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What we quest to achieve through the sessions

 Testing of Hypothesis

 Analysis of Variance (ANOVA)



t-tests for Testing of Hypothesis

In this section, we shall illustrate the usage of performing hypothesis testing using 

R. This includes the t-tests –

 one sample Student’s t-test, 

 two-sample t-test, 

 pooled t-test 

 paired t-test. 

Other tests include the large sample tests for proportion(s) and testing of 

variances.



One sample student’s t-test

We start with a random sample 𝑋1, 𝑋2, … , 𝑋𝑛~𝑁(𝜇, 𝜎
2). The null hypothesis is given by

𝐻0: 𝜇 ≤ 𝜇0 𝑣𝑠 𝐻1: 𝜇 > 𝜇0
We first generate some simulated data with true value of 𝜇 = 2 and 𝜎2 = 4, and sample size 𝑛 = 25. We 

take the null value 𝜇0= 3.

set.seed(8885)

Xsamp <- rnorm(n = 25, mean = 2, sd = 2)

Note: This is a simulated scenario, where we actually are aware of the true value of the parameters. In 

the real-life scenario, we would have no idea about the true value of the parameters, and our goal would 

be to test the population mean using the data given. This exercise is to illustrate the t-test procedure, and 

check whether we are getting desired results or not.

The function that we are going to use is t.test. 

mytest <- t.test(Xsamp, alternative = "greater", mu = 3)

mytest
##  One Sample t-test

## data:  Xsamp

## t = -1.3467, df = 24, p-value = 0.9047

## alternative hypothesis: true mean is greater than 3

## 95 percent confidence interval:

##  1.954146      Inf

## sample estimates:

## mean of x 

##   2.53935



One sample student’s t-test

To specifically extract the p-value of the test, we write

mytest$p.value
## [1] 0.9046778

As we would have expected, the p-value of this test came out to be quite high, since the true value of μ

is, in fact, equal to 2. Our data didn’t provide evidence that the true mean is greater than 3. Of course, if 

we had changed our null value to something closer to 2, it would be harder to distinguish. Let’s check 

this.

t.test(Xsamp, alternative = "greater", mu = 2.1)
##  One Sample t-test 

## data:  Xsamp

## t = 1.2845, df = 24, p-value = 0.1056

## alternative hypothesis: true mean is greater than 2.1

## 95 percent confidence interval:

##  1.954146      Inf

## sample estimates:

## mean of x 

##   2.53935

Notice the drop in the p-value of the test.



One sample student’s t-test

Can you argue why the p-value has dropped?

Take another case.

t.test(Xsamp, alternative = "greater", mu = 1.9)
##  One Sample t-test

## data:  Xsamp

## t = 1.8692, df = 24, p-value = 0.03692

## alternative hypothesis: true mean is greater than 1.9

## 95 percent confidence interval:

##  1.954146      Inf

## sample estimates:

## mean of x 

##   2.53935

The p-value has dropped below 0.05 now, and if we are using a level 𝛼 = 0.05, we would reject 𝐻0 in 

favour of 𝐻1 (and we would have taken the correct decision in this case). We would still fail to reject it at 

𝛼 = 0.01. Taking the null value away from the actual true value towards the region supported by 𝐻0 would 

result in lower p-values. Let’s check.



One sample student’s t-test

t.test(Xsamp, alternative = "greater", mu = 1)
##  One Sample t-test 

## data:  Xsamp

## t = 4.5004, df = 24, p-value = 7.398e-05

## alternative hypothesis: true mean is greater than 1

## 95 percent confidence interval:

##  1.954146      Inf

## sample estimates:

## mean of x 

##   2.53935

We can actually find the p-value as a function of 𝜇0 and the sample size 𝑛, keeping the true values of the 

parameters fixed. In R, we can quickly write a function to do this.

func.p.val <- function(n, mu0){

set.seed(100)

Xsamp <- rnorm(n, mean = 2, sd = 2) # generating random sample of size 𝑛 from 𝑁(2,4)

p.val <- t.test(Xsamp, alternative = "greater", mu = mu0)$p.value # calculate p-value

return(p.val)

}

n <- seq(5,25, by = 5)

mu0 <- seq(-5,5, by = 0.1)

pvals <- matrix(0, nrow = length(n), ncol = length(mu0))



One sample student’s t-test

for(i in 1:length(n)){

for(j in 1:length(mu0)){

pvals[i,j] <- func.p.val(n[i],mu0[j])

}

}

Now let us plot the p-values for different values of the sample size and null values.

cl <- rainbow(length(n))

plot(mu0, pvals[1, ], type = "l", main = "Plots of p-values“, 

xlab = "Null value", ylab = "p-value", 

ylim = c(min(pvals),1), col = cl[1])

for(i in 2:length(n)){

lines(mu0, pvals[i, ], type = "l", col = cl[i])

}

abline(h = 0.05)

abline(h = 0.01)

legend("topleft", legend = n, lty = 1, col = cl)



One sample student’s t-test

Let us zoom it in near the true value of 2.

cl <- rainbow(length(n))

plot(mu0, pvals[1, ], type = "l", main = "Plots of p-values", xlab = "Null value",

ylab = "p-value", ylim = c(0.009,0.052), col = cl[1])

for(i in 2:length(n)){

lines(mu0, pvals[i, ], type = "l", col = cl[i])

}

abline(h = 0.05)

abline(h = 0.01)

abline(v = 2)

legend("topleft", legend = n, lty = 1, col = cl)

To work with other alternatives, you should change the 

alternative

to "lesser“ for left-tailed tests, and 

to "two-sided“ for two-tailed tests.

Pro tip: Usage of "g","l","t“ also works! 



Two sample t-test

Behrens-Fisher Problem

We start off with the Behrens-Fisher problem, which deals with the comparison of means of two Normal 

populations when the population variances are not equal. We shall be using the Satthertwaite 

approximation for this, and the corresponding test is called the Welsh t-test.

We shall illustrate this with a simulation.

Consider 𝑋1, 𝑋2, … , 𝑋𝑛~𝑁 𝜇1, 𝜎1
2 , 𝑌1, 𝑌2, … , 𝑌𝑛~𝑁 𝜇2, 𝜎2

2 and 𝑋 and 𝑌 are independent.

We wish  to test the hypothesis 𝐻0: 𝜇1 − 𝜇2 ≤ 𝜇0 𝑣𝑠 𝐻1: 𝜇1 − 𝜇2 > 𝜇0.

We first generate some simulated data.

Xsamp <- rnorm(25, mean = 0, sd = 2)

Ysamp <- rnorm(20, mean = 1, sd = 1)

boxplot(Xsamp, Ysamp)



Two sample t-test

Time for t-testing. Take null value of difference to be zero.

mytest2 <- t.test(Xsamp, Ysamp, alternative = "g", mu = 0)

mytest2
##  Welch Two Sample t-test

## data:  Xsamp and Ysamp

## t = -2.0846, df = 41.581, p-value = 0.9784

## alternative hypothesis: true difference in means is greater than 0

## 95 percent confidence interval:

##  -1.747405       Inf

## sample estimates:

## mean of x mean of y 

## 0.1096918 1.0767013

In case you had to test whether 𝜇2 is greater than μ1 by 0.5, we can do it in two different ways as 

follows.

t.test(Xsamp, Ysamp, alternative = "l", mu = -0.5)
##  Welch Two Sample t-test

## data:  Xsamp and Ysamp

## t = -1.0068, df = 41.581, p-value = 0.1599

## alternative hypothesis: true difference in means is less than -0.5

## 95 percent confidence interval:

##        -Inf -0.1866143

## sample estimates:

## mean of x mean of y 

## 0.1096918 1.0767013

t.test(Ysamp, Xsamp, alternative = "g", mu = 0.5)
##  Welch Two Sample t-test

## data:  Ysamp and Xsamp

## t = 1.0068, df = 41.581, p-value = 0.1599

## alternative hypothesis: true difference in means is greater than 0.5

## 95 percent confidence interval:

##  0.1866143       Inf

## sample estimates:

## mean of x mean of y 

## 1.0767013 0.1096918



Pooled t-test

Now we move on to pooled t-test. As you might recall, we should be using pooled t-testing procedure if 

the two population variances are equal.

We shall illustrate this with a simulation.

Consider 𝑋1, 𝑋2, … , 𝑋𝑛~𝑁 𝜇1, 𝜎
2 , 𝑌1, 𝑌2, … , 𝑌𝑛~𝑁 𝜇2, 𝜎

2 and 𝑋 and 𝑌 are independent.

We wish  to test the hypothesis 𝐻0: 𝜇1 − 𝜇2 ≤ 𝜇0 𝑣𝑠 𝐻1: 𝜇1 − 𝜇2 > 𝜇0.

We first generate some simulated data.

Xsamp <- rnorm(20, mean = 2, sd = 1)

Ysamp <- rnorm(30, mean = 1, sd = 1)

boxplot(Xsamp, Ysamp)

You can see that we have used the same variance to 

generate our samples. Suppose the problem is to check 

whether the means differ, under the assumption that the 

variances are unknown but equal.



mytest.pooled <- t.test(Xsamp, Ysamp, alternative = "t", mu = 0, var.equal = TRUE)

mytest.pooled

##  Two Sample t-test

## data:  Xsamp and Ysamp

## t = 2.9634, df = 48, p-value = 0.004724

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

##  0.2928261 1.5287200

## sample estimates:

## mean of x mean of y 

## 1.8358720 0.9250989

Notice that we have used the additional argument of var.equal = TRUE to incorporate the additional 
information in our testing procedure.

Pooled t-test



Paired t-test

Now we move on to paired t-test for samples coming in pairs from a Bivariate Normal Distribution. We 

shall illustrate this with a simulation.

Consider 𝑋1, 𝑌1 , … , (𝑋𝑛, 𝑌𝑛)~𝑁 𝜇1, 𝜇2, 𝜎1
2, 𝜎2
2, 𝜌 .

We wish  to test the hypothesis 𝐻0: 𝜇1 − 𝜇2 = 𝜇0 𝑣𝑠 𝐻1: 𝜇1 − 𝜇2 ≠ 𝜇0.

We first generate some simulated data.

Xsamp <- rnorm(25, mean = 2, sd = 2)

Ysamp <- 0.5*Xsamp + rnorm(25, mean = 1, sd = 1)

Notice that the Y samples are linearly related to X samples, and hence a correlation between them are 

established. You can plot the data to visualize this.

plot(Xsamp, Ysamp)
boxplot(Xsamp, Ysamp)



The true means are 𝜇1 = 2 and 𝜇2 = 0.5 ∗ 2 + 1 = 2, so that the means are, in fact, equal. We shall test this 
in light of the data.

mytest.paired <- t.test(Xsamp, Ysamp, alternative = "t", mu = 0, paired = TRUE)

mytest.paired

##  Paired t-test

## data:  Xsamp and Ysamp

## t = -0.89964, df = 24, p-value = 0.3773

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

##  -0.5820331  0.2286589

## sample estimates:

## mean of the differences 

##              -0.1766871

Note the usage of the argument paired = TRUE in the command above.

Paired t-test



Testing of variances

We now illustrate testing of variances of two independent Normal populations. Suppose 

𝑋1, 𝑋2, … , 𝑋𝑛~𝑁 𝜇1, 𝜎1
2 , 𝑌1, 𝑌2, … , 𝑌𝑛~𝑁 𝜇2, 𝜎2

2

We wish  to test the hypothesis concerning their respective variances. Let’s consider testing

𝐻0: 𝜎1
2 ≤ 𝜎2

2𝑣𝑠 𝐻1: 𝜎1
2 > 𝜎2

2

We use the command var.test for this.

Xsamp <- rnorm(15, mean = 2, sd = 2)

Ysamp <- rnorm(20, mean = 5, sd = 4)

vartest <- var.test(Xsamp, Ysamp, alternative = "g")

vartest

##  F test to compare two variances

## data:  Xsamp and Ysamp

## F = 0.36659, num df = 14, denom df = 19, p-value = 0.9696

## alternative hypothesis: true ratio of variances is greater than 1

## 95 percent confidence interval:

##  0.1625231       Inf

## sample estimates:

## ratio of variances 

##          0.3665894



TEST OF HYPOTHESIS using R



TEST OF HYPOTHESIS

Introduction:

In many situations, it is required to accept or  reject a statement or claim about 

some parameter

The statement is called the hypothesis

The procedure for decision making about the hypothesis is called hypothesis 

testing

Example:

1. The average cycle time is less than 24 hours

2. The % rejection is only 1%

Advantages

1.Handles uncertainty in decision making

2.Minimizes subjectivity in decision making

3.Helps to validate assumptions or verify conclusions



TEST OF HYPOTHESIS

Commonly used hypothesis tests on mean of normal distribution:

• Checking mean equal to a specified value (mu = mu0) 

• Two means are equal or not (mu1 = mu2)

Null Hypothesis: 

A statement about the status quo

One of no difference or no effect

Denoted by H0

Alternative Hypothesis: 

One in which some difference or effect is expected

Denoted by H1



TEST OF HYPOTHESIS

Methodology demo: To Test Mean = Specified Value (mu = mu0)

Suppose we want to test whether mean of a process characteristic is 5 based on 

the following sample data from the process

Calculate the mean of the sample, xbar = 5.15

Compare xbar with specified value 5

or xbar - specified value = xbar - 5 with  0

If xbar - 5 is close to 0 

then conclude mean = 5

else mean ≠ 5  



TEST OF HYPOTHESIS

Methodology demo : To Test Mean = Specified Value (mu = mu0)

Consider another set of sample data. Check whether mean of the process 

characteristic is 500

Mean of the sample,  xbar = 515

xbar - 500 = 515 - 500 = 15

Can we conclude mean ≠ 500?

Conclusion:

Difficult to say mean = specified value by looking at xbar - specified value 

alone



TEST OF HYPOTHESIS

Methodology demo: To Test Mean = Specified Value (mu = mu0)

Test statistic is calculated by dividing (xbar - specified value) by a function

of standard deviation

To test Mean = Specified value

Test Statistic t0 = (xbar - Specified value) / (SD / √n)

If test statistic is close to 0, conclude that Mean = Specified value

To check whether test statistic is close to 0, find out p value from the sampling

distribution of test statistic



TEST OF HYPOTHESIS

Methodology demo: To Test Mean = Specified Value

P value

The probability that such evidence or result will occur when H0 is true

Based on the reference distribution of test statistic

The tail area beyond the value of test statistic in reference distribution

t0

P value



TEST OF HYPOTHESIS

Methodology demo : To Test Mean = Specified Value

P value

t0

P value

If test statistic t0 is close to 0 then p will be high

If test statistic t0 is not close to 0 then p will be small

If p is small , p < 0.05 (with alpha = 0.05), conclude that t ≠ 0, then

Mean ≠ Specified Value, H0 rejected



TEST OF HYPOTHESIS

To Test Mean = Specified Value (mu = mu0)

Example: Suppose we want to test whether mean of the process characteristic is

5 based on the following sample data

H0: Mean = 5

H1: Mean ≠ 5

Calculate xbar = 5.15

SD = 0.8515

n   = 10

Test statistic t0 = (xbar - 5)/(SD / √n)  = (5.15 - 5) / (0.8515 / √10) = 0.5571



TEST OF HYPOTHESIS

Example: To Test Mean = Specified Value (mu = mu0)

P = 0.59

0.55

t0 = 0.5571

P ≥ 0.05, hence Mean = Specified value = 5.

H0: Mean = 5 is not rejected



TEST OF HYPOTHESIS

Hypothesis Testing: Steps

1.Formulate the null hypothesis H0 and the alternative hypothesis H1

2.Select an appropriate statistical test and the corresponding test statistic

3.Choose level of significance alpha (generally taken as 0.05)

4.Collect data and calculate the value of test statistic

5.Determine the probability associated with the test statistic under the null

hypothesis using sampling distribution of the test statistic

6.Compare the probability associated with the test statistic with level of

significance specified



TEST OF HYPOTHESIS

Install the necessary packages

> install.packages("car")

> library(car)

> install.packages("gplots")

> library(gplots)

> install.packages("ggplot2")

> library(ggplot2)

> install.packages("qqplotr")

> library(qqplotr)

> install.packages("boot")

> library(boot)



TEST OF HYPOTHESIS

One sample t test

Exercise 1 : A company claims that on an average it takes only 40 hours or less

to process any purchase order. Based on the data given below, can you validate

the claim? The data is given in PO_Processing.csv

Reading data to mydata

> mydata = read.csv('PO_Processing.csv',header = T,sep = ",")

> PT = mydata$Processing_Time

Performing one sample t test

> t.test(PT, alternative = 'greater', mu = 40)

Statistics Value

t 3.7031

df 99

P value 0.0001753



NORMALITY TEST



NORMALITY TEST

Normality test

A methodology to check whether the characteristic under study is normally

distributed or not

Two Methods :

Normality test - Quantile – Quantile (Q- Q) plot

Plots the ranked samples from the given distribution against a similar number of

ranked quantiles taken from a normal distribution

If the sample is normally distributed then the line will be straight in the plot

Normality test – Shapiro – Wilk test

H0: Deviation from bell shape (normality) = 0

H1 : Deviation from bell shape ≠ 0

If p value ≥ 0.05 (5%), then H0 is not rejected, distribution is normal



Normality test

Exercise 1 : The processing times of purchase orders is given in

PO_Processing.csv. Is the distribution of processing time is normally distributed?

Normality Check using Normal Q – Q plot

> qqnorm(PT) 

> qqline(PT)

NORMALITY TEST



Normality test

Exercise 1 : The processing times of purchase orders is given in

PO_Processing.csv. Is the distribution of processing time being normally

distributed?

NORMALITY TEST

Normality Check using Shapiro – Wilk test

> shapiro.test(PT) 

Statistics Value

W 0.9804

p value 0.1418

Conclusion: The data is Normal if p-value is above 0.05 



ANALYSIS OF VARIANCE



The Analysis of Variance, or ANOVA in short, refers broadly to a collection of 

experimental situations and statistical procedures for the analysis of 

quantitative responses from experimental units. The simplest of them is 

referred to as a single-factor, or one-way ANOVA. It involves the analysis 

either of data sampled from more than two populations or of data from 

experiments in which more than two treatments have been used. The 

characteristic that differentiates the treatments or populations from one 

another is called the factor under study, and the different treatments or 

populations are referred to as the levels of the factor.

Some examples:

• An experiment to study the effect of different fertilizers on the yield of a 

crop.

• An experiment to study drug effectiveness on a disease.

• An experiment to study effect of different insecticides on pest control.

One-way Analysis of Variance (One-way ANOVA)



Consider the ‘InsectSprays’ dataset in R.

data("InsectSprays")

dat <- InsectSprays

head(InsectSprays)
##   count spray

## 1    10     A

## 2     7     A

## 3    20     A

## 4    14     A

## 5    14     A

## 6    12     A

str(InsectSprays)
## 'data.frame':    72 obs. of  2 variables:

##  $ count: num  10 7 20 14 14 12 10 23 17 20 ...

##  $ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

Show the levels of treatment

levels(dat$spray)
## [1] "A" "B" "C" "D" "E" "F"

Let us visualize the data.

library(ggplot2)

ggplot(dat, aes(x=spray,y=count))+ geom_point()

One-way Analysis of Variance (One-way ANOVA)



Single factor ANOVA focuses on a comparison of more than two populations or treatment means. Let

• 𝐼 = number of treatment levels

• 𝐽 = number of observations in level i = 1,2,… , 𝐼

• 𝜇𝑖 = mean of treatment level i = 1,2,… , 𝐼

• 𝑁 =  𝑖=1
𝐼 𝐽𝑖 total number of observations

The relevant hypotheses are

𝐻0 ∶ 𝜇1 = … = 𝜇𝐼 𝑣𝑠. 𝐻1 ∶ 𝑛𝑜𝑡(𝐻0)
The alternative hypothesis is tantamount to saying that at least one pair of means are different.

The ANOVA Model

Let 𝑋𝑖,𝑗 denote the random variable representing the 𝑗𝑡ℎ measurement taken from the 𝑖𝑡ℎ treatment, 

and 𝑥𝑖,𝑗 be the observed value of the same.

The one-way ANOVA model is given by 
𝑋𝑖,𝑗 = 𝜇𝑖+∈𝑖,𝑗

where ∈𝑖,𝑗 are the error terms. We assume that ∈𝑖,𝑗 ~𝑁(0, 𝜎
2).

This gives,

𝐸 𝑋𝑖,𝑗 = 𝜇𝑖, 𝑉𝑎𝑟 𝑋𝑖,𝑗 = 𝜎
2

An alternative description of the one-way ANOVA is given by
𝑋𝑖,𝑗 = 𝜇 + 𝛼𝑖+∈𝑖,𝑗

where 𝜇 =
1

𝐼
 𝑖=1
𝐼 𝜇𝑖 , and 𝛼𝑖 = 𝜇𝑖 − 𝜇; 𝑖 = 1,… , 𝐼. Note  𝑖=1

𝐼 𝛼𝑖 = 0.

One-way Analysis of Variance (One-way ANOVA)



The null hypothesis above thus becomes

𝐻0 ∶ 𝛼1 = ⋯ = 𝛼𝐼 = 0 𝑣𝑠.𝐻1 ∶ 𝑛𝑜𝑡 𝐻0

The individual sample means are denoted as  𝑋1𝑜, … ,  𝑋𝐼𝑜, such that  𝑋𝑖0 =
1

𝐽𝑖
 𝑗=1
𝐽𝑖 𝑋𝑖,𝑗 and the grand 

mean is denoted as  𝑋00 =
1

𝑁
 𝑖=1
𝐼  𝑗=1

𝐽𝑖 𝑋𝑖,𝑗.

Think about the total variation in the data. The observed values of the variable of interest are 𝑋𝑖,𝑗, and 

the grand mean is  𝑋00. Thus, the total variation in the data is given by the Total Sum of Squares (SST), 

defined as

𝑆𝑆𝑇 =  

𝑖=1

𝐼

 

𝑗=1

𝐽𝑖

𝑋𝑖,𝑗 −  𝑋00
2

The total SS can be partitioned in to two sums, as 𝑆𝑆𝑇 = 𝑆𝑆𝑇𝑟 + 𝑆𝑆𝐸, where

𝑆𝑆𝑇𝑟 =  

𝑖=1

𝐼

 

𝑗=1

𝐽𝑖

 𝑋𝑖0 −  𝑋00
2 𝑎𝑛𝑑 𝑆𝑆𝐸 = 

𝑖=1

𝐼

 

𝑗=1

𝐽𝑖

𝑋𝑖,𝑗 −  𝑋𝑖0
2

The above identity says that the total variation can be partitioned into two parts. 

𝑆𝑆𝑇𝑟 measures the variation (between levels) that can be explained by possible differences in the 𝜇𝑖
(How would 𝑆𝑆𝑇𝑟 behave if all the 𝜇𝑖 were identical to each other?)

On the other hand, 𝑆𝑆𝐸 measures variation (within levels) that would be present irrespective of 

whether 𝐻0 is true or false.

One-way Analysis of Variance (One-way ANOVA)



Let us look at our 'InsectSprays' data example again.

One-way Analysis of Variance (One-way ANOVA)



The red dots are the within level sample means  𝑋𝑖0 and the blue line corresponds to the overall grand 

mean  𝑋00. 𝑆𝑆𝑇𝑟 looks at the variation between levels, taking the squared differences of the red dot 

with the blue line, whereas 𝑆𝑆𝐸 looks at the variation within levels, taking squared differences of the 

black dots with the red dots for each level.

If the null hypothesis is true, then, 𝑆𝑆𝑇𝑟 would have a significantly smaller contribution to the total 

variation 𝑆𝑆𝑇. This intuitive idea forms the basis of ANOVA. You must be wondering why a comparison 

of means is coined as analysis of variance. To answer this, let us look into the theoretical properties of 

the quantities 𝑆𝑆𝑇𝑟 and 𝑆𝑆𝐸.
In this context, we define the Mean Squared Treatment (𝑀𝑆𝑇𝑟) and Mean Squared Error (𝑀𝑆𝐸) as

𝑀𝑆𝑇𝑟 =
𝑆𝑆𝑇𝑟

(𝐼 − 1)
, 𝑀𝑆𝐸 =

𝑆𝑆𝐸

(𝑁 − 1)

Note that, if we denote the sample variance for the 𝑖𝑡ℎ treatment level as 𝑆𝑖
2, then,

𝑀𝑆𝐸 =
𝐽1 − 1 𝑆1

2 + 𝐽2 − 1 𝑆2
2 +⋯+ (𝐽𝐼 − 1)𝑆𝐼

2

𝐽1 − 1 + 𝐽2 − 1 +⋯+ +⋯+ (𝐽𝐼 − 1)
We can prove that,

𝐸 𝑆𝑆𝑇𝑟 = 𝐼 − 1 𝜎2 + 

𝑖=1

𝐼

𝐽𝑖𝛼𝑖
2 , 𝐸 𝑆𝑆𝐸 = 𝑁 − 1 𝜎2

so that,

𝐸 𝑀𝑆𝑇𝑟 = 𝜎2 +
1

𝐼 − 1
 

𝑖=1

𝐼

𝐽𝑖𝛼𝑖
2 , 𝐸 𝑀𝑆𝐸 = 𝜎2

One-way Analysis of Variance (One-way ANOVA)



If 𝐻0 is true, then, 𝛼𝑖 = 0; 𝑖 = 1, 2,… , 𝐼 and thus, 

𝐸 𝑀𝑆𝑇𝑟 = 𝐸 𝑀𝑆𝐸 = 𝜎2

On the other hand, if 𝐻0 is not true, then, 𝐸 𝑀𝑆𝑇𝑟 > 𝐸 𝑀𝑆𝐸 = 𝜎2. 

Denoting 𝐸 𝑀𝑆𝑇𝑟 as 𝜎∗
2, we can reformulate the testing of hypothesis problem as

𝐻0 ∶ 𝜎∗
2 = 𝜎2 𝑣𝑠. 𝐻1 ∶ 𝜎∗

2 > 𝜎2

Thus, the hypothesis of testing of means has boiled down to testing of variances. Also, it is a right-tailed 

test.

The test statistic in this case is given by 𝐹 =
𝑀𝑆𝑇𝑟

𝑀𝑆𝐸
. We reject 𝐻0 at level of significance 𝛼 if observed 

𝐹 > 𝐹𝛼,𝐼−1,𝑁−1

We illustrate the ANOVA testing procedure in R. We shall use the aov function in R, and the summary() 

command to get the ANOVA Table.

One-way Analysis of Variance (One-way ANOVA)



anova.fit <- aov(count ~ spray, data = dat)

summary(anova.fit)

##             Df Sum Sq Mean Sq F value Pr(>F)    

## spray        5   2669   533.8    34.7 <2e-16 ***

## Residuals   66   1015    15.4                   

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

One-way Analysis of Variance (One-way ANOVA)



Our analysis is terminated if we fail to reject the null hypothesis, owing to the fact that there are no 

differences in the treatment means across levels. However, if the null hypothesis is rejected, the next step 

would be to determine which pairs of treatment means differ. We can either perform pairwise testing one at 

a time, or a multiple comparisons procedure. In the former case, our hypotheses look like

𝐻0 ∶ 𝜇𝑟 − 𝜇𝑠 = 0 𝑣𝑠. 𝐻1 ∶ 𝜇𝑟 − 𝜇𝑠 ≠ 0

We can adopt a two-sample t-test procedure for carrying out the above test. It will be a pooled t-test 

(why?), with the estimator of 𝜎2 given by MSE. The 100 1 − 𝛼 % confidence interval for 𝜇𝑟 − 𝜇𝑠 is given 

by

 𝑋𝑟0 −  𝑋𝑠0 ± 𝑡𝛼,𝑁−1 𝑀𝑆𝐸(  
1
𝐽𝑟
+  1 𝐽𝑠

)

The summary.Im command gives us the level-specific estimates and significance results.

Multiple comparisons in ANOVA



summary.lm(anova.fit)

## Call:

## aov(formula = count ~ spray, data = dat)

## 

## Residuals:

##    Min     1Q Median     3Q    Max 

## -8.333 -1.958 -0.500  1.667  9.333 

## 

## Coefficients:

##             Estimate Std. Error t value Pr(>|t|)    

## (Intercept)  14.5000     1.1322  12.807  < 2e-16 ***

## sprayB 0.8333     1.6011   0.520    0.604    

## sprayC -12.4167     1.6011  -7.755 7.27e-11 ***

## sprayD -9.5833     1.6011  -5.985 9.82e-08 ***

## sprayE -11.0000     1.6011  -6.870 2.75e-09 ***

## sprayF 2.1667     1.6011   1.353    0.181    

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## Residual standard error: 3.922 on 66 degrees of freedom

## Multiple R-squared:  0.7244, Adjusted R-squared:  0.7036 

## F-statistic:  34.7 on 5 and 66 DF,  p-value: < 2.2e-16

Multiple comparisons in ANOVA



• The ANOVA Table (obtained by the summary() command) is the standard ANOVA table.

• Interesting thing is the one obtained using the summary.Im command.

• Look at the 'Coefficients' table. The first row (Intercept) corresponds to the baseline control group 

(Spray A in this case). The value of $14.5$ is the mean of the baseline control group and the 

corresponding t-test tests whether the effect of that spray is zero or not. In this example, the null 

hypothesis of the mean effect for the control group = 0 is rejected owing to the extremely low p-

value. The next rows correspond to the difference of the other levels of treatment with the control 

group (like Spray B - Spray A, Spray C - Spray A, etc.). The estimates reported are that of the 

respective differences of the other treatment levels with the control group.

• Notice that the standard errors are the same across all the differences, and this is due to the fact 

that the expression for the standard error involves the MSE with equal number of observations per 

group.

• The corresponding t-tests test for the difference of the treatment levels with the control group.

• Now look at the Residual standard error in the bottom of the table. It can be obtained from the 

ANOVA table above by taking the square root of the MSE.

• Also, the Multiple-R-squared 𝑅2 value is obtained as 𝑆𝑆𝑇𝑟/(𝑆𝑆𝑇𝑟 + 𝑆𝑆𝐸).

Interpretation of the R Output



However, the above method provides Confidence intervals at the desired level for individual 

pairs of means, but not a simultaneous one which controls the overall confidence level for all 

the pairs. To answer this, we resort to the multiple comparisons procedure. The intervals are 

based on Studentized range statistic, Tukey's Honest Significant Difference method.

Tukey's HSD Method

TukeyHSD(anova.fit)

##   Tukey multiple comparisons of means

##     95% family-wise confidence level

## Fit: aov(formula = count ~ spray, data = dat)

## $spray

##            diff        lwr       upr     p adj

## B-A   0.8333333  -3.866075  5.532742 0.9951810

## C-A -12.4166667 -17.116075 -7.717258 0.0000000

## D-A  -9.5833333 -14.282742 -4.883925 0.0000014

## E-A -11.0000000 -15.699409 -6.300591 0.0000000

## F-A   2.1666667  -2.532742  6.866075 0.7542147

## C-B -13.2500000 -17.949409 -8.550591 0.0000000

## D-B -10.4166667 -15.116075 -5.717258 0.0000002

## E-B -11.8333333 -16.532742 -7.133925 0.0000000

## F-B   1.3333333  -3.366075  6.032742 0.9603075

## D-C   2.8333333  -1.866075  7.532742 0.4920707

## E-C   1.4166667  -3.282742  6.116075 0.9488669

## F-C  14.5833333   9.883925 19.282742 0.0000000

## E-D  -1.4166667  -6.116075  3.282742 0.9488669

## F-D  11.7500000   7.050591 16.449409 0.0000000

## F-E  13.1666667   8.467258 17.866075 0.0000000

plot(TukeyHSD(anova.fit))



ANOVA

Analysis of Variance is a test of means for two or more populations

Partitions the total variability in the variable under study to different

components

H0 = Mean1 = Mean2 = - - - =Meank

Reject H0 if p – value < 0.05

Example:

To study location of shelf on sales revenue

ANALYSIS OF VARIANCE



One Way ANOVA : Example

An electronics and home appliance chain suspect the location of shelves

where television sets are kept will influence the sales revenue. The data on

sales revenue in lakhs from the television sets when they are kept at

different locations inside the store are given in sales revenue data file. The

location is denoted as 1:front, 2: middle & 3: rear. Verify the doubt? The data

is given in Sales_Revenue_Anova.csv.

ANALYSIS OF VARIANCE

Factor: Location(A)

Levels : front, middle, rear

Response: Sales revenue



One Way Anova : Example

Step 1: Calculate the sum, average and number of response values for each

level of the factor (location).

Level 1 Sum(A1):

Sum of all response values when location is at level 1 (front)

= 1.55 + 2.36 + 1.84 + 1.72

= 7.47

nA1: Number of response values with location is at level 1 (front)

= 4

ANALYSIS OF VARIANCE



One Way Anova : Example

Step 1: Calculate the sum, average and number of response values for each

level of the factor (location).

Level 1 Average: 

Sum of all response values when location is at level 1 / number of response 

values with location is at level 1

= A1 / nA1 = 7.47 / 4 = 1.87

ANALYSIS OF VARIANCE



One Way Anova : Example

Step 1: Calculate the sum, average and number of response values for each

level of the factor (location).

ANALYSIS OF VARIANCE



One Way Anova : Example

Step 2: Calculate the grand total (T)

T = Sum of all the response values

= 1.55 + 2.36 + - - - + 2.72 + 2.07 = 53.33

Step 3: Calculate the total number of response values (N)

N = 18

Step 4: Calculate the Correction Factor (CF)

CF = (Grand Total)2 / Number of Response values

= T2 / N = (537.33)2 / 18 = 158.0049

ANALYSIS OF VARIANCE



One Way Anova : Example

Step 5: Calculate the Total Sum of Squares ( TSS)

TSS = Sum of square of all the response values - CF

= 1.552 + 2.362 + - - - + 2.722 + 2.072 – 158.0049

= 15.2182

ANALYSIS OF VARIANCE

Step 6: Calculate the between (factor) sum of square

SSA = A1
2 / nA1 + A2

2 / nA2 + A3
2 / nA3 - CF

= 7.472 / 4 + 30.312 / 8 + 15.552 / 4 – 158.0049

= 11.0827

Step 7: Calculate the within (error) sum of square

SSe = Total sum of square – between sum of square

= TSS - SSA = 15.2182 – 11.0827 = 4.1354



One Way Anova : Example

Step 8: Calculate degrees of freedom (df)

Total df = Total Number of response values - 1

= 18 - 1 = 17

Between df

= Number of levels of the factor - 1

= 3 - 1 = 2

Within df = Total df – Between df

= 17 - 2 = 15

ANALYSIS OF VARIANCE



One Way Anova : R Code

Reading data and variables to R

> mydata = read.csv('Sales_Revenue_Anova.csv',header = T,sep = ",")

> location = mydata$Location

> revenue = mydata$Sales.Revenue

ANALYSIS OF VARIANCE

Converting location to factor

> location = factor(location)

Computing ANOVA table

> fit = aov(revenue ~ location)

> summary(fit)



One Way Anova : Example

Anova Table:

MS = SS / df

F = MSBetween/ MSWithin

ANALYSIS OF VARIANCE

F Crit =finv (probability, between df, within df ) , probability = 0.05

P value = fdist ( F, between df, within df)



One Way Anova : Decision Rule

If p value < 0.05, then

The factor has significant effect on the process output or response.

Meaning:

When the factor is changed from 1 level to another level,

there will be significant change in the response.

ANALYSIS OF VARIANCE



One Way Anova : Example Result

For factor Location, p = 0.000 < 0.05

Conclusion:

Location has significant effect on sales revenue

Meaning:

The sales revenue is not same for different locations like front, middle &

rear

ANALYSIS OF VARIANCE



One Way Anova : Example Result

The expected sales revenue for different location under study is equal to level

averages.

ANALYSIS OF VARIANCE

> aggregate(revenue ~ location, FUN = mean)



One Way Anova : Example Result

ANALYSIS OF VARIANCE

> boxplot(revenue ~ location)



One Way Anova : Example Result

ANALYSIS OF VARIANCE

> library(gplots)

> plotmeans(revenue ~ location)



One Way Anova : Tukey’s Honestly Significant Difference (HSD) Test

ANALYSIS OF VARIANCE

Used to do pair wise comparison between the levels of factors

R code

>TukeyHSD(fit)

Comparison
Mean 

difference
Lower Upper p value

2 - 1 1.92125 1.086067 2.756433 0.0000

3 - 1 0.724167 -0.15619 1.604527 0.1158

3 - 2 -1.19708 -1.93365 -0.46052 0.0020



Anova logic:

Two Types of Variations:

1. Variation within the level of a factor

2. Variation between the levels of factor

ANALYSIS OF VARIANCE



Anova logic :

Variation between the level of  a factor:

The effect of Factor. 

Variation within the levels of a factor:

The inherent variation in the process or Process Error.

ANALYSIS OF VARIANCE



Anova logic :

If the variation between the levels of a factor is  significantly higher than 

the inherent variation 

then the factor has significant effect on response

To check whether a factor is significant:

Compare variation between levels with variation within levels

ANALYSIS OF VARIANCE



Anova logic :

Measure of variation between levels: MS of the factor (MSbetween) 

Measure of variation within levels: MS Error (MSwithin) 

To check whether a factor is significant:

Compare MS of between with MS within

i.e. Calculate F = MSbetween / MSwithin

If F is very high, then the factor is significant.

ANALYSIS OF VARIANCE



Variation Within levels:

Ideally variation within all the levels should be same

To check whether variation within the levels are same or not

Do Bartlett’s test 

If p value ≥ 0.05, then variation within the levels are equal, otherwise 

not 

ANALYSIS OF VARIANCE

R Code for Bartlett’s test

> bartlett.test(revenue, location, data = mydata)

Bartlett’s Test result for sales revenue (location of TV sets) example

Bartlett's K2 Statistic df p value

3.8325 2 0.1472

Since p value = 0.1472 > 0.05, the variance within the levels are equal
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