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LINEAR ALGEBRA TO STATISTICAL
LEARNING

4/50



Importance of Linear Algebra in ML

Importance in ML: We convert input vectors (x1, .., X;) into outputs by a
series of linear transformations.

THIS 1S YOUR MACHINE LEARNING SYSTET1?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE COTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

But what is RIGHT? And is that enough? (Image: Machine Learning, XKCD)
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ML Models leveraging Linear Algebra

ML models Leveraging Linear Algebra

Attend the session!
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Ok Google, set alarm
for 5 AM.




What is linear algebra?

¢ Linear algebra is the branch of mathematics concerning linear
equations such as
mx1+ ...+ anxy =b

¢ In vector notation we say alx=1b
® (Called a linear transformation of x

® Linear algebra is fundamental to geometry, for defining objects such as
lines, planes, rotations.

Linear equation

mx1 + ...+ a,x, = b defines a
planein (xi,...,x,) space
Straight lines define common
solutions to equations.
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S | Standard Definitions

® Scalar: Single number (represented by x)

— In contrast to other objects in linear algebra, which are
usually arrays of numbers.
They can be real-valued or be integers.

® Vector: An array of numbers arranged in order
(represented by x)
X1
X2

Xn

— If each element is in R then x is in R".
We can think of vectors as points in space where each
element gives coordinate along an axis.
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S | Standard Definitions

® Matrices: 2-D array of numbers

— 5o each element identified by two indices.

- E.g,
A1l Arp
A=A A
[Az,l Azg]

where A;, is i row of A, A,; is j column of A.
— If A has shape of height m and width n with real-values
then A € R™*".

* Tensor: A tensor is an array of numbers arranged on a
regular grid with variable number of axes.
— Sometimes we need an array with more than two axes.
— E.g., an RGB color image has three axes.
— Element (i, , k) of tensor denoted by A; ; .
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Shapes of Tensors

1d-tensor

4d-tensor

2d-tensor

5d-tensor

3d-tensor

I\ B E\E\ BN

6d-tensor

10/50



S | Matrix Addition

* We can add matrices to each other if they have the same
shape, by adding corresponding elements

— If A and B have same shape (height m, width n)
C=A+B = Cij=A;;+By
* A scalar can be added to a matrix or multiplied by a scalar
D=aB+c = D;;j=aB;j+c

¢ Less conventional notation used in ML:
Vector added to matrix

C=A+b = CiJ':Ai,]'-f—bj

¢ Called broadcasting since vector b added to each row of A
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Multiplying Matrices

¢ For product C = AB to be defined, A has to have the same
no. of columns as the no. of rows of B

— If Ais of shape mxn and B is of shape nxp then matrix
product C is of shape mxp

C=AB — C,‘J = ZAikakvj

k
n n n

¢ Note that the standard product

of two matrices is not just the ° =

product of two individual ™ m m

elements. A e B = C

. . The Hadamard product operates on &

L4 SuCh a produCt dOeS exist and 1S identically shaped matrices and

produces a third matrix of the same
dimensions.

called the element-wise product
or the Hadamard product A ® B.

Wikipedia
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Alinear classifier y= Wzl+b

stretch pixels into single column

Vector x is converted
into vector y by
multiplying « by a matrix W

input image
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Slide Credit: Sargur N. Srihari (Hari): https://cedar.buffalo.edu/~srihari/
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* Ax=b

— where A € R"*" and b € R"
More explicitly (n equations in 7 unknowns)

Apxr +A1pxo + .+ A pxn = by

Ap1x1 +Appxo + ...+ Ap Xy = by

An,lxl +An,2x2 + o FApnxn = by

¢ Consider the following:

A1n .. A x1 by
A= | : Sl x=:| b=|:
Anl . Apn Xn by

Can view A as a linear transformation of vector x to vector b

® Sometimes we wish to solve for the unknowns x = (x1,...,x;) when A and b
provide constraints.
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i Identity and Inverse Matrices

® Matrix inversion is a powerful tool to analytically solve
Ax=b

* We can now solve Ax = b as follows:

Ax =D

A Ax=A"1p
Lix=A"1b
x=A"1

If A~! exists there are several methods for finding it.
Two closed-form solutions

1. Matrix inversion x = A~1b
2. Gaussian elimination
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@ Disadvantage of closed-form solutions

If A~! exists, the same A~! can be used for any given b
— But A~! cannot be represented with sufficient precision
— Itis not used in practice
Gaussian elimination also has disadvantages
numerical instability (division by small no.)
— O(n®) for n x n matrix
Software solutions use value of b in finding x

— E.g., difference (derivative) between b and output is used
iteratively

Least squares solutions of a m x n system

Ax=b = (ATA)x=ATh — x = (ATA)"1ATh = ATD.

mxn
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S | B&] Use of a Vector in Regression

* A design matrix
— N samples, D features

# hours # hours # classes

studied laying games _mi
Student #1 | 10 3 0 *
Student #2 8 20 r4

Student #3 | 5 1 5

e Feature vector has three dimensions

¢ This is a standard regression problem.

Grade

87
75

63
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¢ Used for measuring the size of a vector
* Norms map vectors to non-negative values

* Norm of vector x = [x1,...,x,]" is distance from origin to x

It is any function f that satisfies:

fx)=0 = x=0
fix+y) <f(x)+f(y) (Triangle Inequality)
VaeR, f(ax)=|al|f(x)

12
2.2
(x14x5)

X
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® Definition:

1/p

lxlly = | D xil?
i

— L2 Norm
¢ Called Euclidean norm
¢ Simply the Euclidean distance between the origin and the
point x
® written simply as ||x||
* Squared Euclidean norm is same as x” x
— L' Norm
¢ Useful when 0 and non-zero have to be distinguished
* Note that L? increases slowly near origin, e.g., 0.12=0.01

L°° Norm

|x||lcc = max|x;| (called max norm)
1
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Use of norm in Regression

® Linear Regression with x : a vector, w
: weight vector

y(x,w) = wotwix1+. . .+waxg = wlx

With non-linear basis functions ¢;

M-1

y(x,w) = wo + Z w;d;(x)

j=1

® Loss Function

1 A
Lw) =3 Z{y(xn,w)ftn}%rillwzll
n=1

Second term is a weighted norm
called a regularizer (to prevent
overfitting) 0 g 1
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@ Distance and Frobenius Norm

Norm is the length of a vector
Distance between two vectors (v, w)

— dist(v,w) = ||[v —w|| = /(01 —w1)2 + ... + (v — wy)?
Distance to origin would be sqrt of sum of squares

Similar to L2 norm

A= | YA
ij

Frobenius in ML

— Layers of neural network involve matrix multiplication
Regularization:
minimize Frobenius of weight matrices ||W; || over L layers

L
Jr=T+A>_[IWe

i=1
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]inpm nodes. ] hidden nodes ]\’ output nodes

Ly XV 141y x FHEL

h=flnet)  flaj=1/(1+¢")

Fig: Matrix Multiplication in Neural Net.

22/50



LINEAR ALGEBRA TO IMAGE PROCESSING
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S | What are eigenvalues?

* Given a matrix, A, x is the eigenvector and ) is the
corresponding eigenvalue if Ax = Ax.

® A must be a square matrix, the determinant of A — Al must
be equal to zero.

Ax—Xx=0 = (A—-A)x=0

© Trivial solution is if x = 0.
¢ The non trivial solution occurs when det(A — AI) = 0.

* Are eigenvectors unique?

¢ If x is an eigenvector, then Sx is also an eigenvector and SA
is an eigenvalue

A(Bx) = B(Ax) = B(Ax) = A(bx)
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@ Calculating the Eigenvectors/ values

* Expand the def(A — A\I) = 0 for a 2 x 2 matrix
10
b a))=0

:| =0 = (all—/\)(azz—)\)—alza21 =0

det(A — \I) = det <[““ ”12]
a1 4

et [1111 —A ap
a1 ap — A

A — Nay1 + axn) + (@112 — a1pa2) = 0

* For a 2 x 2 matrix, this is a simple quadratic equation with
two solutions (maybe complex).

* The “characteristic equation” can be used to solve for x.
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S | Eigenvalue example

e Consider,

1 2 M2 — (a11 + an)\ + (a11a20 — a12a21) =0
A:[Z 4} = N—(14+4HA+(1x4-2%2)=0
N=(14+4Hr — A=0,A=5

* The corresponding eigenvectors can be computed as
r=o =l b ol b= = B AL =R -
r=s = b L= AL

¢ For A = 0, one possible solution is x = (2, —1)
¢ For A = 5, one possible solution is x = (1,2)
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] Physical Interpretation

® Consider a correlation matrix, A

1 075
A= [0'75 1 } = M =175X=0.25

1.00 075
075 1.00

¢ Error ellipse with the major axis as the larger eigenvalue
and the minor axis as the smaller eigenvalue.
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S | Physical Interpretation

PC2 PC 1

Original Variable B

Original Variable A

* Orthogonal directions of greatest variance in data.

* Projections along PC1 (Principal Component) discriminate
the data most along any one axis.
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S | Physical Interpretation

First principal component is the direction of greatest
variability (covariance) in the data.

Second is the next orthogonal (uncorrelated) direction of
greatest variability.

* So first remove all the variability along the first
component, and then find the next direction of
greatest variability.

Andsoon...

Thus each eigenvectors provides the directions of data
variances in decreasing order of eigenvalues.
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S | ] Spectral Decomposition Theorem

* If A is symmetric and positive definite k x k matrix
(xTAx > 0) with \; (\; > 0) and e;,i = 1,2, ...,k being the k
eigenvalues and eigenvectors pairs, then

k

=)\ € EI +X e e; +. A e EZ - A:ZAi e; eiT = PAPT
(kxk) (kx1)(1xk) (kx1)(1xk) (kx1)(1xk) 07 kxXDxk)
N0 0
0 X 0
L o=leven.al; A= :
0 0 A

¢ This is also called the eigen decomposition theorem.

® Any symmetric matrix can be reconstructed using its eigenvalues and
eigenvectors.
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@ Example of spectral decomposition

* Let A be a symmetric, positive definite matrix

22 0.4
A= [0.4 2.8

] — det(A— ) =0

— XN —5\+(6.16—0.16) = (A —3)(A—2) =0

* The eigenvectors for the corresponding eigenvalues are

|l

el - [%a %]762 - [%a %]
* Consequently,

1
. 22 04 . % 1 2
A[0.4 2.8}3[2] 7 |2

V5
106 1.2 1.6 —-0.8
|12 24 -08 04

S
Sl

SIS

—+
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S | Eigendecomposition is not unique

Eigendecomposition is A = PAPT
— where P is an orthogonal matrix composed of eigenvectors
of A
Decomposition is not unique when two eigenvalues are
the same.

Eigenvalues really work for square matrices. Consider a
regression problem, we have input and output matrix and
m and k have different dimensions. Then, this method
fails. Solution: SVD.

By convention order entries of A in descending order:

— Under this convention, eigendecomposition is unique if all
eigenvalues are unique

32/50



@ Singular Value Decomposition

* If A is rectangular m x k matrix of real numbers, then there
exists an m x m orthogonal matrix U and a k x k
orthogonal matrix V such that

=u AV uut=vvl=1

(mxk) o (mxm)(mxk)(kxk)

° Aisanm x k matrix where the (i, )" entry
Ai,i=j=1,2,...,min(m,k) and the other entries are zero.
Physically, A equals rotation xstretching xrotation.

¢ The positive constants ); are the singular values of A.
* If A has rank r, then there exists r positive constants
A, A2, ..., Ay 7 orthogonal m x 1 unit vectors uy, up, ..., u,
and r orthogonal k x 1 unit vectors vy, vs, . .., v, such that

r
A= Z )\ilxli’(JZT
i=1
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S | Singular Value Decomposition (contd.)

* If A is symmetric and positive definite then
¢ SVD = Eigen decomposition
° EIG()\;) =SVD()\?)

* Here AAT has an eigenvalue-eigenvector pair (\?, u;)
AAT = (uAvhuAvHT
= UAVTVAUT
= un*u’

* Alternatively, the v; are the eigenvectors of ATA with same
non zero eigenvalue \?

ATA = vA2VT
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Example for SVD

® Let A be a symmetric, positive definite matrix
¢ U can be computed as

3 -1
(3 11 r 3 11 o
A_[—l 3 1]:““—[—1 3 1} [l 3}_[1 11}
11
det(AAT —4) =0 = 7 = 12,7, =10 = ul = [%%] ,u{:[

¢ V can be computed as
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¢ Taking A} = 12 and A} = 10, the singular value
decomposition of A is

3 11
A_[—l 3 1]
1 1
1 2 1 2 -1
iz «3] (250 2. %] +m[g] (2,200
V2 V2

® Thus, the U, V and A are computed by performing
eigendecomposition of AAT and ATA.

* Any matrix has a singular value decomposition but only
symmetric, positive definite matrices have an eigen
decomposition.

S Example for SVD
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@ What is the use of SVD?

SVD can be used to compute optimal low-rank
approximations of arbitrary matrices.
Face recognition
® Represent the face images as eigenfaces and compute
distance between the query face image in the principal
component space.
¢ Data mining
¢ Latent Semantic Indexing for document extraction.

Image Compression
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Digital Images

A digital image is a representation of a real image as a set of numbers that
can be stored and handled by digital computers.

148 123 52 107 123 162 172 123 64 BO - .-
147 130 92 05 908 130 171 155 160 163 - - .
141 118 121 148 117 107 144 137 136 134 ...
82 106 93 172 140 131 138 114 113 120 ...
57T 101 T2 54 1090 111 104 135 106 125 - -«
138 135 114 82 12 34 T€ 101 111 ---
138 102 128 159 168 147 116 129 124 117 ---
113 89 89 109 106 126 114 150 164 145 - - -
120 121 123 BT 85 TO 119 64 79 127 ...
145 141 143 134 111 124 117 113 64 112 ---

-

The (i,j)™ entry of the matrix comprises of (i, j)" pixel value, which
determines the intensity of light of the image.
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¢ Number of Color Planes: Grayscale image(1), RGB
image(3).
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@ Image Compression using SVD

* Animage is stored as a 200 x 200 matrix M with entries
between 0 and 1. The matrix M has rank 200.

* Select r > 200 as an approximation to the original M.

® Asrisincreased from 1 all the way to 200 the
reconstruction of M would improve i.e. approximation
error would reduce

* Advantage

¢ To send the matrix M, need to send 200 x 200 = 40000
numbers.

¢ To send an r = 35 approximation of M, need to send
35 4 35 % 200 + 35 % 200 = 14035 numbers

¢ 35 singular values.

® 35 left vectors, each having 200 entries.
® 35 right vectors, each having 200 entries.
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Data and Code is available at https://github.com/mad-stat/SVD- Applications
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S | D of RGB image

¢ Obtain the singular values (A) and the singular vectors (U, V) of the image using
SVD.

¢ The amount of variance explained by the singular values can be obtained by
plotting A2 /sum(A?).

Variance explained by sigular values

0.06

000 002 004
!
(»"" LA

T T T
50 100 150 200

[=}

Number of Singular Values

® Most of the variance is explained by first 35 singular vectors in this image.

® After 35 vectors the variance is very low and almost steady. After about 75
vectors it’s miniscule. Hence, we can compress the image without losing much

ini carding others
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LINEAR ALGEBRA TO SPATIO-TEMPORAL
DATA ANALYSIS
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S | Matrix Decomposition

® Assume three matrices A, B, and C
* Consider equation
A =BC
* If any two matrices are known, the third one can be solved

* But let us consider the case when only one (say, A) is
known.

® Then A = BCis called a matrix decomposition for A.

* Some very promising machine learning techniques are
based on this.
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] Example: spatio-temporal data

¢ Graphically, the situation may be like this:

time

time

®m® O 0 T w
™m0 W T v
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o° 60°E 120°E 180°W 120°W 60°W o°

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50

Ref: Ilin, Valpola, Oja, Neural Networks (2006).

47/50



S ] Global warming component

One row of
matrix C

Correspond
ing column
of matrix B

Ref: Ilin, Valpola, Oja, Neural Networks (2006).

48/50



S More Formally

¢ Consider a data matrix X € R"*™ whose m columns (or n
rows) contain data vectors (signals, images, word
histograms, movie ratings, distances...).

¢ Linear latent variable model:
X ~ WH

with latent (hidden) variables or sources H € R and a
weight matrix W € R™*7.

* Typically, r < m,n for compression and feature extraction,
so an exact solution is not possible if X is full rank.

¢ Task: To discover the "optimal"” matrices H and W given
only the observations X.
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S Textbook and References

Data Science, Statistics & ML Booklist

— - g
MATHEMATICS
MACHINE LEARNING w

MACHINE
Python \ LEARNING
Machine ‘
Learning

Packn Z, ANDREW,

Prepared by Dr. Tanujit Chakraborty
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