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Part I: Motivation



Motivation

“Prediction is very difficult, especially if it’s about the future” - Niels Bohr,
Father of Quantum Mechanics.

Predictive modelling approaches are used in the fields of statistics and machine
learning, mainly for their accuracy and ability to deal with complex data
structures.

In this talk, I will discuss about some novel Hybrid Predictive models motivated
by the applied problems from the domain of Quality Control (regression
estimation) and Software Defect Prediction (imbalanced classification).



Motivation

Primary motivation comes from the real-world data sets, with a
variety of data types, such as business, process efficiency
improvement, water quality control, and software defect prediction,
among many others.

As a secondary motivation, we emphasis on the development of
hybrid models that are scalable (the size of the data does not pose a
problem), robust (work well in a wide variety of problems), accurate
(achieve higher predictive accuracy), statistically sound (have desired
asymptotic properties), and easily interpretable.

The newly developed hybrid methods are shown to outperform the
current state-of-the-arts and overcome the deficiencies of the hybrid
models available in the literature.

Both theoretical (asymptotic results) and computational aspects of
the proposed hybrid frameworks are studied.



Brief History of Prediction Models

Linear Regression
(Galton, 1875).

Linear Discriminant
Analysis (R.A.
Fisher, 1936).

Logistic Regression
(Berkson, JASA,
1944).

k-Nearest Neighbor
(Fix & Hodges,
1951).

Parzen’s Density
Estimation (E
Parzen, AMS,
1962)

ARIMA Model (Box
and Jenkins, 1970).

Classification and
Regression Tree
(Breiman et al.,
1984).

Artificial Neural
Network (Rumelhart
et al., 1985).

MARS (Friedman,
1991, Annals of
Statistics).

SVM (Cortes &
Vapnik, Machine
learning, 1995)

Random forest
(Breiman, 2001).

Deep Convolutional
Neural Nets
(Krizhevsky,
Sutskever, Hinton,
NIPS 2012).

GAN (Goodfellow et
al., NIPS 2014).

Deep Learning
(LeCun, Bengio,
Hinton, Nature
2015).

Bayesian Deep
Neural Network (Y.
Gal, Islam, Zoubin,
ICML 2017).



Need for Hybridization

Statistical issue: It is often the case that the model space is too large to explore
for limited training data, and that there may be several different models giving
the same accuracy on the training data. The risk of choosing the wrong model
can be reduced by combining two models, like CART and ANN.

Representation issue: In many learning tasks, the true unknown hypothesis could
not be represented by any hypothesis in the hypothesis space. By hybridization, it
may be possible to expand the space of representable functions. Thus the
learning algorithm may be able to form a more accurate approximation to the
true unknown hypothesis.

Computational issue: Many learning algorithms perform some kind of local search
that may get stuck in local optima. Even if there are enough training data, it may
still be challenging to find the best hypothesis. By combining two or more
models, the risk of choosing a wrong local minimum can be reduced.



Ensemble & Hybrid Models

Problem: Single models have
the drawbacks of sticking to
local minimum or over-fitting
the data set, etc.

Ensemble models are such where
predictions of multiple models
are combined together to build
the final model.

Examples: Bagging, Boosting,
Stacking and Voting Method.

Caution: But ensembles don’t
always improve accuracy of the
model but tends to increase the
error of each individual base
classifier.

Hybrid models are such where
more than one models are
combined together.

It overcomes the limitations of
single models and reduce
individual variance & bias, thus
improve the performance of the
model.

Caution: To build a good
ensemble classifier the base
classifier needs to be simple, as
accurate as possible, and distinct
from the other classifier used.

Desired: Interpretability, Less
Complexity, Less Tuning
Parameters, high accuracy.



Popular Hybrid Prediction Models

Perceptron Trees
(Utgoff, AAAI, 1988).

Entropy Nets (Sethi,
Proceeding of
IEEE,1990).

Neural trees (Sirat &
Nadal, Network,
1990).

Sparse Perceptron
Trees (Jackson,
Craven, NIPS, 1996).

SVM Tree Model
(Bennett et al., NIPS,
1998)

Hybrid DT-ANN Model
(Jerez-Aragones et al.,
2003, AI in Medicine)

Flexible Neural Tree
(Chen et al.,
Neurocomputing, 2006)

Hybrid DT-SVM Model
(Sugumaran et al,,
Mechanical Systems and
Signal Processing, 2007).

Hybrid CNN–SVM
Classifier (Niu et al., PR,
2012).

Hybrid DT model utilizing
local SVM (Dejan et al.,
IJPR, 2013).

Neural Decision
Forests (Bulo,
Kontschieder, CVPR,
2014).

Deep Neural Decision
Forests (Kontschieder,
ICCV, 2015).

Soft Decision Tree
(Frosst, Hinton,
Google AI, 2017).

Deep Neural Decision
Trees (Humbird et al.,
IEEE TNNLS, 2018).

Adaptive Neural Trees
(Tanno et al. ICML,
2019).



Some Drawbacks of the Existing Hybrid Models

Theoretical Robustness: Regardless of the practical use of SDT and neural trees,
theoretical properties like universal consistencies of these hybrid methods are
unknown. Thus, one needs to analyze the data complexity for splitting, which
leads to more accurate classification in the neural trees node.

High-dimensional set-up: Accurate classification of high dimensional feature
space leads to more depth trees, thus achieving less depth neural trees require
more complex computations at each node.

Small Sample Size and Interpretability: The previously used hybrid models
sometimes over-fit for small or moderate sample-sized data sets. In DNDT, each
node in their oblique decision tree involves all features rather than a single
feature, which renders the model uninterpretable.



Part II: Preliminaries



Decision Trees

Decision tree is defined by a
hierarchy of rules (in form of a
tree).

Rules from the internal nodes of
the tree are called root nodes.

Each rule (internal node) tests
the value of some feature.

Labeled training data is used to
construct the Decision tree. The
tree need not to be always a
binary tree.

CART is a greedy
divide-and-conquer algorithm.

Attributes are selected on the
basis of an impurity function
(e.g., IG for Classification &
MSE for Regression).

CART (Breiman et al., 1984),
RF (Breiman, 2001 at ML),
Random Survival Forest
(Ishwaran et al., 2008 at Ann.
App. Stat.) and BART
(Chipman et al., 2010 at Ann.
App. Stat).

Pros: Built-in feature selection
mechanism, Comprehensible,
easy to design, easy to
implement, good for structural
learning.

Cons: Too many rules loose
interpretability, risk of
over-fitting, sticking to local
minima.



Artificial Neural Networks

ANN is composed of several
perceptron-like units arranged in
multiple layers.

Consists of an input layer, one
or more hidden layer, and an
output layer.

Nodes in the hidden layers
compute a nonlinear transform
of the inputs.

Universal Approximation
Theorem (Hornik, 1989): A
one hidden layer FFNN with
sufficiently large number of
hidden nodes can approximate
any function.

Pros: Able to learn any complex
nonlinear mapping or
approximate any continuous
function.

Pros: No prior assumption
about the data distribution or
input-output mapping function.

Cons: When applied to limited
data can overfit the training
data and lose generalization
capability

Cons: Training ANN is
time-consuming and selection of
the network topology lack
theoretical background, often
“trial and error” matter.



Statistical Learning Theory: Consistency

Statistical learning theory (SLT) studies mathematical foundations for machine
learning models, originated in late 1960s.

Basic concept of Consistency: A learning rule, when presented more and more
training examples → the optimal solution.

Definition (Consistency)

Given an infinite sequence of training points (Xi ,Yi )i∈N with µ. For each n ∈ N, let fn
be a classifier for the first n training points. The learning algorithm is called consistent
with respect to µ if the risk R(fn) converges to the risk R(fBayes), that is for all ε > 0,

µ(R(fn)− R(fBayes) > ε)→ 0 as n→∞.

Definition (Universally Consistency)

The learning algorithm is called universally consistent if it is consistent for all
probability distributions µ.



Statistical Learning Theory in Decision Trees & Neural Networks

Consistency of data driven histogram
methods (Lugosi & Nobel, 1996,
Annals of Statistics).

Generalization Bounds for Decision
Trees (Mansour et al., 2000, COLT).

Consistency of random survival forests
(Ishwaran et al., 2010, SPL).

Consistency of Online Random Forest
(Denil et al., 2013, ICML).

Consistency of Random Forest
(Scornet et al., 2015, Ann. Stat.).

Posterior concentration for Bayesian
regression trees and forests (Rockova
et al., 2020, Ann. Stat.).

Strong Universal Consistency of FFNN
Classifier (Lugosi & Zeger 1995, IEEE
Information Theory).

Approximation properties of ANN
(Mhaskar, 1993, Advances in
Computational Mathematics).

Prediction Intervals for Artificial
Neural Networks (Hwang, Ding, 1997,
JASA)

On Deep Learning as a remedy for the
curse of dimensionality (Bauer &
Kohler, 2019, Ann. Stat.).

Consistent Sparse Deep Learning (Sun
et al., 2021, JASA).



Consistency of data-driven histogram methods for density estimation and
classification

Theorem (Lugosi and Nobel, 1996, Annals of Statistics)

Let (X ,Y ) be a random vector taking values in Rp × C and L be the set of first n outcomes of
(X ,Y ). Suppose that Φ is a partition and classification scheme such that Φ(L) = (ψpl ◦ φ)(L),

where ψpl is the plurality rule and φ(L) = (L)Ω̃n
for some Ω̃n ∈ Tn, where

Tn = {φ(`n) : P(L = `n) > 0}. Also suppose that all the binary split functions in the question set
associated with Φ are hyperplane splits. As n →∞, if the following regularity conditions hold:

λ(Tn)

n
→ 0 (0.1)

log(4n(Tn))

n
→ 0 (0.2)

and for every γ > 0 and δ ∈ (0, 1),

inf
S⊆Rp :ηx (S)≥1−δ

ηx (x : diam(Ω̃n[x] ∩ S) > γ)→ 0 (0.3)

with probability 1. then Φ is risk consistent.

Eqn. (0.1) is the sub-linear growth of the number of cells, Eqn. (0.2) is the sub-exponential
growth of a combinatorial complexity measure, and Eqn. (0.3) is the shrinking cell condition.



Consistency Results for Neural Network Classifier

Theorem (Lugosi & Zeger, 1995, IEEE Information Theory)

Consider a neural network with one hidden layer with bounded output weight having k hidden
neurons and let σ be a logistic squasher. Let Fn,k be the class of neural networks defined as

Fn,k =

{
k∑

i=1

ciσ(aTi z + bi ) + c0 : k ∈ N, ai ∈ Rdm , bi , ci ∈ R,
k∑

i=0

|ci | ≤ βn

}
and let ψn be the function that minimizes the empirical L1 error over ψn ∈ Fn,k . It can be shown
that if k and βn satisfy

k →∞, βn →∞,
kβ2

n log(kβn)

n
→ 0

then the classification rule

gn(z) =

{
0, if ψn(z) ≤ 1/2.

1, otherwise.
(0.4)

is universally consistent.

For universal convergence, the class over which the minimization is performed has to be defined
carefully. Above theorem shows that this may be achieved by neural networks with k nodes, in
which the range of output weights c0, c1, ..., ck is restricted.



Part III: Imbalanced Classification Problem in
Software Defect Prediction

Related Publication:

Tanujit Chakraborty and Ashis Kumar Chakraborty. “Hellinger Net: A Hybrid
Imbalance Learning Model to Improve Software Defect Prediction”. IEEE
Transactions on Reliability (2020). (Read Online)

https://ieeexplore.ieee.org/document/9194340


Motivation

Software defect prediction is
important to identify defects in the
early phases of software development
life cycle.

This early identification and thereby
removal of software defects is crucial
to yield a cost-effective and good
quality software product.

Though, previous studies have
successfully used machine learning
techniques for software defect
prediction, these techniques yield
biased results when applied on
imbalanced data sets.

This study proposes an ensemble
classifier, namely Hellinger Net, for
software defect prediction on
imbalanced NASA data sets.



Imbalanced Classification Problem

Real-world data sets are usually skewed, in
that many cases belong a larger class and
fewer cases belong to a smaller yet usually
more exciting class

For example, consider a binary
classification problem with the class
distribution of 90 : 10. In this case, a
straightforward method of guessing all
instances to be positive class would
achieve an accuracy of 90%.

Learning from an imbalanced data set
presents a tricky problem in which
traditional learning algorithms perform
poorly.

Traditional classifiers usually aim to
optimize the overall accuracy without
considering the relative distribution of
each class.



Sampling Techniques

One way to deal with the imbalanced data problems is to modify the class
distributions in the training data by applying sampling techniques to the data set

Sampling technique either oversamples the minority class to match the size of the
majority class or undersamples the majority class to match the size of the
minority class.

Synthetic minority oversampling technique (SMOTE) is among the most popular
methods that oversamples the minority class by generating artificially interpolated
data (Chawla et al., 2002, JAIR).

TL (Tomek links) and ENN (edited nearest neighbor) are popular undersampling
approaches (Batista et al., 2004, ACM SIGKDD).

But these approaches have apparent deficiencies, such as undersampling majority
instances may lose potentially useful information of the data set and oversampling
increases the size of the training data set which may increase computational cost.

To overcome these problems, “imbalanced data-oriented” algorithms are designed
which can handle class imbalance without any modification to class distribution.



Effect of Class Imbalance on Decision Tree

Let X be attribute and Y be the response class. Here Y + denotes majority class, Y−

denotes minority class and n is the total number of instances. Also, let X≥ −→ Y +

and X< −→ Y− be two rules generated by Classification Tree (CT). Table below
shows the number of instances based on the rules created using CT.

Table: An example of notions of classification rules

class and attribute X≥ X< sum of instances
Y + a b a + b
Y− c d c + d

sum of attributes a + c b + d n

In the case of imbalanced data set the majority class is always much larger than the
size of the minority class and thus we will always have a + b >> c + d . It is clear that
the generation of rules based on confidence in CT is biased towards majority class.

Various measures, like information gain (IG), gini index (GI) and misclassification
impurity (MI) expressed as a function of confidence, are used to decide which variable
to split in the important feature selection stage, get affected by class imbalance.



Effect of Class Imbalance on Distance Measures

Table: An example of notions of classification rules

class and attribute X≥ X< sum of instances
Y + a b a + b
Y− c d c + d

sum of attributes a + c b + d n

Using Table, we compute the following:

P(Y +/X≥) =
a

a + c
= Confidence(X≥ −→ Y +)

For an imbalanced data set, Y + will occur more frequently with X≥ & X< than to
Y−. So the concept of confidence is a fatal error in an imbalanced classification
problem.

Entropy at node t is defined as:

Entropy(t) = −
∑
j=1,2

P(j/t)log
(
P(j/t)

)



Effect of Class Imbalance on Distance Measures

In binary classification, information gain for splitting a node t is defined as:

IG = Entropy(t)−
∑
i=1,2

ni

n
Entropy(i) (0.5)

where i represents one of the sub-nodes after splitting (assuming we have two sub
nodes only), ni is the number of instances in sub-node i and n is the total number of
instances. The objective of classification using CT is to maximize IG which reduces to:

Maximize

{
−
∑
i=1,2

ni

n
Entropy(i)

}
(0.6)

The maximization problem in eqn. (0.6) reduces to:

Maximize

{
n1

n

[
P(Y +/X≥)log

(
P(Y +/X≥)

)
+ P(Y−/X≥)log

(
P(Y−/X≥)

)
]

+
n2

n
[P(Y +/X<)log

(
P(Y +/X<)

)
+ P(Y−/X<)log

(
P(Y−/X<)

)]}
(0.7)

The task of selecting the “best” set of features for node i are carried out by picking
up the feature with maximum IG. As P(Y +/X≥) >> P(Y−/X≥), we face a problem
while maximizing Eqn. (0.7).



Hellinger Distance

Let (Θ, λ) denote a measurable space. Let us suppose that P and Q be two
continuous distributions with respect to the parameter λ having the densities p and q
in a continuous space Ω, respectively. Define HD as follows:

dH(P,Q) =

√∫
Ω

(
√
p −√q)2dλ =

√
2

(
1−

∫
Ω

√
pqdλ

)
where

∫
Ω

√
pqdλ is the Hellinger integral. It is noted that HD doesn’t depend on the

choice of the parameter λ.

For the application of HD as a decision tree criterion, the final formulation can be
written as follows:

HD = dH(X+,X−) =

√√√√ k∑
j=1

(√ |X+j |
|X+|

−

√
|X−j |
|X−|

)2

, (0.8)

where |X+| indicates the number of examples that belong to the majority class in
training set and |X+j | is the subset of training set with the majority class and the
value j for the feature X . The bigger the value of HD, the better is the discrimination
between the features (Hellinger Distance Decision Tree, Chawla et al. 2008, ECML).



Hellinger Net : Basic idea

Hellinger Net is composed of three
basic steps:

(a) Converting a DT into rules (HD is
used as criterion);
(b) Constructing a two hidden layered
NN from the rules;
(c) Training the MLP using gradient
descent backpropagation (Rumelhart,
Hinton (1988).

In decision trees, the overfitting
occurs when the size of the tree is too
large compared to the number of
training data.

Instead of using pruning methods
(removing child nodes), HN employs a
backpropagation NN to give weights
to nodes according to their
significance.

Fig: Graphical Representation of Hellinger Nets



Hellinger Net Algorithm

Build a HDDT with (kn − 1) split nodes and kn leaf nodes. HDDT is mapped
into a two hidden layered MLP model having (kn − 1) and kn hidden neurons in
first hidden layer (HL1) and second hidden layer (HL2), respectively.

The first hidden layer is called the partitioning layer which partitions the input
feature spaces into different regions. It corresponds to the internal nodes of the
DT. In HL1, the neurons compute all the tree split decisions and indicate the split
directions for the inputs.

Further, HL1 passes the information to HL2. The neurons in the second hidden
layer represent the terminal nodes of the DT.

The final layer is the output class label of the tree. Train the tree structured
neural network using gradient descent backpropagation algorithm.

Hellinger Net uses sigmoidal activation function instead of the relay-type
activation function τ(u) with a hyperbolic tangent activation function
σ(u) = tanh(u) which has a chosen range from −1 to 1.

More precisely, the model uses σ1(u) = σ(β1u) at every neuron of the first hidden
layer for better generalization, where β1 is a positive hyper-parameter that
determines the contrast of the hyperbolic tangent activation function.



Merits

Merits:

1. The additional training using backpropagation potentially
improves the predictions of the HDDT and can deny tree pruning
steps vis-a-vis the risk of overfitting;

2. Hellinger Nets give weight to nodes according to their significance
as determined by the gradient backpropagation algorithm;

3. In Hellinger Nets, the neural network follows the built-in hierarchy
of the originating tree since connections do not exist between all
pairs of neurons in any two adjacent layers;

4. Since the number of neurons in the hidden layers are fixed, thus
the training time is less.

Theoretical developments:

1. Theoretical Consistency?

2. Rate of Convergence?



On Theoretical Consistency

Theorem (Chakraborty et al., 2020, IEEE Transactions on Reliability)

Assume X is uniformly distributed in [0, 1]p and Y = {0, 1}. As n→∞ and for any
kn, β1, β2 →∞ if the following conditions are satisfied:

(A1)
k4
n log(β2k4

n )

n
→ 0,

(A2) there exists δ > 0 such that
k2
n

n1−δ → 0,

(A3)
k2
n

e2β2
→ 0, and

(A4)
k3
nβ2

β1
→ 0,

then Hellinger Nets classifier is consistent.

The above Theorem states that with certain restrictions imposed on the number kn of
terminal nodes and the parameters β1, β2 being properly regulated as functions of n,
the empirical L1 risk-minimization provides local consistency of the Hellinger Nets
classifier.



Rate of Convergence

Theorem (Chakraborty et al., 2020, IEEE Transactions on Reliability)

Assume that X is uniformly distributed in [0, 1]p and Y = {0, 1} and a function
m : Cp → {0, 1} is a Lipschitz (δ;C)-smooth for any δ ∈ [0, 1]. Let mn be the
estimate that minimizes empirical L1-risk and the network activation function σi
satisfies Lipschitz property. Then for any n ≥ max{β2, 2p+1L}, we have

E

∫
[0,1]p

∣∣mn(X )−m(X )
∣∣µ(dx) = O

(
log(n)6

n

) 2δ
2δ+2p

The proof of the Theorem is using Complexity Regularization Principles.

The model will be able to circumvent the so-called problem of “curse of
dimensionality”.

In practice, the larger the value of kn, β1, and β2, the better the model
performance is.



Applications: Data Sets

Data Sets: The proposed model is evaluated using five publicly available data sets
from the area of Software Defect Prediction (NASA Metrics Data Program) available
at Promise Software Engineering repository
(http://promise.site.uottawa.ca/SERepository/datasets-page.html).

Table: Characteristics of the data sets used in experimental evaluation

Data set Classes Objects Number of Number of Number of
(n) feature (p) reported defects non-defects

CM1 2 498 21 49 449
JM1 2 10885 21 2106 8779
KC1 2 2109 21 326 1783
KC2 2 522 21 105 415
PC1 2 1109 21 77 1032

http://promise.site.uottawa.ca/SERepository/datasets-page.html


Performance Evaluation

The performance evaluation measure used in our experimental analysis is based on the
confusion matrix in Table 2. Area under the receiver operating characteristic curve
(AUC) is a popular metric for evaluating performances of imbalanced data sets and

higher the value of AUC, the better the classifier is. AUC =
Sensitivity+Specificity

2
;

where, Sensitivity = TP
TP+FN

; Specificity = TN
FP+TN

.

Table: Average AUC value for balanced data sets (using SMOTE and SMOTE+ENN) on different
classifiers

Data Sampling kNN CT RF ANN ANN RBFN
Techniques (with 1HL) (with 2HL)

CM1 SMOTE 0.700 0.665 0.722 0.605 0.680 0.704
SMOTE+ENN 0.685 0.650 0.708 0.600 0.652 0.700

JM1 SMOTE 0.758 0.745 0.762 0.740 0.735 0.764
SMOTE+ENN 0.760 0.778 0.770 0.750 0.720 0.765

KC1 SMOTE 0.783 0.845 0.859 0.765 0.798 0.905
SMOTE+ENN 0.801 0.850 0.875 0.798 0.807 0.914

KC2 SMOTE 0.927 0.965 0.967 0.933 0.942 0.954
SMOTE+ENN 0.935 0.952 0.966 0.925 0.937 0.949

PC1 SMOTE 0.770 0.758 0.753 0.698 0.719 0.745
SMOTE+ENN 0.788 0.760 0.761 0.712 0.725 0.748



Performance Evaluation

Highest AUC value in both the tables are highlighted with dark black for all the data
sets. It is clear from computational experiments that our model stands as very much
competitive with the current state-of-the-art models.

Table: AUC results (and their standard deviation) of classification algorithms over original
imbalanced test data sets

Classifiers CM1 JM1 KC1 KC2 PC1
CT 0.603 (0.04) 0.665 (0.03) 0.810 (0.04) 0.950 (0.00) 0.724 (0.02)
RF 0.690 (0.06) 0.725 (0.03) 0.850 (0.04) 0.964 (0.00) 0.747 (0.04)

k-NN 0.651 (0.03) 0.727 (0.01) 0.750 (0.03) 0.902 (0.02) 0.730 (0.05)
RBFN 0.652 (0.06) 0.723 (0.04) 0.884 (0.05) 0.935 (0.01) 0.725 (0.04)
HDDT 0.625 (0.04) 0.738 (0.04) 0.933 (0.02) 0.974 (0.00) 0.760 (0.02)
HDRF 0.636 (0.04) 0.742 (0.03) 0.939 (0.02) 0.988 (0.00) 0.760 (0.03)

CCPDT 0.618 (0.05) 0.712 (0.05) 0.912 (0.03) 0.971 (0.00) 0.753 (0.01)
ANN (with 1HL) 0.585 (0.03) 0.700 (0.03) 0.768 (0.05) 0.918 (0.02) 0.649 (0.03)
ANN (with 2HL) 0.621 (0.02) 0.715 (0.02) 0.820 (0.04) 0.925 (0.01) 0.710 (0.03)

Hellinger Net 0.720 (0.06) 0.798 (0.04) 0.964 (0.01) 0.985 (0.00) 0.789 (0.05)



Simulation Study

Simulated Data Sets: Three toy data sets (binary) are generated with weights = [0.2,
0.8], [0.1, 0.9] and [0.05, 0.95], i.e., data sets with imbalance rates of 20%, 10% and
5%, respectively. We added Gaussian noise to the data with the standard deviation
equals to 0.5. This test problem is suitable for algorithms that can learn data
imbalance problems in complex nonlinear manifolds.

Table: AUC results of different imbalanced classifiers on three synthetic data sets.

Imbalanced Simulated Data Simulated Data Simulated Data
Classifiers with IR = 20% with IR = 10% with IR = 5%

HDDT 0.80 0.85 0.91
HDRF 0.82 0.88 0.91

VCB-SVM 0.87 0.89 0.93
ISDA 0.84 0.91 0.90

Hellinger net 0.86 0.92 0.95



Simulation Study

A comparison of several imbalanced classifiers on synthetic data sets. The plots show
training points in solid colors and testing points semi-transparent. The lower right in

each plots shows the classification accuracy on the test set.



Conclusions

Learning from an imbalanced data set presents a tricky problem in which
traditional learning models perform poorly.

Simply allocating half of the training examples to the minority class does not
provide the optimal solution in most of the real-life problems.

If one would like to work with the original data without taking recourse to
sampling, our proposed hybrid methodology will be quite handy.

We proposed ‘Hellinger Nets’, a hybrid learner, that first construct a tree and
then simulate it using neural networks.

We have proved the consistency of Hellinger Net model.



Crisis and Future Challenges

The arena of research in learning from imbalanced data” continues to grow,
largely driven by challenging problems including land cover classification, fraud
detection, face recognition, spam and anomaly detection, medical diagnosis, etc

The overarching question is “how to push the boundaries of prediction on the
underrepresented or minority classes while managing the trade-off with false
positives?”

The usefulness and success of Random Forests and Deep Learning methods are
evident. Can they be combined together to create a Deep Forest model that can
deal with data imbalance problem?

Use of Wasserstein Distance is of much use in the Machine Learning community
for the last few decades. Some modification to the Wasserstein distance can be
done and incorporated in the DT, RF, and Hellinger net model. This may
improve the existing HDDT, HDRF and Hellinger Net models for imbalanced
pattern classification.



Generalized Wasserstein Distance

Given two CDFs F1 and F2 on R, let F denote the set of all joint distribution on R2

having F1 and F2 as marginals.

Definition

Given two CDFs F1 and F2 on R, the Wasserstein distance between them is defined by

W1(F1,F2) =

[
inf

F∈Γ(F1,F2)

∫
R2
|x − y |dF (x , y)

]
(0.9)

Proposed Generalized Wasserstein metric is a linear combination of the Wasserstein
distance metric for discrete probability measures (dE ) and the absolute value of the
differences in norms parameterized by a real number µ, and is defined as

Dµ(x , y) = dE

(
x

‖x‖
,

y

‖y‖

)
+ µ |‖x‖ − ‖y‖|

where, dE

(
x
‖x‖ ,

y
‖y‖

)
=
∑p

i=1

∣∣∣( xi
‖x‖ −

yi
‖y‖

)∣∣∣. By using the actual norm information

in the WD; we hope that the proposed GWD can deal data imbalance and outliers in
the data sets better than Hellinger distance and others.



Generalized Wasserstein Distance

It is straightforward to see that the proposed generalized Wasserstein
distance is a metric.

When x and y with well distinct norm are far away, we get large µ;
and for small µ their renormalized versions only matters.

By using a renormalized version of x and y and adding the norm
information with weight parameters, we shall be able to make the
WD metric skew-insensitive and useful to handle noisy data in
imbalanced SDP problems.

Generalized Wasserstein metric will be able to handle the highly
imbalanced data problem within the Deep Forest framework.



Deep Forest - Individual Training

Finally, the project aims to make the
proposed GWDF model:

scalable (the size of the data does
not pose a problem),

robust (work well in a wide variety
of problems in the presence of noisy
samples),

accurate (achieve higher predictive
accuracy),

statistically sound (have desired
asymptotic properties),

easily interpretable for its effective
implementation in land cover, aerial
imagery and physiological data
classification.



Deep Forest - Joint Training

We strongly desire that, whilst achieving
competitive performance on imbalanced
datasets in imbalanced data
classification, GWDF would benefit
from

lightweight inference via conditional
computation (sparse connected
networks),

hierarchical separation of features
useful to the imbalanced learning
task with generalized WD metric as
tree splitting criteria,

a mechanism to adapt the
architecture to the size and
complexity of the training dataset,



Generalized Wasserstein Deep Forest: Deliverables

Generalized Wasserstein Deep Forest is a form of random forests
enhanced with deep learned representations.

Many existing tree-structured models are instantiations of the
proposed GWDF model.

The outcome of this work will be a suite of novel, principled, and
interpretable deep learning techniques that would solve the
imbalanced problem in SDP and others.

We shall further investigate statistical consistency and rate of
convergence for theoretical robustness of the proposed Wasserstein
Deep Forest.

Apart from the theoretical and computational development of the
GWDF model and its implementation on real-world datasets, we aim
to develop an implementation tool (a Toolbox in Python) for public
use.



Part IV: Regression Estimation Problem in Process
Efficiency Improvement

Related Publications:

Tanujit Chakraborty, Swarup Chattopadhyay, and Ashis Kumar Chakraborty. “Radial
basis neural tree model for improving waste recovery process in a paper industry”,
Applied Stochastic Models in Business and Industry, 36 (2020): 49-61. (Read
Online)

https://doi.org/10.1002/asmb.2473
https://doi.org/10.1002/asmb.2473


Motivation

This work is motivated by a
particular problem in a modern
paper manufacturing industry, in
which maximum efficiency of the
process fiber-filler recovery
equipment, also known as Krofta
supracell, is desired.

As a by-product of the paper
manufacturing process, a lot of
unwanted materials along with
valuable fibers and fillers come
out as waste materials.

The job of an efficient Krofta
supracell is to separate the
unwanted materials from the
valuable ones so that fibers and
fillers can be reused in the
manufacturing process.

Fig: Krofta supracell



Process Efficiency Improvement Problem

The Krofta recovery percentage was
around 75%. The paper
manufacturing company wants to
improve the recovery percentage to
90%.

To identify the important parameters
affecting the Krofta efficiency, a
failure mode and effect analysis
(FMEA) was performed with the help
of process experts.

Goal: We would like to come up with
a model that can help the
manufacturing process industry to
achieve an efficiency level of about
90% from the existing level of about
75% to improve the Krofta supracell
recovery percentage.

Fig: Process Flow Diagram of Krofta supracell



Process Data Set

The data set collected for a year from the process on the following causal
variables: Inlet Flow, Water Pressure (water inlet pressure to ADT), Air Pressure,
Pressure of Air-Left, Pressure of Air-Right, Pressure of ADT-D Left, Pressure of
ADT-D Right and Amount of chemical lubricants.

The response variable (FFRE recovery percentage) lies between 20 to 100.

This data set will be used for finding crucial process parameters and also finding a
prediction model that can help the company for forecasting future recovery
percentage of FFRE.

Table: Sample data set

Inlet Flow Water Pressure Air Pressure Air-Left Air-Right ADT-D ADT-D Amount of Recovery
Left Right chemical

Percentage
1448 6.4 5.8 1.0 2.1 3.2 4.0 2.0 96.80
1794 5.2 5.6 2.4 1.6 3.6 4.0 3.0 97.47
2995 6.0 6.0 1.5 4.5 4.0 4.8 4.0 28.87
1139 6.5 6.0 1.2 1.7 3.0 4.6 2.0 33.05
2899 6.2 5.7 2.0 1.2 3.1 4.0 2.0 97.91
1472 6.6 6.8 3.7 3.1 5.2 4.8 4.0 57.77
1703 6.2 6.0 2.9 1.0 3.0 4.2 2.0 26.94
1514 5.5 5.0 2.0 2.1 3.8 4.7 2.0 67.01

. . . . . . . . .

. . . . . . . . .



Proposed Hybrid RBNT Model

Apply RT algorithm to train and build
a decision tree. Use the tree to
extract the important features and
find the splits between different
adjacent values of the features.

Choose the features that have
minimum mean squared error as
important input variables and record
RT predicted outputs.

Export important input variables
along with an additional feature
(prediction values of RT algorithm) to
the RBFN model and a neural
network is generated.

RBFN model uses Gaussian kernel as
an activation function, and parameter
optimization is done using gradient
descent algorithm. Finally, we obtain
the final outputs.

Fig: Flowchart of the Proposed Radial Basis Neural Tree Model



But...

What will be the optimal Choice of the number of hidden nodes for
the model? (Trial and Error!)

Theoretical Consistency of the Model? (Statistical Learning Theory!)

Importance of RT output in the second stage of the ensemble model?
(Experimental or Theoretical Justification!)

Experimental Evaluation and comparative study with single and
hybrid ensemble models? (Important!)

Can this model be useful for practitioner working in other disciplines
but on similar types of problems? (Very Important!)



Improved Version of the Proposed Model

First, apply the RT algorithm to train and build a decision tree and record
important features.

Using important input variables obtained from RT along with an additional input
variable (RT output), a RBFN model (with one hidden layer) is generated.

The optimum number of neurons in the hidden layer of the model to be chosen
as O

(√
n/dmlog(n)

)
[to be discussed], where n, dm are number of training

samples and number of input features in RBFN model, respectively.

Figure: Graphical Presentation of the proposed ensemble model



Merits

Can select important features from the data set;

Suitable for Feature Selection cum Prediction Problems with limited
data sets;

Useful for high dimensional feature spaces in the data sets;

Simple and Easily interpretable;

“white-box-like” model, fast in implementation.



On Theoretical Consistency

Theorem (Chakraborty et al., 2020, Applied Stochastic Models)

Suppose (X ,Y ) be a random vector in Rp × [−K ,K ] and Ln be the training set of n
outcomes of (X ,Y ). Finally if for every n and wi ∈ Ω̃n, the induced subset (Ln)wi

contains at least kn of the vectors of X1,X2, ...,Xn, then empirically optimal regression
trees strategy employing axis parallel splits are consistent when the size kn of the tree
grows as o( n

log(n)
).

Theorem (Chakraborty et al., 2020, Applied Stochastic Models)

Consider a RBF network with Gaussian radial basis kernel having one hidden layer with

k (> 1) nodes. If k →∞, b →∞ and kb4 log(kb2)
n

→ 0 as n→∞, then RBFN model
is said to be universally consistent for all distribution of (Z ,Y ).



On the choice of Number of Hidden Neurons

RBFN is a family of ANNs, consists of only a single hidden layer and uses radial
basis function as an activation function, unlike feed forward neural network. RBF
network with one hidden layer having k nodes for a fixed Gaussian function is
given by the equation:

f (zi ) =
k∑

j=1

wj exp

(
−
‖ zi − ci ‖2

2σ2
i

)
+ w0,

where
∑k

j=0 |wj | ≤ b (> 0) and c1, c2, ..., ck ∈ Rdm .

For practical use, if the data set is limited, the recommendation is to use
k =

(√
n/dmlog(n)

)
for achieving utmost accuracy of the propose model.

Proposition (Chakraborty et al., 2019, Statistics & Probability Letters)

For any fixed dm and training sequence ξn, let Y ∈ [−K ,K ], and m, f ∈ Fn,k , if the
neural network estimate mn satisfies the above-mentioned regularity conditions of
strong universal consistency and f satisfying

∫
Sr

f 2(z)µ(dz) <∞ where, Sr is a ball

with radius r centered at 0, then the optimal choice of k is O

(√
n

dm log(n)

)
.



Importance of RT output in neural net

RT output also plays an important role in further modeling. It actually improves
the performance of the model at a significant rate (can be shown using
experimental results).

We can use one hidden layer in Neural Network model due to the incorporation of
RT output as an input information in ANN.

RT predicted results provide some direction for the second stage modelling using
ANN.

Tree output estimates are probabilistic estimates, not from a direct mathematical
or parametric model, thus direct correlationship with variables can’t be estimated.

It should be noted that one-hidden layer neural networks yield strong universal
consistency and there is little theoretical gain in considering two or more hidden
layered neural networks (Devroye, IEEE IT, 2013).

To see the importance of RT given predicted results as a relevant feature, we
introduced a non-linear measure of correlation between any feature and the actual
values, namely C-correlation (Yu and Liu, 2004, JMLR), shown in (Chakraborty
et al., 2019, Statistics & Probability Letters).



Experimental Evaluation

Popularly used performance metric are:

MAE = 1
n

∑n
i=1

∣∣yi − ŷi
∣∣; RMSE =

√
1
n

∑n
i=1(yi − ŷi )2; MAPE = 1

n

∑n
i=1

∣∣∣∣ yi−ŷi
yi

∣∣∣∣;
R2 = 1−

[∑n
i=1(yi−ŷi )

2∑n
i=1(yi−y)2

]
; AdjR2 = 1−

[
(1−R2)(n−1)

n−dm−1

]
;

where, yi , y , ŷi denote the actual value, average value and predicted value of the
dependent variable, respectively for the i th instant. Here n and dm denote the number
of data points and independent variables used for performance evaluation, respectively.

Table: Quantitative measure of performance for different regression models. Results are based on
10 fold cross validations. Mean values of the respective measures are reported with standard
deviation within the bracket.

Models MAE RMSE MAPE R2 Adj(R2)
RT 11.691 (0.45) 16.927 (0.89) 29.010 (1.02) 59.028 (3.25) 55.304 (1.95)

ANN 12.334 (0.25) 17.073 (0.56) 27.564 (1.85) 58.310 (2.98) 54.529 (2.08)
SVR 12.460 (0.28) 20.362 (1.23) 40.010 (1.81) 40.174 (2.05) 35.325 (2.64)

BART 12.892 (0.59) 16.010 (1.25) 30.038 (1.95) 59.380 (2.50) 56.458 (1.75)
RBFN 13.926 (2.50) 18.757 (3.25) 32.48 (3.45) 49.689 (5.45) 46.335 (3.95)

Tsai Neural tree 10.895 (0.78) 16.012 (0.50) 24.021 (1.85) 65.120 (2.89) 62.946 (1.78)
Proposed Model 9.226 (0.35) 14.331 (0.82) 20.187 (1.45) 70.632 (2.00) 68.675 (2.13)



Other Experiments on Process Data

Data Sets: The proposed model is evaluated using six publicly available from UCI
Machine Learning repository (https://archive.ics.uci.edu/ml/datasets.html).
These regression data sets have limited number of observations.

Table: Data set characteristics: number of samples and number of features, after removing
observations with missing information or nonnumerical input features.

Sl. No. Data Number of samples Number of features
1 Auto MPG 398 7
2 Concrete 1030 8
3 Forest Fires 517 10
4 Housing 506 13
5 Wisconsin 194 32

Table: Average RMSE results for each of the models across the different data sets

Data RT ANN SVR BART RBFN Neural Tree Our Model
Auto MPG 3.950 4.260 5.720 3.220 4.595 3.300 3.215
Concrete 8.700 10.180 11.588 5.540 10.210 7.420 7.063

Forest Fires 75.138 90.702 91.985 65.890 82.804 62.478 64.411
Housing 4.980 9.054 12.520 3.978 7.871 4.590 3.077

Wisconsin 41.059 34.710 41.220 32.054 38.495 40.700 23.659

https://archive.ics.uci.edu/ml/datasets.html


Application to Simulated data

We investigate the asymptotic behavior of the proposed RBNT model on an artificial
data set created by sampling inputs x uniformly from the p-dimensional hypercube
[0, 1]p and computing outputs y as

y(x) =

p∑
j=1

sin
(

20x(j) − 10
)

+ ε,

where ε is a zero mean Gaussian noise with variance σ2, which corrupts the
deterministic signal. We choose p = 2 and σ = 0.01, and investigate the asymptotic
behavior as the number of training samples increases. Figure in the next slide
illustrates the RMSE for an increasing number of training samples and shows that the
RBNT model error decreases much faster than other competitive model errors as
sample size increases.



Asymptotic Behavior

This figure shows the test RMSE for synthetic data with exponentially increasing
training set size (x-axis). Solid lines connect the mean RMSE values obtained across 3
randomly drawn data sets for each data set size, whereas error bars show the empirical

standard deviation.



Conclusions

In this chapter, we build a hybrid regression model for improving the process
efficiency in a paper manufacturing company.

Our study presented a hybrid RT-RBFN model that integrates RT and RBFN
algorithm which gives more accuracy than all other competitive models to address
the Krofta efficiency improvement problem.

The proposed model is consistent, and when applied to other complex regression
problems, it performed well as compared to other state-of-the-art.

The usefulness and effectiveness of the model lie in its robustness and easy
interpretability as compared to complex “black-box-like” models.



Part V: Conclusions and Future works



Conclusions & Future Work

We developed some novel Hybrid Prediction models for various problems arising
in classification and regressions.

The problems arise from the area of Quality Control and Software Reliability.

We studied several statistical properties of the proposed hybrid models.

The scope of future research of the RBNT model will be to improve the model
for survival data problems.

Another scope of future research of the thesis will be to build Hybrid Models for
Adversarial Machine Learning Problems.
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