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LINEAR ALGEBRA TO STATISTICAL
LEARNING
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Importance in ML: We convert input vectors (x1, .., xn) into outputs by a
series of linear transformations.

Importance of Linear Algebra in ML
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ML Models leveraging Linear Algebra
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• Linear algebra is the branch of mathematics concerning linear
equations such as

a1x1 + . . .+ anxn = b

• In vector notation we say aTx = b
• Called a linear transformation of x

• Linear algebra is fundamental to geometry, for defining objects such as
lines, planes, rotations.

• Linear equation
a1x1 + . . .+ anxn = b defines a
plane in (x1, . . . , xn) space
Straight lines define common
solutions to equations.

What is linear algebra?
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• Scalar: Single number (represented by x)

− In contrast to other objects in linear algebra, which are
usually arrays of numbers.

− They can be real-valued or be integers.

• Vector: An array of numbers arranged in order
(represented by x)

x =


x1
x2
...

xn


− If each element is in R then x is in Rn.
− We can think of vectors as points in space where each

element gives coordinate along an axis.

Standard Definitions
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• Matrices: 2-D array of numbers

− So each element identified by two indices.
− E.g.,

A =

[
A1,1 A1,2
A2,1 A2,2

]
− where Ai: is ith row of A, A:j is jth column of A.
− If A has shape of height m and width n with real-values

then A ∈ Rm×n.

• Tensor: A tensor is an array of numbers arranged on a
regular grid with variable number of axes.
− Sometimes we need an array with more than two axes.
− E.g., an RGB color image has three axes.
− Element (i, j, k) of tensor denoted by Ai,j,k.

Standard Definitions
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Shapes of Tensors
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• We can add matrices to each other if they have the same
shape, by adding corresponding elements
− If A and B have same shape (height m, width n)

C = A + B =⇒ Ci,j = Ai,j + Bi,j

• A scalar can be added to a matrix or multiplied by a scalar

D = aB + c =⇒ Di,j = aBi,j + c

• Less conventional notation used in ML:
− Vector added to matrix

C = A + b =⇒ Ci,j = Ai,j + bj

• Called broadcasting since vector b added to each row of A

Matrix Addition
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• For product C = AB to be defined, A has to have the same
no. of columns as the no. of rows of B
− If A is of shape mxn and B is of shape nxp then matrix

product C is of shape mxp

C = AB =⇒ Ci,j =
∑

k

Ai,kBk,j

• Note that the standard product
of two matrices is not just the
product of two individual
elements.

• Such a product does exist and is
called the element-wise product
or the Hadamard product A ⊙ B.

Wikipedia

Multiplying Matrices
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Slide Credit: Sargur N. Srihari (Hari): https://cedar.buffalo.edu/~srihari/

Tensors and Linear Classifier
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• Ax=b
− where A ∈ Rn×n and b ∈ Rn

− More explicitly (n equations in n unknowns)

A1,1x1 + A1,2x2 + . . .+ A1,nxn = b1

A2,1x1 + A2,2x2 + . . .+ A2,nxn = b2

An,1x1 + An,2x2 + . . .+ An,nxn = bn

• Consider the following:

A =

A1,1 . . . A1,n
...

...
...

An,1 . . . An,n

 x =

x1
...

xn

 b =

b1
...

bn


Can view A as a linear transformation of vector x to vector b

• Sometimes we wish to solve for the unknowns x = (x1, . . . , xn) when A and b
provide constraints.

Linear Transformation
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• Matrix inversion is a powerful tool to analytically solve
Ax = b

• We can now solve Ax = b as follows:

Ax = b

A−1Ax = A−1b

Inx = A−1b

x = A−1b

• If A−1 exists there are several methods for finding it.
• Two closed-form solutions

1. Matrix inversion x = A−1b
2. Gaussian elimination

Identity and Inverse Matrices
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• If A−1 exists, the same A−1 can be used for any given b
− But A−1 cannot be represented with sufficient precision
− It is not used in practice

• Gaussian elimination also has disadvantages
− numerical instability (division by small no.)
− O(n3) for n × n matrix

• Software solutions use value of b in finding x
− E.g., difference (derivative) between b and output is used

iteratively

• Least squares solutions of a m × n system

A
m×n

x = b =⇒ (ATA)x = ATb =⇒ x = (ATA)−1ATb = A+b.

Disadvantage of closed-form solutions
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• A design matrix
− N samples, D features

• Feature vector has three dimensions
• This is a standard regression problem.

Use of a Vector in Regression
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• Used for measuring the size of a vector
• Norms map vectors to non-negative values
• Norm of vector x = [x1, . . . , xn]

T is distance from origin to x

It is any function f that satisfies:

f (x) = 0 =⇒ x = 0

f (x + y) ≤ f (x) + f (y) (Triangle Inequality)

∀ α ∈ R, f (αx) = |α|f (x)

Norms
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• Definition:

∥x∥p =

(∑
i

|xi|p
)1/p

− L2 Norm
• Called Euclidean norm
• Simply the Euclidean distance between the origin and the

point x
• written simply as ∥x∥
• Squared Euclidean norm is same as xTx

− L1 Norm
• Useful when 0 and non-zero have to be distinguished
• Note that L2 increases slowly near origin, e.g., 0.12 = 0.01

− L∞ Norm

∥x∥∞ = max
i

|xi| (called max norm)

LP Norm

19/50



• Linear Regression with x : a vector, w
: weight vector

y(x,w) = w0+w1x1+. . .+wdxd = wTx

With non-linear basis functions ϕj

y(x,w) = w0 +

M−1∑
j=1

wjϕj(x)

• Loss Function

L(w) =
1
2

N∑
n=1

{y(xn,w)−tn}2+
λ

2
∥w2∥

Second term is a weighted norm
called a regularizer (to prevent
overfitting)

Use of norm in Regression
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• Norm is the length of a vector
• Distance between two vectors (v,w)

− dist(v,w) = ∥v − w∥ =
√
(v1 − w1)2 + . . .+ (vn − wn)2

Distance to origin would be sqrt of sum of squares
• Similar to L2 norm

∥A∥F =

∑
i,j

A2
i,j

 1
2

• Frobenius in ML
− Layers of neural network involve matrix multiplication
− Regularization:

minimize Frobenius of weight matrices ∥W(i)∥ over L layers

JR = J + λ

L∑
i=1

∥W(i)∥F

Distance and Frobenius Norm
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Fig: Matrix Multiplication in Neural Net.

Frobenius in ML
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LINEAR ALGEBRA TO IMAGE PROCESSING
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• Given a matrix, A, x is the eigenvector and λ is the
corresponding eigenvalue if Ax = λx.

• A must be a square matrix, the determinant of A − λI must
be equal to zero.

Ax − λx = 0 =⇒ (A − λI)x = 0

• Trivial solution is if x = 0.
• The non trivial solution occurs when det(A − λI) = 0.

• Are eigenvectors unique?
• If x is an eigenvector, then βx is also an eigenvector and βλ

is an eigenvalue

A(βx) = β(Ax) = β(λx) = λ(βx)

What are eigenvalues?
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• Expand the det(A − λI) = 0 for a 2 × 2 matrix

det(A − λI) = det
([

a11 a12
a21 a22

]
− λ

[
1 0
0 1

])
= 0

det
[

a11 − λ a12
a21 a22 − λ

]
= 0 =⇒ (a11−λ)(a22−λ)−a12a21 = 0

λ2 − λ(a11 + a22) + (a11a22 − a12a21) = 0

• For a 2 × 2 matrix, this is a simple quadratic equation with
two solutions (maybe complex).

• The “characteristic equation“ can be used to solve for x.

Calculating the Eigenvectors/ values
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• Consider,

A =

[
1 2
2 4

]
=⇒

{ λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0
λ2 − (1 + 4)λ+ (1 ∗ 4 − 2 ∗ 2) = 0
λ2 = (1 + 4)λ =⇒ λ = 0, λ = 5

• The corresponding eigenvectors can be computed as

λ = 0 =⇒
[[

1 2
2 4

]
−

[
0 0
0 0

]]
.

[
x
y

]
= 0 =⇒

[
1 2
2 4

]
.

[
x
y

]
=

[
1x + 2y
2x + 4y

]
=

[
0
0

]

λ = 5 =⇒
[[

1 2
2 4

]
−

[
5 0
0 5

]]
.

[
x
y

]
= 0 =⇒

[
−4 2
2 −1

]
.

[
x
y

]
=

[
−4x + 2y
2x − 1y

]
=

[
0
0

]

• For λ = 0, one possible solution is x = (2,−1)
• For λ = 5, one possible solution is x = (1, 2)

Eigenvalue example
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• Consider a correlation matrix, A

A =

[
1 0.75

0.75 1

]
=⇒ λ1 = 1.75, λ2 = 0.25

• Error ellipse with the major axis as the larger eigenvalue
and the minor axis as the smaller eigenvalue.

Physical Interpretation
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• Orthogonal directions of greatest variance in data.
• Projections along PC1 (Principal Component) discriminate

the data most along any one axis.

Physical Interpretation
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• First principal component is the direction of greatest
variability (covariance) in the data.

• Second is the next orthogonal (uncorrelated) direction of
greatest variability.

• So first remove all the variability along the first
component, and then find the next direction of
greatest variability.

• And so on . . .

• Thus each eigenvectors provides the directions of data
variances in decreasing order of eigenvalues.

Physical Interpretation
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• If A is symmetric and positive definite k × k matrix
(xTAx > 0) with λi (λi > 0) and ei, i = 1, 2, . . . , k being the k
eigenvalues and eigenvectors pairs, then

A
(k×k)

= λ1 e1
(k×1)

eT
1

(1×k)
+λ2 e2

(k×1)
eT

2
(1×k)

+. . .+λk ek
(k×1)

eT
k

(1×k)
=⇒ A =

k∑
i=1

λi ei
(k×1)

eT
i

(1×k)
= PΛPT

P
k×k

= [e1, e2, . . . , ek]; Λ
k×k

=


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk


• This is also called the eigen decomposition theorem.

• Any symmetric matrix can be reconstructed using its eigenvalues and
eigenvectors.

Spectral Decomposition Theorem
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• Let A be a symmetric, positive definite matrix

A =

[
2.2 0.4
0.4 2.8

]
=⇒ det(A − λI) = 0

=⇒ λ2 − 5λ+ (6.16 − 0.16) = (λ− 3)(λ− 2) = 0

• The eigenvectors for the corresponding eigenvalues are
eT

1 = [ 1√
5
, 2√

5
], eT

2 = [ 2√
5
, −1√

5
].

• Consequently,

A =

[
2.2 0.4
0.4 2.8

]
= 3

[
1√
5

2√
5

] [
1√
5

2√
5

]
+ 2

[
2√
5

−1√
5

] [
2√
5

−1√
5

]
=

[
0.6 1.2
1.2 2.4

]
+

[
1.6 −0.8
−0.8 0.4

]

Example of spectral decomposition
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• Eigendecomposition is A = PΛPT

− where P is an orthogonal matrix composed of eigenvectors
of A

• Decomposition is not unique when two eigenvalues are
the same.

• Eigenvalues really work for square matrices. Consider a
regression problem, we have input and output matrix and
m and k have different dimensions. Then, this method
fails. Solution: SVD.

• By convention order entries of Λ in descending order:
− Under this convention, eigendecomposition is unique if all

eigenvalues are unique

Eigendecomposition is not unique

32/50



• If A is rectangular m × k matrix of real numbers, then there
exists an m × m orthogonal matrix U and a k × k
orthogonal matrix V such that

A
(m×k)

= U
(m×m)

Λ
(m×k)

VT
(k×k)

UUT = VVT = I

• Λ is an m × k matrix where the (i, j)th entry
λi, i = j = 1, 2, . . . ,min(m, k) and the other entries are zero.
Physically, A equals rotation×stretching×rotation.

• The positive constants λi are the singular values of A.

• If A has rank r, then there exists r positive constants
λ1, λ2, . . . , λr; r orthogonal m × 1 unit vectors u1,u2, . . . ,ur
and r orthogonal k × 1 unit vectors v1, v2, . . . , vr such that

A =

r∑
i=1

λiuivT
i

.

Singular Value Decomposition
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• If A is symmetric and positive definite then
• SVD = Eigen decomposition

• EIG(λi) = SVD(λ2
i )

• Here AAT has an eigenvalue-eigenvector pair (λ2
i ,ui)

AAT = (UΛVT)(UΛVT)T

= UΛVTVΛUT

= UΛ2UT

• Alternatively, the vi are the eigenvectors of ATA with same
non zero eigenvalue λ2

i

ATA = VΛ2VT

Singular Value Decomposition (contd.)
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• Let A be a symmetric, positive definite matrix
• U can be computed as

A =

[
3 1 1
−1 3 1

]
=⇒ AAT =

[
3 1 1
−1 3 1

]3 −1
1 3
1 1

 =

[
11 1
1 11

]
det(AAT − γI) = 0 =⇒ γ1 = 12, γ2 = 10 =⇒ uT

1 =
[

1√
2
, 1√

2

]
, uT

2 =
[

1√
2
, −1√

2

]
• V can be computed as

A =

[
3 1 1
−1 3 1

]
=⇒ ATA =

3 −1
1 3
1 1

[
3 1 1
−1 3 1

]
=

10 0 2
0 10 4
2 4 2


det(ATA − γI) = 0 =⇒ γ1 = 12, γ2 = 10, γ3 = 0

=⇒ vT
1 =

[
1√
6
, 2√

6
, 1√

6

]
, vT

2 =
[

2√
5
, −1√

5
, 0
]
, vT

3 =
[

1√
30
, 2√

30
, −5√

30

]

Example for SVD
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• Taking λ2
1 = 12 and λ2

2 = 10, the singular value
decomposition of A is

A =

[
3 1 1
−1 3 1

]
=

√
12

[
1√
2

1√
2

] [
1√
6
, 2√

6
, 1√

6

]
+
√

10

[
1√
2

−1√
2

] [
2√
5
, −1√

5
, 0
]

• Thus, the U,V and Λ are computed by performing
eigendecomposition of AAT and ATA.

• Any matrix has a singular value decomposition but only
symmetric, positive definite matrices have an eigen
decomposition.

Example for SVD
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• SVD can be used to compute optimal low-rank
approximations of arbitrary matrices.

• Face recognition
• Represent the face images as eigenfaces and compute

distance between the query face image in the principal
component space.

• Data mining
• Latent Semantic Indexing for document extraction.

• Image Compression

What is the use of SVD?
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A digital image is a representation of a real image as a set of numbers that
can be stored and handled by digital computers.

The (i, j)th entry of the matrix comprises of (i, j)th pixel value, which
determines the intensity of light of the image.

Digital Images
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• Image Size: Number of rows * Number of columns.

• Image Resolution: Area covered by per pixel.

• Number of Color Planes: Grayscale image(1), RGB
image(3).

Image Attributes
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• An image is stored as a 200 × 200 matrix M with entries
between 0 and 1. The matrix M has rank 200.

• Select r > 200 as an approximation to the original M.
• As r is increased from 1 all the way to 200 the

reconstruction of M would improve i.e. approximation
error would reduce

• Advantage
• To send the matrix M, need to send 200 × 200 = 40000

numbers.
• To send an r = 35 approximation of M, need to send

35 + 35 ∗ 200 + 35 ∗ 200 = 14035 numbers
• 35 singular values.
• 35 left vectors, each having 200 entries.
• 35 right vectors, each having 200 entries.

Image Compression using SVD
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Data and Code is available at https://github.com/mad-stat/SVD-Applications

Compression in color images
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• Obtain the singular values (Λ) and the singular vectors (U,V) of the image using
SVD.

• The amount of variance explained by the singular values can be obtained by
plotting Λ2/sum(Λ2).

• Most of the variance is explained by first 35 singular vectors in this image.
• After 35 vectors the variance is very low and almost steady. After about 75

vectors it’s miniscule. Hence, we can compress the image without losing much
of the quality by retaining the first 75 vectors and discarding others.

SVD of RGB image
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Compressed image
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LINEAR ALGEBRA TO SPATIO-TEMPORAL
DATA ANALYSIS
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• Assume three matrices A,B, and C
• Consider equation

A = BC

• If any two matrices are known, the third one can be solved
• But let us consider the case when only one (say, A) is

known.
• Then A ∼= BC is called a matrix decomposition for A.
• Some very promising machine learning techniques are

based on this.

Matrix Decomposition
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• Graphically, the situation may be like this:

Example: spatio-temporal data
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Ref: Ilin, Valpola, Oja, Neural Networks (2006).

Global daily temperature
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Ref: Ilin, Valpola, Oja, Neural Networks (2006).

Global warming component
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• Consider a data matrix X ∈ Rn×m whose m columns (or n
rows) contain data vectors (signals, images, word
histograms, movie ratings, distances...).

• Linear latent variable model:

X ≈ WH

with latent (hidden) variables or sources H ∈ Rr×m and a
weight matrix W ∈ Rn×r.

• Typically, r < m,n for compression and feature extraction,
so an exact solution is not possible if X is full rank.

• Task: To discover the "optimal" matrices H and W given
only the observations X.

More Formally
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Textbook and References
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