* + 9z — 6yz — 3zx — 2xy,then uis
(a) Zero; (b) non-negative; (c) non-
positive; (d) none

Sol:u = %{sz + 8y? + 1822 — 12yz —
6zx — 4xy} = %{(x —-2y)2+ 2y —32)* +
(3z — x)?}

=u=0

14) The minimum value of p = bcx + cay +
abz when xyz = abc, is
(a) abc; (b) 4abc; (c) 5 abc; (d)none

Sol: A.M > G. M = 2exreaytabz
2A.M>G. - >
1
(a®b?c?,xyz)3
bcx + cay + abz = 3xyz or

bcx + acy + acy + abz = 3abc

15)Ifa, b, c, d are positive real numbers such
thata+b+ c+d=2,then M =
(a + b)(c + d) satisfies the relation
@OoO<M<1 b1<M<2 (2<
M < 3; (d)none

Sol.: () Using A. M = G. M, then {20 >

{a+b)c+dk,

1
=->M2,=>M< 1.

N DN

Asa,b,c,d>0.So,M=(a+b)X(c+d)>0

i.e.,, 0<M< L
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(SUBJECTIVE TYPE)

1) If-1< a < a; <--
that

< a, <1, prove

n-1

i=1
/2
S _—

2

Sol.: It is natural to make the
trigonometric substitution a; =

cosx; forsomex; €0,m,i=1,2,...,n
Note that the monotonicity of the cosine
function combined with the given
inequalities show that the x;'s from a
decreasing sequence. The expression on
the left becomes

n-1

E \/1 — COS X; COS X1 — Sinx; Sin x;,¢
i=1

n-1

= z V1 —cos(xig — x;)

i=1
n-1
. Xit1 T X
= \/E sSiIn———
. 2
=1

Here we used a subtraction and a double-
angle formula. The sine function is concave
down on [0, ]; hence we can Jensen’s
inequality to obtain

2 xz+1

i=1
1 n-1
< sin il L
n—1¢ 2
i=1

Hence,

z \/1 — Q1 — J(l —a;?)(1 - a;4?)
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V2 Z sin—+L "t < (n— 1)\/§sm2(—_xll)
< \/_(n -1)
sinﬁ.smce X, —xq € (0,m).

Using the fact that sinx < x for x > 0 yeilds

sinm \/_n
V2(n —
V-0
2) Letxgy = 0and xq,x,, ....,x, > 0 with
Yk=1% =1
Prove that

Xk

n
k=1
J1+x0+~~~+xk_1,/xk+---+xn

<

N[

Sol.: Since x;'s are positive and add up to
1, we can make the substitution xy + x; +
-+ x, =sinag, withayg < a; < <

a, = g,k = 0,1, ....,n. The inequality

sinag—sinag_q T

becomes Y _ -
Zk_1\/1+sinak_1 Ji-sinag_; 2’

Which can be written as

k — Q-1 Osak'l'ak—l

n
2 sm C
COS A _
= k-1

s . .
For 0 < x <Z,cosx is a decreasing

function and sin x < x. Hence the left side
of the inequality is strictly less than

n 2%&5 Ag—1 s
— = —1\a;, —
k=17 cosaps ke=1(a

Ax_1) = %and problem is solved.
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3) Ifa, b, cbe the edge of a right
parallelepiped and d its diagonal. Show

that a?b? + b%¢? + c%*a? > abcd V3.

Sol.: Since in a right parallelepiped the
diagonal is given by the formula d =

va? + b? + ¢?, the inequality is equivalent to
(a?b? + b?c? + c?a?)? > 3a?b?c?
(a? + b? + c?) After regrouping term this
4 4
becomes %(az - b%) + % (b% +c?)? +
b* 2 2
7(c —a*)=0

Note that the equality holds if and only if = a
= b = c i.e. the parallelepiped is a cube.

4') Ifal, ay, ...,
that

a,, are real numbers, show
n n

i=1j=1

ijcos(a; —aj) =0

Sol.: By using the addition formula for the
cosine we obtain

i Zn: ij cos(a; —

i=1j=1
n n
Z Z 1] COs a; Cos a;
=
+ijsing; + sina;)
n n
= Zicosaichosaj
i=1 j=1
n n
+Zisinai2jsinaj
i=1 j=1
2 n 2

~(Yicosar) +(Yoisna) o

i=1 i=1
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5) The non-negative numbers a, b, ¢, A, B, C
andksatisfya+A=b+B=c+C=k
Prove that aB + bC + cA < k.

Sol.: The inequality is equivalent to

a(k —b)+ bk —c)+clk—a) < k2If
we view the left side as a function in a, it
is linear. The conditions from the
statement imply that interval of definition
is [0, k]. It follows that in order to
maximize the left and side we need to
choose a € {0, k}. Repeating the same
argument for b and ¢, it follows that the
maximum of the left hand side is attained
for some (a, b, )€ {0, k}3. Checking the
eight possible situations, we obtain that
this maximum is k2, and we are done.

6) Let0 <x;, <1 forallk=1,2, ..., n. Show
thatx; + x5 + -+ x, —
X1X2 i v Xp <n—1
Sol.: Let us fix x5, x5 ... ... X, and then
consider the function f: [0, 1] =R.
fX)=21 + X + -+ X5y — XX evvev e Xpp.

The function is linear in x, hence attains
its maximum the left side of the inequality
one must choose x; to be 0 or 1, and by
symmetry, the same is true for the other
variables of occurs, if all x; are equal to 1,
then we have equality. If at least one of
them is 0, then their product is also zero,
and the sum of the other n — 1 terms is at
mostn — 1. Which proves the inequality.

7) Find the maximum value of the sum §,, =
a1(1 - az) + a, + (1 - a3) + -+
a,(1—aq), where% <a; <

1foreveryi=1,2,...,n
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8)

Sol.: The expression is linear in each of
the variables. So, as in the solutions to the
previous problems, the maximum is

attained for a; = %or 1,k =
1,2,.... ndf a, = % forallk,then S, =
%' Let us show that the value of S;, cannot

exceed this number. If exactly m of the
as are equal to 1, then m terms of the
sum are zero. Also, at most m trams are

equal to %, namely those of the from
a,(1—ayy)witha, =1land agpq = %
Each of the remaining terms has both
factors equal to %, and hence is equal to i.
Thus the value of the sum is at most

m.0 + % 4 nm2m) 2. Which shows that

. .. n
the maximum is "

Ifn>2and 0 < x;4 foralli=1,2,...,
nshowthat (x; + x5 + -+ x,,) —

(x1X9 + x2%3 + -+ x,x1) < [g] and

determine when there is equality [.]
denote the greatest integer function.

Sol.: Denote the left side of the inequality
by S(x4, x5 ... x;,;) This expression is linear
in each of the variables x; As before, it
follows that it is enough to prove the
inequality when the x;s are equal to 0 or
1. If exactly k of the x;'s are equal to 0,
and the others are equal to 1, then
S(xq1,x3, ..., xp) < n —k,and since the
sum xq X, + XXz + -+ + x, x4 is atleast

n — 2k,S(xq, x5, ..., x,,) is less than or
equalton — k — (n — 2k) = k. So the
maximum of S is less than or equal to
min(k,n — k).Which is at most E] If

follows that for n even. Equality holds
when (x4, x5, .., ) =(1,0,1,0, ...... ,1,0)or
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9

(0,1,0,1, .....0, 1). For n odd. Equality
holds when all pairs (x;, x;,1),i =

1,2, ....,n.consist of a zero and a one,
except for one pair which consist of two
ones (with the convention x,, 1 = x;).

Prove that for numbers a, b, c in the

a b c
interval [0, 1
[ ’ ]b+c+1 c+a+1l  a+b+1

1-a)1-b)(1-¢) <1

Sol.: For any non-negative numbers a, 3,

. a .
the function x —» v is convex for x = 0.

Viewed as a function in any of the three
variables, the given expression is a sum of
two convex functions and two linear
functions so it is convex. Thus when two
of the variables are fixed, the maximum is
attained when the third is at one of the
end points of the interval, so the values of
the expression are always less than the
largest value obtained by choosing a, b, c
€[0, 1]. An easy check of the eight possible
cases shows that the value of the
expression cannot exceed 1.

10)Ifa, b, ¢, d, e €[p, q] with p > 0, prove that

(L+b+ctd+e) (Z+5+5+5+2) <25+

2
(-

q p
Sol.: If we fix four of the numbers and

regard the fifth as a variable x, then the

left side becomes a function of the form
B

Y. with a, 8, y positive and x

ax +

ranging over the interval [p, q]. This
function is convex on the interval [p, q]
being the sun of a linear and a convex
function, so it attains its maximum at one
(or possibly both) of the end points of the
interval of definition. As the value of the
expression, itis enough toleta, b, c,d, e
take the values p and q.



Challenging Mathematical Problems

If n of the numbers are equal tom p, and
5 —n are equal to g, then the left side is
equal to

x2+(5—n)2+n(5—n)(g+%)

= 25
+n(5

(5]

The maximal value of n(5 — n) is attained
when n=2 or 3 in which case n(5 — n)=6, and
the inequality is proved.

11)Prove thatif1 < x, <2, k=1,2,.... ,n

2
then (Xh_1 x1) (Z',}=1 i) <nd

Sol.: Using the AM- GM inequality we can
write

@ w0 (S ) <2 (Bamc+

n 1iyn 1
k=1, T Zk=1xk)
1 1
Tt
3

n
X J—
k=1

. 2, .
The function x + - Is convex on the interval

[1, 2], so it attains its maximum at one of the
end points of the interval. Also, the value of
the function at each of the end point is equal
to 3. This shows that

And the inequality is proved.

Let us point out that the same idea can be
used to prove the more general from of this
inequality.
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12) Prove that
1 1
+ +...
Vi++V3 V5+V7

1
+ > 24
v/9999 + /9999

Sol.: There are some terms missing to make
this sum telescope. However, since the left

1 1
s e Tt

1 . . .
9559410001 the inequality will show from
1 1 1 1
Vi+/3 + V3+V5 + V57 o v/9999+ /10001 >
48 Now we are able to telescope. Rationalize

the denominators and obtain the equivalent
inequality.

B-VI VE-V3 V7—1§
+ + + o

hand side is greater than

2 2 2
\/10001 + /9999
+ > > 48

(v10001-1)
2

The left side is equal to ,and an easy

check shows that this is larger than 48.

k
13) Ifak = (k—1)4/3+Kk4/3 +(k+1)4/3’

aq + a, + -+ Q9999 < 50.

Show that

Sol.: The idea is first to decreases the
denominator of a,,, replacing k*/3 by (k —
1)?/3 (k + 1)?/3 and then to rationalize it. We
have

k

tn < z 2 2 z
k—13+(]k-13Uk+1)3+(k+1)3

k((k+ 1)§ (k — 1)§)
T (k+ D2 (k- 1)2

1 2 2
= 2 ((k + 13 (k= D)

It follows that Y22 a, < %239:91 an ((k +

15 (k - 1)3)
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:%<1000§+999§_1§—0§> Z"("—l)(”_z) (""“’1)12
_ o

1 k=0
< 1(100 +100-1)

< 50. (1—%)(1—%)....(1—1{;1).

1

14) Show that ., YO 2, In a similar manner,
Sol.: It is natural to transform the terms of the 1 (1 ntl 1 1
1 = 2wl
sum as ( +n+1> kI n+1
1 _ I/n Vn  m 5 k1
B n 1- (1 — )
Vyan+1) n@m+1) n T+t ( D) =)
. . 1 n+1
This allow us to rewrite the sumas 1 + — )
o Yr-yn-1 n+1
n=2 n = 1
AT
The sum does not telescope, but it is bounded =0 n+l1
from above by
e (1-39) (50
n— n+1/7" n+1/
1+ Z
Vnvn — The inequality is now obvious. Since
1 - 1 1 comparing the coefficients of%: in these
N
= \Wn — 1 Vn expressions. We see that for eachk, k=0, 1,
2, oo, N
With telescope to 2. This proves the
inequality. (1 _ l) (1 _ E) (1 _k= 1)
- g EOTR -
(-0t
15) For each positive integer n. Show that 2 ) (1 k — 1)
o) m——)
1\ n+1
(1 + ;) (1 + n+ 1) It is worth nothing that
Sol.: This is an important inequality that can 1)\2 1 1 2
> an Imp quality : (1+—) - ’,}05(1—5)(1—5).......(1—
be proved in a number of ways. Here we will 0 2
give a proof based on comparing ) < Xk=o k, ( ;) (1 - ;) --------- (1 -
corresponding terms in the binomial ) < Zk Ok' =1+3Y". Ok' <1+

expansions of each side, . 1 1
k02k1 =1+2= <1+Zk0k 3.

n
_ — (= n
(1 + n) kz k (n) Thus the sequence (1 + %) is increasing and
=0
bounded above by 3. (It can be shown that

the sequence converges to the number e)
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The next result is important theoretically and
is very useful.

1
16) Showthatn{(n + 1= — 1} <1+ % + % +
et % <n-m-1n V@D
Sol.:LetS, =1+ % + -+ % The left most
inequality is equivalent to proving.

n+S,

> (n+ 1)
Which has vaguely the look of an arithmetic
mean geometric mean inequality. We can

make the idea work in the following way:

n+5n_n+(1+1+---+%)

2
n n
1 1
:(1+1)+(1+7)+---+(1+ﬁ)
n
3. 4 (n+1)
2tgzteti
n
1/n

(234 n+1)
g T

For the right most inequality. We need to

show that 2=>n
n-1

arithmetic mean geometric mean inequality.
We have

> n~1/(=1)_ Again, using the

v n-(deieosd
n—1 n—1
(1—1)+(1—%)+---+(1—%)
- n—1
%_}.%_}....4_@
B n—1

11/(n-1)

n

= n_l/(n_l)

17)Letaq, ay, ..., a, arereal (n > 1) and 4 +
1a <
ﬁ (™, a;)? Prove that A <

2aiajfor1<i<j<n.
Sol.: By the Cauchy-Schwarz inequality
2

(Z ai) = [(ay + az) —az + -+ an]?

i=1
<@ +-1)((a; + ay)?
+ a32 ....+an2)

n
Z a’ + 2a1a2]

i=1

=(n-1)

This, together with the given inequality,
implies that

In a similar manner, 4 <
2aqa; for1<i<j<n
18) If positive numbers p, g, r such that 2p =
p
q+rq # rshowthatm <1

Sol.: Suppose that q and r are positive

. . 1 1
integers, and consider the q number; ...... m

and the r. By the arthmatic mean geometric
mean equality.
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1 1 1/(q+7)

_ g 470 1
qi’r"

q+r P

I}

which is equivalent to the desired inequality
of course, this method breaks down if either q
or r is not an integer, so how shall we
proceed? One idea is to rewrite the inequality
in the following manner:

q+r

pItT < g, (q err)

q )Q/(CI'H‘)( r

r/(q+r)
q+r q+ r)

Setx = a and y

q+7) CELS)

observethatx +y=1and 0 < x,y <.
Then the problem is equivalent to proving
that

1
Foy=x*1—-x)1"*> E'O <x<1x
L 1
>
By introducing the function in this way, we
are able to use the methods of analysis. The
idea is to find the minimum value of F on (0,
1). To simplify the differentiation, we will
consider the function G, = log F(,). To find

the critical points, we differentiate:

d
G'(x) = a[x logx + (1 — x)log(1 — x)]

= (logx+1)—-1

—log(l—x)=log1_x

We see that G’y = 0 if and only if x = %

Furthermore, G’(x) < 0 on the interval
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(0,%) and G’(x) > 0 on the interval (%, 1).
Therefore Gy lakes its minimum value on
(0,Datx = % Thus, the minimum value of

. Nz 1
Fiyon (0,1)is F(%) = (E) =5 It follows

that Fy) > %for allxin (0,1) x # % and the

proof is complete.

19)If0< x;<mi=1,...,nandsetx =
Syt et

x,).Show that H?zl(Sil;xi) < (sinx)n

X

Sol.: The problem is equivalent to proving
that Y7, log =

X sinx .
—— < nlog—— consider the
i

sint
re

function f = log

It is a straight forward matter to show that f
is concave (f;)" < 0) on the interval (0, 7)

Therefore,

(x1 + xz) S foen +
2 - 2 '

In a manner completely analogous to the
proof it follows that

f (x1 + 2 + xn) > f(xl) + 2 + f(xn)

Direct substitution into this inequality
completes the proof.

1 (sinx) S 1 (1 sin x; 4
8 x / n 8 X1
sin x, )

n

+ log
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20)If a, b, c, d are non-negative numbers such
thata<1l,a+b<5a+b+c<
14,a + b + ¢ + d <30. Prove thatva +
Vb ++c +Vd < 10.

Sol.: We will prove a more general statement.

Ifaq,ay, ..., a, are positive, 0 < b; < b, <
< byandforallk <n,a; +a; + - +a, <
by + by + -+ + by, then/a; ++a; + -+
\/a—n > \/b_1+ \/b_z + -t \/b_n The special
case of the original problem is obtained for n
= 4, by setting b, = k?,k = 1,2, 3 4., Letus

rove the above result, we have - + 22 4
p A/ b1 +/ bz
4 An_
NES

= a (G~ 7)) (- ) +
(a; + a, +a3)<ib3—ib4
1

Ton

The differences in the parenthesis are all
positive. Using the hypothesis we obtain that
this expression is less than or equal to

cee + an)

(r r) bt ”(r f‘)

1
b

= /by + /by + -+ + /by,

Therefore,

g

75
< by + by + -+ /b,

Using this result and the Cauchy-Schwarz
inequality, we obtain. (va; +vaz + - +

Ja)’

\/_

ﬁ|9

267

an
4./b,. |—
+ n b,
< by + /by + -+ +/bn)
a a a
by /b, Vb
< (Jby ++/b, +

This gives va, ++a; + -+ Ja, <
JBr 4B+t By

21) Suppose a4, a,, ..., a,, be non-negative

numbers such thata,a; — a; < a5 for
allkShowthatal+az+---anZn_ilJr
T
n+2 2n
Sol.: We have
a1 + az + -+ an = (1 —l) (12a1) +
1
(-1 @Baa) + -+ (- 2) (@n -
1).2nay)
_(1 1 1 1) .
EASPRERR A
(1 1 1 1)
3 4 5 6
(1.2a1 + 3.4‘(12) + b
+< 1 1)(12
n—1 2n) "
+ 3.4a,) + -

+ (2n—1).2na,

Using the AM-GM inequality and the
hypothesis we obtain.
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22) The numbers a, = a, ... = a, >
0Oand by =2 by =+ =2 b, >
0.Satisfyaq = by, a1 +ay, = by +
by,a; +ta; +--+a,> by +by+-+
b,,. Prove that

ar* +a¥ + -+ a2 b+ b+t

bnk for every positive integer k.

Sol.: We can write

aik — bik(ai - bl-)(aik_l + aik_z + -+
aibik_z + bik_l)

To simplify computations, set¢; = a; =
bjand d; = a,* 1 + a;/*2b; + - +
aibik_z + bik_l.

The hypothesis implies ¢; + ¢, + -+ ¢; =0
forall jand d; > d;,; > 0 the latter since
a; and b; are decreasing positive sequences.

Hence a;* — b,* + a,* — b,* + -+ a,* —
by = cidy + cdy + -+ cpdy, =

(dy —dy)ey +(dy—d3)(cg +c) + -+
dn(c; +c; + -+ cy) =0 theinequality is
proved.

23)If x4, x5, ..., xpandy, = y, = - = y, be
two sequence of positive numbers such
thatx; > y.

X1X2 = Y1V2 oo e e X1 X2 o Xy =

Show that x{ + xy + -+ x, = y1 +
Y2+ -+ Ya

Sol.: We want to reduce the inequalities
involving products to inequality involving
sums. For this we use the A.M. GM inequality
we have
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where the last inequality foilows from the hypothesis.

Returning to the original inequality we have

+ x4 S S
xl xz ces X = _yl —y [ —
S R PR 21

X1 X2
01 —y2) + (E + E) (2 —y3) + -

X X X
+ (—1+—2+ ---+—">1n.
Y1 Y2 Yn

By using the inequality deduced at the
beginning of the solution for the first factor in
each term, we obtain that this expression is
greater than or equal to

1-On—y2)+2072 —y3) + -+ xy,

=y; +y, + -+ + 3, and we and done.

24) Let {a,,} be a sequence of positive
numbers such that for alln, }};;_; a; =

vn.Show that
1 1 1
Yroiat = Z(l Tyt ;) for all

n.

Sol.: We start by proving another inequality,

namely thatif a;, a,, ...., a,, are positive and

by =2 by =+ .......b, = 0 and if for all
K>=na +a,++a,= b =
by + -+ + by, than
a2+ a2+ o+ a2 2 b+ b+
o4 by

This inequality is the same as the one in

problem 2 in the particular case where the
exponent is 2, but with a weaker hypothesis
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using the Able summation formula, we can
write

a;b; + ayby, + -+ apb, = a;(by —by) +
(a; + az)(by — b3) + (ay + a; + az)(bs —
by) + -+ (a + ay + - + a,) by, this
inequalities in the statement show that this is
greater than or equal to by (b; — b,) +

(by + by)(by —b3) + -+ (by + by + -+
by)by = by + by + -+ by"
with the canchy Schwarz inequality we obtain

combining this

(@2 +a? + -+ ay?)(by® + b% + -+
by?) = (arby + azby + -+ + azby)? =
(b1% 4 b, + -+ b,?)? and the proof is
complete.

Returning to our problem, note first that vn —
Vn >

rational conjugate of the left side, this becomes

(n-vn-1)
(2vn)

Indeed multiplying by the

nnh-1)>—~2

After eliminating the denominators and
cancelling out terms, this becomes vn —

Vn —1.

The conclusion of the problem now follow from
the inequality proved in the beginning by

= Vi—va—1.

choosing b,

25) Suppose X1,X3, ..., Xp, Y1, ¥2,--,Yn be

positive real numbers such that

() x1y1 <x2y2 < < XpYn

(i) xqy+x,++x,=2y;+y,+--+
yrwherel <k <n.

Sol.:

(@) LetSp = (x;—vy) + (3 —y,) + -+

(xx — yx)and

Zy = —. Then we have Sy = 0and z, —
XkYk

Zis1 > 0 foranyK=1,2,...,n—1.

It follows that

1 1 1 1 1 1
+_.“.+

—+ — —_—— ...
X1 X2 Xn Y1 Y2 In
1 1 1 1 1 1
G- G-
X1 Y1 X2 Y2 Xn  Yn
- X - X - X
_ 1 1 n V2 2 4ooq In n
X1Y1 X2Y2 XnYn
- 5121 - (52 - ZZ)ZZ _(STL
- Sn—l)Zn
= =502, - Zy)
—5,(Z,
—73) e Sp1(Zp4
- n)
—SnZy < 0 with equality if and only if S, =

0,K =1,2,....,nthatis, when x;, =
Vo K=1,2,..,x

(b) We can assume without loss of generality
thata; < a, < -
hypothesis it follows that if or any partition
of the set {a,, a,, ...,

< a,.From the

a, } into two subset
since we can perform such a partition in 2
ways it follows that a; + a, + -+ a; =
2k, we now apply (a) to the numbers a; +
a, + -+ a, and 1.2.22 ... 2" 1,

(whose sum is 2” — 1) It follows that

AT

a az an

2 —

2n—1

26)If0=ap<aqy<--<a,andaj,q —
-<1for0<i<n—1thenshowthat

(Zl Oal)z = Zl Oal

Sol.: Try to prove that
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[1 - (aj - aj_l)] we have equality if a; —
a_1=1 forj=1, .., n.

This gives the well known (Y™ ,i)? — ¥, i3

27) Prove that, for any positive numbers
X1 X2

X1, X2, .., X (k = 4) e, + P, 4ot
L_ > 2.Can you replace 2 by a greater

Xp—1+Xx1

number?

Sol.: Denote the L.H. S of the inequality by L.
For K=4, we have

X1 X2 X3 X4
4
X4 +xy, X1+ x3 Xp+Xx, X1+ X3
X+ x Xy + X4
= < > 2
Xy +x4 X1+ X3

Now suppose that the proposed inequality is
true for some k > 4.i.e., that L, = 2. Consider
k+1 arbitary positive numbers

X1, X2, wee ey Xpe» Xea1- Since Ly 4 1, is symmetric
with respect to these number without loss of
generality , we may assume that x; >

Xp4q fori=1,...,k.Thus,

X1 Xk
Lgyg =———— 4 b ——F
Xp+1 T X1 Xp—1 T Xp—1
Xk+1
> L, =2
Xk + X1

Now we prove 2 cannot be replaced by a larger
number. Consider the case k = 2m, where m is a
positive integer >1setx; = Xy, = 1,x, =

— — 42 — —
X2m-1,X3 = Xom-2 = 5 s Xy = Xmgq =
tm—l

Where t is an arbitrary positive number. Then
L;, simplifies to L, = 2.

(m—=2)t

1+
1+t2

.Hence,lim — oo L, = 2.
We can proceed similarly in the case k = 2m +
1.

28) If x, y, z be positive reals with xy + yz +

2x(1-x%) | 2y(1-y?)
(1+x2)2 (1+y?%)?

zx = 1 prove that + +

Zz(l—zz)
(1422)2

<
x y z
+ +
1+x2 1+y%2 1+ 22

Sol.: This reminds of the formula sina =

2 tan (g) [1 + tan? (g)] and cosa =

i-tan 2]
frcane (]

_ _ B
So let us set x = tan (E),y = tan (E),z

= tan (g)

The inequality now becomes, cos a sina +
(sina+sin B+siny)
2

cosfsinf 4+ cosysiny <

sin2a + sin2f8 + sin2y < sina + sinf +
siny (1) until now we ignored xy + yz + zx =
1. It is satisfied if a+ f+y = m. Indeed z =
tan(z—g—ﬁ) = cot(%+§) =

(1-xy)

(c+y)’
xy+1—xy=1.

andxy+yz+zx =xy+ (x+y)z=

We may assume thatin (1) we are dealing
with the angles a, 3, y of a triangle. By the
sine law, for the RHS we have

_ _ _ at+tb+c 28 S,
sma+smﬁ+smy=T:ﬁ:R_
T

A

rR
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Denote the distance of the circumcentre M.
from a, b, c by x, y, z. Then, for the LHS we get

sin2a + sin 2 + sin 2y

= 2(sina cosa + sin B cos f + siny cosy)
acosa +bcosf +ccosy

= but

R
+bcosp + —ai+bltc
acosa cosf cecosy =ap+bytey
_ 24
R
sina + sinf + siny R
Hence, — - _ =—=>1
sin2a +sin2f +sin2y 2,

29) Prove that for real numbers x; > x, >

> x, > 0.

X1 X2 Xn-1  Xn

X2 x3 Xn X1
X2 X3 Xn

<=+ =4+

X1 X2 Xn-1
X1
xn

Sol.: Transfer all terms to the left side and

look at all terms with an x,,: f(,) = xz_l + z—” -
1
Xn

— X1 Let us find the minimum of this
Xn-1 Xn

function on the interval [x,_, ]. the
derivation of f,, ) on this interval is positive,
and hence the minimum is attained at x,, =
X,_1.Inserting x,, = x,,_; into the inequality,
we get same inequality, but for variables

X1 to x,,_1. We finish the proof by induction.
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30)Letn > 2 and x4, x5, ...., X, be non
negative reals. Prove that

1
14
(xX1%2, oy X + ;Zi<j |x; — le =

1
;(xl +x2 + -+ xn)

Sol.: We may assume thatx; > x, = - > x,, .
Then all the points xg, ...., x,, lie on the
segment [x,, x;]. Hence |x; — x;| < |x, — x4].
In addition, |x; — x| + |xx — xp| = x4 — xp
fork =2, ..., n-1. Together with |x; — x,,|we
get the estimate Y5 |x; — x| = (n — 1) (x; —

Xn)

1
Since (xq ... xp)n = x,, it is sufficient to prove
that x,, +%(n -1) (x1 — Xy = xlilﬂ)
or, x, + (n — 1)x; = x4 + -+ + x,, which is
valid. The proof of this weak inequality was
so simple since. We could get by with huge
over estimations.

SETTHEORY

(OBJECTIVE TYPE)

1) Which of the following has only one
subset?

@ {} () {4} ({0} (d)none

Sol.: Subsets of { }i.e. ¢ is ¢. Subsets of {4}
are ¢, {4} subsets of {4, 5} are ¢ {4}, {5},
{4, 5}. Subsets of {0} are ¢, {0}

-~ cannot answer is (a).

2) fA={xec; x*=1}and B ={x €
c; x* =1}, thenAAB=
@ {(-1,1}; ) {—i i} (©{-1,1,i—i}
(d) none
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3)

4)

5)

Sol.x?=1=x= —-1,1
A={-11)
xt=1=x*=-11=x= —ii,—-11

~B={-ii—-1,1}

~AAMB=(A-B)uU(B-A4)

= ¢ u{-ii}={-ii}
Ifn(A) = 3,n(B) = y,thenn(4A x A X
B) =
(@) 36; (b)102; (c) 108; (d) none

Sol.: n(A X A x B) = n(A) x n(A4) x
n(B) =3x3x4=36

Ifu=RandletA={xeR:0<x <
2},B = {x € R:1 < x < 3} which of the
following is false?
@ANB={xeR:1<x<2}

MA ={xeRx<00rx<2}

() AuB={xeR:0<x<3};

(d) none

Sol:A'=R—A={xeR:x<0orx=2}
B '=R—-B={xeR:x<1lorx>3}

AUB={xeR:xeAandx eB}={x¢€
R:0 < x < 3}

Theset(AUBNC)N(AUB'UC")'nc'=
@ANGC (B NC; (©BNC (d)
none

Sol. (AUBUC)N(AUB'nC')Y nC’
=(AuBUC)N(AuBUC)NC'

=(@uBUC)NC' =BUC)NC' =
(BncHu(CncCh)

=BnCHYup=BnC

6) IfA={(x,y):y=§,0¢x €

R} and B = {(x,y):y = —x,x € R}, then

(@ AnB=¢ (b)AnNB=A; (c)ANB=
B; (d) none

Sol.: Here A and B can be shown as;
=ANB=¢

Let x be the universal set for sets A and B.
Ifn(A) =200,n(B) = 300 andn(An
B) = 100,thenn(4’ n B") =300
provides n(x)=

(a) 500; (b) 600; (c)700; (d) none

Sol.: We have n(A N B) = n(4) + n(B) —
n(A N B)

~n(AUB) =200+ 300—100 = 400

Also,n(A’ UB'") =n(AUB') =n(x) —
n(AUB)

~ 300 = n(x) — 400 or n(x) = 700.

IfAUB=AUCandANB=ANGC, then
(@ B=ConlywhenAc C

(b)) B=G;

(c) B=ConlywhenACB

(d) Done

Sol.:LetxeB=x€eAUB=xe€AUC

Casel: xeA,xeANBorxeANnCorxe
C, BcC

Casell: xe(C,xe B=>xeCorBcC
Similarly CE B

~B=C



9) IfA={6:2 cos?6 +sin6 < 2} and

T 3w
B:{BZESBST} thenANnB =
3n
@ {B:nSBST};
4 5 3
®{e:Z<o<Torn< 0<¥};
5w
© {o:mr <0<}
(d) None

Sol.: Let 2 cos?0 + sinf < 2 andg <0<
3m
2

= 2 —25sin%0 +sinf < 2 = 2 sin?6 —
sing > 0

/s
ﬁsin@(ZsinB—l)ZOz)ESH

<57T <9<3n
=73 ormt <6< G

10) If A and B be two sets such that

n(Ax B) = 6.

Let three elements of A x

B are (3,2)(7,5)(8, 5)then

(@ A={3,7,8} (b)B={2,5} (9C=
{3,5}; (d) none

Sol.: Since (3, 2), (7,5), (8,5)e A X B, we
have 3,7,8€ Aand 2, 5 €B.

Alson(AXB)=6=3 X2
A=1{3,7,8}and B={2, 5}

Since the graphs of xy =4 andy =x, x >
0 intersect ay one point, we have AN B =
¢ and A NB is a single set.
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11) A set contains n elements, then its power

set
(a) nelement; (b) 2" elements; (c) n"
elements (d) none

Sol.: As power set is set of all subsets, and
we know number of subsets of a set
containing n element is 2.

~Power set contains 2™ elements.

12) If A and B are sets, then A N (g)is

(@ ¢; () A; (9B; (d)none

Sol.: LetxeAn(E):nc € Aand (xe
A

B

2)

= x €eAand (xeBandx ¢ A) = x €

¢

“AN (g) (1)

Sincegp c AN (g) e e (2)

B
~From (1) and (2) A n (Z> (]

13) Let R be set of points inside a rectangle of

sides a and b (a, b>1) with two sides along
the positive direction of x-axis and y-axis
and C be the set of points inside a unit
circle central at origin, then
@R={(xy):0<x<a0<y<b}
MR={(xy):0<x<a0<y<b}
(©) RUC =R;

(d) None

Sol.: Since, R denotes the set of points
inside the rectangle of sides a and b for
bothaand b >1, then R{(x,y):0 < x <
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a,0 <y < b}. Also C is the set of points
inside the unit circle, centred at origin,
such that S = {(x,y):x% + y? < 1}

14) Which of the following is not correct?

(@) A c A¢ifand only if A = ¢;

(b) A = Bisequivalentto AUC=BNC
andANC=BNGC;

(@) A€ c Aifand only if A =x, wherexis a
universal set.

(b) none

Sol.: A€ satisfies (A) and (B) by definition
(D) also follows trivially.

Assuming A to be any set other than the
empty setalsoB =Aand C =

¢,we have AUB=A—-—AUCButB +#
C,so (c) is incorrect.

15) Let S is the set of points inside the square.

T is the set of points inside the triangle and

C is the set of the points inside the circle. If

the triangle and circle intersect each other

and are contained in the square, then

@ SNTNC#¢; (b)SUTUC=C; (c)S
UT =S UC; (d) none

Sol.: Since, TN C#¢pandSNTNC=TNC
so option (c) is true

AlsoTcSandCcS,SoSUTUC=S

Also,SUT =S =SuUC.

16) Theset (AN B)°U(BNC) =

(@ A° UB; (b)A°UBUC; (c)A°U
B¢; (d) none

Sol.:LetS= (ANB)“U(BNC)

=S5S=(A°UB)U(Bn
C) (De Morgan'sLaw)

=S=AU(Bu(BNnC(C))~S= A°UB

274

17) Of the numbers of 3 teams in a college 21

D

are in the cricket team, 26 are in hockey
team and 29 are in the football team.
Among team, 14 play football and cricket.
Eight play all the three games. The total
number of members in the three teams is
(a) 43; (b)49; (c) 64; (d) none.

Sol.: (a) Let C, H, F denote the sets
members who are on the cricket, hokey
and football team respectively.

~n(C) =21,n(H) = 26,n(F) =29,n(Cn
B) =14,n(CNnF) =15n(FNC) =12 and
n(CNHNF)=8.

~n(CUHUF)=n(C) + n(H)+ n(F) -n(C
NH) -n (HN F) -n (FN) +n(CN HN F)

= (21426 +29) — (14 + 15 + 12) +
9 = 43.

(SUBJECTIVE TYPE)

If the collection of all these three elements
subsets drawn from the set {1, 2, 3, ...,
300}. Find the number of these subsets for
which the sum of the three elements is a
multiple of 3.

Sol.: For 0 < j < 2, let Aj denote the set of
all integers between 1 and 300 which
leave remainder j when divided by 3.
Then |Aj| =100 for0<j < 2.Ifa,b,cis
a 3-element subset of the given set

s'"=1,2,...,300 then 3 divides a+ b+ cif
and only if

()
(ii) One ofthe a, b, cis in A4,, another in
A7, and the third one in A4,.

All a, b, care in4, orin A; orin A,
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2)

3)

The number of 3 element subsets of
A,0<j<2is (1(3)0). For each choice of a

in Ag. bin A; and cin A,.

We get a 3-element subset such that 3
divides a+ b+ c.

Thus the total number of 3-element
subsets {a, b, c} such 3 divides a +b +c s
equal to 3(*5°) + 100° = 1495100

How many 3-element subset of the set {1,
2,3, .., 20} are there such that the product
of the three number in the subset is
divided by 4?

Sol.: We cannot the 3-element subset {a,
b, c} such that 4 does not divide abc. This
is possible if and only if either all the
three are odd numbersor any two of them
are odd and the other is an even number
not divisible by 4. There are 10 odd
numbers in the set {1, 2, 3, ...20} and 5
even numbers not divided by 4. Thus the
numbers of 3-element subset {a, b, c} such
that 4 does not divide abc is equal to

(})) +5(%y) = 345. The number of 3

element subset is

(230) = 1140. Thus the number of 3

element subsets such that the product of
these element is divisible by 4 is equal to
1140 — 345 = 795.

Suppose 44, A,, ..., Ag are six sets each
with 4 elements and B4, B, ..., B,, aren
sets each two elements such that 4; U
A,U..U Ag= B;UB,U ..U B, =

S (say). Given that each element of S
belongs to exactly 4 of the A;'s and exactly
3 of the B;'s then find the value of n.
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4)

Sol.: Since each A; contains 4 elements,
totally we get 24 elements of which some
may be repeated. But each element is
repeated 4 times as each element belongs
to exactly 4 of the A;s. Hence there are

24 . .
Vi 6 distinct element in S.

Since S=B; UB, U ..U B, and each B;
consists of each element appears exactly
3 times. Thus the number of distinct

e 2
elements in S is also equal to ?n

Therefore %n = 6hich givesn =9.

IfA={1,2,3,..,100} and B is a subset of
A having 48 elements. Show that B has two
distinct elements x and y whose sum is
divisible by 11.

Sol.: Foreachn, 0 <n <

10, let A,, denote the set of integer between 1 to 100

which leaves remainder n after division
by 11. Then A; consists of 10 elements
and 4,, for n #1 consists of 9 elements
each. If (a, b) is any two element subset of
(1,2,3,..,100) the 11 divides a +b if and
only if either both a and b are in 4, or else
aisAp andbisin Ayq_j for somek,1 <

k < 10.

Consider any set B with 48 elements. If B
contains two element from the set 4,
then we are done. Similarly if B contains
an element from A4;, and another from
Ai1—r,1 < k <10 then again, their sum is
divisible by 11. Thus B can contain one
element from 4, 10 from A; and 9 from
the sets Ay for some 4 values of k (#¥10),
say kq, k5, k3, k4 no two of which add up
to 11.

But these account only for 47 elements.
Hence there must be an element which is
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5)

6)

eitherin AjgorinA4;;_j 1 <j < 4.Thus
we can always find an element a in

Ap and b in A{1_;. Here a,bare in B and
11 divides a +b.

IfAc{],2,3,..100}, |A| =50 such that no

two numbers from A have their sum as

100 show that A contains a square.
Sol.: If 100€ A then we are done, so
assume A c {1, 2, 3, ..., 100} consider
the two element subsets {1, 99}, {2,
98}, {3,973}, ..., {49, 51} along with the
singleton set (50). These fifty sets are
disjoint, and their un ion is the set {1,
2,3, ..., 99} and the sun of the two
numbers in each of the two element
set is 100. The hypotheses implies
that A can contain at most one
elements it has to contain exactly one
element from each of the fifty sets.
Since (36, 64) is one of the pairs and
both 36 and 64 are squares we are
done.

Find the number of un ordered pairs (A, B)
(i.e. the pair (A, B) and (b, A) are
considered to the same) of subsets of an n-
element set x which satisfy the condition
(@) A#Db; (i) AUB =x.

Sol.: Suppose A hasrelements, 0 <r < n.
Such an A can be choosen in () ways. For
each such A, the set B must necessarily
have the remaining (n -r) elements and
possible some elements of A. Thus there
are z;l:o(f)zr = (14 2)" = 3" ways of
choosing two sets A and B satisfying the
given condition. Among these choices,
only in one case A = B (=x), and in all
other cases A # B, since the order does
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7)

8)

. 3n—1
not manner, we essentially have %

pairs.

Let x be a set containing n elements. Find
the number of all ordered triplets (A, B, C)
of subsets of x such that A is a subset of B
is a proper subset of C.

Sol.: Let x be an n-element set and let B be
a subset of x containing r elements. Thus
there are () choices for B, Hence there
are 2* choices for A 2" — 1 choices for
C. Thus we obtain the total number of
triplets (A, B, C) such that Ac B c C, but
B# CasXr_2" (7)(2"" — 1) which

simiplifies to 4™ — 3™.

Aliter: Let us denote by 0 or 1 the absence
or presence of element of x in the sets A,
B, C, for any fixed element of %, there are
only four choices, namely, 000,011, 111.
Hence there are 3™ triplets (A, B, B). The
number of triples (A, B, C) with AcBc C
but B # C is therefore 4™ — 3™

Show that the number of 3-element
subsets (a, b, ¢) of the set {1, 2, 3, ..., 63}
with a+ b+ ¢<95 is less than the number
of those with a +b +c > 95.

Sol.: Suppose that (a, b, c) is a subset of {1,
2,3, ..., 63} with a +b +c < 95. Then

(64 —a,64 — b, 64 — c) is a subset of {1,
2,3, .., 95} with (64 — a,64 — b,64 —¢)
=192—(a+ b +c) > 192 —-95 =97,
Conversely, if (a, b, ¢) is a subset of {1, 2,
3, .., 63} with a +b +c>97. Then (64 —
a,64 — b, 64 — ¢) is such that (64 — a) +
(64—b)+ (64 +c) =192 —

(a + b + ¢) < 95. Thus there is one-one
correspondence between 3-element
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subsets (a, b, ¢) with a +b +c <95 and 10) Find the number of ways to choose an
those such thata +b +c > 97. ordered pair (a, b) of numbers from the

set{1, 2, ..., 10} such that |a — b| < 5.
Hence the number of subsets with a +b

+c <95 is equal to that witha +b +c Sol.: Let A; = [(a,b)a,b €
>97. Thus the set of 3-element subsets (a, {1,2,3,...,10} |[a — b| = {i},i =
b, ¢) with a+ b +c¢ > 95 will contain those 0,1,2,3,4,5.4, = {ﬂ —

with a +b +c => 97 and a few more.
1,2,3, ...,10} and

(i,i+ 1)
For which positive integral values of n can |4o] = 10,4, = {— =123,..9
the set {1, 2, 3, .., 4n} be split into n (i —1)1
disjoint 4-element subset {a, b, c, d} such Y {—
(b+c+d) L

that in each of these sets a = 3

=123, .., 10} and |A4]
Sol.: Suppose {a, b, ¢, d} is a group in

=949 =18
whicha = @. Thena+b+c+d=
4a. Hence if such an n-exists, then 4 A, = {(i,i + 2) 123, .., 8}
divides 1+ 2 +...4+ 4n. However this sum l
is 2n(4n + 1). U {(i,i -2)
i
Thus a necessary condition for existence
of such a set is that n be even. =34,..., 10} and |A,|
We show that this condition is also =8+8=16
sufficienti.e. if n = 2k for some k, then it (i +3)
is possible to partition {1, 2, 3, ..., 8k} into Az = { ' I 1,2, .7}
groups of 4 elements {a, b, ¢, d} such that ..
(b+c+d) . . U M
= To this end, divide {1, 2, 3, ..., i
8k} into groups of 8 integers such that
each group contains 8 consecutive =45, .., 10} and |As|
integers. If{a+ 1,a+ 2,a+3,...,a+ 8} — 747 =14
is one such set, we can divide this set into
two 4 integers each as follows: (i,i+4)
Ay=———=1,2,3,..,6
{a+4a+1,a+3,0..,a+84L{a+ i
5a+2,a+6,..,a+ 7} U{(i,i—4)
The desired partition is obtained since '
“+4=M' =5,6,...,10}amd |A,]
a+2+a+6+a+7 =6+6=12

a+5=

3
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(i,i+5) Again 11 ¢ S,for 11 € SN{3, 5, 8, 11}= {5,
As ={—~——"=1,2,..,5
i 8}
i,i—5
U {( l_ ) +$=1{5,7,8,13}

If condition (i) is not given, then S is not
unique as S may be {7, 8,13} or {5, 7, 8,
=5+5=10 13} or {5, 7,8, 11, 13}. Similarly deleting
any other data leads to more than one
solution to S (verify)

=6,7,.., 10} and |Ag| =

~the required set of pairs (a, b) =
Ufzo A; and the number of such pairs,
(which are disjoint)

5 5 12)Letxc {1, 2, 3, ..., 99} and n(x) =10. Show
= U Al = Z |4;] that it is possible to choose two distinct
i=0 i=0 non empty proper subsets y, z of x such
= y — z
10+ 18+ 16 + 14 + 12 thatZ(;Ey)—Z(;Ez).
+ 10 = 80.

Sol.: Since n(x) = 10, the number of non-
empty, proper subsets of x is 210 — 2 =

11) Identify the set S by the following 1022.
information:
() Sn{35811}={58)
(i) SU{4,5, 11,13} = {4,5,7,8, 11,13}
(i) {8 13}cS
(v) Sc{578,9,11,13}

The sum of the elements of the proper
subsets of x can possibly range from 1 to

?_1(90 + i). Thatis 1to (91+ 92+ ... +
99)i.e. 1 to 855.

That is the 1022 subsets can have sums
from 1 to 855. By pigeon-hole principle, at
least two distinct subsets B and C will

Also show that no three of the condition
suffices to identify S uniquely.

Sol.: From(i), 5,8 €S .......... (1) From (ii), have the same sum.

7,8€S ... (2)From (iii), 8, 13€ S _ _

.......... 3) (> there are 855 different sums, and so if
we have more than 855 subsets then at

Therefore from eqns. (1) (2) and (3), we least two of then have the same sum.) If B

find that5,7,8,13€S.Sc{5,7,8,9,11, and C are not disjoint, then let

13} e (4) (given)

X=B—-—(B nNnCCandY =C—-(B nC).
If at all S contain any others element

other than those given in (4), it may be 9
or 11 or both.

Clearly, X and Y are disjoint and non-
empty and have the same sum of their
elements.
But9¢S[+-9eSu{4,5,11,13}={4,5,7,

8,11, 13}] Define S(A) = sum of the elements of A.

We have B and C not necessarily disjoint
such that S(B) = S(C).

278



Challenging Mathematical Problems

Now, S(X)= S(B) -S(BN C), S(Y) = S(C) -S
(BN C) but S(B) = S(C).

Hence, S(X)= S(Y)

Also X # ¢. For if x is empty, then B cC
which implies S(B)< S(C) (a
contradiction). Thus x and y non empty
and S(X)= S(Y).

13) A, B, C are the set of all the positive

divisors of 10°°,205° and 30%°
respectively. Findn(4 U B U C).

Sol.: Let n(A) = number of positive
divisors of 1090 = 20%° x 5%0 js 612 n(B)
= number of positive divisors of 20> =
2100 % 550 j5 101 x 51 and n(C) =
number of positive divisors of 3040 =

240 % 310 x 540 = 413,

The set of common factors of A and B will
be of the form 2™.5™ where 0 < m <

60 and 0 <n <50.50,n(A NB) =61 X
51.

Similarly, since the common factors of B
and C and A are C are also of the from

2™ x 5" and in the former case 0 < m <
40,0 < n < 40, and in the latter case 0 <
m<40,0<n<40

~n(BNC)= 41%also n(4A NC) =
412 and n(A N B N C)is also 412,

~n(AUBUC)=n(A) +n(B) +n(C)
—n(A NB)—n(BNC)
—n(AnC)
+n(ANnBNC)

612 + 101 x 51 + 413 — 61 X 51 — 412 —
412 + 412

=61(61—51) + 412(41 — 1) + 101 x 51

=610+ 1681 x 40 + 101 x 51 = 73001.

14) A student an vacation for a d days

observed that
(i) Itrained 7 times morning or
afternoon.

(i) When it rained in the afternoon, it
was clear in the morning.

(iii) There were five clear afternoon and

(iv) There were 6 clear mornings. Find
the value of d.

Sol.: Let the set of days in rained in the
morning be M, and the set of days it
rained in the afternoon be A4,.. Then,
clearly the set of days when there were
clear morning is M',. and the set of days
when there were clear afternoon is 4,

By condition (b), we get M. N A, = ¢, by
(d), we get M,. = 6 by (c), we get A, =
5,and by (a),we get M, U A, = 7, M, and
A, are disjoint sets, and n(M,)) = d —
6,n(4,) =d—5

-~ Applying the principle of inclusion and
exclusion we get

n(Mr u Ar) = n(Mr) + n(Ar) -
n(M, N A,)

=7=Wd-6)+(d-5)—-0=d=
18,=d =09.

15) It is proposed to partition the set of

positive integers into two disjoint subsets
A and B. Subject to the following
conditions: (i) 1is in A; (ii) No two distinct
numbers of A have a sum of the from2* +
2(k=0,1,2,...); (ii) No two distinct
members of 3 have a sum of the form

2k +2(k =0,1,2, ....) Show that this
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partitioning can be carried out in a unique
manner and determine the subsets to
which 1987, 1988, 1989, 1997, 1998
belong.

Sol.: Since it is given that 1 € A, 2 € A For
if 2 € A then 2° + 2 = 3 is generated by 2
members of A violating the condition for
the partitioning.

~ 2 €Bsimilarly,3¢ Aas3 =4 = 21 +
2. 3€B.

But 4 ¢B. Forif 4 B, then 22 +2 =4 +
2 = 6 is generated by two members of B.

=~ The partitioning for the first few
positive integers is

A={1,4,7,8,12,13,15,16, 20,23, ...}

B=1{23,56,910,11,14,17,18,19,21,
22, ..}

Suppose 1, 2, ..., n-1 (for n = 3) have
already been assigned to A N Bin such a
way that no two distinct members of A or
Bhaveasum=2'+2(1=0,1,2,......)
Now, we need to assign n to A or B.

Let k be a positive integer such that

2k=1 4+ 2 <n < 2% + 2. The assign ‘n’ to
the complement of the set to which 2% +
2 — n belongs. But for this, we need to
check that 2% + 2 — n has already been
assigned. Nowasn > 2¢F71 +2 < 2k +

1. 2n>2k42.n>2k+2 -
n.

Since all numbers below n have been
assumed to be assigned to either A or,

2% + 2 — n has already been assigned and
hence n is also assigned uniquely. For
example, considerk=1,3 = 204+2<n<
21+ 2 =4.Considern=3,4—-n=1
Now 1 € A (given)

280

~. 3 € B considerk = 2.
222714 2<n<2?24+42=6,4<n<e6.

Whenn=4,as6 —n = 2 € B,we assign
4toA.whenn=5,as6—-5=1¢€A4,we
assign 5 to B. Since the set to when n gets
assigned is uniquely determined by the
set to which 2¥ + 2 — n belongs, the
partitioning is unique. Looking at the
pattern of the partitioning of the initial set
of positive integers, we conjecture the
following:

o4
(D neAlf;.

2 4
(2)n eBlf;but;

B3 Ifn=2".k+1(r = 1,k odd,thenn €
A ifkis of the form 4m — 1).

Proof the conjecture: we note that 1, 4€ A
and 2,3€B.2¥"1 + 2 <n <2k +2andall
numbers less than n have been assigned
to A or B and satisfy the above

conjectures, then if%, as2¥ 4+ 2 —nis
divisible by 2 but not 4, 2k+2 —n eB.
Hence n € A. Similarly, if 2 divides n but
not 4, then 2% + 2 — n is divisible by 4
and hence, isin A

~neBIfn=2"k+1

Where r>1,kisodd and k = 4m —
1,then2k+2—-n=2F-2"k+1=
2T(2k‘r — k) + 1, where clearly 2¥" — k
is odd and equals 1 (mod 4)

~2k+2—-neB

Hence, n € A similarly, it can be shown
thatifn =2".k + 1 where k =1 (mod 4),
then n € B. Thus, the conjecture is proved.

Now, 1988 is divisible by 4.

~ 1998 € A.
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1987 = 21,993 + 1 where 993= 1 (mod
4) - 1988 € B

1989 = 22.497 + 1 where 497 = 1 (mod
4) 1989 € B.

~ 1998 € B.

but

1998 1998

1997 = 22.449 + 1 where 499= 3(mod
4)

~ 1997 €A

16) If A denote the subsets of the set {1, 11,
21, 31, ....541, 551} having the property
that no two elements of A odd up to 552.
Show that A cannot have more than 28
elements.

Sol.: Observe that S consists of 56 numbers in
A.P. Hence first term is 1 and common
difference is 10. The sum of every pair of
numbers equidistant from the beginning and
the end is 552. Also, the sum of no two others
elements can be 552.

We divide S into 28 pairs: (1, 551), (11, 541),
(21,531) v (271, 282), if A consists of
at the most 28 elements, then it is possible to
choose these elements in such a way that at
most one element from a pair is in A. however
if A contains 29 (or more) elements, then by
the pigeon hole principle, A must contain
both the elements of at least one pair, and
therefore A contain two elements whose sum
is 552.

Since A has the property that no two element
of A add up to 552, therefore A cannot have
more than 28 elements.

17) Show that in any set of 20 distinct integers
chosen from the set {1, 4, 7, ..., 100} there
will always be two distinct integers whose
sum is 104.
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Sol.: There are 34 integersin A.P. 1,4, 7, ...,
100. Let us denote the set {1, 4, 7, ..., 100} by
s. Let us group them into 17 pairs.

(4,100, (7,97), (10, 94), ..., (49, 55) and (1,
52). The sum of the integers in each of the
first sixteen pairs is 104. The last pair
consists of the two integers which cannot be
paired with any other integer in the given A.P.
So as to have the sum 104. It is obvious that
the sum of two integers from the given A.P.
can be 104 if and only if two integers both
belong to some one of the first sixteen pairs
written above.

Let us try to construct a subset of S which is
as big as possible, and has the property that
no two numbers of the set add up to 104.
Such a set can have at the most 18 members,
namely the two integers 1 and 100, and
exactly one out of each of the remaining16
pairs.

The moment we odd one more member of S
to it, it will have both the one of the sixteen
pairs (4, 100) .... (49, 55) i.e. it will have two
distinct integers whose sum is 104.

Therefore in any set of 20 (in fact 19!)
distinct integers chosen forms, there will
always be two distinct integers whose sum is
104.

18) Find all possible sets of consecutive
positive integers such that the sum of the
numbers in the set is 795 (e. g. the sets
{30}, {9, 10,11}, {4,5,6,7,8}and {6, 7, 8,
9} are the sets of consecutive positive
integers with sum 30.)

Sol.: Supposen + 1,n+ 2, ...,n + k is a set of
k consecutive integers whose sum is 795 i.e.
nm+D)+m+2)++n+k)=795 =

{kn + S k(k + 1)} =795 ......(1)
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We are required to find all solutions of (1) in
integers.

CaseI: If k is doubly even, say = 4m, then
4mn + 2n(4m + 1) = 795.

Here L HS is even and RHS is odd, and
consequently no solution is possible.

Case II: If k is singly even, say = 4m + 2, the
(1) becomes (4m + 2)n + (2m + 1)(4m +
3) = 795.

So that 2m +1 must divide 795, i.e. 2Zm +1 =
1,3,5,15,53, 159, 265, 795. Also then 2n =

7 (4m + 3) > 0i.e. 2m+1 cannot have
2m+1

values other than 1, 3, 5, 15.

For these values, we havek=4m +2 =2, 6,
10, 30 and the corresponding values of n are

[795_k(k+1)

o 2 ] i.e.396,129,74,11.

Thus the sets are {397, 398}, {130, 131, ...,
135}{75, 76, .., 84,}{12, .., 13,41} ... (A)

CasellIl: If k is odd, say 2m +1, then (1)
becomes 2m+ 1)n+ (m+1)2m+1) =
795.

So that 795 must be divided by 2m +1. The
possible values of 2m +1 are 1, 3, 5, 15, 53,

159, 265, 795 Further more n = 795 _
(2m+1)

(m+ 1) > 0, which gives n = 794, 263, 157,
45 respectively, when 2Zm +1 =1, 3,5, 15

The other values do not give positive values
of n and therefore must be rejected. The
corresponding sets are {795}, {264, 265,
266}, {158,159, 160, 161, 162}, {46,47, ...,
60} ...... (B) All the possible sets are those
given in (A) and (B).
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19) If the 7 element set A= {a, b, ..., g}, find a
collection T of 3- element subsets of A such
that each pair of element from A occurs
exactly in one of the subsets of T.

Sol.: If the 3-element subsets in the class are
pairwise disjoint, then one of the subsets has
number of elements and so at least one pair
has one element in common but not two or
more. If just one pair of subsets has common
elements, they have to have two elements in
common. So this is also not possible. Thus the
problem reduces to finding a class of all 3-
element subsets with precisely one element
common between any two of the subsets.
Clearly, {(a, b, d), (b, c, ), (c, d,f), (d, e, g), (e,
f,a),(a cg), (b f g)} inone such class. Any
permutation of A will give another class.

20) Let S in the set {1, 2, 3, ..., 10°}. Show that
for any subset A of S with 101 elements.
We can find 100 distinct elements x; of S,
Such that the sets x; + A are all pair wise

disjoint.
{Note that x; + A is the set
Xi) =«
{a + ;} isin A]
Sol.:

Having found x4, x5, ..., xj, there are k. 101 -
100 for -bidden values for x;,; of the form
x; + a,, — a, with m and n unequal and

another k forbidden values with m= n.
Since 99.101.1004+99=10° — 1.

We can successively choose 100 distinct x;.
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COMBINATORICS

(OBJECTIVE TYPE)

1) IfS=1.1142.214+3.3!+...4+n.n! then % S+
1)is
(a) Notinteger; (b) integer; (c)
undefined; (d) none

Sol.: We have S =Y _; k(k!) =
k=1{(k +1) — 13 (k1)

=Z{(k+1)!—k!}=(n+1)!—1 =5+1
k=1
=(n+1)!

S+1 _ . .
Thus, — € integer. Hence (b) is correct
n!

answer.

2) If1!+2!+3!4...4n! cannot be the square
of a natural number except for n =
(@ 1,3 ()23 (c)3,3; (d)none

Sol.: Forn = 1, we have §;= 1!= 1, whichis a
perfect square.

Forn=2,wehaveS, =11+2=1+4+2+3,
which is not a perfect square.

Forn=3,WehaveS; =11+ 2!/4+31=1+
2 4+ 6 = 9,which is a perfect square.

Forn=4,wehaveS, =11+ 2!+ 314+ 4! =
14+ 2+46,...,+424 = 33 which is not a perfect
square.

Forn = 5,we find that the digits at units
placeinn!is 0and S, = 1! + 2! + 3! + 4! has 3
as the digit ay units place. Therefore for n >
5,5, has 3 at units place. Therefore S,, is not a
perfect square forn > 5.

Hence, S, = 1!+ 2!+ 3! 4+ ---+ nlisnota
perfect square of a natural number except for
n =1, 3. Hence (a) is correct answer.

3) The value of
(7¢y +7¢,) + (7c, +7¢,) + -+
(7¢, +77)is
@ 2%8-2; 0)28-3; ()28 (d)
none

Sol: (7¢, +7¢,) + (7¢, + 7¢,) + - +
(7C6 + 77) = 8C1 + 8C2 + -+ 8(;7 = 8(;0 +

8C1 + 8C2 + o4 8C7 + 868 - (8C0 + 868) =
28 -1(1+1)=28-2

Hence (Q) is the correct answer.

4) The value of n for which
n-1g,-n-1¢ —2,n—2p, <0.
wheren e Nis

(@ (=»,1) U (3,10); (b) (0,2) U(3,10);
(©{1,2,3}; (d)none

Sol.: we have

n—1c4—n—1c3—z.n—2p2 <0
m=Dn—-2)n-3)(n—4)
= 4!
B n—-1)n-2)(n-3)
3!

—Z(n—Z)(n—3)<0

n-2)(n-3)
ﬁ—

e (CERVCEE)

—4(n—1)—30}<0
>n-2)n—-3)x?=-9x—-22)<0
=S mn-2)n-3)((n-11)(n+2)<0

= mn-2)n-3)(n—-11) <0
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[*n+2>0forn €N] bracket there is product of n consecutive

natural numbers. From (1) we have,
=n e€(—0,2)U(3,11) =n

€ (0,2)uU(3,11) (n-1)!
(n)! = 1_[ [ = Dn+ 1{(r = Dn + 3}

r=1

=n=145,6,7,8,9,10
—{(r—Dn+n}]
We know that the product of n

consecutive natural number is divisible
by n!

Butn — 1., and n — 1p, both are
meaningful forn > 5.

Hence, n=5,6,7,8,9, 10. So, let {(r — Dn + 1H{({ — Dn +
2} .. {(r—Dn+n}=n!I.,r=

1,2,..,(n — 1)!
5) (nN!isdivisible by (1)1
! - —1)! n—1)
@ @)H™; ) Y™ () ()™ () = 1—[ | = ()@=
(d) none s m)! = n!'l. = (n!
r=1
Sol.: Clearly. (n!) is the product of natural (n-1)! (n—1)!
numbers from 1 to n! & ()l = 1_[ nll, = (n)®=D, 1—[ L
A ={1x2x3..xn} =t (- r=1
x{(n+1Dn+2)..2n)} y n rural N
% a natural No.

Thus (n!)! is divisible by (n)™~ 1

{2n+1)(2n+2)...(3n)}

x {(n! 1_ n+1n—-n 6) Number of positive integer n <17, for
+ 2)(n! _| n which n!(n+ 1)!+ (n+ 2)! Is an integral
+3)...n} . (D) multiple of 49 is

We observe that: Last term of the first @) 5; (b) 6; () 7; (d)none

bracket on RHS of (1) inn Sol.: Here n! + (n +1)!4+(n+2)! = n!

— 2
Last term of second bracket RHS of (1)is (1+(Mm+1D)+0+2) (n+1)) =n! (n +2)° =
. either 7 divides (n+2) or 49 divides n!

i.e, n=5,12,14,15,16 (as n< 17). Thus the
number of solution if five

Last term of third bracket on RHS of (1) is
3.n and so on

Last term of the last bracket on RHS of (1)

is (n—1)!n 7) Number of ordered triplets (%, y, z) such

. y o
It is clear from this that there are (n — 1)! thatx,y, zare primesand x” + 1 = zis

brackets on the RHS of (1) and each @0, ()1 ()2, (d)none
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Sol.: Here, x¥ + 1 = z, wherex,y, z are
prime.

Thus, y cannot be odd, as if y is prime

=x?Y + 1is divisible by (x+1). Now, z
must be odd

= x must be even (as, x¥ =z — 1).
Thus only even i.e. prime is x = 2
=x=2,y=2,2z=5
So, there is only one such triplet (2, 2, 5)

Hence (b) is correct answer.

8) Ifn, = x¢xyx3 and n, = y,y,y3; betwo
3-digit numbers, then the pairs n, and n,
can be formed, so that n, can be
subtracted from n, without borrowing is
(a) 45.55; (b) 55.(45)%; (c) 55%.45%;

(d) none

Sol.: Here, ny = xx,x3 and ny, = y1y,Y3

= n, can be subtracted from n, without
borrowing if y; > x; fori=1,2,3.

r=20,1,2,..,9 forx, or x3

.'.LetX1=r:{ r:1,2,3,----;9forx1

~y;=rr+1,...,9. Thus for

V1, Y2 and y3 we have (10 — r) choices, each
= Total number of ways for choosing

y; and x;

= {X72:(10 — )}, (10 -
)} {7-0(10 — 1)} = 45.55.55 = 45.552
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9) ZOsiZsj 10(;]. -jci =
(@) 3'°—1; (b)219-1; (c) 310 - 219,
(d) none

Sol.: Xo<i X<j 10¢; - jc; = 10, (1¢, +1¢,) +
10¢, (2¢, + 2¢, +2¢,)10¢,(3¢, + 3¢, + 3¢, +
3¢,) + 4+ 10¢,,(10¢, + 10¢, +10¢, + - +
10610)

=10¢,.2 +10¢,.2% + 10¢,. 23 + -+
10¢,,. 2%

=(1+2)0-1=31-1

10) If f(n) denotes the number of different
ways the position integer ‘n’ can be
expressed as the sum of 1'sand 2's. For
example f(4) =5, since4=1+1+1+1,
1+1+42,1+2+1,2+1 +1, 2 +2 note that
order of 1'sand 2's is important then
f(fe)=
@ fe6); () faoy (©) fazy (d) none

Sol.: As: f4) = 5 given

“ f(6) can be written using 1'sand 2's as

Number Number of | No. of
of 1's 2'S arrangement
0 3 3!
3
2 2 4! _
2121
4 1 5! B
- 5
6!
6 0 o
6! !
Total
=13
oo f(6) = 13
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f(f(e)) = f(13)

11) The number of ways of choosing triplets
(%,y,2) such that z >
max{x,y} and x,y,z € {1,2,...,n,n+
1}is
@n+1c,+n+2; (b)n+1g, +
n+2¢,; (c)n(n+1); (d) none

Sol.: When z = n +1, we can choose X, y from
{1,2,..,n}

Thus when z = n +1, x, y can be chosen n?.
When z = n, %, y can be chosen in(n — 1)2
ways and so on.

Thus, there are n? + (n — 1)2 + -+ + 12 =
%n(n + 1)(2n + 1) ways of choosing the
triplets.

Alternatively, triplets withx =y <z, x <y <z,
y <z <xcanbechoseninn+1.,,n +

1c,,n+ 1c, ways

~Therearen+1c, +2(n+1¢,) =
n+2 +n+lc,.

12) The number of ordered pairs (m, n), m,n €
{1,2, ..., 100} such that 7™ + 7" is
divisible by 5 is
(a) 1000; (b) 12000; (c) 3000, (d)

none

Sol.: Note that 7"(r e N) endsin 7,9, 3,or 1
(correspondingtor=1,2,3 and 4
respectively). Thus 7™ +

7™ cannot end in 5 for any values of m.n €
N. In other words, for 7™ + 7™ to be divisible
by 5, it should end in 0.

For 7™ + 7™ to end in 0, the forms of m and n
should be as follows:
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m n

1 A4r 45+ 2

2 4r+1 4s+3
3 4r+2 4s

4 4r +3 4s +1

Thus for a given value of m there are just 25
values of n for which 7™ + 7™ ends in 0. For
instance, if m = 4r, then = 2, 6, 10, 98.

=~ There are 100 X 25= 2500 ordered pairs
(m, n) for which 7™ 4+ 7™ is divisible by 5.

13) A 7-digit number is divisible by 9 is to be
formed by using 7 out of numbers {1, 2, 3,
4,5, 6,7, 8, 9}. The number of ways in
which this can be done is
(@ 4.7'; (3,75 (c)2.7,; (d) none

Sol.: Sum of 7 digits = a multiple of 9. We
know, sum of numbers 1, 2, 3,4,5,6,7,8,9is
45. So, two left number should also have sum
as 9.

The pairs to be left are (1, 8)(2, 7), (3, 6)(4,
5) which each pair left number of 7 -digit
number is 7! So, with all 4 pairs = 4 x 7!

14) The number of ways af arranging m
members outof 1, 2, 3, .., n so that
maximum is (n -2) and minimum is 2
(repetitions of number is allowed) such
that maximum and minimum both occur
exactly once (n > 5,m > 3) is

@ (n—1¢, )% (b)ym(m—
1(n—-5)""2 (c) ng,.nc,; (d)
none
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Sol.: First we take one number as 2 and one as
(n — 2) and put them in m (m — 1) ways..
Now remaining (i — 2) numbers can be any
one from, 3, 4, ..., (n-4), (n-3),

Which we can do in (n — 5)(™~2),

= Total number of ways = m(m — 1)(n —
5)(m-2),

15) The number of rational numbers lying in
the interval (2002, 2003) all whose digits
other the decimal point are non- zero and
are in decreasing order is
@21%-1; ®)2°-1; (c)219-2

(d) none

Sol.: A rational number of the desired
category is of the form 2002. x4, x5, ..., X
where1 <k <9 and9 > x; >x, > - >

xx = 1. We can choose k digits outin 9,
ways and arrange them is decreasing order in
just one way. Thus, the desired number of
rational numberis 9¢, +9¢, + -+ 9¢, =
29— 1.

16) How many different 9 digit numbers can
be formed from the number 22, 33, 55,
888 by rearranging its digits so that the
odd digits occupy even positions?

(@) 16; (b) 32; (c) 64; (d) none

Sol.:
[0 2 Gl [ (€] K]
0 E 0 E 0 E 0 E 0
3 : h) 2 2 8 8 8
S —— S~ —— -
Odd digit Even digit

Out of 4 odd digits, 4 even places can be
occupied in ng, ways.
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-~ Total number of ways = (4;42?!) (ngz.y)

17) The sum of all possible numbers greater
than 10* formed by using the digits from
{1,3,5,7,9}is
(a) 6, 66, 66,600; (b)6,66,600; (c)6,

66, 660; (d) none

Sol.:

If 1 were at units place (i.e. 5)then the
remaining first 4 places (1- 4)can be filled in
4! Ways.

~ sum of all 4! (1)= 24 similarly for 3, 5,7
and 9 filled in units place the rest four places
can be filled in 4! Ways in each case

=~ If sum of all digits in units place is S.

— S =41 (1+34+54+749)= S = 4! x 25 =
600.

Similarly, sum of all digits in ten places,
hundred’s place, thousands place, ten
thousands place and hundred thousands
place in 600 in all cases.

18) The number of ways of arranging letters
AAAAABBBCCCDEEF in a row if the letters
C are Separated from one another
(2) 95135040; (b) 95135039; (c)
95135041; (d) none

Sol: AAAAABBBCCCEE F
SN——
5 3 3 2 1

Number of ways of arranging AAAABBDEEF
12!

are 513121

Now, there are 13 places in between or on the
sides of 12 characters, and since we want to
separate all the c’s this can be done in placing
these c’s in these 13 places This can be done
in 13, ways.
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12!
= Total number of ways = i X 13,

=~ Total number of ways = 95135040.

19) The number of rectangles in the following
figis
(@ 5x5; (b) 5% x 33 (c)5¢, X 5¢,;
(d) none

Sol.: Since, there are 5 horizontal lines
and 5 vertical lines, and each choice of a
pair of horizontal lines and a pair of
vertical lines gives us a rectangle. Hence
the no. of rectangles = 5., X 5¢,

20) From a company of 15 soldiers any 4 are
placed on guard, each both to catch for 4
hour. For what length of time (in hour) can
different batches be selected?

(a) 5460; (b) 5410; (c) 54090; (d) none

Sol.: The number of ways in which 4
soldiers can be selected out of 15 are the
number of ways batches can be formed.

Now 4 soldiers can be selected out of 15
in 15., ways = 1365. Again, if can batch
has two watch for 4 hours, then 1365

batches will watch for 1365 X 4 = 5460.

21) A parallelogram is cut by two sets of m
lines parallel to its sides. The number of
parallelograms thus formed is
@ mc,; (b) (mc,)?% (€) (m+2¢,)%

(d) none

Sol.: Each set is having (m + 2) parallel
lines and each parallelogram is formed by
choosing two straight lines from the first

288

set and two straight lines from the second
set.

Two straight line from the first set can be
choseninm + 2., ways and two strainght

lines from the second set can be chosen in
m + 2, ways.

Hence, the total number of parallelograms

formed =m + 2, m+ 2,, = (m + ZCZ)Z

22) If n dice from an even number is 189, then
n=

(@3 (b)4 (c)8; (d)none

Sol.: Number of all possible outcomes, on
all the n-sides = 6™ . Now, for any one
dice odd number on it can occur in 3¢,

ways.

So, for all the dice, an odd number can
occur in 3™ ways

[No. of ways in which at least one of the dice ]
shows an even number

[No.of all possible outcomes onn
.dices][every dice shown o odd number|
= Required ways = 6™ — 3™ = 189 (given).

By Hit and Trial the equality is true for n
= 3.

23)If a, b, ¢, d, e are primes, the number of
divisions of ac®de is
@) 73; (b)72; (c)71; (d)none

Sol.: Let N = ab?c?de

Where a, b, ¢, d and e are prime out of one
factor a, we can have either one or none.
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~Number of possible divisors of a =
(1+1) = 2, for b, there are two factors, we
can have either one, two or none

~ Number of possible divisors of b =
(2+1)=3

Similarly, the number of possible factors
of c,dand eis (2+1), (1+1) and (1+1)
respectively.

Hence, the number of all possible divisors
ofab?c?deare (1+1)(2+1)(2 +
DA+1DA+1).

Now, there exists only one possible worst
case in which the factors is a®b°c%d®° =
1 which a factor of every number. .
Number of ways =72 -1 = 71.

24) If 3dices are thrown together, then the
number of ways in which the sum of the
number of ways in which the sum of the
numbers appearing on the diceisn, 9 <
n<14is
(@) —n% + 21n—83; (b)(—n? —21n—

83; (c) —n?+21n+ 83 (d)none

Sol.If9<n<14,then6 <k —3 < 11.

Thus the coeff. of x™* 3 in (1 — x%)3 (1 —
x)3 = coeff.of x" 3 in

<3C0 ~3¢ . +3¢ ., —3c xlg) x
1 2 3
-3 _

(1-x)"°= 3¢,

Coeff.of x"3in(1—x)"3—
3¢, coeff.of x™ % in (1 —x)"3 = 3¢, X
n—3+3—-1c  —3¢xXxn—-9+3-

Ie,.,

=n—1¢, —3xn—-7; =2In—n*—
83= —n?+21n-83

25) The number of ways of choosing 10 balls
from infinite white, red, blue and green
balls is
(a) 286; (b) 295; (c) 312; (d) none.

Sol.: Required ways =
{coefficient of x*®in (1 +x + x? +
T

4
- , 1

= coefficient of x1° in (E) =

coefficient of x1%in (1 —x)™* =

coefficient of x'°in

5.4 2 4.5.6 3
(1 + 4x + ix +Tx + 7c4x4 + BCsxs

9 okt 13C10x1°>

~ Required ways= 13C10 _ 13?;122,111 _ 286

26) In how many ways can 6 coins be chosen
from 20 one rupee coins, 10 fifty paise
coins, 7 twenty paise coins?

(@) 37p,; (b)37¢,; (¢)37p,,; (d)none

Sol.: Since, the distribution equation is x +
y + z = 6, where x, y and z represents one
rupee, fifty paise and twenty paise coins
respectively.

~Number of ways of choosing r things out
of nthings=n+r—1,.

Where everything occur any number of
time.

~Required ways=3+6 — 1, = 8¢, =
28.

27) The number of non-negative solution of
x4+ x3 + x3+ -+ x, < n.(wherenis
possible integer) is
@) 2nc,_; ®)2nc,_, -1 (0)2np, —

1; (d)none
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Sol.: In general, we know that, for the
distribution equation x; + x, + x3 + -+ +
X, = n. The number of ways in which n
things can be distributed among r in such
a ways end can receive none, one or more
orallofnitemsaren +r—1, ..

=~ for the distribution equation

X1 + x5 + x3 + -+ x, < n. Letrequired
ways = w

==W=

29) In how many ways the letters of the word

PERSON can be placed in the squares of
the adjoining fig. So that no row remains

empty?
(a) 81; (b)18720; (c) 18721; (d) none

Sol.: In PERSON total letters = 6 which
are to be filled in 8 squares.

6 number of ways of choosing 6 letters to
fill in 8 squares=8;, —2 =28 — 2 = 26

Required ways = 26 x 6!=18720.

{No.of ways of distributing 1 item}{No.of ways of distributing 2 item}

{No.of ways of distributing in item}

=W=1+n-1, +2+n-1, +
ctn+n—1¢

=W=mn¢_  +n+lc_ +-+
2n—1¢ |

=W = (ncn_l +ncn) +n+ 1Cn—1 + -+
2n—1¢ |

=W={n+1c,+n—-1¢_ )+ +

2n — 1Cn—1} —ng,

=W =2n¢, +2n—1¢, _ ) —ne, =
W = chn - ncn

W = chn—l —1.

2) For 2.2 7.5 m () 4 2(%,) + (1) =

@ () ® () (© (p); (@) none

Sol.: Let n be the number of newspaper
which are read

=60n = (300)(5)

~n=25

30) The number of ways of arranging 5

players to through the cricket ball so that
the youngest way no thrown first is
(@) 97; (b)98; (c) 99; (d) none.

Sol.: Keeping the youngest player aside,
one of four players can throw the cricket
ball at first place in 4., ways.

Now the three players (not able to throw)
the ball in first placed and 1 youngest
player i.e. 4 can arrange themselves in 4!
Ways to thrown the ball.

- Required ways = 4., 4! = 96.

31) The total number of ways in which a

bigger can be given at least one rupee from
four 25 paise coins three 50 paise coins
and 2 one rupee coin is

(@) 55; (b)54; (c)53; (d)none

Sol.: (b)

32) In how many ways can 4 prizes be

distributed in a class of 20 students when

each student is eligible for all prizes?

(a) 1600; (b) 16000; (c) 160000; (d)
none

Sol.: The first prize can be given in 20
ways.



The next prize can be given in 20 ways
The next prize can be given in 20 ways.
The last prize can be given in 20 ways.

Total number of ways all the four prizes
can be given is 20 X 20 x 20 x 20 =
160000.

33) The number of ways in which 4 particular

persons A, B, C, D and 6 move persons can
stand in a queue. So that A always stand
before B. B stand C and C before D is

(a) 10145 (b) 10!-4; ()5 (d)none

Sol.: Total number of arrangements of 10
persons when there is no restriction =
10!

Number of ways in which A, B, C, D can be
arranged among themselves = 4!

~ Number of arrangements of 10 persons

when A, B, C, D occurs in a particular

10!
order = —
4!

34) A father with 8 children taken 3 at a time

to Nicco Park, as often as he can without
talking the same children together more
than once. How often will be father go?
(@) 56; (b) 106; (c) 206; (d) none.

Sol.: [The number of times he can select 3
children out of 8]= [The number of visits
he (the father) can make]

=~ The number of ways of selecting 3
children out of 8 = 8., = 56.

35) In a steamer there are stalls for 12 animals

and there are horse cows and calves (not
less than 12 each) ready to be shipped. In
how many ways can the ship load be
made?
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@) 3'% () 3'%-12; (c) 32+1;
(d) none

Sol.: First stall can be filled in 3 ways, 2nd
stall in 3 ways and so on. Similarly, 12t
stall in 3 ways.

= Number of ways of loading steamer is
3x3x3....x3(12 times) = 32

(SUBJECTIVE TYPE)

ncr
Zn—lcr

Evaluate: });2,

Sol.: A general method of finding the sum
of a series Y72, U, is to express

u, and v, — v,,q sothatv, - 0 asn -
oo, we get.

o)

Lt Zur =
n —oo

r=0

[oe]
Lt Z(Vr — Vr41)
n —oo
r=0

= Lt (Vg — Vr41) = vy

n —-oo

In the present case, it is easily verified
that

ne, ne,.. Ln Lr LZ2n-r
ZnCr_ngl_n—r L2n
Ln Lr+1
CLr+lLn—-r—1
L2n—r—1
L2n
Ln [L2Zn—7r L2Zn—r—1
:I_Zn Ln—r Ln—r-—1
Ln L2Zn—r—1
:I_Zn Ln—r
[Cn—7)—(n—71)]
1 Ln LZ2n—-r-1
=EI_Zn—l Ln—r
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2)

3)

1 nc, -
22n—1Cr 2n—1C

-2y [
ZnC

=225 =
2nc,

_ Mgy, ]
2nc o1

Given that the number C is greater than 1,
show that one of the two number

Ve +1—+/C,\/C —+/C —1is always

greater than the number.

Sol.: In fact Ve + 1 — V¢, Ve —

To show this we have to show that

Ve+1+4++Vc—-1<2Vc
or2c+2Vc?2—1<4corvc?—1<c

Vi1

which is true.

Alternatively, consider the parabolay =
Vx.and v/x is a concave function.

Show that the product of 2n consecutive
negative integers is divisible by (2n)!

Sol.: Let r be a natural number, Then
1,-r—2,.,—r—(2n—1) are
an consecutive negative integers.

_T" -1 —

Let P be their product. Then, P =
(-r)(=r =D (-r-2).... (—r —

(2n-1))
=-D"rr+ D@ +2)...(r
+2n—-1)
=r(r+ 1D +2)...(r
+2n—-1)
_ r+D)!'rr+DT+2)...(r+2n-1)
B (r—1)!
_ (r+2n-1)!
T (r=-1)!
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4)

5)

2n)!(r-1)!
=(@2n)!2n+r—1g,,
= (2n)!

_ {(Zn +r : 1)!} (2n)!

(A natural number). Hence, P is divisible
by (2n)!

How many 3-digit numbers are of the from
abc,witha, c<banda =+ 0?

Sol.: Since the digit at hundred’s place
cannot be zero

Therefore, we must have a > 1.

But it is given that a, c < b. Therefore b >
2.

=b=2345,..9

Letb =1, wherer=2, 3, ..., 9. Then a can
take (r — 1) values 1, 2, ..., r-1. Thus for
each value of r, abc can take r(r—1)
values. But, r can take value from 2 to 9.
Therefore, by the fundamental principle
of addition. Required number of numbers

9

=Zr(r—1)= irz—ir

r=2 r=2 r=2
9 9

= E r2—>Yr

r=1 r=1

909+ 1D(Ox2+1)
B 6

—9(9 + 1).

There are two sets of parallel lines, their
equations xcosa + ysina = P; P =
1,2,... mand
ycosa—xsina =q;q =
1,2,...,n(n > m) where a is a given
const. Show that the lines from

%m(m —1)(3n — m — 1) squares.
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Sol.: The equation x cosa + ysina = p;p =
1,2,3,....,mrepresents m parallel lines such
that the distance between two consecutive
lines is one unit. Similarly the equation
ycosa—xsina=q;q=12,...,n
represents n parallel lines such that the
distance between any two consecutive lines is
one unit.

We observe that the slope of each line of first
setis m; = — cota and the slope of each line
of second setis m, = tana.

Clearly, mym, = —1

Therefore every line of first set is
perpendicular to every line of second set.

We observe that four lines consisting of two
lines of the first set and two lines of the
second set will form a square, if the distance
between two parallel lines of first set is same
as the distance between two parallel lines of
second set.

Since m < n therefore the length of the side of
the largest square formed by the two sets of
lines is (m — 1) units and the length of the
side of the smallest square is 1 unit. Clearly,
two lines at a unit distance from the set of m
parallel lines can be chosen in (m — 1) ways,
namely (1, 2) (2,3) (3,4)......, (m-1, m) and
two lines at a unit distance from the set of n
parallel lines can be chosen in (m — 1) ways,
namely (1, 2)(2, 3), ..., (n-1, n). Therefore
number of squares whose sides are of length
1 unit (m-1)(n-1).

Similarly two lines at a distance of 2 units
from the set of m parallel lines can be chosen
in (m — 2) ways, namely (1, 3) (2, 4), ..., (m-2,
m) and two lines at a distance of 2 units from
the set of n parallel lines can be chosen in (n -
2) ways, namely (1, 3)(2, 4), ...., (n -2, n)
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Therefore, number of squares whose sides
are of length 2 units = (m — 2)(n — 2)
containing in this, manner, we find that the
number of squares whose sides are of length
2 units = (m —(m-— 1))(n —(m— 1))

Hence, Total number of squares

=(m-1n-1D+m-2)(n—2)+ -+
(m—(m—l))(n—(m—l))

-1

= m-nNE-n

m
r=1
m-—1

= {mn—r(m+n) +r?}

r=1

=mn(m—1)—(m+n)
m—1 m—1

r+ r2
m(m—1)

=mn(m-1) — (m+n)T

N (m—-1m@2m-1)

6

_ @{m “3(m4n)+ @m—1)

=2 (60 — 3m— 3n + 2m + 1} =

m(m-1)(3n-m-1)
p .

6) There are n straight lines in a plane such
that n, are parallel in different direction,
n, are parallel in different direction and so
on, n; are parallel in another direction
such thatn; + n, + .- n, = n. Alsono
three of the given lines meet a point. Show
that the total number of inter section is

% (nz - erf=1 an)_
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Sol.: If no two of n given lines are parallel
and no three of them meet at a point, then
the total number of points of intersection
is n¢,. Butitis given that there are k sets
of nq,n,, ns, ..., ny parallel lines such that
no line in one set is parallel to a lines in
any other set. Also lines of one set do not
intersect with each other.

Therefore, lines of one set do not provide
any points of intersection. Hence, total
number of points of intersection

= nCZ - (nlcz +n2CZ + "'+nkcz +)

_n(n—l)_ nmn—1) ny(n, —1)
2 2 2
n(n, —1
+...+M}
2
nn—-1) 1
=T—E{(Tl12+n22+"'+nk2)
— (g +ny+ -+ )}
nn—-1) 1
=T—E{(Tl12+n22+"'+nk2)
—n}
n, 1
_72_5 (Tl12+n22+" +nk2)

7) There are 15 seats in as row numbered as
1 to 15. In how many ways can 4 persons
sit in such a way that seat number 6 is
always occupied and no two person sit in
adjacent seats.

Sol.: Since seat number ‘6’ is always occupied
and no two persons can occupy adjacent
seats. Therefore , at most two persons can sit
on the left side of sixth seat.
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Thus, we have the following cases for the
selection of seats.

Case I: When two seats are selected on the
right side sixth seat and one seat on its right
side;

Since no two adjacent seats are selected, so
we can select either 1st and 3rd or 2nd and 4th
or 1stand 4t seats. So, there are 3 ways to
select 2 seat on the left side of sixth seat one
the right side of sixth seat there are 9 seats.
Therefore, one seat (excluding 7t seat) on the
right side of sixth seat can be chosen in 8
ways.

Case II: When two seats are selected on the
right side of sixth seat and one seat on its left
side.

In this case, one seats are selected on the
right side of sixth seat and one seat on its left
side.

In this case, one seat on the left side of sixth
seat can be chosen in 4 ways (any one of the
first four seats) and the number of ways of
selecting two seats on the right side of sixth
seat is same the number of non-negative
integral solutions of the equation x; + x, +
X3 =7,wherex; = 1,x, =2 1and x3 = 0.

Here, x; is the number of vacant seats
between sixth seat and the first seat selected
on the right side of sixth seat, x, is the
number of vacant seats between sixth seat
and the first seat selected on the right side of
sixth seat, x, is the number of vacant seats
between first and second seat selected on the
right side of sixth seat and x5 is the number of
vacant seats on the right side of the second
selected seat.

Lety, = x;y — 1y, = x, —land y; = x3.
Thenx; +x, +x3 =7
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=y, +y, +y3 =5, wherey;,y,;,y3 =0

Total number of integral solutions of this
equationis5+3 -1, = 7, =21

Thus, the number of ways in which two seats
can be chosen on the right side of sixth seat =
21. Hence total number of selection of seats in
this case 4 x 21 = 84.

Case III: When all the three persons sit on the
right side of sixth seat:

Let x; be the number of vacant seats between
6th seat and first seat selected on the right of
6th seat, x, be the number of vacant seats
between first selected seat and the second
selected seat, x3 be the number of seats
between second and third selected seat and
x, be the numbers of vacant seats on the right
side of fourth selected seat. Then, the number
of ways of selecting 3 seats on the right side
of sixth seat is equal to the number of the
integral solution of the equation x; + x, +
X35 +x4 =6, wherex; = 1,x, > 1,x3 =
1,x,>20. Letzy = x4 — 1,2, = x, — 1,23 =
x3 —1and z, = x4. Then, we have z; + z, +
Z3 + 2z, =3,wherez; 20;i=1,2,3,4

Total number of solution of this equation is

3+4—1_ = 6¢, =20

Thus the number of ways of selecting 3 seats
on the right side of 6th seat = 20.

Hence total number of ways of selection of 4
seats 24 +84+ 20=128.

But, corresponding to each way of selection of
4 seats there are 4! Arrangements of 4
persons. Hence total number of seating
arrangement =128x 4! = 3072.
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8) In the given figure, you have the road
plane of a city. A man standing at x wants
to reach the house at y by the shortest
path. What is the number of different
paths that he can take?

Sol.: As the man wants to travel by one many
possible shortest paths, he will never turn up
the trim down words. So a travel by one of the
shortest path is to take a horizontal pieces
and 4 vertical pieces of roads. As he cannot
take a right turn, he will use only one of the
five horizontal pieces in the same vertical
column. Similarly same horizontal row.

~A shortest path is an arrangement of eight
things

Lq,Ly, L3, Ly, Uq, Uy, Uz, Uy. So that the order
of L and Us do not change.

(> clearly L, cannot be taken without talking
L4, L, can not taken without taking U; etc.)

Hence, the number of shortest path = the
number of arrangements of

Ly,Ls, L3, Ly, Uy, Uy, Uz, Uy where the order of
Ls as well as the order of Us do not change =
the number of arrangements treating

Ls identical and Us as identical = % = 70.

9) Find the number of permutations
(Pq,P,,P3,P4,Ps5)of 1,2,3,4,5,6 such
thatforanyk, 1 < k < 5,(P4,P3, ...., P})
does not from a permutation of 1, 2, ..., k.

So.: Let T, is the required number of
permutations. If k is the least positive integer
such that (Py, P, ...., P;) is a permutations of
1,23, ..k

Now are desire of count the number of
permutation for k = n. Now,
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ZTR.(n—k)! =n!
k=1

ST, =n-T.(n—1)!—=T,.(n—2)! —
= Ty 1

Clearly,T, =1; T, =21 —T,. 11 = 1,T; =
3;T, =13; Ts = 71 and T, = 461.

10) Find the best and the greatest value of
Yj=12i=1|%; — xj| ;where 0 < x <
1vi<isml<i<j<n

Sol.: For last value: It is possible to have x; =
x;1=j=123,..,x

“Smin =0

For greatest value: without loss of generality,
we can assume that0 < x; <x, <-- < x, <
1 (supposing the equality sign for 0 and 1
also).

Then S = (x; —xq) + [(x3 —x1) +

(x3 = x2)] + [(xg — x)] + [(x4 — x2) +
(g —x3)] + -+ [(xg —x1) + (xg —x3) +
oy — (0 — 1)]

Casel: If n = 2m,

S=Yam (2k —2m — 1) x,

If k=1, 2, ..., m; then coefficients are negative.

~To maximize S’, We chose x; = x, = -+ =
x, =0

Ifk=m+1,m+ 2,...,2m then coefficients
are positive.

. . - I —_—
~ To maximize S’ ~, we choose x,;,,1 =

Xmiz = 0 ~= Xom =1

2
n
“Smax =14+34++02m-1) = m2=z

Casell: Ifn =2m+1 § = Y D2k -
2m — 1) x;

Now we choose x; = x, =+ =X, = 0, X541
can take anyx,,,, =+ = Xyp41 = 1

ASmax=2+4+-+2m=m(m+1)
_(*-1)
4

Combining, S’ 0 = [nrl]

Byactually,x; # 0&x; =1Vi=
1,2, .ccci,n

oS’ e 1S NOt possible.
Even if you show S= Y2™ (2k —n — 1) x;

and mentions than to get S,,,,, we have to put
x;, S = 0 and some x;,

S = 1 which is not possible. He will get full
credit.

11)If (1 + x)" X7-¢ nc, . x"= then, show that

Number of Number of | Total
times times with
occurring positive
with negative | sign
sign
X1 (n—-1) 0 —(n
Xo (n—2) 1 —1)x;
. H . _(n
: : : —3)x,
Xn (n—k) (k-1) :
2k —n
— 1)xk
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2

{i (-1 1. CZr—Z}

r=1
0 2 n

+ {Z (_1)T_1 . ch—l} = Z Cr
r=1

r=0

Sol.: Let

Z( D ey

(co—Cp+Cqun)? v,

2
;(_W_l

(DHand

-Cor—1

= (c;—c3
+c5. )% (i)

Given: (1 + x)TL =co+cx+ szz + e 4
.. (iid)

Putx =iin(iii):(1+ )" =cy+c1i —cy —

C3i+C4 ......... =(C0_C2+C4....)+

iC3+C4 ......... =(C0_C2+C4....)+
i(cp—c3+cgn) . (v)

() x ) = {1+DA-D}*=

(co—cp+cyn)?>+(c; —c3+cs....)?

=2"=(co—cy+c4...)?+(c; —c3+

Cs ... .)2,

= Y o =(co—Ccyt+Cy..)?+

(i1 —c3+c5...)?

12) Prove that Y5 _, x* divides Yj_o x***

Sol.: Let
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9
_ Zxkkk o 0 4 1111 4 42222 4

k=0
9
x°®and A = Z xk
k=0

=x0+xt+x2+ 4 x°

9
Now,B — A = Z(xkkk — xk
k=0
9

— Z xk {(xlo)kkk _ 1}
k=0
9

= {(x10)kkk _ 13 Z Xk

k=0

=B=(M+1) Zizoxk kkk

divisible by Yp_o x*.

e Yh_ox

13) After several operation of differentiation
and multiplying by (x+ 1) performed in an
arbitrary order the polynomial x® + x7 is
changed to ax +b. Prove that the
difference between the in tegers a and b is
always divisible by 49.

Sol.: Let f(x) = x™, then f™(x) =
mim—-—1)(m—-2)...(m+1-—
n)x™ "where f™(x)is nth derivative of f(x).

n - s,m-n
) =
Let g(x) = x® + x7, then g"(x) =
8! 8 -n 7—n . .
G X T oo n), Multiplying both

sides by (1+ x), then
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(8 —.n)!
7!

7—n
8!

(8 —n)!

8—n

(1+x)g"(x) = X

7-n

+

9—-n

+ X

After (8 — n)™" differentiation of (i) we get

(71), x87 ™ ........(0) if into the from ax +b.

Let h(x) = (x+1) g™ (x).

8! (8 —n)!
8—n)" 0!

70 (9—n)!
7-n! 7

81 (9—n)!
G-ml 71 =
=8!(9—n)x+7!(8—n)
+ 8.7!

Now h® " (x) =

+

=8!/(9 —n)x + 7! (16 —n)comparing a =
8! (9 —n)x

=71(72 —8n)!b = 7! (16 — n)

sa—b=71(72-8n—-16+n) =
71(56 — 7Tn) = 7 x 7! (8 — n) = 49.6! (8 — n)

~ a — b is divisible by 49.

14) Let n be an odd integer greater than 1 and
k4, k,, ..., k,, be given integers. For each
of the n! Permutations a =
(aq,ay,....,ay)of 1,2, ... ... ... ,n. Let
S(a) 2Zi=1k; a;. Show that there are two
permutations b and ¢, b # ¢ such that n! is
a divisors of S ) — S ).

Sol.: Let )} S(4) be the sum of (4 over all n!
permutation a = (a4, a,, ...., a,). We compute
2. S(a) mod n! two ways one of which depends
on the desired conclusion being false, and
reach a contradiction when n is odd.

Firstway I, ¥ S(qy, k1 is multiplied by each i
€ {1, .., n} atotal of (n-1)! Times. Once for
each permutation of {1, ..., n} in which a; = i.
Thus the coefficient of ky in ¥ S(qy is (n —

DI +2 4 ) = 2

The same is true for all k, so Y} S =

1)!
O S e (1)

Second way, if n! is not a divisors of S,y — S(¢)
for any b # c, then each S(,) must have a
different remainder mod n! Since there are n!
permutations, these remainders must be
precisely the numbers 0, 1, 2, ..., n! -1. Thus

_ (n!-1)n!

XS@ ="

modn!...........(2)

Combining (1) and (2), we get

(n+ 1w
2 ;k"
_ (= 1n!

modn! .............(3)
2

Now, for n odd, the left side of (3) is
congruent to 0 modulo n!, while for n >1 the
right side is not congruent to 0 (n! -1 is odd)
For n> 1 and odd, we have a contradiction.

15) If x4, x5, ..., x,, be real numbers satisfying
the conditions: |x{ + x5 + -+ x,| =
1and |x;| < nTH ori=1,2,....,n.show
that there exist a permutations

Y1, Y2, e weer oy Yn Of X1, X3, ..., Xy SUCh

that [y; + 2y, + -+ ny,| < "TH

Sol.: For any permutation 7 = (yy, ¥, ..., Yn)
of (x4, %2, ..., X,) Let S(m)=y; + 2y, + 3y3 +
-+ + ny, Let my be the identity permutation,
g = (x1,%5, ....., X,) and let  be the reverse
permutation, T =
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,x1), if |S(m)| <

(n+1)

(Xpy X1y o
22 or S| <
Thus we assume |S(T[0)| > (n+
Dand |S(m)| > — (n“)

, then we are done.

Note that S(my) + S() = (x; +2x, + -+
nxn) + (Xn +2x,_ 1+ + nxl) =
(Tl + 1)(x1 +x, + -+

xn)and hence that |S(my) + S(m)| =n + 1.

Since each of S(my)and S() exceeds —— ( +1) is

absolute value, they must have opp051te
signs. Thus, one of S(1y)andS(m) is greater
than (n+ ) (n+1)

, and the other is less than —

Now, starting from 7, we can obtain any
permutation by successive, transpositions of
neighboring elements. In particular, there
exists a chain g, 4, ...., T,, of permutations
.41 is obtained from m; by interchanging
two of its neighboring terms.

This means that if r; =

Y1 Y2s e vy Y ANA Migq =

(21,23, ..., 2y) then there is an index k, 1 <
k <n-—1,suchthat z; = yriq,Zk41 =
yeand z; =y, j #k,j #k+1.

n+1
Because the numbers x; do not exceed (2—)

in absolute value, we have |S(m;;1) —

S| = lkxy + (k+ Dzpyq — kyy —

(k + Dyrsal = 1y = Yirr] < il + 1yl <
n + 1. It follows that the difference between
any two consecutive numbers in the sequence
S(my),S(my), ..., S(m,,) isatmostn +1 in
absolute value. Recall that the numbers

S(my) and S(m,,) = S(;) regarded as points
on the real line, lie outside of and on opposite

sides of the interval [— —(";1) ) _("+1)] _

Because this interval has length n +1, it
follows that at least. One of the numbers
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S(m;) must lie in this interval. For this

particular ; we have [S(m;)| < —— (nt1)

16) Find the number of non-degenerate
triangle whose vertices lie in set of points
(s, t) in the plane such that 0 < § < 4,0 <
t < 4, Sand tare integers.

Sol.: There are 25 points in the given set, we
can choose 3 out of them in (235) ways. Let us

count the number of ways in which the 3
points chosen will lie on a line. L. : The given
set S contains 5 horizontal lines 5 points each.

We can choose 3 points from any of them in
(;’) ways.

Hence the number of ways in which L can be
a horizontal line is 5. (g) = 50. Similarly the

number of ways in which L can be a vertical
line is 50.

As shown in fig.(ii) S contains 5 lines of slope
1; one line contain 5 points, 2 lines contain 4
points each and 2 lines contain 3 points each.
So the number of ways in which L can be line
of slope 1 is (g) + 2(‘;) + 2(2) = 20.

Similarly, the number of ways in which L can
be a line of slope —1 is 20.

As shown in fig (ii) there are 3 lines of slope%

each containing 3 points; and there are 3 lines
of slope 2, each containing 3 points. So the

number of ways in which L can have slope %
or2is6 (§)= 6 similarly L can have slope

1 .
—3 or — 2 in 6 ways.

Since no other line can contain more than two
points of S, the number of ways in which the 3
points chosen will lie is
504+504+20+4+20+4+6+6= 152
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The required number of triangle is therefore
(%) — 152 = 2148.

17) For non-negative integers n, r the binomial
coefficient () denotes the number of
combinations of n objects chosenr ata
time, with the convention that (i) =
land () =0ifn<r.

Prove that 3, ("7 *") (’;-1) = (%) forall
integersn,rwith1 <r <n.

Sol.: We use a combinatorial argument to
establish the obviously equivalent identity

>N

= (:) v (*)Where k

= min{r,n —r + 1}.

It clearly suffices to demonstrate that the left
hand side of (i) counts the number of ways of
selecting r objects from n distinct objects
(without replacements). Let S, = r — 1. For
each fixedd =1, 2, ..., k any selection of d

objects from S; (Si) together with any
2

selection of r — d objects from S, would yield
a selection of r objects from S. The total
number of such electronsis ("7 1) (}77).
Conversely each selection of r objects from S
clearly much arise in this manner. Summing
overd =1, 2, ...(*) follows.

18) If S be the set of natural numbers whose
digits are chosen from {1, 2, 3, 4} such that
(i) when no digits are repeated, find n(s)
and the sum of all numbers in S and (ii)
when § is the set of up to 4-digits
numbers where digits are repeated. Find
|S1| and also find the sum of all the
numbers in S;.
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Sol.: (i) S consists of single digit numbers, two
digits numbers three digits numbers and four
digit numbers.

No. of single digit number = 4, No. of two
digit number = 4 X 3 = 12 (since repeatation
is not allowed, there are four choices for ten’s
place and three choices for unit’s place)

No. of three digit number =4 X 3 X 2 = 24

No. of four digit number =4 X3 Xx2X1=
24

2n(s) =4 +12+ 24+ 24 = 64.

Now for the sum of these 64 numbers, sum of
all the single digit numberis 1 +2 +3 +4=
10. (since there are exactly 4 digits 1, 2, 3, 4
and their numbers are 1, 2, 3 and 4).

Now, to find the sum of all the two digit
numbers. No of two digit number is 12.

The digit used in units place are 1, 2, 3 and 4.
In the 12 numbers, each of 1, 2, 3 and 4
occurs thrice in unit digit (7 = 3).

Again in ten’s place, each of these digits
occurs thrice also so, sum of these 12
numbers =30X (1+2+3+4)+3 X%
(1+2+3+4) =300+ 30 = 330.No. of the
digit numbers is 24. So, the number of times
each of 1, 2, 3, 4 occurs in each of unit’s ten’s

and hundred’s place is % = 6.

So, sum of all these three digit number is
100x6(1+2+3+4)+10x6(1+2+3+
4)+1x6(1+2+3+4)=6,000+ 600+
60 = 6660.

Similarly for the four digit numbers, the sum
is computedas 100 x 6(1+2+ 3+ 4) +
100x6(1+2+3+4)+10x6(1+2+3+
4)+1x6(1+2+3+4)=60,000+

6,000 + 600 + 60 = 66, 660.
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[Since there are 24 digit numbers, each of 1,
2, 3, 4 occurs in each of the four digits in % =

6 times]

So, the sum of all the single digit, two digit,
three digit and four digit number =
104+330+6660+66660= 73, 660.

() There are just four single digits
numbers 1, 2, 3, 4.

(ii) There are 4 X 4 = 16 two digits
numbers, as digit can be repeated.

(iii) Thereare4 X 4 X 4 = 64 three
digit numbers.

(iv) Thereare4 x4 x4 x4 =256

four digit numbers.

So, that total number of numbers up to 4 digit
numbers that could be formed using the
digits 1,2,3 and 4 is4 + 16 + 64 + 256 =
340.

Sum of the 4 single digit numbers =
14+2+3+4=10. To find the sum of 16, two
digit number each of 1, 2, 3, 4 occur in each of

. , 16 .
units and ten'’s place Vi 4 times. So, the

sum of all these 16 numbers is = 10 X
4(1+2+3+4)+4(1+2+3+4) =400+
40 = 440.

Similarly, the sum of all the 64 three digit
numbers100x64—4x(1+2+3+4)+10x
64—4><(1+2+3+4)+1x%x(1+2+3+
4) = 16,000 + 1,600 + 160 = 17,760.
Again the sum of al the 256 four digit

256

numbers=1000xTx(1+2+3+4)=

6,40,000 + 64,000 + 6,400 + 640 =
7,11, 040.

Therefore, sum of all the number is 10 + 440
+17,760+ 7,11,040= 7,29,250.
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19) Find the number of 6 digit natural
numbers where each digit appears at least
twice.

Sol.: We consider number like 222222 or
233200 but not 212222. Since the digit 1
occurs only once.

The set of all such 6 digits can be divided into
following classes.

S1 = the set of all 6 digit numbers where a
single digit is repeated 6 times.

n(S;)=9.

Since ‘0’ cannot be a significant number when
all its digits are zero.

Let S, be the set of all six digit numbers,
made up of three distinct digits.

Here we should have two cases : S, (a) one
with the exclusion of zero as a digit and other
S, (b) with the inclusion of zero as a digit.

S,(a) The numbers of ways, three digit could
be chosen from 1, 2, ..., 9 is 9,. Each of these
three digits occurs twice. So, the number of
six digit number in this case is

6! 9x8x7 720
9C>< = X
3 2lx2lx2! 1x2x%x3 8
=9x8x%x7x15=7560.

S, (b) the three digits used include one zero,
implying we have to choose the other two
digits from the 9 non zero digits.

This could be done in 9., = % = 36. Since

zero can not be in the leading digit. So let us
fix one of the fixed non-zero number in the
extreme left. Then the other five digits are
made up of 2 zeros, 2 fixed non zero number
and the another non-zero number, one of
which is put in the extreme left.
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In this case the number of six digit numbers

5 :
X 2 (since
21x2!x2!

from either of the pairs of fixed non-zero
numbers, one can occupy the extreme digit)
= 60.

that could be formed is

So, the total number in this case = 36 X 60 =
2160.

~n(S,) = n(S,a) + (S,b) = 7560 + 2160 =
9720

Now, Let S5 be the set of six digit numbers,
whose digits are made up to of two distinct,
digits each of which occurs thrice. Here again,
there are two cases: S3(q) excluding the digit

zero and S3(p) including the digit zero.

S3(a) is the set of six digit numbers, each of

whose digits are made up of two non-zero
digits each occurring thrice

6!

#n[S3(@)] = ¢, X 55 = 36 x 20 = 720

S3(p) consists of 6 digits numbers whose
digits are made up of three zeros and one of
non-zero digit, occurring thrice. If you fix one
of the nine non-zero digit, use that digit in the
extreme left.

This digit should be used thrice. So in the
remaining 5 digits, this fixed non zero digit is
used twice and the digit zero occurs thrice.

So, the number of 6 digit numbers formed in

. 5!
these cases is 9 X preTi 90 ~ n(S3) =

nSs(a) + nSs(b) = 720 + 90 = 810.

Now let us take S,, the case where the six
digit number consists of exactly two digits,
one of which occurs twice and the other four
times.

Here, again, there are two cases; S,(a)
excluding zero and S, (b) including zero.
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If a and b are the two non-zero numbers a

6!
214!
and when a used four times, b twice, we again

used twice and b four times, then we get

6! .
get———. So, when 2 of the nine non-zero

digits are used to from the six digit number in
this case, the total numbers gotis 9., X 2 X

®  _36x5x6=1080.
41%2!

Thus n[S,(a)] = 1080.
For counting the numbers in S, (b).

In this case we may use 4 zeros and a non-
zero number twice or 2 zeros and a non-zero
number for times. In the former case,
assuming the one of the fixed non-zero digit
occupying the extreme left, we get the other
five digits consisting of 4 zeros and one non-
zero number.

. . 5! o
This resultin 9 X yreeTie 45 six digit numbers.

When we use the fixed non-zero digit 4 times

. 5!
and use zero twice, then we get 9 X prverhe 90

six digit numbers, as fixed number occupies
the extreme left and for the remaining three
times it occupies 3 of the remaining digit,
other digits being occupied by the two zeros.
So, n(S,) =n [S,(a)] + n[S,(b)] = 1080 +
45+ 90 = 1215.

Hence, the total number of six digit numbers
satisfying the given condition = n(S;) +
n(S,) + n(S3) + n(S,)=9+720+810+1215
= 2754

20)Ifx=1{1, 2, 3, ... 4}, where n €N, show that
the number of r combinations of x which
contain no consecutive integer is given by
("_:“),where 0<r<n-r+1.

Sol.: From the hypothesisr <n —r +
1,we get 2r < n + 1. Each suchr
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combinations can be represented by a binary
sequences by, by, bs ....... b, where b; =

1,if i is anumber of the r combinations and
0, otherwise with no consecutive b;'s =1 (the
above r combinations contain no consecutive
integers). The number of 1s in the sequence is
r. Now, this amounts to counting such binary
sequences. Now, look at the arrangements of
the following boxes;

And the balls in them

1 |2 3 4 5 6 7

00000 |00 |0000]O0 0 000

Here, the balls stand for the binary digits
zero, and the boundaries on the left and right
of each box can be taken as the binary digit
one. In this display of boxes and balls as
interpreted gives previously how we want the
binary numbers. here there are 7 boxes, and 6
left/right boundary for the boxes.. So, this is
an illustration of 6 combinations of non-
consecutive numbers.

The reason for zeros in the front and at the end
is that we can have leading zeros and trailing

zeroes in the binary sequence by, by, .... b,

Now clearly finding the r combination amounts
to distribution of (n-r) balls into (r + 1) distinct
boxes [(n — r)balls = (n —r)] zeros as these
are r ones, in the n number sequence]. Such
that the 2", 3-rth boxes are non-empty.(The
first and the last boxes may or may not be
empty in the illustration 1 and the 7" may
have zeros or may not have balls as we have
already had 6 combinations!). Put (r — 1) balls
one in each of 2™, 3™, ..., rth boxes. (So, that no
two 1’s occurs consecutively).

Now we have (n—r)— (r—1) balls to be
distributed in r +1 distinct boxes.
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21) IfS ={1,2,3,....,(n + 1)}wheren > 2

(x,y,2)
X,z

counting the numbers of T in two different
+1
ways, show that Y}_, k? = (nz )+

+1
2("3).
Sol.: Tcanbe writtenasT =T, UT,, T; =
{(x’x’z), €S, x< z} and T, = {(x’y'z) €S, x+
X,z X

VZ

andlett—{ eS,x<z,y<z}.By

y<z}

The number of elements in T, is the same as
choosing two elements from the set S, where
n(S)= (n +1).i.e.n(Ty) = (";1) (as every subset
of two elements the larger elements will be z
and the smaller will be x and y.)

In T,. we have 2(";’1) elements, other choosing
3 elements from the set S, two of the smaller
elements will be x and y and they may be either
taken as (x, y, z) or as (y, X, z) or in other words,
every three element subset of S, say {a, b, c} the
greatest is z, and the other two can be placed in
two different ways in the first two positions,

~n(T) (or |T]) = (";1) + 2(";1)T, can also be

considered as U™ S;,
where S; = {(XXLL)}/ <ixy € 5}-

All these sets are pair wise disjoint as for
different i, we get different ordered triplets (x,

Y, i).

Now in S;, the first two components of (x, y, i)
namely (x, y) can be any element from the set 1,
2,3, ..., (i-1) equal or district.

~ The number of ways of selecting (x, y), X, y
€{1,2,3, ..., (i-1)}is (i — 1)

Thus, n(S;)for each i is(i — 1)2,i > 2.
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For example, n(S,) = 1,n(S;) = 22 =4 and
so on

Now, n(T) = n(U5' S;) = Xi% n(Sy)
(because all S;'s are pair —wise disjoint)

n+1

i=2
n
n+1 n+1

= Ziz andhence,( >+2( )

, 2 3

i=1

n
3

k=1

22) Show that the number of ways in which 3
numbers in A.P. can be selected from 1, 2,

3, ., Nis % (n—1)>2 orin(n —-2)

according as n is odd or even.
Sol.:
Let us assume thatnis odd, son = 2m — 1.

Now, we will count the set of all triplets of
numbers which are in A.P.

Observe the following sequence of triplets in
A.P. with common difference 1.

W N -
Bw N
[S2 B S ON]

n—2 n—1 n
or,
2Zm—3 2m—-2 2Z2m-—1

AP is common difference 2.

WN -
[S2 BN OV ]
N O vl
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2Zm—-5 2m—-3 2m-—1

Thus there are 2m — 5 A.P.’s here with
common difference 2.

Now let us consider an A.P. with common
difference m — 1, then (1, m, 2m-1) will
be the only Ap with this common
difference m -1. Thus the greatest value
for the common difference of the Ap’s in
equationisd=m —1

Now, let us taken all the AP’s with
common difference d,

1 1+d 1+2d
2 2+d 2+2d

2m—1-2d 2m-1-2d 2Z2m-1

Therefore, there are exactly (Z2m — 1 —
2d) triplets in Ap with common
difference d, but d varies from 1 to m -1.

So, the total number of triplets in AP in
this case is

m-—1
Z (2m—1—-2d)
d=1

=(m-1)2m-1)
2(m— 1)m
— 22—

m-—1
Z 2m—1-2d
d=1

=(m-1)2m-1)
m-1

-2 d

(m—-1m
2

=2m?-3m+1—m?
+m

=m-1)Q2m—-1)-2

=m?-2m+1= (m—1)>2
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n+1
Butn=2m—1=>m=T=>m—1
_n—l 4
= an

Hence, when n is odd, the total number of

) . n-1 2 1

AP.’sis (T) = (n— 1)

For the case where n is even, assume =
2m. In this case also we can show that the
AP with the biggest value of the common
difference is againm — 1. for 1,m, 2m —
1, it will form an Ap with common
differencem — 1 and 1,m,2m — 1 all
belong to the given set of natural
numbers up to n. If m is the common
difference then 1,1 + m, 1 + 2m, will be
triplet in A.P., but 2m +1 does not belong
to the given set.

However there are two AP’s with
common differencesm — 1 as (2,m +

1, 2m) will from the Ap, with all the three
numbers belonging to the set, whereas
there is just one AP with biggest possible
common difference (m -1) in the case of
n, an odd number 1.

Now, consider the Aps with common
differences d, (1,1 +d,1 + 2d), (2,2 +
d,2+2d),(3,3+d,3+2d),...,2m—
2d,2m —d,2m)

So for each d, there are 2m — 2d Ap’s d
varying from 1 tom — 1.

So, the total number of AP’s in this case
wheren = 2m is
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Til(Zm —2d) =2 7i:l(m —d)
d=1 d=1

1 1
butm=§nandm—1=§(n—2),

we have the total number of AP's in this case

L xim-2)=tnt-2)

23) There are two boys, each containing m
balls. A person has to select an equal
number of balls from both bags. Find the
number of ways in which he can select at
least one ball from each bags.

Sol.: He may choose one ball or two balls .....
or m balls from each bags.

Choosing one ball from one of the bags can be
done in m¢, ways. Then, choosing one ball
from the other bag also can be done in m,

ways.

Thus, there are m¢, X m¢, ways of choosing
one ball from each bag. Similarly if r balls, 1 <
r < m are chosen from each of the two bags,
the number of ways of doing this is

(mcr)- (mcr) = (mcr)z

Thus, the total number of ways of choosing at
least one ball from both the bag is

my(me,)” = Zio(me,)” + (mg,) =
2ne, 1 = %_ lasmeg, =1

[2(%)2 -amg |
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24)IfA; = 1,2, ....,2 be the vertices of a 21
sided regular polygon inscribed in a circle
with centre 0. Triangles are formed by
joining the vertices of the 21 sided
polygon. How many of them are acute
angled triangles? How many of them are
obtuse angles triangles? How many of
them are equilateral. How many of them
are isosceles?

Sol.: Since this is a regular polygon with odd
number of vertices, no two of the vertices are
placed diagonally opposite, so there are no
right angled triangles. Hence number of right
angled triangles is zero. Let A be the number
of acute angled triangles. To from a triangle
we need to choose 3 vertices out of the 21

vertices which can be done in C (21, 3) =
21x20x19

. = 1330 ways.

Since the triangles are either acute or obtuse
get A+0=133D

To find A, the number of acute angled
triangles The 3 vertices of a triangle (say

A Aj Ay, 1 < i< j <k <21). Divide the 21
spaces between the vertices into say x, y, z
such thatx + y +z = 21. We will count now
the acute angled triangle with A; as one of the
vertices. For A; A; Ay to be acute angled, j <
11 and the distance between A; and Ay is less
than 10, herex =j— 1,y =k —jand z =

22 — k (as we want the distance from

Ay to Ay). The problem can be modeled as
distributing 21 identical balls’ into 3 boxes
with each box getting at least one ball. This

can be donein (21 —3 + 2)., = Zozﬂ = 190.
But these, note thatj — 1,k — j,and 22 —

k all must be < 10. Now, we need to find the
number of distribution of these balls in 3
boxes where at least one box gets more than

10. Note that only one box can get more than
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10 as we have only 21 balls. Also, any one of
the 3 boxes can get more than 10 balls. To
find the number of ways where box 1 gets
more than 10. i.e. at least 11 balls’ in box 1. 1
each in boxes 2 and 3. We are left with 8 balls
now. Now, number of ways of distributing 8

balls unconditionally in 3 boxes in 8 + 2., =

10x9
2

triangles with A, as vertex = 190 — 3 x 45 (3

times, as each box could get at least 11 balls)
= 55. Now, for each vertex, we get 55 such
triangles. But a triangle A;, Aj, Ay will be

= 45 ways. Thus number of acute angled

counted in 4; vertex,

Aj vertex and Ay vertex.i.e.thrice so, each
triangle will be counted thrice. Thus, the total
number of acute angled triangles.

21
A=55 X?= 385,0 = 1330 — 385
=955

A triangle Ay, Aj, Ay is equilateral ifAl-,Aj, Ay
are equally spaced out of A4, ....., A5;. We
have only 7 such triples

A1A8A15,A2A9A16, ...... ,A7A14A21.

Therefore, there are only 7 equilateral
triangles.

Consider the diameter A, OB where B is the
point. Where A, O meets the circle. If we have
an isosceles triangle A, as its vertex then A, B
is the altitude and the base is bisected by 4, B.
This means that the other 2 vertices

Aj and Ay, are equally spaced from B.

We have 10 such pairs, so we have 10
isosceles triangle with A, as vertex of which
one is equilateral.

Because proper isosceles triangles with A; as
vertex (non equilateral) are 9. With each
vertex 4;,i = 1,2, .....,21 we have such
isosceles triangles.
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So, total number of isosceles but non-
equilateral triangles are 9 X 21 = 189. But
the 7 equilateral triangles are also to be
considered as isosceles.

~Total number of isosceles triangle are 196.
Note this problem can be generalized to a
polygon having n vertices. Find the number of
acute, obtuse, right, isosceles and equilateral
triangles.

25) Show that for any set of 10 points chosen
within a square whose sides are of length
3 units, there are two points in the set

whose distance most V2.

Sol.: Divide the square into 9 unit squares as
given in the figure. Out of the 10 points
distributed in the big square, at least one of
the small squares must have at least two
points by the pigeon hole principle (p.p.).
These two points being in a unit square, are at
the most V2 unit distance a part as v/2 is the
length of the diagonal of the unit square.

26) Show that given a regular hexagon of side
2cm. and 25 points inside it, there are at
least two points among them which are at
most 1 cm. distance a part.

Sol.: If ABCDE is the regular hexagon of side
2cmand P, Q, R, S, T and u are respectively
the midpoints of AB, BC, CD, DE, EF, and FA
respectively, then by joining the opposite
vertices, and joining PR, RT, TP, UQ, QS, and
SU. We get in all 24 equilateral triangles of
side 1 cm.

We have 25 points so, these 25 points inside
the hexagon ABCDEF, at least 2 points lie
inside any one triangle whose sides are 1 cm
long. So, at least two points among them will
be 1cm apart.
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27) Find the number of integer solutions to the
equation x; + x5 + x3 = 28 where 3 <
x1S9,0S X, <p and 7 < X3S17

Sol.: considered three numbered boxes whose
contents are denoted as x5, x5, X3
respectively. The problem now reduces to
distributing 28 balls in the three boxes such
that the first box has at least 3 and not more
than 9 balls, the second box has at most 8
balls and the third box has at least 7 and at
most, 17 balls. In first put 3 balls in the first
box, and 7 balls in the third box. So, now the
problem reduces to finding the number of
distribution of 18 balls in 3 boxes such that
the first has at most (9- 3) = 6, the second at
most 8 and the third at most (17-7)=10. The
number of ways of distributing 18 balls in 3
boxes with no conditionis (*%°7") = (%)) =
190.

[The number of ways of distributing r
identical objects in n distinct boxes is
("J’:_l) ("Z:l) where ‘n’ stands for the
numbers of boxes and r for balls. ]

Let a, be the distributions where the second
box gets at least 7; d, the distributions where
the third gets atleast 9; and d5 the
distributions where the third gets at lest 11.

|d|—|18_7+3_1|—(13)
= 3—-1 ~\2
_13x12_78|d|_|18—9+3—1|
o122 TR T 3-1
_<11)_11><10_55
“\2/) 12 77
e 18—11+3—-1 _(9)_9><8
|3|_| 3-1 |_ 2) " 12
= 36,
18—7-9+3—-1 4
-'-dlﬂxd2= =

3—-1 2
:6’
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18—9—11+3—1>
3—-1

-9

18-11-7+3-1 _ 2_1
3-1 T2

dyndsl = (

|d3 ﬂd1| =

Therefore, |d; Nd, Nds;| =0and |d, U
dyUds| = 78+55+36—-6—-0—1+
0=162.

So the required number of solutions = 190 —
162 = 28.

Note that the number of ways the first box
gets at most 6, the second utmost 8 and the
third utmost 10= total number of ways of
getting 18 balls distributed in 3 boxes -(the
numbers of ways of getting at least 7 in the
first box, at least 9 in the second box and at
least 1 in the third box) and n(AUB U C) =
n(A'nB'ncC").

28) If repetition of digits is not allowed in any
number (in base 10) show that among
three four digit numbers two have a
common digit occurring in them. Also,
show that in base 7 system any two four
digit numbers without repetition of digit
will have a common number occurring in
their digits.

Sol.: In base 10, we have ten digits 0, 1, 2, 3,
4,5,6, 7 8 and 9. Thus, for 3 digit numbers
without repetition of digits, we have to use in
all 12 digits but in base 10 we have just 10
digits. Thus, at least at least any two of the
three 4 digit numbers have a common
number occurring in their digits by pigeon
hole principle. Again for base 7 system, we
have seven digits 0, 1, 2, 3, 4, 5, 6. For two
four digit numbers without repetition we
have to use eight digits and again by
pigeonhole principle they have at least one
common number in their digits.
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29)In base 2k, k > 1 number system, any
3non-zero k-digit numbers are written
without repetition of digits. Show that two
of them have a common digit among them.
Inbase 2k + 1, k > 1 among any 3k +1
digit non-zero numbers, there is a
common numbers occurring in any two
digits.

Sol.: case (i): in case k = 1, we have the digits
0, 1 and the k-digit non-zero number (s) is 1
only. Thus, all the three numbers in this case
are trivially the some 1.

For k >1. There ‘K’ digit (non-zero) numbers
will have altogether 3k digits and the total
number of digits in base 2k system is 2k.
Since repetition of digit is not allowed and
3k>2k implies that among the digits of at
least two of the numbers, there is at least one
digit common among them (by pigeon-hole
principle)

Case(ii) in the case of k = 1,2k+1=3, the
three digits in base 2k+1=3 systems are 0,1
and 2k+1=1+1=2 and the digits non-zero
numbers here are 10, 20, 12, 21. So, we can
pickup 10,20 and 12 or 10,20,20,21,.......in
each of the cases there is a common digit
among two of them. (in fact, any two numbers
will have to a common digit 1) in general
case, 3 (k+1) digit numbers will have 3k+3
digits in all. But it is a base (2k+1) system.

The numbers are written without repetition
of digits since 3k+ 3 > 2k+ 1. In fact, any two
k+1 digit numbers could also have the same
property as 2k+2 >2k+1, again by the
pigeon-hole principle at least two of the
numbers, will have at least one common
number in their digits.

30) There are certain number of all balls and
they are painted with the following
conditions:
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) Every two colours appear on
exactly one ball.
(ii) Every two balls have exactly

one colour in common.

(iii)  There are four colours such
that any three of them appear
on one ball.

(iv) Each ball has three colours.

Find the number of balls and
colour used.

Sol.: Let us represent each of the balls by a
line segment with three points to show the 3
colours. Thus, Roy is a ball with three colours
red, orange and yellow. We have to have
three more balls such that on yellow. So, next
drawn lines through R, O, Y to meet at a
common point G standing for green colour.
But the balls with colours RG, OG AND YG
must have a third colour in them say indigo
(i), violet (v) and Blue (B). Thus we have 7
balls and 7 colours in all. 7 colours R, 0, Y, G, I,
V, B and 7 balls. 1. ROY, 2. RIG, 3. RVB, 4. Ova,
5.YBa, 6.YVI], 7.1BO

G

Clearly any pair of the above 7 balls have
exactly one colour in common (satisfying
condition 2). Each of the balls contribute 3
pairs of colours. In all, we have 21 pairs of

columns in all the 7 balls. Now 7 colours lead

to % = 21 pairs of colours and each pair of

colours is found in exactly one ball satisfying
condition 1. Each ball has 3 colours
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(condition 4 satisfied). Now, consider the four
colour GRYV. No. three of these colours are
found on a ball. (condition 3 is satisfied).
Thus, the total number of colour is 7 and the
total number of balls is also 7.

31) A mathematical conjection consisted of a
part [ and part II with a combined total of
28 problems. Each contestant solved 7
problems altogether. For each pair of
problems there were exactly two
contestants who solved both of them.
Show that there was a constants who in
part I solved either no problem or at least
4 problems.

Sol.: We will find the total number of
contestants. Since for each pair of problems
there were exactly two contestants let us
assume that an arbitrary problem P; was
solved by r contestants. Each of these r
constestants solved 6 more problems, solving
6r more problems in all counting
multiplicants. Since every problem, other
than P;, was paired with P; and was solved by
exactly two constants, each of the remaining
27 problems (i.e. other than P;) is counted
twice among the problems solved by the r
contestants.i.e.6r =2 X 27 orr = 9.
Therefore an arbitrary problem P, is solved
by 9 contestants.

. 9%x28
Hence, in all we have — = 36 contestants,

as each contestant solves 7 problems.

From the rest of the proof, let us assume the
countrary that is every constant solved either
1, 2, or 3 problems in part 1.

Let us assume that there are n problems in
part 1 and let x, y, z be the number of
contestants who solved 1, 2, and 3 problems
in part 1.
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Since every one of the contestants solve
either 1, 2, or 3 problems in part 1,

wegetx+y+z=36...... (D)

Xx+2y+3z=9n.......(2) (since each
problem was solved by 9 contestants).

Since every contestant among y solves of a
pair of problems in part I and every
contestants among z solves 3 pairs of
problems was solved by exactly two
contestants, we get the following equations

y+3z=2ng, = 2.@
=n(n
-1 (3)

From eq.(1). Eq. (2) and Eq. (3), we get

z=n?—10n+36andy = —2n? +29n —
2
108 = —2(n-2) -Z<o.
4 8
As y < 0is not an acceptable result, our
assumption is wrong. Hence, there is at least
one contestants who solved either no
problem from part 1 or solved at least 4
problems from part 1.

32) Find a recurrence relation for the number
a,, of ten nary sequence of length n that
contain 2 consecutive digits that are the
same. What are the initial conditions? Find
ag.

Sol.: Clearly, no ternary sequence of length 1
can contain 2 consecutive identical digits and
so a; = 0. Next the only ternary 2sequence of
the required type are 00, 11, 22 and so a, =
3.Let n = 3. Every n sequence of the required
from satisfies exactly one of the following
conditions:

(D) It first 2 digits are unequal.
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(i)

Let (i) hold. Then the sequence starts with
one of 1, 02, 12, 20, 21. First suppose that it
starts with 01. Now the condition that the
sequence contain “2 consecutive identical
digits” is symmetric w. r. t. all 3 digits 0, 1, 2.
Hence these are

It first 2 digits are identical.

1
a, equal a number,namely m = 3 -1, of

sequence of length n -1 and starting with 0, 1,
or 2. So by appending 0 as first digit to each
(n — 1) sequences starting with 1, we get m
sequence of length n which start with 01.
Similarly, there are m sequences of length n
starting with 02, 01, 12, 20 or 21.

Thus there are 6m = 2a,,_; sequence in this
case. Let (ii) hold. Then the sequences starts
with 00 or 11 or 22 and its remaining n — 2
digits can form any (n — 2) ternary sequences
Hence rhere are 3"~2 n sequence starting
with 00; and the same holds for 11 and 22.

Thus there are 3 X 372 = 3"~ ! sequences in
this case.

Required recurrence relation is a,, = 2a,,_1 +
3"~ with initial conditionsa; = 0,a, = 3.

Hence a; = 15,a, = 57,as = 195,a4 = 633.

33) For every real number x4 construct the
sequence X1, X, ..... by setting x,, ., =

Xn (xn + 111) for eachn > 1. Show that

there exists exactly one value of x4 for

which 0 < x,, < x,,,1 < 1 for everyn.
Sol.: Let Py (x) = X, Pryy(n) = Py(m) [Pa(x) +
%] forn=1,2, ..

(1) from this recursive definition, we

see inductively that (i) P, is an
polynomial of degree 2™~1
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(i) P, has positive coefficients is
therefore an increasing convex
function for x = 0.

(iii) P,(0)=0,B,(1) > 1.

(iv)  FR(x1) = xp.

Since the condition x,,,; > x,, is equivalent to

1
Xn >’l.—‘;

We can reformulate the problem as follows
show that there is unique positive real

number t such that 1 — % < PB,(t) <1 for

every n.

Since P, is continuous and increases from 0 to
avalue of > 1 for 0 < x < 1, there is unique
values a,, and b,, such that a,, < b,,, B,(a,) =

1 —%,Pn(bn) =1 .. (2)
By definition (1)

1 1 1 1
Pratan) = (1-7) (13 +7) =13

1
Ppii(ap_1)=1— ——r We see that a,

(3)

< an+1 aes was wanw

1
Also since P11 (by) =1+ - and P, 11 (bps1)
=1

b, > by,1. Since B,is convex, the graph of
P, (x) lies below, the chord y = bix for0 <

x < b,

In particular B,(a,) =1 — % < % from this
and the fact than b,, < 1.we find that b,, —

by by _1
— < — <2< = .
n_an,bn an_n_nforalln

Thus we have2 in finite bounded
sequences{a,, }, {b,} the first is increasing the
second decreasing a,, > b, and the different
between their nth numbers approaches 0 as n
on creases. We conclude that there is a
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unique common value to that they approach
a, <t<b,Vn.

Number of uniquely satisfies 1 — % < B,(t) <
1V n.

34) Find the number of isosceles triangle with
integer sides, if no sides a exceeds 1994.

Sol.: Let 2 equal sides of an isosceles A be P
units each and let remaining sides be q units.

Casel:P > q.qcantakevalues1,?2,3,...,P-1
(if P — 1 > 0) condition for p, g, q be a sides
of a A is automatically satisfied here, for each
positive integer P > 1, we can have P -1
isosceles A is

1994
Z(P—1)=1+2+3+---+1993
p=2

(1993 x 1994)

N 2

= 1998721.

case II: p < q in order that p, g, may be sides
of A we musthave 2p >q.i.e.p < g < 2p.

If p is even say 2m, then q can take value 1, 2,
..., m-1if pis odd say 2m — 1 then q can take

values 1, 2, ..., m-1= (pT_l) Numbers of

possible isosceles A is % + % + -+

1993-1
2

is true. Also, we must have g <p<q.lfqis

+1+2+3+--forq=1994,p+q>p

-1 q-2 .
=t possible
2 2

even there are q —
values for p. If q is odd, there (¢ — 1) — qT_l —
qT_l = possible value for p.

q-2

There are in all isosceles ¥, even—— T

Sqoda’=" As 1< q <1994

1<q<1994 1<q<199%
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ie.(1+2+-+996)

+ (1424 +996)As
996.997

As = 993012 As

Total number of isosceles As = 1998721+
993012 = 2991733.

35) Define a hook to be a figure made up to 6
unit sequences as shown in the diagram or
any of the figures obtained by applying
rotations and reflections to this, figure.
Find all m X n rectangles that can be
covered with hooks so that

0] The rectangle is covered without
gaps and without overlaps.

No part of hook covers are outside

the rectangle.

(i)

Sol.: Consider a covering of an m X n
rectangle satisfying the conditions.

For any hook A there is a unique hook B
which covered the inside square of A with one
of its end most squares. On the other hand the
inside square of B must be covered by an end
most square of A. Thus in a tasting all hooks
are matched into pairs.

There are only 2 possible way to place B so
that it does not overlap with A and no gaps
occur.

In one of the base A and B from 3 X 4
rectangle and the other case their union has
an rectangle shape with side lengths 3, 2, 1, 3,
2,1,2

So an m X n rectangles can be covered with
hooks and only if it can be covered with the
12 square titles as discussed above.

Suppose that such a tiling exists then mn is
divisible by 12. We now show that one of m
and n is divisible by 4. Suppose on the
contrary that this is not the case then m and n
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are both even because mn is divisible by 4.
Imagine that the rectangle divided into unit
squares with the rows and columns formed
labeled 1, ...... ,mand 1, ...., n write 1 in the
square (i, j) if exactly one of i and j is divisible
by 4. Since the number of square in each row
and column is even the sum of all numbers,
written is even.

Now 3 X 4 rectangle always covers number
with sum 3 or 7 other 12 square shape always
covers number with sum 5 or 7.

Consequently, the total number of 12 square
shape is even. But the mn is divisible by 24
and hence by 8 country to the assumption
that m and n are not divisible by 4. Also,
neithermnorncanbel,2,5

If a tiling is possible when one of m and n is
divisible be 4, one is divisible by 4 and m € {1,
2,5}

Conversely, if these conditions are satisfied
the tilling is possible (using only 3 x 4
rectangle at that)

This is immediate if 3 divides m and 4 divides
n. Let m be divisible by 12 and n € {1, 2, 5}
then n can be represented as the sum of
several 3’s and 4’s.

Hence the rectangle can be partitioned into
m X 3 and m X 4 rectangle which are easy to
cover only with 3 X 4 tiles again.

FUNCTIONAL EQUATIONS

1) Iffbe afunction satisfying f(x + y) =
ooyt fVxy € Rand f 4y = k, then
f(x) wheren eN is

(a) nk; (b)n*; (c) k*; (d) none
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Sol.: Since f(x +y) = fo) t f)-x =1,y =
1,

fA+1D) = foy+f= f= 27

x:2y=1f(2+1)= f(2)+f(1)=>
f® =2fw + fy =3

x=2y=2f2+2)= foy+f=
fay =4

In general,we have f;) = nf)
f(n) = lefOTk = f(l)

2) The function f ) = sin (%) -

cos{ (525 1

(a) Notperiodic; (b) period (2n!); (c¢)
period (n+1); (d) none

Sol.: f(x) = sin (%C) — CoS {((nle)!)} =t —
t, period of

t, = (Zn—n) =2(n!) = A (say)

n!
Period of t, = 2((n + 1)!) = B (say)

Now, LCM of A and B is 2((n + 1)!). Hence the
function f(, is periodic with period
2((m+ 1.

3) Iff:[—4,0] — Ris defined by e* +
sin x, its even extension to [—4, 4] is given
by
(@) —e ¥l —sin|x|; (b) e”* —sin |x|;
(c) e™*! + sin|x|; (d) none

Sol.: To make f(, an even function, in the
interval [—4, 4]f ) can be re-defined as under
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for ={fon —4<0<0.f(-x)0 < x <

)

Hence, even extension of the function from [0,
4]is f(—x) = e ™ +sin(—x) = f(—x) =
e * —sinx

o f(x) = e ¥l —sin|x|

4) Iffxy=x(2—x),0<x<2andthe
definition of f is extended over the set R —
[0,2]by f(x+ 1) = f(x),then f is

(a) Period1; (b) non-period;
(c)period2; (d)none

Sol.: In R — [0, 2], we havef(,42) = f((x+1)+1)

= far) = fern) = fr {given}

Graphically

6 4 =2 0 1 4 &

5) The value of the b and c for which the
identity f(y11) — fx) = 8x+ 3is
satisfied, where f ) = bx? + cx + d,are

(@ 2,1, (b)4,-1; (c)2,-2; (d)none

Sol.: Since, f,) = b x* + cx + d.
NOW,f(x+1) — f(x) =8x+3

=b(x+1)?+cl(x+1)+d—bx?—
cx—d=8x+3

= bx?+2bx+b+cx+c—bx*—cx=
8x+ 3

=2bx+(b+c)=8x+3
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Comparing respective coefficients, we have b
=4,andc=-1.

6) If f(x) = cos(logx), then
1] [x?
Feyfor =3 [f <;> +f (xzyz)]
@ -2 ()L ()5 (d)none
Sol.: f (i—z) + f(x%y?) = cos (log;—z) +
cos{log(x?*y*)} = cos(p — q) + cos(p + q),
where p = logx?2.

q =logy? = 2cosp.cosq.

~ Reqd.value = cosp.cosq —

%(cosp.cosq) =0

X1—X2

) Wfap = Fog = F(TL) for xy,x; €
(—=1,1),then f(x) =
1-x, o
(a) log T (b) tan T (©

cot™1 g ; (d) none

1—x1x2

Sol.: For (a) is correct is because LHS =

1-x4 1-x2\ _ (1—x1)(1+x2)
log 14+x; log (1+x2) - (1+x1)(1—x2) and

RHS = Io {1-—(1x_1£1’§22)}_1 o LX) (43
~ OB T OB )y
—X1X2

= x?%,x is not equal to

N—r

8) If2fu —3f(+
zero, then f ;) =
@ -L (b)—2 (c) 0; (d)none

314

Sol.: 25y = 3 (3) =
4o (Dand 2f (%) —3f(2) =

i U (1))

Thus 2(ii) +3(iii), =>-5f(2) = 8 + % —

7
for= —3

9) If f(x) be defined for all x> 0 and be

continuous,. Let f , satisfy f (g) =
fo) — Foforallx,yand f ) =
1thenf,) =

(a) Bounded; (b) xf(,) > 1asx —

0; (¢)logx; (d)none

Sol.: If we have f() =logx .......... (1), then

the conditions f (g) = fo) — fip) and fey = 1

are satisfied (i). f(x) is not bounded as f) is
increasing function.

10)Iff) = # then f ) fx+y) =
@ 3 {fan + fant ® e —fenb
(©3{Ff@y — Fank (d)none

Sol: f(x +7) = (=) = [F2—

{zx—y.,.z—(x—y)

- } = (2% 4+ 272 4 2% 4 27%)

1
= 5 {fen + fan}

11) If f is even function defined on the interval
(=5, 5) then the real values of x satisfying
. +1
the equation f ) = f (%) are
-14V5

O

® 2% (©)0; () none
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_x+l

x+1
SO].:f(x) =f(m),=>x—m,=>x2+2x=

—-14+5
2

x+1,=>x= .Both lie in (-5, 5).

For an even function: f,) = f_x),= —x =
x+1,
x+2’

=x?-2x=x+1= x*+3x+1=
0,

—-34+45
x =

which lies in (=5, 5).
12)If f ) = xe*17%, then f ;) is
(a) Increasing on [— %, 1]; (b) decreasing

on [— %, 1] ; (©) increasing on R; (d)

none

Sol: 'y = eX(1=%) (1 4+ x —2x%) =
—e*X(0=0) (x —1)(2x + 1)

and e*17%) > OV x, f( is decreasing. =
fla <0

= (x-DRx+1)<0,=--<x<1

13)If fx) = {x(x — 3)}* increase for the
values of x lying the interval
@1<x<3 (B0<x<o0; (0)
—o00 < x < 0; (d)none

Sol.: % = 2x(x — 3)(2x — 3) and for

increasing,

d
Y0 =0<x<2,3<x<oo,
dx 2

. 3
= In Particular 0 < x < >

3/2
/aN
L N\C

A

<>
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(SUBJECTIVE TYPE)

1) Find all subjection functions f: No = No
with the property thatforalln > 0, f ;) =
n+ (—-1)"

Sol.: If we let g: No — No, gy = x + (—1)",
then g satisfies the equation. Moreover, g is
bijective. We will show that for any solution f
we must have f = g.

In fact, we will prove a more general
property, namely that if fand g are two
functions defined on the non-negative
integers such that f,,) = g for alln, and fis
subjective and bijective, then f = g. The proof
is based on the wall ordering of the set of
positive integers, namely on the fact that any
set of positive integers has a smallest
element.

Assume f # g, and let no be such that f(;,o) >
9(no) If we let M= 9(noy then the set A =

{k, gy < n} has exactly M +1 elements, since
g is bijective. On the other hand, since, f = g
and no does not belong to A, the set B =

{k, f&y < M} is included in A but has at least
one less element, namely no. Hence the values
of f do not exhaust all numbers less than M
+1. Which contradicts the subjectivity of f.
Therefore, f) = gm) =n+ (=1)"is the
only solution.

2) Find all function f: N »N with the property
that f{fm) + f} = m + n forallm and
n.

Sol.: The solution is done by manipulating the
equation and plugging in particular values for
the variables.
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Thinking of f(;,) and f,) as positive integers.
We have f(f (fam) + fon)) + fuo) = famy +
fmy + k on the other hand by using the given
relation for f

f(m) + f(n) + f(k) we obtain

fm+n+fa) =F(f fomy + fom +
fao) = famy + fomy + K

For m = n = 0 this reduces to f(f(k)) =
Zf(o) + k.

Also for k = 0 and m, n arbitrary, we have
fm+n+fo) = fon) + for

Hence f (f(m +n+ f(o))).

The left hand side of this equality is equal to
2f0y + m + n + f(o) and the right hand side is

equal to m +n. It follows that f(y = 0 and for
allm, n, fomyn) = fom) + fn), thatis, fis
additive. Choose m = 1 and use induction to
show that f,y = f(l)". From f(f(m) + f(n)) =
m + n one obtains f(;)2(m +n) = m +n, for
all m, n. This can happen only if f;) = 1, so
the only solution to the functional equation is
the identity function f: N> N, f,;) = n

3) Find all pairs of functions f, g: N - N
satisfying f oy + fin + 9oy} = fasn)

Sol.: One possibility is that f is identically
equal to 0 and g is arbitrary. Another
possibility is that g is identically equal to zero

and f(n) = 2" f(O)

Let us find the remaining pairs of functions.
Note that the identically implies f41) = fin)
for all n; hence fis increasing. If for a certain
0, gy = 1, then f,41) < frnrgmy) hence
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fmy) = 0. Abackwards induction shows that,
fn-1)= fon—2y == fl0y=0

Hence in order for f not be identically zero,
there must exist m such that g, = 0 for all

k> m.

Assume m minimal, that is, g,—1) # 0, then
on the one hand, f(x) = 0 for k > m — 1, and
on the other hand fy = 2¥"™f,,) for k >
m, so for k = m the function is strictly
increasing. This together with f(;,,) +
f(n+g(n)) = f(n+1) implies thatn + g(n)
cannot exceed m; hence g(n) > m — n. Thus
all other solutions (f. g)satisfy fo) — fa1) =

er = f(m—l) = 0'

foo) = 2k=™Mq for k < m and a arbitrary,
and g(k) <m—k, fork <m, gy =
0fork=m.

4) LetF:N—besuchthat f ;1) > {fn)} for
alln e N. Show that f,) =nVn €N.

Sol.: This problem might look easy to people
familiar with the axiomatic description of the
set of positive integers. The solution uses
again the property that every set of natural
numbers has a smallest element.

Let us look at the set

f(fw) fr f(F@) far £ () femy £ (fmy)s -+

Note that these are, exactly the numbers that

appear in the inequality f(f(n)) < fn+1)- This
set has a smallest element, which cannot be of
the from f(,,41) because then it, would be

larger than f (f(»)). Thus it is of the form

f (ftn))- The same argument shows that for

this n, f,) =

1.1f nitself were greater than 1,we would get 1 =
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f(n) > f(f(n_l)), which is impossible. Hence
fay=1and fi) > 1 forn > 1.

Considering the restrictionf: {n = 2} - {n >
2}, the same argument applies maintains
mutadis to show that f,) = 2 and f,) >

2 for n > 2. By induction one shows that
foy = k,and fyk for n > k thus the unique

solution to the problem is identify function.

5) Find all functions f: N »N with the
property that for alln €N, 1 +

faofe
; vee 1 — f {f (n)}
fofe foyfm+y  Fmr

Sol.: The equality from the statement reminds

us of the well-known identify % + % + -+

L = L, which shows that the function f:
n(n+1) n+1

N - N, fn) = nis asolutions.

Let us prove that this is only function with the
required property.

The ratio f ;f(—"))

(n+1)

remainds us of the previous

problem. In fact, we will reduce the present
problem to the previous one.

Plugging in n = 1 into the given relation
yields

f(f(l))fu) =1; lhence f(1) = 1.

Replacing the given equality for into the one
for n+1 we obtain

fUw) 1
f(n+1) *

_ f(Fns1))
f(n+2)

fon+) fon+2)

This is equivalent to f(f(n))f(n+2) +1=

f (fn+1)) fon+1) Note that fniq) =
1 implies that f(f(n+1)) =1;
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hence f(f(n)) fin+2) = 0, which is impossible.
Therefore f(;,) for n > 1. we use induction to
show that f(f(n)) < fmn+1)- The inequality is
true for n =1, since fz) > 1 =

f(fa))-Also if fams1y > f(fony), then finiqy =
f(Fm)+1.

Hence f(fin))fine) + 1 2 f(fnsn)f (fmy) +
f(ftn+1))- Since n + 1 > 1,we have fr41) >

1, thus f(f(n+1)) > 1, which implies that
f(n+2) > f(f(n+1))-

Therefore the function satisfies f,41) >
f (ftny) forall N. In view of problem 6, the

only function with this property is the
identify function, and we done.

6) Find all function f: No — No satisfying
following two conditions: (ii) For any m, n
€Ny, withm = n, f(mz) > f(nz) (@ for

anym,n eNg, 2f(m? + n?) = {f(m)}z +
{f(n)}z;

Sol.: Substituting successively m = 0 and n =
0 in (a) and subtracting the two relations

yields £y = Far = 2 (Font) (Fn)

which together with (b) implies that fis
increasing i.e. if m = n, then fn) = fn)-
Plugging m = n = 0 into (b) yields f(o) =
Oor 1.

Casel: f) = 1,then Zf(mZ) = f(mZ) +1,s0
fa) = 1pluggingm =n =1 in (a) we get
f2) = 1. Also fgmy = 5 (f (22" 1)2 + 1). This
implies that f(zk) = 1 for all non-negative
integers k. By the monotonicity of f, we
conclude that f,) = 1for all non-negative
integers n.
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Casell :f(o) = 0.Then Zf(mZ) =

fmz fm 2 .
f(mZ) or% = (%) since fi2) = fy2

we obtain

f(ZZn)_ F(227-1)2 _ F(22m 1) 2
== (7))

_ o (f
Ly

22n

On the other hand, (a) implies that f(1) =
f 1)z So either fi1y = 0 or f1) = 2

If f1) = 0, the above chain of equalities
implies that f(ZZn) =0forn=0.
Monotonicity implies that f is identically
equal to zero.

an o T (m2)
Iff(l) = 2,then f(zzn) =2.2 .SlnceT =

2
(@) fum) is always even. We
havefns? = 2f(m+1)? 2 2f(m? + 1) =
fanyz + f)2 > f(m)z- which implies that

fam+1) > fem)-

Consequently, fon+1) — fom) —2 20

2n—1
But Y=o (fam+1) = fom) = 2) = fzm) —
f(O) - 2. 22n =

0 varying n we conclude that fun41) =
fom) + 2 for allm = 0. Thus f,) =
2n foralln € N,.

In comclusion, f(,,y identically equal to zero.
fm) identically equal to 1, or f,) = 2n for all
n, are the only possible solutions.

7) LetP bea given odd prime. Find all
functions f: z - z satisfying the following
conditions (i) If m =n (mod p) form,n €
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z,then f ;) = fy; () fann) = Fa)fm)
for all m, n ez.

Sol.: Show first that figy = 0 or f) = 1
for all n € z consider non constant
solution of the given equation. Show that
fkpy = 0 for all integers k. Using Fermat's
little theorem, prove that f;;) = f(m)p for
each integer m. This f;n) = 0 o1 fn) =
+1. Choose m = a, a primitive root, with
respect to p, Then f(4) # 0. Consider the
cases f(q) = 1 and f(4) = —1 separately.

o P
0 if —
foy =0 ) =L fm) = /o
1 ifpxn
0 if p/n
foy =131 if pXn,nisasquare
1 ifpXn, n is not square

The last function is precisely Legendre’s
symbol.

8) Find all the function f: z = z which
satisfies the equation f(a3 + b3 + ¢3) =
Fp w3+ fol

Sol.: Show that f(4) = 0 and hence f(,) =
—fx) for all xe z. Prove that f(;y = —1,0 0or 1
and hence f;) = 2f1) f(3) = 3f1)-Forx > 3
prove that x3 is a sum of five cubes has
absolute value smaller than x, using the
identity. 2k + D3 = k- 13+ (k+4)3 +
(4 — k)% + (=5)3 + (—1)3 using this
representation, prove that f(,) = xf().

foo= X% fey=00rf=x

9) For what integers k, there exists a
functions f : N =z which satisfies, (i)
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f ) + kf{ged(x,y)} for all x, y eN?

Sol.: Using (b), get an expression for f(x?)
and hence for g(x*). Using x* = x.x3,x3 =
x.x2, get another expression for g(x*). Show
thatk = 0 or -1. Using prime decomposition,

define if f suitably for these value of k.

10) The set of all positive integers is the union
of two disjoint subsets :

N{f(l),f(z), ...,f(n), } U

{90)92) - 9w, - JWhere f 4, <

f(Z) << f(n) g < 92 < e <
9w and gm) = f{f(n)} +1;foralln >
1. find f 240

Sol.: Show that  fy=1land gu) =
2.Suppose fyy = k for some n. Show that the
sets
for fy - faotand {9y, 9@y - 9}
together exhaust all the number from 1 to
9g@n)- Conclude that g, = k + n. Prove that
fawy =k+n—1. Show also that no two
integers the set
{g(m):m € N}. Conclude that fi4y=k+n
use these three implication to get fz40) =
388.

disjoint

consecutive lie in

11) If f: w — N be a strictly increasing function
such f(z) =2and f(mn) = f(m)f(n) for
every relatively prime pair of natural
numbers m and m. Show that f,,) =

n for every positive integer n.

Sol.: One can easily see that f(;,) = n satisfies
the given property. Let us show this is the
only function. The proof is based on
factorizations of positive integers.
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We start by computing the value of f(3). Since
the function is increasing, f(3)fs) = fus) <
fas) = ff) hence f3)f(5) <

2f9) and fo) < fuo) = fyfis) = 2f(s)-
Combining the two inequalities we get
fe)fs) < 4f(s) hence f(5) < 4. We also have
that f(3) > f(2) = 2; thus f(3) can be equal
only to 3.

Since 2 and 3 are relatively prime, we deduce
that f(y = 6, and from monotinicity it follows
that f4) = 4 and f5) = 5. We will prove by
induction that f(;;) =n foralln € N.Forn =
1,2,3,4,5, 6 the property is true, as shown
above. Let n > 6 and assume that f(;) = k <
n. Let us show that, f;) = n. Consider

2"(2m + 1) to be the smallest even integer
greater than or equal to n that is not a power
of 2. This number is equal either ton, n +
1,n+ 2 or n + 3, and since n >6, both

2" and 2m + 1 are strictly less than n.

Hence f(2"2m+ 1)) = f2Nf2m+1) =
2"(2m + 1) by the induction hypothesis.
From monotonicity and the fact that are
exactly 2" (2m + 1) values that the function
can take in the interval [1,2" (2m + 1)] it
follows that f) = k for k < 2"(2m + 1).In
particular, f(,) = n, and the proofis finished.

12) Find a bijective function f: No »No such
thatforallm,n; f3mn+m+n) =

4f ) Fayt Fem) + Fm)

Sol.: The solutions, as in the case of the
previous problem, uses of the factorization of
positive integers. Suppose that a function f
having the required property has been found.
We use f to be defined a function.
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g:3Nyg+1 - 4N, +1by g(x)
=4 (x_1>+1
= f 3

This is certainly well defined and one can
check immediately that g is a bijection from
3N, = 1 onto 4N, — 1. with the inverse

function given by g~ (y) = 3f7! (yT_l) +
1.For m,n € N, by using the definition of f
and g, we obtain
gB8m+1)Bn+1)=gBBmn+m+n)+

1) =4fBmn+m+n)+1

=4(4fmfm) +
fomy+fmy) +1= Afmy + 1) +1

= (4fm) + 1)(4f(n) +
1) =g@Bm+1)g(3n+1).

This g is multiplicative, in the case sense that
glxy) = I 9 forallx,y €3Ny + 1.

Conversely, given any multiplicative bijection
from 3N, + 1 onto 4N, + 1, we can construct
a function f having the required property by

letting fi,) = (9(3x + 1)).

It remains only to exhibit such a bijection. Let
P; and P, denotes the sets of primes of the for
3n +1 and 3n +2, respectively and let

Q1 and Q, denote the sets of primes of the
form 4n +1 and 4n +3 respectively. Since
each of these sets is infinite, there exists a
bijection h from P, U P, to Q; U

Q, that maps P, bijectively onto Q, and Q5.
Define g as following g(;y = 1,and forn >
1,n € 3 Ny + 1, let the prime factorization of
n be n = [] p;(with possible repititions among
the p;’s), then define g(n) = [] h(p;).

Note that g is well -defined, because ifn €

3 Ny + 1, then there must be an even number
of P, type primes that divide n. Each of these
primes gets mapped by h to a prime in Q,,
and since there are an even number of such
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primes, their productliesinn € 4 Ny + 1.
The multiplicavity of g follows easily.

13) Find whether there exists a function f: N —
N such that f{f )} = n? — 19n + 99 for
all positive integer n.

Sol.: Such a function does exist. Let P(,) =

n? —19n + 99 and note that P,y =

P(19 —n)and that p(y = 9 for alln € N.
we first set fg) = f10) = 9 and fg) =

faa1) = 11. (one could alternatively set fq) =
fao =11and fg) = fl11) =9)

Write Py () for the kth composite of P. That
is P(n)(o) =nand P(n)(k+1) =

p(n)(k). Forn = 12,let g be the smallest
integer k such that n is not in the image of
P, Such a k exists because a side from 9 and

11, every integer in the image of
Py (k) for k > 0 is greater than or equal to
P(lz)(k), and an easy induction shows that

P(m)(k) >n+kforn=>12.

Let12=S; < S, < --- be the integers greater
than or equal to 12, not in the image of P, in
creasing order. Then for every integer n = 12,
there exists a unique integer h(n) such that

= pam)
n=PEOIS ()
Forn = 12,set

_ { P(g™)(S h(n) + 1h(n) odd
o= P(g™*1) (S h(n) — 1) h(n) even

Forn < 7,put fin) = f(19-n)- To show that
f(fa) = Py

We need only consider n > 12, and we may
examine two cases. If h(n) is odd, then

9(fm) = 9m and h(fm)) = hey +
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1is even,so f(f(n)) =f (P(g(n))(s heny +
1)) = POV S heyy = Py

Similarly, if h(n) is even, then g(f(n)) =
g(n+1) and h(f(n)) = h(n) — 1lis Odd,

so f(fw) = fPUD™D (shepy —1) =
p(gn+1)( s h(n)) =P

14) Find all functions f: R— R which obey the
equation f{(x — y)%} = {f»}* —
2xf ) + yz.

Sol.: One can easily guess that f(,) = xisa
solution of this functional equation. Are there
any other solutions which are not obvious but
hidden in the equation? Indeed there is one
more solution, f,) = x + 1 which is not

apparent from the equation. We see that for
the function, f,y = x + 1 we have

fa-yy) = (& -2 +1=x?>-2xy+y?+
1,and

foor = 2xfy +y* = (x +1)% —
2x(y+ 1) +y? =x2—2xy+y®+1.

How do we compute these two and other if
any? Puty = 0 in (1) to obtain f(x?) =
f(x)? — 2xfo) and put x = 0 to get, fory +

f(O)Z + yz.

Taking y = 0 in (3)we see that f )2 =

fo) giving foy = 0 or foy = 1.Takingx =y
in (1), we obtain f(O) = f(x)Z — Z.Xf(x) + xz =
(f) — %)?

If fo) =0, then the above relation shows
that f,y)=x for eR. If f) =
1,then f) —x = *iand hence f,) =x + 1,

all x

which sign should we choose here? It may
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also happen that f;,) = x + 1 for some real
number x and f,) =y — 1for some other

real number y. We have to resolve this before
concluding anything. Suppose

fx) = %0 — 1
for some real number x,.Then using (3)

and (2),we get 1 + x5z = f(xg2) = f(x0)? —
2x9 = (xg — 1)% — 2xg = x% — 4xq +

1.This faces xo = 0. but the we obtain1 =
fo) = fixg) = %o —1 = —1, which is absurd,

we concluded that f,) =x+1 for real

number x.

If follows that f,y = x and f,) = x + 1 and
the only solutions of the given functional
equation.

15) If f: R -R be a function such that (i)

fay) = fy + foV %y € Rand (i)
f(3)=12vx = 0,show that £, =

X
cxV x € R where cis constant.

Sol.: It is easy to check that (a) gives f(q) =

0 andf f_x) = —f(x) for all real x, we know,

forx # 0 and x # 1, the identityﬁ — i =

1
x(x—1)

This in conjunction with the property (a)

gives
=)0 =1 o)

Now an application of (b) yields
fx=1) f(x) _fxx-1))

(x—12  x2  x2(x—1)2

This simplifies to
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fc=1) = (= () = f&* —x)
Ifweuse (a) and f(—y) =
—f() here,we obtain

f(x®) +x2f(1) = 2xf .

Replacing x by x + G) and simplifying, we

obtain fi,) = (w

and x # 1.

) x,valid for all x # 0

Putting x = 2 in this relation, we see that
f2) = 2f1) Thus we obtain f(,y = f(q)x, for
allx#0and x # 1.

This remains valid for x = 0 and x = 1 as may
be seen by inspection.

The above problems reveal the fact that using
simple manipulations, we can solve some
functional equations on R. We have not
exactly effectively used any structure of R to
arrive at the solution, next few problems tell
us how to use the known structure(s) of real
numbers to solve equations.

16) Let f: R =R is a function such that

=Y\ _ fwotfo
f(x_y) = f(x)_f(y),for all x #y.Show

thatf oy =x,fx €R

Sol.: we use similar techniques here as in the
earlier problem but in a more subtle way. We
start with the observation that such a
function is one—one and hence cannot be
constant on any interval. Otherwise the right
hand side is not defined since the
denominator reduces to zero.

Takingy = 0 in (1). We obtain f(1) =
OO

This can be solved for f,, to get

foo(fy = 1) = fio(fy +1)-

footfo)
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If fouy # 1 then we get fiy, = L)

showing that f is constant function. Since we
have ruled out constant function. We
conclude that f(;y = 1 and hence f5) = 0.

)

Now replacing y by x — 2 in (i), we obtain

feotf(x-2)
== ...(2
fx-1 FoF e (2)

If we replace xby x — 1 and y by 1 in (1), we
get

f( x 2) _fasp +1 3)

X — - f(x_l) — 1 y ans wens

Where we have used f1) = 1. If we use the

value of

fa-1) from (2)in (3)and simplify,we get f (ﬁ) =

fw
fa-zy

L (4)

A comparison of (3) and (4) shows that

_ f(x— )+1 .
foo = fa-2) {f(x—i)_l} viv v .. (5) putting
x =3in (3), we get

_fat1
D -1

Similarly the substitution x = 4 in (4) leads
to fa) = f(2)2- Takingx =51in (5).

. f(4)+1}
We also obtain = = { =
for = Jfo) = {722
{f(2)+1} {f(2)2+1} _ f(2)2+1
fo Ve (rpe-1)"
However we can also express f(s) in a

different way using (1). f(s) = f (g) =

fetf@

fey-f@

f3),which we have obtained earlier, we get
f(2)?+1

1+2f()—f(2)?

using the expression for

fes) =
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Comparing two expressions for f(s), we see
that (f(z) — 1)2 =1+ Zf(z) — f(2)2'

The quadratic equation for f(, simplifies to
f@? = 2f@).

We conclude that fzy = 0 or f(2) =
2. since f is one — one and f5) = 0, we
cannot have f,) = 0.

The only possibility is f;) = 2.

This is the most difficult and important step is
getting a solution of our problem. The set
follows familiar track. We compute f3) =

3, f(a) = 4 and f(5) = 5. Suppose f(x) = k for
all natural numbers k < —=n, wherenis a
natural number.

Then (5) shows that fi,11) = fin-1) {;(”):}

)
Since fn—1) = n — 1 and f) = n, we obtain
fm+1) = n+ 1. We conclude that f(,,y = n for
all natural numbers n. Replacing y by xz in
(1), we get

=R

where we have used (1) again, comparing
these two expressions and solving for f(,),

(1+Z)_1+f(z)
1—-2z 1_f(z)’

we obtain f,x) = f(z)fx)-A priori thisis
valid for x # 0 and z # 1. But since f(q) =

0 and f(1) = 1, we see that this multiplicative
property is valid for all X, z in R. Taking y =
—x in (1), we see that f(q) =

fotfy
fo~fw
an odd function. Since f,,) = n for all natural

ygivenus f_yy = —f. This fis also

numbers n, now it follows that f(,y = k for all
integers k. This with multiplicativity (6)

implies that f,-) = r for all rational number r.
Since (6)implies that f ,2) = f(x)?. It follows
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that maps non-negative reals to non-negative
reals, since fis one-one and f(y = 0. We

conclude that f(,) > 0. Whenever x > 0.
Suppose x >y we consider different cases:
(a) suppose x > y=> 0. Here we obtain

fotfo x+y .
———> = f|{=—=) > 0, showing that
feo—Tw) (x—y) wing

feo > f)- (b) Suppose y< 0<x. In this
case f(,) < 0 and f(y) > 0 show that

fon < feo-

(c)consider the casey <x < 0.Then 0 <
—x < —y and by (a), we conclude that

fe—x) <f-yp)-

Using the fact that f is an odd function, this
reduces to f(,) < f(x). It follows that fis a
strictly increasing function on R. Since f =
r for all rational number r, we obtain f,) = x
for real number x.

17)Find all f: R >R such that f(f () + ) =
f(x*—y)+4(x)yvxy €R.

Sol.: It is easy to check that f(,) =
0 and f(,, = x* are solutions of this problem.

We show that these are the only solutions of
the problem.

Suppose f(q) # a? for some a. Replacing by y
. x2—f

in (1) by (P fe) s (")),we get fi (x2 — f(x)) = 0.
Since f(q) # a?, it follows that f,) = 0. This
also shows thata # 0, for thena? = 0 = f@
contradicting the choice of a. We further
observe that f,y = 0 or f(5) = x* for any x.
In any case f(gy = 0.Taking x = 0in (1), we
get fo) = Sy

Putting x = a and replacing y by -y, we also
see that f(a2+y) = f(—y) = f(y)
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Thus fis periodic with period a?. This implies
that f(fn) = f(foo + @%) = fae_az) +
4f(x)a2. Puttingy = 0 in (1) we get another
expression f(f(x)) = f(xz)

Invoking the periodicity of f. we note that
f(x)az =0

However, we have observed that a #0 by our
choice of a. It follows that if f,) # x2, then we
must have f(,) = 0. This completes our claim
and determines all the solutions of the
problem.

18) Find all f: (—1, ) — (—1, o) such that the
function
N  flxtfotafpl=y+fomt
Yfw) forallx,y € (—1, )

(i) % is strictly increasing on each of
the intervals (-1, 0) and (0, =)
Sol.: Let f: (—1, ) — (—1, ©) be a function of
Ues)
X
increasing on the interval (-1, 0) the equation
fx) = x can have at most one solution in (0,

the desired type since is strictly

o). Moreover x = 0 may be a solution in

fx = x. Thus the equation f(,) = x can have
at most three solution in (—1, ). In other
words, there are at most three fixed points of
f(x) in the domain (—1, o).

Suppose u € (-1, 0) is a fixed point of f(,.
Thus we have f,,) = u. Takingx =y =u in
(a). we see that f(2u + u?) = 2u + u?. This
shows that 2u + u? is also a fixed point foo-
We claim that 2u + u? is also a fixed point is
in the interval (-1, 0). In fact 2u + u? =

u(2 +u) < 0.Since u <0 and 2+u>1>0
because u>-1. On the other hand 2u + u? >
—1because2u+u?+1= (u+1)? >0.

Since there can be at most one fixed point of
feo in (-1, 0). We conclude that

2u +u? = w.This forcesu(u + 1) = 0, we
contradicting the assumption that u €(-1, 0).
It follows that there is no fixed point of f(,, in
(-1, 0). Similar analysis shows that f,) has no
fixed in (0, o) as well. Thus 0 is the only
possible fixed point of f(,) if at all it has any.
However taking x =y in (i), we see that

fOx+ foo + x2fn) = x + fa) +

Xfx) for all x € (=1, ). Thus each x +

foo T Xfx), x € (—1,) is a fixed point of f.
We conclude that x + f(,) + xf(,) = 0 for all
x€ (-1, o0) we see that

Yy xy _x-y
1+y 1+y 1+y

X+ fo) txfp) = x

Thus we obtain f (x + foy+x f(y))

_ (x—y)_y—x
=f 1+y) 1+y

X
1+x
(a) we can easily check that is also satisfied

(b).

The fixed points, can also be used in proving
non-existence of solutions to some functional
equations. The following problem illustrates
this point.

It follows that f(,) = — ( ) indeed satisfies

19) Find all functions f: R =R such that

fix—fo}= fifp}+xfo) + f—1
holds for all %, y €R.

2
Sol.: We easily see that f,) =1 — x? satisfies

the equation (1), We show that this is the
only function which obey the relation (1). Let
S denote the range of f. Put ¢ = f((). Taking x
=y=0in (1), we obtain
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f=a)= fiote-1

This shows that ¢ # 0. Taking x = f(,,y in (1),
we also get ¢ = fiy) + x% + fiy — L.

This gives f(y) = C:—l — x?

-(2)

whenever x = f(y)

This determines f on s, the range of f. Taking y
=0in(1),wegetf(x —c) = fio tcx+
f(x) -1

This can be written in the form f(x —c) —
foo = ¢x + f¢) — 1 consider the set

{cx + fiey — 1;x € R}. Since ¢ # 0, it follows
that this set is R itself. Thus we conclude that
{f(x —¢) = fayx € R} = R.We use this to
determine f on R. Fix any x € R. we find

V1,¥Y2 € Ssuch that x =y, —y,.Let y, =

fo-Thenfiy = f(v1 = fiap) = F(fap) +

Y2 foy + fon—1= foptyiva+ fo) —
1,

But we know f on s: from (2) we see that

c+1 c+1

Y =12 pug
f(:VZ)_ 2 2 ’f(J’1)_ 2 2 " utiing

_ Ge=yn)? _

these values, we obtain f,) = C >

2

x
C——.
2

Comparing these expressions, we conclude
thatc = 1.

2
Thus we obtain f,) = 1 — %’ forallx eR

Alternate Solution: As in the first solution, we
take ¢ = f(q. Puttingx = f(,,) in (1), we can

1— 2
solve for f(fy): f(fo)) = # RN <))
2
Introducing g(x) = f(x) + x? itis easy to
-1
compute g(x — f(y)) =g(x)+ CT

Note that the given equation has no constant
solutions. Thus we may find
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Yo such that f,, y # 0.Taking x =
1

foo
fon) = f(fow) + fro-Setting x — fiyy) =
a, and f(yo) = b,we obtain fzy = fu) + fx)

andy = y, in (1), we obtain f(x —

_ -1
Thus (4) gives g(x) + CT - g(x - f(a)) =

g(x — fw) —f(x)) = g(x —f(b)) "‘%1 =
g(x) +c—1.

It follows that ¢ = 1 and now (4) shows that
g(x - f(y)) = g(x), for all reals x, y. Thus we
obtain that every element in the range of fis a
period for g. However putting fo) = ¢ =

1in (3), we obtain f(4) = f(f(o)) = % Also
takingy = 0in (1), we see that f,_) = x +
foo — % We have proved that%, foo and x +

foo — % are periods of g. Since a linear

combination of several periods is again a
period, x it self is period for g.

Since this is true for every real number x, we
conclude that g is constant function. However
9do) = fo) = Land we get g = 1. The

2

definition of g shows that f(,) = 1 — x?

Some of the functional equations may require
a single or a combination of several ideas in
their solutions. This is illustrated in the
solution of the following few problems.

20) Find all functions f: [1, ) — [1, c0) which
satisfy,
6)) f(x) <2(1+x)Vx € [1,);

i)  xfap = {f(x)}z —1vxE€
[1’ CD)'

Sol.: It is easy to verify that f(,) = x + 1
satisfies both (a) and (b). We show that is the
only solutions.
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Wehave f(,z =xf(x + 1) +1< By an easy induction, we see that f, 1) <
x(2(x+1)+1=1+4x+2x%< xo—k+1

21+ 2x+x?) =201+

x)2.1t follows that fry < V2(1 + x) using
this fresh bound, we obtain

If k is large enough, then f(, 4x) < 1. This
contradiction forces f() = 1+ x forallx €

[1, )
fap=xfr+1D+1< V2x(2+x) +1 In some cases the functional relation may
= V2x? +2V2x +1 reveal some useful information about the
<V2(x%24+2x+1) function.
= V2(x + 1)?
Thus we obtain another bound; f(,) <
1 GEOMETRY
24(x + 1).
1) The length of a rectangle is increasing by
Continuing by induction, we arrive at f(,) < 60%. By what percent would the width
22%(1 +x),forallk € N,and x € [1,). have to be decreased to maintain the same
area?
It follows that f(,) < 1+ x for all x € [1,) (@) 37.5% (b) 37% (c) 75% (d)
none
Suppose f(x,) < 1+ xq for some x, € [1, ).
Let f(x,) = 1 + xo—€ where 0 <€< x,, we Sol.: Let the length = x and breadth =y
then have —
~ Area = xy
f(x0)?> =1 160x _ 8x
faexy) = X, New length = ——= = —
—e)2 —
= (1 +x%—€) ! Xo — 2 Let the new breadth be y
Xo
€’-2¢€ LB
E+2+——-< xp— 2 R Xe=X
X0

Using this bound we get
~ decreases in breadth =y — 5?31 = %y

_f(x0+1)2_1 x02—1<
foror) = X0+ 1 xo + 1

xo — 1. ~ Decrease % = %y X % X 100 = 37.5%

This is turn implies that

_fGo+2)’ -1 (-1 2) On the two square fields, the area of one is

feora) = Xo + 2 Xo+ 2 1 heal are, while the other one is border by
_ %o (xo — 2) < xo—2 2%. The different in their areas is
x+2 ° (a) 400m?; (b) 404m?; (c) 410 m?
; (d) none
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Sol.: Each side of a square field is
V1 hectare +/10,000 m? = 100m.

-~ each side of the second square field is
(100 + 100 x 1%)m = 102m.

Thus the area is (102m)? = 10,404m?

- Required area = (10,404 — 10,000)m? =
404m?.

3) The diagonal of a square A is (x+y). The
diagonal of a square B with twice the area
of Ais

@ V(x+y) (b)y(2x+y); ()
J(x+2y); (d) none

Sol.: If ais a side of the square A, then 2a? =
(x+ )% e (@

=~ Area of the square B = 2 X Area of square A
=2 X (2a?) = 4a?. But 4a® = 2(x + y)? from
®

=~ Side of the square B=,/2(x + y)

4) Ifthe base of a rectangle is increased by
10% and the area is unchanged, then the
corresponding altitude must be decreased

by
@@ 10%; (b)9(55) % (9) 11%; (d)

none
Sol.: Area of the rectangle is xy where x is
base and y is itself. Second time area is

(x + 110) y' where y’ is height.

1x 10

10 ~11”

=~ Altitude decreased =y — %y =

9 . 9 .
—vyi.e.—% is decreased.
11y 11 /0

5) The interior angles of a hexagon are in the
ratio 1:2:2: 3: 2: 2, then the largest angle
is

(a) 150°% (b) 170° (c) 180° (d)

none

Sol.: The sum is interior angles of a hexagon =

(2 X 6 —4)90° = 720°

Now let its angles be x, 2x, 2%, 3%, 2x, 2x

respectively

~ X+ 2x+ 2x + 3x + 2x + 2x = 720.

~12x = 720°% x = 60°

=~ The largest angle = 3x = 3 X 60° = 180°

6) The difference between the interior and
exterior angles of a regular polygon is 60°.
The polygon is

(a) Hexagon; (b) Octagon; (c)

Decagon; (d) none
Sol.: Let the polygon be n-sided.
Thus, per the condition given

2n—4)x90 360
—Z =60
n n

or, (2n —4)90 — 360
= 60n or 180n — 720
= 60n

or, n==6

~The polygon is a hexagon.
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7) As ABC and DBC are on the same base BC.

AL 1BC and DM 1BC. Then area A ABC:
Area ADBCis
(a) AO: AD; (b) A0%: 0D?; (c)AO:
0D; (d) none

1
S _Area (AABC) _ 3BCAL AL _ Ao
" Area (ADBC) %_BC_DM DM 0D

(as AALO A DMO are similar)

-~ The needed ratio = AO: OD.
- AB _BC_ AC _2
8) IflnAABCandADEFE =TT %
then area AABC : area ADEF is
@ 2:3; (b)4:9; (c)3:2; (d)none

Sol.: Since AABC ~ ADEF

. Areaof AMABC _ AB®> _ BC? _ AC? _ 4

" Area of ADEF ~ DE? EF?2  DF?2 9

9) In an equilateral AABC, if AD L BC, then
() 34AB% = 4AD?; (b) 3AB? =
2AD?; (c)2AB? = AD?; (d)

none

Sol.: Letits side be a

a2 3a® 3AB?
ADZ = 2_ (= = —=
a (2) 4 4
- 3AB? = 4AD?

10) The parallel sides of a trapezium are a and
b. Then the line joining the mid-points of

its non-parallel sides will be

a+b

(@ Py (1)) %b; (© Vab; (c) none

Sol.: By rule, aTer

11) The radius of a circle is 5 cm. Two chords
of length 6 cm and 8 cm, respectively are
drawn parallel to each other. Then the

distance between the chord is

(@) 1cm; (b) 3 cm; (c) 4 cm; (d) none

Sol.: In the figure, OC = 5 cm = OA

CM=%CD =%86m=4cm
1 1
AN=EAB =56cm= 3cm

~ ON? = 0A®> — AN? = 5% - 3% =
25-9=16

= ON =4

Again,= OM? = 0C? — CM? =52 —
42=25-16=9

~ OM = 3cm

~ MN = The distance between the
chords =ON-OM=4-3=1cm.

O

A B

12) If AB and AC are tangents to the circle with
centre O, if 2CAB = 60° then «BDC = is

(a) 60°% (b) 70% (c)80° (d)none
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Sol.: Here £ACO =90°; £CAO = % X 60° = 30°
~ £C0A = 180°—90° —30° = 60°
Again £COA = £ BOA = 60°.

Thus, £COB = £ODA + £BOA = 60° + 60° =
120°.

Also, «BDC = %ACOB = % X 120° = 60°.

13) Let A, B, C are three points on a circle with
centre 0. If ZAOB =90° and 2£BOC =
130°,then £ABC is

(a) 45°% (b) 55% (c) 65° (d) none

Sol.: ZAOC = 360° — (90° + 130°) = 140°
~Also 2ABC = %moc _ % % 140° = 70°

14) Let AD, AE, BC are tangents to the circle at
D, E, F respectively, then
(a) AD=AB+ BC+ CA; (B) 2AD=
AB+BC+ CA; (C)3AD =
AB+BC+CA; (D) none

Sol.: Knowing that the tangents drawn to a

circle from a point outside are equal, on get
AD = AE, BD = BF, CF = CE

~ AD = AB+BD= AB+BF

Also AD= AE = AC + CE = AC +CF

~ 2AD = AB+ AC+BF+ CF = AB +AC +BC.

15) In the given fig. ZABC = 65° and AB = AC,

then the measure of ZBPC is
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(a) 115°% (b) 30°% (c) 70°% (d)none

A

(\

Sol.: In A ABC; AB = AC
~ £ACB = 2ABC = 65°
~ 2BAC = 180° — (65° 4+ 65°) = 50°

But 2BPC = £BAC = 50°

(SUBJECTIVE TYPE)

1) InaAABC, AB = AC. A circle is drawn
touching the circum circle of ABC
internally and also, touching the sides AB
and Ac at P and Q respectively. Show the
mid. Point of PQ is the in centre of AABC.

Sol.: Let ZABC = £ACB = .

ATS the angle bisector of £A. 1 is the mid-
point of PQ. Now AP = AQ as the smaller
circle touches AB and AC at P and Q
respectively. The centre of the circle PQT lies

on the angle bisector of ZA, namely AT; since
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PQ is the chord of contact of the circle PQT,
PQ L AT and the midpoint 1 of PQ lies on AT.

Now to prove that I is the in centre of AABC, it
is enough to prove that Bl is the angle
bisector of £B. and Cl is the angle bisector of

2C respectively. By symmetry £PTI = 2QTI =

Now £ABT = 90° (AT is diameter of ©ABC)
~ £PBT = 90° Also 2PIT = 90°
~ PBTI s cyclic

~ £PBIl = £PTI = a°(angle in the same

segment)
~ £IBD = £ABD -£ABl =8 -«
£TBC=4£TAC=90°—-p

&~ 2IBT = £IBD + £4DBT = B —a + 90° —
B =90°—«

Since PBTI is cyclic, £IPT = £IBT = 90° —
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£BPT = 180° — £TPA = 180° — £API —
2IPT  =180°—f —90°+a =90°+a —
B (2)

But APT is a tangent to circle PQT «BPT =
2PQT = £IQT from (1) and (2),

weget 90°+a—f=90°—-a ~2a=f

~“ZIBD = f—¢PBl=2a—-—a=a«a
2IBD = £PBI

=~ Bl is the angle bisector of 2B. Hence the

result.

2) ABCis art. Angled triangle with 2 C = 90°.
The centre and the radius of the inscribed

circleisI and r. Show that AI X BI =

V2 x AB X r.

Sol.:
X
y
z
C Y B

Area of the right angled A ACD = % AC X BC

=G+ +1) =y +rx+y) +717)

= AC XBC =xy+71AB +71? = xy
=AC XBC —1AB —1?

Now AI? x BI? = (x?> + r?)(y? +1?)
=x%y?2 +r2(x?+y?) +r*
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=x2y2 +r?[(x + y)? — 2xy] + r*
= x%y? + r?[(4B? — 2xy)]
+r

=x2y2 +r2 AB? — 12 + 2xy + r*
= x? AB* + (r? — xy)?

=12AB? + [r? — AC X BC + rAB + r?]?
= r2AB?
+ [2r% — AC x BC + rAB]?

Area of the AABC =r(r +x +y)
=r(r+AB) = r? +rAB

—1ACBC
= FAC.

= AC X BC = 2r?> + 2r.AB

~ AI? X BI? = r2AB? + [2r? — 2r% —
2rAB + rAB]? = r?AB? + r?AB? = 2r%. AB?

~ Al.BI = \2r2.AB? = /2r. AB.

3) LetA and B be two points on a circle k.
Suppose that on arc k’ of a another circle 1
connects A with B and divides the area
inside the circle k into two equal parts.
Show that arc k’ is longer than the

diameter k.

Sol.: Since arc ‘K’ bisector the area of the
circle k, k cannot entirely lie on the one side

of any diameter of circle k.

Hence every diameter ok k intersects k’ Let
AC be one such diameter and k’ intersects AG
at D, say. Now the centre O of the circle k lies

inside the circle L, and hence the radius AO of

circle k lies inside L and now D lies on the

radius OC.

Length of arc ABD > AD+ DB

As we have to prove that arc ABD > AC = AD
+DC, we should show that DB> DC.

Now the circle k” with centre D and radius
DC, is a circle touching k internally and B lies
outside this circle k”, So the radius of k” is less

than DB i.e. DC <DB or DB >DC.
= arc ADB > AD +BD > AD+ DC = AC
= arc ADB > the diameter of k.

Note that O lies inside the circle k’ since every
diameter of k meets the circle k’ (i.e. arc AB)

as k’ bisects area in k.

4) Two given circles intersects in two points
P and Q. Show how to construct a segment
AB passing through P and terminating on
the two circles such that AP. PBis a

maximum.
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Sol.: Let ¢y, ¢, be two circles. We first show
that if APB is a straight line such that there is
a circle c touching c¢; at A and ¢, at B, then A,

AB is segment giving the required maximum.

Let A’P and P’B be any other chords so that
A’PB’ may be collinear and the extension of

these chords meet the circle c at C and D.
CP.CD = AP.PB > A’P x PB’

~ AP. PB is maximum. Now we need to
construct such a chord APB. For this we need
to construct a circle c touching ¢, and c, at
points A and B. So that APB are collinear. Let

us find the properties of the points A and B.

Let O be the centre of the circle C and
0, and 0, be the centres of the circles

c; and c,. Now C and ¢, touch at A.

= A 0,0 are collinear. Similarly B 0,0 are
collinear. Let AT, BS be the common tangents

to circles C and ¢; and C and c, respectively.

Let ZPAT = x and £PBS =y since AT is

tangent to circle c.

£PAT =x= %AAOB (angle in the alternate

segment theorem). Since BS is tangent to

circle c.

£PBS =y =~/AOB. - x = y since AT is
tangent to circle c;, we get ZPAT =x =

2240,P
2

Similarly since BS is tangent to circle c¢,, we
get ZPBS =y=>/BO0,P =x = LAO.P =

LAOB = £BO,P
oo AA01P ~ APOzB

AP A0, 1
“PB PO, T,

There for the line segment AB must be such

that P divides AB internally in the ratio ry: 1,
Further PO, || 00, and PO, |l 00,.

So join PO, and PO,. Through O, draw a line
parallel to PO, to must the circle ¢, in B. Now
these two parallel lines drawn meet at O. If

we drawn a circle with O as centre and radius

OA = OB, then the circle touches c; at A and
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¢, at B. By retracting the arguments we can
prove that APB are collinear and AB is the

required chord.

Note— in the previous problem the line AB
and 0,0, meet in a point S; say. This point S;
divides 0,0, externally in the ratio ry: 1,. The
point S; is called the external centre of
similitude of 2 circles ¢; and c,. If we draw
any line 1 through S; meeting

¢y in Py, Qq and cyin P,, Q, then O P; ||

0,P; and 01Q1 I 03Q5.

Moreover the direct common tangents to the

two circles c; and ¢, meet at ;.

5) LetA, B, C, D be four given points on a line.

Contract a square such that two of its
parallel on a line. Contract a square such
that two of its parallel sides or their
extensions go through A and B
respectively and the other two sides (or
their extensions) go through C and D

respectively.

Sol.: Draw BB’ L 1’ to 1 and BB’ = CD. Join AB’
and extend it to y. Through C and D draw
perpendiculars to meeting Ay at P and S.
Through B draw BZ perpendicular to CP and
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SD meeting them at Q and R respectively.
PQRS is the required square.

Proof: Draw BL and CN Lrto AS and SD

respectively.

ALBB' = ANCD as £LBB’ = 90° — 2ABL
= 2/LAB = «NCD and BB’
= CD and «BLB' = £CND
=90°.PQ = LB =CN = QR
=PS

Thus the adjacent sides of the rectangle PQRS

are equal and hence it is a square.

If B’ is constructed on the opposite half-plane,
we get P’Q'R’S’, the reflection on the PQRS
about the line 1 and lying on the opposite half

plane.

This construction exactly follows the same
procedure BB‘(BB) is perpendicular to CD
and equal to CD. Join AB’(or AB”)

Draw CP . DSL r to AB’ produced and extend
PC and SD. Through B draw BR and BQ
perpendicular to SR and PQ. PQRS is the

required square.
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p C IC’ = IB’ (given)
B ‘ ’ £IEC’ = £IDB’ = 90°,
R B s 1 1 R
" 1 i so A IEC'and IDA' are congruent ZIC’E
5 P B ZIBD .......(1)
. D R In AAIC'and AAIB'. Al is the bisector of ZA
s~ 2IAC" = ¢IAB'
Draw CP;,DS; L r to AB"" and through B
draw L r to cp; and D S;produced meeting ~2IC'A = £IB'A
them at Q and r; respectively. P, Q1 RS is the
required square. Thus there are two [From (D] ... ...... (2)
solutions(The proof is similar to that to the Al is common. So ASAIC' and AIB' are
former one). argument from(2)
6) InAABC, AB # AC. The bisector of 2 B and /BCI=180°— 2IC'A = 180° — 2/IB'A =
2£C meet their opposite sides AC and AB at 2IB'C

B’ and Crespectively. The Two bisectors

1A — ! . .
intersects at I. Show that, if IB’ = IC’, then 2C'IB = £BIC (vertically opposite £s)

£BAC = 60°. IC' = IB'(given)

Sol.: Let us first prove that the perpendiculars ~BC' = CB’

from 1 to AB and AC. i.e. IE and ID lie on

opposite sides of the bisectors CC’ i.e. (points ~AB = BU'+C'A= CB'+B'A =AC

E and D lie on opposite, sides of the bisectors But by hypothesis AB # AC and hence, the

CC’, where IE and ID are the perpendiculars assumption that E and D are on the same side
drawn from the in centre I to AB and Ac.) In of CC’ is false.
the figure D and E lie on the same side of CC'.

IE = ID (in radii of AABC)
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In the figure, we have taken AB < AC, and E

and D lie on opposite sides of CC’.

If AB> AC, then E and D lie on opposite sides
of BB’

Now, for the solution of the main problem.

InA®* IB'Dand IC'E.IC" = IB',ID = IE and
hence A IB’'D = AIC’E (congruence of right

angled triangles)

’ ) ) 1
2ECT=2«£BC'T=«£BC'C=180° — (B +E+C)
2IB'D = £BB'D = C+B

But 2IB’D = ZIC’E (since the AIB'D = IC’ E)

proved.

o 1) _ 1
~180 (B+ZC)—C+2B
= (B +C) = 180°,
B+C=§x180°:120°

= A =180° - 120° = 60°

7) Acircle passes through the vertex c of a
rectangle ABCD and touches the sides AB
and AD at M and N respectively. If the
distance from c to the line segment MN is
equal to b units, find the area of the

rectangles.
Sol.: Let ‘O’ be the centre of the circle.

OM= ON = OC each being the radius of the

same circle, end AMON is a square.
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2CMP = 2CMN = 2CND (angle in the

alternate segment)

2CNP = £CNM = £CMB (angle in the

alternate segment)

~£CMP+2£CNP=2CMP+2CMB= 2PMB =
180° — 45° = 135°

ZMCN =3 2ZMON =3.90° = 45° (~£AMN =

20MN = 45° in the square ANON)

AS CPN and CBM are similar for 2CPN =
4CBM =90°and 2CNP = 2CMB............. (D

Again A®* CPM and CDN are similar for 2CPM

— /CDN =90°and 2CMP = .CND &£ = &~
CB CM

(from 1), = % (from 2)

2L =2 - p2=(D.CB = 5%=CD.CB,
CB  CP
i.e., area of the rectangle is CB.CD = 25 sq.

units.

8) ABCD is a convex pentagon inscribed in a
circle of radius 1 unit with AE as diameter.
[tAB=a, BC=b,CD =c, DE =d, Prove
that a® + b? + ¢ + d* + abc + bed < 4

Sol.: Since AE is the diameter 2ACE = 90° and
Ac? + cE? = AE? = 2% = 4.

By cosine formula (for A ABC)

AC? = a® + b? — 2ab cos(180° — 0) = a? +
b? + 2ab cos 6
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Similarly in ACED,CE? = c? +d? —
2cd cos(90° + ) = c? +d? + 2cd sin @

~AC?+ CE? =a? +b* +c?+d* +
2abcosf + 2cd sin 6

AC
In AACE,E =sind = AC = 2sinf

>b(wAE=2) ... (1)
d £ _ coso(aE = 2)
and - = cos (AE =

= CE =2cosf >c ... (2)

(Because in A® ABC and CDE, £B and 4D are
obtain angles and AC is the greatest side of

AABC and CE is the greatest side of ACDE)

ZAC?+CE*=a?> +b?*+c?+d* +
2abcosf + 2cdcosO = 4

= a’+b%>+c?>+d*+ab.2cosO +
cd.2sinf =4

= a’?+b*+c?+d?*+abc+bcd <
4 [by (1)and (2)]

9) Arhombus has half the area of the square
with the same side length. Find the ratio of
the longer diagonal to that the shortest

one.

Sol.: If ais the side of the rhombus, then area

of the rhombus is %az sin 26 X 2.

By hypothesis, this area is equal to % a? =

a?sinf = sin 260 = % = 26 = 30° or 150°
= 0 = 15° or 75°

[If the acute angle of the rhombus is 30°, the

other angle which is obtuse is 150°]

By sine formula, SiBD s (In AABD)

n26 = sin(90-0)

ax2sinf cos @

= BD = = 2asinf@
cosf@
Agai Ac =2 (maaBO)
U Sin(180 — 26)  sing

asin268 2asin@ cosf
= = = 2acos0

sinf sin @
AC : BD = cos0:sinf [if 6 = 15° then AC

> BD and 6 = 75° BD > AC].

AC:BD = cos15°:sin15° =
sin 75°:sin 15° = sin(45° + 30°) : sin(45° —
30°)

= sin45°cos 30°
+ cos 45°sin 30°:sin 45° cos 30°

— cos45°sin 30°

— 2 (E+ 1) (VE-1)
=(V3+1):(vV3-1)
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AC \3+1
o BD T 3-1

(2 +V3).

10) From a point E on the median AD of A ABC,

the perpendiculars EF is dropped to the
sides BC. From a point M on EF
perpendiculars MN and MP are drawn to
the sides AC and AB respectively. If N, E, P
are collinear. Show that M lies on the

internal bisector of 2BAC.

Sol.: Before proving the main problem, let us
prove the following: If in AABC, AD is the
median xy is a line segment parallel to BC
intersecting the median AD at E, then AE is
the median of AAXY, or in other words XE =
YE.

A AXE similar to AABD .................... (1)and A
AYE similar to A ACD ................. (2)

A A X (3)and

AB~ AD  BD

AY AE EY 4
R—E—D_C..........()
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XE AE EY

From (3) and (4) 50 = 10 = e
XE _EY BD _XE
—BD DC_DC EY

But D is the midpoint of BC and hence BD =
DC=XE =EYie,XE=YE ...... (5).

Now draw XY parallel to BC through E. join
AM join the collinear points P, E, N. MPAN is a
cyclic quadrilateral as ZMPA+2MNA = 90° +
90° = 180°.

Since EF is perpendicular to BC and XY is
drawn parallel to BC. ZXEM = £EFB = 90°. In
the quadrilateral MPXE. ZMPX+2MEX =
90°+90° = 180° and hence MPXE is a cyclic
quadrilateral and in the quadrilateral MENY.
£MEY = £ZMNY =90° .............. (6)

So MENY is a cyclic quadrilateral, since ZMEY
and £MNY are subtended by MY at E and N
and they are equal by (6). In AS MEX and
MEY, XE = YE.

£MEX = 2£MEY = 90° ME is common and
hence AMEX = AMEY

« ZMEX = ZMYE ............. (7

2£PAM = £PNM (angle on the same segment,
in the cyclic quadrilateral MPAN) = ZENM =
2EYM (angle on the same segment in
quadrilateral EMYN by (7)) = 2ZEXM = £EPM
(angle on the same segment in cyclic
quadrilateral MPEX) = ZNPM = 2ZNAM
(cyclic quadrilateral APMN)
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That is AM bisects the vertical angle A of A
ABC. That is M lies on the bisector of ZA.

11) A ABCis an isosceles triangle and XY is
drawn parallel to the base cutting the sides
in X and T. Show that is four points B, C, X,

Y lie on a circle.

Sol.: Since xy [IBC, and AB meets them,

therefore,
£BXY +4XBC = 2rt 4£S .......... D
Also, since AB=AB, zB=4C ............ 2)

From (1) and (2), we find that
£BXY +4£BCY = 2rt. £S

Since a pair of opposite angles of the
quadrilateral BCYX is supplementary,
therefore it is cyclic. i.e. the points B, C, X, Y lie

on a circle.

12) Take any pointP, on one side BC of a
triangle ABC and draw the following chain
of lines : P{ P, parallel to AC; P,P3
parallel to BC: P3P, parallel to AB; P, Py
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parallel to CA; P5 P, parallel to BC. Here
P,, Ps lie on AB; P53, P on CA; and P4 on
BC. Show that P4 P is parallel to AB.

Sol.: Suppose BP; = k BC, (so thatP; divides
BC in the ratio k: 1-k).

Since P;P, || AC,and BP,; : BC =k : 1

Therefore, from similar triangles BP; P, and

BCA, BP, = k, BA, P,A = (1 — k)BA.

Since P,P; |l BC, and P,A = (1 — k)BA,
therefore from similar triangles

P,AP; and BAC,we have
AP; = (1 — k)AC,P;C =k AC
Since P;P, || AB,and CP; = k.AC

Therefore from similar triangles

CP;P, and CAB.
CP, = kCB.P,B = (1 —k)CB.

Since P,Ps || CA,and P,B = (1 — k)CB,
therefore BPs = (1 — k)BA.

Since PsPg || BC, and AP5: AB = k: 1,
therefore similar triangle AP; P, ABC, AP =
kAC, P4C = (1 — k)AC.In ACAB P, divides CB
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in the ratio 1 — k; k and P divides CA in the
ratio 1-k: M; i.e. CP4: PgA = CP;: P;B.

Therefore PgP; || AB

(As CPgP; and CAB are similar and hence
equi-triangular; consequently £ZCPgP; =

2CAB which are corresponding angles)

13) Let ABCD be a rectangle with AB = a and
BC = b. Suppose r is the radius of the
circle passing through A and B and
touching CD; and similarly r, is the radius

of the circle passing through B and C and
touching AD. Showthatr; + r, > g(a +

b)

Sol.: Let O be the centre of the circle which
touches CD and passes through the points A
and B, E the point of tangency and F the point
at which OE meets AB. Since OE L OC, and AB
[IDC, therefore OF || AB, Also OF = b-

r,and FB = %a

In right angled triangle OFB, 0B? = OF? +

2
FB?,show thatr,?> = (b —1)? + (5)
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_(1) a2+b2 _1b+a2
=\ 7 —27"8b

o 1 b?
Similarly, r; = Sato

Nowr 1= (30 +5) + o +2) -

a3+b3
8ab

1 a? b2 1
E(a+b)+§+§,

—E(a+b)+

1 (a + b)[(a—b)?+ ab]
—E(a+b)+ 8ab
>1 b ! b
_.E(a-+ )4—§(a-+ )
5
=§(a+b).

5
Thus ry + 1, > g(a + b).

14) A rigid square plate ABCD of unit side
rotates in its own plane about the middle
point of CD unit the new position of A
coincide with the old position of B. How
far is the new position of B from the old

position of A?

Sol: Let O be midpoint of CD. Since the new
position of A coincides with the old position
of B. Therefore, the rotation is in the counter
clockwise sense (in fig) about O, through the
angle AOB

Let OB and AB’ intersects at P. Then 2BOB’ =
2AOB. Also OA = OB = OB’. Therefore OB is
the internal bisector of ZAOB’ of isosceles
triangle AOB’. Therefore OP L AB’ and AP =
PB’
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Also, 2AOB = % X area of square ABCD = %

1
But, [AOB] = 5 AP.0B, 0B = J(0C? + CB?)

5
2
AP 2 that
= —,,S0 a
V5
AB' = 24P = = _ M5
NG 5
5 “~
D M c
D’/ 5 |
.' “\‘ % \Bl
g . % P - 7
A B

15) Show how will you cut a rectangular sheet
of paper along two lines segments parallel
to a side and two parallel to an adjacent
side, into five pieces whose areas are in

theratio1:2:3:4:5.

Sol.: Since 1+2+3+4+5 = 15, therefore really
speaking the rectangles has to be divided into
15 equal parts, and then we have to take 1, 2,
3,4, and 5 parts respectively to get the five
pieces. We take two points E and G in AD so
that AE = EG = GD and draw GH, EP parallel
to AB. Also take points J. K, L, M in DC such
that D] = JK = KL. = LM = MC and draw JP, KQ
parallel to CD. Clearly areas of rectangles
DJRG, GSTE, SHFT, JCHR, EFBA are in the ratio
1:2:3:4:5. The division has been made by
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two lines GH. EP parallel to DC, and two lines
JP, KQ parallel to DA.

G

A P Q B

16) A river flows between two houses A and
B, the house standing some distance away
from the banks, where should a bridge be
built on the river. So that a person going
from A to B using the bridge to cross the
river may do so by the shortest path?
Assume that the banks of the river are
straight and parallel, and the bridge must
be perpendicular to the banks.

Sol.: Let xy and PQ denote the two banks of
the river (parallel to each other) at a distance
d from each other and let A and B be the
situated on opposite sides of the river as

shown in the figure.

Take a point C on the line through A
perpendicular to the banks and towards the
bank such that AC= L (two different cases
arise according as the point C is between A
and xy, or is between xy and PQ of course, it
can even be on xy) join CB. Let CB meet PQ in
D. It can be shown that if DE be the

perpendicular from D and xy, then bridge
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should be built along DE. As is clear from fig
(a) and (b), the position of the bridge does

not depend on the position on C.

A

1

n

B

If the bridge is along ED, the distance
required to be travelled for reaching from A

to B=AE+ED+DB+= CD+AC+DB = L+CB.

In instead of building the bridge along ED, the
bridge is built along some other line, say E’, D’
then the distance to be travelled would be

AE'+E’D+D’B= CD’+AC+D’B= 1+ C'D+D’B.

In ACD’B, CD’+D’B>CB, therefore if instead of
building the bridge along DE, the bridge along
some other line the distance required to be

travelled would be greater.

17) AABC is scalene with £A having measure
greater than 90°.Determine the set of

points D on the extended line BC for which

|AD| = /{(IBD|)(|CD|)}, where |BD|
refers to the (positive) distance o0f B and
D.

Sol.: We shall use the following well known
result. If the tangent to a circle at a point. A

meet a chord BC at D, then AD? = |BD|.|CD|
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Draw the circle of the triangle ABC, and let
the tangent to it at A meet BC produced at D.
Then D is desired point. In order to prove the
result stated above, we have only to observe
that in As ABD and CAD, £ABC = 2CAD
(angles in the alternate segment): ZADB =

2ADC so that the triangles are equiangular

- AD
and hence similar consequently =5 =

D WwhereAD? = |BD|.|CD]|
AD

18) Given any acute—angled A ABC, let points
A’B’ C be located as follows: A’ is the point
where altitude A on BC meets the onwards
—facing semicircle drawn on BC as
diameter points B’. C’ are located similarly.
Show that [BC'A]* + [CAB']* +
[ABC)? = [ABC']?,
where |ABC|denotes the area of AABC

etc.

Sol.: In right angled triangles are equiangular

A'D
pc’

and hence similar. Consequently SO

BD _
A'D
that A’D? = BD.DC since BD =
A'Dcot B,DC = A'Dcot C,

Therefore A’P* = AD? cotB cotC
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- [BC'A)? = . BC.A'D i = 1362 A'D? Similarly,y = (c—a) z= (@ —b)
=1 ] _<§' ' ) T4 ' ry (c+a) (a+b)
1
= —BC? AD? cotB cotC b—c c—a
4 Now,x+y+z=b+c+c+a
= [ABC]? cotB cotC ... ... (1)
a—b>b
+—b,
Similarly, [CAB']? a+
= [ABC]? cotC cotA ... ....(2) 1
= (— 5)Z(b — o) {(c+a)a
2 2
[ABC]* = [ABC]*cotAcotB ..............(3). + b)}.where

p=Mb+c)(c+a)a+b)

Now Z(b —o)(c+a)(a+b)

= Zaz(b—c)

Adding corresponding sides of (1), (2) and + Z a*(b - c)

(3) and using the fact that in any angle.
Ybc(b—c)+Yab?—c?)

cotBcotC + cotCcotA+ cotAcotB =1,
Now,Y. bc(b—c)= —(b—c)(c—

We get the desire result. a)(a—b),

Yab?—c*)=—-Za*(b-o),

19) Given a AABC, define the equalities x, y, z So that Y bc(b—c¢) = —(b—c)(c —
as follows :x=tan¥.tang;y = a)(a —b),
c-A B _ _
tanT.tanE,z— Za(bz—c2)=—2a2(b—c).

tan%.tang.Provethatx+y+z+ )
Sothatx+y+z= (—) (—(b -
xyz = 0. P

c)(c—a)(a— b)) = —xyz
Sol.: By Napier’s analogies,

Hencex+y+x+xyz=0.

B-C1 [b-o0) A
ta“[ 2 1= b+o) C‘”(E)
(b—c)
So that x = b +0)
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20) AABC has in centre I. Let x, y, z be located
on the line segments that AB. AC
respectively. So that Bx. AB=
IB? and Cy.AC = IC?. Given that the
points x, I, y lie on a straight line, find the

possible values the measure of ZA.

Sol.: Since Bx. AB= 1B2, therefore 2= =

BI
L (D

BA T

BI

In As B x1and BIA, 2xBI = #ABI, and 2% =
BI BA

from (1). Therefore As BxI and BIA are

similar and hence equiangular.

~ZBlIx = /BAI = %4,4 e

(2)

Since Al is the interval bisector of ZBAC (1

being the in centre)

Similar by considering triangles cyl and CIA,

(3)

we have 2CIY = %LA

Also, 2BIC = 180° — (£IBC + £ICB)

= 180° (1 LB + 14)
- 2 2

1
= 180° — [90° - EAA],
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1
=90°+ LA (4)

Since xIY is a st.line, therefore £xIB +

ZBIC + 2CIY = 180°........(5)

Adding corresponding sides of relations (2),

(3) and (4), and using (5),

we have * 24 + (90° +14A) +i4=
2 2 2

180° So that £A = 60°.

21) The diagonals AC and BD of a cyclic
quadrilateral ABCD intersect at P. Let O be
the circumcentre of AAPB and H be the
orthocenter of ACPD. Show that the points

H.P.O are collinear.

Sol.:
H
I P
Q
A B

We shall show that if OP is produced to meet
CD in M, then PM 1CD, so that PM is an
altitude of APCD. This will ensure that the
orthocenter H of the triangle PCD lies on PM
and consequently the points O, P, H are
collinear. To complete the proof join AO, draw

OL LAP and consider As PLO and PMC. In
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these two triangles £LOP = %AAOP (because

O is the circumcentre of AABP, and OL L
chord AP) = 2£APB (being the angle
subtended by the chord AP at a point B of the
circumcentre of the circle ABP)=

£PCD(angles in the same segment of a circle).

Now in As PLO and PMC, 2LOP = 2PCM
(proved), and 2LOP = 2CPM (vert opp 4S),
therefore ZCMP= 2PL0O =90° and
consequently PM L CD, and the proof s

complete.

22) Show that there exist convex hexagon in
the plane such that (a) all its interior
angles are equal (b) its sides are 1, 2, 3, 4,

5, 6 in some order.

Sol.: Suppose there exists a convex hexagon
ABCDEEF such that all its interior angles are
equal, and the lengths of its sides are a, b, c, d,
e, frespectively. Produced AB and DC meet at
x, CD and EF to meet at y, and EF and BA to
meet at z. It can easily be seen that Axyz is
equilateral. In fact since the hexagon ABCDEF
us equiangular, each of its interior angles is
120°, consequently each of its interior angles
is 60°be £XBC= zxcB = 60°, ZEDY =«DEY =
60°, LFAZ= £AFZ = 60°.

It follows that £BxC, 2DyE, £FzA are each

equal to 60°. Since ABxC is equilateral,
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therefore, Bx = xC = b, similarly, Dy =
vE=d,Fz=zA=f,

~zx =f4a+b,xy=b +c+d, yz=d+ e +f,

since Axyz is equilateral,

thereforef+a+b=b4+c+d=d+e+f =
%[(f+a+b)+(b+c+d)+(d+e+f)]

1
=§(a+b+c+d+e+f)

Lb+d
+30+
1) oo (1)

We are inserted in contacting a hexagon for
which a, b, ¢, d, e, fare numbers 1, 2, 3,4, 5, 6

in some orderso,that%(a+ b+c+d+e+
=17

We shall choose values of b, d, f out of the
given values in such a manner (to simplify the
working) that b +d +fis a multiple of 3. This
can be done in several ways. One with this

choice, b +d+ f= 15, so thatf +a +b=b +c

+d=d+e+f=7+§.15=12

Using the valuesb =4,d =5, f = 6, we have a
=2,c=3,e=1.Thuswegeta=2,b=4,c=
3,d =5, e =1, f= 6 we therefore have the

following construction:

Construct an equilateral triangle xyz having
each side equal to 12 units. Cut of P xb =
xc = 4 units, yD = yE = 5 units,zA = zF =

6 units
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Join the pairs of points B, C; D, E; F, A,
ABCDEF is the desired hexagon.

Justification for the above construction has
already been provided by the analysis of the

problem.

23) Let AABC and circle C’' be drawn lying
inside the triangle touching the two sides
AB and AC. Show that the radii of the

circles C’ and C is equal to tan? ("4;‘4)

Sol.

Let [ be the in centre, r the in radius and E the
point of contact of the in circle with AB. Also
let I’ be the center of the circle touching AB.,
AC and the in circle, 1’ the radius of this circle
and F its point of contact with AB. Since AB
and AC both touch this circle and F its point of
contact with AB. Since AB and AC both touch
this circle, its centre must also lie on Al. From

I'drawI'D LIEin]]'d
ID=r—r'll'=r+7r'

2Dl =% /D11 =2
2 2

345

r-r' n—A

=sin(§) =cos0; whereb ==

r+r!

.T’_l—COSQ_t 2<9>—t 2(7T—A>
“r  14cosO an 2) an 4 )

24) Let A be straight line and P.Q two distinct
arbitrary points lying on one side of the
line 4, but not lying on 1. Determine with
proof the point T on L such that the sum of
the distance of P and Q from T shall be

least.
Sol.:
p e
L.
0 T N
R

Let R be the reflection of Pin ], i.e. Let Rbe a
point such that1is the perpendicular bisector
of PR. Join QR and let T be its point of
intersection with 4. We claim that T is the

desired point.

Let N be the point on 4 other than T. We shall
show that since 1 is the right bisector of PR,
therefore every point on 1 is equidistant from

P and R. In particular TP = TR, NP = NR.

Therefore PT +QT = TR+QT= QR
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(Since Q, T, R are in a straight line).

Also PN +QN = QN+NR. Since two sides of a
triangle are together greater than the third,

therefore in A QNR, Qn + NR > Q,i.e. PN +
QN > PT + QT.

Hence the sum of the distances of P and Q

from T is the least.

25) ABCD is a quadrilateral and P, Q are mid-
points of CD, AB, AP, DQ meet at x and BP,
CQ meet aty. Show that AADx+ABCy=

area of quadrilateral PxQy

Sol.: As usual we shall denote the area of a
AABC by [ABC] and that of a quadrilateral
ABCD by [ABCD] join AC and PQ. Since P is the
midpoint of DC, therefore AAPD and AACP
have equal bases PD and CP, and a common

vertex A.

Consequently, [APD]#[ACP] ........... (1) Again,
As BQC and AQC have equal base QB and AQ
(because Q is the mid points of AB), and a

common vertex C. Consequently, [BQC]=

[AQC] ........ 2)
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Adding corresponding sides of (1) and (2),
we have [APD]+[BQC]= [ACP]+[BQC]=
[AQCP], = [AQP]+[PQC]......(3)

Since Q is the midpoint of AB, therefore As
AQP and BQP have equal bases AQ and QB,

and a common vertex P. Consequently

[AQP]=[QBP] ............. 4)

Again, since P is the midpoint of CD, therefore
As PQC and QPD have equal bases CP and PD,

and a common vertex Q. Consequently, [PCQ]

g () ) (5)

Adding corresponding sides of (4) and (5),
we have [AQP]+[PQC]= [QBP]+[QPD]=
[QBPD] ....cceuveen. (6)

From (3) and (6), we have [APD]+[BQC]=
[QBPD] ........... (7)

Since [APD]= [AXD] +[DxP] ....c.ccocunue. (8)
[BQC] = [BYC]+[BYQ] .oeeeeenen (9), [QBPD]=
[QBY]+[PxQY]+[DxP] ........... (10)

Substituting from (8), (9) and (10), we have

[AxD]+[DxP]+[ByC]+[ByQ]=[QBy]+[PxQy]+
[DxP] i.e. [AxD]+[ByC]= [PxQy] as described.

26) A A ABC has in centre L. It’s in circle
touches the side BC at T. The line through
T parallel to IA meets the in circle again at
S and the tangent to the in circle at S’
meets the sides AB, AC at points C, B’
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. TSPl s = 1 1
respectively. Show that AA’B’C’ is similar _ (E JA+ 2 B) - LA = /B
to AABC.

Sol.: Since £A is common and £B’= £B, therefore
AAB’C’ and AABC are equiangular and hence

similar.

27) Let ABC be a triangular in a plane}.. Find
the set of all points P (distinct from A, B, C)
| in the plane ); such that the circumcircles
of As ABP, BCP, and CAP have the same
radii.
® H (o]

Sol.:
Let Al produced meet BC in H. Since As ABC

and AB’C’ have £A in common, therefore in
order to show that As ABC and AAB’C’ are
similar, we should compute 2B’ (or £C’) in
terms of £A, £B and 4C, and show that 2B’ is

equal to either 2B or 2C.

Let us denote the point of intersection of B'C’

and AH by x. In AAB’x, ext.

ZB'xl = 2£xAB' 4+ £AB'C’

1 If P lies on the circumcircle of AABC, then the
So that, £AB'C' = £B'xl — - £A
2 circumcircles As BCP, CAP, and ABP coincide
1
= (90° — 2£xLs) — > ZA with the circumcircle of triangle ABC, and
1 therefore they are all congruent. Therefore
=90° = 2IST = 2 24, every point on the circumcircle of AABC

] ) satisfies the given condition.
Since 2x1S and 2IST are all. £S since IT =

IS =90° — 2ITS — %LA, = £STC — %AA Let P be a point not lying on the circumcircle
of AABC and satisfying the condition that

1
= ¢£IHC — ELA(corres, .5)
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circumcircle of As PBC, PCA, and PAB are

congruent.

Let us denote the circles PBC, PCA, PAB by
€1, C, €3, respectively and their centres by L,
M, N respectively, Since L and M are the
centres of two congruent circles c¢; and c,
respectively. And the points P, C lie on both
these circles, therefore LC = LP = MC = MP.

Therefore P, L, C, M are the vertices of a
rhombus. Similarly P, L, B, N are the vertices
of arhombus, and P, M, A, A, N are also the

vertices of a rhombus.

Now PL is equal and parallel to BN, and PL is

also equal and parallel to CM. Therefore BN is
equal and parallel to CM. Therefore BNMC is a
parallelogram. Therefore BC is parallel to MN.

Now MN is the line joining the centres of the
circles ¢; and c3 and PA is the common chord
of these circles. Therefore MN LAP. Since BC
[IMN, it follows that BCL AP. Similarly CA_LBP.
AB LCP consequently P is the orthocenter of
AABC.

Thus we find that if P be a point such that the
circles PBC, PCA, PAB are congruent, then P is
either the orthocenter of ABC or it is a point

on the circumcircle of AABC.

28) Three congruent circles have a common
point O and lie inside a triangle such that
each circle touches a pair of sides of the

triangle. Show that the in centre and the
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circumcentre of the triangle and the point

O are collinear.

Sol.: Suppose three congruent circles with
centres P, Q, Rlie inside a AABC, and are such
that the circle with centre P touches AB and
AC, that with centre Q touches BC, and AB,
and that with centre R touches CA and BC. BC
and AB, and that with centre R touches CA
and BC.

Also let the circles pass through a common

point O.

Since O lies on all the three circles, therefore
PO = QO = RO. Therefore O is the
circumcentre of APQR. Let O’ (not shown in

the fig) be circumcentre of AABC.

Since BC is a tangent to the circles Q and R,
the lengths of perpendiculars from Q and R on

these circles are equal.
Therefore QR [IBC
Similarly RP |ICA, PQIIAB

Again, since AB and AC both touch the circle

with centre P therefore P is equidistant from
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AB and AC. Therefore P lies on the internal

bisector of ZA.

Similarly Q and R lie on the internal bisector

of £B and 2C respectively.

Therefore AP, BQ, CR when produced meet at
the in centre 1 of AABC. Since QR IIBC, RP |ICA,
PQIIAB, it follows that 1 is also the in centre of
APQR.

29) Let G be the centriod of AABC in which the
angle at C is obtuse AD, Fare the medians
from A, Crespectively on to the sides BC,
AB. If the four points B, D, G, F are

concyclic, show that % > +/2. If further P

is a point on the line BG extended such
that AGCP is a parallelogram, Show that
the As ABC and GAP are similar.

Sol.: Since chords BF and DG of the circle
BDGF meet at A (outside the circle), therefore

BA. FA = DA. GA so that%AB2 -
ZAD%i.e.AD? =2 AB? ............. (D)

Again, since chords FG and BD meet at C
(outside the circle), therefore FC. GC= BC. DC.
Sothat>FC% =-BC2i.e.CP? =

%Bcz SR (1))
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CA? + CB? = 2CF? + 2AF?

So that, AB2 = AC2 + BC? — 2 (EBCZ),
2 4

i.e. AB® = 2AC? — BC?

Since «C is an obtuse angle, therefore AB? >
AC? + BC?,so that 2AC? — BC? > AC? +
BC?.

i.e., AC?>2BC? or 2= > V2
Since AGCP is an 118™, therefore

£PAG = 180° — £CGA = 180° — £DGF =
£CBA ... ... (iiD)

2
AG (g)AD _ 4B . "
Also T =20 by (i) and (ii)

()er

From (iii) and (iv), we find that AGAP and
AABC are similar, the correspondence G—A,

A-B, P-C being a similarity.

30)Let A4, A,, 43, ...., A, is n sided regular

1 1 1
polygon such that 2, =y T aay

Determine n, the number of sides of the

polygon.

Sol.: Let each side of the polygon be of length

asince 244,45 = (n2)m

,A1A2 = A2A3 = a.
s
therefore from AA;A,A3, A1A3z = 2a cos (;)

Also from AA,A3A,, A, A, = 2a cos (g)
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Since the polygon 4, A4, ..... A, is regular, its
vertices lie on a circle. In particular, the

quadrilateral A;A,A3A, is cyclic.

By Ptolemy's theoremA, 4,434, +
A1A4.A2A3 - A1A3 - A2A4

4@+ AyAy. Az Ay = [2acos (g)]z ;

AjA,=a (40052 L 1)

n

L1 1
AA;  AAs AL,

Since

1 1

2acos(Z)  af4cos? (T)-1]

1
Therefore, - =

= 2cos (g) [4c052 %— 1]
= 4cos? r_ 1+ 2 acos (E)
n n

= 8cos? (E) — 4cos? (%) — 4 cos (%) +1=

0

= X = acos (g) is aroot of the equation
8x3 —4x?>—4x+1=0........(10)
We shall show that the roots of (1) are

T 3w 51
cos|—),coS|— ), cos|—
7 7 7

Let 70 = (2n + D
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Sothat 40 = 2n+ 1)m — 36
=~ cos40 = cos[(2n+ 1) — 360] = —cos 30
= 2c0s? 260 — 1 = (4cos30 — 3 cosh),

= 2(2c0s%6 — 1)?> = 1 + 4c0s30 — 3 cos @ =
0,

= 8c0s*0 + 4co0s30 — 8cos?0 — 3 cosH +

1=0,

= (cos @ + 1)8cos30 — 4cos*0 — 4cos O +
120 (2)

m 3w 51

Now (2) is satisfied by 8= T

Rejecting the factor cos 6 + 1 which

corresponds to 0= m and putting cos 6 =y,

We find that

T 3T 51
COS; ,cos7,cos7,are roots Of 8y3 —

Since equations (1) and (3) are the same,

therefore the roots of (1) are
T 3T 51 T .
cos— ,cos—, and cos — But cos-—isa root of

(1). Therefore we must haven = 7.



