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Zico Kolter
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1 Basic Concepts and Notation

Linear algebra provides a way of compactly representing and operating on sets of linear
equations. For example, consider the following system of equations:

4x1 − 5x2 = −13
−2x1 + 3x2 = 9 .

This is two equations and two variables, so as you know from high school algebra, you
can find a unique solution for x1 and x2 (unless the equations are somehow degenerate, for
example if the second equation is simply a multiple of the first, but in the case above there
is in fact a unique solution). In matrix notation, we can write the system more compactly
as:

Ax = b

with A =

[

4 −5
−2 3

]

, b =

[

13
−9

]

.

As we will see shortly, there are many advantages (including the obvious space savings)
to analyzing linear equations in this form.

1.1 Basic Notation

We use the following notation:

• By A ∈ R
m×n we denote a matrix with m rows and n columns, where the entries of A

are real numbers.

• By x ∈ R
n, we denote a vector with n entries. Usually a vector x will denote a column

vector — i.e., a matrix with n rows and 1 column. If we want to explicitly represent
a row vector — a matrix with 1 row and n columns — we typically write xT (here
xT denotes the transpose of x, which we will define shortly).

1



• The ith element of a vector x is denoted xi:

x =











x1

x2
...

xn











.

• We use the notation aij (or Aij, Ai,j, etc) to denote the entry of A in the ith row and
jth column:

A =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn











.

• We denote the jth column of A by aj or A:,j:

A =





| | |
a1 a2 · · · an

| | |



 .

• We denote the ith row of A by aT
i or Ai,::

A =











— aT
1 —

— aT
2 —
...

— aT
m —











.

• Note that these definitions are ambiguous (for example, the a1 and aT
1 in the previous

two definitions are not the same vector). Usually the meaning of the notation should
be obvious from its use.

2 Matrix Multiplication

The product of two matrices A ∈ R
m×n and B ∈ R

n×p is the matrix

C = AB ∈ R
m×p,

where

Cij =
n
∑

k=1

AikBkj.

Note that in order for the matrix product to exist, the number of columns in A must equal
the number of rows in B. There are many ways of looking at matrix multiplication, and
we’ll start by examining a few special cases.
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2.1 Vector-Vector Products

Given two vectors x, y ∈ R
n, the quantity xT y, sometimes called the inner product or dot

product of the vectors, is a real number given by

xT y ∈ R =
n
∑

i=1

xiyi.

Note that it is always the case that xT y = yT x.
Given vectors x ∈ R

m, y ∈ R
n (they no longer have to be the same size), xyT is called

the outer product of the vectors. It is a matrix whose entries are given by (xyT )ij = xiyj,
i.e.,

xyT ∈ R
m×n =











x1y1 x1y2 · · · x1yn

x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn











.

2.2 Matrix-Vector Products

Given a matrix A ∈ R
m×n and a vector x ∈ R

n, their product is a vector y = Ax ∈ R
m.

There are a couple ways of looking at matrix-vector multiplication, and we will look at them
both.

If we write A by rows, then we can express Ax as,

y =











— aT
1 —

— aT
2 —
...

— aT
m —











x =











aT
1 x

aT
2 x
...

aT
mx











.

In other words, the ith entry of y is equal to the inner product of the ith row of A and x,
yi = aT

i x.
Alternatively, lets write A in column form. In this case we see that,

y =





| | |
a1 a2 · · · an

| | |















x1

x2
...

xn











=



 a1



x1 +



 a2



x2 + . . . +



 an



xn .

In other words, y is a linear combination of the columns of A, where the coefficients of
the linear combination are given by the entries of x.

So far we have been multiplying on the right by a column vector, but it is also possible
to multiply on the left by a row vector. This is written, yT = xT A for A ∈ R

m×n, x ∈ R
m,

and y ∈ R
n. As before, we can express yT in two obvious ways, depending on whether we
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express A in terms on its rows or columns. In the first case we express A in terms of its
columns, which gives

yT = xT





| | |
a1 a2 · · · an

| | |



 =
[

xT a1 xT a2 · · · xT an

]

which demonstrates that the ith entry of yT is equal to the inner product of x and the ith
column of A.

Finally, expressing A in terms of rows we get the final representation of the vector-matrix
product,

yT =
[

x1 x2 · · · xn

]











— aT
1 —

— aT
2 —
...

— aT
m —











= x1

[

— aT
1 —

]

+ x2

[

— aT
2 —

]

+ ... + xn

[

— aT
n —

]

so we see that yT is a linear combination of the rows of A, where the coefficients for the
linear combination are given by the entries of x.

2.3 Matrix-Matrix Products

Armed with this knowledge, we can now look at four different (but, of course, equivalent)
ways of viewing the matrix-matrix multiplication C = AB as defined at the beginning of this
section. First we can view matrix-matrix multiplication as a set of vector-vector products.
The most obvious viewpoint, which follows immediately from the definition, is that the
i, j entry of C is equal to the inner product of the ith row of A and the jth row of B.
Symbolically, this looks like the following,

C = AB =











— aT
1 —

— aT
2 —
...

— aT
m —















| | |
b1 b2 · · · bp

| | |



 =











aT
1 b1 aT

1 b2 · · · aT
1 bp

aT
2 b1 aT

2 b2 · · · aT
2 bp

...
...

. . .
...

aT
mb1 aT

mb2 · · · aT
mbp











.

Remember that since A ∈ R
m×n and B ∈ R

n×p, ai ∈ R
n and bj ∈ R

n, so these inner products
all make sense. This is the most “natural” representation when we represent A by rows and
B by columns. Alternatively, we can represent A by columns, and B by rows, which leads
to the interpretation of AB as a sum of outer products. Symbolically,

C = AB =





| | |
a1 a2 · · · an

| | |















— bT
1 —

— bT
2 —
...

— bT
n —











=
n
∑

i=1

aib
T
i .
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Put another way, AB is equal to the sum, over all i, of the outer product of the ith column
of A and the ith row of B. Since, in this case, ai ∈ R

m and bi ∈ R
p, the dimension of the

outer product aib
T
i is m × p, which coincides with the dimension of C.

Second, we can also view matrix-matrix multiplication as a set of matrix-vector products.
Specifically, if we represent B by columns, we can view the columns of C as matrix-vector
products between A and the columns of B. Symbolically,

C = AB = A





| | |
b1 b2 · · · bp

| | |



 =





| | |
Ab1 Ab2 · · · Abp

| | |



 .

Here the ith column of C is given by the matrix-vector product with the vector on the right,
ci = Abi. These matrix-vector products can in turn be interpreted using both viewpoints
given in the previous subsection. Finally, we have the analogous viewpoint, where we repre-
sent A by rows, and view the rows of C as the matrix-vector product between the rows of A
and C. Symbolically,

C = AB =











— aT
1 —

— aT
2 —
...

— aT
m —











B =











— aT
1 B —

— aT
2 B —
...

— aT
mB —











.

Here the ith row of C is given by the matrix-vector product with the vector on the left,
cT
i = aT

i B.
It may seem like overkill to dissect matrix multiplication to such a large degree, especially

when all these viewpoints follow immediately from the initial definition we gave (in about a
line of math) at the beginning of this section. However, virtually all of linear algebra deals
with matrix multiplications of some kind, and it is worthwhile to spend some time trying to
develop an intuitive understanding of the viewpoints presented here.

In addition to this, it is useful to know a few basic properties of matrix multiplication at
a higher level:

• Matrix multiplication is associative: (AB)C = A(BC).

• Matrix multiplication is distributive: A(B + C) = AB + AC.

• Matrix multiplication is, in general, not commutative; that is, it can be the case that
AB 6= BA.

3 Operations and Properties

In this section we present several operations and properties of matrices and vectors. Hope-
fully a great deal of this will be review for you, so the notes can just serve as a reference for
these topics.
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3.1 The Identity Matrix and Diagonal Matrices

The identity matrix , denoted I ∈ R
n×n, is a square matrix with ones on the diagonal and

zeros everywhere else. That is,

Iij =

{

1 i = j
0 i 6= j

It has the property that for all A ∈ R
m×n,

AI = A = IA

where the size of I is determined by the dimensions of A so that matrix multiplication is
possible.

A diagonal matrix is a matrix where all non-diagonal elements are 0. This is typically
denoted D = diag(d1, d2, . . . , dn), with

Dij =

{

di i = j
0 i 6= j

Clearly, I = diag(1, 1, . . . , 1).

3.2 The Transpose

The transpose of a matrix results from “flipping” the rows and columns. Given a matrix
A ∈ R

m×n, is transpose, written AT , is defined as

AT ∈ R
n×m, (AT )ij = Aji .

We have in fact already been using the transpose when describing row vectors, since the
transpose of a column vector is naturally a row vector.

The following properties of transposes are easily verified:

• (AT )T = A

• (AB)T = BT AT

• (A + B)T = AT + BT

3.3 Symmetric Matrices

A square matrix A ∈ R
n×n is symmetric if A = AT . It is anti-symmetric if A = −AT .

It is easy to show that for any matrix A ∈ R
n×n, the matrix A + AT is symmetric and the

matrix A−AT is anti-symmetric. From this it follows that any square matrix A ∈ R
n×n can

be represented as a sum of a symmetric matrix and an anti-symmetric matrix, since

A =
1

2
(A + AT ) +

1

2
(A − AT )
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and the first matrix on the right is symmetric, while the second is anti-symmetric. It turns out
that symmetric matrices occur a great deal in practice, and they have many nice properties
which we will look at shortly. It is common to denote the set of all symmetric matrices of
size n as S

n, so that A ∈ S
n means that A is a symmetric n × n matrix;

3.4 The Trace

The trace of a square matrix A ∈ R
n×n, denoted tr(A) (or just trA if the parentheses are

obviously implied), is the sum of diagonal elements in the matrix:

trA =
n
∑

i=1

Aii.

As described in the CS229 lecture notes, the trace has the following properties (included
here for the sake of completeness):

• For A ∈ R
n×n, trA = trAT .

• For A,B ∈ R
n×n, tr(A + B) = trA + trB.

• For A ∈ R
n×n, t ∈ R, tr(tA) = t trA.

• For A,B such that AB is square, trAB = trBA.

• For A,B,C such that ABC is square, trABC = trBCA = trCAB, and so on for the
product of more matrices.

3.5 Norms

A norm of a vector ‖x‖ is informally measure of the “length” of the vector. For example,
we have the commonly-used Euclidean or ℓ2 norm,

‖x‖2 =

√

√

√

√

n
∑

i=1

x2
i .

Note that ‖x‖2
2 = xT x.

More formally, a norm is any function f : R
n → R that satisfies 4 properties:

1. For all x ∈ R
n, f(x) ≥ 0 (non-negativity).

2. f(x) = 0 if and only if x = 0 (definiteness).

3. For all x ∈ R
n, t ∈ R, f(tx) = |t|f(x) (homogeneity).

4. For all x, y ∈ R
n, f(x + y) ≤ f(x) + f(y) (triangle inequality).
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Other examples of norms are the ℓ1 norm,

‖x‖1 =
n
∑

i=1

|xi|

and the ℓ∞ norm,
‖x‖∞ = maxi|xi|.

In fact, all three norms presented so far are examples of the family of ℓp norms, which are
parameterized by a real number p ≥ 1, and defined as

‖x‖p =

(

n
∑

i=1

|xi|
p

)1/p

.

Norms can also be defined for matrices, such as the Frobenius norm,

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

A2
ij =

√

tr(AT A).

Many other norms exist, but they are beyond the scope of this review.

3.6 Linear Independence and Rank

A set of vectors {x1, x2, . . . xn} is said to be (linearly) independent if no vector can be
represented as a linear combination of the remaining vectors. Conversely, a vector which
can be represented as a linear combination of the remaining vectors is said to be (linearly)
dependent . For example, if

xn =
n−1
∑

i=1

αixi

for some {α1, . . . , αn−1} then xn is dependent on {x1, . . . , xn−1}; otherwise, it is independent
of {x1, . . . , xn−1}.

The column rank of a matrix A is the largest number of columns of A that constitute
linearly independent set. This is often referred to simply as the number of linearly indepen-
dent columns, but this terminology is a little sloppy, since it is possible that any vector in
some set {x1, . . . xn} can be expressed as a linear combination of the remaining vectors, even
though some subset of the vectors might be independent. In the same way, the row rank
is the largest number of rows of A that constitute a linearly independent set.

It is a basic fact of linear algebra, that for any matrix A, columnrank(A) = rowrank(A),
and so this quantity is simply refereed to as the rank of A, denoted as rank(A). The
following are some basic properties of the rank:

• For A ∈ R
m×n, rank(A) ≤ min(m,n). If rank(A) = min(m,n), then A is said to be

full rank .
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• For A ∈ R
m×n, rank(A) = rank(AT ).

• For A ∈ R
m×n, B ∈ R

n×p, rank(AB) ≤ min(rank(A), rank(B)).

• For A,B ∈ R
m×n, rank(A + B) ≤ rank(A) + rank(B).

3.7 The Inverse

The inverse of a square matrix A ∈ R
n×n is denoted A−1, and is the unique matrix such

that
A−1A = I = AA−1.

It turns out that A−1 may not exist for some matrices A; we say A is invertible or non-
singular if A−1 exists and non-invertible or singular otherwise. One condition for
invertibility we already know: it is possible to show that A−1 exists if and only if A is full
rank. We will soon see that there are many alternative sufficient and necessary conditions, in
addition to full rank, for invertibility. The following are properties of the inverse; all assume
that A,B ∈ R

n×n are non-singular:

• (A−1)−1 = A

• If Ax = b, we can multiply by A−1 on both sides to obtain x = A−1b. This demonstrates
the inverse with respect to the original system of linear equalities we began this review
with.

• (AB)−1 = B−1A−1

• (A−1)T = (AT )−1. For this reason this matrix is often denoted A−T .

3.8 Orthogonal Matrices

Two vectors x, y ∈ R
n are orthogonal if xT y = 0. A vector x ∈ R

n is normalized if
‖x‖2 = 1. A square matrix U ∈ R

n×n is orthogonal (note the different meanings when
talking about vectors versus matrices) if all its columns are orthogonal to each other and are
normalized (the columns are then referred to as being orthonormal).

It follows immediately from the definition of orthogonality and normality that

UT U = I = UUT .

In other words, the inverse of an orthogonal matrix is its transpose. Note that if U is not
square — i.e., U ∈ R

m×n, n < m — but its columns are still orthonormal, then UT U = I,
but UUT 6= I. We generally only use the term orthogonal to describe the previous case,
where U is square.

Another nice property of orthogonal matrices is that operating on a vector with an
orthogonal matrix will not change its Euclidean norm, i.e.,

‖Ux‖2 = ‖x‖2

for any x ∈ R
n, U ∈ R

n×n orthogonal.
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3.9 Range and Nullspace of a Matrix

The span of a set of vectors {x1, x2, . . . xn} is the set of all vectors that can be expressed as
a linear combination of {x1, . . . , xn}. That is,

span({x1, . . . xn}) =

{

v : v =
n
∑

i=1

αixi, αi ∈ R

}

.

It can be shown that if {x1, . . . , xn} is a set of n linearly independent vectors, where each
xi ∈ R

n, then span({x1, . . . xn}) = R
n. In other words, any vector v ∈ R

n can be written as
a linear combination of x1 through xn. The projection of a vector y ∈ R

m onto the span
of {x1, . . . , xn} (here we assume xi ∈ R

m) is the vector v ∈ span({x1, . . . xn}) , such that
v as close as possible to y, as measured by the Euclidean norm ‖v − y‖2. We denote the
projection as Proj(y; {x1, . . . , xn}) and can define it formally as,

Proj(y; {x1, . . . xn}) = argminv∈span({x1,...,xn})‖y − v‖2.

The range (sometimes also called the columnspace) of a matrix A ∈ R
m×n, denoted

R(A), is the the span of the columns of A. In other words,

R(A) = {v ∈ R
m : v = Ax, x ∈ R

n}.

Making a few technical assumptions (namely that A is full rank and that n < m), the
projection of a vector y ∈ R

m onto the range of A is given by,

Proj(y; A) = argminv∈R(A)‖v − y‖2 = A(AT A)−1AT y .

This last equation should look extremely familiar, since it is almost the same formula we
derived in class (and which we will soon derive again) for the least squares estimation of
parameters. Looking at the definition for the projection, it should not be too hard to
convince yourself that this is in fact the same objective that we minimized in our least
squares problem (except for a squaring of the norm, which doesn’t affect the optimal point)
and so these problems are naturally very connected. When A contains only a single column,
a ∈ R

m, this gives the special case for a projection of a vector on to a line:

Proj(y; a) =
aaT

aT a
y .

The nullspace of a matrix A ∈ R
m×n, denoted N (A) is the set of all vectors that equal

0 when multiplied by A, i.e.,

N (A) = {x ∈ R
n : Ax = 0}.

Note that vectors in R(A) are of size m, while vectors in the N (A) are of size n, so vectors
in R(AT ) and N (A) are both in R

n. In fact, we can say much more. It turns out that
{

w : w = u + v, u ∈ R(AT ), v ∈ N (A)
}

= R
n and R(AT ) ∩N (A) = ∅ .

In other words, R(AT ) and N (A) are disjoint subsets that together span the entire space of
R

n. Sets of this type are called orthogonal complements , and we denote this R(AT ) =
N (A)⊥.
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3.10 The Determinant

The determinant of a square matrix A ∈ R
n×n, is a function det : R

n×n → R, and is
denoted |A| or detA (like the trace operator, we usually omit parentheses). The full formula
for the determinant gives little intuition about its meaning, so we instead first give three
defining properties of the determinant, from which all the rest follow (including the general
formula):

1. The determinant of the identity is 1, |I| = 1.

2. Given a matrix A ∈ R
n×n, if we multiply a single row in A by a scalar t ∈ R, then the

determinant of the new matrix is t|A|,
∣

∣

∣

∣

∣

∣

∣

∣

∣











— t aT
1 —

— aT
2 —
...

— aT
m —











∣

∣

∣

∣

∣

∣

∣

∣

∣

= t|A| .

3. If we exchange any two rows aT
i and aT

j of A, then the determinant of the new matrix
is −|A|, for example

∣

∣

∣

∣

∣

∣

∣

∣

∣











— aT
2 —

— aT
1 —
...

— aT
m —











∣

∣

∣

∣

∣

∣

∣

∣

∣

= −|A| .

These properties, however, also give very little intuition about the nature of the deter-
minant, so we now list several properties that follow from the three properties above:

• For A ∈ R
n×n, |A| = |AT |.

• For A,B ∈ R
n×n, |AB| = |A||B|.

• For A ∈ R
n×n, |A| = 0 if and only if A is singular (i.e., non-invertible).

• For A ∈ R
n×n and A non-singular, |A|−1 = 1/|A|.

Before given the general definition for the determinant, we define, for A ∈ R
n×n, A\i,\j ∈

R
(n−1)×(n−1) to be the matrix that results from deleting the ith row and jth column from A.

The general (recursive) formula for the determinant is

|A| =
n
∑

i=1

(−1)i+jaij|A\i,\j| (for any j ∈ 1, . . . , n)

=
n
∑

j=1

(−1)i+jaij|A\i,\j| (for any i ∈ 1, . . . , n)

11



with the initial case that |A| = a11 for A ∈ R
1×1. If we were to expand this formula

completely for A ∈ R
n×n, there would be a total of n! (n factorial) different terms. For this

reason, we hardly even explicitly write the complete equation of the determinant for matrices
bigger than 3 × 3. However, the equations for determinants of matrices up to size 3 × 3 are
fairly common, and it is good to know them:

|[a11]| = a11
∣

∣

∣

∣

[

a11 a12

a21 a22

]
∣

∣

∣

∣

= a11a22 − a12a21

∣

∣

∣

∣

∣

∣





a11 a12 a13

a21 a22 a23

a31 a32 a33





∣

∣

∣

∣

∣

∣

=
a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31

The classical adjoint (often just called the adjoint) of a matrix A ∈ R
n×n, is denoted

adj(A), and defined as

adj(A) ∈ R
n×n, (adj(A))ij = (−1)i+j|A\j,\i|

(note the switch in the indices A\j,\i). It can be shown that for any nonsingular A ∈ R
n×n,

A−1 =
1

|A|
adj(A) .

While this is a nice “explicit” formula for the inverse of matrix, we should note that, numer-
ically, there are in fact much more efficient ways of computing the inverse.

3.11 Quadratic Forms and Positive Semidefinite Matrices

Given a matrix square A ∈ R
n×n and a vector x ∈ R, the scalar value xT Ax is called a

quadratic form . Written explicitly, we see that

xT Ax =
n
∑

i=1

n
∑

j=1

Aijxixj .

Note that,

xT Ax = (xT Ax)T = xT AT x = xT (
1

2
A +

1

2
AT )x

i.e., only the symmetric part of A contributes to the quadratic form. For this reason, we
often implicitly assume that the matrices appearing in a quadratic form are symmetric.

We give the following definitions:

• A symmetric matrix A ∈ S
n is positive definite (PD) if for all non-zero vectors

x ∈ R
n, xT Ax > 0. This is usually denoted A ≻ 0 (or just A > 0), and often times the

set of all positive definite matrices is denoted S
n
++.
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• A symmetric matrix A ∈ S
n is position semidefinite (PSD) if for all vectors xT Ax ≥

0. This is written A � 0 (or just A ≥ 0), and the set of all positive semidefinite matrices
is often denoted S

n
+.

• Likewise, a symmetric matrix A ∈ S
n is negative definite (ND), denoted A ≺ 0 (or

just A < 0) if for all non-zero x ∈ R
n, xT Ax < 0.

• Similarly, a symmetric matrix A ∈ S
n is negative semidefinite (NSD), denoted

A � 0 (or just A ≤ 0) if for all x ∈ R
n, xT Ax ≤ 0.

• Finally, a symmetric matrix A ∈ S
n is indefinite , if it is neither positive semidefinite

nor negative semidefinite — i.e., if there exists x1, x2 ∈ R
n such that xT

1 Ax1 > 0 and
xT

2 Ax2 < 0.

It should be obvious that if A is positive definite, then −A is negative definite and vice
versa. Likewise, if A is positive semidefinite then −A is negative semidefinite and vice versa.
If A is indefinite, then so is −A. It can also be shown that positive definite and negative
definite matrices are always invertible.

Finally, there is one type of positive definite matrix that comes up frequently, and so
deserves some special mention. Given any matrix A ∈ R

m×n (not necessarily symmetric or
even square), the matrix G = AT A (sometimes called a Gram matrix ) is always positive
semidefinite. Further, if m ≥ n (and we assume for convenience that A is full rank), then
G = AT A is positive definite.

3.12 Eigenvalues and Eigenvectors

Given a square matrix A ∈ R
n×n, we say that λ ∈ C is an eigenvalue of A and x ∈ C

n is
the corresponding eigenvector 1 if

Ax = λx, x 6= 0 .

Intuitively, this definition means that multiplying A by the vector x results in a new vector
that points in the same direction as x, but scaled by a factor λ. Also note that for any
eigenvector x ∈ C

n, and scalar t ∈ C, A(cx) = cAx = cλx = λ(cx), so cx is also an
eigenvector. For this reason when we talk about “the” eigenvector associated with λ, we
usually assume that the eigenvector is normalized to have length 1 (this still creates some
ambiguity, since x and −x will both be eigenvectors, but we will have to live with this).

We can rewrite the equation above to state that (λ, x) is an eigenvalue-eigenvector pair
of A if,

(λI − A)x = 0, x 6= 0 .

1Note that λ and the entries of x are actually in C, the set of complex numbers, not just the reals; we

will see shortly why this is necessary. Don’t worry about this technicality for now, you can think of complex

vectors in the same way as real vectors.
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But (λI − A)x = 0 has a non-zero solution to x if and only if (λI − A) has a non-empty
nullspace, which is only the case if (λI − A) is singular, i.e.,

|(λI − A)| = 0 .

We can now use the previous definition of the determinant to expand this expression
into a (very large) polynomial in λ, where λ will have maximum degree n. We then find
the n (possibly complex) roots of this polynomial to find the n eigenvalues λ1, . . . , λn. To
find the eigenvector corresponding to the eigenvalue λi, we simply solve the linear equation
(λiI − A)x = 0. It should be noted that this is not the method which is actually used
in practice to numerically compute the eigenvalues and eigenvectors (remember that the
complete expansion of the determinant has n! terms); it is rather a mathematical argument.

The following are properties of eigenvalues and eigenvectors (in all cases assume A ∈ R
n×n

has eigenvalues λi, . . . , λn and associated eigenvectors x1, . . . xn):

• The trace of a A is equal to the sum of its eigenvalues,

trA =
n
∑

i=1

λi .

• The determinant of A is equal to the product of its eigenvalues,

|A| =
n
∏

i=1

λi .

• The rank of A is equal to the number of non-zero eigenvalues of A.

• If A is non-singular then 1/λi is an eigenvalue of A−1 with associated eigenvector xi,
i.e., A−1xi = (1/λi)xi.

• The eigenvalues of a diagonal matrix D = diag(d1, . . . dn) are just the diagonal entries
d1, . . . dn.

We can write all the eigenvector equations simultaneously as

AX = XΛ

where the columns of X ∈ R
n×n are the eigenvectors of A and Λ is a diagonal matrix whose

entries are the eigenvalues of A, i.e.,

X ∈ R
n×n =





| | |
x1 x2 · · · xn

| | |



 , Λ = diag(λ1, . . . , λn) .

If the eigenvectors of A are linearly independent, then the matrix X will be invertible, so
A = XΛX−1. A matrix that can be written in this form is called diagonalizable .
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3.13 Eigenvalues and Eigenvectors of Symmetric Matrices

Two remarkable properties come about when we look at the eigenvalues and eigenvectors
of a symmetric matrix A ∈ S

n. First, it can be shown that all the eigenvalues of A are
real. Secondly, the eigenvectors of A are orthonormal, i.e., the matrix X defined above is an
orthogonal matrix (for this reason, we denote the matrix of eigenvectors as U in this case).
We can therefore represent A as A = UΛUT , remembering from above that the inverse of
an orthogonal matrix is just its transpose.

Using this, we can show that the definiteness of a matrix depends entirely on the sign of
its eigenvalues. Suppose A ∈ S

n = UΛUT . Then

xT Ax = xT UΛUT x = yT Λy =
n
∑

i=1

λiy
2
i

where y = UT x (and since U is full rank, any vector y ∈ R
n can be represented in this form).

Because y2
i is always positive, the sign of this expression depends entirely on the λi’s. If all

λi > 0, then the matrix is positive definite; if all λi ≥ 0, it is positive semidefinite. Likewise,
if all λi < 0 or λi ≤ 0, then A is negative definite or negative semidefinite respectively.
Finally, if A has both positive and negative eigenvalues, it is indefinite.

An application where eigenvalues and eigenvectors come up frequently is in maximizing
some function of a matrix. In particular, for a matrix A ∈ S

n, consider the following
maximization problem,

maxx∈Rn xT Ax subject to ‖x‖2
2 = 1

i.e., we want to find the vector (of norm 1) which maximizes the quadratic form. Assuming
the eigenvalues are ordered as λ1 ≥ λ2 ≥ . . . ≥ λn, the optimal x for this optimization
problem is x1, the eigenvector corresponding to λ1. In this case the maximal value of the
quadratic form is λ1. Similarly, the optimal solution to the minimization problem,

minx∈Rn xT Ax subject to ‖x‖2
2 = 1

is xn, the eigenvector corresponding to λn, and the minimal value is λn. This can be proved by
appealing to the eigenvector-eigenvalue form of A and the properties of orthogonal matrices.
However, in the next section we will see a way of showing it directly using matrix calculus.

4 Matrix Calculus

While the topics in the previous sections are typically covered in a standard course on linear
algebra, one topic that does not seem to be covered very often (and which we will use
extensively) is the extension of calculus to the vector setting. Despite the fact that all the
actual calculus we use is relatively trivial, the notation can often make things look much
more difficult than they are. In this section we present some basic definitions of matrix
calculus and provide a few examples.
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4.1 The Gradient

Suppose that f : R
m×n → R is a function that takes as input a matrix A of size m × n and

returns a real value. Then the gradient of f (with respect to A ∈ R
m×n) is the matrix of

partial derivatives, defined as:

∇Af(A) ∈ R
m×n =













∂f(A)
∂A11

∂f(A)
∂A12

· · · ∂f(A)
∂A1n

∂f(A)
∂A21

∂f(A)
∂A22

· · · ∂f(A)
∂A2n

...
...

. . .
...

∂f(A)
∂Am1

∂f(A)
∂Am2

· · · ∂f(A)
∂Amn













i.e., an m × n matrix with

(∇Af(A))ij =
∂f(A)

∂Aij

.

Note that the size of ∇Af(A) is always the same as the size of A. So if, in particular, A is
just a vector x ∈ R

n,

∇xf(x) =













∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn













.

It is very important to remember that the gradient of a function is only defined if the function
is real-valued, that is, if it returns a scalar value. We can not, for example, take the gradient
of Ax,A ∈ R

n×n with respect to x, since this quantity is vector-valued.
It follows directly from the equivalent properties of partial derivatives that:

• ∇x(f(x) + g(x)) = ∇xf(x) + ∇xg(x).

• For t ∈ R, ∇x(t f(x)) = t∇xf(x).

It is a little bit trickier to determine what the proper expression is for ∇xf(Ax), A ∈ R
n×n,

but this is doable as well (if fact, you’ll have to work this out for a homework problem).

4.2 The Hessian

Suppose that f : R
n → R is a function that takes a vector in R

n and returns a real number.
Then the Hessian matrix with respect to x, written ∇2

xf(x) or simply as H is the n × n
matrix of partial derivatives,

∇2
xf(x) ∈ R

n×n =













∂2f(x)

∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2

2

· · · ∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n













.
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In other words, ∇2
xf(x) ∈ R

n×n, with

(∇2
xf(x))ij =

∂2f(x)

∂xi∂xj

.

Note that the Hessian is always symmetric, since

∂2f(x)

∂xi∂xj

=
∂2f(x)

∂xj∂xi

.

Similar to the gradient, the Hessian is defined only when f(x) is real-valued.
It is natural to think of the gradient as the analogue of the first derivative for functions

of vectors, and the Hessian as the analogue of the second derivative (and the symbols we
use also suggest this relation). This intuition is generally correct, but there a few caveats to
keep in mind.

First, for real-valued functions of one variable f : R → R, it is a basic definition that the
second derivative is the derivative of the first derivative, i.e.,

∂2f(x)

∂x2
=

∂

∂x

∂

∂x
f(x).

However, for functions of a vector, the gradient of the function is a vector, and we cannot
take the gradient of a vector — i.e.,

∇x∇xf(x) = ∇x













∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂x1













and this expression is not defined. Therefore, it is not the case that the Hessian is the
gradient of the gradient. However, this is almost true, in the following sense: If we look at
the ith entry of the gradient (∇xf(x))i = ∂f(x)/∂xi, and take the gradient with respect to
x we get

∇x
∂f(x)

∂xi

=













∂2f(x)
∂xi∂x1

∂2f(x)
∂xi∂x2

...
∂f(x)

∂xi∂xn













which is the ith column (or row) of the Hessian. Therefore,

∇2
xf(x) =

[

∇x(∇xf(x))1 ∇x(∇xf(x))2 · · · ∇x(∇xf(x))n

]

.

If we don’t mind being a little bit sloppy we can say that (essentially) ∇2
xf(x) = ∇x(∇xf(x))T ,

so long as we understand that this really means taking the gradient of each entry of (∇xf(x))T ,
not the gradient of the whole vector.
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Finally, note that while we can take the gradient with respect to a matrix A ∈ R
n, for

the purposes of this class we will only consider taking the Hessian with respect to a vector
x ∈ R

n. This is simply a matter of convenience (and the fact that none of the calculations
we do require us to find the Hessian with respect to a matrix), since the Hessian with respect
to a matrix would have to represent all the partial derivatives ∂2f(A)/(∂Aij∂Akℓ), and it is
rather cumbersome to represent this as a matrix.

4.3 Gradients and Hessians of Quadratic and Linear Functions

Now let’s try to determine the gradient and Hessian matrices for a few simple functions. It
should be noted that all the gradients given here are special cases of the gradients given in
the CS229 lecture notes.

For x ∈ R
n, let f(x) = bT x for some known vector b ∈ R

n. Then

f(x) =
n
∑

i=1

bixi

so
∂f(x)

∂xk

=
∂

∂xk

n
∑

i=1

bixi = bk.

From this we can easily see that ∇xb
T x = b. This should be compared to the analogous

situation in single variable calculus, where ∂/(∂x) ax = a.
Now consider the quadratic function f(x) = xT Ax for A ∈ S

n. Remember that

f(x) =
n
∑

i=1

n
∑

j=1

Aijxixj

so
∂f(x)

∂xk

=
∂

∂xk

n
∑

i=1

n
∑

j=1

Aijxixj =
n
∑

i=1

Aikxi +
n
∑

j=1

Akjxj = 2
n
∑

i=1

Akixi

where the last equality follows since A is symmetric (which we can safely assume, since it is
appearing in a quadratic form). Note that the kth entry of ∇xf(x) is just the inner product
of the kth row of A and x. Therefore, ∇xx

T Ax = 2Ax. Again, this should remind you of
the analogous fact in single-variable calculus, that ∂/(∂x) ax2 = 2ax.

Finally, lets look at the Hessian of the quadratic function f(x) = xT Ax (it should be
obvious that the Hessian of a linear function bT x is zero). This is even easier than determining
the gradient of the function, since

∂2f(x)

∂xk∂xℓ

=
∂2

∂xk∂xℓ

n
∑

i=1

n
∑

j=1

Aijxixj = Akℓ + Aℓk = 2Akℓ.

Therefore, it should be clear that ∇2
xx

T Ax = 2A, which should be entirely expected (and
again analogous to the single-variable fact that ∂2/(∂x2) ax2 = 2a).

To recap,
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• ∇xb
T x = b

• ∇xx
T Ax = 2Ax (if A symmetric)

• ∇2
xx

T Ax = 2A (if A symmetric)

4.4 Least Squares

Lets apply the equations we obtained in the last section to derive the least squares equations.
Suppose we are given matrices A ∈ R

m×n (for simplicity we assume A is full rank) and a
vector b ∈ R

m such that b 6∈ R(A). In this situation we will not be able to find a vector
x ∈ R

n, such that Ax = b, so instead we want to find a vector x such that Ax is as close as
possible to b, as measured by the square of the Euclidean norm ‖Ax − b‖2

2.
Using the fact that ‖x‖2

2 = xT x, we have

‖Ax − b‖2
2 = (Ax − b)T (Ax − b)

= xT AT Ax − 2bT Ax + bT b

Taking the gradient with respect to x we have, and using the properties we derived in the
previous section

∇x(x
T AT Ax − 2bT Ax + bT b) = ∇xx

T AT Ax −∇x2b
T Ax + ∇xb

T b

= 2AT Ax − 2AT b

Setting this last expression equal to zero and solving for x gives the normal equations

x = (AT A)−1AT b

which is the same as what we derived in class.

4.5 Gradients of the Determinant

Now lets consider a situation where we find the gradient of a function with respect to a matrix,
namely for A ∈ R

n×n, we want to find ∇A|A|. Recall from our discussion of determinants
that

|A| =
n
∑

i=1

(−1)i+jAij|A\i,\j| (for any j ∈ 1, . . . , n)

so
∂

∂Akℓ

|A| =
∂

∂Akℓ

n
∑

i=1

(−1)i+jAij|A\i,\j| = (−1)k+ℓ|A\k,\ℓ| = (adj(A))ℓk.

From this it immediately follows from the properties of the adjoint that

∇A|A| = (adj(A))T = |A|A−T .
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Now lets consider the function f : S
n
++ → R, f(A) = log |A|. Note that we have to

restrict the domain of f to be the positive definite matrices, since this ensures that |A| > 0,
so that the log of |A| is a real number. In this case we can use the chain rule (nothing fancy,
just the ordinary chain rule from single-variable calculus) to see that

∂ log |A|

∂Aij

=
∂ log |A|

∂|A|

∂|A|

∂Aij

=
1

|A|

∂|A|

∂Aij

.

From this is should be obvious that

∇A log |A| =
1

|A|
∇A|A| = A−1,

where we can drop the transpose in the last expression because A is symmetric. Note the
similarity to the single-valued case, where ∂/(∂x) log x = 1/x.

4.6 Eigenvalues as Optimization

Finally, we use matrix calculus to solve an optimization problem in a way that leads directly
to eigenvalue/eigenvector analysis. Consider the following, equality constrained optimization
problem:

maxx∈Rn xT Ax subject to ‖x‖2
2 = 1

for a symmetric matrix A ∈ S
n. A standard way of solving optimization problems with

equality constraints is by forming the Lagrangian , an objective function that includes the
equality constraints.2 The Lagrangian in this case can be given by

L(x, λ) = xT Ax − λxT x

where λ is called the Lagrange multiplier associated with the equality constraint. It can be
established that for x∗ to be a optimal point to the problem, the gradient of the Lagrangian
has to be zero at x∗ (this is not the only condition, but it is required). That is,

∇xL(x, λ) = ∇x(x
T Ax − λxT x) = 2AT x − 2λx = 0.

Notice that this is just the linear equation Ax = λx. This shows that the only points which
can possibly maximize (or minimize) xT Ax assuming xT x = 1 are the eigenvectors of A.

2Don’t worry if you haven’t seen Lagrangians before, as we will cover them in greater detail later in

CS229.
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Probability Theory Review for Machine Learning

Samuel Ieong

November 6, 2006

1 Basic Concepts

Broadly speaking, probability theory is the mathematical study of uncertainty. It plays a
central role in machine learning, as the design of learning algorithms often relies on proba-
bilistic assumption of the data. This set of notes attempts to cover some basic probability
theory that serves as a background for the class.

1.1 Probability Space

When we speak about probability, we often refer to the probability of an event of uncertain
nature taking place. For example, we speak about the probability of rain next Tuesday.
Therefore, in order to discuss probability theory formally, we must first clarify what the
possible events are to which we would like to attach probability.

Formally, a probability space is defined by the triple (Ω,F , P ), where

• Ω is the space of possible outcomes (or outcome space),

• F ⊆ 2Ω (the power set of Ω) is the space of (measurable) events (or event space),

• P is the probability measure (or probability distribution) that maps an event E ∈ F to
a real value between 0 and 1 (think of P as a function).

Given the outcome space Ω, there is some restrictions as to what subset of 2Ω can be
considered an event space F :

• The trivial event Ω and the empty event ∅ is in F .

• The event space F is closed under (countable) union, i.e., if α, β ∈ F , then α∪ β ∈ F .

• The even space F is closed under complement, i.e., if α ∈ F , then (Ω \ α) ∈ F .

Example 1. Suppose we throw a (six-sided) dice. The space of possible outcomes Ω =
{1, 2, 3, 4, 5, 6}. We may decide that the events of interest is whether the dice throw is odd
or even. This event space will be given by F = {∅, {1, 3, 5}, {2, 4, 6}, Ω}.
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Note that when the outcome space Ω is finite, as in the previous example, we often take
the event space F to be 2Ω. This treatment is not fully general, but it is often sufficient
for practical purposes. However, when the outcome space is infinite, we must be careful to
define what the event space is.

Given an event space F , the probability measure P must satisfy certain axioms.

• (non-negativity) For all α ∈ F , P (α) ≥ 0.

• (trivial event) P (Ω) = 1.

• (additivity) For all α, β ∈ F and α ∩ β = ∅, P (α ∪ β) = P (α) + P (β).

Example 2. Returning to our dice example, suppose we now take the event space F to be
2Ω. Further, we define a probability distribution P over F such that

P ({1}) = P ({2}) = · · · = P ({6}) = 1/6

then this distribution P completely specifies the probability of any given event happening
(through the additivity axiom). For example, the probability of an even dice throw will be

P ({2, 4, 6}) = P ({2}) + P ({4}) + P ({6}) = 1/6 + 1/6 + 1/6 = 1/2

since each of these events are disjoint.

1.2 Random Variables

Random variables play an important role in probability theory. The most important fact
about random variables is that they are not variables. They are actually functions that
map outcomes (in the outcome space) to real values. In terms of notation, we usually denote
random variables by a capital letter. Let’s see an example.

Example 3. Again, consider the process of throwing a dice. Let X be a random variable that
depends on the outcome of the throw. A natural choice for X would be to map the outcome
i to the value i, i.e., mapping the event of throwing an “one” to the value of 1. Note that
we could have chosen some strange mappings too. For example, we could have a random
variable Y that maps all outcomes to 0, which would be a very boring function, or a random
variable Z that maps the outcome i to the value of 2i if i is odd and the value of −i if i is
even, which would be quite strange indeed.

In a sense, random variables allow us to abstract away from the formal notion of event
space, as we can define random variables that capture the appropriate events. For example,
consider the event space of odd or even dice throw in Example 1. We could have defined a
random variable that takes on value 1 if outcome i is odd and 0 otherwise. These type of
binary random variables are very common in practice, and are known as indicator variables,
taking its name from its use to indicate whether a certain event has happened. So why
did we introduce event space? That is because when one studies probability theory (more
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rigorously) using measure theory, the distinction between outcome space and event space
will be very important. This topic is too advanced to be covered in this short review note.
In any case, it is good to keep in mind that event space is not always simply the power set
of the outcome space.

From here onwards, we will talk mostly about probability with respect to random vari-
ables. While some probability concepts can be defined meaningfully without using them,
random variables allow us to provide a more uniform treatment of probability theory. For
notations, the probability of a random variable X taking on the value of a will be denoted
by either

P (X = a) or PX(a)

We will also denote the range of a random variable X by V al(X).

1.3 Distributions, Joint Distributions, and Marginal Distributions

We often speak about the distribution of a variable. This formally refers to the probability
of a random variable taking on certain values. For example,

Example 4. Let random variable X be defined on the outcome space Ω of a dice throw
(again!). If the dice is fair, then the distribution of X would be

PX(1) = PX(2) = · · · = PX(6) = 1/6

Note that while this example resembles that of Example 2, they have different semantic
meaning. The probability distribution defined in Example 2 is over events, whereas the one
here is defined over random variables.

For notation, we will use P (X) to denote the distribution of the random variable X.
Sometimes, we speak about the distribution of more than one variables at a time. We

call these distributions joint distributions, as the probability is determined jointly by all the
variables involved. This is best clarified by an example.

Example 5. Let X be a random variable defined on the outcome space of a dice throw. Let
Y be an indicator variable that takes on value 1 if a coin flip turns up head and 0 if tail.
Assuming both the dice and the coin are fair, the joint distribution of X and Y is given by

P X = 1 X = 2 X = 3 X = 4 X = 5 X = 6
Y = 0 1/12 1/12 1/12 1/12 1/12 1/12
Y = 1 1/12 1/12 1/12 1/12 1/12 1/12

As before, we will denote the probability of X taking value a and Y taking value b by
either the long hand of P (X = a, Y = b), or the short hand of PX,Y (a, b). We refer to their
joint distribution by P (X,Y ).

Given a joint distribution, say over random variables X and Y , we can talk about the
marginal distribution of X or that of Y . The marginal distribution refers to the probability
distribution of a random variable on its own. To find out the marginal distribution of a

3



random variable, we sum out all the other random variables from the distribution. Formally,
we mean

P (X) =
∑

b∈V al(Y )

P (X, Y = b) (1)

The name of marginal distribution comes from the fact that if we add up all the entries
of a row (or a column) of a joint distribution, and write the answer at the end (i.e., margin)
of it, this will be the probability of the random variable taking on that value. Of course,
thinking in this way only helps when the joint distribution involves two variables.

1.4 Conditional Distributions

Conditional distributions are one of the key tools in probability theory for reasoning about
uncertainty. They specify the distribution of a random variable when the value of another
random variable is known (or more generally, when some event is known to be true).

Formally, conditional probability of X = a given Y = b is defined as

P (X = a|Y = b) =
P (X = a, Y = b)

P (Y = b)
(2)

Note that this is not defined when the probability of Y = b is 0.

Example 6. Suppose we know that a dice throw was odd, and want to know the probability
of an “one” has been thrown. Let X be the random variable of the dice throw, and Y be an
indicator variable that takes on the value of 1 if the dice throw turns up odd, then we write
our desired probability as follows:

P (X = 1|Y = 1) =
P (X = 1, Y = 1)

P (Y = 1)
=

1/6

1/2
= 1/3

The idea of conditional probability extends naturally to the case when the distribution
of a random variable is conditioned on several variables, namely

P (X = a|Y = b, Z = c) =
P (X = a, Y = b, Z = c)

P (Y = b, Z = c)

As for notations, we write P (X|Y = b) to denote the distribution of random variable X
when Y = b. We may also write P (X|Y ) to denote a set of distributions of X, one for each
of the different values that Y can take.

1.5 Independence

In probability theory, independence means that the distribution of a random variable does
not change on learning the value of another random variable. In machine learning, we often
make such assumptions about our data. For example, the training samples are assumed to
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be drawn independently from some underlying space; the label of sample i is assumed to be
independent of the features of sample j (i 6= j).

Mathematically, a random variable X is independent of Y when

P (X) = P (X|Y )

(Note that we have dropped what values X and Y are taking. This means the statement
holds true for any values X and Y may take.)

Using Equation (2), it is easy to verify that if X is independent of Y , then Y is also
independent of X. As a notation, we write X ⊥ Y if X and Y are independent.

An equivalent mathematical statement about the independence of random variables X
and Y is

P (X,Y ) = P (X)P (Y )

Sometimes we also talk about conditional independence, meaning that if we know the
value of a random variable (or more generally, a set of random variables), then some other
random variables will be independent of each other. Formally, we say “X and Y are condi-
tionally independent given Z” if

P (X|Z) = P (X|Y, Z)

or, equivalently,
P (X, Y |Z) = P (X|Z)P (Y |Z)

An example of conditional independence that we will se in class is the Näıve Bayes
assumption. This assumption is made in the context of a learning algorithm for learning to
classify emails as spams or non-spams. It assumes that the probability of a word x appearing
in the email is conditionally independent of a word y appearing given whether the email is
spam or not. This clearly is not without loss of generality, as some words almost invariably
comes in pair. However, as it turns out, making this simplifying assumption does not hurt
the performance much, and in any case allow us to learn to classify spams rapidly. Details
can be found in Lecture Notes 2.

1.6 Chain Rule and Bayes Rule

We now present two basic yet important rules for manipulating that relates joint distributions
and conditional distributions. The first is known as the Chain Rule. It can be seen as a
generalization of Equation (2) to multiple random variables.

Theorem 1 (Chain Rule).

P (X1, X2, . . . , Xn) = P (X1)P (X2|X1) · · ·P (Xn|X1, X2, . . . , Xn−1) (3)

The Chain Rule is often used to evaluate the joint probability of some random variables,
and is especially useful when there are (conditional) independence across variables. Notice

5



there is a choice in the order we unravel the random variables when applying the Chain Rule;
picking the right order can often make evaluating the probability much easier.

The second rule we are going to introduce is the Bayes Rule. The Bayes Rule allows
us to compute the conditional probability P (X|Y ) from P (Y |X), in a sense “inverting” the
conditions. It can be derived simply from Equation (2) as well.

Theorem 2 (Bayes Rule).

P (X|Y ) =
P (Y |X)P (X)

P (Y )
(4)

And recall that if P (Y ) is not given, we can always apply Equation (1) to find it.

P (Y ) =
∑

a∈V al(X)

P (X = a, Y ) =
∑

a∈V al(X)

P (Y |X = a)P (X = a)

This application of Equation (1) is sometimes referred to as the law of total probability.
Extending the Bayes Rule to the case of multiple random variables can sometimes be

tricky. Just to be clear, we would give a few examples. When in doubt, one can always refer
to how conditional probabilities are defined and work out the details.

Example 7. Let’s consider the following conditional probabilities: P (X,Y |Z) and (X|Y, Z).

P (X, Y |Z) =
P (Z|X, Y )P (X,Y )

P (Z)
=

P (Y, Z|X)P (X)

P (Z)

P (X|Y, Z) =
P (Y |X, Z)P (X,Z)

P (Y, Z)
=

P (Y |X,Z)P (X|Z)P (Z)

P (Y |Z)P (Z)
=

P (Y |X, Z)P (X|Z)

P (Y |Z)

2 Defining a Probability Distribution

We have been talking about probability distributions for a while. But how do we define
a distribution? In a broad sense, there are two classes of distribution that require seem-
ingly different treatments (these can be unified using measure theory). Namely, discrete
distributions and continuous distributions. We will discuss how distributions are specified
next.

Note that this discussion is distinct from how we can efficiently represent a distribution.
The topic of efficient representation of probability distribution is in fact a very important
and active research area that deserves its own course. If you are interested to learn more
about how to efficiently represent, reason, and perform learning on distributions, you are
advised to take CS228: Probabilistic Models in Artificial Intelligence.

2.1 Discrete Distribution: Probability Mass Function

By a discrete distribution, we mean that the random variable of the underlying distribution
can take on only finitely many different values (or that the outcome space is finite).
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To define a discrete distribution, we can simply enumerate the probability of the random
variable taking on each of the possible values. This enumeration is known as the probability
mass function, as it divides up a unit mass (the total probability) and places them on the
different values a random variable can take. This can be extended analogously to joint
distributions and conditional distributions.

2.2 Continuous Distribution: Probability Density Function

By a continuous distribution, we mean that the random variable of the underlying distribu-
tion can take on infinitely many different values (or that the outcome space is infinite).

This is arguably a trickier situation than the discrete case, since if we place a non-zero
amount of mass on each of the values, the total mass will add up to infinity, which violates
the requirement that the total probaiblity must sum up to one.

To define a continuous distribution, we will make use of probability density function
(PDF). A probability density function, f , is a non-negative, integrable function such that

∫

V al(X)

f(x)dx = 1

The probability of a random variable X distributed according to a PDF f is computed
as follows

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx

Note that this, in particular, implies that the probability of a continuously distributed
random variable taking on any given single value is zero.

Example 8 (Uniform distribution). Let’s consider a random variable X that is uniformly
distributed in the range [0, 1]. The corresponding PDF would be

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise

We can verify that
∫ 1

0
1 dx is indeed 1, and therefore f is a PDF. To compute the probability

of X smaller than a half,

P (X ≤ 1/2) =

∫ 1/2

0

1 dx = [x]
1/2
0 = 1/2

More generally, suppose X is distributed uniformly over the range [a, b], then the PDF
would be

f(x) =

{
1

b−a
if a ≤ x ≤ b

0 otherwise

7



Sometimes we will also speak about cumulative distribution function. It is a function
that gives the probability of a random variable being smaller than some value. A cumulative
distribution function F is related to the underlying probability density function f as follows:

F (b) = P (X ≤ b) =

∫ b

−∞
f(x)dx

and hence F (x) =
∫

f(x)dx (in the sense of indefinite integral).
To extend the definition of continuous distribution to joint distribution, the probability

density function is extended to take multiple arguments, namely,

P (a1 ≤ X1 ≤ b1, a2 ≤ X2 ≤ b2, . . . , an ≤ Xn ≤ n1) =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, . . . , xn)dx1dx2 . . . dxn

To extend the definition of conditional distribution to continuous random variables, we
ran into the problem that the probability of a continuous random variable taking on a single
value is 0, so Equation (2) is not well defined, since the denominator equals 0. To define the
conditional distribution of a continuous variable, let f(x, y) be the joint distribution of X
and Y . Through application of analysis, we can show that the PDF, f(y|x), underlying the
distribution P (Y |X) is given by

f(y|x) =
f(x, y)

f(x)

For example,

P (a ≤ Y ≤ b|X = c) =

∫ b

a

f(y|c)dy =

∫ b

a

f(c, y)

f(c)
dy

3 Expectations and Variance

3.1 Expectations

One of the most common operations we perform on a random variable is to compute its
expectation, also known as its mean, expected value, or first moment. The expectation of a
random variable, denoted by E(X), is given by

E(X) =
∑

a∈V al(X)

aP (X = a) or E(X) =

∫

a∈V al(X)

xf(x) dx (5)

Example 9. Let X be the outcome of rolling a fair dice. The expectation of X is

E(X) = (1)
1

6
+ (2)

1

6
+ · · ·+ 6

1

6
= 3

1

2

We may sometimes be interested in computing the expected value of some function f of
a random variable X. Recall, however, that a random variable is also a function itself, so
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the easiest way to think about this is that we define a new random variable Y = f(X), and
compute the expected value of Y instead.

When working with indicator variables, a useful identify is the following:

E(X) = P (X = 1) for indicator variable X

When working with the sums of random variables, one of the most important rule is the
linearity of expectations.

Theorem 3 (Linearity of Expectations). Let X1, X2, . . . , Xn be (possibly dependent) ran-
dom variables,

E(X1 + X2 + · · ·+ Xn) = E(X1) + E(X2) + · · ·+ E(Xn) (6)

The linearity of expectations is very powerful because there are no restrictions on whether
the random variables are independent or not. When we work on products of random vari-
ables, however, there is very little we can say in general. However, when the random variables
are independent, then

Theorem 4. Let X and Y be independent random variables,

E(XY ) = E(X)E(Y )

3.2 Variance

The variance of a distribution is a measure of the “spread” of a distribution. Sometimes it
is also referred to as the second moment. It is defined as follows:

V ar(X) = E
(
(X − E(X))2

)
(7)

The variance of a random variable is often denoted by σ2. The reason that this is squared
is because we often want to find out σ, known as the standard deviation. The variance and
the standard deviation is related (obviously) by σ =

√
V ar(X).

To find out the variance of a random variable X, it’s often easier to compute the following
instead

V ar(X) = E(X2)− (E(X))2

Note that unlike expectation, variance is not a linear function of a random variable X.
In fact, we can verify that the variance of (aX + b) is

V ar(aX + b) = a2V ar(X)

If random variables X and Y are independent, then

V ar(X + Y ) = V ar(X)V ar(Y ) if X ⊥ Y

Sometimes we also talk about the covariance of two random variables. This is a measure
of how “closely related” two random variables are. Its definition is as follows.

Cov(X, Y ) = E((X − E(X))(Y − E(Y )))

9



4 Some Important Distributions

In this section, we will review some of the probability distributions that we will see in this
class. This is by no means a comprehensive list of distribution that one should know. In
particular, distributions such as the geoemtric, hypergeometric, and binomial distributions,
which are very useful in their own right and studied in introductory probability theory, are
not reviewed here.

4.1 Bernoulli

The Bernoulli distribution is one of the most basic distribution. A random variable distrib-
uted according to the Bernoulli distribution can take on two possible values, {0, 1}. It can
be specified by a single parameter p, and by convention we take p to be P (X = 1). It is
often used to indicate whether a trail is successful or not.

Sometimes it is useful to write the probability distribution of a Bernoulli random variable
X as follows

P (X) = px(1− p)1−x

An example of the Bernoulli distribution in action is the classification task in Lecture
Notes 1. To develop the logistic regression algorithm for the task, we assume that the labels
are distributed according to the Bernoulli distribution given the features.

4.2 Poisson

The Poisson distribution is a very useful distribution that deals with the arrival of events.
It measures probaiblity of the number of events happening over a fixed period of time, given
a fixed average rate of occurrence, and that the events take place independently of the time
since the last event. It is parametrized by the average arrival rate λ. The probability mass
function is given by:

P (X = k) =
exp(−λ)λk

k!

The mean value of a Poisson random variable is λ, and its variance is also λ.
We will get to work on a learning algorithm that deals with Poisson random variables in

Homework 1, Problem 3.

4.3 Gaussian

The Gaussian distribution, also known as the normal distribution, is one of the most “ver-
satile” distributions in probability theory, and appears in a wide variety of contexts. For
example, it can be used to approximate the binomial distribution when the number of ex-
periments is large, or the Poisson distribution when the average arrival rate is high. It is
also related to the Law of Large Numbers. For many problems, we will also often assume
that when noise in the system is Gaussian distributed. The list of applications is endless.
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Figure 1: Gaussian distributions under different mean and variance

The Gaussian distribution is determined by two parameters: the mean µ and the variance
σ2. The probability density function is given by

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(8)

To get a better sense of how the distribution changes with respect to the mean and the
variance, we have plotted three different Gaussian distributions in Figure 1.

In our class, we will sometimes work with multi-variate Gaussian distributions. A k-
dimensional multi-variate Gaussian distribution is parametrized by (µ, Σ), where µ is now a
vector of means in Rk, and Σ is the covariance matrix in Rk×k, in other words, Σii = V ar(Xi)
and Σij = Cov(Xi, Xj). The probability density function is now defined over vectors of input,
given by

f(x) =
1√

2πk|Σ| exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
(9)

(Recall that we denote the determinant of a matrix A by |A|, and its inverse by A−1)
To get a better sense of how a multi-variate Gaussian distribution depends on the covari-

ance matrix, we can look at the figures in Lecture Notes 2, Pages 3—4.
Working with a multi-variate Gaussian distribution can be tricky and daunting at times.

One way to make our lives easier, at least as a way to get intuition on a problem, is to assume
that the covariances are zero when we first attempt a problem. When the covariances are
zero, the determinant |Σ| will simply be the product of the variances, and the inverse Σ−1

can be found by taking the inverse of the diagonal entries of Σ.
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5 Working with Probabilities

As we will be working with probabilities and distributions a lot in this class, listed below
are a few tips about efficient manipulation of distributions.

5.1 The log trick

In machine learning, we generally assume the independence of different samples. Therefore,
we often have to deal with the product of a (large) number of distributions. When our goal
is to optimize functions of such products, it is often easier if we first work with the logarithm
of such functions. As the logarithmic function is a strictly increasing function, it will not
distort where the maximum is located (although, most certainly, the maximum value of the
function before and after taking logarithm will be different).

As an example, consider the likelihood function in Lecture Notes 1, Page 17.

L(θ) =
m∏

i=1

(hθ(x
(i)))y(i)

(1− hθ(x
(i)))1−y(i)

I dare say this is a pretty mean-looking function. But by taking the logarithm of it, termed
log-likelihood function, we have instead

`(θ) = log L(θ) =
m∑

i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x

(i)))

Not the world’s prettiest function, but at least it’s more manageable. We can now work
on one term (i.e., one training sample) at a time, because they are summed together rather
than multiplied together.

5.2 Delayed Normalization

Because probability has to sum up to one, we often have to deal with normalization, especially
with continuous distribution. For example, for Gaussian distributions, the term outside of the
exponent is to ensure that the integral of the PDF evaluates to one. When we are sure that
the end product of some algebra will be a probability distribution, or when we are finding the
optimum of some distributions, it’s often easier to simply denote the normalization constant
to be Z, and not worry about computing the normalization constant all the time.

5.3 Jenson’s Inequality

Sometimes when we are evaluating the expectation of a function of a random variable, we
may only need a bound rather than its exact value. In these situations, if the function is
convex or concave, Jenson’s inequality allows us to derive a bound by evaluating the value
of the function at the expectation of the random variable itself.
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Figure 2: Illustration of Jenson’s Inequality

Theorem 5 (Jenson’s Inequality). Let X be a random variable, and f be a convex function.
Then

f(E(X)) ≤ E(f(X))

If f is a concave function, then

f(E(X)) ≥ E(f(X))

While we can show Jenson’s inequality by algebra, it’s easiest to understand it through
a picture. The function in Figure 2 is a convex function. We can see that a straight line
between any two points on the function always lie above the function. This shows that if a
random variable can take on only two values, then Jenson’s inequality holds. It is relatively
straight forward to extend this to general random variables.
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Convex Optimization Overview

Zico Kolter

October 19, 2007

1 Introduction

Many situations arise in machine learning where we would like to optimize the value of
some function. That is, given a function f : R

n → R, we want to find x ∈ R
n that minimizes

(or maximizes) f(x). We have already seen several examples of optimization problems in
class: least-squares, logistic regression, and support vector machines can all be framed as
optimization problems.

It turns out that in the general case, finding the global optimum of a function can be a
very difficult task. However, for a special class of optimization problems, known as convex

optimization problems, we can efficiently find the global solution in many cases. Here,
“efficiently” has both practical and theoretical connotations: it means that we can solve
many real-world problems in a reasonable amount of time, and it means that theoretically
we can solve problems in time that depends only polynomially on the problem size.

The goal of these section notes and the accompanying lecture is to give a very brief
overview of the field of convex optimization. Much of the material here (including some
of the figures) is heavily based on the book Convex Optimization [1] by Stephen Boyd and
Lieven Vandenberghe (available for free online), and EE364, a class taught here at Stanford
by Stephen Boyd. If you are interested in pursuing convex optimization further, these are
both excellent resources.

2 Convex Sets

We begin our look at convex optimization with the notion of a convex set .

Definition 2.1 A set C is convex if, for any x, y ∈ C and θ ∈ R with 0 ≤ θ ≤ 1,

θx + (1 − θ)y ∈ C.

Intuitively, this means that if we take any two elements in C, and draw a line segment
between these two elements, then every point on that line segment also belongs to C. Figure
1 shows an example of one convex and one non-convex set. The point θx + (1− θ)y is called
a convex combination of the points x and y.
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(a) (b)

Figure 1: Examples of a convex set (a) and a non-convex set (b).

2.1 Examples

• All of R
n. It should be fairly obvious that given any x, y ∈ R

n, θx + (1 − θ)y ∈ R
n.

• The non-negative orthant, R
n
+. The non-negative orthant consists of all vectors in

R
n whose elements are all non-negative: R

n
+ = {x : xi ≥ 0 ∀i = 1, . . . , n}. To show

that this is a convex set, simply note that given any x, y ∈ R
n
+ and 0 ≤ θ ≤ 1,

(θx + (1 − θ)y)i = θxi + (1 − θ)yi ≥ 0 ∀i.

• Norm balls. Let ‖ · ‖ be some norm on R
n (e.g., the Euclidean norm, ‖x‖2 =

√
∑n

i=1 x2
i ). Then the set {x : ‖x‖ ≤ 1} is a convex set. To see this, suppose x, y ∈ R

n,
with ‖x‖ ≤ 1, ‖y‖ ≤ 1, and 0 ≤ θ ≤ 1. Then

‖θx + (1 − θ)y‖ ≤ ‖θx‖ + ‖(1 − θ)y‖ = θ‖x‖ + (1 − θ)‖y‖ ≤ 1

where we used the triangle inequality and the positive homogeneity of norms.

• Affine subspaces and polyhedra. Given a matrix A ∈ R
m×n and a vector b ∈ R

m,
an affine subspace is the set {x ∈ R

n : Ax = b} (note that this could possibly be empty
if b is not in the range of A). Similarly, a polyhedron is the (again, possibly empty)
set {x ∈ R

n : Ax � b}, where ‘�’ here denotes componentwise inequality (i.e., all the
entries of Ax are less than or equal to their corresponding element in b).1 To prove
this, first consider x, y ∈ R

n such that Ax = Ay = b. Then for 0 ≤ θ ≤ 1,

A(θx + (1 − θ)y) = θAx + (1 − θ)Ay = θb + (1 − θ)b = b.

Similarly, for x, y ∈ R
n that satisfy Ax ≤ b and Ay ≤ b and 0 ≤ θ ≤ 1,

A(θx + (1 − θ)y) = θAx + (1 − θ)Ay ≤ θb + (1 − θ)b = b.

1Similarly, for two vectors x, y ∈ R
n, x � y denotes that each element of X is greater than or equal to the

corresponding element in b. Note that sometimes ‘≤’ and ‘≥’ are used in place of ‘�’ and ‘�’; the meaning
must be determined contextually (i.e., both sides of the inequality will be vectors).
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• Intersections of convex sets. Suppose C1, C2, . . . , Ck are convex sets. Then their
intersection

k
⋂

i=1

Ci = {x : x ∈ Ci ∀i = 1, . . . , k}

is also a convex set. To see this, consider x, y ∈
⋂k

i=1 Ci and 0 ≤ θ ≤ 1. Then,

θx + (1 − θ)y ∈ Ci ∀i = 1, . . . , k

by the definition of a convex set. Therefore

θx + (1 − θ)y ∈
k
⋂

i=1

Ci.

Note, however, that the union of convex sets in general will not be convex.

• Positive semidefinite matrices. The set of all symmetric positive semidefinite
matrices, often times called the positive semidefinite cone and denoted S

n
+, is a convex

set (in general, S
n ⊂ R

n×n denotes the set of symmetric n × n matrices). Recall that
a matrix A ∈ R

n×n is symmetric positive semidefinite if and only if A = AT and for
all x ∈ R

n, xT Ax ≥ 0. Now consider two symmetric positive semidefinite matrices
A,B ∈ S

n
+ and 0 ≤ θ ≤ 1. Then for any x ∈ R

n,

xT (θA + (1 − θ)B)x = θxT Ax + (1 − θ)xT Bx ≥ 0.

The same logic can be used to show that the sets of all positive definite, negative
definite, and negative semidefinite matrices are each also convex.

3 Convex Functions

A central element in convex optimization is the notion of a convex function .

Definition 3.1 A function f : R
n → R is convex if its domain (denoted D(f)) is a convex

set, and if, for all x, y ∈ D(f) and θ ∈ R, 0 ≤ θ ≤ 1,

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).

Intuitively, the way to think about this definition is that if we pick any two points on the
graph of a convex function and draw a straight line between then, then the portion of the
function between these two points will lie below this straight line. This situation is pictured
in Figure 2.2

We say a function is strictly convex if Definition 3.1 holds with strict inequality for
x 6= y and 0 < θ < 1. We say that f is concave if −f is convex, and likewise that f is
strictly concave if −f is strictly convex.

2Don’t worry too much about the requirement that the domain of f be a convex set. This is just a
technicality to ensure that f(θx + (1 − θ)y) is actually defined (if D(f) were not convex, then it could be
that f(θx + (1 − θ)y) is undefined even though x, y ∈ D(f)).
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Figure 2: Graph of a convex function. By the definition of convex functions, the line con-
necting two points on the graph must lie above the function.

3.1 First Order Condition for Convexity

Suppose a function f : R
n → R is differentiable (i.e., the gradient3 ∇xf(x) exists at all

points x in the domain of f). Then f is convex if and only if D(f) is a convex set and for
all x, y ∈ D(f),

f(y) ≥ f(x) + ∇xf(x)T (y − x).

The function f(x) + ∇xf(x)T (y − x) is called the first-order approximation to the
function f at the point x. Intuitively, this can be thought of as approximating f with its
tangent line at the point x. The first order condition for convexity says that f is convex if
and only if the tangent line is a global underestimator of the function f . In other words, if
we take our function and draw a tangent line at any point, then every point on this line will
lie below the corresponding point on f .

Similar to the definition of convexity, f will be strictly convex if this holds with strict
inequality, concave if the inequality is reversed, and strictly concave if the reverse inequality
is strict.

Figure 3: Illustration of the first-order condition for convexity.

3Recall that the gradient is defined as ∇xf(x) ∈ R
n, (∇xf(x))i = ∂f(x)

∂xi
. For a review on gradients and

Hessians, see the previous section notes on linear algebra.
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3.2 Second Order Condition for Convexity

Suppose a function f : R
n → R is twice differentiable (i.e., the Hessian4 ∇2

xf(x) is defined
for all points x in the domain of f). Then f is convex if and only if D(f) is a convex set and
its Hessian is positive semidefinite: i.e., for any x ∈ D(f),

∇2
xf(x) � 0.

Here, the notation ‘�’ when used in conjunction with matrices refers to positive semidefi-
niteness, rather than componentwise inequality. 5 In one dimension, this is equivalent to the
condition that the second derivative f ′′(x) always be positive (i.e., the function always has
positive curvature).

Again analogous to both the definition and first order conditions for convexity, f is strictly
convex if its Hessian is positive definite, concave if the Hessian is negative semidefinite, and
strictly concave if the Hessian is negative definite.

3.3 Jensen’s Inequality

Suppose we start with the inequality in the basic definition of a convex function

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) for 0 ≤ θ ≤ 1.

Using induction, this can be fairly easily extended to convex combinations of more than one
point,

f

(

k
∑

i=1

θixi

)

≤
k
∑

i=1

θif(xi) for
k
∑

i=1

θi = 1, θi ≥ 0 ∀i.

In fact, this can also be extended to infinite sums or integrals. In the latter case, the
inequality can be written as

f

(
∫

p(x)xdx

)

≤

∫

p(x)f(x)dx for

∫

p(x)dx = 1, p(x) ≥ 0 ∀x.

Because p(x) integrates to 1, it is common to consider it as a probability density, in which
case the previous equation can be written in terms of expectations,

f(E[x]) ≤ E[f(x)].

This last inequality is known as Jensen’s inequality, and it will come up later in class.6

4Recall the Hessian is defined as ∇2
xf(x) ∈ R

n×n, (∇2
xf(x))ij = ∂2f(x)

∂xi∂xj

5Similarly, for a symmetric matrix X ∈ S
n, X � 0 denotes that X is negative semidefinite. As with vector

inequalities, ‘≤’ and ‘≥’ are sometimes used in place of ‘�’ and ‘�’. Despite their notational similarity to
vector inequalities, these concepts are very different; in particular, X � 0 does not imply that Xij ≥ 0 for
all i and j.

6In fact, all four of these equations are sometimes referred to as Jensen’s inequality, due to the fact that
they are all equivalent. However, for this class we will use the term to refer specifically to the last inequality
presented here.
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3.4 Sublevel Sets

Convex functions give rise to a particularly important type of convex set called an α-sublevel

set . Given a convex function f : R
n → R and a real number α ∈ R, the α-sublevel set is

defined as
{x ∈ D(f) : f(x) ≤ α}.

In other words, the α-sublevel set is the set of all points x such that f(x) ≤ α.
To show that this is a convex set, consider any x, y ∈ D(f) such that f(x) ≤ α and

f(y) ≤ α. Then

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y) ≤ θα + (1 − θ)α = α.

3.5 Examples

We begin with a few simple examples of convex functions of one variable, then move on to
multivariate functions.

• Exponential. Let f : R → R, f(x) = eax for any a ∈ R. To show f is convex, we can
simply take the second derivative f ′′(x) = a2eax, which is positive for all x.

• Negative logarithm. Let f : R → R, f(x) = − log x with domain D(f) = R++

(here, R++ denotes the set of strictly positive real numbers, {x : x > 0}). Then
f ′′(x) = 1/x2 > 0 for all x.

• Affine functions. Let f : R
n → R, f(x) = bT x + c for some b ∈ R

n, c ∈ R. In
this case the Hessian, ∇2

xf(x) = 0 for all x. Because the zero matrix is both positive
semidefinite and negative semidefinite, f is both convex and concave. In fact, affine
functions of this form are the only functions that are both convex and concave.

• Quadratic functions. Let f : R
n → R, f(x) = 1

2
xT Ax + bT x + c for a symmetric

matrix A ∈ S
n, b ∈ R

n and c ∈ R. In our previous section notes on linear algebra, we
showed the Hessian for this function is given by

∇2
xf(x) = A.

Therefore, the convexity or non-convexity of f is determined entirely by whether or
not A is positive semidefinite: if A is positive semidefinite then the function is convex
(and analogously for strictly convex, concave, strictly concave). If A is indefinite then
f is neither convex nor concave.

Note that the squared Euclidean norm f(x) = ‖x‖2
2 = xT x is a special case of quadratic

functions where A = I, b = 0, c = 0, so it is therefore a strictly convex function.
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• Norms. Let f : R
n → R be some norm on R

n. Then by the triangle inequality and
positive homogeneity of norms, for x, y ∈ R

n, 0 ≤ θ ≤ 1,

f(θx + (1 − θ)y) ≤ f(θx) + f((1 − θ)y) = θf(x) + (1 − θ)f(y).

This is an example of a convex function where it is not possible to prove convexity based
on the second or first order conditions, because norms are not generally differentiable
everywhere (e.g., the 1-norm, ||x||1 =

∑n

i=1 |xi|, is non-differentiable at all points where
any xi is equal to zero).

• Nonnegative weighted sums of convex functions. Let f1, f2, . . . , fk be convex
functions and w1, w2, . . . , wk be nonnegative real numbers. Then

f(x) =
k
∑

i=1

wifi(x)

is a convex function, since

f(θx + (1 − θ)y) =
k
∑

i=1

wifi(θx + (1 − θ)y)

≤

k
∑

i=1

wi(θfi(x) + (1 − θ)fi(y))

= θ
k
∑

i=1

wifi(x) + (1 − θ)
k
∑

i=1

wifi(y)

= θf(x) + (1 − θ)f(x).

4 Convex Optimization Problems

Armed with the definitions of convex functions and sets, we are now equipped to consider
convex optimization problems. Formally, a convex optimization problem in an opti-
mization problem of the form

minimize f(x)
subject to x ∈ C

where f is a convex function, C is a convex set, and x is the optimization variable. However,
since this can be a little bit vague, we often write it often written as

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where f is a convex function, gi are convex functions, and hi are affine functions, and x is
the optimization variable.
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Is it imporant to note the direction of these inequalities: a convex function gi must be
less than zero. This is because the 0-sublevel set of gi is a convex set, so the feasible region,
which is the intersection of many convex sets, is also convex (recall that affine subspaces are
convex sets as well). If we were to require that gi ≥ 0 for some convex gi, the feasible region
would no longer be a convex set, and the algorithms we apply for solving these problems
would not longer be guaranteed to find the global optimum. Also notice that only affine
functions are allowed to be equality constraints. Intuitively, you can think of this as being
due to the fact that an equality constraint is equivalent to the two inequalities hi ≤ 0 and
hi ≥ 0. However, these will both be valid constraints if and only if hi is both convex and
concave, i.e., hi must be affine.

The optimal value of an optimization problem is denoted p⋆ (or sometimes f ⋆) and is
equal to the minimum possible value of the objective function in the feasible region7

p⋆ = min{f(x) : gi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}.

We allow p⋆ to take on the values +∞ and −∞ when the problem is either infeasible (the
feasible region is empty) or unbounded below (there exists feasible points such that f(x) →
−∞), respectively. We say that x⋆ is an optimal point if f(x⋆) = p⋆. Note that there can
be more than one optimal point, even when the optimal value is finite.

4.1 Global Optimality in Convex Problems

Before stating the result of global optimality in convex problems, let us formally define
the concepts of local optima and global optima. Intuitively, a feasible point is called locally

optimal if there are no “nearby” feasible points that have a lower objective value. Similarly,
a feasible point is called globally optimal if there are no feasible points at all that have a
lower objective value. To formalize this a little bit more, we give the following two definitions.

Definition 4.1 A point x is locally optimal if it is feasible (i.e., it satisfies the constraints
of the optimization problem) and if there exists some R > 0 such that all feasible points z
with ‖x − z‖2 ≤ R, satisfy f(x) ≤ f(z).

Definition 4.2 A point x is globally optimal if it is feasible and for all feasible points z,
f(x) ≤ f(z).

We now come to the crucial element of convex optimization problems, from which they
derive most of their utility. The key idea is that for a convex optimization problem

all locally optimal points are globally optimal .
Let’s give a quick proof of this property by contradiction. Suppose that x is a locally

optimal point which is not globally optimal, i.e., there exists a feasible point y such that

7Math majors might note that the min appearing below should more correctly be an inf. We won’t worry
about such technicalities here, and use min for simplicity.
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f(x) > f(y). By the definition of local optimality, there exist no feasible points z such that
‖x − z‖2 ≤ R and f(z) < f(x). But now suppose we choose the point

z = θy + (1 − θ)x with θ =
R

2‖x − y‖2

.

Then

‖x − z‖2 =

∥

∥

∥

∥

x −

(

R

2‖x − y‖2

y +

(

1 −
R

2‖x − y‖2

)

x

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

R

2‖x − y‖2

(x − y)

∥

∥

∥

∥

2

= R/2 ≤ R.

In addition, by the convexity of f we have

f(z) = f(θy + (1 − θ)x) ≤ θf(y) + (1 − θ)f(x) < f(x).

Furthermore, since the feasible set is a convex set, and since x and y are both feasible
z = θy + (1 − θ) will be feasible as well. Therefore, z is a feasible point, with ‖x − z‖2 < R
and f(z) < f(x). This contradicts our assumption, showing that x cannot be locally optimal.

4.2 Special Cases of Convex Problems

For a variety of reasons, it is often times convenient to consider special cases of the general
convex programming formulation. For these special cases we can often devise extremely
efficient algorithms that can solve very large problems, and because of this you will probably
see these special cases referred to any time people use convex optimization techniques.

• Linear Programming. We say that a convex optimization problem is a linear

program (LP) if both the objective function f and inequality constraints gi are affine
functions. In other words, these problems have the form

minimize cT x + d
subject to Gx � h

Ax = b

where x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, G ∈ R
m×n, h ∈ R

m,
A ∈ R

p×n, b ∈ R
p are defined by the problem, and ‘�’ denotes elementwise inequality.

• Quadratic Programming. We say that a convex optimization problem is a quadratic

program (QP) if the inequality constraints gi are still all affine, but if the objective
function f is a convex quadratic function. In other words, these problems have the
form,

minimize 1
2
xT Px + cT x + d

subject to Gx � h
Ax = b
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where again x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, G ∈ R
m×n, h ∈ R

m,
A ∈ R

p×n, b ∈ R
p are defined by the problem, but we also have P ∈ S

n
+, a symmetric

positive semidefinite matrix.

• Quadratically Constrained Quadratic Programming. We say that a convex
optimization problem is a quadratically constrained quadratic program (QCQP)
if both the objective f and the inequality constraints gi are convex quadratic functions,

minimize 1
2
xT Px + cT x + d

subject to 1
2
xT Qix + rT

i x + si ≤ 0, i = 1, . . . ,m
Ax = b

where, as before, x ∈ R
n is the optimization variable, c ∈ R

n, d ∈ R, A ∈ R
p×n, b ∈ R

p,
P ∈ S

n
+, but we also have Qi ∈ S

n
+, ri ∈ R

n, si ∈ R, for i = 1, . . . ,m.

• Semidefinite Programming. This last example is a bit more complex than the pre-
vious ones, so don’t worry if it doesn’t make much sense at first. However, semidefinite
programming is become more and more prevalent in many different areas of machine
learning research, so you might encounter these at some point, and it is good to have an
idea of what they are. We say that a convex optimization problem is a semidefinite

program (SDP) if it is of the form

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . , p

X � 0

where the symmetric matrix X ∈ S
n is the optimization variable, the symmetric ma-

trices C,A1, . . . , Ap ∈ S
n are defined by the problem, and the constraint X � 0 means

that we are constraining X to be positive semidefinite. This looks a bit different than
the problems we have seen previously, since the optimization variable is now a matrix
instead of a vector. If you are curious as to why such a formulation might be useful,
you should look into a more advanced course or book on convex optimization.

It should be fairly obvious from the definitions that quadratic programs are more general
than linear programs (since a linear program is just a special case of a quadratic program
where P = 0), and likewise that quadratically constrained quadratic programs are more
general than quadratic programs. However, what is not obvious at all is that semidefinite
programs are in fact more general than all the previous types. That is, any quadratically
constrained quadratic program (and hence any quadratic program or linear program) can
be expressed as a semidefinte program. We won’t discuss this relationship further in this
document, but this might give you just a small idea as to why semidefinite programming
could be useful.
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4.3 Examples

Now that we’ve covered plenty of the boring math and formalisms behind convex optimiza-
tion, we can finally get to the fun part: using these techniques to solve actual problems.
We’ve already encountered a few such optimization problems in class, and in nearly every
field, there is a good chance that someone has tried to apply convex optimization to solve
some problem.

• Support Vector Machines. One of the most prevalent applications of convex op-
timization methods in machine learning is the support vector machine classifier. As
discussed in class, finding the support vector classifier (in the case with slack variables)
can be formulated as the optimization problem

minimize 1
2
‖w‖2

2 + C
∑m

i=1 ξi

subject to y(i)(wT x(i) + b) ≥ 1 − ξi, i = 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m

with optimization variables w ∈ R
n, ξ ∈ R

m, b ∈ R, and where C ∈ R and x(i), y(i), i =
1, . . . m are defined by the problem. This is an example of a quadratic program, which
we try to put the problem into the form described in the previous section. In particular,
if define k = m + n + 1, let the optimization variable be

x ∈ R
k ≡





w
ξ
b





and define the matrices

P ∈ R
k×k =





I 0 0
0 0 0
0 0 0



 , c ∈ R
k =





0
C · 1

0



 ,

G ∈ R
2m×k =

[

−diag(y)X −I −y
0 −I 0

]

, h ∈ R
2m =

[

−1

0

]

where I is the identity, 1 is the vector of all ones, and X and y are defined as in class,

X ∈ R
m×n =













x(1)T

x(2)T

...

x(m)T













, y ∈ R
m =











y(1)

y(2)

...
y(m)











.

You should try to convince yourself that the quadratic program described in the pre-
vious section, when using these matrices defined above, is equivalent to the SVM
optimization problem. In reality, it is fairly easy to see that there the SVM optimiza-
tion problem has a quadratic objective and linear constraints, so we typically don’t
need to put it into standard form to “prove” that it is a QP, and would only do so if
we are using an off-the-shelf solver that requires the input to be in standard form.
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• Constrained least squares. In class we have also considered the least squares prob-
lem, where we want to minimize ‖Ax − b‖2

2 for some matrix A ∈ R
m×n and b ∈ R

m.
As we saw, this particular problem can actually be solved analytically via the normal
equations. However, suppose that we also want to constrain the entries in the solution
x to lie within some predefined ranges. In other words, suppose we weanted to solve
the optimization problem,

minimize 1
2
‖Ax − b‖2

2

subject to l � x � u

with optimization variable x and problem data A ∈ R
m×n, b ∈ R

m, l ∈ R
n, and u ∈ R

n.
This might seem like a fairly simple additional constraint, but it turns out that there
will no longer be an analytical solution. However, you should be able to convince
yourself that this optimization problem is a quadratic program, with matrices defined
by

P ∈ R
n×n =

1

2
AT A, c ∈ R

n = −bT A, d ∈ R =
1

2
bT b,

G ∈ R
2n×2n =

[

−I 0
0 I

]

, h ∈ R
2n =

[

−l
u

]

.

• Maximum Likelihood for Logistic Regression. For homework one, you were
required to show that the log-likelihood of the data in a logistic model was concave.
This log likehood under such a model is

ℓ(θ) =
n
∑

i=1

{

y(i) ln g(θT x(i)) + (1 − y(i)) ln(1 − g(θT x(i)))
}

where g(z) denotes the logistic function g(z) = 1/(1 + e−z). Finding the maximum
likelihood estimate is then a task of maximizing the log-likelihood (or equivalently,
minimizing the negative log-likelihood, a convex function), i.e.,

minimize −ℓ(θ)

with optimization variable θ ∈ R
n and no constraints.

Unlike the previous two examples, it turns out that it is not so easy to put this prob-
lem into a “standard” form optimization problem. Nevertheless, you’ve seen on the
homework that the fact that ℓ is a concave function means that you can very efficiently
find the global solution using an algorithm such as Newton’s method.
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Convex Optimization Overview (cnt’d)

Chuong B. Do

October 26, 2007

1 Recap

During last week’s section, we began our study of convex optimization, the study of
mathematical optimization problems of the form,

minimize
x∈Rn

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . , p,

(1)

where x ∈ Rn is the optimization variable, f : Rn → R and gi : Rn → R are convex functions,
and hi : Rn → R are affine functions. In a convex optimization problem, the convexity of both
the objective function f and the feasible region (i.e., the set of x’s satisfying all constraints)
allows us to conclude that any feasible locally optimal point must also be globally optimal.
This fact provides the key intuition for why convex optimization problems can in general be
solved efficiently.

In these lecture notes, we continue our foray into the field of convex optimization. In
particular, we will introduce the theory of Lagrange duality for convex optimization problems
with inequality and equality constraints. We will also discuss generic yet efficient algorithms
for solving convex optimization problems, and then briefly mention directions for further
exploration.

2 Duality

To explain the fundamental ideas behind duality theory, we start with a motivating example
based on CS 229 homework grading. We prove a simple weak duality result in this setting,
and then relate it to duality in optimization. We then discuss strong duality and the KKT
optimality conditions.

2.1 A motivating example: CS 229 homework grading

In CS 229, students must complete four homeworks throughout the quarter, each consisting
of five questions apiece. Suppose that during one year that the course is offered, the TAs

1



decide to economize on their work load for the quarter by grading only one problem on
each submitted problem set. Nevertheless, they also require that every student submit
an attempted solution to every problem (a requirement which, if violated, would lead to
automatic failure of the course).

Because they are extremely cold-hearted1, the TAs always try to ensure that the students
lose as many points as possible; if the TAs grade a problem that the student did not attempt,
the number of points lost is set to +∞ to denote automatic failure in the course. Conversely,
each student in the course seeks to minimize the number of points lost on his or her assign-
ments, and thus must decide on a strategy—i.e., an allocation of time to problems—that
minimizes the number of points lost on the assignment.

The struggle between student and TAs can be summarized in a matrix A = (aij) ∈ Rn×m,
whose columns correspond to different problems that the TAs might grade, and whose rows
correspond to different strategies for time allocation that the student might use for the
problem set. For example, consider the following matrix,

A =

2
64

5 5 5 5 5
8 8 1 8 8

+∞ +∞ +∞ 0 +∞

3
75 ,

Here, the student must decide between three strategies (corresponding to the three rows of
the matrix, A):

• i = 1: she invests an equal effort into all five problems and hence loses at most 5 points
on each problem,
• i = 2: she invests more time into problem 3 than the other four problems, and
• i = 3: she skips four problems in order to guarantee no points lost on problem 4.

Similarly, the TAs must decide between five strategies (j ∈ {1, 2, 3, 4, 5}) corresponding to
the choice of problem graded.

If the student is forced to submit the homework without knowing the TAs choice of
problem to be graded, and if the TAs are allowed to decide which problem to grade after
having seen the student’s problem set, then the number of points she loses will be:

p∗ = min
i

max
j

aij (= 5 in the example above) (P)

where the order of the minimization and maximization reflect that for each fixed student time
allocation strategy i, the TAs will have the opportunity to choose the worst scoring problem
maxj aij to grade. However, if the TAs announce beforehand which homework problem will
be graded, then the the number of points lost will be:

d∗ = max
j

min
i

aij (= 0 in the example above) (D)

where this time, for each possible announced homework problem j to be graded, the student
will have the opportunity to choose the optimal time allocation strategy, mini aij, which loses

1Clearly, this is a fictional example. The CS 229 TAs want you to succeed. Really, we do.
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her the fewest points. Here, (P) is called the primal optimization problem whereas (D) is
called the dual optimization problem. Rows containing +∞ values correspond to strategies
where the student has flagrantly violated the TAs demand that all problems be attempted;
for reasons, which will become clear later, we refer to these rows as being primal-infeasible.

In the example, the value of the dual problem is lower than that of the primal problem,
i.e., d∗ = 0 < 5 = p∗. This intuitively makes sense: the second player in this adversarial
game has the advantage of knowing his/her opponent’s strategy. This principle, however,
holds more generally:

Theorem 2.1 (Weak duality). For any matrix A = (aij) ∈ Rm×n, it is always the case that

max
j

min
i

aij = d∗ ≤ p∗ = min
i

max
j

aij.

Proof. Let (id, jd) be the row and column associated with d∗, and let (ip, jp) be the row and
column associated with p∗. We have,

d∗ = aidjd
≤ aipjd

≤ aipjp = p∗.

Here, the first inequality follows from the fact that aidjd
is the smallest element in the jdth

column (i.e., id was the strategy chosen by the student after the TAs chose problem jd, and
hence, it must correspond to the fewest points lost in that column). Similarly, the second
inequality follow from the fact that aipjp is the largest element in the ipth row (i.e., jp was
the problem chosen by the TAs after the student picked strategy ip, so it must correspond
to the most points lost in that row).

2.2 Duality in optimization

The task of constrained optimization, it turns out, relates closely with the adversarial game
described in the previous section. To see the connection, first recall our original optimization
problem,

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . , p.

Define the generalized Lagrangian to be

L(x, λ, ν) := f(x) +
mX

i=1

λigi(x) +
pX

i=1

νihi(x).

Here, the variables λ and ν are called the the dual variables (or Lagrange multipliers).
Analogously, the variables x are known as the primal variables.

The correspondence between primal/dual optimization and game playing can be pictured
informally using an infinite matrix whose rows are indexed by x ∈ Rn and whose columns
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are indexed by (λ, ν) ∈ Rm
+ × Rp (i.e., λi ≥ 0, for i = 1, . . . ,m). In particular, we have

A =

2
6664

. . .
... . ..

· · · L(x, λ, ν) · · ·
. ..

...
. . .

3
7775

Here, the “student” manipulates the primal variables x in order to minimize the Lagrangian
L(x, λ, ν) while the “TAs” manipulate the dual variables (λ, ν) in order to maximize the
Lagrangian.

To see the relationship between this game and the original optimization problem, we
formulate the following primal problem:

p∗ = min
x

max
λ,ν:λi≥0

L(x, λ, ν)

= min
x

θP (x) (P’)

where θP (x) := maxλ,ν:λi≥0 L(x, λ, ν). Computing p∗ is equivalent to our original convex
optimization primal in the following sense: for any candidate solution x,

• if gi(x) > 0 for some i ∈ {1, . . . ,m}, then setting λi =∞ gives θP (x) =∞.

• if hi(x) 6= 0 for some i ∈ {1, . . . ,m}, then setting λi =∞·Sign(hi(x)) gives θP (x) =∞.

• if x is feasible (i.e., x obeys all the constraints of our original optimization problem),
then θP (x) = f(x), where the maximum is obtained, for example, by setting all of the
λi’s and νi’s to zero.

Intuitively then, θP (x) behaves conceptually like an “unconstrained” version of the original
constrained optimization problem in which the infeasible region of f is “carved away” by
forcing θP (x) = ∞ for any infeasible x; thus, only points in the feasible region are left
as candidate minimizers. This idea of using penalties to ensure that minimizers stay in the
feasible region will come up later when talk about barrier algorithms for convex optimization.

By analogy to the CS 229 grading example, we can form the following dual problem:

d∗ = max
λ,ν:λi≥0

min
x

L(x, λ, ν)

= max
λ,ν:λi≥0

θD(λ, ν) (D’)

where θD(λ, ν) := minx L(x, λ, ν). Dual problems can often be easier to solve than their
corresponding primal problems. In the case of SVMs, for instance, SMO is a dual optimiza-
tion algorithm which considers joint optimization of pairs of dual variables. Its simple form
derives largely from the simplicity of the dual objective and the simplicity of the correspond-
ing constraints on the dual variables. Primal-based SVM solutions are indeed possible, but
when the number of training examples is large and the kernel matrix K of inner products
Kij = K(x(i), x(j)) is large, dual-based optimization can be considerably more efficient.
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Using an argument essentially identical to that presented in Theorem (2.1), we can show
that in this setting, we again have d∗ ≤ p∗. This is the property of weak duality for
general optimization problems. Weak duality can be particularly useful in the design of
optimization algorithms. For example, suppose that during the course of an optimization
algorithm we have a candidate primal solution x and dual-feasible vector (λ, ν) such that
θP (x)− θD(λ, ν) ≤ ε. From weak duality, we have that

θD(λ, ν) ≤ d∗ ≤ p∗ ≤ θP (x),

implying that x and (λ, ν) must be ε-optimal (i.e., their objective functions differ by no more
than ε from the objective functions of the true optima x∗ and (λ∗, ν∗).

In practice, the dual objective θD(λ, ν) can often be found in closed form, thus allowing
the dual problem (D’) to depend only on the dual variables λ and ν. When the Lagrangian is
differentiable with respect to x, then a closed-form for θD(λ, ν) can often be found by setting
the gradient of the Lagrangian to zero, so as to ensure that the Lagrangian is minimized
with respect to x.2 An example derivation of the dual problem for the L1 soft-margin SVM
is shown in the Appendix.

2.3 Strong duality

For any primal/dual optimization problems, weak duality will always hold. In some cases,
however, the inequality d∗ ≤ p∗ may be replaced with equality, i.e., d∗ = p∗; this latter
condition is known as strong duality. Strong duality does not hold in general. When it
does however, the lower-bound property described in the previous section provide a useful
termination criterion for optimization algorithms. In particular, we can design algorithms
which simultaneously optimize both the primal and dual problems. Once the candidate
solutions x of the primal problem and (λ, ν) of the dual problem obey θP (x)− θD(λ, ν) ≤ ε,
then we know that both solutions are ε-accurate. This is guaranteed to happen provided
our optimization algorithm works properly, since strong duality guarantees that the optimal
primal and dual values are equal.

Conditions which guarantee strong duality for convex optimization problems are known
as constraint qualifications. The most commonly invoked constraint qualification, for
example, is Slater’s condition :

Theorem 2.2. Consider a convex optimization problem of the form (1), whose corresponding
primal and dual problems are given by (P’) and (D’). If there exists a primal feasible x for

2Often, differentiating the Lagrangian with respect to x leads to the generation of additional requirements
on dual variables that must hold at any fixed point of the Lagrangian with respect to x. When these
constraints are not satisfied, one can show that the Lagrangian is unbounded below (i.e., θD(λ, ν) = −∞).

Since such points are clearly not optimal solutions for the dual problem, we can simply exclude them from
the domain of the dual problem altogether by adding the derived constraints to the existing constraints of the
dual problem. An example of this is the derived constraint,

Pm
i=1 αiy

(i) = 0, in the SVM formulation. This
procedure of incorporating derived constraints into the dual problem is known as making dual constraints
explicit (see [1], page 224).
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which each inequality constraint is strictly satisfied (i.e., gi(x) < 0), then d∗ = p∗.3

The proof of this theorem is beyond the scope of this course. We will, however, point out
its application to the soft-margin SVMs described in class. Recall that soft-margin SVMs
were found by solving

minimize
w,b,ξ

1

2
‖w‖2 + C

mX
i=1

ξi

subject to y(i)(wT x(i) + b) ≥ 1− ξi, i = 1, . . . ,m,
ξi ≥ 0, i = 1, . . . ,m.

Slater’s condition applies provided we can find at least one primal feasible setting of w, b,
and ξ where all inequalities are strict. It is easy to verify that w = 0, b = 0, ξ = 2 ·1 satisfies
these conditions (where 0 and 1 denote the vector of all 0’s and all 1’s, respectively), since

y(i)(wT x(i) + b) = y(i)(0T x(i) + 0) = 0 > −1 = 1− 2 = 1− ξi, i = 1, . . . ,m,

and the remaining m inequalities are trivially strictly satisfied. Hence, strong duality holds,
so the optimal values of the primal and dual soft-margin SVM problems will be equal.

2.4 The KKT conditions

In the case of differentiable unconstrained convex optimization problems, setting the gradient
to “zero” provides a simple means for identifying candidate local optima. For constrained
convex programming, do similar criteria exist for characterizing the optima of primal/dual
optimization problems? The answer, it turns out, is provided by a set of requirements known
as the Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions (see [1],
pages 242-244).

Suppose that the constraint functions g1, . . . , gm, h1, . . . , hp are not only convex (the hi’s
must be affine) but also differentiable.

Theorem 2.3. If x̃ is primal feasible and (λ̃, ν̃) are dual feasible, and if

∇xL(x̃, λ̃, ν̃) = 0, (KKT1)

λ̃igi(x̃) = 0, i = 1, . . . ,m, (KKT2)

then x̃ is primal optimal, (λ̃, ν̃) are dual optimal, and strong duality holds.

Theorem 2.4. If Slater’s condition holds, then conditions of Theorem 2.3 are necessary for
any (x∗, λ∗, ν∗) such that x∗ is primal optimal and (λ∗, ν∗) are dual feasible.

3One can actually show a more general version of Slater’s inequality, which requires only strict satisfaction
of non-affine inequality constraints (but allowing affine inequalities to be satisfied with equality). See [1],
page 226.
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(KKT1) is the standard gradient stationarity condition found for unconstrained differentiable
optimization problems. The set of inequalities corresponding to (KKT2) are known as the
KKT complementarity (or complementary slackness) conditions. In particular,
if x∗ is primal optimal and (λ∗, ν∗) is dual optimal, then (KKT2) implies that

λ∗i > 0 ⇒ gi(x
∗) = 0

gi(x
∗) < 0 ⇒ λ∗i = 0

That is, whenever λ∗i is greater than zero, its corresponding inequality constraint must be
tight; conversely, any strictly satisfied inequality must have have λ∗i equal to zero. Thus, we
can interpret the dual variables λ∗i as measuring the “importance” of a particular constraint
in characterizing the optimal point.

This interpretation provides an intuitive explanation for the difference between hard-
margin and soft-margin SVMs. Recall the dual problems for a hard-margin SVM:

maximize
α,β

mX
i=1

αi −
1

2

mX
i=1

mX
j=1

αiαiy
(i)y(j)〈x(i), x(j)〉

subject to αi ≥ 0, i = 1, . . . ,m,
mX

i=1

αiy
(i) = 0,

(2)

and the L1 soft-margin SVM:

maximize
α,β

mX
i=1

αi −
1

2

mX
i=1

mX
j=1

αiαiy
(i)y(j)〈x(i), x(j)〉

subject to 0 ≤ αi ≤ C, i = 1, . . . ,m,
mX

i=1

αiy
(i) = 0.

(3)

Note that the only difference in the soft-margin formulation is the introduction of upper
bounds on the dual variables αi. Effectively, this upper bound constraint limits the influence
of any single primal inequality constraint (i.e., any single training example) on the decision
boundary, leading to improved robustness for the L1 soft-margin model.

What consequences do the KKT conditions have for practical optimization algorithms?
When Slater’s conditions hold, then the KKT conditions are both necessary and sufficient for
primal/dual optimality of a candidate primal solution x̃ and a corresponding dual solution
(λ̃, ν̃). Therefore, many optimization algorithms work by trying to guarantee that the KKT
conditions are satisfied; the SMO algorithm, for instance, works by iteratively identifying
Lagrange multipliers for which the corresponding KKT conditions are unsatisfied and then
“fixing” KKT complementarity.4

4See [1], pages 244-245 for an example of an optimization problem where the KKT conditions can be
solved directly, thus skipping the need for primal/dual optimization altogether.
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3 Algorithms for convex optimization

Thus far, we have talked about convex optimization problems and their properties. But
how does one solve a convex optimization problem in practice? In this section, we describe
a generic strategy for solving convex optimization problems known as the interior-point
method. This method combines a safe-guarded variant of Newton’s algorithm with a “bar-
rier” technique for enforcing inequality constraints.

3.1 Unconstrained optimization

We consider first the problem of unconstrained optimization, i.e.,

minimize
x

f(x).

In Newton’s algorithm for unconstrained optimization, we consider the Taylor approxi-
mation f̃ of the function f , centered at the current iterate xt. Discarding terms of higher
order than two, we have

f̃(x) = f(xt) +∇xf(xt)
T (x− xt) +

1

2
(x− xt)∇2

xf(xt)(x− xt).

To minimize f̃(x), we can set its gradient to zero. In particular, if xnt denotes the minimum
of f̃(x), then

∇xf(xt) +∇2
xf(xt)(xnt − xt) = 0

∇2
xf(xt)(xnt − xt) = −∇xf(xt)

xnt − xt = −∇2
xf(xt)

−1∇xf(xt)

xnt = xt −∇2
xf(xt)

−1∇xf(xt)

assuming ∇2
xf(xt)

T is positive definite (and hence, full rank). This, of course, is the standard
Newton algorithm for unconstrained minimization.

While Newton’s method converges quickly if given an initial point near the minimum, for
points far from the minimum, Newton’s method can sometimes diverge (as you may have
discovered in problem 1 of Problem Set #1 if you picked an unfortunate initial point!). A
simple fix for this behavior is to use a line-search procedure. Define the search direction d
to be,

d := ∇2
xf(xt)

−1∇xf(xt).

A line-search procedure is an algorithm for finding an appropriate step size γ ≥ 0 such that
the iteration

xt+1 = xt − γ · d

will ensure that the function f decreases by a sufficient amount (relative to the size of the
step taken) during each iteration.
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One simple yet effective method for doing this is called a backtracking line search.
In this method, one initially sets γ to 1 and then iteratively reduces γ by a multiplicative
factor β until f(xt + γ · d) is sufficiently smaller than f(xt):

Backtracking line-search

• Choose α ∈ (0, 0.5), β ∈ (0, 1).
• Set γ ← 1.
• While f(xt + γ · d) > f(xt) + γ · α∇xf(xt)

T d, do γ ← βγ.
• Return γ.

Since the function f is known to decrease locally near xt in the direction of d, such a
step will be found, provided γ is small enough. For more details, see [1], pages 464-466.

In order to use Newton’s method, one must be able to compute and invert the Hessian
matrix ∇2

xf(xt), or equivalently, compute the search direction d indirectly without forming
the Hessian. For some problems, the number of primal variables x is sufficiently large
that computing the Hessian can be very difficult. In many cases, this can be dealt with
by clever use of linear algebra. In other cases, however, we can resort to other nonlinear
minimization schemes, such as quasi-Newton methods, which initially behave like gradient
descent but gradually construct approximations of the inverse Hessian based on the gradients
observed throughout the course of the optimization.5 Alternatively, nonlinear conjugate
gradient schemes (which augment the standard conjugate gradient (CG) algorithm for
solving linear least squares systems with a line-search) provide another generic blackbox tool
for multivariable function minimization which is simple to implement, yet highly effective in
practice.6

3.2 Inequality-constrained optimization

Using our tools for unconstrained optimization described in the previous section, we now
tackle the (slightly) harder problem of constrained optimization. For simplicity, we consider
convex optimization problems without equality constraints7, i.e., problems of the form,

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m.

5For more information on Quasi-Newton methods, the standard reference is Jorge Nocedal and Stephen
J. Wright’s textbook, Numerical Optimization.

6For an excellent tutorial on the conjugate gradient method, see Jonathan Shewchuk’s tutorial, available
at: http://www.cs.cmu.edu/∼quake-papers/painless-conjugate-gradient.pdf

7In practice, there are many of ways of dealing with equality constraints. Sometimes, we can eliminate
equality constraints by either reparameterizing of the original primal problem, or converting to the dual
problem. A more general strategy is to rely on equality-constrained variants of Newton’s algorithms which
ensure that the equality constraints are satisfied at every iteration of the optimization. For a more complete
treatment of this topic, see [1], Chapter 10.
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We will also assume knowledge of a feasible starting point x0 which satisfies all of our
constraints with strict inequality (as needed for Slater’s condition to hold).8

Recall that in our discussion of the Lagrangian-based formulation of the primal problem,

min
x

max
λ:λi≥0

L(x, λ).

we stated that the inner maximization, maxλ:λi≥0 L(x, λ), was constructed in such a way
that the infeasible region of f was “carved away”, leaving only points in the feasible region
as candidate minima. The same idea of using penalties to ensure that minimizers stay in the
feasible region is the basis of barrier -based optimization. Specifically, if B(z) is the barrier
function

B(z) =

8
<
:

0 z < 0

∞ z ≥ 0,

then the primal problem is equivalent to

min
x

f(x) +
mX

i=1

B(gi(x)). (4)

When gi(x) < 0, the objective of the problem is simply f(x); infeasible points are “carved
away” using the barrier function B(z).

While conceptually correct, optimization using the straight barrier function B(x) is nu-
merically difficult. To ameliorate this, the log-barrier optimization algorithm approximates
the solution to (4) by solving the unconstrained problem,

minimize
x

f(x)− 1

t

mX
i=1

log(−gi(x)).

for some fixed t > 0. Here, the function −(1/t) log(−z) ≈ B(z), and the accuracy of the
approximation increases as t → ∞. Rather than using a large value of t in order to obtain
a good approximation, however, the log-barrier algorithm works by solving a sequence of
unconstrained optimization problems, increasing t each time, and using the solution of the
previous unconstrained optimization problem as the initial point for the next unconstrained
optimization. Furthermore, at each point in the algorithm, the primal solution points stay
strictly in the interior of the feasible region:

8For more information on finding feasible starting points for barrier algorithms, see [1], pages 579-585.
For inequality-problems where the primal problem is feasible but not strictly feasible, primal-dual interior
point methods are applicable, also described in [1], pages 609-615.
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Log-barrier optimization

• Choose µ > 1, t > 0.
• x← x0.
• Repeat until convergence:

(a) Compute x′ = min
x

f(x)− 1

t

mX
i=1

log(−gi(x)) using x as the initial point.

(b) t← µ · t, x← x′.

One might expect that as t increases, the difficulty of solving each unconstrained minimiza-
tion problem also increases due to numerical issues or ill-conditioning of the optimization
problem. Surprisingly, Nesterov and Nemirovski showed in 1994 that this is not the case
for certain types of barrier functions, including the log-barrier; in particular, by using an
appropriate barrier function, one obtains a general convex optimization algorithm which
takes time polynomial in the dimensionality of the optimization variables and the desired
accuracy!

4 Directions for further exploration

In many real-world tasks, 90% of the challenge involves figuring out how to write an opti-
mization problem in a convex form. Once the correct form has been found, a number of
pre-existing software packages for convex optimization have been well-tuned to handle dif-
ferent specific types of optimization problems. The following constitute a small sample of
the available tools:

• commerical packages: CPLEX, MOSEK

• MATLAB-based: CVX, Optimization Toolbox (linprog, quadprog), SeDuMi

• libraries: CVXOPT (Python), GLPK (C), COIN-OR (C)

• SVMs: LIBSVM, SVM-light

• machine learning: Weka (Java)

In particular, we specifically point out CVX as an easy-to-use generic tool for solving convex
optimization problems easily using MATLAB, and CVXOPT as a powerful Python-based
library which runs independently of MATLAB.9 If you’re interested in looking at some of the
other packages listed above, they are easy to find with a web search. In short, if you need a
specific convex optimization algorithm, pre-existing software packages provide a rapid way
to prototype your idea without having to deal with the numerical trickiness of implementing
your own complete convex optimization routines.

9CVX is available at http://www.stanford.edu/∼boyd/cvx and CVXOPT is available at http://www.
ee.ucla.edu/∼vandenbe/cvxopt/.
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Also, if you find this material fascinating, make sure to check out Stephen Boyd’s class,
EE364: Convex Optimization I, which will be offered during the Winter Quarter. The
textbook for the class (listed as [1] in the References) has a wealth of information about
convex optimization and is available for browsing online.

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge UP, 2004.
Online: http://www.stanford.edu/∼boyd/cvxbook/

Appendix: The soft-margin SVM

To see the primal/dual action in practice, we derive the dual of the soft-margin SVM primal
presented in class, and corresponding KKT complementarity conditions. We have,

minimize
w,b,ξ

1

2
‖w‖2 + C

mX
i=1

ξi

subject to y(i)(wT x(i) + b) ≥ 1− ξi, i = 1, . . . ,m,
ξi ≥ 0, i = 1, . . . ,m.

First, we put this into our standard form, with “≤ 0” inequality constraints and no equality
constraints. That is,

minimize
w,b,ξ

1

2
‖w‖2 + C

mX
i=1

ξi

subject to 1− ξi − y(i)(wT x(i) + b) ≤ 0, i = 1, . . . ,m,
−ξi ≤ 0, i = 1, . . . ,m.

Next, we form the generalized Lagrangian,10

L(w, b, ξ, α, β) =
1

2
‖w‖2 + C

mX
i=1

ξi +
mX

i=1

αi(1− ξi − y(i)(wT x(i) + b))−
mX

i=1

βiξi,

which gives the primal and dual optimization problems:

max
α,β:αi≥0,βi≥0

θD(α, β) where θD(α, β) := min
w,b,ξ

L(w, b, ξ, α, β), (SVM-D)

min
w,b,ξ

θP (w, b, ξ) where θP (w, b, ξ) := max
α,β:αi≥0,βi≥0

L(w, b, ξ, α, β). (SVM-P)

To get the dual problem in the form shown in the lecture notes, however, we still have a
little more work to do. In particular,

10Here, it is important to note that (w, b, ξ) collectively play the role of the x primal variables. Similarly,
(α, β) collectively play the role of the λ dual variables used for inequality constraints. There are no “ν” dual
variables here since there are no affine constraints in this problem.
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1. Eliminating the primal variables. To eliminate the primal variables from the dual
problem, we compute θD(α, β) by noticing that

θD(α, β) = minw,b,ξ L(w, b, ξ, α, β)

is an unconstrained optimization problem, where the objective function L(w, b, ξ, α, β)
is differentiable. Therefore, for any fixed (α, β), if (ŵ, b̂, ξ̂) minimize the Lagrangian,
it must be the case that

∇wL(ŵ, b̂, ξ̂, α, β) = ŵ −
mX

i=1

αiy
(i)x(i) = 0 (5)

∂

∂b
L(ŵ, b̂, ξ̂, α, β) = −

mX
i=1

αiy
(i) = 0 (6)

∂

∂ξi

L(ŵ, b̂, ξ̂, α, β) = C − αi − βi = 0. (7)

Adding (6) and (7) to the constraints of our dual optimizaton problem, we obtain,

θD(α, β) = L(ŵ, b̂, ξ̂)

=
1

2
‖ŵ‖2 + C

mX
i=1

ξ̂i +
mX

i=1

αi(1− ξ̂i − y(i)(ŵT x(i) + b̂))−
mX

i=1

βiξ̂i

=
1

2
‖ŵ‖2 + C

mX
i=1

ξ̂i +
mX

i=1

αi(1− ξ̂i − y(i)(ŵT x(i)))−
mX

i=1

βiξ̂i

=
1

2
‖ŵ‖2 +

mX
i=1

αi(1− y(i)(ŵT x(i))).

where the first equality follows from the optimality of (ŵ, b̂, ξ̂) for fixed (α, β), the
second equality uses the definition of the generalized Lagrangian, and the third and
fourth equalities follow from (6) and (7), respectively. Finally, to use (5), observe that

1

2
‖ŵ‖2 +

mX
i=1

αi(1− y(i)(ŵT x(i))) =
mX

i=1

αi +
1

2
‖ŵ‖2 − ŵT

mX
i=1

αiy
(i)x(i)

=
mX

i=1

αi +
1

2
‖ŵ‖2 − ‖ŵ‖2

=
mX

i=1

αi −
1

2
‖ŵ‖2

=
mX

i=1

αi −
1

2

mX
i=1

mX
j=1

αiαiy
(i)y(j)〈x(i), x(j)〉.
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Therefore, our dual problem (with no more primal variables) is simply

maximize
α,β

mX
i=1

αi −
1

2

mX
i=1

mX
j=1

αiαiy
(i)y(j)〈x(i), x(j)〉

subject to αi ≥ 0, i = 1, . . . ,m,
βi ≥ 0, i = 1, . . . ,m,
αi + βi = C, i = 1, . . . ,m,
mX

i=1

αiy
(i) = 0.

2. KKT complementary. KKT complementarity requires that for any primal optimal
(w∗, b∗, ξ∗) and dual optimal (α∗, β∗),

α∗i (1− ξ∗i − y(i)(w∗T x(i) + b∗)) = 0

β∗i ξ
∗
i = 0

for i = 1, . . . ,m. From the first condition, we see that if αi > 0, then in order for the
product to be zero, then 1− ξ∗i − y(i)(w∗T x(i) + b∗) = 0. It follows that

y(i)(w∗T x(i) + b∗) ≤ 1

since ξ∗ ≥ 0 by primal feasibility. Similarly, if β∗i > 0, then ξ∗i = 0 to ensure comple-
mentarity. From the primal constraint, y(i)(wT x(i) + b) ≥ 1− ξi, it follows that

y(i)(w∗T x(i) + b∗) ≥ 1.

Finally, since β∗i > 0 is equivalent to α∗i < C (since α∗ + β∗i = C), we can summarize
the KKT conditions as follows:

α∗i = 0 ⇒ y(i)(w∗T x(i) + b∗) ≥ 1,

0 < α∗i < C ⇒ y(i)(w∗T x(i) + b∗) = 1,

α∗i = C ⇒ y(i)(w∗T x(i) + b∗) ≤ 1.

3. Simplification. We can tidy up our dual problem slightly by observing that each pair
of constraints of the form

βi ≥ 0 αi + βi = C

is equivalent to the single constraint, αi ≤ C; that is, if we solve the optimization
problem

maximize
α,β

mX
i=1

αi −
1

2

mX
i=1

mX
j=1

αiαiy
(i)y(j)〈x(i), x(j)〉

subject to 0 ≤ αi ≤ C, i = 1, . . . ,m,
mX

i=1

αiy
(i) = 0.

(8)
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and subsequently set βi = C − αi, then it follows that (α, β) will be optimal for the
previous dual problem above. This last form, indeed, is the form of the soft-margin
SVM dual given in the lecture notes.
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Abstract

How can we apply machine learning to data that is represented as a

sequence of observations over time? For instance, we might be interested

in discovering the sequence of words that someone spoke based on an

audio recording of their speech. Or we might be interested in annotating

a sequence of words with their part-of-speech tags. These notes provides a

thorough mathematical introduction to the concept of Markov Models �

a formalism for reasoning about states over time � and Hidden Markov

Models � where we wish to recover a series of states from a series of

observations. The �nal section includes some pointers to resources that

present this material from other perspectives.

1 Markov Models

Given a set of states S = {s1, s2, ...s|S|} we can observe a series over time
~z ∈ ST . For example, we might have the states from a weather system S =
{sun, cloud, rain} with |S| = 3 and observe the weather over a few days {z1 =
ssun, z2 = scloud, z3 = scloud, z4 = srain, z5 = scloud} with T = 5.

The observed states of our weather example represent the output of a random
process over time. Without some further assumptions, state sj at time t could
be a function of any number of variables, including all the states from times 1
to t− 1 and possibly many others that we don't even model. However, we will
make two Markov assumptions that will allow us to tractably reason about
time series.

The limited horizon assumption is that the probability of being in a
state at time t depends only on the state at time t−1. The intuition underlying
this assumption is that the state at time t represents �enough� summary of the
past to reasonably predict the future. Formally:

P (zt|zt−1, zt−2, ..., z1) = P (zt|zt−1)

The stationary process assumption is that the conditional distribution
over next state given current state does not change over time. Formally:

1



P (zt|zt−1) = P (z2|z1); t ∈ 2...T

As a convention, we will also assume that there is an initial state and initial
observation z0 ≡ s0, where s0 represents the initial probability distribution over
states at time 0. This notational convenience allows us to encode our belief
about the prior probability of seeing the �rst real state z1 as P (z1|z0). Note
that P (zt|zt−1, ..., z1) = P (zt|zt−1, ..., z1, z0) because we've de�ned z0 = s0 for
any state sequence. (Other presentations of HMMs sometimes represent these
prior believes with a vector π ∈ R|S|.)

We parametrize these transitions by de�ning a state transition matrix A ∈
R(|S|+1)×(|S|+1). The value Aij is the probability of transitioning from state i
to state j at any time t. For our sun and rain example, we might have following
transition matrix:

A =

s0 ssun scloud srain

s0 0 .33 .33 .33
ssun 0 .8 .1 .1
scloud 0 .2 .6 .2
srain 0 .1 .2 .7

Note that these numbers (which I made up) represent the intuition that the
weather is self-correlated: if it's sunny it will tend to stay sunny, cloudy will
stay cloudy, etc. This pattern is common in many Markov models and can
be observed as a strong diagonal in the transition matrix. Note that in this
example, our initial state s0 shows uniform probability of transitioning to each
of the three states in our weather system.

1.1 Two questions of a Markov Model

Combining the Markov assumptions with our state transition parametrization
A, we can answer two basic questions about a sequence of states in a Markov
chain. What is the probability of a particular sequence of states ~z? And how
do we estimate the parameters of our model A such to maximize the likelihood
of an observed sequence ~z?

1.1.1 Probability of a state sequence

We can compute the probability of a particular series of states ~z by use of the
chain rule of probability:

P (~z) = P (zt, zt−1, ..., z1;A)
= P (zt, zt−1, ..., z1, z0;A)
= P (zt|zt−1, zt−2, ..., z1;A)P (zt−1|zt−2, ..., z1;A)...P (z1|z0;A)
= P (zt|zt−1;A)P (zt−1|zt−2;A)...P (z2|z1;A)P (z1|z0;A)
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=
T∏

t=1

P (zt|zt−1;A)

=
T∏

t=1

Azt−1 zt

In the second line we introduce z0 into our joint probability, which is allowed
by the de�nition of z0 above. The third line is true of any joint distribution
by the chain rule of probabilities or repeated application of Bayes rule. The
fourth line follows from the Markov assumptions and the last line represents
these terms as their elements in our transition matrix A.

Let's compute the probability of our example time sequence from earlier. We
want P (z1 = ssun, z2 = scloud, z3 = srain, z4 = srain, z5 = scloud) which can be
factored as P (ssun|s0)P (scloud|ssun)P (srain|scloud)P (srain|srain)P (scloud|srain) =
.33× .1× .2× .7× .2.

1.1.2 Maximum likelihood parameter assignment

From a learning perspective, we could seek to �nd the parameters A that maxi-
mize the log-likelihood of sequence of observations ~z. This corresponds to �nd-
ing the likelihoods of transitioning from sunny to cloudy versus sunny to sunny,
etc., that make a set of observations most likely. Let's de�ne the log-likelihood
a Markov model.

l(A) = logP (~z;A)

= log
T∏

t=1

Azt−1 zt

=
T∑

t=1

logAzt−1 zt

=
|S|∑
i=1

|S|∑
j=1

T∑
t=1

1{zt−1 = si ∧ zt = sj} logAij

In the last line, we use an indicator function whose value is one when the
condition holds and zero otherwise to select the observed transition at each
time step. When solving this optimization problem, it's important to ensure
that solved parameters A still make a valid transition matrix. In particular, we
need to enforce that the outgoing probability distribution from state i always
sums to 1 and all elements of A are non-negative. We can solve this optimization
problem using the method of Lagrange multipliers.

max
A

l(A)
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s.t.

|S|∑
j=1

Aij = 1, i = 1..|S|

Aij ≥ 0, i, j = 1..|S|

This constrained optimization problem can be solved in closed form using the
method of Lagrange multipliers. We'll introduce the equality constraint into the
Lagrangian, but the inequality constraint can safely be ignored � the optimal
solution will produce positive values for Aij anyway. Therefore we construct
the Lagrangian as:

L(A,α) =
|S|∑
i=1

|S|∑
j=1

T∑
t=1

1{zt−1 = si ∧ zt = sj} logAij +
|S|∑
i=1

αi(1−
|S|∑
j=1

Aij)

Taking partial derivatives and setting them equal to zero we get:

∂L(A,α)
∂Aij

=
∂

∂Aij
(

T∑
t=1

1{zt−1 = si ∧ zt = sj} logAij) +
∂

∂Aij
αi(1−

|S|∑
j=1

Aij)

=
1
Aij

T∑
t=1

1{zt−1 = si ∧ zt = sj} − αi ≡ 0

⇒

Aij =
1
αi

T∑
t=1

1{zt−1 = si ∧ zt = sj}

Substituting back in and setting the partial with respect to α equal to zero:

∂L(A, β)
∂αi

= 1−
|S|∑
j=1

Aij

= 1−
|S|∑
j=1

1
αi

T∑
t=1

1{zt−1 = si ∧ zt = sj} ≡ 0

⇒

αi =
|S|∑
j=1

T∑
t=1

1{zt−1 = si ∧ zt = sj}

=
T∑

t=1

1{zt−1 = si}

Substituting in this value for αi into the expression we derived for Aij we

obtain our �nal maximum likelihood parameter value for Âij .

4



Âij =
∑T

t=1 1{zt−1 = si ∧ zt = sj}∑T
t=1 1{zt−1 = si}

This formula encodes a simple intuition: the maximum likelihood probability
of transitioning from state i to state j is just the number of times we transition
from i to j divided by the total number of times we are in i. In other words, the
maximum likelihood parameter corresponds to the fraction of the time when we
were in state i that we transitioned to j.

2 Hidden Markov Models

Markov Models are a powerful abstraction for time series data, but fail to cap-
ture a very common scenario. How can we reason about a series of states if we
cannot observe the states themselves, but rather only some probabilistic func-
tion of those states? This is the scenario for part-of-speech tagging where the
words are observed but the parts-of-speech tags aren't, and for speech recogni-
tion where the sound sequence is observed but not the words that generated it.
For a simple example, let's borrow the setup proposed by Jason Eisner in 2002
[1], �Ice Cream Climatology.�

The situation: You are a climatologist in the year 2799, studying
the history of global warming. You can't �nd any records of Balti-
more weather, but you do �nd my (Jason Eisner's) diary, in which I
assiduously recorded how much ice cream I ate each day. What can

you �gure out from this about the weather that summer?

A Hidden Markov Model (HMM) can be used to explore this scenario. We
don't get to observe the actual sequence of states (the weather on each day).
Rather, we can only observe some outcome generated by each state (how many
ice creams were eaten that day).

Formally, an HMM is a Markov model for which we have a series of observed
outputs x = {x1, x2, ..., xT } drawn from an output alphabet V = {v1, v2, ..., v|V |},
i.e. xt ∈ V, t = 1..T . As in the previous section, we also posit the existence of se-
ries of states z = {z1, z2, ..., zT } drawn from a state alphabet S = {s1, s2, ...s|S|},
zt ∈ S, t = 1..T but in this scenario the values of the states are unobserved. The
transition between states i and j will again be represented by the corresponding
value in our state transition matrix Aij .

We also model the probability of generating an output observation as a
function of our hidden state. To do so, we make the output independence

assumption and de�ne P (xt = vk|zt = sj) = P (xt = vk|x1, ..., xT , z1, ..., zT ) =
Bjk . The matrix B encodes the probability of our hidden state generating
output vk given that the state at the corresponding time was sj .

Returning to the weather example, imagine that you have logs of ice cream
consumption over a four day period: ~x = {x1 = v3, x2 = v2, x3 = v1, x4 = v2}
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where our alphabet just encodes the number of ice creams consumed, i.e. V =
{v1 = 1 ice cream, v2 = 2 ice creams, v3 = 3 ice creams}. What questions can
an HMM let us answer?

2.1 Three questions of a Hidden Markov Model

There are three fundamental questions we might ask of an HMM. What is the
probability of an observed sequence (how likely were we to see 3, 2, 1, 2 ice creams
consumed)? What is the most likely series of states to generate the observations
(what was the weather for those four days)? And how can we learn values for
the HMM's parameters A and B given some data?

2.2 Probability of an observed sequence: Forward proce-

dure

In an HMM, we assume that our data was generated by the following process:
posit the existence of a series of states ~z over the length of our time series.
This state sequence is generated by a Markov model parametrized by a state
transition matrix A. At each time step t, we select an output xt as a function of
the state zt. Therefore, to get the probability of a sequence of observations, we
need to add up the likelihood of the data ~x given every possible series of states.

P (~x;A,B) =
∑

~z

P (~x, ~z;A,B)

=
∑

~z

P (~x|~z;A,B)P (~z;A,B)

The formulas above are true for any probability distribution. However, the
HMM assumptions allow us to simplify the expression further:

P (~x;A,B) =
∑

~z

P (~x|~z;A,B)P (~z;A,B)

=
∑

~z

(
T∏

t=1

P (xt|zt;B)) (
T∏

t=1

P (zt|zt−1;A))

=
∑

~z

(
T∏

t=1

Bzt xt) (
T∏

t=1

Azt−1 zt)

The good news is that this is a simple expression in terms of our parame-
ters. The derivation follows the HMM assumptions: the output independence
assumption, Markov assumption, and stationary process assumption are all used
to derive the second line. The bad news is that the sum is over every possible
assignment to ~z. Because zt can take one of |S| possible values at each time
step, evaluating this sum directly will require O(|S|T ) operations.
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Algorithm 1 Forward Procedure for computing αi(t)
1. Base case: αi(0) = A0 i, i = 1..|S|
2. Recursion: αj(t) =

∑|S|
i=1 αi(t− 1)AijBj xt

, j = 1..|S|, t = 1..T

Fortunately, a faster means of computing P (~x;A,B) is possible via a dy-
namic programming algorithm called the Forward Procedure. First, let's
de�ne a quantity αi(t) = P (x1, x2, ..., xt, zt = si;A,B). αi(t) represents the
total probability of all the observations up through time t (by any state assign-
ment) and that we are in state si at time t. If we had such a quantity, the
probability of our full set of observations P (~x) could be represented as:

P (~x;A,B) = P (x1, x2, ..., xT ;A,B)

=
|S|∑
i=1

P (x1, x2, ..., xT , zT = si;A,B)

=
|S|∑
i=1

αi(T )

Algorithm 2.2 presents an e�cient way to compute αi(t). At each time step
we must do only O(|S|) operations, resulting in a �nal algorithm complexity
of O(|S| · T ) to compute the total probability of an observed state sequence
P (~x;A,B).

A similar algorithm known as the Backward Procedure can be used to
compute an analogous probability βi(t) = P (xT , xT−1, .., xt+1, zt = si;A,B).

2.3 Maximum Likelihood State Assignment: The Viterbi

Algorithm

One of the most common queries of a Hidden Markov Model is to ask what
was the most likely series of states ~z ∈ ST given an observed series of outputs
~x ∈ V T . Formally, we seek:

arg max
~z

P (~z|~x;A,B) = arg max
~z

P (~x, ~z;A,B)∑
~z P (~x, ~z;A,B)

= arg max
~z

P (~x, ~z;A,B)

The �rst simpli�cation follows from Bayes rule and the second from the
observation that the denominator does not directly depend on ~z. Naively, we
might try every possible assignment to ~z and take the one with the highest
joint probability assigned by our model. However, this would require O(|S|T )
operations just to enumerate the set of possible assignments. At this point, you
might think a dynamic programming solution like the Forward Algorithm might
save the day, and you'd be right. Notice that if you replaced the arg max~z with∑

~z, our current task is exactly analogous to the expression which motivated
the forward procedure.
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Algorithm 2 Naive application of EM to HMMs

Repeat until convergence {
(E-Step) For every possible labeling ~z ∈ ST , set

Q(~z) := p(~z|~x;A,B)

(M-Step) Set

A,B := arg max
A,B

∑
~z

Q(~z) log
P (~x, ~z;A,B)

Q(~z)

s.t.

|S|∑
j=1

Aij = 1, i = 1..|S|; Aij ≥ 0, i, j = 1..|S|

|V |∑
k=1

Bik = 1, i = 1..|S|; Bik ≥ 0, i = 1..|S|, k = 1..|V |

}

The Viterbi Algorithm is just like the forward procedure except that
instead of tracking the total probability of generating the observations seen so
far, we need only track the maximum probability and record its corresponding
state sequence.

2.4 Parameter Learning: EM for HMMs

The �nal question to ask of an HMM is: given a set of observations, what
are the values of the state transition probabilities A and the output emission
probabilities B that make the data most likely? For example, solving for the
maximum likelihood parameters based on a speech recognition dataset will allow
us to e�ectively train the HMM before asking for the maximum likelihood state
assignment of a candidate speech signal.

In this section, we present a derivation of the Expectation Maximization
algorithm for Hidden Markov Models. This proof follows from the general for-
mulation of EM presented in the CS229 lecture notes. Algorithm 2.4 shows the
basic EM algorithm. Notice that the optimization problem in the M-Step is now
constrained such that A and B contain valid probabilities. Like the maximum
likelihood solution we found for (non-Hidden) Markov models, we'll be able to
solve this optimization problem with Lagrange multipliers. Notice also that the
E-Step and M-Step both require enumerating all |S|T possible labellings of ~z.
We'll make use of the Forward and Backward algorithms mentioned earlier to
compute a set of su�cient statistics for our E-Step and M-Step tractably.

First, let's rewrite the objective function using our Markov assumptions.
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A,B = arg max
A,B

∑
~z

Q(~z) log
P (~x, ~z;A,B)

Q(~z)

= arg max
A,B

∑
~z

Q(~z) logP (~x, ~z;A,B)

= arg max
A,B

∑
~z

Q(~z) log(
T∏

t=1

P (xt|zt;B)) (
T∏

t=1

P (zt|zt−1;A))

= arg max
A,B

∑
~z

Q(~z)
T∑

t=1

logBzt xt + logAzt−1 zt

= arg max
A,B

∑
~z

Q(~z)
|S|∑
i=1

|S|∑
j=1

|V |∑
k=1

T∑
t=1

1{zt = sj ∧ xt = vk} logBjk + 1{zt−1 = si ∧ zt = sj} logAij

In the �rst line we split the log division into a subtraction and note that
the denominator's term does not depend on the parameters A,B. The Markov
assumptions are applied in line 3. Line 5 uses indicator functions to index A
and B by state.

Just as for the maximum likelihood parameters for a visible Markov model,
it is safe to ignore the inequality constraints because the solution form naturally
results in only positive solutions. Constructing the Lagrangian:

L(A,B, δ, ε) =
∑

~z

Q(~z)
|S|∑
i=1

|S|∑
j=1

|V |∑
k=1

T∑
t=1

1{zt = sj ∧ xt = vk} logBjk + 1{zt−1 = si ∧ zt = sj} logAij

+
|S|∑
j=1

εj(1−
|V |∑
k=1

Bjk) +
|S|∑
i=1

δi(1−
|S|∑
j=1

Aij)

Taking partial derivatives and setting them equal to zero:

∂L(A,B, δ, ε)
∂Aij

=
∑

~z

Q(~z)
1
Aij

T∑
t=1

1{zt−1 = si ∧ zt = sj} − δi ≡ 0

Aij =
1
δi

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

∂L(A,B, δ, ε)
∂Bjk

=
∑

~z

Q(~z)
1
Bjk

T∑
t=1

1{zt = sj ∧ xt = vk} − εj ≡ 0

Bjk =
1
εj

∑
~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk}
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Taking partial derivatives with respect to the Lagrange multipliers and sub-
stituting our values of Aij and Bjk above:

∂L(A,B, δ, ε)
∂δi

= 1−
|S|∑
j=1

Aij

= 1−
|S|∑
j=1

1
δi

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj} ≡ 0

δi =
|S|∑
j=1

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

=
∑

~z

Q(~z)
T∑

t=1

1{zt−1 = si}

∂L(A,B, δ, ε)
∂εj

= 1−
|V |∑
k=1

Bjk

= 1−
|V |∑
k=1

1
εj

∑
~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk} ≡ 0

εj =
|V |∑
k=1

∑
~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk}

=
∑

~z

Q(~z)
T∑

t=1

1{zt = sj}

Substituting back into our expressions above, we �nd that parameters Â and
B̂ that maximize our predicted counts with respect to the dataset are:

Âij =
∑

~z Q(~z)
∑T

t=1 1{zt−1 = si ∧ zt = sj}∑
~z Q(~z)

∑T
t=1 1{zt−1 = si}

B̂jk =
∑

~z Q(~z)
∑T

t=1 1{zt = sj ∧ xt = vk}∑
~z Q(~z)

∑T
t=1 1{zt = sj}

Unfortunately, each of these sums is over all possible labellings ~z ∈ ST . But
recall that Q(~z) was de�ned in the E-step as P (~z|~x;A,B) for parameters A and
B at the last time step. Let's consider how to represent �rst the numerator of
Âij in terms of our forward and backward probabilities, αi(t) and βj(t).

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}
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=
T∑

t=1

∑
~z

1{zt−1 = si ∧ zt = sj}Q(~z)

=
T∑

t=1

∑
~z

1{zt−1 = si ∧ zt = sj}P (~z|~x;A,B)

=
1

P (~x;A,B)

T∑
t=1

∑
~z

1{zt−1 = si ∧ zt = sj}P (~z, ~x;A,B)

=
1

P (~x;A,B)

T∑
t=1

αi(t)AijBj xt
βj(t+ 1)

In the �rst two steps we rearrange terms and substitute in for our de�nition
of Q. Then we use Bayes rule in deriving line four, followed by the de�nitions
of α, β, A, and B, in line �ve. Similarly, the denominator can be represented
by summing out over j the value of the numerator.

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si}

=
|S|∑
j=1

∑
~z

Q(~z)
T∑

t=1

1{zt−1 = si ∧ zt = sj}

=
1

P (~x;A,B)

|S|∑
j=1

T∑
t=1

αi(t)AijBj xt
βj(t+ 1)

Combining these expressions, we can fully characterize our maximum likeli-
hood state transitions Âij without needing to enumerate all possible labellings
as:

Âij =
∑T

t=1 αi(t)AijBj xtβj(t+ 1)∑|S|
j=1

∑T
t=1 αi(t)AijBj xt

βj(t+ 1)

Similarly, we can represent the numerator for B̂jk as:

∑
~z

Q(~z)
T∑

t=1

1{zt = sj ∧ xt = vk}

=
1

P (~x;A,B)

T∑
t=1

∑
~z

1{zt = sj ∧ xt = vk}P (~z, ~x;A,B)

=
1

P (~x;A,B)

|S|∑
i=1

T∑
t=1

∑
~z

1{zt−1 = si ∧ zt = sj ∧ xt = vk}P (~z, ~x;A,B)
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Algorithm 3 Forward-Backward algorithm for HMM parameter learning

Initialization: Set A and B as random valid probability matrices
where Ai0 = 0 and B0k = 0 for i = 1..|S| and k = 1..|V |.

Repeat until convergence {
(E-Step) Run the Forward and Backward algorithms to compute αi and βi for
i = 1..|S|. Then set:

γt(i, j) := αi(t)AijBj xt
βj(t+ 1)

(M-Step) Re-estimate the maximum likelihood parameters as:

Aij :=
∑T

t=1 γt(i, j)∑|S|
j=1

∑T
t=1 γt(i, j)

Bjk :=
∑|S|

i=1

∑T
t=1 1{xt = vk} γt(i, j)∑|S|
i=1

∑T
t=1 γt(i, j)

}

=
1

P (~x;A,B)

|S|∑
i=1

T∑
t=1

1{xt = vk}αi(t)AijBj xtβj(t+ 1)

And the denominator of B̂jk as:

∑
~z

Q(~z)
T∑

t=1

1{zt = sj}

=
1

P (~x;A,B)

|S|∑
i=1

T∑
t=1

∑
~z

1{zt−1 = si ∧ zt = sj}P (~z, ~x;A,B)

=
1

P (~x;A,B)

|S|∑
i=1

T∑
t=1

αi(t)AijBj xt
βj(t+ 1)

Combining these expressions, we have the following form for our maximum
likelihood emission probabilities as:

B̂jk =
∑|S|

i=1

∑T
t=1 1{xt = vk}αi(t)AijBj xt

βj(t+ 1)∑|S|
i=1

∑T
t=1 αi(t)AijBj xt

βj(t+ 1)

Algorithm 2.4 shows a variant of the Forward-Backward Algorithm,
or the Baum-Welch Algorithm for parameter learning in HMMs. In the
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E-Step, rather than explicitly evaluating Q(~z) for all ~z ∈ ST , we compute
a su�cient statistics γt(i, j) = αi(t)AijBj xt

βj(t + 1) that is proportional to
the probability of transitioning between sate si and sj at time t given all of
our observations ~x. The derived expressions for Aij and Bjk are intuitively
appealing. Aij is computed as the expected number of transitions from si to
sj divided by the expected number of appearances of si. Similarly, Bjk is
computed as the expected number of emissions of vk from sj divided by the
expected number of appearances of sj .

Like many applications of EM, parameter learning for HMMs is a non-convex
problem with many local maxima. EM will converge to a maximum based on
its initial parameters, so multiple runs might be in order. Also, it is often
important to smooth the probability distributions represented by A and B so
that no transition or emission is assigned 0 probability.

2.5 Further reading

There are many good sources for learning about Hidden Markov Models. For ap-
plications in NLP, I recommend consulting Jurafsky & Martin's draft second edi-
tion of Speech and Language Processing1 or Manning & Schütze's Foundations of
Statistical Natural Language Processing. Also, Eisner's HMM-in-a-spreadsheet
[1] is a light-weight interactive way to play with an HMM that requires only a
spreadsheet application.

References

[1] Jason Eisner. An interactive spreadsheet for teaching the forward-backward
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ACL Workshop on E�ective Tools and Methodologies for Teaching NLP and
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1http://www.cs.colorado.edu/~martin/slp2.html
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Maximum Entropy and Exponential Families

April 9, 2019

Abstract

The goal of this note is to derive the exponential form of probability distribution from more basic
considerations, in particular Entropy. It follows a description by ET Jaynes in Chapter 11 of his book
Probability Theory: the Logic of Science [1].1

1 Motivating the Exponential Model

This section will motivate the exponential model form that we’ve seen in lecture.

The Setup The setup for our problem is that we are given a finite set of instances I and a set of m
statistics (fi, ci) in which fi : I → R and ci ∈ R. An instance (or possible world) is just an element in a
set. We can think about a statistic as a measurement of an instance, it tells us the important features of
that instance that are important for our model. More precisely, the only information we have about the
instances is the values of fi on these instances. Our goal is to find a probability function p such that

p : I → [0, 1] such that
∑
I∈I

p(I) = 1.

The main goal of this note is to provide a set of assumptions under which such distributions have a
specific functional form, the exponential family, that we saw in generalized linear model:

pθ(I) = Z−1(θ) exp {θ · f(I)}

in which θ ∈ Rm and f(I) ∈ Rm and f(I)i = fi(I). Notice that there is exactly one parameter for
each statistic. As we’ll see for discrete distributions, we are able to derive this exponential form as a
consequences of a maximizing entropy subject to matching the statistics.2

1.1 The problem: Too many distributions!

We’ll see the problem of defining a distribution from statistics (measurements). We’ll see that often there
are often many probability distributions that satisfy our constraints, and we’ll be forced to pick among
them.3

1This work is available online in many places including http://omega.albany.edu:8008/ETJ-PS/cc11g.ps.
2Unfortunately, for continuous distributions, such a derivation does not work due to some technical issues with Entropy–

this hasn’t stopped folks from using it as justification.
3Throughout this section, it will be convenient to view p and fj as functions from I → R–and also as vectors indexed by

I. Their use should be clear from the context.
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The Constraints We interpret a statistic as a constraint on p of the following form:

Ep[fi] = ci i.e.,
∑
I∈I

fi(I)p(I) = ci

Let’s get some notation to describe these constraints. Let N = |I| then the probability we are after is
p ∈ RN subject to constraints.

• There are m constraints of the form

fTj p = cj for j = 1, . . . ,m.

• A single constraint of the form
∑N

i=1 pi = 1 to ensure that p is a probability distribution. We can
write this more succinctly as 1TNp = 1.

• We also have that pi ≥ 0 for i = 1, . . . , N .

More compactly, we can write F ∈ Rm×N such that Fi = fi for i = 1, . . . ,m. Then, we can compactly
write all constraints in a matrix G as

G =

(
1N
F

)
∈ R(m+1)×N so that Gp =

(
1
c

)
.

If N(G) = ∅, then this means that p is uniquely defined as G has an inverse. In this case, p = G−1c.
However often m is much smaller than N , so that N(G) 6= ∅–and there are many solutions that satisfy the
constraints.

Example 1.1. Suppose we have three possible worlds, i.e., I = {I1, I2, I3} and one statistic f(Ii) = i and
c = 2.5. Then, we have:

G =

(
1 1 1
1 2 3

)
and N(G) =

 1
−2
1


Let p(1) = (1/12, 1/3, 7/12) then Gp = (1, 2.5)T–but so do (infinitely) many others, in particular q(α) =
p(1) + α(1,−2, 1) is valid so long as α ∈ [−1/12, 1/6] (due to positivity).

Picking a probability distribution p In the case ∅ 6= N(G), there are many probability distributions
we can pick. All of these distributions can be written as follows:

p = p(0) + p(1) in which p(0) ∈ N(G) and p(1) satisfies Gp(1) =

(
1
c

)
Example 1.2. Continuing the computation above, we see p(0) = α(1,−2, 1) is a vector in N(G).

Which p should we pick? Well, we’ll use one method called the method of maximum entropy. In turn,
this will lead to the fact that our function p has a very special form–the form of exponential models!

1.2 Entropy

To pick among the distributions, we’ll need some scoring method.4 We’ll cut to the chase here and define
the entropy, which is a function on probability distributions p ∈ RN such that p ≥ 0 and pT1N = 1.

H(p) = −
N∑
i=1

pi log pi

4A few natural methods don’t work as we might think they should (minimizing variance, etc.) See [1, Ch.11] for a
description of these alternative approaches.
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Effectively, the entropy rewards one for “spreading” the distribution out more. One can motivate Entropy
from axioms, and either Jaynes or the Wikipedia page is pretty good on this account.5. The intuition
should be that entropy can be used to select the least informative prior, it’s a way of making as few
additional assumptions as possible. In other words, we want to encode the prior information given by
the constraints on the statistics while being as “objective” or “agnostic” as possible. This is called the
maximum entropy principle.

For example, one can verify that under no constraints, H(p) is maximized with pi = N−1–that is all
alternatives have equal probability. This is what we mean by spread out.

We’ll pick the distribution that maximizes entropy subject to our constraints. Mathematically, we’ll
examine:

max
p∈RN

H(p) s.t. pT1 = 1, p ≥ 0, and Fp = c

We will not discuss it, but under appropriate conditions there is a unique solution p.

1.3 The Lagrangian

We’ll create a function called the Lagrangian that has the property that any critical point of the Lagrangian
is a critical point of the constrained problem. We will show that all critical points of the Lagrangian (and
so our original problem) can be written in the exponential format we described above.

To simplify our discussion, let’s imagine that p > 0, i.e,. there are no possible worlds I such that
p(I) = 0. In this case, our problem reduces to:

max
p∈RN

H(p) s.t. Fp = c and 1TNp = 1

We can write the Lagrangian Λ : RN × (Rm × R)→ R as follows:

Λ(p; θ, λ) = H(p) + θT (Fp− c) + λ(1Tp− 1)

The special property of Λ is that any critical point of our original solution, in particular any maximum
or minimum corresponds to a critical point of the Lagrangian. Thus, if we prove something about critical
points of the Lagrangian, we prove something about the critical points of the original function. Later in
the course, we’ll see more sophisticated uses of Lagrangians but for now we include a simple derivation
below to give a hint what’s going on. For this section, we’ll assume this special property is true.

Due to that special property, we find the critical points of Λ by differentiating with respect to pi and
setting the resulting equations to 0.

∂

∂pi

[
H(p) + θT (Fp− c) + λ(1Tp− 1)

]
= −(log pi + 1) +

m∑
j=1

θjfj(Ii) + λ = −(log pi + 1) + θTf(Ii) + λ

Setting this expression equal to 0 and solving for pi we learn:

pi = eλ−1 exp
{
θTf(Ii)

}
which is of the right form–except that we have one too many parameters, namely λ. Nevertheless, this is
remarkable: at a critical point, it’s always the case that the exponential family “pops out”!

5https://en.wikipedia.org/wiki/Entropy_(information_theory)#Rationale
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Eliminating λ The parameter λ can be eliminated, which is the final step to match our original claimed
exponential form. To do so, we sum over all the pi which we know on one hand is equal to 1, and the other
hand, we have the above expression for pi. This gives us the following equation:

N∑
i=1

pi = 1 and
N∑
i=1

pi = eλ−1

(
N∑
i=1

exp
{
θTf(Ii)

})
thus e−λ+1 =

(
N∑
i=1

exp
{
θTf(Ii)

})
Thus, we have expressed λ as a function of θ and we can eliminate it. To do so, we write:

Z(θ) =
N∑
i=1

exp
{
θTf(Ii)

}
and pi = Z(θ)−1 exp{θTf(Ii)}

This function Z is called the partition function that we saw in lecture. The above form is the claimed
exponential form that has one parameter per constraint.

2 Why the Lagrangian?

We observe that this is a constrained optimization problem with linear constraints.6

Let r be the rank of G and so dim(N(G)) = N − r. We create a function φ : RN−r → R such that
there is a map between any point in the domain of φ and a feasible solution to our constrained problem,
and moreover φ will take the same value as H. In contrast to our original constrained problem, φ has an
unconstrained domain (all of RN−r), and so we can apply standard calculus to find its critical points. To
that end, we define a (linear) map B ∈ RN×(N−r) that has rank N − r. We also insist that BTB = IN−r.
Such a B exists, as it is simply the first N − r columns of a change of basis matrix from the standard basis
to an orthonormal basis for N(G).

φ(x) = H(Bx+ p(1)),

where p(1) is a fixed vector satisfying Gp(1) =

(
1
c

)
.

Observe that for any x ∈ RN−r, Bx ∈ N(G) so that G(Bx + p(1)) = Gp(1) =

(
1
c

)
and so Bx + p(1) is

feasible. Moreover, B is a bijection from RN−r to the set of feasible solutions.7 Importantly, φ is now
unconstrained, and so any saddle point (and so any maximum or minimum) must satisfy:

∇xφ(x) = 0

Gradient Decomposition Any critical point of H yields a critical point of φ, that is, if p = p(0) + p(1)

is a critical point of H then x = BTp(0) is a critical point of φ. Consider any critical point p, then we can
uniquely decompose the gradient as:

∇pH(p) = g0 + g1 in which g0 ∈ N(G) and g1 ∈ N(G)⊥.

We claim g0 = B∇φ(BTp) or equivalently BTg = ∇xφ(BTp). From direct calculation, ∇xφ(x) =
∇xH(Bx+p(1)) = BT∇pH(p(0) +p(1)) = BT∇pH(p) = BTg0, where the last equality is due to g1 ∈ N(G)⊥.
A critical point of H satisfying the constraints must not change along any direction that satisfies the
constraints, which is to say that we must have g0 = 0. Very roughly, one can have the intuition that if
p were a maximum (or minimum), then if g0 were non-zero there would be a way to strictly increase (or
decrease) the function in a neighbor around p–contradicting p being a maximum (minimum).

6One can form the Lagrangian for non-linear constraints, but to derive it we need to use fancier math like the implicit
function theorem. We only need linear constraints for our applications.

7For contradiction, suppose p, q are distinct feasible solutions then, p 6= q but BT p = BT q but we can write p = p(0) +p(1)

and q = q(0) + p(1) from the above. However, BT p = BT q implies that BT p(0) = BT q(0). In turn since B is a bijection on
N(G) this implies that p(0) = q(0).
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Lagrangian Since g1 ∈ N(G)⊥ = R(GT ) (see the fundamental theorem of linear algebra), we can find a
θ(p) such that g1 = −GT θ(p), which motivates the following functional form:

Λ(p, θ(p)) = H(p) + θ(p)T (Gp− c)

By the definition of θ(p), we have:

∇pΛ(p, θ(p)) = g0 + g1 + θ(p)TG = g0.

That is, for any critical point p of the original function (which corresponds to g0 = 0) we can select θ(p)
so that it is a critical point of Λ(p, θ). Informally, the multipliers combines the rows of G to cancel g1, the
component of the gradient in the direction of the constraints. This establishes that any critical point of
the original constrained function is also a critical point of the Lagrangian.
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The Multivariate Gaussian Distribution

Chuong B. Do

October 10, 2008

A vector-valued random variable X =
[

X1 · · · Xn

]T
is said to have a multivariate

normal (or Gaussian) distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Sn
++

1

if its probability density function2 is given by

p(x; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

.

We write this as X ∼ N (µ, Σ). In these notes, we describe multivariate Gaussians and some
of their basic properties.

1 Relationship to univariate Gaussians

Recall that the density function of a univariate normal (or Gaussian) distribution is
given by

p(x; µ, σ2) =
1√
2πσ

exp

(

− 1

2σ2
(x − µ)2

)

.

Here, the argument of the exponential function, − 1
2σ2 (x−µ)2, is a quadratic function of the

variable x. Furthermore, the parabola points downwards, as the coefficient of the quadratic
term is negative. The coefficient in front, 1√

2πσ
, is a constant that does not depend on x;

hence, we can think of it as simply a “normalization factor” used to ensure that

1√
2πσ

∫ ∞

−∞
exp

(

− 1

2σ2
(x − µ)2

)

= 1.

1Recall from the section notes on linear algebra that S
n

++ is the space of symmetric positive definite n×n

matrices, defined as

S
n

++ =
{

A ∈ R
n×n : A = AT and xT Ax > 0 for all x ∈ R

n such that x 6= 0
}

.

2In these notes, we use the notation p(•) to denote density functions, instead of fX(•) (as in the section
notes on probability theory).
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Figure 1: The figure on the left shows a univariate Gaussian density for a single variable X.
The figure on the right shows a multivariate Gaussian density over two variables X1 and X2.

In the case of the multivariate Gaussian density, the argument of the exponential function,
−1

2
(x − µ)T Σ−1(x − µ), is a quadratic form in the vector variable x. Since Σ is positive

definite, and since the inverse of any positive definite matrix is also positive definite, then
for any non-zero vector z, zT Σ−1z > 0. This implies that for any vector x 6= µ,

(x − µ)T Σ−1(x − µ) > 0

−1

2
(x − µ)T Σ−1(x − µ) < 0.

Like in the univariate case, you can think of the argument of the exponential function as
being a downward opening quadratic bowl. The coefficient in front (i.e., 1

(2π)n/2|Σ|1/2
) has an

even more complicated form than in the univariate case. However, it still does not depend
on x, and hence it is again simply a normalization factor used to ensure that

1

(2π)n/2|Σ|1/2

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

dx1dx2 · · · dxn = 1.

2 The covariance matrix

The concept of the covariance matrix is vital to understanding multivariate Gaussian
distributions. Recall that for a pair of random variables X and Y , their covariance is
defined as

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ].

When working with multiple variables, the covariance matrix provides a succinct way to
summarize the covariances of all pairs of variables. In particular, the covariance matrix,
which we usually denote as Σ, is the n × n matrix whose (i, j)th entry is Cov[Xi, Xj].

2



The following proposition (whose proof is provided in the Appendix A.1) gives an alter-
native way to characterize the covariance matrix of a random vector X:

Proposition 1. For any random vector X with mean µ and covariance matrix Σ,

Σ = E[(X − µ)(X − µ)T ] = E[XXT ] − µµT . (1)

In the definition of multivariate Gaussians, we required that the covariance matrix Σ
be symmetric positive definite (i.e., Σ ∈ Sn

++). Why does this restriction exist? As seen
in the following proposition, the covariance matrix of any random vector must always be
symmetric positive semidefinite:

Proposition 2. Suppose that Σ is the covariance matrix corresponding to some random

vector X. Then Σ is symmetric positive semidefinite.

Proof. The symmetry of Σ follows immediately from its definition. Next, for any vector
z ∈ Rn, observe that

zT Σz =
n
∑

i=1

n
∑

j=1

(Σijzizj) (2)

=
n
∑

i=1

n
∑

j=1

(Cov[Xi, Xj] · zizj)

=
n
∑

i=1

n
∑

j=1

(E[(Xi − E[Xi])(Xj − E[Xj])] · zizj)

= E

[

n
∑

i=1

n
∑

j=1

(Xi − E[Xi])(Xj − E[Xj]) · zizj

]

. (3)

Here, (2) follows from the formula for expanding a quadratic form (see section notes on linear
algebra), and (3) follows by linearity of expectations (see probability notes).

To complete the proof, observe that the quantity inside the brackets is of the form
∑

i

∑

j xixjzizj = (xT z)2 ≥ 0 (see problem set #1). Therefore, the quantity inside the
expectation is always nonnegative, and hence the expectation itself must be nonnegative.
We conclude that zT Σz ≥ 0.

From the above proposition it follows that Σ must be symmetric positive semidefinite in
order for it to be a valid covariance matrix. However, in order for Σ−1 to exist (as required in
the definition of the multivariate Gaussian density), then Σ must be invertible and hence full
rank. Since any full rank symmetric positive semidefinite matrix is necessarily symmetric
positive definite, it follows that Σ must be symmetric positive definite.
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3 The diagonal covariance matrix case

To get an intuition for what a multivariate Gaussian is, consider the simple case where n = 2,
and where the covariance matrix Σ is diagonal, i.e.,

x =

[

x1

x2

]

µ =

[

µ1

µ2

]

Σ =

[

σ2
1 0
0 σ2

2

]

In this case, the multivariate Gaussian density has the form,

p(x; µ, Σ) =
1

2π

∣

∣

∣

∣

σ2
1 0
0 σ2

2

∣

∣

∣

∣

1/2
exp

(

−1

2

[

x1 − µ1

x2 − µ2

]T [
σ2

1 0
0 σ2

2

]−1 [
x1 − µ1

x2 − µ2

]

)

=
1

2π(σ2
1 · σ2

2 − 0 · 0)1/2
exp

(

−1

2

[

x1 − µ1

x2 − µ2

]T
[

1
σ2

1

0

0 1
σ2

2

]

[

x1 − µ1

x2 − µ2

]

)

,

where we have relied on the explicit formula for the determinant of a 2× 2 matrix3, and the
fact that the inverse of a diagonal matrix is simply found by taking the reciprocal of each
diagonal entry. Continuing,

p(x; µ, Σ) =
1

2πσ1σ2

exp

(

−1

2

[

x1 − µ1

x2 − µ2

]T
[

1
σ2

1

(x1 − µ1)
1
σ2

2

(x2 − µ2)

])

=
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

=
1√

2πσ1

exp

(

− 1

2σ2
1

(x1 − µ1)
2

)

· 1√
2πσ2

exp

(

− 1

2σ2
2

(x2 − µ2)
2

)

.

The last equation we recognize to simply be the product of two independent Gaussian den-
sities, one with mean µ1 and variance σ2

1, and the other with mean µ2 and variance σ2
2.

More generally, one can show that an n-dimensional Gaussian with mean µ ∈ Rn and
diagonal covariance matrix Σ = diag(σ2

1, σ
2
2, . . . , σ

2
n) is the same as a collection of n indepen-

dent Gaussian random variables with mean µi and variance σ2
i , respectively.

4 Isocontours

Another way to understand a multivariate Gaussian conceptually is to understand the shape
of its isocontours. For a function f : R2 → R, an isocontour is a set of the form

{

x ∈ R2 : f(x) = c
}

.

for some c ∈ R.4

3Namely,

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad − bc.

4Isocontours are often also known as level curves. More generally, a level set of a function f : Rn → R,
is a set of the form

{

x ∈ R
2 : f(x) = c

}

for some c ∈ R.
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4.1 Shape of isocontours

What do the isocontours of a multivariate Gaussian look like? As before, let’s consider the
case where n = 2, and Σ is diagonal, i.e.,

x =

[

x1

x2

]

µ =

[

µ1

µ2

]

Σ =

[

σ2
1 0
0 σ2

2

]

As we showed in the last section,

p(x; µ, Σ) =
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

. (4)

Now, let’s consider the level set consisting of all points where p(x; µ, Σ) = c for some constant
c ∈ R. In particular, consider the set of all x1, x2 ∈ R such that

c =
1

2πσ1σ2

exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

2πcσ1σ2 = exp

(

− 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

)

log(2πcσ1σ2) = − 1

2σ2
1

(x1 − µ1)
2 − 1

2σ2
2

(x2 − µ2)
2

log

(

1

2πcσ1σ2

)

=
1

2σ2
1

(x1 − µ1)
2 +

1

2σ2
2

(x2 − µ2)
2

1 =
(x1 − µ1)

2

2σ2
1 log

(

1
2πcσ1σ2

) +
(x2 − µ2)

2

2σ2
2 log

(

1
2πcσ1σ2

) .

Defining

r1 =

√

2σ2
1 log

(

1

2πcσ1σ2

)

r2 =

√

2σ2
2 log

(

1

2πcσ1σ2

)

,

it follows that

1 =

(

x1 − µ1

r1

)2

+

(

x2 − µ2

r2

)2

. (5)

Equation (5) should be familiar to you from high school analytic geometry: it is the equation
of an axis-aligned ellipse, with center (µ1, µ2), where the x1 axis has length 2r1 and the
x2 axis has length 2r2!

4.2 Length of axes

To get a better understanding of how the shape of the level curves vary as a function of
the variances of the multivariate Gaussian distribution, suppose that we are interested in
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Figure 2:
The figure on the left shows a heatmap indicating values of the density function for an

axis-aligned multivariate Gaussian with mean µ =

[

3
2

]

and diagonal covariance matrix Σ =
[

25 0
0 9

]

. Notice that the Gaussian is centered at (3, 2), and that the isocontours are all

elliptically shaped with major/minor axis lengths in a 5:3 ratio. The figure on the right
shows a heatmap indicating values of the density function for a non axis-aligned multivariate

Gaussian with mean µ =

[

3
2

]

and covariance matrix Σ =

[

10 5
5 5

]

. Here, the ellipses are

again centered at (3, 2), but now the major and minor axes have been rotated via a linear
transformation.
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the values of r1 and r2 at which c is equal to a fraction 1/e of the peak height of Gaussian
density.

First, observe that maximum of Equation (4) occurs where x1 = µ1 and x2 = µ2. Substi-
tuting these values into Equation (4), we see that the peak height of the Gaussian density
is 1

2πσ1σ2

.

Second, we substitute c = 1
e

(

1
2πσ1σ2

)

into the equations for r1 and r2 to obtain

r1 =

√

√

√

√

√2σ2
1 log





1

2πσ1σ2 · 1
e

(

1
2πσ1σ2

)



 = σ1

√
2

r2 =

√

√

√

√

√2σ2
2 log





1

2πσ1σ2 · 1
e

(

1
2πσ1σ2

)



 = σ2

√
2.

From this, it follows that the axis length needed to reach a fraction 1/e of the peak height of
the Gaussian density in the ith dimension grows in proportion to the standard deviation σi.
Intuitively, this again makes sense: the smaller the variance of some random variable xi, the
more “tightly” peaked the Gaussian distribution in that dimension, and hence the smaller
the radius ri.

4.3 Non-diagonal case, higher dimensions

Clearly, the above derivations rely on the assumption that Σ is a diagonal matrix. However,
in the non-diagonal case, it turns out that the picture is not all that different. Instead
of being an axis-aligned ellipse, the isocontours turn out to be simply rotated ellipses.
Furthermore, in the n-dimensional case, the level sets form geometrical structures known as
ellipsoids in Rn.

5 Linear transformation interpretation

In the last few sections, we focused primarily on providing an intuition for how multivariate
Gaussians with diagonal covariance matrices behaved. In particular, we found that an n-
dimensional multivariate Gaussian with diagonal covariance matrix could be viewed simply
as a collection of n independent Gaussian-distributed random variables with means and vari-
ances µi and σ2

i , respectvely. In this section, we dig a little deeper and provide a quantitative
interpretation of multivariate Gaussians when the covariance matrix is not diagonal.

The key result of this section is the following theorem (see proof in Appendix A.2).

Theorem 1. Let X ∼ N (µ, Σ) for some µ ∈ Rn and Σ ∈ Sn
++. Then, there exists a matrix

B ∈ Rn×n such that if we define Z = B−1(X − µ), then Z ∼ N (0, I).
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To understand the meaning of this theorem, note that if Z ∼ N (0, I), then using the
analysis from Section 4, Z can be thought of as a collection of n independent standard normal
random variables (i.e., Zi ∼ N (0, 1)). Furthermore, if Z = B−1(X − µ) then X = BZ + µ
follows from simple algebra.

Consequently, the theorem states that any random variable X with a multivariate Gaus-
sian distribution can be interpreted as the result of applying a linear transformation (X =
BZ + µ) to some collection of n independent standard normal random variables (Z).
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Appendix A.1

Proof. We prove the first of the two equalities in (1); the proof of the other equality is similar.

Σ =







Cov[X1, X1] · · · Cov[X1, Xn]
...

. . .
...

Cov[Xn, X1] · · · Cov[Xn, Xn]







=







E[(X1 − µ1)
2] · · · E[(X1 − µ1)(Xn − µn)]

...
. . .

...
E[(Xn − µn)(X1 − µ1)] · · · E[(Xn − µn)2]







= E







(X1 − µ1)
2 · · · (X1 − µ1)(Xn − µn)

...
. . .

...
(Xn − µn)(X1 − µ1) · · · (Xn − µn)2






(6)

= E













X1 − µ1
...

Xn − µn







[

X1 − µ1 · · · Xn − µn

]






(7)

= E
[

(X − µ)(X − µ)T
]

.

Here, (6) follows from the fact that the expectation of a matrix is simply the matrix found
by taking the componentwise expectation of each entry. Also, (7) follows from the fact that
for any vector z ∈ Rn,

zzT =











z1

z2
...
zn











[

z1 z2 · · · zn

]

=











z1z1 z1z2 · · · z1zn

z2z1 z2z2 · · · z2zn
...

...
. . .

...
znz1 znz2 · · · znzn











.

Appendix A.2

We restate the theorem below:

Theorem 1. Let X ∼ N (µ, Σ) for some µ ∈ Rn and Σ ∈ Sn
++. Then, there exists a matrix

B ∈ Rn×n such that if we define Z = B−1(X − µ), then Z ∼ N (0, I).

The derivation of this theorem requires some advanced linear algebra and probability
theory and can be skipped for the purposes of this class. Our argument will consist of two
parts. First, we will show that the covariance matrix Σ can be factorized as Σ = BBT

for some invertible matrix B. Second, we will perform a “change-of-variable” from X to a
different vector valued random variable Z using the relation Z = B−1(X − µ).
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Step 1: Factorizing the covariance matrix. Recall the following two properties of
symmetric matrices from the notes on linear algebra5:

1. Any real symmetric matrix A ∈ Rn×n can always be represented as A = UΛUT , where
U is a full rank orthogonal matrix containing of the eigenvectors of A as its columns,
and Λ is a diagonal matrix containing A’s eigenvalues.

2. If A is symmetric positive definite, all its eigenvalues are positive.

Since the covariance matrix Σ is positive definite, using the first fact, we can write Σ = UΛUT

for some appropriately defined matrices U and Λ. Using the second fact, we can define
Λ1/2 ∈ Rn×n to be the diagonal matrix whose entries are the square roots of the corresponding
entries from Λ. Since Λ = Λ1/2(Λ1/2)T , we have

Σ = UΛUT = UΛ1/2(Λ1/2)T UT = UΛ1/2(UΛ1/2)T = BBT ,

where B = UΛ1/2.6 In this case, then Σ−1 = B−T B−1, so we can rewrite the standard
formula for the density of a multivariate Gaussian as

p(x; µ, Σ) =
1

(2π)n/2|BBT |1/2
exp

(

−1

2
(x − µ)T B−T B−1(x − µ)

)

. (8)

Step 2: Change of variables. Now, define the vector-valued random variable Z =
B−1(X−µ). A basic formula of probability theory, which we did not introduce in the section
notes on probability theory, is the “change-of-variables” formula for relating vector-valued
random variables:

Suppose that X =
[

X1 · · · Xn

]T ∈ Rn is a vector-valued random variable with
joint density function fX : Rn → R. If Z = H(X) ∈ Rn where H is a bijective,
differentiable function, then Z has joint density fZ : Rn → R, where

fZ(z) = fX(x) ·

∣

∣

∣

∣

∣

∣

∣

det













∂x1

∂z1

· · · ∂x1

∂zn
...

. . .
...

∂xn

∂z1

· · · ∂xn

∂zn













∣

∣

∣

∣

∣

∣

∣

.

Using the change-of-variable formula, one can show (after some algebra, which we’ll skip)
that the vector variable Z has the following joint density:

pZ(z) =
1

(2π)n/2
exp

(

−1

2
zT z

)

. (9)

The claim follows immediately. �

5See section on “Eigenvalues and Eigenvectors of Symmetric Matrices.”
6To show that B is invertible, it suffices to observe that U is an invertible matrix, and right-multiplying

U by a diagonal matrix (with no zero diagonal entries) will rescale its columns but will not change its rank.
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More on Multivariate Gaussians

Chuong B. Do

November 21, 2008

Up to this point in class, you have seen multivariate Gaussians arise in a number of appli-
cations, such as the probabilistic interpretation of linear regression, Gaussian discriminant
analysis, mixture of Gaussians clustering, and most recently, factor analysis. In these lec-
ture notes, we attempt to demystify some of the fancier properties of multivariate Gaussians
that were introduced in the recent factor analysis lecture. The goal of these notes is to give
you some intuition into where these properties come from, so that you can use them with
confidence on your homework (hint hint!) and beyond.

1 Definition

A vector-valued random variable x ∈ Rn is said to have a multivariate normal (or Gaus-
sian) distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++
1 if its probability

density function is given by

p(x; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

.

We write this as x ∼ N (µ, Σ).

2 Gaussian facts

Multivariate Gaussians turn out to be extremely handy in practice due to the following facts:

• Fact #1: If you know the mean µ and covariance matrix Σ of a Gaussian random
variable x, you can write down the probability density function for x directly.

1Recall from the section notes on linear algebra that S
n
++ is the space of symmetric positive definite n×n

matrices, defined as

S
n
++ =

{

A ∈ R
n×n : A = AT and xT Ax > 0 for all x ∈ R

n such that x 6= 0
}

.
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• Fact #2: The following Gaussian integrals have closed-form solutions:
∫

x∈Rn

p(x; µ, Σ)dx =

∫ ∞

−∞

· · ·
∫ ∞

−∞

p(x; µ, Σ)dx1 . . . dxn = 1

∫

x∈Rn

xip(x; µ, σ2)dx = µi

∫

x∈Rn

(xi − µi)(xj − µj)p(x; µ, σ2)dx = Σij.

• Fact #3: Gaussians obey a number of closure properties:

– The sum of independent Gaussian random variables is Gaussian.

– The marginal of a joint Gaussian distribution is Gaussian.

– The conditional of a joint Gaussian distribution is Gaussian.

At first glance, some of these facts, in particular facts #1 and #2, may seem either
intuitively obvious or at least plausible. What is probably not so clear, however, is why
these facts are so powerful. In this document, we’ll provide some intuition for how these facts
can be used when performing day-to-day manipulations dealing with multivariate Gaussian
random variables.

3 Closure properties

In this section, we’ll go through each of the closure properties described earlier, and we’ll
either prove the property using facts #1 and #2, or we’ll at least give some type of intuition
as to why the property is true.

The following is a quick roadmap of what we’ll cover:

sums marginals conditionals
why is it Gaussian? no yes yes

resulting density function yes yes yes

3.1 Sum of independent Gaussians is Gaussian

The formal statement of this rule is:

Suppose that y ∼ N (µ, Σ) and z ∼ N (µ′, Σ′) are independent Gaussian dis-
tributed random variables, where µ, µ′ ∈ Rn and Σ, Σ′ ∈ Sn

++. Then, their sum
is also Gaussian:

y + z ∼ N (µ + µ′, Σ + Σ′).

Before we prove anything, here are some observations:

2



1. The first thing to point out is that the importance of the independence assumption in
the above rule. To see why this matters, suppose that y ∼ N (µ, Σ) for some mean
vector µ and covariance matrix Σ, and suppose that z = −y. Clearly, z also has a
Gaussian distribution (in fact, z ∼ N (−µ, Σ), but y + z is identically zero!

2. The second thing to point out is a point of confusion for many students: if we add
together two Gaussian densities (“bumps” in multidimensional space), wouldn’t we get
back some bimodal (i.e., “two-humped” density)? Here, the thing to realize is that the
density of the random variable y + z in this rule is NOT found by simply adding the
densities of the individual random variables y and z. Rather, the density of y + z will
actually turn out to be a convolution of the densities for y and z.2 To show that the
convolution of two Gaussian densities gives a Gaussian density, however, is beyond the
scope of this class.

Instead, let’s just use the observation that the convolution does give some type of Gaus-
sian density, along with Fact #1, to figure out what the density, p(y + z|µ, Σ) would be, if
we were to actually compute the convolution. How can we do this? Recall that from Fact
#1, a Gaussian distribution is fully specified by its mean vector and covariance matrix. If
we can determine what these are, then we’re done.

But this is easy! For the mean, we have

E[yi + zi] = E[yi] + E[zi] = µi + µ′
i

from linearity of expectations. Therefore, the mean of y + z is simply µ + µ′. Also, the
(i, j)th entry of the covariance matrix is given by

E[(yi + zi)(yj + zj)] − E[yi + zi]E[yj + zj]

= E[yiyj + ziyj + yizj + zizj] − (E[yi] + E[zi])(E[yj] + E[zj])

= E[yiyj] + E[ziyj] + E[yizj] + E[zizj] − E[yi]E[yj] − E[zi]E[yj] − E[yi]E[zj] − E[zi][zj]

= (E[yiyj] − E[yi]E[yj]) + (E[zizj] − E[zi]E[zj])

+ (E[ziyj] − E[zi]E[yj]) + (E[yizj] − E[yi]E[zj]).

Using the fact that y and z are independent, we have E[ziyj] = E[zi]E[yj] and E[yizj] =
E[yi]E[zj]. Therefore, the last two terms drop out, and we are left with,

E[(yi + zi)(yj + zj)] − E[yi + zi]E[yj + zj]

= (E[yiyj] − E[yi]E[yj]) + (E[zizj] − E[zi]E[zj])

= Σij + Σ′
ij.

2For example, if y and z were univariate Gaussians (i.e., y ∼ N (µ, σ2), z ∼ N (µ′, σ′2)), then the
convolution of their probability densities is given by

p(y + z;µ, µ′, σ2, σ′2) =

∫

∞

−∞

p(w;µ, σ2)p(y + z − w;µ′, σ′2)dw

=

∫

∞

−∞

1√
2πσ

exp

(

− 1

2σ2
(w − µ)2

)

· 1√
2πσ′

exp

(

− 1

2σ′2
(y + z − w − µ′)2

)

dw

3



From this, we can conclude that the covariance matrix of y + z is simply Σ + Σ′.
At this point, take a step back and think about what we have just done. Using some

simple properties of expectations and independence, we have computed the mean and co-
variance matrix of y + z. Because of Fact #1, we can thus write down the density for y + z

immediately, without the need to perform a convolution!3

3.2 Marginal of a joint Gaussian is Gaussian

The formal statement of this rule is:

Suppose that

[

xA

xB

]

∼ N
([

µA

µB

]

,

[

ΣAA ΣAB

ΣBA ΣBB

])

,

where xA ∈ Rm, xB ∈ Rn, and the dimensions of the mean vectors and covariance
matrix subblocks are chosen to match xA and xB. Then, the marginal densities,

p(xA) =

∫

xB∈Rn

p(xA, xB; µ, Σ)dxB

p(xB) =

∫

xA∈Rm

p(xA, xB; µ, Σ)dxA

are Gaussian:

xA ∼ N (µA, ΣAA)

xB ∼ N (µB, ΣBB).

To justify this rule, let’s just focus on the marginal distribution with respect to the variables
xA.4

First, note that computing the mean and covariance matrix for a marginal distribution
is easy: simply take the corresponding subblocks from the mean and covariance matrix of
the joint density. To make sure this is absolutely clear, let’s look at the covariance between
xA,i and xA,j (the ith component of xA and the jth component of xA). Note that xA,i and
xA,j are also the ith and jth components of

[

xA

xB

]

3Of course, we needed to know that y + z had a Gaussian distribution in the first place.
4In general, for a random vector x which has a Gaussian distribution, we can always permute entries of

x so long as we permute the entries of the mean vector and the rows/columns of the covariance matrix in
the corresponding way. As a result, it suffices to look only at xA, and the result for xB follows immediately.
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(since xA appears at the top of this vector). To find their covariance, we need to simply look
at the (i, j)th element of the covariance matrix,

[

ΣAA ΣAB

ΣBA ΣBB

]

.

The (i, j)th element is found in the ΣAA subblock, and in fact, is precisely ΣAA,ij. Using
this argument for all i, j ∈ {1, . . . ,m}, we see that the covariance matrix for xA is simply
ΣAA. A similar argument can be used to find that the mean of xA is simply µA. Thus, the
above argument tells us that if we knew that the marginal distribution over xA is Gaussian,
then we could immediately write down a density function for xA in terms of the appropriate
submatrices of the mean and covariance matrices for the joint density!

The above argument, though simple, however, is somewhat unsatisfying: how can we
actually be sure that xA has a multivariate Gaussian distribution? The argument for this
is slightly long-winded, so rather than saving up the punchline, here’s our plan of attack up
front:

1. Write the integral form of the marginal density explicitly.

2. Rewrite the integral by partitioning the inverse covariance matrix.

3. Use a “completion-of-squares” argument to evaluate the integral over xB.

4. Argue that the resulting density is Gaussian.

Let’s see each of these steps in action.

3.2.1 The marginal density in integral form

Suppose that we wanted to compute the density function of xA directly. Then, we would
need to compute the integral,

p(xA) =

∫

xB∈Rn

p(xA, xB; µ, Σ)dxB

=
1

(2π)
m+n

2

∣

∣

∣

∣

ΣAA ΣAB

ΣBA ΣBB

∣

∣

∣

∣

1/2

∫

xB∈Rn

exp

(

−1

2

[

xA − µA

xB − µB

]T [
ΣAA ΣAB

ΣBA ΣBB

]−1 [
xA − µA

xB − µB

]

)

dxB.

3.2.2 Partitioning the inverse covariance matrix

To make any sort of progress, we’ll need to write the matrix product in the exponent in a
slightly different form. In particular, let us define the matrix V ∈ R(m+n)×(m+n) as5

V =

[

VAA VAB

VBA VBB

]

= Σ−1.

5Sometimes, V is called the “precision” matrix.
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It might be tempting to think that

V =

[

VAA VAB

VBA VBB

]

=

[

ΣAA ΣAB

ΣBA ΣBB

]−1

“=”

[

Σ−1
AA Σ−1

AB

Σ−1
BA Σ−1

BB

]

However, the rightmost equality does not hold! We’ll return to this issue in a later step; for
now, though, it suffices to define V as above without worrying what actual contents of each
submatrix are.

Using this definition of V , the integral expands to

p(xA) =
1

Z

∫

xB∈Rn

exp
(

−
[1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VAB(xB − µB)

+
1

2
(xB − µB)T VBA(xA − µA) +

1

2
(xB − µB)T VBB(xB − µB)

])

dxB,

where Z is some constant not depending on either xA or xB that we’ll choose to ignore for
the moment. If you haven’t worked with partitioned matrices before, then the expansion
above may seem a little magical to you. It is analogous to the idea that when defining a
quadratic form based on some 2 × 2 matrix A, then

xT Ax =
∑

i

∑

j

Aijxixj = x1A11x1 + x1A12x2 + x2A21x1 + x2A22x2.

Take some time to convince yourself that the matrix generalization above also holds.

3.2.3 Integrating out xB

To evaluate the integral, we’ll somehow want to integrate out xB. In general, however,
Gaussian integrals are hard to compute by hand. Is there anything we can do to save time?
There are, in fact, a number of Gaussian integrals for which the answer is already known
(see Fact #2). The basic idea in this section, then, will be to transform the integral we had
in the last section into a form where we can apply one of the results from Fact #2 in order
to perform the required integration easily.

The key to this is a mathematical trick known as “completion of squares.” Consider the
quadratic function zT Az + bT z + c where A is a symmetric, nonsingular matrix. Then, one
can verify directly that

1

2
zT Az + bT z + c =

1

2

(

z + A−1b
)T

A
(

z + A−1b
)

+ c − 1

2
bT A−1b.

This is the multivariate generalization of the “completion of squares” argument used in single
variable algebra:

1

2
az2 + bz + c =

1

2
a

(

z +
b

a

)2

+ c − b2

2a
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To apply the completion of squares in our situation above, let

z = xB − µB

A = VBB

b = VBA(xA − µA)

c =
1

2
(xA − µA)T VAA(xA − µA).

Then, it follows that the integral can be rewritten as

p(xA) =
1

Z

∫

xB∈Rn

exp

(

−
[

1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

+
1

2
(xA − µA)T VAA(xA − µA) − 1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

])

dxB

We can factor out the terms not including xB to obtain,

p(xA) = exp

(

−1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

)

· 1

Z

∫

xB∈Rn

exp

(

−1

2

[

(

xB − µB + V −1

BBVBA(xA − µA)
)T

VBB

(

xB − µB + V −1

BBVBA(xA − µA)
)

])

dxB

At this point, we can now apply Fact #2. In particular, we know that generically speaking,
for a multivariate Gaussian distributed random variable x with mean µ and covariance matrix
Σ, the density function normalizes, i.e.,

1

(2π)n/2|Σ|1/2

∫

Rn

exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

= 1,

or equivalently,

∫

Rn

exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)

= (2π)n/2|Σ|1/2.

We use this fact to get rid of the remaining integral in our expression for p(xA):

p(xA) =
1

Z
· (2π)n/2|VBB |1/2 · exp

(

−1

2
(xA − µA)T (VAA − VABV −1

BBVBA)(xA − µA)

)

.

3.2.4 Arguing that resulting density is Gaussian

At this point, we are almost done! Ignoring the normalization constant in front, we see that
the density of xA is the exponential of a quadratic form in xA. We can quickly recognize
that our density is none other than a Gaussian with mean vector µA and covariance matrix
(VAA−VABV −1

BBVBA)−1. Although the form of the covariance matrix may seem a bit complex,
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we have already achieved what we set out to show in the first place—namely, that xA has a
marginal Gaussian distribution. Using the logic before, we can conclude that this covariance
matrix must somehow reduce to ΣAA.

But, in case you are curious, it’s also possible to show that our derivation is consistent
with this earlier justification. To do this, we use the following result for partitioned matrices:

[

A B

C D

]−1

=

[

M−1 −M−1BD−1

−D−1CM−1 D−1 + D−1CM−1BD−1

]

.

where M = A−BD−1C. This formula can be thought of as the multivariable generalization
of the explicit inverse for a 2 × 2 matrix,

[

a b

c d

]−1

=
1

ad − bc

[

d −b

−c a

]

.

Using the formula, it follows that

[

ΣAA ΣAB

ΣBA ΣBB

]

=

[

VAA VAB

VBA VBB

]−1

=

[

(VAA − VABV −1
BBVBA)−1 −(VAA − VABV −1

BBVBA)−1VABV −1
BB

−V −1
BBVBA(VAA − VABV −1

BBVBA)−1 (VBB − VBAV −1
AAVAB)−1

]

We immediately see that (VAA − VABV −1
BBVBA)−1 = ΣAA, just as we expected!

3.3 Conditional of a joint Gaussian is Gaussian

The formal statement of this rule is:

Suppose that
[

xA

xB

]

∼ N
([

µA

µB

]

,

[

ΣAA ΣAB

ΣBA ΣBB

])

,

where xA ∈ Rm, xB ∈ Rn, and the dimensions of the mean vectors and covariance
matrix subblocks are chosen to match xA and xB. Then, the conditional densities

p(xA | xB) =
p(xA, xB; µ, Σ)

∫

xA∈Rm p(xA, xB; µ, Σ)dxA

p(xB | xA) =
p(xA, xB; µ, Σ)

∫

xB∈Rn p(xA, xB; µ, Σ)dxB

are also Gaussian:

xA | xB ∼ N
(

µA + ΣABΣ−1
BB(xB − µB), ΣAA − ΣABΣ−1

BBΣBA

)

xB | xA ∼ N
(

µB + ΣBAΣ−1
AA(xA − µA), ΣBB − ΣBAΣ−1

AAΣAB

)

.
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As before, we’ll just examine the conditional distribution xB | xA, and the other result will
hold by symmetry. Our plan of attack will be as follows:

1. Write the form of the conditional density explicitly.

2. Rewrite the expression by partitioning the inverse covariance matrix.

3. Use a “completion-of-squares” argument.

4. Argue that the resulting density is Gaussian.

Let’s see each of these steps in action.

3.3.1 The conditional density written explicitly

Suppose that we wanted to compute the density function of xB given xA directly. Then, we
would need to compute

p(xB | xA) =
p(xA, xB; µ, Σ)

∫

xB∈Rm p(xA, xB; µ, Σ)dxA

=
1

Z ′
exp

(

−1

2

[

xA − µA

xB − µB

]T [
ΣAA ΣAB

ΣBA ΣBB

]−1 [
xA − µA

xB − µB

]

)

where Z ′ is a normalization constant that we used to absorb factors not depending on xB.
Note that this time, we don’t even need to compute any integrals – the value of the integral
does not depend on xB, and hence the integral can be folded into the normalization constant
Z ′.

3.3.2 Partitioning the inverse covariance matrix

As before, we reparameterize our density using the matrix V , to obtain

p(xB | xA) =
1

Z ′
exp

(

−1

2

[

xA − µA

xB − µB

]T [
VAA VAB

VBA VBB

] [

xA − µA

xB − µB

]

)

=
1

Z ′
exp
(

−
[1

2
(xA − µA)T VAA(xA − µA) +

1

2
(xA − µA)T VAB(xB − µB)

+
1

2
(xB − µB)T VBA(xA − µA) +

1

2
(xB − µB)T VBB(xB − µB)

])

.

3.3.3 Use a “completion of squares” argument

Recall that

1

2
zT Az + bT z + c =

1

2

(

z + A−1b
)T

A
(

z + A−1b
)

+ c − 1

2
bT A−1b
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provided A is a symmetric, nonsingular matrix. As before, to apply the completion of squares
in our situation above, let

z = xB − µB

A = VBB

b = VBA(xA − µA)

c =
1

2
(xA − µA)T VAA(xA − µA).

Then, it follows that the expression for p(xB | xA) can be rewritten as

p(xB | xA) =
1

Z ′
exp

(

−
[

1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

+
1

2
(xA − µA)T VAA(xA − µA) − 1

2
(xA − µA)T VABV −1

BBVBA(xA − µA)

])

Absorbing the portion of the exponent which does not depend on xB into the normalization
constant, we have

p(xB | xA) =
1

Z ′′
exp

(

−1

2

(

xB − µB + V −1
BBVBA(xA − µA)

)T
VBB

(

xB − µB + V −1
BBVBA(xA − µA)

)

)

3.3.4 Arguing that resulting density is Gaussian

Looking at the last form, p(xB | xA) has the form of a Gaussian density with mean µB −
V −1

BBVBA(xA − µA) and covariance matrix V −1
BB. As before, recall our matrix identity,

[

ΣAA ΣAB

ΣBA ΣBB

]

=

[

(VAA − VABV −1
BBVBA)−1 −(VAA − VABV −1

BBVBA)−1VABV −1
BB

−V −1
BBVBA(VAA − VABV −1

BBVBA)−1 (VBB − VBAV −1
AAVAB)−1

]

.

From this, it follows that

µB|A = µB − V −1
BBVBA(xA − µA) = µB + ΣBAΣ−1

AA(xA − µA).

Conversely, we can also apply our matrix identity to obtain:

[

VAA VAB

VBA VBB

]

=

[

(ΣAA − ΣABΣ−1
BBΣBA)−1 −(ΣAA − ΣABΣ−1

BBΣBA)−1ΣABΣ−1
BB

−Σ−1
BBΣBA(ΣAA − ΣABΣ−1

BBΣBA)−1 (ΣBB − ΣBAΣ−1
AAΣAB)−1

]

,

from which it follows that

ΣB|A = V −1
BB = ΣBB − ΣBAΣ−1

AAΣAB.

And, we’re done!
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4 Summary

In these notes, we used a few simple properties of multivariate Gaussians (plus a couple
matrix algebra tricks) in order to argue that multivariate Gaussians satisfy a number of
closure properties. In general, multivariate Gaussians are exceedingly useful representations
of probability distributions because the closure properties ensure that most of the types
of operations we would ever want to perform using a multivariate Gaussian can be done
in closed form. Analytically, integrals involving multivariate Gaussians are often nice in
practice since we can rely on known Gaussian integrals to avoid having to ever perform the
integration ourselves.

5 Exercise

Test your understanding! Let A ∈ Rn×n be a symmetric nonsingular square matrix, b ∈ Rn,
and c. Prove that

∫

x∈Rn

exp

(

−1

2
xT Ax − xT b − c

)

dx =
(2π)n/2

|A|1/2 exp(c − bT A−1b)
.
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Gaussian processes

Chuong B. Do (updated by Honglak Lee)

November 22, 2008

Many of the classical machine learning algorithms that we talked about during the first
half of this course fit the following pattern: given a training set of i.i.d. examples sampled
from some unknown distribution,

1. solve a convex optimization problem in order to identify the single “best fit” model for
the data, and

2. use this estimated model to make “best guess” predictions for future test input points.

In these notes, we will talk about a different flavor of learning algorithms, known as
Bayesian methods. Unlike classical learning algorithm, Bayesian algorithms do not at-
tempt to identify “best-fit” models of the data (or similarly, make “best guess” predictions
for new test inputs). Instead, they compute a posterior distribution over models (or similarly,
compute posterior predictive distributions for new test inputs). These distributions provide
a useful way to quantify our uncertainty in model estimates, and to exploit our knowledge
of this uncertainty in order to make more robust predictions on new test points.

We focus on regression problems, where the goal is to learn a mapping from some input
space X = Rn of n-dimensional vectors to an output space Y = R of real-valued targets.
In particular, we will talk about a kernel-based fully Bayesian regression algorithm, known
as Gaussian process regression. The material covered in these notes draws heavily on many
different topics that we discussed previously in class (namely, the probabilistic interpretation
of linear regression1, Bayesian methods2, kernels3, and properties of multivariate Gaussians4).

The organization of these notes is as follows. In Section 1, we provide a brief review
of multivariate Gaussian distributions and their properties. In Section 2, we briefly review
Bayesian methods in the context of probabilistic linear regression. The central ideas under-
lying Gaussian processes are presented in Section 3, and we derive the full Gaussian process
regression model in Section 4.

1See course lecture notes on “Supervised Learning, Discriminative Algorithms.”
2See course lecture notes on “Regularization and Model Selection.”
3See course lecture notes on “Support Vector Machines.”
4See course lecture notes on “Factor Analysis.”
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1 Multivariate Gaussians

A vector-valued random variable x ∈ Rn is said to have a multivariate normal (or
Gaussian) distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++ if

p(x; µ, Σ) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)

. (1)

We write this as x ∼ N (µ, Σ). Here, recall from the section notes on linear algebra that Sn
++

refers to the space of symmetric positive definite n × n matrices.5

Generally speaking, Gaussian random variables are extremely useful in machine learning
and statistics for two main reasons. First, they are extremely common when modeling “noise”
in statistical algorithms. Quite often, noise can be considered to be the accumulation of a
large number of small independent random perturbations affecting the measurement process;
by the Central Limit Theorem, summations of independent random variables will tend to
“look Gaussian.” Second, Gaussian random variables are convenient for many analytical
manipulations, because many of the integrals involving Gaussian distributions that arise in
practice have simple closed form solutions. In the remainder of this section, we will review
a number of useful properties of multivariate Gaussians.

Consider a random vector x ∈ Rn with x ∼ N (µ, Σ). Suppose also that the variables in x

have been partitioned into two sets xA = [x1 · · · xr]
T ∈ Rr and xB = [xr+1 · · · xn]T ∈ Rn−r

(and similarly for µ and Σ), such that

x =

[

xA

xB

]

µ =

[

µA

µB

]

Σ =

[

ΣAA ΣAB

ΣBA ΣBB

]

.

Here, ΣAB = ΣT
BA since Σ = E[(x − µ)(x − µ)T ] = ΣT . The following properties hold:

1. Normalization. The density function normalizes, i.e.,
∫

x

p(x; µ, Σ)dx = 1.

This property, though seemingly trivial at first glance, turns out to be immensely
useful for evaluating all sorts of integrals, even ones which appear to have no relation
to probability distributions at all (see Appendix A.1)!

2. Marginalization. The marginal densities,

p(xA) =

∫

xB

p(xA, xB; µ, Σ)dxB

p(xB) =

∫

xA

p(xA, xB; µ, Σ)dxA

5There are actually cases in which we would want to deal with multivariate Gaussian distributions where
Σ is positive semidefinite but not positive definite (i.e., Σ is not full rank). In such cases, Σ−1 does not exist,
so the definition of the Gaussian density given in (1) does not apply. For instance, see the course lecture
notes on “Factor Analysis.”
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are Gaussian:

xA ∼ N (µA, ΣAA)

xB ∼ N (µB, ΣBB).

3. Conditioning. The conditional densities

p(xA | xB) =
p(xA, xB; µ, Σ)

∫

xA

p(xA, xB; µ, Σ)dxA

p(xB | xA) =
p(xA, xB; µ, Σ)

∫

xB

p(xA, xB; µ, Σ)dxB

are also Gaussian:

xA | xB ∼ N
(

µA + ΣABΣ−1
BB(xB − µB), ΣAA − ΣABΣ−1

BBΣBA

)

xB | xA ∼ N
(

µB + ΣBAΣ−1
AA(xA − µA), ΣBB − ΣBAΣ−1

AAΣAB

)

.

A proof of this property is given in Appendix A.2. (See also Appendix A.3 for an easier
version of the derivation.)

4. Summation. The sum of independent Gaussian random variables (with the same
dimensionality), y ∼ N (µ, Σ) and z ∼ N (µ′, Σ′), is also Gaussian:

y + z ∼ N (µ + µ′, Σ + Σ′).

2 Bayesian linear regression

Let S = {(x(i), y(i))}m
i=1 be a training set of i.i.d. examples from some unknown distribution.

The standard probabilistic interpretation of linear regression states that

y(i) = θT x(i) + ε(i), i = 1, . . . , m

where the ε(i) are i.i.d. “noise” variables with independent N (0, σ2) distributions. It follows
that y(i) − θT x(i) ∼ N (0, σ2), or equivalently,

P (y(i) | x(i), θ) =
1√
2πσ

exp

(

−(y(i) − θT x(i))2

2σ2

)

.

For notational convenience, we define

X =











— (x(1))T —
— (x(2))T —

...
— (x(m))T —











∈ Rm×n ~y =











y(1)

y(2)

...
y(m)











∈ Rm ~ε =











ε(1)

ε(2)

...
ε(m)











∈ Rm.
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Bayesian linear regression, 95% confidence region

Figure 1: Bayesian linear regression for a one-dimensional linear regression problem, y(i) =
θx(i) + ǫ(i), with ǫ(i) ∼ N (0, 1) i.i.d. noise. The green region denotes the 95% confidence
region for predictions of the model. Note that the (vertical) width of the green region is
largest at the ends but narrowest in the middle. This region reflects the uncertain in the
estimates for the parameter θ. In contrast, a classical linear regression model would display
a confidence region of constant width, reflecting only the N (0, σ2) noise in the outputs.

In Bayesian linear regression, we assume that a prior distribution over parameters is
also given; a typical choice, for instance, is θ ∼ N (0, τ 2I). Using Bayes’s rule, we obtain the
parameter posterior,

p(θ | S) =
p(θ)p(S | θ)

∫

θ′
p(θ′)p(S | θ′)dθ′

=
p(θ)

∏m
i=1 p(y(i) | x(i), θ)

∫

θ′
p(θ′)

∏m
i=1 p(y(i) | x(i), θ′)dθ′

. (2)

Assuming the same noise model on testing points as on our training points, the “output” of
Bayesian linear regression on a new test point x∗ is not just a single guess “y∗”, but rather
an entire probability distribution over possible outputs, known as the posterior predictive
distribution:

p(y∗ | x∗, S) =

∫

θ

p(y∗ | x∗, θ)p(θ | S)dθ. (3)

For many types of models, the integrals in (2) and (3) are difficult to compute, and hence,
we often resort to approximations, such as MAP estimation (see course lecture notes on
“Regularization and Model Selection”).

In the case of Bayesian linear regression, however, the integrals actually are tractable! In
particular, for Bayesian linear regression, one can show (after much work!) that

θ | S ∼ N
(

1

σ2
A−1XT~y, A−1

)

y∗ | x∗, S ∼ N
(

1

σ2
xT
∗
A−1XT~y, xT

∗
A−1x∗ + σ2

)
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where A = 1
σ2 X

T X + 1
τ2 I. The derivation of these formulas is somewhat involved.6 Nonethe-

less, from these equations, we get at least a flavor of what Bayesian methods are all about: the
posterior distribution over the test output y∗ for a test input x∗ is a Gaussian distribution—
this distribution reflects the uncertainty in our predictions y∗ = θT x∗ + ε∗ arising from both
the randomness in ε∗ and the uncertainty in our choice of parameters θ. In contrast, classical
probabilistic linear regression models estimate parameters θ directly from the training data
but provide no estimate of how reliable these learned parameters may be (see Figure 1).

3 Gaussian processes

As described in Section 1, multivariate Gaussian distributions are useful for modeling finite
collections of real-valued variables because of their nice analytical properties. Gaussian
processes are the extension of multivariate Gaussians to infinite-sized collections of real-
valued variables. In particular, this extension will allow us to think of Gaussian processes as
distributions not just over random vectors but in fact distributions over random functions.7

3.1 Probability distributions over functions with finite domains

To understand how one might paramterize probability distributions over functions, consider
the following simple example. Let X = {x1, . . . , xm} be any finite set of elements. Now,
consider the set H of all possible functions mapping from X to R. For instance, one example
of a function f0(·) ∈ H is given by

f0(x1) = 5, f0(x2) = 2.3, f0(x2) = −7, . . . , f0(xm−1) = −π, f0(xm) = 8.

Since the domain of any f(·) ∈ H has only m elements, we can always represent f(·)
compactly as an m-dimensional vector, ~f =

[

f(x1) f(x2) · · · f(xm)
]T

. In order to specify
a probability distribution over functions f(·) ∈ H, we must associate some “probability
density” with each function in H. One natural way to do this is to exploit the one-to-one
correspondence between functions f(·) ∈ H and their vector representations, ~f . In particular,

if we specify that ~f ∼ N (~µ, σ2I), then this in turn implies a probability distribution over
functions f(·), whose probability density function is given by

p(h) =
m
∏

i=1

1√
2πσ

exp

(

− 1

2σ2
(f(xi) − µi)

2

)

.

6For the complete derivation, see, for instance, [1]. Alternatively, read the Appendices, which gives a
number of arguments based on the “completion-of-squares” trick, and derive this formula yourself!

7Let H be a class of functions mapping from X → Y. A random function f(·) from H is a function which
is randomly drawn from H, according to some probability distribution over H. One potential source of
confusion is that you may be tempted to think of random functions as functions whose outputs are in some
way stochastic; this is not the case. Instead, a random function f(·), once selected from H probabilistically,
implies a deterministic mapping from inputs in X to outputs in Y.
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In the example above, we showed that probability distributions over functions with finite
domains can be represented using a finite-dimensional multivariate Gaussian distribution
over function outputs f(x1), . . . , f(xm) at a finite number of input points x1, . . . , xm. How
can we specify probability distributions over functions when the domain size may be infinite?
For this, we turn to a fancier type of probability distribution known as a Gaussian process.

3.2 Probability distributions over functions with infinite domains

A stochastic process is a collection of random variables, {f(x) : x ∈ X}, indexed by elements
from some set X , known as the index set.8 A Gaussian process is a stochastic process such
that any finite subcollection of random variables has a multivariate Gaussian distribution.

In particular, a collection of random variables {f(x) : x ∈ X} is said to be drawn from a
Gaussian process with mean function m(·) and covariance function k(·, ·) if for any finite
set of elements x1, . . . , xm ∈ X , the associated finite set of random variables f(x1), . . . , f(xm)
have distribution,







f(x1)
...

f(xm)






∼ N













m(x1)
...

m(xm)






,







k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)












.

We denote this using the notation,

f(·) ∼ GP(m(·), k(·, ·)).

Observe that the mean function and covariance function are aptly named since the above
properties imply that

m(x) = E[x]

k(x, x′) = E[(x − m(x))(x′ − m(x′)).

for any x, x′ ∈ X .
Intuitively, one can think of a function f(·) drawn from a Gaussian process prior as an

extremely high-dimensional vector drawn from an extremely high-dimensional multivariate
Gaussian. Here, each dimension of the Gaussian corresponds to an element x from the index
set X , and the corresponding component of the random vector represents the value of f(x).
Using the marginalization property for multivariate Gaussians, we can obtain the marginal
multivariate Gaussian density corresponding to any finite subcollection of variables.

What sort of functions m(·) and k(·, ·) give rise to valid Gaussian processes? In general,
any real-valued function m(·) is acceptable, but for k(·, ·), it must be the case that for any

8Often, when X = R, one can interpret the indices x ∈ X as representing times, and hence the variables
f(x) represent the temporal evolution of some random quantity over time. In the models that are used for
Gaussian process regression, however, the index set is taken to be the input space of our regression problem.
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Figure 2: Samples from a zero-mean Gaussian process prior with kSE(·, ·) covariance function,
using (a) τ = 0.5, (b) τ = 2, and (c) τ = 10. Note that as the bandwidth parameter τ

increases, then points which are farther away will have higher correlations than before, and
hence the sampled functions tend to be smoother overall.

set of elements x1, . . . , xm ∈ X , the resulting matrix

K =







k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)







is a valid covariance matrix corresponding to some multivariate Gaussian distribution. A
standard result in probability theory states that this is true provided that K is positive
semidefinite. Sound familiar?

The positive semidefiniteness requirement for covariance matrices computed based on
arbitrary input points is, in fact, identical to Mercer’s condition for kernels! A function k(·, ·)
is a valid kernel provided the resulting kernel matrix K defined as above is always positive
semidefinite for any set of input points x1, . . . , xm ∈ X . Gaussian processes, therefore, are
kernel-based probability distributions in the sense that any valid kernel function can be used
as a covariance function!

3.3 The squared exponential kernel

In order to get an intuition for how Gaussian processes work, consider a simple zero-mean
Gaussian process,

f(·) ∼ GP(0, k(·, ·)).
defined for functions h : X → R where we take X = R. Here, we choose the kernel function
k(·, ·) to be the squared exponential9 kernel function, defined as

kSE(x, x′) = exp

(

− 1

2τ 2
||x − x′||2

)

9In the context of SVMs, we called this the Gaussian kernel; to avoid confusion with “Gaussian” processes,
we refer to this kernel here as the squared exponential kernel, even though the two are formally identical.
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for some τ > 0. What do random functions sampled from this Gaussian process look like?
In our example, since we use a zero-mean Gaussian process, we would expect that for

the function values from our Gaussian process will tend to be distributed around zero.
Furthermore, for any pair of elements x, x′ ∈ X .

• f(x) and f(x′) will tend to have high covariance x and x′ are “nearby” in the input
space (i.e., ||x − x′|| = |x − x′| ≈ 0, so exp(− 1

2τ2 ||x − x′||2) ≈ 1).

• f(x) and f(x′) will tend to have low covariance when x and x′ are “far apart” (i.e.,
||x − x′|| ≫ 0, so exp(− 1

2τ2 ||x − x′||2) ≈ 0).

More simply stated, functions drawn from a zero-mean Gaussian process prior with the
squared exponential kernel will tend to be “locally smooth” with high probability; i.e.,
nearby function values are highly correlated, and the correlation drops off as a function of
distance in the input space (see Figure 2).

4 Gaussian process regression

As discussed in the last section, Gaussian processes provide a method for modelling probabil-
ity distributions over functions. Here, we discuss how probability distributions over functions
can be used in the framework of Bayesian regression.

4.1 The Gaussian process regression model

Let S = {(x(i), y(i))}m
i=1 be a training set of i.i.d. examples from some unknown distribution.

In the Gaussian process regression model,

y(i) = f(x(i)) + ε(i), i = 1, . . . , m

where the ε(i) are i.i.d. “noise” variables with independent N (0, σ2) distributions. Like in
Bayesian linear regression, we also assume a prior distribution over functions f(·); in
particular, we assume a zero-mean Gaussian process prior,

f(·) ∼ GP(0, k(·, ·))

for some valid covariance function k(·, ·).
Now, let T = {(x(i)

∗ , y
(i)
∗ )}m∗

i=1 be a set of i.i.d. testing points drawn from the same unknown
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distribution as S.10 For notational convenience, we define

X =











— (x(1))T —
— (x(2))T —

...
— (x(m))T —











∈ Rm×n ~f =











f(x(1))
f(x(2))

...
f(x(m))











, ~ε =











ε(1)

ε(2)

...
ε(m)











, ~y =











y(1)

y(2)

...
y(m)











∈ Rm,

X∗ =











— (x
(1)
∗ )T —

— (x
(2)
∗ )T —
...

— (x
(m∗)
∗ )T —











∈ Rm∗×n ~f∗ =











f(x
(1)
∗ )

f(x
(2)
∗ )
...

f(x
(m∗)
∗ )











, ~ε∗ =











ε
(1)
∗

ε
(2)
∗

...

ε
(m∗)
∗











, ~y∗ =











y
(1)
∗

y
(2)
∗

...

y
(m∗)
∗











∈ Rm∗ .

Given the training data S, the prior p(h), and the testing inputs X∗, how can we compute
the posterior predictive distribution over the testing outputs ~y∗? For Bayesian linear regres-
sion in Section 2, we used Bayes’s rule in order to compute the paramter posterior, which we
then used to compute posterior predictive distribution p(y∗ | x∗, S) for a new test point x∗.
For Gaussian process regression, however, it turns out that an even simpler solution exists!

4.2 Prediction

Recall that for any function f(·) drawn from our zero-mean Gaussian process prior with
covariance function k(·, ·), the marginal distribution over any set of input points belonging
to X must have a joint multivariate Gaussian distribution. In particular, this must hold for
the training and test points, so we have

[

~f
~f∗

]∣

∣

∣

∣

∣

X, X∗ ∼ N
(

~0,

[

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])

,

where

~f ∈ Rm such that ~f =
[

f(x(1)) · · · f(x(m))
]T

~f∗ ∈ Rm∗ such that ~f∗ =
[

f(x
(1)
∗ ) · · · f(x

(m)
∗ )

]T

K(X, X) ∈ Rm×m such that (K(X, X))ij = k(x(i), x(j))

K(X, X∗) ∈ Rm×m∗ such that (K(X, X∗))ij = k(x(i), x(j)
∗

)

K(X∗, X) ∈ Rm∗×m such that (K(X∗, X))ij = k(x(i)
∗

, x(j))

K(X∗, X∗) ∈ Rm∗×m∗ such that (K(X∗, X∗))ij = k(x(i)
∗

, x(j)
∗

).

From our i.i.d. noise assumption, we have that
[

~ε

~ε∗

]

∼ N
(

~0,

[

σ2I ~0
~0T σ2I

])

.

10We assume also that T are S are mutually independent.
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Figure 3: Gaussian process regression using a zero-mean Gaussian process prior with kSE(·, ·)
covariance function (where τ = 0.1), with noise level σ = 1, and (a) m = 10, (b) m = 20, and
(c) m = 40 training examples. The blue line denotes the mean of the posterior predictive
distribution, and the green shaded region denotes the 95% confidence region based on the
model’s variance estimates. As the number of training examples increases, the size of the
confidence region shrinks to reflect the diminishing uncertainty in the model estimates. Note
also that in panel (a), the 95% confidence region shrinks near training points but is much
larger far away from training points, as one would expect.

The sums of independent Gaussian random variables is also Gaussian, so
[

~y

~y∗

]∣

∣

∣

∣

X, X∗ =

[

~f
~f∗

]

+

[

~ε

~ε∗

]

∼ N
(

~0,

[

K(X, X) + σ2I K(X, X∗)
K(X∗, X) K(X∗, X∗) + σ2I

])

.

Now, using the rules for conditioning Gaussians, it follows that

~y∗ | ~y, X, X∗ ∼ N (µ∗, Σ∗)

where

µ∗ = K(X∗, X)
(

K(X, X) + σ2I
)

−1
~y

Σ∗ = K(X∗, X∗) + σ2I − K(X∗, X)
(

K(X, X) + σ2I
)

−1
K(X, X∗).

And that’s it! Remarkably, performing prediction in a Gaussian process regression model is
very simple, despite the fact that Gaussian processes in themselves are fairly complicated!11

5 Summary

We close our discussion of our Gaussian processes by pointing out some reasons why Gaussian
processes are an attractive model for use in regression problems and in some cases may be
preferable to alternative models (such as linear and locally-weighted linear regression):

11Interestingly, it turns out that Bayesian linear regression, when “kernelized” in the proper way, turns
out to be exactly equivalent to Gaussian process regression! But the derivation of the posterior predictive
distribution is far more complicated for Bayesian linear regression, and the effort needed to kernelize the
algorithm is even greater. The Gaussian process perspective is certainly much easier!
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1. As Bayesian methods, Gaussian process models allow one to quantify uncertainty in
predictions resulting not just from intrinsic noise in the problem but also the errors
in the parameter estimation procedure. Furthermore, many methods for model selec-
tion and hyperparameter selection in Bayesian methods are immediately applicable to
Gaussian processes (though we did not address any of these advanced topics here).

2. Like locally-weighted linear regression, Gaussian process regression is non-parametric
and hence can model essentially arbitrary functions of the input points.

3. Gaussian process regression models provide a natural way to introduce kernels into a
regression modeling framework. By careful choice of kernels, Gaussian process regres-
sion models can sometimes take advantage of structure in the data (though, we also
did not examine this issue here).

4. Gaussian process regression models, though perhaps somewhat tricky to understand
conceptually, nonetheless lead to simple and straightforward linear algebra implemen-
tations.
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Appendix A.1

In this example, we show how the normalization property for multivariate Gaussians can be
used to compute rather intimidating multidimensional integrals without performing any real
calculus! Suppose you wanted to compute the following multidimensional integral,

I(A, b, c) =

∫

x

exp

(

−1

2
xT Ax − xT b − c

)

dx,

for some A ∈ Sm
++, b ∈ Rm, and c ∈ R. Although one could conceivably perform the

multidimensional integration directly (good luck!), a much simpler line of reasoning is based
on a mathematical trick known as “completion-of-squares.” In particular,

I(A, b, c) = exp (−c) ·
∫

x

exp

(

−1

2
xT Ax − xT AA−1b

)

dx

= exp (−c) ·
∫

x

exp

(

−1

2
(x − A−1b)T A(x − A−1b) − bT A−1b

)

dx

= exp
(

−c − bT A−1b
)

·
∫

x

exp

(

−1

2
(x − A−1b)T A(x − A−1b)

)

dx.

Defining µ = A−1b and Σ = A−1, it follows that I(A, b, c) is equal to

(2π)m/2|Σ|1/2

exp (c + bT A−1b)
·
[

1

(2π)m/2|Σ|1/2

∫

x

exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)

dx

]

.

However, the term in brackets is identical in form to the integral of a multivariate Gaussian!
Since we know that a Gaussian density normalizes, it follows that the term in brackets is
equal to 1. Therefore,

I(A, b, c) =
(2π)m/2|A−1|1/2

exp (c + bT A−1b)
.

Appendix A.2

We derive the form of the distribution of xA given xB; the other result follows immediately
by symmetry. Note that

p(xA | xB) =
1

∫

xA

p(xA, xB; µ, Σ)dxA

·
[

1

(2π)m/2|Σ|1/2
exp

(

−1

2
(x − µ)T Σ−1(x − µ)

)]

=
1

Z1

exp

{

−1

2

([

xA

xB

]

−
[

µA

µB

])T [

VAA VAB

VBA VBB

]([

xA

xB

]

−
[

µA

µB

])

}

where Z1 is a proportionality constant which does not depend on xA, and

Σ−1 = V =

[

VAA VAB

VBA VBB

]

.
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To simplify this expression, observe that

([

xA

xB

]

−
[

µA

µB

])T [

VAA VAB

VBA VBB

]([

xA

xB

]

−
[

µA

µB

])

= (xA − µA)T VAA(xA − µA) + (xA − µA)T VAB(xB − µB)

+ (xB − µB)T VBA(xA − µA) + (xB − µB)T VBB(xB − µB).

Retaining only terms dependent on xA (and using the fact that VAB = V T
BA), we have

p(xA | xB) =
1

Z2
exp

(

−1

2

[

xT
AVAAxA − 2xT

AVAAµA + 2xT
AVAB(xB − µB)

]

)

where Z2 is a new proportionality constant which again does not depend on xA. Finally,
using the “completion-of-squares” argument (see Appendix A.1), we have

p(xA | xB) =
1

Z3

exp

(

−1

2
(xA − µ′)T VAA(xA − µ′)

)

where Z3 is again a new proportionality constant not depending on xA, and where µ′ =
µA − V −1

AAVAB(xB − µB). This last statement shows that the distribution of xA, conditioned
on xB, again has the form of a multivariate Gaussian. In fact, from the normalization
property, it follows immediately that

xA | xB ∼ N (µA − V −1
AAVAB(xB − µB), V −1

AA).

To complete the proof, we simply note that

[

VAA VAB

VBA VBB

]

=

[

(ΣAA − ΣABΣ−1
BBΣBA)−1 −(ΣAA − ΣABΣ−1

BBΣBA)−1ΣABΣ−1
BB

−Σ−1
BBΣBA(ΣAA − ΣABΣ−1

BBΣBA)−1 (ΣBB − ΣBAΣ−1
AAΣAB)−1

]

follows from standard formulas for the inverse of a partitioned matrix. Substituting the
relevant blocks into the previous expression gives the desired result.

Appendix A.3

In this section, we present an alternative (and easier) derivation of the conditional distri-
bution of multivariate Gaussian distribution. Note that, as in Appendix A.2, we can write
p(xA | xB) as following:

p(xA | xB) =
1

∫

xA

p(xA, xB; µ, Σ)dxA

·
[

1

(2π)m/2|Σ|1/2
exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)]

(4)

=
1

Z1

exp

{

−1

2

([

xA − µA

xB − µB

])T [

VAA VAB

VBA VBB

] [

xA − µA

xB − µB

]

}

(5)
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where Z1 is a proportionality constant which does not depend on xA.
This derivation uses an additional assumption that the conditional distribution is a mul-

tivariate Gaussian distribution; in other words, we assume that p(xA | xB) ∼ N (µ∗, Σ∗) for
some µ∗, Σ∗. (Alternatively, you can think about this derivation as another way of finding
“completion-of-squares”.)

The key intuition in this derivation is that p(xA | xB) will be maximized when xA = µ∗ ,

x∗

A. To maximize p(xA | xB), we compute the gradient of log p(xA | xB) w.r.t. xA and set it
to zero. Using Equation (5), we have

∇xA
log p(xA | xB)|xA=x∗

A
(6)

= −VAA(x∗

A − µA) − VAB(xB − µB) (7)

= 0. (8)

This implies that

µ∗ = x∗

A = µA − V −1
AAVAB(xB − µB). (9)

Similarly, we use the fact that the inverse covariance matrix of a Gaussian distribution
p(·) is a negative Hessian of log p(·). In other words, the inverse covariance matrix of a
Gaussian distribution p(xA|xB) is a negative Hessian of log p(xA|xB). Using Equation (5),
we have

Σ∗−1 = −∇xA
∇T

xA
log p(xA | xB) (10)

= VAA. (11)

Therefore, we get

Σ∗ = V −1
AA . (12)
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CS229 Supplemental Lecture notes

Hoeffding’s inequality

John Duchi

1 Basic probability bounds

A basic question in probability, statistics, and machine learning is the fol-
lowing: given a random variable Z with expectation E[Z], how likely is Z to
be close to its expectation? And more precisely, how close is it likely to be?
With that in mind, these notes give a few tools for computing bounds of the
form

P(Z ≥ E[Z] + t) and P(Z ≤ E[Z]− t) (1)

for t ≥ 0.
Our first bound is perhaps the most basic of all probability inequalities,

and it is known as Markov’s inequality. Given its basic-ness, it is perhaps
unsurprising that its proof is essentially only one line.

Proposition 1 (Markov’s inequality). Let Z ≥ 0 be a non-negative random

variable. Then for all t ≥ 0,

P(Z ≥ t) ≤ E[Z]

t
.

Proof We note that P(Z ≥ t) = E[1 {Z ≥ t}], and that if Z ≥ t, then it
must be the case that Z/t ≥ 1 ≥ 1 {Z ≥ t}, while if Z < t, then we still have
Z/t ≥ 0 = 1 {Z ≥ t}. Thus

P(Z ≥ t) = E[1 {Z ≥ t}] ≤ E

[

Z

t

]

=
E[Z]

t
,

as desired.
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Essentially all other bounds on the probabilities (1) are variations on
Markov’s inequality. The first variation uses second moments—the variance—
of a random variable rather than simply its mean, and is known as Cheby-
shev’s inequality.

Proposition 2 (Chebyshev’s inequality). Let Z be any random variable with

Var(Z) < ∞. Then

P(Z ≥ E[Z] + t or Z ≤ E[Z]− t) ≤ Var(Z)

t2

for t ≥ 0.

Proof The result is an immediate consequence of Markov’s inequality. We
note that if Z ≥ E[Z] + t, then certainly we have (Z − E[Z])2 ≥ t2, and
similarly if Z ≤ E[Z]− t we have (Z − E[Z])2 ≥ t2. Thus

P(Z ≥ E[Z] + t or Z ≤ E[Z]− t) = P((Z − E[Z])2 ≥ t2)

(i)

≤ E[(Z − E[Z])2]

t2
=

Var(Z)

t2
,

where step (i) is Markov’s inequality.

A nice consequence of Chebyshev’s inequality is that averages of random
variables with finite variance converge to their mean. Let us give an example
of this fact. Suppose that Zi are i.i.d. and satisfy E[Zi] = 0. Then E[Zi] = 0,
while if we define Z̄ = 1

n

∑n

i=1 Zi then

Var(Z̄) = E

[

(

1

n

n
∑

i=1

Zi

)2
]

=
1

n2

∑

i,j≤n

E[ZiZj] =
1

n2

n
∑

i=1

E[Z2
i ] =

Var(Z1)

n
.

In particular, for any t ≥ 0 we have

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣

∣

∣

≥ t

)

≤ Var(Z1)

nt2
,

so that P(|Z̄| ≥ t) → 0 for any t > 0.
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2 Moment generating functions

Often, we would like sharper—even exponential—bounds on the probability
that a random variable Z exceeds its expectation by much. With that in
mind, we need a stronger condition than finite variance, for which moment
generating functions are natural candidates. (Conveniently, they also play
nicely with sums, as we will see.) Recall that for a random variable Z, the
moment generating function of Z is the function

MZ(λ) := E[exp(λZ)], (2)

which may be infinite for some λ.

2.1 Chernoff bounds

Chernoff bounds use of moment generating functions in an essential way to
give exponential deviation bounds.

Proposition 3 (Chernoff bounds). Let Z be any random variable. Then for

any t ≥ 0,

P(Z ≥ E[Z] + t) ≤ min
λ≥0

E[eλ(Z−E[Z])]e−λt = min
λ≥0

MZ−E[Z](λ)e
−λt

and

P(Z ≤ E[Z]− t) ≤ min
λ≥0

E[eλ(E[Z]−Z)]e−λt = min
λ≥0

ME[Z]−Z(λ)e
−λt.

Proof We only prove the first inequality, as the second is completely iden-
tical. We use Markov’s inequality. For any λ > 0, we have Z ≥ E[Z] + t if
and only if eλZ ≥ eλE[Z]+λt, or eλ(Z−E[Z]) ≥ eλt. Thus, we have

P(Z − E[Z] ≥ t) = P(eλ(Z−E[Z]) ≥ eλt)
(i)

≤ E[eλ(Z−E[Z])]e−λt,

where the inequality (i) follows from Markov’s inequality. As our choice of
λ > 0 did not matter, we can take the best one by minizing the right side of
the bound. (And noting that certainly the bound holds at λ = 0.)

3



The important result is that Chernoff bounds “play nicely” with sum-
mations, which is a consequence of the moment generating function. Let us
assume that Zi are independent. Then we have that

MZ1+···+Zn
(λ) =

n
∏

i=1

MZi
(λ),

which we see because

E

[

exp

(

λ
n
∑

i=1

Zi

)

]

= E

[

n
∏

i=1

exp(λZi)

]

=
n
∏

i=1

E[exp(λZi)],

by of the independence of the Zi. This means that when we calculate a
Chernoff bound of a sum of i.i.d. variables, we need only calculate the moment
generating function for one of them. Indeed, suppose that Zi are i.i.d. and
(for simplicity) mean zero. Then

P

( n
∑

i=1

Zi ≥ t

)

≤
∏n

i=1 E [exp(λZi)]

eλt

= (E[eλZ1 ])ne−λt,

by the Chernoff bound.

2.2 Moment generating function examples

Now we give several examples of moment generating functions, which enable
us to give a few nice deviation inequalities as a result. For all of our examples,
we will have very convienent bounds of the form

MZ(λ) = E[eλZ ] ≤ exp

(

C2λ2

2

)

for all λ ∈ R,

for some C ∈ R (which depends on the distribution of Z); this form is very
nice for applying Chernoff bounds.

We begin with the classical normal distribution, where Z ∼ N (0, σ2).
Then we have

E[exp(λZ)] = exp

(

λ2σ2

2

)

,
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which one obtains via a calculation that we omit. (You should work this out
if you are curious!)

A second example is known as a Rademacher random variable, or the
random sign variable. Let S = 1 with probability 1

2
and S = −1 with

probability 1
2
. Then we claim that

E[eλS] ≤ exp

(

λ2

2

)

for all λ ∈ R. (3)

To see inequality (3), we use the Taylor expansion of the exponential function,

that is, that ex =
∑∞

k=0
xk

k!
. Note that E[Sk] = 0 whenever k is odd, while

E[Sk] = 1 whenever k is even. Then we have

E[eλS] =
∞
∑

k=0

λk
E[Sk]

k!

=
∑

k=0,2,4,...

λk

k!
=

∞
∑

k=0

λ2k

(2k)!
.

Finally, we use that (2k)! ≥ 2k · k! for all k = 0, 1, 2, . . ., so that

E[eλS] ≤
∞
∑

k=0

(λ2)k

2k · k! =
∞
∑

k=0

(

λ2

2

)k
1

k!
= exp

(

λ2

2

)

.

Let us apply inequality (3) in a Chernoff bound to see how large a sum of
i.i.d. random signs is likely to be.

We have that if Z =
∑n

i=1 Si, where Si ∈ {±1} is a random sign, then
E[Z] = 0. By the Chernoff bound, it becomes immediately clear that

P(Z ≥ t) ≤ E[eλZ ]e−λt = E[eλS1 ]ne−λt ≤ exp

(

nλ2

2

)

e−λt.

Applying the Chernoff bound technique, we may minimize this in λ ≥ 0,
which is equivalent to finding

min
λ≥0

{

nλ2

2
− λt

}

.

Luckily, this is a convenient function to minimize: taking derivatives and
setting to zero, we have nλ− t = 0, or λ = t/n, which gives

P(Z ≥ t) ≤ exp

(

− t2

2n

)

.
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In particular, taking t =
√

2n log 1
δ
, we have

P

(

n
∑

i=1

Si ≥
√

2n log
1

δ

)

≤ δ.

So Z =
∑n

i=1 Si = O(
√
n) with extremely high probability—the sum of n

independent random signs is essentially never larger than O(
√
n).

3 Hoeffding’s lemma and Hoeffding’s inequal-

ity

Hoeffding’s inequality is a powerful technique—perhaps the most important
inequality in learning theory—for bounding the probability that sums of
bounded random variables are too large or too small. We will state the
inequality, and then we will prove a weakened version of it based on our
moment generating function calculations earlier.

Theorem 4 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent bounded

random variables with Zi ∈ [a, b] for all i, where −∞ < a ≤ b < ∞. Then

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

≤ exp

(

− 2nt2

(b− a)2

)

and

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≤ −t

)

≤ exp

(

− 2nt2

(b− a)2

)

for all t ≥ 0.

We prove Theorem 4 by using a combination of (1) Chernoff bounds and
(2) a classic lemma known as Hoeffding’s lemma, which we now state.

Lemma 5 (Hoeffding’s lemma). Let Z be a bounded random variable with

Z ∈ [a, b]. Then

E[exp(λ(Z − E[Z]))] ≤ exp

(

λ2(b− a)2

8

)

for all λ ∈ R.
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Proof We prove a slightly weaker version of this lemma with a factor of 2
instead of 8 using our random sign moment generating bound and an inequal-
ity known as Jensen’s inequality (we will see this very important inequality
later in our derivation of the EM algorithm). Jensen’s inequality states the
following: if f : R → R is a convex function, meaning that f is bowl-shaped,
then

f(E[Z]) ≤ E[f(Z)].

The simplest way to remember this inequality is to think of f(t) = t2, and
note that if E[Z] = 0 then f(E[Z]) = 0, while we generally have E[Z2] > 0.
In any case, f(t) = exp(t) and f(t) = exp(−t) are convex functions.

We use a clever technique in probability theory known as symmetrization

to give our result (you are not expected to know this, but it is a very common
technique in probability theory, machine learning, and statistics, so it is
good to have seen). First, let Z ′ be an independent copy of Z with the
same distribution, so that Z ′ ∈ [a, b] and E[Z ′] = E[Z], but Z and Z ′ are
independent. Then

EZ [exp(λ(Z−EZ [Z]))] = EZ [exp(λ(Z−EZ′ [Z ′]))]
(i)

≤ EZ [EZ′ exp(λ(Z−Z ′))],

where EZ and EZ′ indicate expectations taken with respect to Z and Z ′.
Here, step (i) uses Jensen’s inequality applied to f(x) = e−x. Now, we have

E[exp(λ(Z − E[Z]))] ≤ E [exp (λ(Z − Z ′))] .

Now, we note a curious fact: the difference Z − Z ′ is symmetric about zero,
so that if S ∈ {−1, 1} is a random sign variable, then S(Z −Z ′) has exactly
the same distribution as Z − Z ′. So we have

EZ,Z′ [exp(λ(Z − Z ′))] = EZ,Z′,S[exp(λS(Z − Z ′))]

= EZ,Z′ [ES [exp(λS(Z − Z ′)) | Z,Z ′]] .

Now we use inequality (3) on the moment generating function of the random
sign, which gives that

ES [exp(λS(Z − Z ′)) | Z,Z ′] ≤ exp

(

λ2(Z − Z ′)2

2

)

.

But of course, by assumption we have |Z−Z ′| ≤ (b−a), so (Z−Z ′)2 ≤ (b−a)2.
This gives

EZ,Z′ [exp(λ(Z − Z ′))] ≤ exp

(

λ2(b− a)2

2

)

.
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This is the result (except with a factor of 2 instead of 8).

Now we use Hoeffding’s lemma to prove Theorem 4, giving only the upper
tail (i.e. the probability that 1

n

∑n

i=1(Zi − E[Zi]) ≥ t) as the lower tail has
a similar proof. We use the Chernoff bound technique, which immediately
tells us that

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

= P

(

n
∑

i=1

(Zi − E[Zi]) ≥ nt

)

≤ E

[

exp

(

λ

n
∑

i=1

(Zi − E[Zi])

)]

e−λnt

=

( n
∏

i=1

E[eλ(Zi−E[Zi])]

)

e−λnt
(i)

≤
( n
∏

i=1

e
λ
2(b−a)2

8

)

e−λnt

where inequality (i) is Hoeffding’s Lemma (Lemma 5). Rewriting this slightly
and minimzing over λ ≥ 0, we have

P

(

1

n

n
∑

i=1

(Zi − E[Zi]) ≥ t

)

≤ min
λ≥0

exp

(

nλ2(b− a)2

8
− λnt

)

= exp

(

− 2nt2

(b− a)2

)

,

as desired.

8


