
Hands-on with Python

Tanujit Chakraborty

Indian Statistical Institute, Kolkata.

Introduction

to

Python

PYTHON INSTALLATION

1. Download Anaconda from http://jupyter.readthedocs.io/en/latest/install.html

2. Run the set up (exe) file and follow instructions

3. Check Jupyter notebook is installed

http://jupyter.readthedocs.io/en/latest/install.html

3. Open Jupyter Notebook

PYTHON INSTALLATION

3. Open Jupyter Notebook

PYTHON INSTALLATION

DESCRIPTIVE STATISTICS

using Python

Exercise 1: The monthly credit card expenses of an individual in 1000 rupees is

given in the file Credit_Card_Expenses.csv.

a. Read the dataset to Python

b. Compute mean, median minimum, maximum, range, variance, standard

deviation, skewness, kurtosis and quantiles of Credit Card Expenses

c. Compute default summary of Credit Card Expenses

d. Draw Histogram of Credit Card Expenses

DESCRIPTIVE STATISTICS

Reading a csv file : Source code

import pandas as mypd

mydata = mypd.read_csv("E:/ISI/Data/Credit_Card_Expenses.csv")

mydata

To read a particular column or variable of data set to a ne variable

Example: Read CC_Expenses to CC

cc = mydata.CC_Expenses

cc

DESCRIPTIVE STATISTICS

DESCRIPTIVE STATISTICS

Operators – Arithmetic & Logical

Operator Description

+ addition

- subtraction

* multiplication

/ division

** exponentiation

% modulus (x mod y) 5%2 is

1

Operator Description

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== exactly equal to

! = not equal to

DESCRIPTIVE STATISTICS

Descriptive Statistics

Computation of descriptive statistics for variable CC

Function Code Value

Mean cc.mean() 59.2

Median cc.median() 59

Mode cc.mode() 59

Standard deviation cc.std() 3.105

Variance cc.var() 9.642

Minimum cc.min() 53

Maximum cc.max() 65

Percentile cc.quantile(0.9) 63

Skewness cc.skew() -0.09

Kurtosis cc.kurt() -0.436

DESCRIPTIVE STATISTICS

Descriptive Statistics

Statistics Code

Summary cc.describe()

Statistics Value

Count 20

Mean 59.2

Standard Deviation 3.1052

Minimum 53

Q1 57

Median 59

Q3 61

Maximum 65

DESCRIPTIVE STATISTICS

Descriptive Statistics

Arithmetic functions for variable CC

Function Code Value

Count cc.count() 20

Sum cc.sum() 1148

Product cc.prod() 6.21447E+18

Function Code Value

Square root Import math as mymath

mymath.sqrt(49)

7

Sum of Squares sum(cc**2) 70276

DESCRIPTIVE STATISTICS

Graphs:

Graph Code

Histogram import matplotlib.pyplot as myplot

myplot.hist(cc)

myplot.show()

Box Plot myplot.boxplot(cc)

myplot.show()

CLASSIFICATION and REGRESSION

TREE

CLASSIFICATION AND REGRESSION TREE

Objective

To develop a predictive model to classify dependent or response metric (Y) in terms of

independent or exploratory variables X’s).

When to Use

X’s : Continuous or discrete

Y : Discrete or continuous

CLASSIFICATION AND REGRESSION TREE

Classification Tree

When response y is discrete

Method = “DecisionTreeClassifier”

Regression Tree

When response y is numeric

Method = “DecisionTreeRegressor”

Challenges

How to represent the entire information in the dataset using minimum number

of rules?

How to develop the smallest tree?

Solution

Select the variable with maximum information (highest relation with y) for first

split

CLASSIFICATION AND REGRESSION TREE

Example: A marketing company wants to optimize their mailing campaign by sending

the brochure mail only to those customers who responded to previous mail

campaigns. The profile of customers are given below. Can you develop a rule to

identify the profile of customers who are likely to respond (Mail_Respond.csv)?

CLASSIFICATION AND REGRESSION TREE

Profile Variable Values

District 0:Urban, 1: Suburban & 2: Rural

House Type 0:Detached, 1: Semi Detached & 2: Terrace

Income 0:Low & 1: High

Previous Customer 0:No & 1:Yes

Output Variable Value

Outcome 0:No & 1:Yes

Example: A marketing company wants to optimize their mailing campaign by sending

the brochure mail only to those customers who responded to previous mail

campaigns. The profile of customers are given in Mail_respond.csv? Can you

develop a rule to identify the profile of customers who are likely to respond?

SL No Variable Name Number of values

1 District 3

2 House Type 3

3 Income 2

4 Previous Customer 2

Number of variables = 4

Total Combination of Customer Profiles = 3 x 3 x 2 x 2 = 36

CLASSIFICATION AND REGRESSION TREE

Read file and variables

import pandas as mypd

from sklearn import tree

mydata = mypd.read_csv("E:/ISI/Data/Mail_Respond.csv")

x = mydata["District", "House_Type", "Income", "Previous_Customer"]

y = mydata.Outcome

CLASSIFICATION AND REGRESSION TREE

Develop the model

mymodel = tree.DecisionTreeClassifier(min_samples_split = 10)

mymodel.fit(x,y)

mymodel.score(x,y)

CLASSIFICATION AND REGRESSION TREE

Statistics Value (%)

Accuracy 100

Misclassification Error 0.00

Model Accuracy measures

pred = mymodel.predict(x)

mytable = mypd.crosstab(y, pred)

mytable

CLASSIFICATION AND REGRESSION TREE

Actual
Predicted

No Yes

No 34 0

Yes 0 66

Actual Vs predicted: %

Accuracy = 34 + 66 = 100%

CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will

take pep (0: No & 1: Yes) using the customer profile data given in bank-data.csv?

Use 80% of data to develop the model and validate the model using the remaining

20% of data?

Variables Values

Age Numeric

Sex 0:Male & 1: Female

Region 0: Inner City, 1: Rural, 2: Suburban & 3: Town

Income Numeric

Married 0: No, 1: Yes

Children Numeric

Car 0: No, 1: Yes

Saving Account 0: No, 1: Yes

Current Account 0: No, 1: Yes

Mortgage 0: No, 1: Yes

CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will

take pep using the customer profile data given in bank-data.csv? Use 80% of data

to develop the model and validate the model using the remaining 20% of data?

Reading data

import pandas as mypd

from sklearn import tree

from sklearn.cross_validation import train_test_split

mydata = mypd.read_csv("E:/ISI/PM-01/Data/bank-data.csv")

x = mydata.values[:, 0:9]

y = mydata.values[:, 10]

CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will

take pep using the customer profile data given in bank-data.csv? Use 80% of data

to develop the model and validate the model using the remaining 20% of data?

Split data into training and test data

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2,

random_state = 100)

Develop model using training data

mymodel = tree.DecisionTreeClassifier(min_samples_split=50)

mymodel.fit(x_train, y_train)

mymodel.score(x_train, y_train)

Statistics Value (%)

Accuracy 83.3

Misclassification Error 16.7

CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will

take pep using the customer profile data given in bank-data.csv? Use 80% of data

to develop the model and validate the model using the remaining 20% of data?

pred = mymodel.predict(x_train)

mytable = mypd.crosstab(y_train, pred)

mytable

Actual
Predicted

No Yes

No 232 30

Yes 50 168

Actual vs Predicted

CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will

take pep using the customer profile data given in bank-data.csv? Use 80% of data

to develop the model and validate the model using the remaining 20% of data?

Validating the Model using test data

pred_test = mymodel.predict(x_test)

mytesttable = mypd.crosstab(y_test, pred_test)

mytesttable

Actual
Predicted

No Yes

No 58 6

Yes 15 41

Actual Vs predicted: %

Accuracy = (58 + 41)/(58 + 6 + 15 +41) = 82.5 %

CLASSIFICATION AND REGRESSION TREE

Exercise 1: Develop a tree based model for predicting whether the customer will

take pep using the customer profile data given in bank-data.csv? Use 80% of data

to develop the model and validate the model using the remaining 20% of data?

Data Accuracy Misclassification Error

Training 83.33 16.67

Test 82.5 17.5

RANDOM FOREST

and

BAGGING

Improves predictive accuracy

Generates large number of bootstrapped trees

Classifies a new case using each tree in the new forest of trees

Final predicted outcome by combining the results across all of the trees

Regression tree – average

Classification tree – majority vote

RANDOM FOREST

• Uses trees as building blocks to construct more powerful prediction models

• Decision trees suffer from high variance

If we split the data into two parts and construct two different trees for

each half of the data, the trees can be quite different

• In contrast, a proceedure with low varaince will yield similar results if applied

repeatedly to distinct datasets

• Bagging is a general purpose procedure for reducing the variance of a

statistiocal learning method

RANDOM FOREST

Procedure

• Take many training sets from the population

• Build seperate prediction models using each training set

• Average the resulting predictions

• Averaging of a set of observatins reduce variance

• Different training datasets are taken using bootstrap sampling

• Generally bootstraped sample consists of two third of the observations and the

model is tested on the remainng one third ofthe out of the bag observations

For discrete response – will take the majority vote instead of average

Major difference between bagging and Random Forest

Bagging generally uses all the p predictors while random forest uses p

predictors

RANDOM FOREST

Example

Develop a model to predict the medain value of owner occupied homes using

Boston_Housing_Data ? Use 80% of the data to develop the model and validate

the model using remaining 20% of the data?

Python Code

Call libraries and import data

import pandas as mypd

from sklearn.ensemble import RandomForestRegressor

from sklearn.cross_validation import train_test_split

import math as mymath

mydata = mypd.read_csv("E:/ISI/PM-01/Data/Boston_Housing_Data.csv“)

x = mydata.values[:, 0:12]

y = mydata.values[:,13]

RANDOM FOREST

Example

Develop a model to predict the medain value of owner occupied homes using

Boston_Housing_Data ? Use 80% of the data to develop the model and validate

the model using remaining 20% of the data?

Python Code

Split data into training and test

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2,

random_state = 100)

Develop the model using training data - Bagging

mymodel = RandomForestRegressor(n_estimators = 500,

min_sample_split = 40, max_features = None)

mymodel.fit(x_train,y_train)

n_estimators : Number of trees

max_features = None, include all (p) explanatory variable (x’s)

max_features = ‘auto’, include subset (p) explanatory variable (x’s)

RANDOM FOREST

Example

Develop a model to predict the medain value of owner occupied homes using

Boston_Housing_Data ? Use 80% of the data to develop the model and validate

the model using remaining 20% of the data?

Python Code

mymodel.score(x_train, y_train)

pred = mymodel.predict(x_train)

res = y_train – pred

res_sq = res**2

res_ss = res_sq.sum()

total_ss = y_train.var()*404

r_sq = 1 - res_ss/total_ss

mse = res_sq.mean()

rmse = mymath.sqrt(mse)

RANDOM FOREST

Example

Develop a model to predict the medain value of owner occupied homes using

Boston_Housing_Data ? Use 80% of the data to develop the model and validate

the model using remaining 20% of the data?

RANDOM FOREST

Statistics Value

MSE 3.733

RMSE 1.932

R2 95.41

Example

Develop a model to predict the medain value of owner occupied homes using

Boston_Housing_Data ? Use 80% of the data to develop the model and validate

the model using remaining 20% of the data?

Python Code

Validate the model using test data

pred_test = mymodel.predict(x_test)

res_test = y_test- pred_test

res_test_sq = res_test**2

res_test_ss = res_test_sq.sum()

total_test_ss = t_test.var()*101

r_test_sq = 1 - res_test_ss/total_test_ss

mse = res_test_sq.mean()

rmse = mymath.sqrt(mse)

RANDOM FOREST

Example

Develop a model to predict the medain value of owner occupied homes using

Boston_Housing_Data ? Use 80% of the data to develop the model and validate

the model using remaining 20% of the data?

RANDOM FOREST

Statistics Training Test

MSE 3.733 18.007

RMSE 1.932 4.243

R2 95.41 81.17

Example

Develop a model to predict the medain value of owner occupied homes using

Boston_Housing_Data ? Use 80% of the data to develop the model and validate

the model using remaining 20% of the data?

RANDOM FOREST

Statistics Bagging Random Forest Regression Tree

Training Test Training Test Training Test

MSE 3.733 18.007 4.449 20.169 13.287 28.879

RMSE 1.932 4.243 2.109 4.491 3.645 5.373

R2 95.41 81.17 94.52 78.91 83.65 69.81

Developing model with random forest

mymodel = RandomForestRegressor(n_estimators = 500, min_samples_split =

40, max_features= 'auto’]

Developing model with CART

mymodel = tree.DecisiontreeRegressor(min_samples_split=40)

ARTIFICIAL NEURAL

NETWORKS

ARTIFICAL NEURAL NETWORKS

Introduction

One of the most fascinating machine learning modeling technique

Generally uses back propagation algorithm

Relatively complex (due to deep learning with many hidden layers)

Structure is inspired by brain functioning

Generally computationally expensive

ARTIFICAL NEURAL NETWORKS

Instructions

1. Normalize the data – Use Min – Max transformation (optional)

Normalized data = Data – Minimum / (Maximum – Minimum)

2. Number of hidden layers required = 1 for vast number of application

3. Number of neurons required = 2/3 of the number of predictor variables or

input layers

Remark: The optimum number of layers and neurons are the ones which would

minimize mean square error or misclassification error which can be

obtained by testing again and again

Example: Develop a model to predict the non payment of overdrafts by

customers of a multinational banking institution. The data collected is given in

Logistic_Reg.csv file. The factors and response considered are given below. Use

80% of the data to develop the model and validate the model using remaining

20% of the data?

SL No Factor

1 Individual expected level of activity score

2 Transaction speed score

3 Peer comparison score in terms of transaction volume

Response Values

Outcome 0: Not Paid and 1: Paid

ARTIFICAL NEURAL NETWORKS

ARTIFICAL NEURAL NETWORKS

Example

Importing packages

import pandas as mypd

from sklearn.cross_validation import train_test_split

from sklearn.neural_network import MLPClassifier

Reading the data

mydata = mypd.read_csv("E:/ISI/PM03/Course_Material/Data/Logistic_Reg.csv")

x = mydata.values[:, 0:3]

y = mydata.Outcome

Splitting the data into training and test

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state

= 100)

ARTIFICAL NEURAL NETWORKS

Example

Develop the model

mymodel =MLPClassifier(solver = 'lbfgs', alpha = 1e-5, hidden_layer_sizes = (2),

random_state = 100)

mymodel.fit(x_train, y_train)

Note:

Classification problem: Use MLPCLassifier

Value estimation: Use MLPRegressor

Solver:

‘lbfgs’ : Uses quasi-Newton method optimization algorithm.

‘sgd’ :Uses stochastic gradient descent optimization algorithm.

‘adam’ :Uses stochastic gradient-based optimizer

ARTIFICAL NEURAL NETWORKS

Example: Interpretation

hidden_layer_sizes : a vector representing hidden layers and hidden neurons in

each layer

hidden_layer_sizes = (l) : one hidden layers with l hidden neurons

ARTIFICAL NEURAL NETWORKS

Output

mymodel.score(x_train, y_train)

Statistics Value

% Accuracy 96.81

% Error 3.19

mymodel.predict_proba(x_train)

ARTIFICAL NEURAL NETWORKS

Output: Validation

predtest = mymodel.predict(x_test)

mytable = mypd.crosstab(y_test, predtest)

mytable

Predicted

0 1

Actual
0 54 4

1 0 138

Actual Vs Predicted

ARTIFICAL NEURAL NETWORKS

Output: Validation

Predicted

0 1

Actual
0 27.55 2.04

1 0.00 70.41

Actual Vs Predicted (%)

Statistics Training Test

% Accuracy 96.81 97.96

% Error 3.19 2.04

ARTIFICAL NEURAL NETWORKS

Output

> mse = mean(res^2)

> rmse = sqrt(mse)

> residual_ss = sum(res^2)

> total_ss = var(myzdata$Conversion)*15

> r_sq = 1 – residual_ss / total_ss

Statistics Value

Mean Square Error 0.0009994

Root Mean Square Error 0.0316128

R Square 0.9905

ARTIFICAL NEURAL NETWORKS

Prediction for new data set

> test <- read_csv("E:/ISI/output.csv“)

> output = compute(mymodel, test)

> output$net.result

Temperature Time Kappa_Number Conversion Predicted Conversion

1 0.0058 0.1243 0.9577 0.9882

1 0.0058 0.2090 0.9915 0.9813

1 0.0000 0.3220 1.0000 0.9782

1 0.0173 0.4633 0.9437 0.9269

1 0.0231 0.6610 0.9155 0.8871

ARTIFICAL NEURAL NETWORKS

Exercise 1

Develop a model to predict the medain value of owner occupied homes using

Boston_Housing_data ? Use 80% of the data to develop the model and validate

the model using remaining 20% of the data?

ARTIFICAL NEURAL NETWORKS

Exercise 1

Python Code – Import the packages

import pandas as mypd

from sklearn.cross_validation import train_test_split

from sklearn.neural_network import MLPRegressor

Import the data

mydata = mypd.read_csv("E:/ISI/PM- 03/Course_Material/Data/ Boston_Housing_Data.csv")

x = mydata.values[:, 0:12]

y = mydata.values[:,13]

Split data into training and test

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state

= 100)

ARTIFICAL NEURAL NETWORKS

Exercise 1

Develop the model

mymodel = MLPRegressor(solver = 'lbfgs', alpha = 0.001, hidden_layer_sizes =

(6), random_state= 100)

mymodel.fit(x_train, y_train)

mymodel.score(x_train,y_train)

Statistic Value

R2 66.76

ARTIFICAL NEURAL NETWORKS

Validation: Test data

pred = mymodel.predict(x_test)

res = y_test – pred

res_sq = res**2

res_ss = sum(res_sq)

total_ss = y_test.var()*100

rsq = 1 - res_ss/total_ss

rsq

Statistic Training Test

R2 66.76 63.43

Thank You

