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QOutline S

¢ Past of Forecasting

STAOIES
MATTER

“Ludwig Boltzmann, who spent much of his life studying statistical mechanics,
died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died
similarly in 1933. Now it is our turn to study statistical mechanics.”

o0



Past of Forecasting S

** Forecasting has fascinated people for thousands of years,
sometimes being considered a sign of divine inspiration, and
sometimes being seen as a criminal activity.

The Jewish prophet Isaiah wrote in about 700 BC "Tell us
what the future holds, so we may know that you are gods."
(Isaiah 41:23).

Forecasting by maggots: Clay model of sheep's % One hundred years later, in ancient Babylon, forecasters
liver, stored in British Museum. would foretell the future based on the distribution of maggots
In a rotten sheep's liver.
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Past of Forecasting S

¢ Beginning in 800 BC, a priestess known as the Pythia
would answer questions about the future at the Temple
of Apollo on Greece's Mount Parnassus.

It is said that she, the Oracle of Delphi, dispensed her
wisdom in a trance - caused, some believe, by the
hallucinogenic gases that would seep up through natural

vents in the rock.

== —

Forecasting by hallucination.



Forecasters are to blame! b

¢ Forecasters had a tougher time under the emperor Constantius, who
Issued a decree in AD357 forbidding anyone “to consult a soothsayer, a
mathematician, or a forecaster -- May curiosity to foretell the future be

silenced forever.”

<+ News report on 16 August 2006: A Russian woman is
suing weather forecasters for wrecking her holiday. A
court in Uljanovsk heard that Alyona Gabitova had been
promised 28 degrees and sunshine when she planned a
camping trip to a local nature reserve, newspaper
Nowyje Iswestija said.

s But it did nothing but pour with rain the whole time,
leaving her with a cold. Gabitova has asked the court to
order the weather service to pay the cost of her travel.




Reputations can be made and lost S

Some Misconceptions (Low Expectations): Our forecasts will always be inaccurate, so we should
concentrate our efforts elsewhere.

“I think there is a world market for maybe five computers. (Chairman of IBM, 1943)

“There 1S no reason anyone would want a computer in their home.” (President, DEC, 1977)

“There’s no chance that the iPhone is going to get any significant market share. No chance.”
(Steve Ballmer, CEO Microsoft, April 2007)

“We’re going to be opening relatively soon ... The virus ... will go away in April.”
(Donald Trump, February 2020)

"Prediction is very difficult, especially if it's about the future!" - Niels Bohr
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Reputations can be made and lost S

Some Misconceptions (High Expectations):

Don'tbe fooled: Covid won'tbe curedbya 7 s - -
panacea International Journal of Forecasting 4
Philip Ball Volume 38, Issue 2, April-June 2022, Pages 423-438 el S

Gl}‘zilr%lian

Forecasting for COVID-19 has failed

‘Cure-alls’ such as vitamin D and ivermectin seem appealing.

But the truth is, specific diseases demand specific medicines John P.A. loannidis * 9 &, Sally CFiDpﬁb, Martin A. Tanner °
Poor data input « Lack of transparency
Wrong modeling assumptions « Consideration of only one or a few dimensions of
Lack of incorporation of epidemiological features the problem at hand
Poor past evidence on effects of available * Lack of expertise in crucial disciplines

interventions « Groupthink and bandwagon effects
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Basics of Forecasting

“I keep six honest serving-men

(They taught me all I knew);

Their names are What and Why and When
And How and Where and Who.”

JUST

SO
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What Is time series?

Time series is a set of observations, each one being
recorded at a specific time.

Stationary time series is roughly horizontal, constant
variance and no patterns predictable in the long-term.

Discrete time series is one in which the set of time
points at which observations are made is a discrete
set (e.g., weekly dengue incidence cases)
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What Is a forecast?

v/

Forecasting is estimating how the sequence of observations will continue into the future.

Total short—term visitors to Australia

1000 - .
‘ / ggrlgzast
| | 50% PI
90% PI
500 -

‘He who sees the past as surprise-free is
0- L— bound to have a future full of surprise.’

] ] ] ]
Jan 2014 Jan 2016 Jan 2018 Jan 2020 - Amos Tversky
Month

Thousands of visitors




What can we forecast?

B Upwards of 50%
M 20-50%
10-19.9%
5-9.9%
Less than 5%

284.9%

Annual average. Projection as of October 2022
Source: IMF

The Global Inflation Outlook

Projected annual inflation by country in 2022

statista®a
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Forecasting approaches S

Types of forecasting approaches Consideration:
_/./-/'/‘ .\'\'\.\.\ » How far-ahead? (the forecast ‘horizon”)
Judgerﬁéntm Scigntific « What level of aggregation? (Types/ Which disease?)

——— o
" - . ot e— ;

- - <«
Role Expert Statistical ML

playing opinion Methods Methods
(Delphi method) (ES, ARIMA, GP) (LSTM, ARNN)

« Number and frequency of forecasts required.

Availability of historical data.

 Relative accuracy of options.

PLOS SCience BMC Infectious Diseases

& orenaccess B reensevenso Forecasting the Global AIDS Epidemic: cood computermoders ~ Chimeric forecasting: combining probabilistic

RESEARCHARTICLE . , . S . ' predictions from computational models and human
might help persuade officials of developing countries to institute anti-AIDS strategies, but
judgment

A human JUdgment approaCh to epldem|0|0g|ca| forecastlng modeling has proven easier said than done

David C. Farrow, Logan C. Brooks, Sangwon Hyun, Ryan J. Tibshirani, Donald S. Burke, Roni Rosenfeld [E] Thomas McAndrew &, Allison Codi, Juan Cambeiro, Tamay Besiroglu, David Braun, Eva Chen, Luis Enrique

THCULOTTA Authors Info & Affiliations Urtubey De Césaris & Damon Luk

Published: March 10, 2017 « https://doi.org/10.1371/journal. pcbi. 1005248
BMC Infectious Diseases 22, Article number: 833 (2022) ‘ Cite this article
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Forecastability factors for scientific methods S

Something is easier to forecast if:

airpass

500

300

100

we have a good understanding of the factors that contribute to it, and
can measure them.

there is lots of data available;

the future is somewhat similar to the past

the forecasts cannot affect the thing we are trying to forecast.
Structural break over data history (pandemic)

¢+ Clear trend

_ clear seasonal patterns

i % good length of data history
. short forecasting horizon.

I T I T I I
1950 1952 1954 1956 1958 1960

Time

Rob J Hyndman
George Athanasopoulos

FORECASTING

PRINCIPLES AND PRACTICE

FIFTH EDITION

' v ‘ H
~ Time Series
Analysis

Forecasting and Control

George E. P. Box . Gwilym
& - Gregory C. Reins“elégﬁ
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Process of forecasting
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nature communications
Technology to advance infectious disease forecasting o
for outbreak management @ communication
Dylan B. George &3, Wendy Taylor, Jeffrey Shaman, Caitlin Rivers, Brooke Paul, Tara O'Toole, Michael A. . Analytics
Johansson, Lynette Hirschman, Matthew Biggerstaff, Jason Asher & Nicholas G. Reich ' Data

Nature Communications 10, Article number: 3932 (2019) ‘ Cite this article

10k Accesses ‘ 24 Citations ‘ 37 Altmetric ‘ Metrics

Forecasting is beginning to be integrated into decision-making processes for infectious
disease outbreak response. We discuss how technologies could accelerate the adoption

of forecasting among public health practitioners, improve epidemic management, save

lives, and reduce the economic impact of outbreaks.

\

Store, Share

‘Data gaps undermine our ability to target resources, develop
policies and track accountability. Without good data, we re flying
blind. If you can't see it, you can't solve it.” - Kofi Annan (Nature, 2018)
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Epidemic Forecasting using EWNet

“When there's an elephant in the room
introduce him.”

v/



Epidemics: A serious problem S

o Epidemic: a (usually rapid) rise in a prevalence of a disease or condition.
o Pandemic: ‘an epidemic that spreads globally’

o In practice: an epidemic that is driven by a new pathogen
Very little is known about it
Population has no pre-existing immunity against it

o Singular Events:
Atom Bomb on Hiroshima: ~ 100,000 deaths.
1918 ‘Spanish Flu’ pandemic: 50,000,000 deaths.

o Ongoing Events: Epidemic Pandemic
Syrian civil war, 2011-present 100,000 deaths/year
Seasonal (non-pandemic) Flu: 250,000 deaths/year
Dengue: 50,000,000 - 500,000,000 cases/year
Dengue: 25,000 death/year, growing



Epidemics are regular

o Flu:
In tropics: year round, erratic
In subtropics: semi-regular, 1-2 epidemics a year
In temperate zones: every winter, but otherwise
irregular in both timing and intensity.
Fast moving, but not simultaneous

o Dengue:
Tends to follow the wet season (mosquitos)
In South America: Usually January-April
In S.E. Asia: two seasons/year, large & small
Intensity is highly variable (10x or more)
Highly local outbreaks, but global diffusion

$ 2

SYMPTOMS INFLUENZA A DENGUE FEVER
Influenza A virus Virus Dengue
-— *'
Epidemiology and W
transmission 3
Close contact The bite of

with infected persons  Aedes Aegypti mosquitoes

- 4-7 days
@ Fotation e 3 days (sometimes up to 14 days)
= From y High fever of
g:? Fever ;3’ / 2385 ég) / 38-40
L degrees 4 degrees
Celsius Celsius
@R Cough, runny nose >
@ Headache 3 ]
/
@ Muscle pain > 2
X Shortness of breath, Rare
1 chest tightness

@ Loss of taste and smell
s

@% Bruising and blood spots ) D
g + under the skin, nose bleed

Source: Ministry of Health, U.S. CDC
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Benefits of epicasting

o To Governments:
Timing and focus of communications (e.g., vaccination campaigns)
Antiviral policy
Mosquito control, door-to-door campaigns

o To Health Care Providers:
Staffing, vacations
Elective surgery
Equipment pre-positioning

o To Individuals:
Protect our families (old and comorbidity)

Vision:

1. Building an epidemic forecasting model to handle the data irregularities
2. State-of-the-art performance

3. Understanding the theoretical and computational aspect

4. Building software for public use (similar to weather forecasts)

5. Making an impact in healthcare

o

v/



Epicasting approaches

EPICASTING
METIl-IODS

l Data-Centric Epidemic Forecasting: A Survey l
MeChan |St|C MOdeIS Alexander Rodriguez®, Harshavardhan Kamarthi', Pulak Agarwal, PhenomenOI()g |Ca| MOdEIS
Javen Ho, Mira Patel, Suchet Sapre, and B. Aditya Prakash’

T = DeSCI'IbeS Surveil Iancé ' :, College of Computing, Georgia Institute of Technology, USA —( ————————— < De-S;:ribeS Teses
..Less data - Py N Sto hastlc B
il epldemlc states DGP e :‘Dﬂ_tf centric surveillance data ? -----

Compartmental Agent-based Classical Time Regression &
Models Models Series Models ML Models

(SIR, SEIR) (Stochastic ABM ) (ARIMA, ETS, SETAR) (DT, LR, RF, DL)

re::::_--~_--~ *—51.___------- ——____—:‘—_‘=r“~~~~

- - ]
~~~~ ~-___--- ~——— Joumnal of the Royal Statistical Society ]
THE LANCET \\\ - I‘Iature lTIEdlCll‘le ~--===.Series A: Statlstlcs in Society ! nature communications

: : . Forecasting influenza activity using machine-learned
Nowcasting and forecasting the potential domestic and internatiorfla ¥ (a8 | ¥ 14 agent- -based model of the SAaAn Ensemble Method for Early Pred1ct1 mobility map

spread of the 2019-nCoV outbreak originating in Wuhan, China: a epidemicinFrance Outbreak @
modelling study

Srinivasan Venkatramanan, Adam Sadilek B, Arindam Fadikar, Christopher L. Barrett, Matthew Biggerstaff,

X, SCummi Nk

PLOS COMPUTAT|ONAL BIOLOGYdeep Deb = s Jiangzhuo Chen, Xerxes Dotiwalla, Paul Eastham, Bryant Gipson, Dave Higdon, Onur Kucuktunc, Allison

The Thirty-Seventh AAAI Conference on Aruﬁual]

. . ‘e Lieber, Bry L M £ ing W: & Madhav Marath
Prof Joseph TWu, PhD 2 7 ™1+ Kathy Leung, PhD ~ » Prof Gab R A hybrid stochastic-deterministic approz == ety Series 4 Statistics in Society, - scientific reportg e & e ate
EINNs: Epidemiologically-Informed New Evaluation of individual and ensemble g7 m D-19 activity in Australia to support
Published: January 31,2020 » DOI: https://doi.org/10.1016/50140 explore multiple infection and evolution L w,ﬂ“m,m“u PP
Alexander Rodriguez', Jiaming Cui', Naren Ramakrishna HIV probabilistic forecasts of COVID-19 morta mmimums __se: May to October 2020

1 - e —
B. Aditya Prakash L o in the United States Forecasting dengue epidemics using a hybrid
Jesse Kreger '*“*, Natalia L. Komarova®~, Dominik Wodarz™ stee Y, Cramer an L Ray @, Velma K. Lope «as1, and Nicholas G. Reich @ B Authors inf
methodology

April 8,2022  119(15)e2113561119 | ht 0i,org 1 nas.2113561119

Tanujit Chakraborty 9 4, Swarup Chattopadhyay, Indrajit Ghosh




Common approaches to modeling epidemics S

o Mechanistic: Compartmental models, e.g., S-1-R (understanding epidemics)
Oversimplified assumptions (e.g., perfect mixing — every person is interacting equally often with every other persons)
Hard to estimate parameters in real-time

o Mechanistic: Agent-Based Models (individual-level simulation)
Many parameters, hard to fit/validate

o Non-Mechanistic: Statistical/machine learning e.g., SARIMA, ARNN
Extrapolate trend, seasonal, and auto-correlation effect into the near future (relies on explanatory variables)
Assumptions don't always hold (flu is annual but not periodic!)
Needs historical data, less suitable for novel (e.g., pandemic) situations

o Non-Mechanistic: Deep learning e.g., LSTM
Often computationally expensive, low-test accuracy
Less interpretable (e.g., estimating the effect of explanatory variable)

o More recently: Data assimilation methods from weather forecasting (e.g., Kalman Filters, Particle Filtering)
Time frequency domain tools from signal and image processing (e.g., Wavelet and Fourier decomposition)

o Finally — assess forecast accuracy on test set and assess the impact the accuracy is having.



Epicasting using EWNet S

e i -’_..‘-'...".‘.'i;‘.-:rr:

e e

Bl sl

S0 Neural Networks
) . Volume 165, August 2023, Pages 185-212
ELSEVIER

Epicasting: An Ensemble Wavelet Neural
Network for forecasting epidemics

O =, Uttam Kumar? Nan Liu d

Madhurima Panja ? !, Tanujit Chakraborty ® 2 €1

=
ot b DukeNUS
i1ll SOR BONNE Medical School

UNIVERSITE



Types of epicasting, targets & metrics

Across seasons
o Within season
NearCasting
o NowCasting

BackCasting

o Targets:
What? (flu or dengue)
How Bad? (season's peak intensity)
How Long? (epidemic duration)
Nearcasting: expected cases in next few months

Metrics:
Point predictions (“what is the most likely outcome?"):
Error Metrics (RMSE, MAE, MASE)
Distributional predictions ("how likely is each outcome?")

uncertainty

th)

v/

(Visual concept from Jeff Shaman)

time

Fig: Uncertainty in past and present results in highly
uncertain future

\J
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Common features of epidemic data S

In general, epidemic datasets are complex and noisy in nature.
They represents the following behavioral characteristics Monthly dengue incidence (Bangkok)

v" Non-stationarity - The statistics of the epidemic time series 000

8000
changes over time. ) Oggg
< 5000
n 4000
3000
2000
1000

v’ Long-term dependent - The analysis of the epidemic time series "sszsssssse gesc-ozoznmeogns
suggests that they possess long memory and the rate of decay of = &2 g g TSRS 383883885
statistical dependence of two points in the series is slower than an
exponential decay.

cases

Non-linear - The process generating the epidemic incidence over
time do not follow a linear pattern.

Dengue

04
06
07
08

03
03
05

Jan
Sep
May
Jan-05
Sep
May
Jan-07
Sep
May
Jan-09

Seasonal - Another essential characteristic of an epidemic time

Ollech and Webel's combined
series Is its tendency of repeating its patterns at subsequent time seasonality test — Monthly
Intervals.

seasonality of time series.



Mathematical transformations

Log transform Fourier transform
Reduces the variability of Ideal for periodic signals.
skewed datasets. Represents a signal only in
Highly impacted by outliers. frequency domain |
Errors are symmetric on the F_OF non-p_er|0d|c Slgna_ls V\_llth
original scale but asymmetric time-varying features, it gives
on the log scale. averaged data, hence

unsatisfactory.

Fourier Transform

A Time Series A Log Transform

< 9
E : 1
= @
o =
= - :

=

. >
Time > Time T Amplitude >

.

S

Wavelet transform

Generalization of Fourier
transform.

It allows the independent
choice of time and frequency
resolution at different times
and frequencies.

A Wavelet Transform

Scale

NN\

v/

Translation
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Proposed EWNet Model S

o We propose an Ensemble Wavelet Neural Network (EWNet) that possesses the capabilities to handle the
complex characteristics of epidemic datasets through its stable learning structure.

o EWNet combines wavelet decomposition (as a filtering stage) and autoregressive neural networks with
exogenous variables to provide accurate forecasts of non-stationary and nonlinear time series.

o In the data pre-processing stage, Wavelet decomposition is used to generate a hierarchy of new time series
from the original epidemic time series and makes them easier to model and forecast.

o MODWT decomposes the series into ‘details’ (contain dynamics of the epidemic systems at different
scales) and ‘smooth’ (trend). This handles the seasonality and non-stationarity of the series.

o Multi-resolution analysis (MRA) of the MODWT approach transforms non-stationary time series y; into J
details D; . (j = 1,2,++,J) and a smooth S, . coefficients. Mathematically, it can be represented as follows:

J
Ve = Z Dje+5pe
j=1
where D; . denotes the irregular fluctuations or high-frequency components at scale (j = 1, 2,---,]), and
S; + denotes the overall trend or low-frequency components of the original series y;.



Proposed EWNet Model

.

S

MODWT decomposes the series into ‘details’ (contain dynamics of the epidemic systems at different scales) and ‘smooth’

(trend).

Original Series
4000

2000 —

0

Details 5

200~

0 Hws
-200 —
-400 —

200—
0
-200—

200—

-200 —

Details 2

200

D:\J\/\/\A/\/V\ﬁ\r/\ /\/\/\./ \ /\/’\_ﬁ——/\/\/\/ﬂ M/\,m/\/ ™M

-200

Details 1
500

o

-500

Smooth

500 T |
ok
=500 —
| | | | | |

-1000
0 100 200 300 400 500 600

MRA-based MODWT decomposition of the Colombia dengue dataset with the original epidemic time series and its 6 levels. In Figure, (a) denotes the

700

(a)

(b)

(c)

(d)

(e)

(H)

(g)

original time series in actual frequency scale; (b)-(f) denote the detail coefficients reproduced by the MODWT algorithm with haar filter, and (g) represents
the scaling coefficients of the series generated by MODWT algorithm with haar filter. The figure depicts time-localized information on frequency patterns

that are identified by wavelets.



Proposed EWNet Model

o Subsequently the ‘details’ and ‘smooth’ series
are modeled using an autoregressive neural
network (ARNN) with a pre-defined
architecture in an ensemble setup.

o EWNet (p, k) model is a non-stationary and non-linear

model which can be written as follows:

J
Ve = zfj(Dj,t) + fo(S).c),
=

where J + 1 (|log.(length of training data)]) is the
number of wavelet levels, f; (i = 0,1, 2,-+,]) is the one-
hidden layered feedforward ARNN with p input nodes and k

hidden nodes.

o Choice of p and k?
o Estimator complexity control!

YVt-1

Vt-2

Yt-3

Vt-a

.

S

Journal of the American Statistical Association >
Volume 92, 1997 - Issue 439

Analysis of Subtidal Coastal Sea Level Fluctuations Using
Wavelets

Donald B. Percival & Harold O. Mofjeld
Pages 868-880 | Received 01 Jun 1995, Published online: 17 Feb 2012

. N\ i
\ .
\ ~
. —

—

- >

N o ™ = B ~
— N i A
- N\, B / o~
S \ - ~
E \ N/ s
R R N 7~ 75 ~
R — ~ =
P C— / “
< N ] S 4
N \. / —
\
/
y

A neural network with four inputs and one hidden layer with three hidden neurons.



Proposed EWNet Model Architecture

(a) (b)
Dengue Incidence
' ‘ || MopwT

¥ , - e
Decomposition |
" ] A " i\ " \ =

W s ALY

: ¥
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‘, Wavelet Coefficient

|
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Figure: The proposed EWNet workflow:

a) To predict dengue incidence cases, we
provide a weekly time series of dengue
cases (Y;) and rainfall (X;) in the
training period;

b) We perform a MODWT based MRA
transformation on Y and generate
multiple series of details and smooth
coefficients;

c) We begin to train local auto-regressive
neural networks to individually model
the transformed series along with
rainfall dataset in the input stack;

d) Each of the neural networks is trained
with a single hidden layer having a
pre-specified number of nodes inside
the hidden stack;

e) The output stack comprises of one-step
ahead forecast generated by individual
neural networks. These predictions are
combined to generate the final out-of-
sample forecast.



Proposed EWNet Framework S

 h-step ahead forecasts of Y; based on N historical observations (Y3, Y5, ..., Yy) can be generated by
generating the simultaneous forecast for the details and smooth coefficients in an ensemble setup
thus we have

J
Ynin = Z Dinin + S5 N+n
j=1

where, ﬁj,NJ,h and SA,,NJ,h are the h-step forecasts for the details and smooth coefficients.
From statistical point of view, we study the associated Markov Chain for the EWNet process.
Stable learning

Irreducibility

These theoretical results guarantee that EWNet model cannot show

Geometric ergodicity ‘explosive’ behavior or growing variance over time. Helps in model

Asymptotic stationarity specification, estimation during simulation study. (See details in paper)

Empirical Risk Minimization

Conformal Prediction
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Stable learning in EWNet
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Choice of k

From the boundary of stable learning in hidden and output neurons, we introduce a balancing equation as:

w1 () = ke
where 1) is the learning rate and « iIs a consistency constant with 1 < a < p. Thus, we initially choose k =

Jap = k € (\/ﬁp) and using the AM-GM inequality we finally select k = lp—ﬂ

5 |

Practical Significance

« The number of hidden nodes in the EWNet model is set to a fixed value depending on the number of
lagged.

* Due to this, the running time of the EWNet model is minimal as compared to unstable neural networks in
which the number of hidden nodes either becomes too large or too small.

« Thus, our proposed model does not face the problem of under-fitting or over-fitting.
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Empirical Risk Minimization in EWNet

v/

Proposition

Let the autoregressive neural network (of order k) is applied to the original data y, by minimizing the risk
Remp and EWNet fits the ensemble model on the transformed data by minimizing the empirical risk 9%,‘21’,,12,,

then we have
min Rg,,, < minRe,p,,

Practical Significance

 In statistical learning theory, ERM defines a family of learning models and provides theoretical bound on

their performances.
 This is useful since in practice we can't generalize how well a model will work (called true risk) due to not

knowing the true data distribution. However, we can instead measure its performance on a known set of

training data (called empirical risk).
» The above result show the robustness of the wavelet decomposed approach in EWNet from ERM

perspective.
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Model Evaluation b

 Forecast horizons

To validate the efficiency of the proposed EWNet framework we check the forecast accuracy of the model for three
different horizons namely, long-term forecast (52 weeks), medium-term forecast (26-weeks), and short-term forecast
(13-weeks) for weekly datasets.

 Performance Metrics

This study adopts four popularly used key performance indicators, namely Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Symmetric Mean Absolute Percent Error (SMAPE), and Mean Absolute Scaled Error
(MASE), to evaluate the deviation between the forecasts and the ground truth. By general convention, the model
having the least values of these metrics is the best performing model.

« Benchmark comparison
Statistical models: Random Walk, ARIMA, ETS, Theta, WARIMA, SETAR, TBATS, BSTS.

Machine learning models: MLP, ARNN, SVR, LSTM, NBeats, TCN, DeepAR, Transformer.

Other hybrid and ensemble approaches.



Causality Test

In our study, we have identified the causal relationship between dengue incidence cases and rainfall using different statistical

significance tests:

= Granger Causality test
= Wavelet Coherence plot

Statistical test

San Juan

Iquitos

Ahmedabad

Granger Causality test
(Cases vs Rainfall)

Causality found (0.032%*)

Causality found (0.030%)

Causality found (0.049%)

Wavelet Coherence plot

64 32 16 8 4

©
jret
o

=~
...........

Scale

128 64 32 18 8 4

f

S
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MCB test results
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MCB plot for MASE metric

Mean rank
5
\
—-

-10.81
10.93
12.71
15.50 —
17.84 —

TCN-22.07 —

EWNet - 3.69 —
RW -9.38 +
Hybrid 3 - 9.54 —
SVR -9.60 —
Hybrid 1 - 9.77 —
WARIMA - 9.79 —
ARIMA - 9.96 —
RWD - 10.07 —
ETS - 10.18 —
SETAR - 10.18
Hybrid 2 - 10.23 —
TBATS - 10.63 —|
Theta
ARNN -
ANN -
BSTS - 12.82 4
NBeats - 13.07 —
LSTM - 14.56 7
Deep AR - 14.61 —
WNBeats - 18.07 —

Transformer -
WTransformer -

| Deep Learning Models |

Figure: Schematic visualization of the multiple comparisons with the best (MCB) test. The plot provides the result for the MASE metric.
For example, in the figure, EWNet - 3.69 specifies the rank of the EWNet model. The blue lines indicate the critical distance of the model,
the middle point of this interval, which is denoted by black (significant) or red (not significant), represents the mean rank, and the shaded

region marks the reference value.
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Overall Performance Analysis S

The overall experimental evaluation of the proposed model and the benchmark forecasters reveal some interesting
observations.

» The traditional linear models like ETS and ARIMA fails to handle the irregularities of real-world dengue datasets.
Although the exogenous variant of these models (ETSX and ARIMAX) marginally improves the forecast
accuracy, the tendency of these methods to approximate the complex relationship between rainfall and dengue
incidence cases by a linear function with a constant rate of change results in their failure.

» In case of the data-driven machine learning and deep learning frameworks the nonlinear relationship is modeled
more precisely, however, their overall performance is unsatisfactory for long-term forecasts. Data set size creates a
barrier to the performance of the deep learners

» The proposed EWNet approach can optimally model the complex non-linear relationship between the observed
and covariate series, thus resulting in improved forecasts. Unlike the deep learning approaches, the stable
architecture of our proposal limits the number of training parameters, hence restricting the model over-fitting.

» Moreover, the use of MODWT-based MRA transformation generates the wavelet and scale coefficients that can
overlook the signal through noise resulting in accurate long-term forecasts.



Actual vs Forecast Visualization S
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Remarks D
Suitable for non-stationary, seasonal, and non-linear forecasting problems with limited historical data.

Theoretical properties (learning stability, geometric ergodicity, and asymptotic stationarity) ensure the
stability of model output.

Simple and easily interpretable model, fast in implementation due to pre-defined architecture
(multivariate set-up is yet to be explored).

Experimental results suggest a significant improvement in long-range forecast accuracy owing to the
wavelet decomposition.

Epidemic dataset repository: https://github.com/mad-stat/Epicasting/tree/main/Datasets

R package for implementation: https://cran.r-project.org/web/packages/epicasting/index.htmi

Medium article on EWNet implementation: https://medium.com/@madhurima.panja/epicasting-
package-in-r-epidemic-forecasting-made-easy-dcdaffd694b



https://github.com/mad-stat/Epicasting/tree/main/Datasets
https://cran.r-project.org/web/packages/epicasting/index.html
https://medium.com/@madhurima.panja/epicasting-package-in-r-epidemic-forecasting-made-easy-dcdaffd694b
https://medium.com/@madhurima.panja/epicasting-package-in-r-epidemic-forecasting-made-easy-dcdaffd694b
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Irreducibility of EWNet

.

v/

Proposition 1

The sufficient conditions of forward accessibility for the control system y; defined by

k
Ve =V + YY1+ Z BiG(Pirye—1 + 1i) + &, (1)
i=1
where v, B;, ¢; 1, 1i; (i = 1,2, -+, k) are the weights and G is the activation function are stated as follows:
G € C* is a bounded, non-constant, and asymptotically constant function (C*) (any function is C* if
derivatives of all orders are continuous).
The linear part of R.H.S. of Eqn. (1) is controllable, i.e., Y; # 0.

The controllability of the linear components of the ARNN process as discussed in the Prop. 1 implies
forward accessibility. But, the associated Markov chain is said to be irreducible when the support of
the distribution of the noise process is sufficiently large.
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Irreducibility of EWNet

Remark

v/

Our proposed EWNet model can be thought of as a sum of J + 1 different ARNN (p, k) processes, where
J + 1 denotes the number of details and smooth coefficients obtained using the MODWT algorithm.

Theorem 1 (Theorem of Irreducibility)

Suppose the distribution of &; is absolutely continuous w.r.t. the Lebesgue measure A and the probability
distribution function (p.d.f.) v(-) of &; is positive everywhere in R and lower semi-continuous. Then under
the condition prescribed in Prop. 1, the Markov chain in y; = ¥,y;_1 + F(y;—1) + & isirreducible on
the state space (R?, B).

Theorem 1 shows the irreducibility property for the ARNN (1, k) process and demonstrates its
proximity to the concept of forward accessibility of a control system. However, we also showed that
ARNN processes might not exhibit forward accessibility, and in such scenarios, inferring about the
data-generating process from the observed data is impossible.
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Ergodicity & Stationarity of EWNet

v/

Theorem 2 (Main Theorem)

Suppose the Markov chain y, of the ARNN (1, k) process satisfies the conditions of Theorem 1 and
Ele;| < oo. Then, a sufficient condition for the geometric ergodicity (vis-a-vis asymptotic stationarity) of
the Markov chain {y,} is that [y, | < 1.

Theorem 2 states the sufficient condition for the geometric ergodicity of the ARNN (1, k) process. Consider the
following example: if y; = 1, then the long-term behavior of the ARNN (1, k) process can be determined by the
nonlinear part and the intercept term of the process. Moreover, the geometric convergence rate in Theorem 2
implies that the memory of the ARNN process vanishes exponentially fast. This means that the simplest version of
the ARNN (p, k) process converges to a Wiener process. Also, theoretical results suggest that the shortcut weight
corresponding to the autoregressive part determines whether the overall process is ergodic and asymptotically
stationary.



Implications of the theoretical properties of EWNet

U

In the ideal situation, when an irreducible ARNN process generates the data, the estimated weights are not
too far from the true weights. Then, one can draw an indirect conclusion on the statistical nature of the
estimated shortcut weight corresponding to the autoregressive part being less than one in absolute terms,
and then the data generation process is said to be ergodic and stationary. But, if the conditions are not met,
the model is likely to be unspecified, and the estimation procedure should be diligently done.

The theoretical results of asymptotic stationarity and ergodicity for the EWNet (p, k) model would directly
follow from the ARNN (p, k) process since the proposed EWNet is a simple aggregation of several ARNN
models fitted after the Wavelet decomposition of the time series data. These theoretical results guarantee
that the proposed EWNet model cannot show ‘explosive’ behavior or growing variance over time.
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