
MATH 260 - Multivariate Data Analysis By Tanujit Chakraborty

Chapter 1: Sampling Distributions and Statistical Inference

1 Some general concepts

Random sample - If X1, . . . , Xn be independently and identically distributed random variables each having distribution
function F , then (X1, . . . , Xn) constitutes a random sample drawn from a theoretical distribution F .

Sample space - Let (X1, . . . , Xn) be a random sample drawn from a theoretical distribution having distribution function
F . Suppose (x1, . . . , xn) be a realization on (X1, . . . , Xn). Then (x1, . . . , xn) is known as a sample point as it specifies
a point in an n-dimensional space. Clearly, a sample point may vary from one occasion to the other. The totality of all
such sample points constitute the sample space X.

Statistic - Let (X1, . . . , Xn) be a random sample drawn from a theoretical distribution having distribution function Fθ
( F is characterized by a parameter θ). Consider T (X1, . . . , Xn) such that T : Rn → Rk, k ≥ 1, and T is independent of
any unknown θ. Then T is said to be a statistic.

In other words, a statistic is a function of sample observations which is independent of any unknown parameter. Here,
if k = 1, we get real valued statistics, e.g., X̄, the sample mean; S2, the sample variance, etc. For k > 1, we get vector
valued statistics, e.g.,

(
X̄, S2

)
,
(∑

Xi,
∑
X2
i

)
, etc.

1.1 Sampling from a finite population

Suppose we have a population consisting of a finite number, say N , of identifiable units, namely T1, . . . , TN . A sam-
ple S is a non-empty collection of units from {T1, . . . , TN} with or without replacement, that is, a sample of size n is
(Ti1 , . . . , Tin) , ij ∈ {1, . . . , N} ∀ j. Let t1, . . . , tN be the variate values (values corresponding to some variable of interest)
of T1, . . . , TN respectively. Consider the variate values for the sample units to be X1, . . . , Xn.

If the sample units are drawn one by one without replacement (WOR), then the sampling distribution will be

p(s) = 1

/(
N
n

)
, s ∈ S.

Consider the sample mean X̄ = 1
n

∑n
i=1Xi. Let the observed value of X̄ corresponding to s be X̄(s). Clearly, X̄(s) occurs

with probability p(s). The distribution of X̄ will be called the sampling distribution of X̄.

Standard error of a statistic is the standard deviation of the sampling distribution of that statistic.

In sampling WOR from a finite population, the independence condition in the definition of a random sample is not satisfied.

Here,

P (X1 = t1) =
1

N
,

P (X2 = t2 | X1 = t1) =
1

N − 1
,

P (X2 = t1 | X1 = t1) = 0.

Thus the pmf of X2 depends on X1, violating the notion of independence. However,

P (X2 = t2) =

N∑
j=1

P (X2 = t2 | X1 = tj)P (X1 = tj)

=
∑
j 6=2

P (X2 = t2 | X1 = tj)P (X1 = tj)

=
1

N

∑
j 6=2

P (X2 = t2 | X1 = tj)

=
1

N
(N − 1)

1

N − 1
=

1

N
.
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Hence, X1
d
= X2 (identically distributed). Similarly we can show that X1, . . . , Xn all have the same distribution, but

they are not independent. Random variables which are identically distributed but not necessarily independent are called
exchangeable random variables.

1.2 Expectation and standard error of sample mean

Suppose a sample of size n is drawn from a finite population of size N . Let the variate values be t1, . . . , tN . The population
mean is

µ =
1

N

N∑
j=1

tj ,

and the population variance is

σ2 =
1

N

N∑
j=1

(tj − µ)
2
.

Let us denote the sample by X1, . . . , Xn. The sample mean is X̄. Then, we have,

E(X̄) = E

 1

n

n∑
j=1

Xi

 =
1

n

n∑
j=1

E (Xi) . (1)

Var(X̄) = E{X̄ − E(X̄)}2

=
1

n2
E

{
n∑
i=1

(Xi − E (Xi))

}2

=
1

n2

n∑
i=1

E {Xi − E (Xi)}2 +
1

n2

N∑
i=1
i 6=j

N∑
j=1

E {Xi − E (Xi)} {Xj − E (Xj)}

=
1

n2

n∑
i=1

Var (Xi) +
1

n2

N∑
i=1
i 6=j

N∑
j=1

Cov (Xi, Xj) . (2)

Case I. Sampling with replacement (WR).

Note that,

P (Xi = tj) =
1

N
,∀i = 1, . . . , n; j = 1, . . . , N.

Hence,

E (Xi) =

N∑
j=1

tjP (Xi = tj) =
1

N

N∑
j=1

tj = µ,∀i = 1, . . . , n.

And,

Var (Xi) = E (Xi − µ)
2

=
1

N

N∑
j=1

(tj − µ)
2 · P (Xi = tj)

=
1

N

N∑
j=1

(tj − µ)
2

= σ2
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Also,
Cov (Xi, Xj) = E (Xi − µ) (Xj − µ)

=

N∑
j1=1

N∑
j2=1

(tj1 − µ) (tj2 − µ)P (Xi = tj1 , Xj = tj2)

=
1

N2

N∑
j1=1

N∑
j2=1

(tj1 − µ) (tj2 − µ)

=
1

N2

N∑
j1=1

(tj1 − µ)

N∑
j2=1

(tj2 − µ)

= 0.

Thus, using Eqns. (1) and (2), we get,

E(X̄) =
1

n

n∑
i=1

µ = µ.

Var(X̄) =
1

n2

n∑
i=1

σ2 =
σ2

n
.

Standard error of X̄ is σ√
n

.

Case II. Sampling without replacement (WOR).

As in Case I, E (Xi) = µ and Var (Xi) = σ2, since distribution of X1, . . . , Xn are identical. The covariance term needs
special attention. For i 6= j,

P (Xi = tj1 , Xj = tj2) = P (Xi = tj1 | Xj = tj2)P (Xj = tj2)

=

{
1

N−1
1
N , j1 6= j2

0, j1 = j2

Hence,

Cov (Xi, Xj) =

N∑
j1=1

N∑
j2=1

(tj1 − µ) (tj2 − µ)P (Xi = tj1 , Xj = tj2)

=

N∑
j1=1
j1 6=j2

N∑
j2=1

(tj1 − µ) (tj2 − µ)
1

N(N − 1)

=
1

N(N − 1)

N∑
j1=1

(tj1 − µ)


N∑
j2=1

(tj2 − µ)− (tj1 − µ)


=

1

N(N − 1)


N∑
j1=1

N∑
j2=1

(tj1 − µ) (tj2 − µ)−
N∑
j1=1

(tj1 − µ)
2


=

1

N(N − 1)

(
0−Nσ2

)
=
−σ2

N − 1
.

Thus,
E(X̄) = µ

Var(X̄) =
1

n2

(
nσ2 + n(n− 1)

−σ2

N − 1

)
=
N − n
N − 1

σ2

n

Standard error of X̄ is σ√
n

√
N−n
N−1 . The factor N−n

N−1 is called the finite population correction factor. As N → ∞, n fixed,

the factor goes to unity.

Page 3



1.3 Exact sampling distributions

1.3.1 Chi-squared distribution

Suppose

X1, . . . , Xn
iid∼ N(0, 1)

Then,
∑n
i=1X

2
i is said to follow a chi-squared distribution with n degrees of freedom (df). We write,

Y =

n∑
i=1

X2
i ∼ χ2

n.

If Y ∼ χ2
n, then the pdf of Y is given by

f(y) =
1

2n/2Γ(n/2)
yn/2−1e−y/2, y > 0.

Also,
E(Y ) = n, Var(Y ) = 2n.

Remark 1.1. 1. Let X ∼ N
(
µ, σ2

)
. Then, (

X − µ
σ

)2

∼ χ2
1

2. If X1, . . . , Xn
iid∼ N

(
µ, σ2

)
, then,

(a)
n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n.

(b) (√
n(X̄ − µ)

σ

)2

∼ χ2
1.

1.3.2 Student’s t-distribution.

Let X ∼ N(0, 1), Y ∼ χ2
n, and X,Y are independent. Then, the statistic T = X√

Y/n
is said to follow a Student’s

t-distribution with n df, and we write,
T ∼ tn

The pdf of T is given by

f(t) =
Γ
(
n+1

2

)
√
nπΓ

(
n
2

) (1 +
t2

n

)−n+1
2

.

If T ∼ tn, then, E(T ) = 0, for n > 1, otherwise undefined.

Var(T ) =


n
n−2 , n > 2

∞, 1 < n ≤ 2
undefined, n ≤ 1

1.3.3 F-distribution

Let
X ∼ χ2

p, Y ∼ χ2
q,

and X,Y are independent. Then, the statistic

F =
X/p

Y/q

is said to follow an F -distribution with (p, q) df. We write,

F ∼ Fp,q.
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The pdf of F is given by

f(x) =
Γ
(
p+q

2

)
Γ
(
p
2

)
Γ
(
q
2

) (p
q

)p/2
xp/2−1

(
1 +

p

q
x

)− p+q
2

, x > 0

If X ∼ Fp,q, then,

E(X) =
q

q − 2
, q > 2.

Var(X) =
2q2(p+ q − 2)

p(q − 2)2(q − 4)
, q > 4.

1.4 Sampling distribution of X̄ and S2 in case of Normal population

Let
X1, . . . , Xn

IID∼ N
(
µ, σ2

)
.

Define

X̄ =
1

n

n∑
i=1

Xi, S2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
.

Then,

X̄ ∼ N
(
µ,
σ2

n

)
,

(n− 1)S2

σ2
∼ χ2

n−1,

and, X̄ and S2 are independent.

1.5 Convergence in Probability Theory

A sequence of random variables X1, X2, . . ., converges in probability to a random variable X if, for every ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0.

Frequently, statisticians are concerned with situations in which the limiting random variable is a constant and the random
variables in the sequence are sample means (of some sort). This leads to an important result as below.

1.5.1 Weak Law of Large Numbers (WLLN)

Let X1, X2, . . ., be iid random variables with E (Xi) = µ and Var (Xi) = σ2 <∞. Define X̄n = 1
n

∑n
i=1Xi.

Then, for every ε > 0,
lim
n→∞

P
(∣∣X̄n − µ

∣∣ < ε
)

= 1

that is, X̄n converges in probability to µ.

The proof is a straighforward application of Chebychev’s inequality.

We have, for every ε > 0,

P
(∣∣X̄n − µ

∣∣ ≥ ε) ≤ Var
(
X̄n

)
ε2

=
σ2

nε2
.

Hence,

P
(∣∣X̄n − µ

∣∣ < ε
)

= 1− P
(∣∣X̄n − µ

∣∣ ≥ ε) ≥ 1− σ2

nε2
→ 1,

as n→∞. The WLLN quite elegantly states that, under general conditions, the sample mean approaches the population
mean as n→∞.
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1.5.2 Central Limit Theorem (CLT)

DeMoivre-Laplace CLT: Let {Xn} be a sequence of iid Bernoulli random variables with P (Xn = 1) = p = 1 −
P (Xn = 0) , 0 < p < 1. Define the partial sums Sn =

∑n
i=1Xi. Then,

Sn − np√
np(1− p)

∼ N(0, 1), asymptotically.

Lindeberg-Levy CLT: Let {Xn} be a sequence of iid random variables with Var (Xn) = σ2 <∞, and common mean µ.
Let Sn =

∑n
i=1Xi, X̄n = Sn/n, n = 1, 2, . . . Then, for every x ∈ R,

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ x

)
= lim
n→∞

P

(
X̄n − µ
σ/
√
n
≤ x

)
= Φ(x),

where Φ(·) is the CDF of a N(0, 1) distribution.

Remark 1.2.

• Asymptotic distribution of X̄n is given by
X̄n − µ
σ/
√
n
∼ N(0, 1).

• Lindeberg Levy CLT directly implies DeMoivre-Laplace CLT (Note that E (Xi) = p,Var(Xi) = p(1− p))

• CLT is concerned with the convergence of random variables to normality under certain general conditions. Initially,
the theorems have been stated by several statisticians for a sequence of independent random variables.

• Whatever the exact distribution of Sn may be, discrete or continuous, the limiting distribution is continuous.

2 Point Estimation

In many scenarios, finding a natural estimator for a parameter of interest is a trivial problem, and can be found using
intuitive reasoning. However, in many complex scenarios, such natural estimators are not available easily, for which we
need to resort to specific techniques of finding estimators. We shall discuss two such important methods in this course.

2.1 Method of Moments Estimator

Consider a random sample X1, . . . , Xn from a population with distribution function Fθ, where θ = (θ1, . . . , θk). Method
of moments estimators are found by equating the first k sample moments to the corresponding population moments, and
solving the system of equations simultaneously. More precisely, define

m′1 =
1

n

n∑
i=1

Xi, µ
′
1 = E(X),

m′2 =
1

n

n∑
i=1

X2
i , µ

′
2 = E

(
X2
)
,

...

m′k =
1

n

n∑
i=1

Xk
i , µ

′
k = E

(
Xk
)
.

The population moments are ideally functions of the population parameters, so that we can explicitly express them as

µ′r = µ′r (θ1, . . . , θk) , r = 1, . . . , k.

The Method of Moments estimator (MOME) θ̂ =
(
θ̂1, . . . , θ̂k

)
is given by the solution to the system of equations

m′1 = µ′1 (θ1, . . . , θk) ,

m′2 = µ′2 (θ1, . . . , θk) ,

...

m′k = µ′k (θ1, . . . , θk) .
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Example 2.1.1. (Sampling from Normal). Let X1, . . . , Xn
iid∼ N

(
µ, σ2

)
. The parameter is given by θ = (θ1, θ2), where

θ1 = µ and θ2 = σ2. We have, m′1 = X̄ and m′2 =
∑n
i=1X

2
i /n. Also, µ′1 = µ and µ′2 = σ2 + µ2. Thus, the system of

equations for obtaining the MOME is:

X̄ = µ

1

n

n∑
i=1

X2
i = µ2 + σ2

Solving for µ and σ2 gives the MOME as:

µ̂ = X̄

σ̂2 =
1

n

n∑
i=1

X2
i − X̄2 =

1

n

n∑
i=1

(
Xi − X̄

)2
.

Example 2.1.2. (Sampling from Uniform). Let X1, . . . , Xn
iid∼ U(0, θ). The system of equations for obtaining the

MOME is:

X̄ =
θ

2
,

so as to get the MOME of θ as θ̂ = 2X̄.

2.1.1 Exercises

1. Consider a random sample of size n from the Exponential distribution with rate λ. Find the MOME of λ.

2. Consider a random sample of size n from the Gamma(α, β) distribution. Find the MOME of (α, β)

2.2 Maximum Likelihood Estimator

We shall start with the concept of a likelihood function, which forms the core of a maximum likelihood estimator.

Definition 2.1. (Likelihood function). Let f (x1, . . . , xn | θ) denote the joint pmf or pdf of a random sample X1, . . . , Xn.
Then, given that (X1, . . . , Xn) = (x1, . . . , xn) is observed, the likelihood function of θ is given by

L (θ;x1, . . . , xn) = f (x1, . . . , xn | θ)

If the pmf/pdf of the underlying random variable is given by f(x | θ), then the joint likelihood is given by

f (x1, . . . , xn | θ) =

n∏
i=1

f (xi | θ)

so that the likelihood function of θ can be expressed as

L (θ;x1, . . . , xn) =

n∏
i=1

f (xi | θ)

Example 2.2.1. Let X
iid∼ Bin(10, p), 0 < p < 1. Then for the observation x = 2, the likelihood function of p is given by

f(p;x = 2) =

(
10
2

)
p2(1− p)8, 0 < p < 1.

This is a polynomial function in p of degree 10.

Example 2.2.2. Let X1, . . . , Xn
iid∼ N

(
µ, σ2

)
. Then, for observations X1 = x1, . . . , Xn = xn, the likelihood function of(

µ, σ2
)

is given by

L
(
µ, σ2;x1, . . . , xn

)
=

n∏
i=1

1

σ
√

2π
exp

{
− 1

2σ2
(xi − µ)

2

}
, µ ∈ R, σ > 0

Page 7



Example 2.2.3. Consider a random sample X1, . . . , Xn from the Uniform (0, θ) distribution. The likelihood function of
θ is given by

L (θ;x1, . . . , xn) =

(
1

θ

)n
, θ > max (x1, . . . , xn)

Note the domain of the parameter θ in the above example. The pdf of an Uniform (0, θ) distribution is given by

f(x | θ) =
1

θ
, 0 < x < θ,

so that while defining the likelihood as a function of θ, one has to take care of the constraint that the joint pdf is positive
only when θ is greater than each of the observations x1, . . . , xn. This immediately reduces to the condition that θ must
exceed the maximum of the observations.

Definition 2.2. (Maximum Likelihood Estimator (MLE)). For each sample point x1, . . . , xn, let θ̂ (x1, . . . , xn) be a pa-
rameter value at which the likelihood function L (θ;x1, . . . , xn) attains its maximum as a function of θ, with x1, . . . , xn
held fixed. A maximum likelihood estimator (MLE) of the parameter θ based on a random sample X1, . . . , Xn is then given

by θ̂ (X1, . . . , Xn)

Intuitively, the MLE is a reasonable choice as a point estimator in the sense that it gives the parameter point expressed
as a function of the sample at which the outcomes (observations) are most likely. The general strategy for finding an MLE
is to differentiate the likelihood function with respect to the parameter(s), and find the point where global maximum is
attained. However, there are many situations where resorting to differentiation will not be possible. We shall explore
these different scenarios below.

In many scenarios, we will see that working with the logarithm of the likelihood function is easier. The logarithm of
the likelihood, also called the log-likelihood is monotone increasing function of the likelihood, and hence the maximizer of
the latter will be exactly equal to that of the former.

Example 2.2.4. (Normal MLE; known variance). Let X1, . . . , Xn
iid∼ N

(
µ, σ2

0

)
, µ ∈ R, σ0 > 0, where σ0 is known, but µ

is unknown. We need to find the MLE of µ based on the above random sample. Let us first write the likelihood function
of µ.

L (µ;x1, . . . , xn) =

n∏
i=1

[
1

σ0

√
2π

exp

{
− 1

2σ2
0

(xi − µ)
2

}]

=

(
1

σ0

√
2π

)n
exp

{
− 1

2σ2
0

n∑
i=1

(xi − µ)
2

}
.

Notice that it will be easier for us to differentiate the log-likelihood instead of working with the likelihood itself. The
log-likelihood is given by

l (µ;x1, . . . , xn) = − 1

2σ2
0

n∑
i=1

(xi − µ)
2

+ constant ,

where the constant involves terms free of µ. Differentiating both sides of the above equation and equating it to zero, we
get,

2

n∑
i=1

(xi − µ) = 0,

so as to get the solution µ̂ = X̄. Note that

d2

dµ2
l (µ;x1, . . . , xn) =

d

dµ

{
2

n∑
i=1

(Xi − µ)

}
= −2n < 0,

so that the solution gives the global maximum. Hence the MLE of µ is X̄.

Example 2.2.5. (Bernoulli MLE). Consider a random sample X1, . . . , Xn from a Bernoulli distribution unknown prob-
ability of success p, where 0 ≤ p ≤ 1. The likelihood function is given by

L (p;x1, . . . , xn) =

n∏
i=1

pxi(1− p)1−xi

= p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi
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The log-likelihood is given by,

l (p;x1, . . . , xn) =

n∑
i=1

xi ln(p) +

(
n−

n∑
i=1

xi

)
ln(1− p).

Differentiating both sides wrt p, we get,

d

dp
l (p;x1, . . . , xn) =

1

p

n∑
i=1

xi −
1

1− p

(
n−

n∑
i=1

xi

)
.

Equating the above to zero gives the solution

p̂ =
1

n

n∑
i=1

Xi.

Hence the MLE is given by the sample proportion of success. [Check the double-derivative]

Example 2.2.6. (Uniform MLE). Let X1, . . . , Xn
iid∼ U(0, θ). The likelihood function is given by

L (θ;x1, . . . , xn) =

(
1

θ

)n
, θ > max (x1, . . . , xn) .

Note that the above likelihood function is positive only in the range (max (x1, . . . , xn) ,∞) and zero otherwise. Also,
the function is monotone decreasing in θ, so that the supremum is attained at the point where θ attains its infimum, so
that the MLE is given by

θ̂ = max (X1, . . . , Xn) .

2.2.1 Exercises

1. Consider sampling n random variables from a N
(
µ, σ2

)
distribution with both the parameters unknown. Find the

MLE of µ and σ2.

2. Let X1, . . . , Xn
iid∼ U(θ, θ + 1). Find the MLE of θ.

2.2.2 Invariance property of MLE

Theorem 2.1. (Invariance property of MLE). Let θ̂ be the MLE of the parameter θ. Then, for any function g(θ), the

MLE of g(θ) is given by g(θ̂).

Example 2.2.7. Consider sampling from an exponential distribution with rate λ. We need to find the MLE of the mean
parameter µ, given by µ = 1/λ. Let us find the MLE of λ first. The likelihood functio based on a random sample of size
n is given by

L (λ;x1, . . . , xn) = λn exp

(
−λ

n∑
i=1

xi

)
, λ > 0.

The log-likelihood function is

l (λ;x1, . . . , xn) = n ln(λ)− λ
n∑
i=1

xi.

Differentiating both sides and equating to zero, we get,

n

λ
−

n∑
i=1

xi = 0,

so as to obtain the MLE of λ as λ̂ = n/ (
∑n
i=1Xi). [Check the double-derivative condition].

Thus, by the invariance property of MLE, the MLE of µ = 1/λ is given by

µ̂ =
1

λ̂
= X̄.
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3 Confidence Intervals

A confidence interval is the mean of the estimate ∓ the variance of the estimate. This is the range of values that we
expect to include our estimate with a predefined probability:

3.1 Computing normal confidence interval:

From the standard normal table, we have the following:

P (−1.96 < Z < 1.96) = P (Z < 1.96)− P (Z < −1.96) = 0.9750− 0.0250 = 0.95.

i.e., there exists 95% probability that a standard normal variable will fall between -1.96 to 1.96.
Now, if Xi ∼ N(µ, σ2); i = 1, 2, . . . , n

Z =
X̄ − µ
σ/
√
n
∼ N(0, 1)

∴P (−1.96 <
X̄ − µ
σ/
√
n
< 1.96) = 0.95

⇒P (−1.96
σ√
n
< X̄ − µ < 1.96

σ√
n

) = 0.95

⇒P (X̄ − 1.96
σ√
n
< µ < X̄ + 1.96

σ√
n

) = 0.95.

Hence, (X̄ ∓ 1.96 σ√
n

) is the confidence interval for µ.

4 Testing of Hypothesis

4.1 Testing univariate sample

Tests for Normal mean

Random sample:

X1, . . . , Xn
iid∼ N

(
µ, σ2

)
.

Case I: Population variance σ2 known.

H0 H1 Test Statistic Rejection rule

µ ≤ µ0 µ > µ0 Z = X̄−µ0

σ/
√
n

obsvd. (Z) > zα

µ ≥ µ0 µ < µ0 Z = X̄−µ0

σ/
√
n

obsvd. (Z) < −zα

µ = µ0 µ 6= µ0 Z = X̄−µ0

σ/
√
n

obsvd. (|Z|) > zα/2

Table 1: Testing univariate samples: variance σ2 known

Case II: Population variance σ2 unknown.

Tests for proportion: large samples

Random sample:

X1, . . . , Xn
iid∼ Ber(p)

Test statistic:

p̂ =

∑n
i=1Xi

n
.

Sample size n is large.
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H0 H1 Test Statistic Rejection rule

µ ≤ µ0 µ > µ0 T = X̄−µ0

S/
√
n

obsvd. (T ) > tα,n−1

µ ≥ µ0 µ < µ0 T = X̄−µ0

S/
√
n

obsvd. (T ) < −tα,n−1

µ = µ0 µ 6= µ0 T = X̄−µ0

S/
√
n

obsvd. (|T |) > tα/2,n−1

Table 2: Testing univariate samples: variance σ2 unknown

H0 H1 Test Statistic Rejection rule

p ≤ p0 p > p0 Z = p̂−p0√
p0(1−p0)/n

obsvd. (Z) > zα

p ≥ p0 p < p0 Z = p̂−p0√
p0(1−p0)/n

obsvd. (Z) < −zα

p = p0 p 6= p0 Z = p̂−p0√
p0(1−p0)/n

obsvd. (|Z|) > zα/2

Table 3: Testing univariate Bernoulli samples

4.2 Testing two independent samples

Testing Normal means
Random sample:

X1, . . . , Xn
iid∼ N

(
µX , σ

2
X

)
Y1, . . . , Ym

iid∼ N
(
µY , σ

2
Y

)
Case I: σ2

X , σ
2
Y are known.

H0 H1 Test Statistic Rejection rule

µX − µY ≤ µ0 µX − µY > µ0 Z = X̄−Ȳ−µ0√
σ2
X/n+σ2

Y /m
obsvd. (Z) > zα

µX − µY ≥ µ0 µX − µY < µ0 Z = X̄−Ȳ−µ0√
σ2
X/n+σ2

Y /m
obsvd. (Z) < −zα

µX − µY = µ0 µX − µY 6= µ0 Z = X̄−Ȳ−µ0√
σ2
X/n+σ2

Y /m
obsvd. (|Z|) > zα/2

Table 4: Testing two independent univariate samples: variances known.

Case II: σ2
X , σ

2
Y are unknown.

Here, the degrees of freedom of the t-distribution is given by

ν =

(
S2
X/n+ S2

Y /m
)2

(S2
X/n)

2

n−1 +
(S2

Y /m)
2

m−1

This is known as Satterthwaite approximation formula.

Case III: σ2
X , σ

2
Y are unknown but equal.

S2
p is the pooled variance, given by

S2
p =

(n− 1)S2
X + (m− 1)S2

Y

n+m− 2
.

Testing two proportions from independent samples: large samples
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H0 H1 Test Statistic Rejection rule

µX − µY ≤ µ0 µX − µY > µ0 T = X̄−Ȳ−µ0√
S2
X/n+S2

Y /m
obsvd. (T ) > tα,ν

µX − µY ≥ µ0 µX − µY < µ0 T = X̄−Ȳ−µ0√
S2
X/n+S2

Y /m
obsvd. (T ) < −tα,ν

µX − µY = µ0 µX − µY 6= µ0 T = X̄−Ȳ−µ0√
S2
X/n+S2

Y /m
obsvd. (|T |) > tα/2,ν

Table 5: Testing two independent univariate samples: variances unknown

H0 H1 Test Statistic Rejection rule

µX − µY ≤ µ0 µX − µY > µ0 T = X̄−Ȳ−µ0√
S2
p(1/n+1/m)

obsvd. (T ) > tα,n+m−2

µX − µY ≥ µ0 µX − µY < µ0 T = X̄−Ȳ−µ0√
S2
p(1/n+1/m)

obsvd. (T ) < −tα,n+m−2

µX − µY = µ0 µX − µY 6= µ0 T = X̄−Ȳ−µ0√
S2
p(1/n+1/m)

obsvd. (|T |) > tα/2,n+m−2

Table 6: Testing two independent univariate samples: variances unknown but equal

Random sample:

X1, . . . , Xn
iid∼ Ber (p1)

Y1, . . . , Ym
iid∼ Ber (p2)

Test statistic:
p̂1 − p̂2,

where

p̂1 =

∑n
i=1Xi

n
, p̂2 =

∑m
i=1 Yi
m

.

Sample sizes n and m are large.

H0 H1 Test Statistic Rejection rule

p1 − p2 ≤ p0 p1 − p2 > p0 Z = p̂1−p̂2−p0√
p̂1q̂1/n+p̂2q̂2/m

obsvd. (Z) > zα

p1 − p2 ≤ 0 p1 − p2 > 0 Z = p̂1−p̂2√
p̂q̂(1/n+1/m)

obsvd. (Z) > zα

p1 − p2 ≥ p0 p1 − p2 < p0 Z = p̂1−p̂2−p0√
p̂1q̂1/n+p̂2q̂2/m

obsvd. (Z) < −zα

p1 − p2 ≥ 0 p1 − p2 < 0 Z = p̂1−p̂2√
p̂q̂(1/n+1/m)

obsvd. (Z) < −zα

p1 − p2 = p0 p1 − p2 6= p0 Z = p̂1−p̂2−p0√
p̂1q̂1/n+p̂2q̂2/m

obsvd. (|Z|) > zα/2

p1 − p2 = 0 p1 − p2 6= 0 Z = p̂1−p̂2√
p̂q̂(1/n+1/m)

obsvd. (|Z|) > zα/2

Table 7: Testing proportions from two independent populations. Note the difference in the test statistic
for p0 6= 0.

Here p̂ is the pooled estimator of proportion, given by
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p̂ =
np̂1 +mp̂2

n+m
=

∑n
i=1Xi +

∑m
i=1 Yi

n+m
.

4.3 Testing means of paired Normal data

Random sample: (X1, Y1) , . . . , (Xn, Yn)
iid∼ N2

(
µX , µY , σ

2
X , σ

2
Y , ρ

)
.

Define Zi = Xi − Yi, i = 1, . . . , n. Then, Z̄ = X̄ − Ȳ . Denote expecation and variance of Zi’s as

µZ = µX − µY , σ2
Z = σ2

X + σ2
Y − 2ρσXσY .

Note that, Z1, . . . , Zn
iid∼ N

(
µZ , σ

2
Z

)
Case I: σ2

X , σ
2
Y , ρ are known.

H0 H1 Test Statistic Rejection rule

µZ ≤ µ0 µZ > µ0 Z = Z̄−µ0

σZ/
√
n

obsvd. (Z) > zα

µZ ≥ µ0 µZ < µ0 Z = Z̄−µ0

σZ/
√
n

obsvd. (Z) < −zα

µZ = µ0 µZ 6= µ0 Z = Z̄−µ0

σZ/
√
n

obsvd. (|Z|) > zα/2

Table 8: Testing means of bivariate samples: all other parameters known

Case II: σ2
X , σ

2
Y , ρ are unknown.

H0 H1 Test Statistic Rejection rule

µZ ≤ µ0 µZ > µ0 T = Z̄−µ0

SZ/
√
n

obsvd. (T ) > tα,n−1

µZ ≥ µ0 µZ < µ0 T = Z̄−µ0

SZ/
√
n

obsvd. (T ) < −tα,n−1

µZ = µ0 µZ 6= µ0 T = Z̄−µ0

SZ/
√
n

obsvd. (|T |) > tα/2,n−1

Table 9: Testing means of bivariate samples: all other parameters unknown
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