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Motivation

“Prediction is very difficult, especially if it’s about the future” - Niels Bohr, Father of
Quantum Mechanics.



Some Popular Prediction Models

Linear Regression
(Galton, 1875).

Linear Discriminant
Analysis (R.A.
Fisher, 1936).

Logistic Regression
(Berkson, JASA,
1944).

k-Nearest Neighbor
(Fix & Hodges,
1951).

Parzen’s Density
Estimation (E
Parzen, AMS,
1962)

ARIMA Model (Box
and Jenkins, 1970).

Classification and
Regression Tree
(Breiman et al.,
1984).

Artificial Neural
Network (Rumelhart
et al., 1985).

MARS (Friedman,
1991, Annals of
Statistics).

SVM (Cortes &
Vapnik, Machine
learning, 1995)

Random forest
(Breiman, 2001).

Deep Convolutional
Neural Nets
(Krizhevsky,
Sutskever, Hinton,
NIPS 2012).

GAN (Goodfellow et
al., NIPS 2014).

Deep Learning
(LeCun, Bengio,
Hinton, Nature
2015).

Bayesian Deep
Neural Network (Y.
Gal, Islam, Zoubin,
ICML 2017).



Need for Hybridization

Statistical issue: It is often the case that the model space is too large to explore
for limited training data, and that there may be several different models giving
the same accuracy on the training data.

Representation issue: In many learning tasks, the true unknown hypothesis could
not be represented by any hypothesis in the hypothesis space. By hybridization, it
may be possible to expand the space of representable functions.

Computational issue: Many learning algorithms perform some kind of local search
that may get stuck in local optima. Even if there are enough training data, it may
still be challenging to find the best hypothesis.

Data imbalance issue: Traditional classifiers assumes that the classes to be
distinguished should have a comparable number of instances. Still, this
assumption does not hold in real-world classification problems. The problem of
learning from imbalanced data is a relatively new challenge that has attracted
growing attention from both academia and industry.



Ensemble & Hybrid Models

Problem: Single models have
the drawbacks of sticking to
local minimum or over-fitting
the data set, etc.

Ensemble models are such where
predictions of multiple models
are combined together to build
the final model.

Examples: Bagging, Boosting,
Stacking and Voting Method

Caution: But ensembles don’t
always improve accuracy of the
model but tends to increase the
error of each individual base
classifier.

Hybrid models are such where
more than one models are
combined together.

It overcomes the limitations of
single models and reduce
individual variance & bias, thus
improve the performance of the
model.

Caution: To build a good
ensemble classifier the base
classifier needs to be simple, as
accurate as possible, and distinct
from the other classifier used.

Desired: Interpretability, Less
Complexity, Less Tuning
Parameters, high accuracy.



Popular Hybrid Prediction Models

Perceptron Trees
(Utgoff, AAAI, 1988).

Entropy Nets (Sethi,
Proceeding of
IEEE,1990).

Neural trees (Sirat &
Nadal, Network,
1990).

Sparse Perceptron
Trees (Jackson,
Craven, NIPS, 1996).

SVM Tree Model
(Bennett et al., NIPS,
1998)

Hybrid DT-ANN Model
(Jerez-Aragones et al.,
2003, AI in Medicine)

Flexible Neural Tree
(Chen et al.,
Neurocomputing, 2006)

Hybrid DT-SVM Model
(Sugumaran et al,,
Mechanical Systems and
Signal Processing, 2007).

Hybrid CNN–SVM
Classifier (Niu et al., PR,
2012).

Hybrid DT model utilizing
local SVM (Dejan et al.,
IJPR, 2013).

Neural Decision
Forests (Bulo,
Kontschieder, CVPR,
2014).

Deep Neural Decision
Forests (Kontschieder,
ICCV, 2015).

Soft Decision Tree
(Frosst, Hinton,
Google AI, 2017).

Deep Neural Decision
Trees (Yang et al.,
ICML, 2018).

Adaptive Neural Trees
(Tanno et al. ICML,
2019).



Imbalanced Classification Problem

Real-world data sets are usually skewed, in
that many cases belong a larger class and
fewer cases belong to a smaller yet usually
more exciting class

For example, consider a binary
classification problem with the class
distribution of 90 : 10. In this case, a
straightforward method of guessing all
instances to be positive class would
achieve an accuracy of 90%.

Learning from an imbalanced data set
presents a tricky problem in which
traditional learning algorithms perform
poorly.

Traditional classifiers usually aim to
optimize the overall accuracy without
considering the relative distribution of
each class.



Sampling Techniques

One way to deal with the imbalanced data problems is to modify the class
distributions in the training data by applying sampling techniques to the data set

Sampling technique either oversamples the minority class to match the size of the
majority class or undersamples the majority class to match the size of the
minority class.

Synthetic minority oversampling technique (SMOTE) is among the most popular
methods that oversamples the minority class by generating artificially interpolated
data (Chawla et al., 2002, JAIR).

TL (Tomek links) and ENN (edited nearest neighbor) are popular undersampling
approaches (Batista et al., 2004, ACM SIGKDD).

But these approaches have apparent deficiencies, such as undersampling majority
instances may lose potentially useful information of the data set and oversampling
increases the size of the training data set which may increase computational cost.

To overcome these problems, “imbalanced data-oriented” algorithms are designed
which can handle class imbalance without any modification to class distribution.



Effect of Class Imbalance on Decision Tree

Let X be attribute and Y be the response class. Here Y + denotes majority class, Y−

denotes minority class and n is the total number of instances. Also, let X≥ −→ Y +

and X< −→ Y− be two rules generated by Classification Tree (CT). Table below
shows the number of instances based on the rules created using CT.

Table: An example of notions of classification rules

class and attribute X≥ X< sum of instances
Y + a b a + b
Y− c d c + d

sum of attributes a + c b + d n

In the case of imbalanced data set the majority class is always much larger than the
size of the minority class and thus we will always have a + b >> c + d . It is clear that
the generation of rules based on confidence in CT is biased towards majority class.

Various measures, like information gain (IG), gini index (GI) and misclassification
impurity (MI) expressed as a function of confidence, are used to decide which variable
to split in the important feature selection stage, get affected by class imbalance.



Effect of Class Imbalance on Distance Measures

Table: An example of notions of classification rules

class and attribute X≥ X< sum of instances
Y + a b a + b
Y− c d c + d

sum of attributes a + c b + d n

Using Table, we compute the following:

P(Y +/X≥) =
a

a + c
= Confidence(X≥ −→ Y +)

For an imbalanced data set, Y + will occur more frequently with X≥ & X< than to
Y−. So the concept of confidence is a fatal error in an imbalanced classification
problem.

Entropy at node t is defined as:

Entropy(t) = −
∑
j=1,2

P(j/t)log
(
P(j/t)

)



Effect of Class Imbalance on Distance Measures

In binary classification, information gain for splitting a node t is defined as:

IG = Entropy(t)−
∑
i=1,2

ni

n
Entropy(i) (0.1)

where i represents one of the sub-nodes after splitting (assuming we have two sub
nodes only), ni is the number of instances in sub-node i and n is the total number of
instances. The objective of classification using CT is to maximize IG which reduces to:

Maximize

{
−
∑
i=1,2

ni

n
Entropy(i)

}
(0.2)

The maximization problem in eqn. (1.7) reduces to:

Maximize

{
n1

n

[
P(Y +/X≥)log

(
P(Y +/X≥)

)
+ P(Y−/X≥)log

(
P(Y−/X≥)

)
]

+
n2

n
[P(Y +/X<)log

(
P(Y +/X<)

)
+ P(Y−/X<)log

(
P(Y−/X<)

)]}
(0.3)

The task of selecting the “best” set of features for node i are carried out by picking
up the feature with maximum IG. As P(Y +/X≥) >> P(Y−/X≥), we face a problem
while maximizing eqn. (0.3).



Theoretical Background: Consistency

Statistical learning theory (SLT) studies mathematical foundations for machine
learning models, originated in late 1960s.

Basic concept of Consistency: A learning rule, when presented more and more
training examples → the optimal solution.

Definition (Consistency)

Given an infinite sequence of training points (Xi ,Yi )i∈N with µ. For each n ∈ N, let fn
be a classifier for the first n training points. The learning algorithm is called consistent
with respect to µ if the risk R(fn) converges to the risk R(fBayes), that is for all ε > 0,

µ(R(fn)− R(fBayes) > ε)→ 0 as n→∞.

Definition (Universally Consistency)

The learning algorithm is called universally consistent if it is consistent for all
probability distributions µ.



Theoretical Results on Decision Trees & Neural Networks

Consistency of data driven histogram
methods (Lugosi & Nobel, 1996,
Annals of Statistics).

A Fast, Bottom-Up Decision Tree
Pruning Algorithm with Near-Optimal
Generalization (Kearns, Mansour,
ICML, 1998)

Generalization Bounds for Decision
Trees (Mansour et al., 2000, COLT).

Consistency of Online Random Forest
(Denil et al., 2013, ICML).

Consistency of Random Forest
(Scornet et al., 2015, Ann. Stat.).

Strong Universal Consistency of FFNN
Classifier (Lugosi & Zeger 1995, IEEE
Information Theory).

Approximation properties of ANN
(Mhaskar, 1993, Advances in
Computational Mathematics).

Prediction Intervals for Artificial
Neural Networks (Hwang, Ding, 1997,
JASA)

Provable approximation properties for
DNN (Shaham et al., 2018, Applied &
Computational Harmonic Analysis).

On Deep Learning as a remedy for the
curse of dimensionality (Bauer,
Kohler, 2019, Ann. Stat.).



Consistency Results for FeedForward Neural Network Classifier

Theorem (Lugosi & Zeger, 1995, IEEE Information Theory)

Consider a neural network with one hidden layer with bounded output weight having k hidden
neurons and let σ be a logistic squasher. Let Fn,k be the class of neural networks defined as

Fn,k =

{
k∑

i=1

ciσ(aTi z + bi ) + c0 : k ∈ N, ai ∈ Rdm , bi , ci ∈ R,
k∑

i=0

|ci | ≤ βn

}
and let ψn be the function that minimizes the empirical L1 error over ψn ∈ Fn,k . It can be shown
that if k and βn satisfy

k →∞, βn →∞,
kβ2

n log(kβn)

n
→ 0

then the classification rule

gn(z) =

{
0, if ψn(z) ≤ 1/2.

1, otherwise.
(0.4)

is universally consistent.

For universal convergence, the class over which the minimization is performed has to be defined
carefully. Above theorem shows that this may be achieved by neural networks with k nodes, in
which the range of output weights c0, c1, ..., ck is restricted.



Hellinger Distance

Let (Θ, λ) denote a measurable space. Let us suppose that P and Q be two
continuous distributions with respect to the parameter λ having the densities p and q
in a continuous space Ω, respectively. Define HD as follows:

dH(P,Q) =

√∫
Ω

(
√
p −√q)2dλ =

√
2

(
1−

∫
Ω

√
pqdλ

)
where

∫
Ω

√
pqdλ is the Hellinger integral. It is noted that HD doesn’t depend on the

choice of the parameter λ.

For the application of HD as a decision tree criterion, the final formulation can be
written as follows:

HD = dH(X+,X−) =

√√√√ k∑
j=1

(√ |X+j |
|X+|

−

√
|X−j |
|X−|

)2

, (0.5)

where |X+| indicates the number of examples that belong to the majority class in
training set and |X+j | is the subset of training set with the majority class and the
value j for the feature X . The bigger the value of HD, the better is the discrimination
between the features (Hellinger Distance Decision Tree, Chawla et al. 2008, ECML).



Hellinger Net : Basic idea

Hellinger Net is composed of three
basic steps:

(a) Converting a DT into rules (HD is
used as criterion);
(b) Constructing a two hidden layered
NN from the rules;
(c) Training the MLP using gradient
descent backpropagation (Rumelhart,
Hinton (1988).

In decision trees, the overfitting
occurs when the size of the tree is too
large compared to the number of
training data.

Instead of using pruning methods
(removing child nodes), HN employs a
backpropagation NN to give weights
to nodes according to their
significance.

Fig: Graphical Representation of Hellinger Nets

The idea of the this approach is inspired
from the idea of Perceptron Trees [Paul E

Utgoff, 1988, AAAI]



Partitioned Input Space & HDDT   1 / 2



Partitioned Input Space & HDDT   2 / 2



Split criterion: Hellinger Distance (HD)

● Gini index and information gain are skew sensitive, unlike HD
● For continuous distributions P, Q of normalized feature frequency values, HD is defined as

● Discrete case:

● HD takes values in [0, √2]: “The aim is to split tree nodes on those features with 
minimal affinity i.e. maximal HD.”



Constructing the HDDT
● Labeled dataset (n training samples): Dn = { (Xi , Yi), i = 1, 2, ... , n }, Y ∈ {0, 1}
● Normalized p input features: X ∈Cp = [0, 1]p; e.g. X = (0.345, 0.582, 0.291, …)



Traversing the HDDT

● Input x passed to the tree root, then iteratively
towards the leaf node representing area S

● Tree estimate tn(x) (0/0 = 0 by convention):



From HDDT to Hellinger Net



From HDDT to Hellinger Net: Input & First Hidden Layer

● The input layer supplies the features (labeled xi or x(i)) to HL1, which corresponds to k−1 
perceptrons (since our HDDT is a full binary tree, it has k−1 internal nodes, and k leaves)

● The first hidden layer (HL1) consists of hyperplanes 
with                                         and we’re trying to find the side on which x falls

● The threshold activation function is applied 



First Hidden Layer output

● By applying the threshold activation function
each split and relative position of x in the HDDT is encoded in each neuron, so HL1 
outputs a vector of ±1 bits,                                                                               , +1 if x falls on the 
right side (h(x) ≥ 0), and −1 otherwise.



Second Hidden Layer: partition ANDing   1/2

● The second hidden layer (HL2) comprises k leaves, and each connection from k’ to k” has 
weight b = +1 if in order for x to get to k”, it follows the right branch of k’ in HDDT, or 
b = −1 if it follows the left branch.

−1

+1

−1

−1
+1

−1



Second Hidden Layer: partition AND-ing   2/2

● Get                                                   from HL1 (a vector of ±1 bits)

● u =

● Apply the threshold activation function τ(u) ⇒ “one-hot” vector with −1s instead of 0s 

−1

+1

−1

−1
+1

−1



Output Layer: “one-hot” vector OR-ing

with



Finishing touches

● The Hellinger net uses a sigmoid activation function instead of a threshold, relay-type one

● HL1 uses 𝜎(𝛽1u), while HL2 uses 𝜎(𝛽2u)
● The Hellinger net is trained using stochastic

gradient descent backpropagation algorithm
● The network requires fitting O(p×k + k2)

parameters, and if the HDDT is roughly 
balanced, then O(klog(k)).



Hellinger Net Algorithm

Build a HDDT with (kn − 1) split nodes and kn leaf nodes. HDDT is mapped
into a two hidden layered MLP model having (kn − 1) and kn hidden neurons in
first hidden layer (HL1) and second hidden layer (HL2), respectively.

The first hidden layer is called the partitioning layer which partitions the input
feature spaces into different regions. It corresponds to the internal nodes of the
DT. In HL1, the neurons compute all the tree split decisions and indicate the split
directions for the inputs.

Further, HL1 passes the information to HL2. The neurons in the second hidden
layer represent the terminal nodes of the DT.

The final layer is the output class label of the tree. Train the tree structured
neural network using gradient descent backpropagation algorithm.

Hellinger Net uses sigmoidal activation function instead of the relay-type
activation function τ(u) with a hyperbolic tangent activation function
σ(u) = tanh(u) which has a chosen range from −1 to 1.

More precisely, the model uses σ1(u) = σ(β1u) at every neuron of the first hidden
layer for better generalization, where β1 is a positive hyper-parameter that
determines the contrast of the hyperbolic tangent activation function.



Merits

Merits:

1. The additional training using backpropagation potentially
improves the predictions of the HDDT and can deny tree pruning
steps vis-a-vis the risk of overfitting.;

2. Hellinger Nets give weight to nodes according to their significance
as determined by the gradient backpropagation algorithm.;

3. In Hellinger Nets, the neural network follows the built-in hierarchy
of the originating tree since connections do not exist between all
pairs of neurons in any two adjacent layers.;

4. Since the number of neurons in the hidden layers are fixed, thus
the training time is less.

Theoretical developments:

1. Theoretical Consistency?

2. Rate of Convergence?



On Theoretical Consistency

Theorem (Chakraborty et al., 2020, IEEE Transactions on Reliability)

Assume X is uniformly distributed in [0, 1]p and Y = {0, 1}. As n→∞ and for any
kn, β1, β2 →∞ if the following conditions are satisfied:

(A1)
k4
n log(β2k4

n )

n
→ 0,

(A2) there exists δ > 0 such that
k2
n

n1−δ → 0,

(A3)
k2
n

e2β2
→ 0, and

(A4)
k3
nβ2

β1
→ 0,

then Hellinger Nets classifier is consistent.

The above Theorem states that with certain restrictions imposed on the number kn of
terminal nodes and the parameters β1, β2 being properly regulated as functions of n,
the empirical L1 risk-minimization provides local consistency of the Hellinger Nets
classifier.



Rate of Convergence

Theorem (Chakraborty et al., 2020, IEEE Transactions on Reliability)

Assume that X is uniformly distributed in [0, 1]p and Y = {0, 1} and a function
m : Cp → {0, 1} is a Lipschitz (δ;C)-smooth for any δ ∈ [0, 1]. Let mn be the
estimate that minimizes empirical L1-risk and the network activation function σi
satisfies Lipschitz property. Then for any n ≥ max{β2, 2p+1L}, we have

E

∫
[0,1]p

∣∣mn(X )−m(X )
∣∣µ(dx) = O

(
log(n)6

n

) 2
2+p

The proof of the Theorem is using Complexity Regularization Principles.

The rate of convergence doesn’t depend on the data dimension and hence the
model will be able to circumvent the so-called problem of “curse of
dimensionality”.

In practice, the larger the value of kn, β1, and β2, the better the model
performance is.



Applications: Data Sets

Data Sets: The proposed model is evaluated using five publicly available UCI data
sets.

Table: Characteristics of the UCI data sets used in experimental evaluation

Data set Classes Objects Number of Number of Number of CV
(n) feature (p) (+)ve instances (−)ve instances

breast cancer 2 286 9 201 85 0.41
german credit card 2 1000 20 700 300 0.40

indian business school 2 480 17 400 80 0.56
page blocks 2 5473 10 4913 560 0.80

pima diabetes 2 768 8 500 268 0.30



Performance Evaluation

The performance evaluation measure used in our experimental analysis is based on the
confusion matrix in Table. Area under the receiver operating characteristic curve
(AUC) is a popular metric for evaluating performances of imbalanced data sets and

higher the value of AUC, the better the classifier is. AUC =
Sensitivity+Specificity

2
;

where, Sensitivity = TP
TP+FN

; Specificity = TN
FP+TN

.

Table: AUC results (and their standard deviation) of classification algorithms over original
imbalanced test data sets

Classifiers breast German credit Indian business page pima
cancer card school blocks diabetes

CT 0.603 (0.04) 0.665 (0.03) 0.810 (0.04) 0.950 (0.00) 0.724 (0.02)
RF 0.690 (0.06) 0.725 (0.03) 0.850 (0.04) 0.964 (0.00) 0.747 (0.04)

k-NN 0.651 (0.03) 0.727 (0.01) 0.750 (0.03) 0.902 (0.02) 0.730 (0.05)
RBFN 0.652 (0.06) 0.723 (0.04) 0.884 (0.05) 0.935 (0.01) 0.725 (0.04)
HDDT 0.625 (0.04) 0.738 (0.04) 0.933 (0.02) 0.974 (0.00) 0.760 (0.02)
HDRF 0.636 (0.04) 0.742 (0.03) 0.939 (0.02) 0.988 (0.00) 0.760 (0.03)

ANN (with 1HL) 0.585 (0.03) 0.700 (0.03) 0.768 (0.05) 0.918 (0.02) 0.649 (0.03)
ANN (with 2HL) 0.621 (0.02) 0.715 (0.02) 0.820 (0.04) 0.925 (0.01) 0.710 (0.03)

Hellinger net 0.730 (0.05) 0.802 (0.03) 0.968 (0.01) 0.980 (0.02) 0.809 (0.03)



Simulation Study

Simulated Data Sets: Three toy data sets (binary) are generated with weights = [0.2,
0.8], [0.1, 0.9] and [0.05, 0.95], i.e., data sets with imbalance rates of 20%, 10% and
5%, respectively. We added Gaussian noise to the data with the standard deviation
equals to 0.5. This test problem is suitable for algorithms that can learn data
imbalance problems in complex nonlinear manifolds.

Table: AUC results of different imbalanced classifiers on three synthetic data sets.

Imbalanced Simulated Data Simulated Data Simulated Data
Classifiers with IR = 20% with IR = 10% with IR = 5%

HDDT 0.80 0.85 0.91
HDRF 0.82 0.88 0.91

VCB-SVM 0.87 0.89 0.93
ISDA 0.84 0.91 0.90

Hellinger net 0.86 0.92 0.95



Simulation Study

A comparison of several imbalanced classifiers on synthetic data sets. The plots show
training points in solid colors and testing points semi-transparent. The lower right in

each plots shows the classification accuracy on the test set.



Conclusions

Learning from an imbalanced data set presents a tricky problem in which
traditional learning models perform poorly.

Simply allocating half of the training examples to the minority class does not
provide the optimal solution in most of the real-life problems.

If one would like to work with the original data without taking recourse to
sampling, our proposed hybrid methodology will be quite handy.

We proposed ‘Hellinger Nets’, a hybrid learner, that first construct a tree and
then simulate it using neural networks.

We have proved the consistency of Hellinger Net model.



Future Work

The scope of future research of this work will be to improve the proposed
Hellinger net model for imbalanced classification problem with concept shift in
the data sets.

Another scope of future research of the thesis will be to build Hybrid Models for
Adversarial Machine Learning Problems.

Use of Wasserstein Distance is of much use in the Machine Learning community
for the last few decades. Some modification to the Wasserstein distance can be
done and incorporated in the DT, RF, and Hellinger net model. This may
improve the existing HDDT, HDRF and Hellinger Net models for imbalanced
pattern classification.




