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“Ludwig Boltzmann, who spent much of his life studying statistical mechanics, 

died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died 

similarly in 1933. Now it is our turn to study statistical mechanics.”

❖ Appendix



❖ Forecasting has fascinated people for thousands of years, 

sometimes being considered a sign of divine inspiration, and 

sometimes being seen as a criminal activity. 

Past of Forecasting

Forecasting by maggots: Clay model of sheep's 

liver, stored in British Museum.

❖ The Jewish prophet Isaiah wrote in about 700 BC "Tell us 

what the future holds, so we may know that you are gods." 

(Isaiah 41:23). 

❖ One hundred years later, in ancient Babylon, forecasters 

would foretell the future based on the distribution of maggots 

in a rotten sheep's liver.



Past of Forecasting

Forecasting by hallucination.

❖ Beginning in 800 BC, a priestess known as the Pythia 

would answer questions about the future at the Temple 

of Apollo on Greece's Mount Parnassus.

❖ It is said that she, the Oracle of Delphi, dispensed her 

wisdom in a trance - caused, some believe, by the 

hallucinogenic gases that would seep up through natural 

vents in the rock.



Forecasters are to blame!

❖ News report on 16 August 2006: A Russian woman is 

suing weather forecasters for wrecking her holiday. A 

court in Uljanovsk heard that Alyona Gabitova had been 

promised 28 degrees and sunshine when she planned a 

camping trip to a local nature reserve, newspaper 

Nowyje Iswestija said. 

❖ But it did nothing but pour with rain the whole time, 

leaving her with a cold. Gabitova has asked the court to 

order the weather service to pay the cost of her travel.

❖ Forecasters had a tougher time under the emperor Constantius, who 

issued a decree in AD357 forbidding anyone “to consult a soothsayer, a 

mathematician, or a forecaster -- May curiosity to foretell the future be 

silenced forever.”



Reputations can be made and lost

“I think there is a world market for maybe five computers.        (Chairman of IBM, 1943)

“There is no reason anyone would want a computer in their home.”           (President, DEC, 1977)

 

“We’re going to be opening relatively soon . . . The virus . . . will go away in April.”

                (Donald Trump, February 2020)

“There’s no chance that the iPhone is going to get any significant market share. No chance.”  

                                                                  (Steve Ballmer, CEO Microsoft, April 2007)

Some Misconceptions (Low Expectations): Our forecasts will always be inaccurate, so we should 

concentrate our efforts elsewhere. 

"Prediction is very difficult, especially if it's about the future!" - Niels Bohr



Reputations can be made and lost

Some Misconceptions (High Expectations): If only we had the latest forecasting 

technology, then all our problems could be solved.

• Poor data input

• Wrong modeling assumptions

• Lack of incorporation of epidemiological features

• Poor past evidence on effects of available 

interventions

• Lack of transparency

• Consideration of only one or a few dimensions of 

the problem at hand

• Lack of expertise in crucial disciplines

• Groupthink and bandwagon effects
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“I keep six honest serving-men 

(They taught me all I knew); 

Their names are What and Why and When 

And How and Where and Who.”

❖ Appendix



What is time series?

Time series is a set of observations, each one being 

recorded at a specific time.

Discrete time series is one in which the set of time 

points at which observations are made is a discrete 

set (e.g., weekly dengue incidence cases)

Continuous time series are obtained when 

observations are made continuously over some time 

intervals (e.g., ECG graph)

Stationary time series is roughly horizontal, constant 

variance and no patterns predictable in the long-term. 



What is a forecast?

Forecasting is estimating how the sequence of observations will continue into the future.

‘He who sees the past as surprise-free is 

bound to have a future full of surprise.’      

               - Amos Tversky



What can we forecast?



Consideration:

• How far-ahead? (the forecast ‘horizon’)

• What level of aggregation? (Types/ Which disease?) 

• Number and frequency of forecasts required.

• Availability of historical data.

• Relative accuracy of options.

Forecasting approaches

Types of forecasting approaches

Judgemental Scientific

ML

Methods
(LSTM, ARNN)

Statistical 

Methods
(ES, ARIMA, GP)

Expert 

opinion
(Delphi method)

Role 

playing



Forecastability factors for scientific methods

Something is easier to forecast if:

❖ we have a good understanding of the factors that contribute to it, and 

can measure them.

❖ there is lots of data available;

❖ the future is somewhat similar to the past

❖ the forecasts cannot affect the thing we are trying to forecast.

❖ Structural break over data history (pandemic)

❖ Clear trend

❖ clear seasonal patterns

❖ good length of data history

❖ short forecasting horizon.



‘Data gaps undermine our ability to target resources, develop 

policies and track accountability. Without good data, we’re flying 

blind. If you can't see it, you can't solve it.’ - Kofi Annan (Nature, 2018)

Process of forecasting
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“When there's an elephant in the room

introduce him.”
❖ Appendix



Epidemics: A serious problem

o Singular Events: 

• Atom Bomb on Hiroshima: ~ 100,000 deaths. 

• 1918 ‘Spanish Flu’ pandemic: 50,000,000 deaths. 

o Ongoing Events: 

• Syrian civil war, 2011-present 100,000 deaths/year 

• Seasonal (non-pandemic) Flu: 250,000 deaths/year 

• Dengue: 50,000,000 - 500,000,000 cases/year 

• Dengue: 25,000 death/year, growing

o Epidemic: a (usually rapid) rise in a prevalence of a disease or condition. 

o Pandemic: ‘an epidemic that spreads globally’ 

o In practice: an epidemic that is driven by a new pathogen 

• Very little is known about it 

• Population has no pre-existing immunity against it 

Epidemic Pandemic



Epidemics are regular

o Flu: 

• In tropics: year round, erratic 

• In subtropics: semi-regular, 1-2 epidemics a year 

• In temperate zones: every winter, but otherwise 

irregular in both timing and intensity. 

• Fast moving, but not simultaneous 

o Dengue: 

• Tends to follow the wet season (mosquitos) 

• In South America: Usually January-April 

• In S.E. Asia: two seasons/year, large & small 

• Intensity is highly variable (10x or more) 

• Highly local outbreaks, but global diffusion

Source: Ministry of Health, U.S. CDC



Benefits of epicasting

o To Governments: 

• Timing and focus of communications (e.g., vaccination campaigns) 

• Antiviral policy 

• Mosquito control, door-to-door campaigns 

o To Health Care Providers: 

• Staffing, vacations 

• Elective surgery 

• Equipment pre-positioning 

o To Individuals: 

• Protect our families (old and comorbidity) 

Vision: 

1. Building an epidemic forecasting model to handle the data irregularities

2. State-of-the-art performance

3. Understanding the theoretical and computational aspect

4. Building software for public use (similar to weather forecasts)

5. Making an impact in healthcare



EPICASTING 

METHODS

Mechanistic Models Phenomenological Models

Less data
Describes 

epidemic states

Surveillance 

DGP Data centric
Describes 

surveillance data
Stochastic

Compartmental 

Models 
(SIR, SEIR)

Agent-based 

Models 
(Stochastic ABM )

Classical Time 

Series Models 
(ARIMA, ETS, SETAR)

Regression & 

ML Models 
(DT, LR, RF, DL)

Epidemic 

Informed ML
Stochastic & 

Deterministic 

Covid-19  

Australia 

Hybrid

Forecaster

Epicasting approaches

Ensemble 

Forecaster



Common approaches to modeling epidemics

o Mechanistic: Compartmental models, e.g., S-I-R (understanding epidemics)

• Oversimplified assumptions (e.g., perfect mixing – every person is interacting equally often with every other persons) 

• Hard to estimate parameters in real-time 

o Mechanistic: Agent-Based Models (individual-level simulation) 

• Many parameters, hard to fit/validate 

o Non-Mechanistic: Statistical/machine learning e.g., SARIMA, ARNN 

• Extrapolate trend, seasonal, and auto-correlation effect into the near future (relies on explanatory variables)

• Assumptions don't always hold (flu is annual but not periodic!) 

• Needs historical data, less suitable for novel (e.g., pandemic) situations 

o Non-Mechanistic: Deep learning e.g., LSTM

• Often computationally expensive, low-test accuracy

• Less interpretable (e.g., estimating the effect of explanatory variable)

o More recently: Data assimilation methods from weather forecasting (e.g., Kalman Filters, Particle Filtering)

 Time frequency domain tools from signal and image processing (e.g., Wavelet and Fourier decomposition) 

o Finally – assess forecast accuracy on test set and assess the impact the accuracy is having.



Epicasting using EWNet



Types of epicasting, targets & metrics

o Across seasons

o Within season

o NearCasting

o NowCasting

o BackCasting

o Targets:

What? (flu or dengue)

How Bad? (season's peak intensity)

How Long? (epidemic duration)

Nearcasting: expected cases in next few months

o Metrics:

Point predictions ("what is the most likely outcome?"):

Error Metrics (RMSE, MAE, MASE)

Distributional predictions ("how likely is each outcome?")

Fig: Uncertainty in past and present results in highly 

uncertain future



Common features of epidemic data

✓  Non-stationarity - The statistics of the epidemic time series 
changes over time. 

KPSS test – p-value = 0.02324 

 Reject null hypothesis of 

stationarity of time series.

In general, epidemic datasets are complex and noisy in nature. 

They represents the following behavioral characteristics

✓  Non-linear - The process generating the epidemic incidence over  
time do not follow a linear pattern.

✓  Seasonal - Another essential characteristic of an epidemic time 
series is its tendency of repeating its patterns at subsequent time 
intervals.

✓  Long-term dependent - The analysis of the epidemic time series 
suggests that they possess long memory and the rate of decay of 
statistical dependence of two points in the series is slower than an 
exponential decay. 

Teraesvirta Neural Network Test for 

Nonlinearity – p-value = 0.02324 

 Reject null hypothesis of linearity 

of time series.

Hurst exponent = 0.7025962

 Long-term dependency of time 

series.

Ollech and Webel's combined 

seasonality test – Monthly 

seasonality of time series.

(Bangkok)



Mathematical transformations

Log transform Fourier transform Wavelet transform

• Reduces the variability of 

skewed datasets.

• Highly impacted by outliers.

• Errors are symmetric on the 

original scale but asymmetric 

on the log scale.

• Ideal for periodic signals.

• Represents a signal only in 

frequency domain

• For non-periodic signals with 

time-varying features, it gives 

averaged data, hence 

unsatisfactory.

• Generalization of Fourier 

transform.

• It allows the independent 

choice of time and frequency 

resolution at different times 

and frequencies.



Proposed EWNet Model

o We propose an Ensemble Wavelet Neural Network (EWNet) that possesses the capabilities to handle the 

complex characteristics of epidemic datasets through its stable learning structure.

o EWNet combines wavelet decomposition (as a filtering stage) and autoregressive neural networks with 

exogenous variables to provide accurate forecasts of non-stationary and nonlinear time series.

o In the data pre-processing stage, Wavelet decomposition is used to generate a hierarchy of new time series 

from the original epidemic time series and makes them easier to model and forecast.

o MODWT decomposes the series into ‘details’ (contain dynamics of the epidemic systems at different 

scales) and ‘smooth’ (trend). This handles the seasonality and non-stationarity of the series.

o Multi-resolution analysis (MRA) of the MODWT approach transforms non-stationary time series 𝑦𝑡 into 𝐽 

details 𝐷𝑗,𝑡 𝑗 = 1, 2,∙∙∙, 𝐽  and a smooth 𝑆𝐽,𝑡 coefficients. Mathematically, it can be represented as follows:

𝑦𝑡 = ෍

𝑗=1

𝐽

𝐷𝑗,𝑡 + 𝑆𝐽,𝑡 , 

where 𝐷𝑗,𝑡 denotes the irregular fluctuations or high-frequency components at scale 𝑗 = 1, 2,∙∙∙, 𝐽 , and 

𝑆𝐽,𝑡 denotes the overall trend or low-frequency components of the original series 𝑦𝑡.



Proposed EWNet Model

MRA-based MODWT decomposition of the Colombia dengue dataset with the original epidemic time series and its 6 levels. In Figure, (a) denotes the 

original time series in actual frequency scale; (b)-(f) denote the detail coefficients reproduced by the MODWT algorithm with haar filter, and (g) represents 

the scaling coefficients of the series generated by MODWT algorithm with haar filter. The figure depicts time-localized information on frequency patterns 

that are identified by wavelets.

MODWT decomposes the series into ‘details’ (contain dynamics of the epidemic systems at different scales) and ‘smooth’ 

(trend).



Proposed EWNet Model

o EWNet 𝑝, 𝑘  model is a non-stationary and non-linear 

model which can be written as follows:

𝑦𝑡 = ෍

𝑗=1

𝐽

𝑓𝑗 𝐷𝑗,𝑡 + 𝑓0 𝑆𝐽,𝑡 ,

where 𝐽 + 1 ( log𝑒(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎) ) is the 

number of wavelet levels, 𝑓𝑖 𝑖 = 0, 1, 2,∙∙∙, 𝐽  is the one-

hidden layered feedforward ARNN with 𝑝 input nodes and 𝑘 

hidden nodes.

o Choice of 𝑝 and 𝑘?

o Estimator complexity control!

o Subsequently the ‘details’ and ‘smooth’ series 

are modeled using an autoregressive neural 

network (ARNN) with a pre-defined 

architecture in an ensemble setup. 

𝑦𝑡−1

𝑦𝑡−3

𝑦𝑡−4

𝑦𝑡

A neural network with four inputs and one hidden layer with three hidden neurons.

𝑦𝑡−2



Proposed EWNet Model Architecture

Figure: The proposed EWNet workflow:

 

a) To predict dengue incidence cases, we 

provide a weekly time series of dengue 

cases ( 𝑌𝑡 ) and rainfall ( 𝑋𝑡 ) in the 

training period; 

b) We perform a MODWT based MRA 

transformation on Y and generate 

multiple series of details and smooth 

coefficients; 

c) We begin to train local auto-regressive 

neural networks to individually model 

the transformed series along with 

rainfall dataset in the input stack; 

d) Each of the neural networks is trained 

with a single hidden layer having a 

pre-specified number of nodes inside 

the hidden stack;  

e) The output stack comprises of one-step 

ahead forecast generated by individual 

neural networks. These predictions are 

combined to generate the final out-of-

sample forecast.



From statistical point of view, we study the associated Markov Chain for the EWNet process.

• Stable learning

• Irreducibility

• Geometric ergodicity

• Asymptotic stationarity 

• Empirical Risk Minimization

• Conformal Prediction

Proposed EWNet Framework

• ℎ-step ahead forecasts of 𝑌𝑡 based on 𝑁 historical observations (𝑌1, 𝑌2, … , 𝑌𝑁) can be generated by
generating the simultaneous forecast for the details and smooth coefficients in an ensemble setup
thus we have

෠𝑌𝑁+ℎ =  ෍

𝑗=1

𝐽

෡𝐷𝑗,𝑁+ℎ + መ𝑆𝐽,𝑁+ℎ

where, ෡𝐷𝑗,𝑁+ℎ and መ𝑆𝐽,𝑁+ℎ are the h-step forecasts for the details and smooth coefficients.

These theoretical results guarantee that EWNet model cannot show 

‘explosive’ behavior or growing variance over time. Helps in model 

specification, estimation during simulation study. (See details in paper)



Stable learning in EWNet

From the boundary of stable learning in hidden and output neurons, we introduce a balancing equation as:

𝛼𝜂
𝑝

𝑘
= 𝜂𝑘,

where η is the learning rate and 𝛼 is a consistency constant with 1 ≤ 𝛼 ≤ 𝑝. Thus, we initially choose 𝑘 =

𝛼𝑝 ⇒ 𝑘 ∈ 𝑝, 𝑝  and using the AM-GM inequality we finally select 𝑘 =
𝑝+1

2
. 

Choice of 𝑘 

• The number of hidden nodes in the EWNet model is set to a fixed value depending on the number of 

lagged. 

• Due to this, the running time of the EWNet model is minimal as compared to unstable neural networks in 

which the number of hidden nodes either becomes too large or too small. 

• Thus, our proposed model does not face the problem of under-fitting or over-fitting.

Practical Significance



Empirical Risk Minimization in EWNet

Let the autoregressive neural network (of order 𝑘) is applied to the original data 𝑦𝑡 by minimizing the risk 

ℜ𝐸𝑚𝑝 and EWNet fits the ensemble model on the transformed data by minimizing the empirical risk ℜ𝐸𝑚𝑝
𝑊 , 

then we have  

min ℜ𝐸𝑚𝑝
𝑊 ≤ min ℜ𝐸𝑚𝑝

Proposition

• In statistical learning theory, ERM defines a family of learning models and provides theoretical bound on 

their performances. 

• This is useful since in practice we can't generalize how well a model will work (called true risk) due to not 

knowing the true data distribution. However, we can instead measure its performance on a known set of 

training data (called empirical risk).

• The above result show the robustness of the wavelet decomposed approach in EWNet from ERM 

perspective.

Practical Significance



Model Evaluation

• Forecast horizons

To validate the efficiency of the proposed EWNet framework we check the forecast accuracy of the model for three 

different horizons namely, long-term forecast (52 weeks), medium-term forecast (26-weeks), and short-term forecast 

(13-weeks) for weekly datasets.

• Performance Metrics

This study adopts four popularly used key performance indicators, namely Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Symmetric Mean Absolute Percent Error (SMAPE), and Mean Absolute Scaled Error 

(MASE), to evaluate the deviation between the forecasts and the ground truth. By general convention, the model 

having the least values of these metrics is the best performing model.

• Benchmark comparison 

Statistical models: Random Walk, ARIMA, ETS, Theta, WARIMA, SETAR, TBATS, BSTS.

Machine learning models: MLP, ARNN, SVR, LSTM, NBeats, TCN, DeepAR, Transformer.

Other hybrid and ensemble approaches.



Causality Test

In our study, we have identified the causal relationship between dengue incidence cases and rainfall using different statistical 
significance tests:

▪ Granger Causality test

▪ Wavelet Coherence plot 

The results are summarized as follows:T

Causality found (0.032*) Causality found (0.030*) Causality found (0.049*)

Wavelet Coherence plot 

Granger Causality test 

(Cases vs Rainfall)

Statistical test San Juan Iquitos Ahmedabad



MCB test results

Figure: Schematic visualization of the multiple comparisons with the best (MCB) test. The plot provides the result for the MASE metric.

For example, in the figure, EWNet - 3.69 specifies the rank of the EWNet model. The blue lines indicate the critical distance of the model,

the middle point of this interval, which is denoted by black (significant) or red (not significant), represents the mean rank, and the shaded

region marks the reference value.

Deep Learning Models



Overall Performance Analysis

The overall experimental evaluation of the proposed model and the benchmark forecasters reveal some interesting 

observations. 

• The traditional linear models like ETS and ARIMA fails to handle the irregularities of real-world dengue datasets. 

Although the exogenous variant of these models (ETSX and ARIMAX) marginally improves the forecast 

accuracy, the tendency of these methods to approximate the complex relationship between rainfall and dengue 

incidence cases by a linear function with a constant rate  of change results in their failure.

• In case of the data-driven machine learning and deep learning frameworks the nonlinear relationship is modeled 

more precisely, however, their overall performance is unsatisfactory for long-term forecasts. Data set size creates a 

barrier to the performance of the deep learners

• The proposed EWNet approach can optimally model the complex non-linear relationship between the observed 

and covariate series, thus resulting in improved forecasts. Unlike the deep learning approaches, the stable 

architecture of our proposal limits the number of training parameters, hence restricting the model over-fitting. 

• Moreover, the use of MODWT-based MRA transformation generates the wavelet and scale coefficients that can 

overlook the signal through noise resulting in accurate long-term forecasts.
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Remarks

• Suitable for non-stationary, seasonal, and non-linear forecasting problems with limited historical data.

  

• Theoretical properties (learning stability, geometric ergodicity, and asymptotic stationarity) ensure the 

stability of model output.

• Simple and easily interpretable model, fast in implementation due to pre-defined architecture 

(multivariate set-up is yet to be explored).  

• Experimental results suggest a significant improvement in long-range forecast accuracy owing to the 

wavelet decomposition.  

• Epidemic dataset repository: https://github.com/mad-stat/Epicasting/tree/main/Datasets

• R package for implementation: https://cran.r-project.org/web/packages/epicasting/index.html

• Medium article on EWNet implementation: https://medium.com/@madhurima.panja/epicasting-

package-in-r-epidemic-forecasting-made-easy-dcdaffd694b

https://github.com/mad-stat/Epicasting/tree/main/Datasets
https://cran.r-project.org/web/packages/epicasting/index.html
https://medium.com/@madhurima.panja/epicasting-package-in-r-epidemic-forecasting-made-easy-dcdaffd694b
https://medium.com/@madhurima.panja/epicasting-package-in-r-epidemic-forecasting-made-easy-dcdaffd694b
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Irreducibility of EWNet

The controllability of the linear components of the ARNN process as discussed in the Prop. 1 implies 

forward accessibility. But, the associated Markov chain is said to be irreducible when the support of 

the distribution of the noise process is sufficiently large.

Proposition 1

The sufficient conditions of forward accessibility for the control system 𝑦𝑡 defined by

𝑦𝑡 = 𝜐 + 𝜓1𝑦𝑡−1 + ෍

𝑖=1

𝑘

𝛽𝑖𝐺 𝜙𝑖,1𝑦𝑡−1 + 𝜇𝑖 + 𝜀𝑡,  (1)

where 𝜐, 𝛽𝑖 , 𝜙𝑖,1, 𝜇𝑖; 𝑖 = 1, 2, ⋯ , 𝑘  are the weights and 𝐺 is the activation function are stated as follows:

o 𝐺 ∈ 𝐶∞ is a bounded, non-constant, and asymptotically constant function 𝐶∞  (any function is 𝐶∞ if 
derivatives of all orders are continuous).    

o The linear part of R.H.S. of Eqn. (1) is controllable, i.e., 𝜓1 ≠ 0. 



Irreducibility of EWNet

Theorem 1 shows the irreducibility property for the ARNN (1, 𝑘) process and demonstrates its 

proximity to the concept of forward accessibility of a control system. However, we also showed that 

ARNN processes might not exhibit forward accessibility, and in such scenarios, inferring about the 

data-generating process from the observed data is impossible.

Theorem 1 (Theorem of Irreducibility) 

Suppose the distribution of 𝜀𝑡 is absolutely continuous w.r.t. the Lebesgue measure 𝜆 and the probability 

distribution function (p.d.f.) 𝜈 ∙  of 𝜀𝑡 is positive everywhere in ℛ and lower semi-continuous. Then under 

the condition prescribed in Prop. 1, the Markov chain in 𝑦𝑡 =  𝜓1𝑦𝑡−1 + 𝐹 𝑦𝑡−1 + 𝜀𝑡 is irreducible on 

the state space ℛ2, ℬ . 

Remark

Our proposed EWNet model can be thought of as a sum of 𝐽 + 1 different ARNN (𝑝, 𝑘) processes, where 

𝐽 + 1 denotes the number of details and smooth coefficients obtained using the MODWT algorithm.



Ergodicity & Stationarity of EWNet

Theorem 2 (Main Theorem) 

Suppose the Markov chain 𝑦𝑡 of the ARNN 1, 𝑘  process satisfies the conditions of Theorem 1 and 

𝐸 𝜀𝑡 < ∞. Then, a sufficient condition for the geometric ergodicity (vis-a-vis asymptotic stationarity) of 

the Markov chain {𝑦𝑡} is that 𝜓1 <  1.

Theorem 2 states the sufficient condition for the geometric ergodicity of the ARNN 1, 𝑘  process. Consider the 

following example: if 𝜓1 = 1, then the long-term behavior of the ARNN 1, 𝑘  process can be determined by the 

nonlinear part and the intercept term of the process. Moreover, the geometric convergence rate in Theorem 2 

implies that the memory of the ARNN process vanishes exponentially fast. This means that the simplest version of 

the ARNN 𝑝, 𝑘  process converges to a Wiener process. Also, theoretical results suggest that the shortcut weight 

corresponding to the autoregressive part determines whether the overall process is ergodic and asymptotically 

stationary.



Implications of the theoretical properties of EWNet

• In the ideal situation, when an irreducible ARNN process generates the data, the estimated weights are not 

too far from the true weights. Then, one can draw an indirect conclusion on the statistical nature of the 

estimated shortcut weight corresponding to the autoregressive part being less than one in absolute terms, 

and then the data generation process is said to be ergodic and stationary. But, if the conditions are not met, 

the model is likely to be unspecified, and the estimation procedure should be diligently done. 

• The theoretical results of asymptotic stationarity and ergodicity for the EWNet 𝑝, 𝑘  model would directly 

follow from the ARNN 𝑝, 𝑘  process since the proposed EWNet is a simple aggregation of several ARNN 

models fitted after the Wavelet decomposition of the time series data. These theoretical results guarantee 

that the proposed EWNet model cannot show ‘explosive’ behavior or growing variance over time. 
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