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Content of the Book: 

 

1. 15 Objective Problem Sets with Solutions (Total Solved Problems : 450) for all ISI 

MS/MTech/PG Entrances. 

2. 100 Topic-wise Objective Solved Problems (Total Solved Problems : 100) for all ISI 

Entrances.  

3. 10 Subjective Problem Sets with Solutions (Total Solved Problems : 100) for all ISI 

MS/MTech/PG Entrances. 

4. 100 Subjective Problems with Solutions (Total Solved Problems : 100) on Probability & 

Statistics (mainly for MSTAT). 

5. 15 Subjective Model Papers with Solutions (Total Solved Problems : 150) for ISI 

MSQE/MSQMS/MTECH Exams. 

6. 100 Subjective Problems with Solutions (Total Solved Problems : 100) on Mathematics 

(mainly for MSQE/MSQMS/MTech). 
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ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 1 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 

 

1. How many zeros are at the end of 

1000!  ? 

(a) 240                   (b) 248                  

(c) 249                 (d) 

None

  

Ans:- (c) The number of two’s is enough 

to  match each 5 to get a 10. 

 So, 

51⟶ 200 

52⟶ 40                      ∴Thus, 1000! 

Ends with 249 zeros 

53⟶ 8 

54⟶ 1 

[Theorem: (de Polinac's formula) 

Statement: Let p be a prime and e be the 

largest exponent of p such that pe  

divides n! , then  e=∑ [n/pi ], where i is 

running from 1 to infinity.] 

So,   

[1000/5]+[1000/25]+[1000/125]+[1000/

625]=249 . 

Thus, 1000! ends with 249 zeros. 

2.   The product of the first 100 positive 

integers ends with  

      (a) 21 zeros    (b) 22 zeros     (c) 23 

zeros     (d) 24 zeros. 

Ans:-  

 

 51⟶ 20             (d) 24  zeros . 

  52⟶ 4 

Alternatively, put p=5,n=100,thus from 

above theorem we have 

[100/5]+[100/25]=24 zeros as 

the answer. 

 

 

3. Let P (x) be a polynomial of degree 11 

such that P (x) = 
𝟏

𝒙+𝟏
 𝒇𝒐𝒓 𝒙 = 𝟎 (𝟏)𝟏𝟏. 

Then P (12) = ? 

(a) 0    (b) 1     (c) 
𝟏

𝟏𝟑
     (d) none of 

these 

Ans:- (a)   P (x)= 
1

𝑥+1
 

⇒ (x+1)[P (x)]-1 = c (x-0)(x-1)….(x-11) 

Putting x= -1,   0- 1= c (-1)(-2)….(-12) 

                       ⇒ c = - 
1

12!
 

∴ [P (x)](x+1)-1= - 
1

12!
(x-0)(x-1)….(x-11) 

⇒ P (12) 13-1  = - 
1

12!
   12 .11. ….2.1 
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⇒ P (12) 13-1 = -1 

⇒P (12) = 0. 

4. Let s= {(𝒙𝟏, 𝒙𝟐 , 𝒙𝟑)| 0≤ 𝒙𝒊  ≤

𝟗 𝒂𝒏𝒅 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 is divisible by 3}.  

Then the number of elements in s is 

(a)   334        (b) 333        (c) 327      (d) 

336 

Ans:- (a) with each (𝑥1, 𝑥2 , 𝑥3) identify a 

three digit code, where reading zeros are 

allowed. We have a bijection between s and 

the set of all non-negative integers less than 

or equal to 999 divisible by 3.  The no. of 

numbers between 1 and 999, inclusive, 

divisible by 3 is (
999

3
) =  333 

Also, ‘0’ is divisible by 3. Hence, the 

number of elements in s is = 333 + 1= 334. 

5. Let x and y be positive real number 

with x< y. Also 0 < b< a < 1.  

Define E =𝐥𝐨𝐠𝒂 (
𝒚

𝒙
) + 𝐥𝐨𝐠𝒃 (

𝒙

𝒚
). Then E 

can’t take the value 

(a)  -2      (b) -1       (c)  -√𝟐        (d) 2 

Ans :- (d) E =log𝑎 (
𝑦

𝑥
) + log𝑏(

𝑥

𝑦
)  = 

log  
𝑦

𝑥

log𝑎
−

log  
𝑦

𝑥

log𝑏
 

                                                         = 

log ( 
𝑦

𝑥
) {

1

log𝑎
−

1

log𝑏
}   = 

log ( 
𝑦

𝑥
) {

log𝑏−log𝑎

(log𝑎)(log𝑏)
}   

                                                          = 

log ( 
𝑦

𝑥
) .

log(
𝑏

𝑎
)

(log𝑎)(log𝑏)
   = - log ( 

𝑦

𝑥
) .

log(
𝑎

𝑏
)

(log𝑎)(log𝑏)
 

Log 0< a < 1, 0< b <1    ∴ log𝑎 and log𝑏 are 

both negative. 

Also 
𝑦

𝑥
> 1 and 

𝑎

𝑏
> 1 . Thus log ( 

𝑦

𝑥
)  and 

log ( 
𝑎

𝑏
)  are both positive. Finally E turns 

out to be a negative value. So, E can’t take 

the value ‘2’. 

6. Let S be the set of all 3- digits 

numbers. Such that  

(i) The digits in each number are 

all from the set {1, 2, 3, …., 9} 

(ii) Exactly one digit in each 

number is even 

The sum of all number in S is 

(a) 96100       (b) 133200       (c) 66600       

(d) 99800 

Ans:-  (b) The sum of the digits in unit place 

of all the numbers in s will be same as the 

sum in tens or hundreds place. The only 

even digit can have any of the three 

positions,  

i.e.  3𝑐1 ways. 

And the digit itself has 4 choices (2, 4, 6 or 

8). The other two digits can be filled in 5× 4 

= 20 ways. 

Then the number of numbers in S = 240. 

Number of numbers containing the even 

digits in units place = 4 × 5 × 4 = 80 

The other 160 numbers have digits 1, 3, 5, 7 

or 9 in unit place, with each digit appearing 

  
160

5
 = 32 times. Sum in units place = 32 (1+ 

3+ 5+ 7+ 9) + 20 (2+ 4+ 6+ 8)  
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= 32.52 +  20 × 2 ×
4×5

2
 = 32× 25 + 20 ×

20 = 1200 

∴ The sum of all numbers= 1200 (1+ 10 

+102) = 1200× 111 = 133200. 

7. Let y = 
𝒙

𝒙𝟐+𝟏
 , Then 𝒚𝟒(𝟏)is equals 

(a) 4          (b) -3         (c) 3          (d) -4 

Ans:-  (b) Simply differentiating would be 

tedious,  

So we take advantage of ‘i’ the square root 

of ‘-1’ 

y = 
𝑥

𝑥2+1
= 

1

2
 {

1

(𝑥−𝑖)
+ 

1

(𝑥+𝑖)
} 

𝑑4𝑦

𝑑𝑥4
  =  

1

2
 {

4!

(𝑥−𝑖)5
+ 

4!

(𝑥−𝑖)5
} 

Note that, 
𝑑𝑛

𝑑𝑥𝑛
 {

1

𝑥+𝑎
} =  

(−1)𝑛 𝑛!

(𝑥+𝑎)𝑛+1
 

So, 𝑦4(𝑥) =  
4!

2
{

1!

(𝑥−𝑖)5
+

1!

(𝑥−𝑖)5
} Then  

𝑦4(1) = 12 {
1!

(𝑥−𝑖)5
+

1!

(𝑥−𝑖)5
} = 12 {

1−𝑖

(−2𝑖)3
+

1−𝑖

(2𝑖)3
 } = 12 {

1−𝑖

8𝑖
+
1−𝑖

8𝑖
} = 12 (-

1

8
−
1

8
) = -3. 

8. A real 2× 2 matrix. M such that  

𝑴𝟐 = (
−𝟏 𝟎
𝟎 −𝟏−∊

) 

(a) exists for all ∊ > 0                                          

(b) does not exist for any ∊> 0 

(c) exists for same ∊> 0                                       

(d) none of the above 

Ans:- (b) since 𝑀2 is an diagonal matrix, so 

M= [
𝑖 0

0 √1−∊
],  

So, M is not a real matrix, for any values of 

∊ 

M is a non –real matrix. 

9. The value of (
𝟏+𝒊√𝟑

𝟐
)
𝟐𝟎𝟎𝟖

 is 

(a) 
𝟏+𝒊√𝟑

𝟐
                  (b) 

𝟏−𝒊√𝟑

𝟐
                   (c) 

−𝟏−𝒊√𝟑

𝟐
                  (d) 

−𝟏+𝒊√𝟑

𝟐
 

Ans:- (c) A = (
1+𝑖√3

2
), 𝐴2 =

−1+𝑖√3

2
, 𝐴4 =

 
−1−𝑖√3

2
= −𝐴 

∴ 𝐴2008 = (𝐴4)502 = 𝐴4 =
−1−𝑖√3

2
. 

10. Let f(x) be the function f(x)= 

{
𝒙𝑷

(𝒔𝒊𝒏𝒙)𝒒
  𝒊𝒇 𝒙 > 0

𝟎          𝒊𝒇 𝒙 = 𝟎
 

Then f(x) is continuous at x= 0 if 

(a) p > q                (b) p > 0              (c) 

q > 0                  (d) p < q 

Ans:- (b) |f(x)-f(0)|= |
𝑥𝑃

(𝑠𝑖𝑛𝑥)𝑞
− 0| ≤ |𝑥𝑃| < ∊  

Whenever |x-0| < ∊
1

𝑝=  𝛿  if p > 0. 

So, f(x)is continuous for p > 0 at x= 0. 

11. The limit 𝐥𝐢𝐦
𝒙→∞

𝐥𝐨𝐠 (𝟏 −
𝟏

𝒏𝟐
)𝒏 equals 

(a) 𝒆−𝟏                  (b) 𝒆−
𝟏

𝟐                    

(c) 𝒆−𝟐                  (d)    1 

Ans:- (d) L= (1 −
1

𝑛2
)𝑛 

 𝑙𝑜𝑔𝐿 = 𝑛𝑙𝑜𝑔(1 −
1

𝑛2
) 

 lim
𝑥→∞

𝑙𝑜𝑔𝐿 = lim
𝑥→∞

[−𝑛{
1

𝑛2
+

1

2𝑛4
+

⋯∞}]  = 0 

∴L = 𝑒0 = 1. 
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12. The minimum value of the function 

f(x, y)= 𝟒𝒙𝟐 + 𝟗𝒚𝟐 − 𝟏𝟐𝒙 − 𝟏𝟐𝒚 + 𝟏𝟒 

is 

(a) 1                (b)  3                 (c)  14                    

(d) none 

Ans:- (a) f(x, y) =  4𝑥2 + 9𝑦2 − 12𝑥 −

12𝑦 + 14 

                          = (4𝑥2 − 12𝑥 + 9)+( 9𝑦2 −

12𝑦 + 4)+1 

                          = (2𝑥 − 3)2 + (3𝑦 − 2)2 +

1  ≥ 1 

So, minimum value of f(x, y) is 1. 

13.  From a group of 20 persons, 

belonging to an association, A 

president, a secretary and there 

members are to be elected for the 

executive committee. The number of 

ways this can be done is 

(a) 30000                 (b) 310080                     

(c) 300080               (d) none 

Ans:- (b) 20𝑐1 × 19𝑐1 × 18𝑐3  𝑜𝑟 
20!

1!1!3!15!
 = 

310080 

14. The 𝐥𝐢𝐦
𝒙⟶𝟎

𝐜𝐨𝐬 𝒙−𝐬𝐞𝐜𝒙

𝒙𝟐(𝟏+𝒙)
   is  

(a) -1                   (b) 1                    (c) 0                   

(d) does not exist 

Ans:- (a) lim
𝑥⟶0

cos𝑥−sec𝑥

𝑥2(1+𝑥)
  = lim

𝑥⟶0

−sin2 𝑥

cos𝑥 (𝑥2)(𝑥+1)
 

= - lim
𝑥⟶0

1

cos𝑥
(
sin𝑥

𝑥
)2.

1

(𝑥+1)
  = -1. 1. 1  = - 1. 

15. Let R = 
𝟒𝟖𝟓𝟐− 𝟒𝟔𝟓𝟐

𝟗𝟔𝟐𝟔+ 𝟗𝟐𝟐𝟔
. Then R satisfies 

(a) R < 1                (b) 𝟐𝟑𝟐𝟔< R < 𝟐𝟒𝟐𝟔           

(c) 1 < R < 𝟐𝟑𝟐𝟔                   (d) R > 

𝟐𝟒𝟐𝟔  

Ans:- (b) R= 
(2.24)52− (2.23)52

(4.24)26+ (4.23)26
 = 

252(2452−2352)

426(2426+ 2326)
  

= 
252

252
 .
(2426+ 2326)(2426− 2326)

2426+ 2326
  

                                              = 2426 − 2326 

< 2426 

Also, R= 2426 − 2326 = (1 + 23)26 − 2326 

= 2326+ 26𝑐1 . 23
25+ 26𝑐2  . 23

24 + …+ 1 −

 2326 

= 26. 2325+26𝑐2  . 23
24 + …+ 1 >26. 2325 

> 23. 2325 = 2326 

∴ 2326 < R < 2426 

16.  A function f is said to be odd if f (-x)= 

-f (x) ∀ 𝒙. Which of the following is not 

odd? 

(a) f (x+ y)= f(x)+ f(y) ∀ 𝒙, 𝒚 

(b)  f (x)= 
𝒙𝒆
𝒙
𝟐⁄

𝟏+ 𝒆𝒙
 

(c) f (x) = x - [x] 

(d) f (x) = 𝒙𝟐 𝐬𝐢𝐧𝒙 + 𝒙𝟑 𝐜𝐨𝐬 𝒙 

Ans:- (c) f (x+ y)= f(x)+ f(y) ∀ 𝑥, 𝑦 

Let x = y = 0 

⇒ f (0) = f (0) + f (0) 

∴ f (0)= 0 

Replacing y with –x , we have 

f (x- x) = f(x) + f (-x) 

⇒ f (0) = f(x) + f (-x) 

⇒ f(x) + f (-x) = 0 

⇒ f (-x) = -f(x) 

Thus f is odd. 
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Again for f (x) =  
𝑥𝑒
𝑥
2⁄

1+ 𝑒𝑥
 

f(-x)= 
(−𝑥)(𝑒−

𝑥
2⁄ )

1+ 𝑒−𝑥
  = 

(−𝑥)(𝑒−
𝑥
2⁄ ) .𝑒𝑥

1+ 𝑒𝑥
 = - 

𝑥𝑒
𝑥
2⁄

1+ 𝑒𝑥
 = 

-f (x) 

∴ f is odd. 

 f (x) = x- [x] is not odd. 

Counter example:- 

f (-2.3) = -2.3 – [-2.3] =-2.3 – (-3) = 3- 2.3 = 

0.7 

f (2.3) = 2.3 – [2.3] = 2.3 -2 =0.3 

∴ f(2.3) ≠ f(-2.3) 

Thus f is not odd 

f (x) = 𝑥2 sin 𝑥 + 𝑥3 cos 𝑥 

f(-x) = -𝑥2 sin 𝑥 − 𝑥3 cos 𝑥 = -f(x) 

∴ f is odd here. 

17. Consider the polynomial 𝒙𝟓 + 𝒂𝒙𝟒 +

𝒃𝒙𝟑 + 𝒄𝒙𝟐 + 𝒅𝒙 + 𝟒. If (1+2i) and (3-

2i) are two roots of this polynomial 

then the value of a is 

(a) -524/65               (b) 524/65                 

(c) -1/65                      (d)  1/65  

Ans:- (a) The polynomial has 5 roots. Since 

complex root occur in pairs, so there is one 

real root taking it as m. 

So, m, 1+2i, 1-2i, 3+2i, 3-2i are the five 

roots. 

Sum of the roots= −
𝑎

1
= 8 +𝑚. 

Product of the roots= (1+4)(9+4)m= 65 

m=
4

65
  

∴ m = 
4

65
. 

∴ a= −8 −  
4

65
= −

524

65
. 

18. In a special version of chess, a rook 

moves either horizontally or vertically 

on the chess board. The number of 

ways to place 8 rooks of different 

colors on a 8×8 chess board such that 

no rook lies on the path of the other 

rook at the start of the game is 

(a) 8×⎿𝟖        (b)⎿8 × ⎿𝟖         (c) 

𝟐𝟖 ×⎿𝟖         (d) 𝟐𝟖 × (64
8
) 

Ans:- The first rook can be placed in any 

row in 8 ways &  in any column in 8 ways. 

So, it has 82 ways to be disposed off. Since 

no other rook can be placed in the path of 

the first rook, a second rook can be placed in 

72 ways for there now remains only 7 rows 

and 7 columns. Counting in this manner, the 

number of ways = 82. 72. 62…12 = (8!)2 

19. The value of ∫ ∫ {𝑴𝒊𝒏 (𝒙, 𝒚) −
𝟏

𝟎

𝟏

𝟎

 𝒙𝒚}𝒅𝒙𝒅𝒚 is 

(a) ½                       (b) 1/3                       

(c) 1/6                    (d) 1/12 

Ans:- (d) ∫ ∫ {𝑀𝑖𝑛 (𝑥, 𝑦) −  𝑥𝑦}𝑑𝑥𝑑𝑦
1

0
 

1

0
  

= ∫ ∫ 𝑥𝑑𝑥𝑑𝑦 + ∫ ∫ 𝑦𝑑𝑥𝑑𝑦
𝑥

0

1

0

𝑦

0

1

0
 

= 
1

3
 

And ∫ ∫ 𝑥𝑦 𝑑𝑥𝑑𝑦
1

0
= 

1

4

1

0
 

∴ I = 
1

3
−
1

4
= 

1

12
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20. Given that ∑𝒂𝒏 converges (𝒂𝒏 > 0); 

Then ∑𝒂𝒏
𝟑 𝐬𝐢𝐧𝒏  

(a) Converges                 (b) Diverges               

(b) Doesn’t exist              (d) None 

Ans:- (a) Since ∑𝑎𝑛 converges, we have 

lim
𝑛⟶∞

𝑛 . 𝑎𝑛 converges. 

i.e. | 𝑛 . 𝑎𝑛|  ≤ 1 𝑓𝑜𝑟 𝑛 ≥ 𝑀 (say) 

⇒ 𝑛 . 𝑎𝑛 < 1   [∵𝑎𝑛 > 0] 

⇒ 𝑎𝑛 < 
1

𝑛
 

∴ 𝑎𝑛
3 <

1

𝑛3
 

⇒ 𝑎𝑛
3 sin 𝑛 ≤

1

𝑛3
sin 𝑛 ≤

1

𝑛3
 

⇒∑𝑎𝑛
3 sin 𝑛 ≤ ∑

1

𝑛3
 

∵ RHS converges so LHS will also 

converge. 

21. The differential equation of all the 

ellipses centered at the origin is 

(a) 𝒚𝟐 + 𝒙(𝒚′)𝟐 − 𝒚𝒚′ =  𝟎                   

(b) x y y″+ 𝒙(𝒚′)𝟐 − 𝒚𝒚′ = 𝟎 

(c) y y″+ 𝒙(𝒚′)𝟐 − 𝒙𝒚′ = 𝟎                   

(d) none 

Ans:- (d)  
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1, after differentiating 

w.r.t x, we get 

 ⤇ 
2𝑥

𝑎2
+
2𝑦𝑦′

𝑏2
= 0 ⤇ 

𝑦𝑦′

𝑏2
= −

𝑥

𝑎2
 

⤇
(𝑦′)2

𝑏2
+
𝑦(𝑦″)

𝑏2
= −

1

𝑎2
 

⤇(𝑦′)2 + 𝑦(𝑦″)2 = −
𝑏2

𝑎2
. 

 

22. If f(x)= x+ sinx, then find  
𝟐

𝝅𝟐
. ∫ (𝒇−𝟏(𝒙) + 𝒔𝒊𝒏𝒙)𝒅𝒙
𝟐𝝅

𝝅
  

(a) 2                      (b) 3                        

(c) 6                       (d) 9 

Ans:- (b) Let x= f(t) ⇒ dx= f′(t)dt 

⇒ ∫ 𝑓−1(𝑥)𝑑𝑥 = ∫ 𝑡 
2𝜋

𝜋

2𝜋

𝜋
f ′(t)dt =

 (t [f(t)])2π
π
− ∫  

2𝜋

𝜋
𝑓(t)dt = (4𝜋2 − 𝜋2) −

∫  
2𝜋

𝜋
𝑓(t)dt 

I= ∫ (𝑓−1(𝑥) +
2𝜋

𝜋

𝑠𝑖𝑛𝑥)𝑑𝑥 =∫ 𝑓−1(𝑥)𝑑𝑥 + ∫ 𝑠𝑖𝑛𝑥𝑑𝑥
2𝜋

𝜋

2𝜋

𝜋
 

= 3𝜋2 − ∫  
2𝜋

𝜋
𝑓(t)dt + ∫ 𝑠𝑖𝑛𝑥𝑑𝑥

2𝜋

𝜋
  

= 3𝜋2 − ∫ (𝑓(𝑥) − 𝑠𝑖𝑛𝑥)𝑑𝑥
2𝜋

𝜋
 

= 3𝜋2 − ∫ 𝑥𝑑𝑥 = 
2𝜋

𝜋
3𝜋2 −

1

2
(4𝜋2 − 𝜋2) 

=
3

2
𝜋2  

⇒
2

𝜋2
𝐼 = 3. 

23. Let P= (a, b), Q= (c, d) and 0 < a < b < 

c < d, L≡(a, 0), M≡(c, 0), R lies on x-axis 

such that PR + RQ is minimum, then R 

divides LM 

(a) Internally in the ratio a: b                              

(b) internally in the ratio b: c 

(c) internally in the ratio b: d                               

(d) internally in the ratio d: b  

Ans:-  (c) Let R = (𝛼, 0). PR+RQ is least 

⟹ PQR should be the path of light 

⟹ 𝛥 PRL and QRM are similar 
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⟹ 
𝐿𝑅

𝑅𝑀
=

𝑃𝐿

𝑄𝑀
⟹

𝛼−𝑎

𝑐−𝛼
=
𝑏

𝑑
 

⟹ 𝛼d- 𝛼d= bc –𝛼b 

⟹ 𝛼= 
𝑎𝑑+𝑏𝑐

𝑏+𝑑
 

⟹ R divides LM internally in the ratio b : d       

(as 
𝑏

𝑑
> 0) 

24. A point (1, 1) undergoes reflection in 

the x-axis and then the co-ordinate axes 

are roated through an angle of  
𝝅

𝟒
 in 

anticlockwise direction. The final position 

of the point in the new co-ordinate system 

is- 

(a) (0, √𝟐)                         (b) (0, −√𝟐)                       

(c) −√𝟐, 𝟎                      (d) none of these 

Ans:-  . (b) Image of (1, 1) in the x-axis is 

(1, -1). If (x, y) be the co-ordinates of any 

point and (x’ , y’) be its new co-ordinates, 

then x’ = x cos 𝜃+ y sin 𝜃, 

y’= y cos𝜃 – x sin 𝜃, where 𝜃 is the angle 

through which the axes have been roated. 

Here 𝜃= 
𝜋

4
, x= 1, y= -1 

∴ x’= 0, y’= -√2  

25. If a, 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌 and b, 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒌  

from two A.P. with common difference m 

and n respectively, then the locus of point 

(x, y) where x= 
∑ 𝒙𝟏
𝒌
𝒊=𝟏

𝒌
𝒊𝒔 𝒂𝒏𝒅 𝒚 =

∑ 𝒚𝟏
𝒌
𝒊=𝟏

𝒌
 is 

(a) (x-a)m= (y-b)n                                                         

(b) (x-m) a= (y-n) b 

(c)(x-n)a = (y-m)b                                                         

(d) (x-a) n-(y-b) m 

Ans:- (d) 

X=   

𝑘

2
(𝑥1+𝑥𝑘)

𝑘
=
𝑥1+𝑥𝑘

2
=
𝑎+𝑚+𝑎 𝑚𝑘

2
   

𝑜𝑟, 𝑥 = 𝑎 +
(𝑘+1)𝑚

2
  

or,  2(x-a)= (k+1)m     ……………..(1) 

Similarly, 

2(y-b)= (k+ 1)n ……………….(2) 

We have to eliminate k 

From (1) and (2) 

𝑥−𝑎

𝑦−𝑏
=
𝑚

𝑛
  

or,  (x- a)n = (y -b)m 

26. An unbiased die with faces marked 1, 

2, 3, 4, 5 and 6 is rolled four times. Out of 

four face values obtained the probability 

that the minimum face value is not less 

than 2 and the maximum face value is not 

greater than 5 is- 

(a) 
𝟏𝟔

𝟖𝟏
                                     (b) 

𝟏

𝟖𝟏
                               

(c) 
𝟖𝟎

𝟖𝟏
                                     (d) 

𝟔𝟓

𝟖𝟏
 

 Ans. (a) 

For minimum face value not to be less than 

2 and maximum face value not to be greater 

than 5, a number out of 2, 3, 4, 5 must occur 

in each toss. 

Probability of occurrence of 2, 3, 4, 5 in one 

toss = 
4

6
=
2

3
 

∴ Required probability = (
2

3
)
4

=
14

81
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27. The probability of India winning test 

match against west Indies is ½ . Assuming 

independence from match to match, the 

probability that in a 5 match series 

India’s second win occurs at the third 

test, is 

(a) 
𝟐

𝟑
  (b) 

𝟏

𝟐
  (c) 

𝟏

𝟒
  (d) 

𝟏

𝟖
 

 Ans. (c) 

Let 𝐸𝑟 denotes the probability that india 

wine the rth match. Required probability  

= P(𝐸1)P(𝐸2’)P(𝐸3)+P(𝐸1′)P(𝐸2)P(𝐸3) =
1

2
(1 −

1

2
)
1

2
+ (1 −

1

2
) .
1

2
.
1

2
=
1

8
.
1

8
=
1

4
 

28. The remainder on dividing 𝟏𝟐𝟑𝟒𝟓𝟔𝟕 +

𝟖𝟗𝟏𝟎𝟏𝟏 by 12 is  

(a) 1                               (b) 7                                

(c) 9                              (d) none 

Ans:- ( c) 1234≡1 (mod 3)⇒ 1234567 ≡

1 (𝑚𝑜𝑑 3)𝑎𝑛𝑑 89 ≡  −1(𝑚𝑜𝑑3) 

⇒ 891011 ≡ −1 (𝑚𝑜𝑑 3) 

∴ 1234567 + 891011 ≡ 0 (𝑚𝑜𝑑 3) 

Here 1234 is even, so 1234567 ≡

0(𝑚𝑜𝑑 4)𝑎𝑛𝑑 89 ≡ 1 (𝑚𝑜𝑑 4) 

⇒ 891011 ≡ 1 (𝑚𝑜𝑑 4) 

Thus 1234567 + 891011 ≡ 1 (𝑚𝑜𝑑 4) 

Hence it is 9 (mod 12) 

29. Given that  ∫ 𝒆−𝒙
𝟐
𝒅𝒙 = √𝝅

∞

−∞
, then the 

value of  

∫ ∫ 𝒆−(𝒙
𝟐+𝒙𝒚+𝒚𝟐)𝒅𝒙𝒅𝒚 , 𝒘𝒉𝒆𝒓𝒆 𝑫 =

∞

−∞

∞

−∞

{(𝒙, 𝒚) ∊ ℝ𝟐; 𝒙𝟐 + 𝒚𝟐  ≤ 𝟏} is 

(a) 
𝝅

𝟑
                         (b) 

𝟐𝝅

𝟑
                            

(c) 
𝟐𝝅

√𝟑
                            (d) 

𝝅

𝟐
 

Ans:- (c)  ∫ ∫ 𝑒−(𝑥
2+𝑥𝑦+𝑦2)𝑑𝑥𝑑𝑦 

∞

−∞

∞

−∞
 

=∫ ∫ 𝑒−{(𝑥−
𝑦

2
)2+

3

4
𝑦2)}𝑑𝑥𝑑𝑦 

∞

−∞

∞

−∞
 

= ∫ {∫ 𝑒−(𝑥−
𝑦

2
)2𝑑𝑥 

∞

−∞
}

∞

−∞
𝑒−

3

4
𝑦2𝑑𝑦 

= ∫ √𝜋 
∞

−∞
𝑒−

3

4
𝑦2𝑑𝑦 =  

2√𝜋

√3
∫ 𝑒−𝑢

2
𝑑𝑢

∞

−∞
                             

[let  
√3

2
𝑦 = 𝑢] 

= 2√
𝜋

3
 × √𝜋 

= 
2𝜋

√3
 . 

30. The value of  

∫ ∫ ∫ ∫
𝒙𝟏+𝒙𝟐+𝒙𝟑−𝒙𝟒

𝒙𝟏+𝒙𝟐+𝒙𝟑+𝒙𝟒
 𝒅𝒙𝟏𝒅𝒙𝟐𝒅𝒙𝟑𝒅𝒙𝟒

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏
  is 

(a) ½                       (b) 1/3                             

(c) ¼                            (d) 1 

Ans:- (a) 

∫ ∫ ∫ ∫
𝑥𝑖 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

2

1

2

1

2

1

2

1

=
1

4
  𝑎𝑠∫ ∫ ∫ ∫

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4

2

1

2

1

2

1

2

1

= 1. 

∴ I = 
3

4
−
1

4
=
1

2
 . 
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ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 2 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 

 

1. 𝒂𝟏 = 𝒂𝟐 = 𝟏, 𝒂𝟑 = −𝟏, 𝒂𝒏 =

𝒂𝒏−𝟏 . 𝒂𝒏−𝟑. The value of 𝒂𝟏𝟗𝟔𝟒 is 

(a) 1                           (b) -1                               

(c) 0                           (d) none            

Ans:- (b) 𝑎1 = 𝑎2 = 1, 𝑎3 = 𝑎4 = 𝑎5 =

 −1, 𝑎6 = 1, 𝑎7 = −1 

+1,+1, −1,−1,−1, 1, −1  ⏟                , 

1, 1, −1,−1, −1, 1, −1,⏟               ………… 

Since 1964= (7×280)+4= 7×280 +4. Thus 

we have 𝑎1964= -1. 

2. If a, b are positive real variables 

whose sum is a constant 𝜆, then the 

minimum value of   √(𝟏 + 
𝟏

𝒂
) (𝟏 + 

𝟏

𝒃
) 

is 

(a) 𝜆 - 
𝟏

𝝀
                       (b) 𝜆 + 

𝟐

𝝀
                          

(c) 1+ 
𝟐

𝝀
                      (d) none 

Ans:- (c) 𝐸2 = 1 +
1

𝑎
+ 

1

𝑏
+

1

𝑎𝑏
= 

𝑎+𝑏+1

𝑎𝑏
+

1 = 1 + 
𝜆+1

𝑎𝑏
 , it will be minimum when ab 

is maximum. Now we know that if sum of 

two quantities is constant, then their product 

is maximum when the quantities are equal. 

 ∴ a+ b = 𝜆 ⇒a = b = 
𝜆

2
 

∴ 𝐸2 = 1 + 
𝜆+1

𝜆2

4

= (
𝜆+2

𝜆
)2     ⇒ E = 1+ 

2

𝜆
, 

which is the required result. 

Alternative: (c) √(1 + 
1

𝑎
) (1 + 

1

𝑏
) will 

minimum when a and b will take the 

maximum value. 

a+b = 𝜆, then the max. Value of a and b is 

a= b=
𝜆

2
, 

Putting these, we get,   √(1 + 
1

𝑎
) (1 + 

1

𝑏
) 

min = √(1 +
2

𝜆
) (1 + 

2

𝜆
) = 1+ 

2

𝜆
. 

 

3. The number of pairs of integers (m, n) 

satisfying 𝒎𝟐 +  𝒎𝒏 + 𝒏𝟐 = 1 is 

(a) 8                             (b) 6                             

(c) 4                                    (d) 2 

Ans:- (b) Consider  𝑚2 +  𝑚𝑛 + 𝑛2 − 1 

The equation is symmetric in m and n, we 

make the substitution  

u = m + n and v= m- n 

So that 𝑢2 + 𝑣2 = 2 (𝑚2 + 𝑛2), 𝑢2 −

 𝑣2 = 4𝑚𝑛 

Multiplying the given equation by 4, we 

have 

4𝑚2 + 4𝑚𝑛 + 4𝑛2 = 4 

⇒ 4 (𝑚2 + 𝑛2) + 4mn = 4 
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⇒ 2 (𝑢2 + 𝑣2) + 𝑢2 − 𝑣2 = 4 

⇒3𝑢2 + 𝑣2 = 4 

Set 𝑢2 = 𝑥, 𝑣2 = 𝑦 with x, y ≥ 0, then we 

get  3x+ y= 4 

The ordered pairs (x, y) satisfying the above 

equation in integers are (0, 4) and (1, 1).  

We have, 

𝑢2= 0 and  𝑢2 = 1  &   𝑣2 = 4, and 𝑣2 = 1 

I.e. u= 0, v= 2; u=0, v= -2; 

u=1, v= 1; u =1, v= -1; 

u =-1, v =1; u = -1, v= -1; 

Giving 6 ordered pair solutions (m, n) viz (1, 

-1), (-1, 1), (1, 0), (0, 1), (0, -1), (-1, 0) 

4. The sum of the digits of the number  

𝟏𝟎𝟎𝟏𝟑 − 𝟐𝟔, written in decimal 

notation is  

(a) 227                          (b) 218                      

(c)228                           (d) 219 

Ans:- (a) 1026 − 26  = 100… . .0⏟      − 26   

              = 999… .974⏟       

                with 24  9’s 

∴ The sum of the digits = 24 × 9 + 7 + 4 = 

227. 

5. The great common divisor (gcd) of 

𝟐𝟐
𝟐𝟐
+ 𝟏 𝒂𝒏𝒅 𝟐𝟐

𝟐𝟐𝟐
+ 𝟏 is  

(a)   1                      (b)   𝟐𝟐
𝟐𝟐
+ 𝟏                       

(c) 𝟐𝟐
𝟏𝟏
− 𝟏                        (d)  

𝟐𝟐
𝟐𝟏
− 𝟏 

Ans:- (a) let 𝐹𝑛 = 2
2𝑛 + 1 , with m > n 

  𝐹𝑛 − 2 =  2
2𝑛 + 1 − 2  = 22

𝑛
− 1 = 

(22
𝑛−1
)2 − 1  = (22

𝑛−1
+ 1)( 22

𝑛−1
− 1) 

                = (22
𝑛−1

+ 1) (22
𝑛−2

−

1)( 22
𝑛−2

+ 1)  =( 22
𝑚
+ 1) (22

𝑚
− 1)  

(22
𝑚−𝑛−1

+ 1) 

                = 𝜆 𝐹𝑚 ;       Now, 𝐹𝑛 − λ 𝐹𝑚=2 

Let d | 𝐹𝑛 and d |𝐹𝑚 then d|2. Then d= 1 or 2. 

But 𝐹𝑚  & 𝐹𝑛 are both odd, hence gcd = 1. 

6.  The number of real roots of the 

equation 1+ 
𝒙

𝟏
+
𝒙𝟐

𝟐
+
𝒙𝟑

𝟑
+⋯+

𝒙𝟕

𝟕
 = 0  

(without factorial) is 

 (a) 7                          (b) 5                                   

(c) 3                                          (d) 1  

Ans:- (d) let f has a minimum at x = 𝑥0 , 

where then f′(𝑥0) = 0       

 f (x)= 1+ 
𝑥

1
+
𝑥2

2
+
𝑥3

3
+⋯+

𝑥6

6
 ; 

⇒ 1+  𝑥0 + 𝑥0
2 + 𝑥0

3 + 𝑥0
4 + 𝑥0

5= 0 

⇒ 
𝑥0
6−1

𝑥0−1
 = 0 

⇒ 
(𝑥0

3−1)(𝑥0
3+1)

𝑥0−1
 = 0 

⇒ (𝑥0
2 + 𝑥0 +  1)( 𝑥0

2 − 𝑥0 +  1)( 𝑥0 +

 1)= 0 

Which has a real root 𝑥0 = -1 

But, f (-1)= 1-1 + (
1

2
−
1

3
)+ (

1

4
−
1

5
) +

1

6
 > 0 

The f (x)> 0 and hence f has no real zeros. 

Now let, g (x)= 1+ 
𝑥

1
+
𝑥2

2
+
𝑥3

3
+⋯+

𝑥7

7
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An odd degree polynomial has at least one 

real root. 

If our polynomial g has more than one zero, 

say 𝑥1, 𝑥2 

Then by Role’s theorem in (𝑥1, 𝑥2) we have 

‘𝑥3’ such that g′ (𝑥3) = 0 

⇒ 1+ 𝑥3 + 𝑥3
2 +⋯+ 𝑥3

6 = 0 

But this has no real zeros. Hence the given 

polynomial has exactly one real zero. 

7. Number of roots between –𝜋 and 𝜋 of 

the equation   
𝟐

𝟑
𝐬𝐢𝐧𝒙. 𝒙= 1 is 

(a) 1                           (b) 2                            

(c) 3                                 (d) 4 

Ans:- (d)  sin 𝑥 =  
3

2𝑥
 

Now, draw the curve of y= sin 𝑥 and y = 
3

2𝑥
 

or  xy = 3 2⁄  

∴ there are 4 real roots. (Draw the graph 

yourself) 

8. The number 𝒂𝟕𝟑𝟖𝟗𝒃, a, b are digits, is 

divisible by 72 , Then a+ b equals 

(a) 10                         (b) 9                           

(c) 11                            (d) 12 

Ans:- (b) 72 = 8× 9, and 8 and 9 are co 

prime. As the number 𝑎7389𝑏 is divisible by 

72, it is divisible by 9 and 8 both. For 

divisibility by 8, the last three digits must be 

divisible by 8. 

i.e. 800+ 90+b |8. 

so (b+2)| 8 ;  ∴ b = 6 

For divisibility by 9, the sum of the digits A 

+ 7 +3 +8+ 9 +b should be divisible by 9. 

i.e. a+ 7+ 3+ 8+ 9+ 6≡ 0 (mod 9) 

⇒ a+ 6 ≡ 0 (mod 9) 

⇒ a ≡ -6(mod 9) 

⇒ a ≡ 3 (mod 9) 

∴ a= 3 only. Hence a+ b= 9 

9. 3 balls are distributed to 3 boxes at 

random. Number of way in which we 

set at most 1 box empty is   (a)  20             

(b) 6              (c) 24                 (d) none 

Ans:-  (c) zero box empty + 1 box empty 

= 3 balls in 3 boxes + {3C1 × 3 balls in 2 

boxes} 

= 3! + 3× (3)2 = 24. 

 

 

10. The value of 𝐌𝐚𝐱
𝒂
𝑰 (𝒂),𝒘𝒉𝒆𝒓𝒆 𝑰(𝒂) =

 ∫ 𝒆−|𝒙|𝒅𝒙
𝒂+𝟏

𝒂−𝟏
 is 

(a) ea                    (b) 2- 𝒆𝒂−𝟏 − 𝒆𝒂+𝟏             

(c) 𝒆𝒂−𝟏 − 𝒆𝒂+𝟏                 (d) none 

Ans:- (b)  𝐼 (𝑎) =  ∫ 𝑒−|𝑥|𝑑𝑥
𝑎

𝑎−1
+

∫ 𝑒−|𝑥|𝑑𝑥
𝑎+1

𝑎
 

Let 0< a< 1 , then ∫ 𝑒−|𝑥|𝑑𝑥
𝑎

𝑎−1
= ∫ 𝑒𝑥𝑑𝑥

0

𝑎−1
 

+∫ 𝑒−𝑥𝑑𝑥
𝑎−1

0
 

= 1- 𝑒𝑎−1 − (𝑒−𝑎 − 1) 

And, ∫ 𝑒−|𝑥|𝑑𝑥
𝑎+1

𝑎
 = 𝑒−𝑎 − 𝑒−𝑎−1 
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∴ I (a) = 2 - (𝑒𝑎−1 + 𝑒−𝑎−1) 

∴ 
𝑑

𝑑𝑥
 𝐼 (𝑎) = 0 

⇒ 𝑒𝑎−1 = 𝑒−𝑎+1 

⇒ a= 0 

Also, -1 < a < 0 ; ∫ 𝑒𝑥𝑑𝑥
𝑎

𝑎−1
= 𝑒𝑎 − 𝑒𝑎−1 

And ∫ 𝑒−|𝑥|𝑑𝑥
𝑎+1

𝑎
= ∫ 𝑒𝑥𝑑𝑥 +

0

𝑎
∫ 𝑒−𝑥𝑑𝑥
𝑎+1

0
 

= (1- 𝑒𝑎) – (𝑒𝑎+1 − 1) 

= 2 -𝑒𝑎 − 𝑒𝑎+1  

∴ I (a) = 2- 𝑒𝑎−1 − 𝑒𝑎+1 

∴ I(a) is maximum at a = 0. 

11. The value of ∏ (𝟏 −
𝟏

𝒏𝟐
)∞

𝒏=𝟐  is 

(a) 1                   ( b) 0                     (c) ½                  

(d) none 

Ans:- (c)  ∏ (1 −
1

𝑛2
)∞

𝑛=2  =∏ (1 +∞
𝑛=2

1

𝑛
) (1 −

1

𝑛
) = ∏

𝑛+1

𝑛
 .
𝑛−1

𝑛
∞
𝑛=2  

= (
2+1

2
 . 
2−1

2
) (
3+1

3
 .
3−1

3
)……… = 

3

2
.
1

2
.
4

3
.
2

3
……. = 

1

2
 . 

12. 𝒄𝒐𝒔𝟖𝜽 − 𝒔𝒊𝒏𝟖𝜽= 1. Number of roots 

are there in between [0, 2𝜋] is 

(a) 1                        (b) 2                    (c) 

3                           (d) 0 

Ans:- (c) Note that , 𝑐𝑜𝑠8𝜃 = 1 + 𝑠𝑖𝑛8𝜃  is 

possible only if, 

𝑐𝑜𝑠8𝜃 = 1 𝑎𝑛𝑑 𝑠𝑖𝑛8𝜃  =0 

∴ 𝜃= 0, 𝜋, 2𝜋 

Hence 3 roots are three between [0, 2𝜋] 

13. If 𝒖𝒏 = 
𝟏

𝟏.𝒏
+

𝟏

𝟐(𝒏−𝟏)
+

𝟏

𝟑 (𝒏−𝟐)
+

 … . . +
𝟏

(𝒏−𝟏)
 ; Then 𝐥𝐢𝐦

𝒏⟶∞
𝒖𝒏 equals 

(a) 0                    (b) 1                          

(c) ∞                  (d) π 

Ans:- (a)  𝑢𝑛 = 
1

(𝑛+1)
 [(1 +

1

𝑛
) + (

1

2
+

1

𝑛−1
) + (

1

3
+

1

𝑛−2
) + ⋯+ (

1

𝑛
+ 1)] 

               = 
1

(𝑛+1)
 2 (1 + 

1

2
+⋯+

1

𝑛
) 

∴ lim
𝑛⟶∞

𝑢𝑛 = 2 lim
𝑛⟶∞

1+ 
1

2
+
1

3
+⋯+

1

𝑛

𝑛
. lim
𝑛⟶∞

𝑛

𝑛+1
 = 

2. 0.1= 0. 

14. If x+ (
𝟏

𝒙
) = -1, The value of 𝒙𝟗𝟗 + (

𝟏

𝒙𝟗𝟗
)  

is 

(a) 1                        (b) 2                        

(c) 0                       (d) none 

Ans:- (b) If 𝑎𝑛 = 𝑥
𝑛 +

1

𝑥𝑛
  

Then, 𝑎𝑛+1 = 𝑎𝑛. 𝑎1 − 𝑎𝑛−1 𝑓𝑜𝑟 𝑛 ≥ 1 

𝑎0 = 2 , 𝑎2 = −𝑎1 − 𝑎0 = −1, 𝑎3 = 2, 𝑎4
= −1, 𝑎5 = 2, 𝑎1 = −1 ;  𝑎𝑛
= −1, 𝑎𝑛−1 = −1.    

𝑠𝑜 , 𝑎99 = 2 

or, ∴𝑎𝑛+1 = 𝑥
99 +

1

𝑥99
 

= (𝑥98 +
1

𝑥98
) (𝑥 +

1

𝑥
) − (𝑥97 +

1

𝑥97
) 

     = - 𝑎𝑛 − 𝑎𝑛−1 = +1 + 1 = 2 

15. Consider the equation of the form𝒙𝟐 +

𝒃𝒙 + 𝒄 = 𝟎. The number of such, 

equations that have real roots and 

have coefficients b and c in the set {1, 

2, 3, 4, 5,6} , (b may be equal to c) is 
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(a) 16                       (b) 19                   

(c) 21                               (d) none 

Ans:- (b) Let 𝑥2 + 𝑏𝑥 + 𝑐 = 0 has real 

roots, then 𝑏2 − 4𝑐 ≥ 0, and also , s= {1, 2, 

3, 4, 5, 6}. 

Now 𝑠1 = {4, 8, 12, 16, 20, 24}= set of 

possible values of 4c. 

Thus the number of equations will be same 

as the number of pairs of elements (𝑎1, 𝑎2),  

𝑎1∊ s, 𝑎2∊𝑠1 such that 

𝑎1
2 − 4𝑎2 ≥ 0, i.e. 1+ 2+ 4+ 6+6 = 19 

16. If f: R ⟶R, satisfies f(x +y)= 

f(x)+f(y)∀ 𝒙, 𝒚 ∊ ℝ and f(1)=7, 

then∑ 𝒇(𝒓)𝒏
𝒓=𝟏  is 

(a) 
𝟕 (𝒏+𝟏)

𝟐
                          (b) 7n (n+1)                          

(c)  
𝟕 𝒏(𝒏+𝟏)

𝟐
                          (d)none 

Ans:- (c) putting x= 1, y=0, then f(1)= 

f(1)+f(0) 

⇒f(0)=0, ⇒ f(1)=7 

Again , putting x=1, y=1, then f(2)= 2f(1)= 

14, similarly, 

f(3)=21 and so on. 

∑ 𝑓(𝑟)𝑛
𝑟=1 = 7 {1+ 2+ 3+…..+ n}= 

7 𝑛(𝑛+1)

2
. 

17. Let f(0)= 1, 𝐥𝐭
𝒙→∞

𝒇″(𝒙) = 𝟒 𝒂𝒏𝒅 𝒇(𝒙) ≥

𝒇(𝟏). Let f(x) is polynomial ∀  x∊ℝ. 

The value of  f(2) is  

(a) 4                               (b) 0                                

(c) 1                             (d) none 

Ans:- (c)  𝑓″(𝑥) = 4 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

⇒ f(x)= 2𝑥2 + 𝑎𝑥 + 𝑏 

f(0)= 1   ⇒ b= 1 

f(1)= 3+ a 

f(x) ≥f(1) ⇒ f′(1)=0 

⇒ 4+ a= 0 

⇒ a = -4 

∴ f(x)= 2𝑥2 + 4𝑥 + 1 

∴ f(2)= 1. 

18. Let 
𝟏−𝟑𝑷

𝟐
,
𝟏+𝟒𝑷

𝟑
,
𝟏+𝑷

𝟔
 are the 

probabilities of 3 mutually exclusive 

and exhaustive events, then the set of 

all values of P is  

(a) [-1/4, 1/3]                         (b) (0, 1)                     

(c) (0, ∞)                            (d) none 

Ans:-  (a)  
1−3𝑃

2
≥ 0,

1+4𝑃

3
≥ 0,

1+𝑃

6
≥ 0  and 

1 − 3𝑃

2
+ 
1 + 4𝑃

3
+
1 + 𝑃

6
= 1 

⇒−
1

4
≤ 𝑃 ≤

1

3
 ⇒ 𝑃 ∊ [−

1

4
,
1

3
] 

19.  If √𝟓𝒙 − 𝒙𝟐 − 𝟔 +
𝝅

𝟐
∫ 𝒅𝒕 >
𝒙

𝟎

𝑥 ∫ 𝐬𝐢𝐧𝟐 𝒕𝒅𝒕
𝝅

𝟎
, then x ∊  

(a) (2, 3)                   (b) (-∞, 𝟐) ∪ (𝟑,∞)                       

(c) (5/2 , 3)                         (d) none 

Ans:- (a) √5𝑥 − 𝑥2 − 6 +
𝜋𝑥

2
> 𝑥 {

1

2
∫ (1 −
𝜋

0

𝑐𝑜𝑠2𝑡)𝑑𝑡} 

⤇ √5𝑥 − 𝑥2 − 6 +
𝜋𝑥

2
> 𝑥 {

1

2
(𝑡 −

1

2
sin 2𝑡) 𝜋

0
} 

⤇√5𝑥 − 𝑥2 − 6 +
𝜋𝑥

2
>
𝜋𝑥

2
 

⤇ √5𝑥 − 𝑥2 − 6 > 0 
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⤇𝑥2 − 5𝑥 + 6 < 0, 

⤇ (x-2)(x-3)< 0, i.e. , x ∊ (2, 3). 

20. If f(x)= (𝟒 + 𝒙)𝒏, n ∊ N and 𝒇𝒓(𝟎) 

represents the 𝒓𝒕𝒉 derivative of f(x) at 

x= o, then the value of ∑
𝒇𝒓(𝟎)

𝒓!
= ∞

𝒓=𝟎  

(a) 𝟐𝒏                      (b) 𝒆𝒏                  

(c) 𝟓𝒏                          (d) none 

Ans:- (c) f′(x)= n (4 + 𝑥)𝑛−1 

f″(x)= n (n-1) (4 + 𝑥)𝑛−2 

𝑓𝑟(𝑥)= n (n-1)….. (n- r+1) . (4 + 𝑥)𝑛−𝑟, r 

≤ 𝑛 

𝑓𝑟(0)= 
𝑛!

(𝑛−𝑟)!
. 4𝑛−𝑟, r ≤ 𝑛 

= 0, r >𝑛 

∴∑
𝑓𝑟(0)

𝑟!
= ∞

𝑟=0 ∑ (𝑛
𝑟
).𝑛

𝑟=0 4𝑛−𝑟 = (1 + 4)𝑛 =

 5𝑛 . 

21. The two lines r⃗ = a⃗ + 𝜆(b⃗ +c⃗) and r⃗ 

= b⃗ + 𝜇(c⃗ +a⃗) intersects at a point, 

where 𝜆 and 𝜇 are scalars, then 

(a) a⃗, b⃗ and c⃗ are non-coplanar                                        

(b) |a⃗| = |b⃗| = |c⃗|  

(c) a⃗.c⃗ = b⃗.c⃗                                                                        

(d) 𝜆(b⃗×c⃗) + 𝜇(c⃗×a⃗)=c⃗ 

Ans. (c) 

The two lines intersect 

∴ a⃗ + 𝜆(b⃗ × 𝑐) = �⃗⃗� + 𝜇(𝑐 × �⃗�) 

Taking dot product with c⃗ on both sides, we 

get 

a⃗. c⃗ = b⃗ .c⃗  

22.  Let f(x)= 

{
𝒙|𝒙|;                         𝒙 ≤ −𝟏

[𝒙 + 𝟏] + [𝟏 − 𝒙]; −𝟏 < 𝑥 < 1
−𝒙 |𝒙|;                        𝒙 ≥ 𝟏

 

Then the value of ∫ 𝒇(𝒙)𝒅𝒙
𝟐

−𝟐
 is 

(a) - 
𝟖

𝟑
                         (b) - 

𝟕

𝟑
                    

(c) 
𝟕

𝟑
                         (d) none 

Ans:- (a) f(x) = 

{
 
 

 
 
−𝑥2 ,                     𝑥 ≤ −1
1  ,               − 1 < 𝑥 < 0
2  ,                           𝑥 = 0
1  ,                     0 < 𝑥 < 1

𝑥2  ,                       𝑥 ≥ 1

 

∴ f(x) is an even function, i.e. ∫ 𝑓(𝑥)𝑑𝑥
2

−2
=

2∫ 𝑓(𝑥)𝑑𝑥
2

0
 

= 2 {∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥
2

1

1

0
} 

= 2 (1 −
𝑥3

3
)
2
1 = −

8

3
 . 

23.  Area bounded by y = g(x), x-axis and 

the lines x= - 2,  

Where g (x)= 

{
𝐦𝐚𝐱{ 𝒇(𝒕):−𝟐 ≤ 𝒕 ≤ 𝒙},       𝒘𝒉𝒆𝒓𝒆 − 𝟐 ≤ 𝒙 < 0;

𝐦𝐢𝐧{ 𝒇(𝒕): 𝟎 ≤ 𝒕 ≤ 𝒙},             𝒘𝒉𝒆𝒓𝒆 𝟎 ≤ 𝒙 ≤ 𝟑
 

And f(x)= 𝒙𝟐 − |𝒙|, is equal to 

(a) 
𝟏𝟏𝟑

𝟐𝟒
                            (b) 

𝟏𝟏𝟏

𝟐𝟒
                             

(c) 
𝟏𝟏𝟕

𝟐𝟒
                             (d) none 

Ans:- (a) g(x)= 

{

2  ;                      −2 ≤ 𝑥 < 0

𝑥2 − 𝑥 ;                0 ≤ 𝑥 ≤
1

2

−
1

4
 ;                      

1

2
< 𝑥 ≤ 3
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∴ Required area = ∫ 2𝑑𝑥 + ∫ (𝑥 −
1

2
0

0

−2

𝑥2)𝑑𝑥 + ∫ (
1

4
) 𝑑𝑥

3
1

2

 = 
113

24
𝑢𝑛𝑖𝑡2 

24.  Total number of positive integral 

values of n such that the equations 

𝐜𝐨𝐬−𝟏 𝒙 + (𝐬𝐢𝐧−𝟏 𝒚)𝟐 =

 
𝒏𝝅𝟐

𝟒
 𝒂𝒏𝒅 (𝐬𝐢𝐧−𝟏 𝒚)𝟐 − 𝐜𝐨𝐬−𝟏 𝒙 =

𝝅𝟐

𝟏𝟔
  

are constant, is equal to 

(a) 1                           (b) 2                           

(c)  3                              (d) none 

Ans:- (a) Here 2 (sin−1 𝑦)2 =  
4𝑛+1

16
𝜋2 

⤇ 0 ≤
4𝑛+1

16
𝜋2 ≤ 

𝜋2

4
, 

⤇ -
1

4
≤ 𝑛 ≤

7

4
. 

Also. 2(cos−1 𝑥)= 
4𝑛−1

16
𝜋2 

⤇0≤
4𝑛−1

16
𝜋2 ≤ 𝜋, 

⤇
1

4
≤ 𝑛 ≤

8

𝜋
+ 1. 

Hence, the least positive integral value of n 

is 1. 

25.  Radius of bigger circle touching the 

circle 𝒙𝟐 + 𝒚𝟐 − 𝟒𝒙 − 𝟒𝒚 + 𝟒 = 𝟎 and 

both the  

co-ordinate axis is 

(a) 3+2√𝟐                         (b) 2(3+2√𝟐)                     

(c)  3- 2√𝟐                          (d)  none 

Ans:- (b) Let (h, h) be the centre of the 

required circle. 

∴∠COD= ∠CBE=
𝜋

4
 , CB= h+ 2 AND BD= 

h- 2. 

∴
 h− 2

h+ 2
= 𝑐𝑜𝑠

𝜋

4
=

1

√2
, 

⤇ h= 
  2(√2+1)

(√2−1)
= 2(3 + 2√2) . 

26.  Tangents and normal drawn to 

parabola at A (𝒂𝒕𝟐, 𝟐𝒂𝒕), 𝒕 ≠ 𝟎 meet 

the X- axis at point B and D, 

respectively. If the rectangle ABCD is 

(a) y-2a= 0                      (b) y+ 2a= 0                      

(c) x-2a= 0                        (d) none 

Ans:- (c)  Evolution of tangent & normal at 

A are 𝑦𝑡 = 𝑋 + 𝑎𝑡2, 𝑦 = −𝑡𝑥 + 2𝑎𝑡 + 𝑎𝑡3. 

∴ B = (-𝑎𝑡2, 0) and D= (2a+ 𝑎𝑡2, 0) 

Suppose ABCD is rectangle, 

Then midpoints of BD and AC will be 

coincident, 

  ∴ h+𝑎𝑡2 = 2𝑎 + 𝑎𝑡2 − 𝑎𝑡2 𝑎𝑛𝑑 𝑘 +

2𝑎𝑡 = 0 

i.e. h= 2a, k= -2at. 

Hence, the locus is X= 2a, i.e. X-2a=0. 

27.  The series ∑ (
𝟏

𝒌(𝒌−𝟏)
)∞

𝒌=𝟐  converges to 

(a) -1                   (b) 1                       (c)  

0                         (d) does not 

converges 

Ans:- (b) 𝑠𝑛 = ∑
1

𝑘(𝑘−1)

∞
𝑘=2 = ∑ (

1

(𝑘−1)
−𝑛

𝑘=2

1

𝑘
) = (1 −

1

𝑛
) 

∴ lim
𝑛→∞

𝑠𝑛 = lim (1 −
1

𝑛
) = 1

𝑛→∞

. 
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28.  The limit 𝐥𝐢𝐦
𝒙→∞

 (
𝟑𝒙−𝟏

𝟑𝒙+𝟏
)𝟒𝒙 equaqls 

(a) 1                      (b) 0                       (c) 

𝒆−
𝟖

𝟑                          (d) 𝒆
𝟒

𝟗 

Ans:- (c) lim
𝑥→∞

{(
1−

1

3𝑥

1+
1

3𝑥

)𝑥}4 = (
𝑒
−
1
3

𝑒
1
3

)4 = 𝑒−
8

3 

[since  lim
𝑥→∞

(1 +
𝑘

𝑥
)𝑥 = 𝑒𝑘]. 

 

29.  𝐥𝐢𝐦
𝒙→∞

𝟏

𝒏
(
𝒏

𝒏+𝟏
+

𝒏

𝒏+𝟐
+⋯+

𝒏

𝟐𝒏
) equals 

(a) ∞                      (b)  0                     (c) 

𝐥𝐨𝐠𝒆 𝟐                      (d) 1 

Ans:- (c) lim
𝑥→∞

1

𝑛
(
1

1+
1

𝑛

+
1

1+
2

𝑛

+⋯+
1

1+
𝑛

𝑛

) 

= ∫
1

1+𝑥
𝑑𝑥 = [log (1 + 𝑥)] 1

0

1

0
= log𝑒 2. 

 

30. Let k be an integer greater than 1. 

Then 𝐥𝐢𝐦
𝒏→∞

[
𝒏

𝒏+𝟏
+

𝒏

𝒏+𝟐
+⋯ ] is 

(a) 𝐥𝐨𝐠𝒆 𝒌                       (b)  (k-1) 𝐥𝐨𝐠𝒆 𝒌                       

(c) 0                               (d) ∞ 

Ans:- (a) lim
𝑛→∞

[∑
1

𝑛+𝑟

𝑛(𝑘−1)  
𝑟=1 ] =  ∫

𝑑𝑥

1+𝑥
=

𝑘−1

0

log (1 + 𝑥)] 𝑘−1
0
= log𝑒 𝑘 . 

  

 

 

 

 

 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS 

SET – 3 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 

 

1.  Number of solutions are possible in 

0≤ 𝒙 ≤ 𝟗𝟗 for the equation  

|𝟑 − 𝟑𝒙| + |𝟏 − 𝟑𝒙| = 𝟏 − 𝟑𝒙 −
𝟑−𝒙

𝟒
 is  

(a) 1                   (b) 0               (c) 2                      

(d) none 

Ans:- (b) LHS= |3 − 3𝑥| + |3𝑥 − 1| ≥

 |(3 − 3𝑥) + (3𝑥 − 1)| ≥ 2 

But RHS= 1 - (3𝑥 +
3−𝑥

4
) 

=1- {(3
𝑥

2 +
3
−
𝑥
2

2
) - 2. 3

𝑥

2.
3
−
𝑥
2

2
 } 

= 2 - (3
𝑥

2 +
3
−
𝑥
2

2
)2 < 2 

∴ given equation has no solution  for any 

real x. 

2.  If f(x) = 𝐥𝐨𝐠𝒆(𝟔 − |𝒙
𝟐 + 𝒙 − 𝟔|), then 

domain of f(x) has how many integral 

values of x? 

(a) 5                          (b) 4                         

(c) infinite                         (d) none 

of these 
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Ans:- (b) f(x) is defined only when 6 −

|𝑥2 + 𝑥 − 6| > 0 

i.e. |𝑥2 + 𝑥 − 6| < 6 

⇒ -6 < 𝑥2 + 𝑥 − 6 < 6 

⇒ 𝑥2 + 𝑥 > 0  and 𝑥2 + 𝑥 − 12 < 0 

⇒ x (x+1)>0  and (x+4)(x-3)< 0 

⇒ (x< -1 or x > 0) and (-4 < x < 3) 

⇒ x ∊ (-4, -1) ∪(0, 3)  ⇒ x= -3, -2, 1, 2 as 

integral values. 

3.  The sum of the real solution of  2|𝒙|𝟐+ 

51= |1+ 20x| is 

(a) 5                      (b) 0                        

(c) 24                         (d) none of 

these 

Ans:- (d) 2𝑥2 + 51 =  ±(1 + 20𝑥) 

⇒ 𝑥2 − 10𝑥 + 25 = 0 𝑜𝑟 𝑥2 + 10𝑥 + 26 =

0 

⇒ (𝑥 − 5)2 = 0  𝑜𝑟(𝑥 + 5)2 + 1 =

0(impossible) 

⇒ x= 5, 5  

∴ Sum of the real solution = 5+ 5= 10. 

4.  The solution set of ||x- 1|-1| + x ≤ 𝟐 is 

(a) (−∞,𝟐]                (b) [0, 1)                   

(c) [0, 2)                       (d) [1, 2) 

Ans:- (a) (i) If x < 0, then |1- x- 1|+x ≤ 2 

⇒ |x|+x ≤ 2 

⇒ -x +x ≤ 2 

⇒ 0 ≤ 2 (true) 

∴ x < 0 

(ii) If 0 ≤ 𝑥 ≤ 1, then |1- x- 1|+x ≤

2 

⇒ |x|+x ≤ 2 

⇒ 2x ≤ 2 

⇒ x ≤ 1, ∴0 ≤ 𝑥 < 1 

(iii) If 1 ≤ 𝑥 < 2, then |x-1 -1|+x ≤ 2 

⇒ |x-2|+x ≤ 2 

⇒ 2- x +x ≤ 2 

⇒ 2 ≤ 2 (true) 

(iv) If x ≥ 2, then |x-1 -1|+x ≤ 2 

⇒ x-2 +x  ≤ 2 

⇒ x  ≤ 2 

∴ x=2 [∵ x≥ 2] 

∴ Required solution set is 

(−∞, 2]    

 

5.  If domain of f(x)= √
𝟏

|𝒙−𝟏|+[𝒙]
   be (a, b), 

then  ([ .] denotes greatest integer 

function) 

(a) a= 1, b=∞              (b) a= -∞, b= 0                  

(c) a= -∞, b= 1               (d) none of 

these 

Ans:- (c) we must have, |x-1|> [x]…….(1) 

∴ x-1 < [x]≤ x, i.e. [x]> x – 1……….(2) 

∴ on combining (1) and (2), we have |x -1|> 

x -1 

This is true only if x-1< 0, i.e. if x < 1, i.e. if 

x ∊ (-∞, 1) 

 ∴𝐷𝑓 = (−∞,1) ⇒ a = −∞, b= 1 
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6.  If there are 4 distinct solutions of ||x -

2012| + 𝐥𝐨𝐠𝟐 𝒂| = 3, then a ∊ 

(a) (−∞,−𝟔)              (b) (−∞,
𝟏

𝟖
)                  

(c) (−∞,−
𝟏

𝟖
)                   (d) none of 

these 

Ans:- (b) we have | x -2012|+log2 𝑎 = ±3 

⇒ | x -2012| = -log2 𝑎+ 3, -log2 𝑎 − 3 

∴ If there are 4 distinct solutions of the 

above equation, then we  must have 

 -log2 𝑎+ 3> 0 and -log2 𝑎 − 3 > 0 

i.e. log2 𝑎 < 3 and log2 𝑎 < -3 ⇒ a < 2−3 

∴ a ∊ (−∞,
1

8
)   

7.  The number of value of k for which 

the equation 𝒙𝟑 − 𝟑𝒙 + 𝒌 = 𝟎 has two 

distinct roots lying in the interval (0, 

1) are 

(a) 3          (b) 2        (c) infinitely many       

(d) no value of k satisfies the 

requirement 

Ans:- (d) Let there be a value of k for which 

𝑥3 − 3𝑥 + 𝑘 = 0 has two distinct roots 

between 0 and 1. Let, a, b are two distinct 

roots of 𝑥3 − 3𝑥 + 𝑘 = 0 lying between 0 

and 1 such that a < b 

Let f (a)= f(b)= 0. Since between any two 

roots of a polynomial f(x) there exist at least 

one roots of its derivative f′(x). 

Therefore, f′(x) = 3𝑥3 − 3 has at least one 

root between a and b 

But f′(x) =0 has two roots equal to ± 1 

which don’t lie between 0 and 1 for any 

value of k. 

8.  If 
𝒅𝒚

𝒅𝒙
= 𝒇(𝒙) + ∫ 𝒇(𝒙)𝒅𝒙

𝟏

𝟎
 then the 

equation of the curve y=f(x) passing 

through (0, 1) is 

(a) f(x)= 
𝟐𝒆𝒙−𝒆+𝟏

𝟑−𝒆
           (b) f(x)= 

𝟑𝒆𝒙−𝟐𝒆+𝟏

𝟐(𝒙−𝒆)
          (c) f(x)= 

𝒆𝒙−𝟐𝒆+𝟏

𝒆+𝟏
             

(d) none of these 

Ans:- (a) f″(x)= f′(x) 

⇒ 
f″(x)

f′(x)
= 1 

On integrating f′(x) = c 𝑒𝑥 

Which gives f(x)= c 𝑒𝑥+D 

But f(0) = 1 ⇒ c+ D = 1 

∴ f(x)= c 𝑒𝑥 + 1 − 𝑐 

So, f′(x)= c 𝑒𝑥 putting it in f′(x)= 

f(x)+ ∫ 𝑓(𝑥)𝑑𝑥
1

0
  

⇒ c 𝑒𝑥= c 𝑒𝑥 + 1 − 𝑐 + ∫ (c 𝑒𝑥 + 1 −
1

0

𝑐)𝑑𝑥 

⇒ c = 
2

3−𝑒
 

So, f(x)= 
2𝑒𝑥−𝑒+1

3−𝑒
 

9.  A staircase has 10 steps, a person can 

go up the steps one at a time, or any 

combination of 1’s and 2’s . The 

number of ways in which the person 

can go up the stairs is 

(a) 89                       (b) 144                      

(c) 132                       (d) 211 

Ans:- (a) 
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x+ 2y= 10, where x is the number of times  

he takes single steps, and y is the number 

times he takes two steps 

 Case Total no. of ways 

1 

2 

3 

4 

5 

6 

X=0, y=5 

X=2, y= 4 

X=4, y=3 

X=6, y=2 

X=8, y=1 

X=10, y=0 

5! /5!=1 

6! /2! 4! =15 

7! /3!4!= 35 

8! /2! 6!= 28 

9! /8! = 9 

10! /10! =1 

 

∴ P= 89 

 

10.  The remainder when 𝟏𝟔𝟗𝟎𝟐𝟔𝟎𝟖 +

𝟐𝟔𝟎𝟖𝟏𝟔𝟗𝟎 is divided by 7 is 

(a) 1                       (b) 2                     (c) 

3                          (d) none 

Ans:- (a) 1690= 7× 241 + 3;               

2608=  7 ×372 +4 

Let s =16902608 + 26081690  

         = (7 × 241 + 3)2608 + (7 × 372 +

4)1690 

          = a number multiple of 7+32608 +

41690 

Let s′= 32608 + 41690  

Clearly remainder in s and s′ will be same 

when divided by 7. 

s′= 3× 33×867 + 4 × 43×563 

= 3× 27867 +  4 × 64563 

= 3(28 − 1)867 + 4 (63 + 1)563 

= 3[multiple of 7- 1]+ 4[ multiple of 7+ 1] 

= multiple of 7+ 1 

∴ Hence remainder is 1. 

11.  The value of ∑ ∑ ∑
𝟏

𝟑𝒊𝟑𝒋𝟑𝒌

(𝒊 ≠𝒋≠𝒌)

∞
𝒌=𝟎

∞
𝒋=𝟎

∞
𝒊=𝟎  is 

(a) 80/207                    (b) 81/208                  

(c) 1/208                       (d) none 

Ans:- (b) Let us first of all find the sum 

without any restriction i, j, k. 

 ∑ ∑ ∑
1

3𝑖3𝑗3𝑘
= (∑

1

3𝑖
)∞

𝑖=0

3
=
27

8

∞
𝑘=0

∞
𝑗=0

∞
𝑖=0  

For the requirement sum we have to remove 

the cases when i= j= k or when any two of 

them are equal and not equal to other 

variable (say, i= j≠ 𝑘). 

Case –I:- when i= j= k 

In this case ∑ ∑ ∑
1

3𝑖3𝑗3𝑘
=∞

𝑘=0
∞
𝑗=0

∞
𝑖=0

∑
1

3𝑖
∞
𝑖=0 =

27

16
 

Case – II:- i= j≠ 𝑘 

In this case, ∑ ∑ ∑
1

3𝑖3𝑗3𝑘
=∞

𝑘=0
∞
𝑗=0

∞
𝑖=0

(∑
1

32𝑖
)∞

𝑖=0 (∑
1

3𝑘
)∞

𝑘=0  

= ∑
1

32𝑖
(
3

2
−
1

3𝑖
)∞

𝑖=0  

= 
3

2
.
9

8
−
27

26
= 

135

8.26
 

Hence required sum =
27

8
−
27

26
− (

135

8.26
) . 3= 

81

208
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12.  The solution of the differential 

equation f(x) 
𝒅𝒚

 𝒅𝒙
+ 𝒇′(𝒙)𝒚 = 𝟏 is given 

by f(x) = 

(a) yx + c                     (b) 
𝒙+𝒄

𝒚
                  

(c) yc                    (d) none 

Ans:- (b)  f(x)dy +f′(x)ydx = dx 

i.e. d (f(x), y) = d (x) 

Integrating we get, y. f(x) = x+ c 

or, f(x) =  
𝑥+𝑐

𝑦
  

13.  If  ∫ 𝒇(𝒙)𝒔𝒊𝒏𝒕𝒅𝒕
𝒙

𝟎
 = constant, 0 < x < 

2𝜋 and f(𝜋)= 2 Then find the value of 

f(
𝝅

𝟐
) 

(a) 2                   (b) 4                    (c)  6                      

(d) 8 

Ans:- (b) Differentiable both sides, we get 

f′(x) (1- cosx)+ f(x)sinx= 0 

⇒ ∫
f′(x)

f(x)
𝑑𝑥 = ∫

𝑠𝑖𝑛𝑥

1−𝑐𝑜𝑠𝑥
𝑑𝑥 

⇒ ln(f (x)| = -2ln sin
𝑥

2
+ 𝑙𝑛𝑐 

⇒ f (x)= 
𝑐

(sin
𝑥

2
)2

 ⇒ f(𝜋)=2 ⇒ c=2:   f(
𝜋

2
)=4 

 

14.  For a ∊ R if |x+ a-3| + |x- 2a|= |2x –a -

3| is three for all x ∊R, then exhaustive 

set of a is 

(a) a ∊ [-4, 4]                  (b) a ∊ [-3, 2]                 

(c) a ∊ {-2, 2}                 (d) a ∊ {1} 

Ans:- (d) |x|+ |y| = |x+y| 

⇒ xy ≥ 0, therefore (x- (3- a)) (x- 2a)≥

0 ∀ 𝑥 ∊ 𝑅 

⇒ 𝑥2 −  𝑥(3 + 𝑎) +  2𝑎(3 − 𝑎) ≥ 0 ∀ 𝑥 ∊

𝑅 

⇒(𝑎 + 3)2 − 8𝑎(3 − 𝑎) ≤ 0 ⇒  (𝑎 −

1)2 ≤ 0 ⇒ 𝑎 = 1 which is true  ∀ 𝑥 ∊ 𝑅 

 

15.  If A is skew–symmetric matrix, then 

B = (I- A) (𝑰 + 𝑨)−𝟏 is (where I is the 

identity matrix of the same order as 

A) 

(a)   idempotent matrix      (b)  

symmetric matrix      (c)orthogonal 

matrix        (d) none 

Ans:- (c) B= (I- A) (𝐼 + 𝐴)−1 

⇒ 𝐵𝑇 = (𝐼 + 𝐴𝑇)−1(𝐼 + 𝐴𝑇) = (𝐼 −

𝐴)−1(I+ A) 

𝐵 𝐵𝑡= I as (I- A) (I+ A)= (I+ A) (I-A) 

 

16.  If f(x)= max (
𝟏

𝝅
𝐜𝐨𝐬−𝟏(𝒄𝒐𝒔𝝅𝒙), {𝒙}) 

and g (x) min 

(
𝟏

𝝅
𝐜𝐨𝐬−𝟏(𝒄𝒐𝒔𝝅𝒙) , {𝒙}) (where { .} 

represents fractional part of x). Then 

find the value of ∫ 𝒇(𝒙)𝒅𝒙/
𝟐

𝟏

∫ 𝒈(𝒙)𝒅𝒙
𝟐

𝟏
 is 

(a) 1                     (b) 3                    (c) 5                          

(d) 7 

Ans:- (b) 

⇒∫ 𝑓(𝑥)𝑑𝑥 =  
3

4
   𝑎𝑛𝑑    ∫ 𝑔(𝑥)𝑑𝑥 =  

1

4

2

1

2

1
 

⇒ Ratio = 3 
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17. If sin (sinx +cosx)= cos (cosx- sinx) 

and largest possible value of sinx is 
𝝅

𝒌
,  

then the value of k is      

 (a) 2                          (b) 3                       

(c) 4                       (d) none 

Ans:- (c)  sin (sinx +cosx)= cos (cosx- sinx) 

cos (cosx- sinx) = cos (
𝜋

2
− (𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥)) 

∴𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 = 2𝑛𝜋 ± (
𝜋

2
− (𝑠𝑖𝑛𝑥 +

𝑐𝑜𝑠𝑥)) 

Taking + ve sign 

𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 = 2𝑛𝜋 +
𝜋

2
− 𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥  

𝑐𝑜𝑠𝑥= 𝑛𝜋 +
𝜋

4
 , for n= 0, 𝑐𝑜𝑠𝑥 =  

𝜋

4
 , which 

is the only possible value  

⇒ 𝑠𝑖𝑛𝑥 =  
√16− 𝜋2

4
 ………………..(i) 

Taking –ve sign 

𝑠𝑖𝑛𝑥 =  
𝜋

4
 ……………..(ii) 

From (i) & (ii) , we get  
𝜋

4
 as the largest 

value. Hence k= 4. 

18.  The number of solution(s) of the 

equation  𝒛𝟐 −  𝒛 − |𝒛|𝟐 − 
𝟔𝟒

|𝒛|𝟓
=  𝟎 is / 

are 

(a) 0                  (b) 1                   (c) 2                       

(d)  3 

Ans:- (b)  z = 2 is the only solution. 

So there is only one solution of the given 

equation. 

19. If function f(x) = cos(nx)×sin(
𝟓𝒙

𝒏
), 

satisfies f(x+ 3𝜋)= f(x), then find the 

number of integral value of n                              

(a) 8                    (b) 9                     (c) 10                       

(d) 11 

Ans:- (a)  f(x+ 𝜆) = f(x) 

⇒ cosn(x+ 𝜆) sin(
5(x+ λ)

𝑛
) =

cos(𝑛𝑥) sin(
5𝑥

𝑛
) 

At x = 0, cos(n𝜆)sin (
5𝜆

𝑛
)= 0  

If cos(n𝜆)= 0, n𝜆= r𝜋+
 𝜋

2
, r ∊ I 

n (3𝜋)= r𝜋+
𝜋

2
 (∵𝜆= 3𝜋) 

(3n- r)= ½ [not possible] 

∴ cosn𝜆 ≠ 0 ∴ sin (
5𝜆

𝑛
)= 0 ⇒ 

5𝜆

𝑛
= 𝑃𝜋(𝑃 ∊

𝐼) ⇒ 𝑛 = 
15

𝑃
 

For P= ±1,±3,±5,±15 

n=±15,±5,±3, ±1 

20.  Let a, b, c be any real numbers such 

that 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟏 then the 

quantity  

ab +bc+ ca satisfies the conditions 

(a) ab+ bc+ ac = constant 

(b) - ½ ≤ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟏 

(c)  - ¼  ≤ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟏  

(d) -1 ≤ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤
𝟏

𝟐
 

Ans:- (a) (𝑎 + 𝑏 + 𝑐)2 ≥ 0 

⇒ 𝑎2 + 𝑏2 + 𝑐2 ≥ −2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) 
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⇒ 
1

2
≥ −(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)  ⇒ (𝑎𝑏 + 𝑏𝑐 +

𝑐𝑎) ≥ −
1

2
 

21. The maximum value of xyz for +ve x, 

y, z subject to condition that xy + yz+ 

zx= 12 is 

(a) 9                  (b) 6                     (c)  8                      

(d) none 

Ans:-   (c)   
xy + yz+ zx

3
≥ (xy . yz.  zx)

1
3⁄  

⇒ (xyz)≤ 8 

22. Let  a, b, c are 3 positive real numbers 

such that a+ b+ c= 2, then the value of 

 
𝒂

𝟏−𝒂
.
𝒃

𝟏−𝒃
.
𝒄

𝟏−𝒄
 is always 

(a) > 8                          (b) < 8                      

(c) 8                         (d) none 

Ans:- (a) Let 1- a= x, 1- b= y, 1- c = z 

3- (a+ b+ c) = x+ y+ z = 1(∵ a+ b+ c= 2) 

Now, 
1−𝑥

𝑥
.
1−𝑦

𝑦
.
1−𝑧

𝑧
 

= 
𝑦+𝑧

𝑥
.
𝑧+𝑥

𝑦
.
𝑦+𝑥

𝑧
 

= (
𝑦+𝑧

2
) (

𝑧+𝑥

2
) (

𝑦+𝑥

2
) .

8

𝑥𝑦𝑧
>

 √𝑦𝑧 √𝑧𝑥 √𝑧𝑦 .
8

𝑥𝑦𝑧
 (By AM> GM 

inequality) 

⇒ 
𝑎

1−𝑎
.
𝑏

1−𝑏
.
𝑐

1−𝑐
> 8  

23. Let  a+ b +c = 1 then the value of the 

quantity is always √𝟒𝒂 + 𝟏 +

√𝟒𝒃 + 𝟏 + √𝟒𝒄 + 𝟏  

(a) equals 21                        (b) ≤ 21                           

(c) > 21                   (d) none 

Ans:-  (b) 4a+ 4b+ 4c = 4 

⇒(4a+ 1)+ (4b+ 1)+ (4c +1) = 7 

Applying c-s inequality:-  𝑎1 = √4𝑎 + 1,

𝑎2 = √4𝑏 + 1, 𝑎3 = √4𝑐 + 1   & 𝑏𝑖 =1 

∴ (∑ 𝑎𝑖 .1)
3
𝑖=1

2
≤ (∑ 𝑎𝑖

23
𝑖=1 )(∑ 13

𝑖=1 ) ; 

where 𝑎𝑖=𝑎1, 𝑎2, 𝑎3 

⇒ (√4𝑎 + 1 + √4𝑏 + 1 + √4𝑐 + 1)2 ≤

(4𝑎 + 1 + 4𝑏 + 1 + 4𝑐 + 1) × (1 + 1 + 1) 

= 3 × 7 = 21 

24. If f(x)is a polynomial function 

satisfying f(x)f(
𝟏

𝒙
)= f(x)+ f(

𝟏

𝒙
) and 

f(3)=28 then f(4) is 

(a) 28                             (b) 65                             

(c) 78                             (d) none 

Ans:- (c) The given functional equation is 

satisfied by f(x)= ± 𝑥𝑛 + 1 

f(3)= +33 + 1 = 28 

Hence, n= 3 

So, f(4)= 43 + 1 = 65. 

25.  If 2x+ 4y= 1, then prove that the 

quantity  𝒙𝟐 + 𝒚𝟐 is always greater 

than equal to 

(a) 1/20                              (b) 5/64                       

(c) 1                         (d) none 

Ans:- (a) Maximize 𝑥2 + 𝑦2 subject to 2x+ 

4y -1=0 by 

Method of Lagrange multiplier⟶ 

F= 𝑥2 + 𝑦2 + 𝜆(2𝑥 + 4𝑦 − 1) 

𝜕𝐹

𝜕𝑥
= 2𝑥 + 2𝜆 = 0  ;

𝜕𝐹

𝜕𝑦
= 2𝑦 + 2𝜆 = 0    

∴ x= -𝜆      ∴ y= -2𝜆 
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2x+ 4y = 1     𝑥𝑚𝑎𝑥 = +
1

10
, 𝑦𝑚𝑎𝑥 =

1

5
 

⇒ 𝜆= 
−1

10
 ; 

∴ 𝑥2 + 𝑦2 ≥ 
1

100
+

4

100
= 

5

100
=

1

20
. 

26.  If a, b, c are positive real numbers ∋ 

a+ b+ c= 1. The value of 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 

is always 

(a) ½                        (b) 1/3                        

(c) ¼                        (d) none 

Ans:-  (b) Using C-S inequality, 

(∑ 𝑥𝑖𝑦𝑖) 
3
𝑖=1

2
≤ (∑𝑥𝑖

2
)(∑𝑦𝑖

2
)   Taking 

𝑦𝑖 = 1 & xi = a, b, c. 

⇒(𝑎 + 𝑏 + 𝑐)2 ≤ (𝑎2 + 𝑏2 + 𝑐2). 3 

⇒ 𝑎2 + 𝑏2 + 𝑐2 ≥
1

3
 

27. If a, b, c , x are real numbers such that 

abc≠ 𝟎 𝒂𝒏𝒅 
𝒙𝒃+(𝟏−𝒙)𝒄

𝒂
= 

𝒙𝒄+(𝟏−𝒙)𝒂

𝒃
=

 
𝒙𝒂+(𝟏−𝒙)𝒃

𝒄
 

Then prove that a+ b+ c equals to 

(a) 1                           (b) 2                             

(c) 0                           (d) none 

Ans:-  (c)  
𝑥𝑏+(1−𝑥)𝑐

𝑎
= 

𝑥𝑐+(1−𝑥)𝑎

𝑏
=

 
𝑥𝑎+(1−𝑥)𝑏

𝑐
= 1 

∴ x= 
𝑎−𝑐

𝑏−𝑐
, 𝑥 =  

𝑏−𝑎

𝑐−𝑎
, 𝑥 =  

𝑐−𝑏

𝑎−𝑏
 

The only solution of these are: a= b= c or a+ 

b+ c= 0. 

28.  If f : R ⟶R is given by f(x)= 
𝟒𝒙

𝟒𝒙+𝟐
 ∀ 𝒙 ∈ 𝑹, check f(x)+f(1-x)= 1. 

Hence the value of f(
𝟏

𝟏𝟗𝟗𝟕
) +  𝒇 (

𝟐

𝟏𝟗𝟗𝟕
) +

⋯+ 𝒇(
𝟏𝟗𝟗𝟔

𝟏𝟗𝟗𝟕
) is 

(a) 998                       (b) 1996                           

(c) 1997                      (d) none 

Ans:- (a) f(1- x)=  
41−𝑥

4−𝑥+1+2
=  

4/4𝑥

4/4𝑥+2
= f(x)+ 

f(1- x)= 1. 

Now, putting x = 
1

1997
 , 

2

1997
 ,

3

1997
, … . ,

998

1997
 

So, f(
1

1997
) +  𝑓 (

2

1997
) + ⋯+ 𝑓(

1996

1997
) 

= (1 + 1 +⋯+ 1)⏟           

           998 terms 

= 998 

29.  If gcd (a, b)=1, then gcd (a+b, a-b) is 

(a) a or b                  (b) 1 or 2                  

(c) 1 or 3                    (d) none 

Ans:- (b) let d = gcd (a+ b, a- b)then 

d | (a+ b) and d |(a -b). 

∴ d | (a +b+ a -b) , ⇒ d| 2a and 

∴ d | (a +b- a +b) , ⇒ d| 2b 

Thus d |(2a, 2b), ⇒ d|2(a,b) 

Hence d= 1 or 2, because gcd(a, b)= 1 

30.  The  number of solution (positive 

integers) of the equation 3x+ 5y = 1008 

is  

(a) 61                   (b) 67                     

(c)79                     (d) none 

Ans:- (b) x, y ∊ ℕ, then 3 |5y ⇒ 3|y, y = 3k 

∀ 𝑘 ∊ ℕ 
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Thus 3x + 15k = 1008 

⇒ x + 5k= 336 

⇒ 5k ≤ 335 

 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 4 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 

 

1. If 𝑺𝒏denotes the sum of first n terms of 

an A.P. whose   

(a) P∑ 𝒓𝒏
𝒓=𝟏                   (b) n∑ 𝒑𝒏

𝒑=𝟏                       

(c) a∑ 𝒓
𝒑
𝒓=𝟏                            (d) none of 

these 

Ans. (d) 

𝑆𝑛𝑥

𝑆𝑥
=

𝑛𝑥

2
[2𝑎+(𝑛𝑥−1)𝑑]
𝑥

2
[2𝑎+(𝑥−1)𝑑]

  =
𝑛[2𝑎−1]+𝑛𝑥𝑑

(2𝑎−𝑑)+𝑥𝑑
  

For   
𝑆𝑛𝑥

𝑆𝑥
   to be independent of x 

2a - d= 0 

∴ 2a= d 

Now, 𝑆𝑝 =
𝑝

2
[2𝑎 + (𝑝 − 1)𝑑] = 𝑝2𝑎 

2. if 𝒂𝒏= ∫
𝐬𝐢𝐧 (𝟐𝒏−𝟏)

𝒔𝒊𝒏𝒙

𝝅

𝟎
 dx,  then 

𝒂𝟏,𝒂𝟐,𝒂𝟑,……..are in 

(a) A.P. and H.P.                                                       

(b) A.P. and G.P. but not in H.P. 

(c) G.P. and H.P.                                                       

(d) A.P., G.P. and H.P. 

Ans. (b) 

𝑎𝑛+1 − 𝑎𝑛

= ∫
sin(2𝑛 + 1)𝑥 − sin (2𝑛 − 1)𝑥

sin 𝑥

𝜋

0

𝑑𝑥

=  ∫
2 cos 2𝑛𝑥. 𝑠𝑖𝑛𝑥

𝑠𝑖𝑛𝑥

𝜋

0

𝑑𝑥 = [
2 sin 2𝑛𝑥

2𝑛
]
𝜋

0

= 0 

∴𝑎𝑛+1 = 𝑎𝑛⟹ 𝑎1 = 𝑎2 = 𝑎3 = ⋯                

Also 𝑎1 = 𝜋 ≠ 0 

Hence 𝑎1, 𝑎2, … 𝑎𝑛 are in A.P. and G.P. but 

not in H.P. (Equal numbers cannot be in 

H.P) 

 

3. If a, b, c are proper fractions and are in 

H.P. and x=∑ 𝒂𝒏∞
𝒏=𝟏 , y=∑ 𝒃𝒏∞

𝒏=𝟏 , 

z=∑ 𝒄𝒏∞
𝒏=𝟏 ,  

then x, y, z are in 

 (a) A.P.                 (b) G.P.                   (c) 

H.P.                             (d) none of these 

Ans. (c) 

X = 
𝑎

1−𝑎
⟹ 𝑎 =

𝑥

1−𝑥
  

Similarly, b = 
𝑦

1−𝑦
, 𝑐 =  

𝑧

1−𝑧
 

Now, a, b, c are in H.P. 
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⟹
1+𝑥

𝑥
,
1+𝑦

𝑦
,
1+𝑧

𝑧
 are in A.P. 

⟹
1

𝑥
 , 
1

𝑦
,
1

𝑧
 are in A.P. 

⟹ x, y, z are in H.P. 

4. If a, b, c be the 𝒑𝒕𝒉,𝒒𝒕𝒉 and 𝒓𝒕𝒉 terms 

respectively of an A.P. and G.P. both, 

then the product of the roots of equation 

𝒂𝒃 𝒃𝒄𝒄𝒂𝒙𝟐 – 𝒂𝒃𝒄𝒙 + 𝒂𝒄𝒃𝒂𝒄𝒃=0 is equal to 

(a) -1                      (b) 1                        (c) 2                             

(d) (b-c)(c-a)(a-b) 

Ans. (b) 

a= x+ (p- 1)d, b= x+ (q-1)d, c= x+ (r-1)d 

a=𝑚𝑛𝑝−1, 𝑏 =  𝑚𝑛𝑞−1, 𝑐 =  𝑚𝑛𝑟−1  

∴ Product of roots = 

(𝑚𝑛𝑝−1)(𝑟−𝑞)𝑑, (𝑚𝑛𝑞−1)(𝑝−𝑟)𝑑 , (𝑚𝑛𝑟−1)(𝑞−𝑝)𝑑 =

 𝑚0. 𝑛0= 1. 

5. If a, b, c, be the 𝒑𝒕𝒉,𝒒𝒕𝒉 and 𝒓𝒕𝒉 terms 

respectively of a G.P. then the equation- 

𝒂𝒒𝒃𝒓𝒄𝒑𝒙𝟐 + pqrx + 𝒂𝒓𝒃𝒏𝒄𝒒 = 0 has 

(a) both roots zero                                                     

(b) at least one root zero 

(c) no root zero                                                          

(d) both roots unity 

Ans. (c)  

Product of roots= 𝑎𝑟−𝑞𝑏𝑝−𝑟𝑐𝑞−𝑝 = 1 ≠ 0 

⟹ no root is equal to zero. 

 

6. If (𝒓)𝒏denotes the number rrr….. (n 

digits), where r=1, 2, 3,…9 and a=(𝟔)𝒏, 

b=(𝟖)𝒏, c=(𝟒)𝟐𝒏, then  

(a) 𝒂𝟐+b+c=0                                                                   

(b) 𝒂𝟐+b-c=0 

(c)  𝒂𝟐+b-2c=0                                                                  

(d) 𝒂𝟐+b-9c=0 

Ans. (b) 

A = (6)𝑛 = 6 6 6…6(𝑛 𝑑𝑖𝑔𝑖𝑡𝑠) =  6 × 1 +

6 × 10 + 6 × 102 +⋯6 × 10𝑛−1 

= 
6

9
(10𝑛 − 1) =

2

3
(10𝑛 − 1) 

b= 
8

9
(10𝑛 − 1), 𝑐 =  

4

9
(102𝑛 − 1) 

Now 𝑎2 + 𝑏= 
4

9
(10𝑛 − 1)2 +

8

9
(10𝑛 −

1) =  
4

9
(10𝑛 − 1)2(10𝑛 − 1 + 2) =

 
4

9
(102𝑛 − 1) = 𝑐 

7. Let a=1 1 1.....1(55 digits), 

b=1+10+𝟏𝟎𝟐+…𝟏𝟎𝟒, 

c=1+𝟏𝟎𝟓+𝟏𝟎𝟏𝟎+𝟏𝟎𝟏𝟓+…+𝟏𝟎𝟓𝟎, then  

(a) a=b+c                        (b) a=bc                       

(c) b=ac                          (d) c=ab 

Ans. (b) 

a= 1+ 10+ 102 +⋯+ 1054 = 
1055

10−1
=

1055−1

105−1
.
105−1

10−1
= 𝑏𝑐 

8. If ∑ 𝒕𝒓
𝒏
𝒓=𝟏  = ∑ ∑ ∑ 𝟐

𝒋
𝒊=𝟏

𝒌
𝒋=𝟏

𝒏
𝒌=𝟏 , then 

∑  
𝟏

𝒕𝒓

𝒏
𝒓=𝟏  = 

(a) 
𝒏+𝟏

𝒏
                         (b) 

𝒏

𝒏+𝟏
                             

(c) 
𝒏−𝟏

𝒏
                             (d) 

𝒏

𝒏−𝟏
 

Ans. (b) 
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∑ ∑ ∑ 2
𝑗
𝑖=1

ℎ
𝑗=1

𝑛
𝑘=1 = ∑ ∑ 2𝑗𝑘

𝑗=1
𝑛
𝑘=1 = 

2∑ ∑ 𝑗 = 2∑
𝑘(𝑘+1)

2
= 𝑛

𝑘=1
𝑘
𝑗=1

𝑛
𝑘=1 ∑ 𝑘2𝑛

𝑘=1 +

∑ 𝑘𝑛
𝑘=1  

=
𝑛(𝑛+1)(2𝑛+1)

6
+
𝑛(𝑛+1)

2
= 

𝑛(𝑛+1)(𝑛+2)

3
 

∴ 𝑆𝑛 = 
𝑛(𝑛+1)(𝑛+2)

3
 

⟹ 𝑡𝑟= 𝑆𝑟 − 𝑆𝑟−1 = 
𝑟(𝑟+1)(𝑟+2)

3
−

(𝑟−1)𝑟(𝑟+1)

3
= 𝑟(𝑟 + 1) 

1

𝑡𝑟
= 

1

𝑟(𝑟+1)
=
1

𝑟
−

1

𝑟+1
  ∴ ∑

1

𝑡𝑟

𝑛
𝑟=1 = 1 −

1

𝑛+1
=

𝑛

𝑛+1
 

9. If a=∑
𝟏

𝒓𝟒
∞
𝒓=𝟏 ,  then ∑

𝟏

(𝟐𝒓−𝟏)𝟒
 ∞

𝒓=𝟏 = 

(a) 
𝟏𝟔

𝟏𝟓
a                     (b) 

𝒂

𝟐
                        

(c) 
𝟏𝟓

𝟏𝟔
a                              (d) 

𝟏𝟒

𝟏𝟓
a 

Ans. (c) 

∑
1

(2𝑟−1)4
=∞

𝑟=1
1

14
+

1

34
+

1

54
+⋯+ 𝑡𝑜 ∞  

= (
1

14
+

1

24
+

1

34
+⋯+ 𝑡𝑜 ∞) − (

1

24
+

1

44
+

1

64
+⋯+ 𝑡𝑜 ∞) 

= a-
1

24
(
1

14
+

1

24
+

1

34
+⋯+ 𝑡𝑜 ∞) = 𝑎 −

𝑎

16
=
15

16
𝑎 

10. If 𝒂𝟏,𝒂𝟐,𝒂𝟑,…are in G.P. having 

common ratio r such that 

∑ 𝒂𝟐𝒌−𝟏
𝒏
𝒌=𝟏 =∑ 𝒂𝟐𝒌+𝟐

𝒏
𝒌=𝟏 ≠ 𝟎, then number 

of possible values of r is 

(a) 1                            (b) 2                              

(c) 3                              (d) none of these 

Ans. (c) 

Given 𝑎1 + 𝑎3 + 𝑎5 +⋯+ 𝑎2𝑛−1 = 𝑎
4 +

𝑎6 + 𝑎8 +⋯+ 𝑎2𝑛+2 

= 𝑟3(𝑎1 + 𝑎3 + 𝑎5 +⋯+ 𝑎2𝑛−1) 

⟹𝑟3 = 1 ⟹ 𝑟 = 1,𝜔,𝜔2 

11. If 𝒙𝟐- x + a - 3= 0 has at least one 

negative value of x, then complete set of 

values of ‘a’ is 

(a) (−∞,𝟏)                       (b) (−∞,𝟐)                      

(c) (−∞,𝟑)                    (d) none 

Ans. (c)  𝑥2- x +a - 3= 0 has at least one 

negative root and for real roots, 

1- 4(a - 3) ≥ 0 

⇒ a ≤
13

4
  

⇒ a ∊ (−∞,
13

4
) 

 Now, both root will be non-negative of D ≥

0,⇒ 𝑎 − 3 ≥ 0 ⇒ 𝑎 ≥ 3 

∴   a ∊ (3,
13

4
) 

∴ a ∊ (−∞,
13

4
)∪ a ∊ (3,

13

4
) 

∴(−∞, 3)    

12. Let 𝛼, 𝛽 are the roots of the equation 

𝒙𝟐+ax +b=0, then maximum value of the 

expression - (𝒙𝟐+ax +b) - (
𝜶−𝜷

𝟐
)𝟐 will be 

(a) 
𝟏

𝟒
(𝒂𝟐 − 𝟒𝒃)                    (b)  0                        

(c) 1                              (d) none 

Ans. (b) let z= - (𝑥2-ax +b) 
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Now, 𝑧𝑚𝑎𝑥. = −
𝐷

4𝑎
= −

𝑎2−4𝑏

4
=
4𝑏−𝑎2

4
=

 +(
𝛼−𝛽

2
)2  

∴Thus the maximum value of the given 

equation is 0. 

 

13. Let P (x) = 𝒙𝟐+bx +c, where b and c 

are integers and P(x) is a factor of  

both  𝒙𝟒 + 𝟔𝒙𝟐 + 𝟐𝟓 𝒂𝒏𝒅 𝟑𝒙𝟒 + 𝟒𝒙𝟐 +

𝟐𝟖𝒙 + 𝟓, then P(1) is  

(a) 4                              (b) 8                          

(c) 24                              (d) none 

Ans. (a) ∴ P(x) is a factor of 3 (𝑥4 + 6𝑥2 +

25)- (3𝑥4 + 4𝑥2 + 28𝑥 + 5)= 14(𝑥2 −

2𝑥 + 5) 

∴ P(x) = 𝑥2 − 2𝑥 + 5 

⇒ P(1)= 4. 

14. The value of a for which (𝒂𝟐 − 𝟏)𝒙𝟐 +

𝟐(𝒂 − 𝟏)𝒙 + 𝟐 > 0 ∀ 𝑥 are 

(a) a≥ 𝟏                        (b) a≤ 𝟏                        

(c) a > - 3                           (d) none 

Ans. (d) we know, 𝑃𝑥2 + 𝑞𝑥 + 𝑐 > 0 if P > 

0, and 𝑞2 − 4𝑃𝑐 < 0, 

∴ (𝑎2 − 1)𝑥2 + 2(𝑎 − 1)𝑥 + 2 > 0 ∀ 𝑥 

Now, 𝑎2 − 1 > 0 and 4 (𝑎 − 1)2 − 8(𝑎2 −

1) ≤ 0 

⇒ 𝑎2 − 1 ≥ 0 and -4(a-1)(a+3) ≤ 0 

⇒ a ≤ −1 or a ≥ 1 𝑎𝑛𝑑 𝑎 ≤ −3 𝑜𝑟 𝑎 ≥ 1 

i.e., 𝑎 ≤ −3 𝑜𝑟 𝑎 ≥ 1. 

 

15. The sum of real roots of the equation 

𝒙𝟐 − 𝟐𝟐𝟎𝟎𝟕. 𝒙 + |𝒙 − 𝟐𝟐𝟎𝟎𝟔| + 𝟐(𝟐𝟒𝟎𝟏𝟏 −

𝟏) = 𝟎 is 

(a) 𝟐𝟐𝟎𝟎𝟔                  (b) 𝟐𝟐𝟎𝟎𝟕                     

(c) 𝟐𝟐𝟎𝟎𝟔+𝟐𝟐𝟎𝟎𝟕              (d) none 

Ans. (b) ∴ (𝑥 − 22006)2 + |𝑥 − 22006| −

2 = 0 

⇒ |𝑥 − 22006|2+ |𝑥 − 22006| − 2=0 ⇒ x= 

22006+1, 22006 -1. 

∴The sum of real roots are =22007 

16. Consider an expression 𝒙𝟐 + 𝒚𝟐 +

𝟐𝒙 + 𝒚= constant. If for two constants 𝛼, 

𝛽, the conditions x> 𝛼 and x > 𝛽 imply the 

same limits for the value of y, then 𝛼 +𝛽 is 

(a) -2                       (b) -4                       

(c) 1                          (d) none 

Ans. (a)  𝑥2 + 𝑦2 + 2𝑥 + 𝑦 = 𝑘 

⇒ (𝑥 + 1)2 + (𝑦 +
1

2
)2 = 𝑘 +

5

4
 

⇒ x= -1±√(𝑘 +
5

4
)2 − (𝑦 +

1

2
)2 

Now, the two values of x corresponds to 𝛼 

and 𝛽 as y takes the same limits of values. 

Hence 𝛼 +𝛽= -2. 

17. 
𝒂𝟒+𝒃𝟒

𝒂𝟐+𝒃𝟐
+
𝒃𝟒+𝒄𝟒

𝒃𝟐+𝒄𝟐
+
𝒄𝟒+𝒂𝟒

𝒄𝟐+𝒂𝟐
≥ 

(a) a+ b+ c                      (b) 𝒂𝟐 + 𝒃𝟐 +

𝒄𝟐                        (c) ab+ bc+ ca                 

(d) none 

Ans. (b) (𝑎2 − 𝑏2)2 ≥ 0 
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⇒ 𝑎4 + 𝑏4 ≥ 2𝑎2. 𝑏2  

⇒2𝑎4 + 2𝑏4 ≥ 𝑎4 + 𝑏4 + 2𝑎2. 𝑏2 =

(𝑎2 + 𝑏2)2  

⇒ 
𝑎4+𝑏4

𝑎2+𝑏2
≥
𝑎2+𝑏2

2
 …………….(1) 

Similarly, 
𝑏4+𝑐4

𝑏2+𝑐2
≥
𝑏2+𝑐2

2
 ……………(2) 

And, 
𝑐4+𝑎4

𝑐2+𝑎2
≥
𝑐2+𝑎2

2
 ……………………(3) 

(1)+(2)+(3) implies 

𝑎4+𝑏4

𝑎2+𝑏2
+
𝑏4+𝑐4

𝑏2+𝑐2
+
𝑐4+𝑎4

𝑐2+𝑎2
≥ 𝑎2 + 𝑏2 + 𝑐2 . 

18.  Let m > 1, n ∊ℕ, then 𝟏𝒎 + 𝟐𝒎 +

𝟐𝟐𝒎 + 𝟐𝟑𝒎 +⋯+ 𝟐𝒏𝒎−𝒎> 

(a) 𝒏𝟏−𝒎                           (b) (𝟏 −𝒎)𝒏                      

(c) 𝒏𝟏−𝒎(𝟐𝒏−𝟏)                       (d) none 

Ans. (c) 
1𝑚+2𝑚+22𝑚+23𝑚+⋯+(2𝑛−1)𝑚

𝑛
>

(
1+2+4+⋯+2𝑛−1

𝑛
)𝑚 

[∵ m> 0 and AM of mth power > mth power 

of AM] 

⇒ 1𝑚 + 2𝑚 + 22𝑚 + 23𝑚 +⋯+

(2𝑛−1)𝑚 > 𝑛(
2𝑛−1

𝑛
)𝑚 > 𝑛1−𝑚(2𝑛−1)𝑚 

19. Let  𝒙𝟐 + 𝒚𝟐 = 𝒄𝟐, then the least value 

of 𝒙−𝟐 + 𝒚−𝟐 is 

(a) c                     (b) 𝒄𝟐                         

(c) 𝒄𝟑                          (d) none 

Ans. (d) Let z= 𝑥−2 + 𝑦−2 = 
𝑥2+𝑦2

𝑥2𝑦2
=

𝑐2

𝑥2𝑦2
 

and 

It will be minimum when 𝑥2𝑦2 will be 

maximum. 

As 𝑥2 + 𝑦2 = 𝑐2, then 𝑥2𝑦2 is maximum 

when 𝑥2 = 𝑦2 =
𝑐2

2
 

∴ 𝑧𝑚𝑖𝑛. = 
𝑐2

𝑐4

4

=
4

𝑐2
. 

20. 𝒏𝒏(
𝒏+𝟏

𝟐
)𝟐𝒏 > 

(a) n!                   (b) (𝒏!)𝟐                       

(c) (𝒏!)𝟑                          (d) none. 

Ans. (c) 
13+23+⋯+𝑛3

𝑛
> (13. 23. … . 𝑛3)

1

𝑛    

[∵AM> GM] 

⇒ 
𝑛(𝑛+1)2

4
> {(𝑛!)3}

1

𝑛 

⇒ 𝑛𝑛(
𝑛+1

2
)2𝑛 > {(𝑛!)3}. 

21. If 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … . , 𝒂𝒏 are non- negative 

and  𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … . , 𝒂𝒏 = 𝟏,  

then (1+𝒂𝟏)(1+𝒂𝟐) …(1+𝒂𝒏)≥ 

(a) 𝟐𝒏                        (b) 𝟑𝒏                    

(c) 𝟒𝒏                      (d) none 

Ans. (a) (
1+𝑎𝑖

2
) ≥ √𝑎𝑖, where i= 1(1)n.  

(AM ≥ GM) 

Putting the all I value and then multiplies the 

in equations, 

(1+𝑎1)(1+𝑎2) … (1+𝑎𝑛)≥

2𝑛√𝑎1, 𝑎2, 𝑎3, … . , 𝑎𝑛  

⇒ (1+𝑎1)(1+𝑎2) … (1+𝑎𝑛)≥

2𝑛(∵𝑎1, 𝑎2, 𝑎3, … . , 𝑎𝑛 = 1) 
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22. If 𝒂𝟏, … . , 𝒂𝒏 are positive real nos. 

whose product is a fixed number c, then 

the minimum value of 𝒂𝟏 + 𝒂𝟐 +⋯+

𝒂𝒏−𝟏 + 𝟐𝒂𝒏 is 

(a) 𝒏(𝟐𝒄)
𝟏

𝒏                  (b) (𝒏 + 𝟏)𝒄
𝟏

𝒏                       

(c) 𝟐𝒏𝒄
𝟏

𝒏                           (d) done 

Ans. (a) AM ≥ GM 

So, LHS ≥ 𝑛(𝑎1…2𝑎𝑛)
1

𝑛 = 𝑛(2𝑐)
1

𝑛 

23. If f(x) = ∫
𝒆𝐜𝐨𝐬 𝒕

𝒆𝐜𝐨𝐬 𝒕+𝒆−𝐜𝐨𝐬 𝒕

𝒙

𝟎
𝒅𝒕, then 2f(𝜋) = 

(a) 0                      (b) 𝜋                      (c) –𝜋                           

(d) none of these 

Ans. (b) 

𝑓(𝜋) =  ∫
𝑒cos 𝑡

𝑒cos 𝑡+𝑒−cos 𝑡

𝜋

0
𝑑𝑡……….(1) 

 𝑓(𝜋) =  ∫
𝑒−cos 𝑡

𝑒−cos𝑡+𝑒cos 𝑡

𝜋

0
𝑑𝑡 …………(2) 

[ since cos (𝜋-t)= - cost] 

∴ 2f(𝜋)= ∫ 𝑑𝑡 =  𝜋
𝜋

0
 

 

24. Let [x] denotes the greatest integer 

less than or equal to x, then ∫ 𝒔𝒊𝒏𝒙
𝝅

𝟒
𝟎

𝒅(𝒙 −

[𝒙])=  

(a) ½                    (b) 1 - 
𝟏

√𝟐
                    

(c) 1                      (d) none of these 

Ans. (b) ∫ sin 𝑥 𝑑(𝑥 − [𝑥])
𝜋/4

0
=

 ∫ sin 𝑥 𝑑𝑥
𝜋/4

0
 =−[cos 𝑥]

𝜋

4
0
= − [

1

√2
− 1] =

 1 −
1

√2
  

[∵ 0 < x <
𝜋

4
∴ [𝑥] = 0] 

25. Let g(x) = ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
, 𝒘𝒉𝒆𝒓𝒆

𝟏

𝟐
≤

𝒇(𝒕) ≤ 𝟏, 𝒕 ∈ [𝟎, 𝟏]𝒂𝒏𝒅𝟎 ≤ 𝒇(𝒕) ≤
𝟏

𝟐
 𝒇𝒐𝒓 𝒕 ∈ (𝟏, 𝟐]. Then   

 (a) −
𝟑

𝟐
≤ 𝒈(𝟐) <

𝟏

𝟐
        (b) 𝟎 ≤ 𝒈(𝟐) < 2        

(c) 
𝟑

𝟐
< 𝑔(𝟐) ≤

𝟓

𝟐
         (d) 2 < g(2 )< 4 

Ans. (b) 𝑔(2) =  ∫ 𝑓(𝑡)
2

0
𝑑𝑡 =  ∫ 𝑓(𝑡)

1

0
𝑑𝑡 +

∫ 𝑓(𝑡)
2

1
𝑑𝑡 𝑎𝑠

1

2
≤ 𝑓(𝑡) ≤ 1 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 1, 

 ∴ ∫
1

2
𝑑𝑡

1

0

≤ ∫ 𝑓(𝑡)𝑑𝑡
1

0

≤ ∫ 1 𝑑𝑡
1

0

  

                                                      𝑜𝑟,
1

2
≤

∫ 𝑓(𝑡)𝑑𝑡
1

0
≤ 1 ………. (1) 

𝑎𝑠 0 ≤  𝑓(𝑡) ≤
1

2
 𝑓𝑜𝑟 1 < 𝑡 ≤ 2,  

∴ ∫ 0
2

1

 𝑑𝑡 ≤  ∫ 𝑓(𝑡)
2

1

𝑑𝑡 ≤  ∫
1

2
𝑑𝑡

2

1

  

                                                       𝑜𝑟, 0 ≤

∫ 𝑓(𝑡)
2

1
𝑑𝑡 ≤

1

2
 ……………. (2) 

(1) + (2) ⟹ 
1

2
≤ 𝑔(2) ≤

3

2
 

∴  g(2) satisfies the inequality 0≤ 𝑔(2) < 2. 

26. The tangent at point P of a curve 

meets the y- axis at B, the line through P 

parallel to y-axis meets the x-axis at A. If 

the area of 𝛥AOB is constant, the curve is  

(a) parabola                 (b) hyperbola                

(c) ellipse                   (d) circle 

Ans. (b) 
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Let P= (x, y) 

Equation of tangent to the curve at P(x, y) is 

Y- y = 
𝑑𝑦

𝑑𝑥
(𝑋 − 𝑥) 

When X= 0, Y= y – x 
𝑑𝑦

𝑑𝑥
 

∴B≡ (0, 𝑦 − 𝑥
𝑑𝑦

𝑑𝑥
) 

Area of 𝛥AOB ant=k 

∴
1

2
𝑥 (𝑦 − 𝑥

𝑑𝑦

𝑑𝑥
) ⟹ 𝑥𝑦 −

𝑥2𝑑𝑦

𝑑𝑥
= ±2𝑘  

⟹
𝑥2𝑑𝑦

𝑑𝑥
− 𝑥𝑦 = ±2𝑘 = 𝑐

⟹
𝑑𝑦

𝑑𝑥
+ 𝑦 (−

1

𝑥
) =

2

𝑥2
  

𝐼. 𝐹. =  𝑒− log𝑥 =
1

𝑥
  

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑦,
1

𝑥
=  ∫

𝐶

𝑥3
𝑑𝑥 + 𝑎  

𝑜𝑟 𝑦 = 𝑥 (−
𝐶

2𝑥2
) + 𝑎𝑥  

𝑜𝑟 2𝑥𝑦 =  −𝐶 + 2𝑎𝑥2  

                                                         

𝑜𝑟 2𝑎𝑥2 −  2𝑥𝑦 − 𝐶 = 0 ………….(1) 

Here h= -1, a= a, b= 0 

∴ ℎ2> ab.             Hence curve (1) is a 

hyperbola 

27. The function f(k) = 
𝒅

𝒅𝒌
∫

𝒅𝒙

𝟏−𝐜𝐨𝐬 𝒌.𝐜𝐨𝐬 𝒌

𝒌

𝟎
  

satisfies the differentiable equation 

(a) 
𝒅𝒇

𝒅𝒌
+ 𝟐𝒇(𝒌). 𝐜𝐨𝐭 𝒌 = 𝟎                                                    

(b) 
𝒅𝒇

𝒅𝒌
+ 𝟐𝒇(𝒙). 𝐜𝐨𝐬 𝒌 = 𝟎  

(c) 
𝒅𝒇

𝒅𝒌
− 𝟐𝒇(𝒌). 𝒄𝒐𝒔𝟐𝒌 = 0                                                    

(d) none of these 

Ans. (a)     𝑓(𝑥) =
1

1−cos𝑘 cot𝑘
= 𝑐𝑜𝑠𝑒𝑐2𝑘 

𝑑𝑓

𝑑𝑘
= 2 𝑐𝑜𝑠𝑒𝑐 𝑘 (– 𝑐𝑜𝑠𝑒𝑐 𝑘 cot 𝑘)

=  −2𝑓(𝑘) cot 𝑘   

𝑜𝑟
𝑑𝑓

𝑑𝑘
+ 2𝑓(𝑘)𝑐𝑜𝑡𝑘 = 0 

 

 

28. The largest value of ‘c’ such that there 

exists a differentiable function f(x) for –c< 

x < c that satisfies the equation 𝒚𝟏 = 𝟏 +

𝒚𝟐 with f(0)= 0 is 

(a) 1                           (b) 𝜋                         

(c) 
𝝅

𝟑
                              (d) 

𝝅

𝟐
 

Ans. (d)      
𝑑𝑦

𝑑𝑥
= 1 + 𝑦2  ⟹ tan−1 𝑦 =  𝑥 +

𝑘 

∵ f(x) satisfies the equation 

∴tan−1𝑓(𝑥) = 𝑥 + 𝑘 

Now, f(0)= 0= k= 0 

⟹ x= tan−1𝑓(𝑥)   ∴ −
𝜋

2
< 𝑥 <  

𝜋

2
  

29. If y= (x) and  
𝟐+𝐬𝐢𝐧𝒙

𝒚+𝟏
(
𝒅𝒚

𝒅𝒙
) = −𝐜𝐨𝐬 𝒙,

𝒚(𝟎) = 𝟏,     𝒚 (
𝝅

𝟐
) equals: 

(a) 1/3                   (b) 2/3                    (c) -

1/3                      (d) 1 
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Ans. (a) Given, 
2+sin𝑥 

𝑦+1

𝑑𝑦

𝑑𝑥
= − cos 𝑥  

………..(1)   &           𝑦(0) =

1 ………….(2) 

(1) ⟹ ∫
𝑑𝑦

𝑦 + 1
= −∫

cos 𝑥

2 + sin 𝑥
𝑑𝑥  

⟹ log(𝑦 + 1) =  − log(2 + sin 𝑥) + log 𝑐  

⟹ 𝑦 + 1 =
𝑐

2 + sin 𝑥
  

     ⟹𝑦 =
𝑐

2+sin𝑥
− 1 …………..(3) 

𝐴𝑙𝑠𝑜 𝑔𝑖𝑣𝑒𝑛 𝑦(0) = 1 ⟹ 1 =
𝑐

2
− 1 ⟹ 𝑐

= 4 

∴ 𝑓𝑟𝑜𝑚 (3), 𝑦(𝑥) =
2 − sin 𝑥

2 + sin 𝑥
  

∴ 𝑦 = (
𝜋

2
) =

2 − 1

2 + 1
=
1

3
 

 

30. A permutation of 1, 2, …., n is chosen 

at random. Then the probability that the 

numbers 1, 2 appear as neighbor equals 

(a) 
𝟏

𝒏
                       (b) 

𝟐

𝒏
                         

(c) 
𝟏

𝒏−𝟏
                           (d) 

𝟏

𝒏−𝟐
 

Ans. (a) P(A)=
(𝑛−1)!

𝑛!
=
1

𝑛
. 

Since there are n! Permutations total. Since 

1, 2 appear as neighbour, so taking it as a 

group, so there are total (n-1)! as number of 

favorable cases. 

 

 

 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 5 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 

 

1. If 𝒂𝒏=∫
𝒔𝒊𝒏𝟐𝒏𝒙

𝒔𝒊𝒏𝟐𝒙

𝝅

𝟐
𝟎

𝒅𝒙, then 

[

𝒂𝟏 𝒂𝟓𝟏 𝒂𝟏𝟎𝟏
𝒂𝟐 𝒂𝟓𝟐 𝒂𝟏𝟎𝟐
𝒂𝟑 𝒂𝟓𝟑 𝒂𝟏𝟎𝟑

]= 

(a) 1                       (b) 0                        

(c) -1                  (d) none of these 

Ans. (b) 𝑎𝑛+2 + 𝑎𝑛 − 2𝑎𝑛+1 = 0  

⟹ 𝑎1, 𝑎2, 𝑎3, … 𝑎𝑟𝑒 𝑖𝑛 𝐴. 𝑃. 

∴ 𝑎1 + 𝑎101 = 2𝑎1 + 2𝑎1 + 100𝑑 =

2(𝑎1 + 50𝑑) = 2𝑎51 

𝑎2 + 𝑎102 = 2𝑎52, 𝑎3 + 𝑎103 = 2𝑎53  

 

2. If 𝒕𝒓=𝟐
𝒓 𝟑⁄ +𝟐−𝒓 𝟑⁄ , then 

∑ 𝒕𝒓
𝟑 −𝟏𝟎𝟎

𝒓=𝟏 𝟑∑ 𝒕𝒓
𝟏𝟎𝟎
𝒓=𝟏  +1 = 

(a) 
𝟐𝟏𝟎𝟏+𝟏

𝟐𝟏𝟎𝟎
                       (b)  

𝟐𝟏𝟎𝟏−𝟏

𝟐𝟏𝟎𝟎
                       

(c) 
𝟐𝟐𝟎𝟏−𝟏

𝟐𝟏𝟎𝟎
                           (d) None of these 

Ans. (c) 

𝑡𝑟
3 = 2𝑟 + 2−𝑟 + 3𝑡𝑟  
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∴∑ 𝑡𝑟
3100

𝑟=1 = ∑ 2𝑟100
𝑟=1 + ∑

1

2𝑟
+ 3∑ 𝑡𝑟

100
𝑟=1

100
𝑟=1  

= 2(2100 − 1 +
1

2
(1−

1

2100
)

1−
1

2

+ 3∑ 𝑡𝑟
100
𝑟=1 =

 2101 − 2 + 1 −
1

2100
+ 3∑ 𝑡𝑟

100
𝑟=1  

=  
2201−1

2100
− 1 + 3∑ 𝑡𝑟

100
𝑟=1  

 

3. If ∑ 𝒓𝒏
𝒓=𝟏 .r! = 100! - 1, then n equals 

(a) 100                              (b) 101                           

(c) 99                            (d) none of these 

Ans. (c) 

𝑡𝑟= r. r != (r+1 -1)r!= (r+1)! –r! 

∴∑ 𝑡𝑟
𝑛
𝑟=1 = (𝑛 + 1)! − 1! = (𝑛 + 1)! − 1 

4. If m = ∑ 𝒂𝒓∝
𝒓=𝟎 , n=∑ 𝒃𝒓 ∝

𝒓=𝟎  where 

0<a<1,0<b<1,then the quadratic equation 

whose  

roots are a and b is 

(a) mn𝒙𝟐+(m+n-2mn)x+mn-m-n+1=0                       

(b) mn𝒙𝟐+(2mn-m-n)x+mn-m-n+1=0 

(c) mn𝒙𝟐+(2mn+m+n)x+mn+m+n+1=0                    

(d) mn𝒙𝟐-(2mn+m+n)x+mn+m+n+1=0 

Ans. (a) 

m = 
1

1−𝑎
⟹ 𝑎 =

𝑚−1

𝑚
, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑏 =  

𝑛−1

𝑛
. 

Required quadratic equation is 

𝑥2 − (𝑎 + 𝑏)𝑥 + 𝑎𝑏 = 0  

or, 𝑥2 − (
𝑚−1

𝑚
+
𝑛−1

𝑛
) 𝑥+

(𝑚−1)(𝑛−1)

𝑚𝑛
= 0 

or,  mn𝑥2 − (2𝑚𝑛 −𝑚 − 𝑛)𝑥 + 𝑚𝑛 −𝑚 −

𝑛 + 1 = 0 

5. If ∑ 𝒓𝟒𝒏
𝒓=𝟏  = 𝒂𝒏, then ∑ 𝒓𝟒𝒏

𝒓=𝟏 (𝟐𝒓 −

𝟏)𝟒= 

(a) 𝒂𝟐𝒏+𝒂𝒏                     (b) 𝒂𝟐𝒏-𝒂𝒏                  

(c) 𝒂𝟐𝒏-16𝒂𝒏                    (d)𝒂𝟐𝒏+16𝒃𝒏 

Ans. (c) ∑ (2𝑟 − 1)4𝑛
𝑟=1 = 14 + 34 + 54 +

⋯+ (2𝑛 − 1)4 

= [14 + 24 + 34 +⋯+ (2𝑛)4] − [24 +

44 + 64 +⋯+ (2𝑛)4]  

= 𝑎2𝑛 − 2
4(14 + 24 + 34 +⋯+ 𝑛4) =

𝑎2𝑛 − 16𝑎𝑛.   

6. If positive numbers a, b, c be in H.P., 

then equation 𝒙𝟐 − 𝒌𝒙 + 𝟐𝒃𝟏𝟎𝟏 − 𝒂𝟏𝟎𝟏 =

𝟎 (𝒌 ∊ 𝑹) has 

(a) both roots positive                                      

(b) both roots negative  

(c) one positive and one negative root             

(d) both roots imaginary. 

Ans. (c) 

a, b, c are in H.P. 

⟹H.M. of a and c= b⟹√𝑎𝑐 > b  (∵G.M. > 

H.M.) 

Since A .M. > G.M. 

∴ 
𝑎101+𝑐101

2
> (√𝑎𝑐)101 > 𝑏101 [∵ √𝑎𝑐 >

𝑏] 

⟹2𝑏101 − 𝑎101 − 𝑐101 < 0 

Let f(x)= 𝑥2 − 𝑘𝑥+2𝑏101 − 𝑎101-𝑐101 
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Then f(−∞) = ∞ > 0, 𝑓(0) = 2𝑏101 −

𝑎101 − 𝑐101 < 0, 𝑓(∞) =  ∞ > 0. 

Hence equation f(x)= 0 has one root in (-

∞, 0)and other in(0,∞). 

7. If the sum of the series ∑ 𝒓𝒏∝
𝒏=𝟎 , |r|<1, is 

s, then sum of the series ∑ 𝒓𝟐𝒏 ∝
𝒏=𝟎 is  

(a) 𝒔𝟐                       (b) 
𝟐𝒔

𝒔𝟐−𝟏
                      

(c)
𝒔𝟐

𝟐𝒔+𝟏
                          (d)

𝒔𝟐

𝟐𝒔−𝟏
 

Ans. (d) 

s= ∑ 𝑟𝑛∞
𝑛=0 = 1 + 𝑟 + 𝑟2 + 𝑟3 +⋯𝑡𝑜 ∞ =

 
1

1−𝑟
 

∴ r=1- 
 1

𝑠
=
𝑠−1

𝑠
 

∑ 𝑟2𝑛∞
𝑛=0 =

1

1−𝑟2
=

1

1−
(𝑠−1)2

𝑠2

= 
𝑠2

2𝑠−1
  

8. The limit of the product √𝟓
𝟐

,√𝟓
𝟒

,…. √𝟓
𝟐𝒏

  

as n→∞ is   

(a) 
𝟏

𝟓
                               (b) 𝐥𝐨𝐠𝟏𝟎 𝟓                           

(c) 1                             (d) 5 

Ans. (d) Required limit= 

Lt
𝑛→∞

5
1

2. 5
1

4. 5
1

8… . 5
1

2𝑛 = Lt
𝑛→∞

5
1

2
+
1

4
+
1

8
+⋯+

1

2𝑛 =

5
1

2

1−
1

2

= 5  

9. If numbers p, q, r are in A.P. , then 

𝒎𝟕𝒑, 𝒎𝟕𝒒, 𝒎𝟕𝒓 (m>0) are in  

(a) A.P.                    (b) G.P.                    

(c) H.P.                       (d)none of 

these 

Ans. (b) 
𝑚7𝑞

𝑚7𝑝
= 𝑚7(𝑞−𝑝),

𝑚7𝑟

𝑚7𝑞
= 𝑚7(𝑟−𝑞)  

∴ q- p= r- q 

∴ 𝑚7𝑝, 𝑚7𝑞 ,𝑚7𝑟 are in G.P. 

10. Let n be a positive integer and (𝟏 +

𝒙 + 𝒙𝟐)𝒏 = 𝒂𝟎 + 𝒂𝟏𝒙 +⋯+ 𝒂𝟐𝒏𝒙
𝟐𝒏, then 

the value of 𝒂𝟎
𝟐 − 𝒂𝟏

𝟐 + 𝒂𝟐
𝟐… . . +𝒂𝟐𝒏

𝟐 is 

(a) 0                                  (b) 𝒂𝟎                                  

(c) 𝒂𝒏                                     (d) 𝒂𝟐𝒏 

Ans. (c)  Replacing x by (- 1/x), we get 

(1 −
1

𝑥
+
1

𝑥2
)𝑛 = 𝑎0 −

𝑎1
𝑥
+
𝑎2
𝑥2
+⋯

− 𝑎2𝑛−1.
1

𝑥2𝑛−1
+
𝑎2𝑛
𝑥2𝑛

 

or, (1 − 𝑥 + 𝑥2)𝑛 = 𝑎0𝑥
2𝑛 − 𝑎1𝑥

2𝑛−1 +

𝑎2𝑥
2𝑛−2 +⋯+ 𝑎2𝑛 ……………….(1) 

And given (1 + 𝑥 + 𝑥2)𝑛 = 𝑎0 + 𝑎1𝑥 +

⋯+ 𝑎2𝑛𝑥
2𝑛…………………(2) 

Multiplying corresponding sides of (1) and 

(2), we have 

(1 + 𝑥2 + 𝑥4)𝑛 = (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +

⋯+ 𝑎2𝑛𝑥
2𝑛) × (𝑎0𝑥

2𝑛 − 𝑎1𝑥
2𝑛−1 +

𝑎2𝑥
2𝑛−2 +⋯+ 𝑎2𝑛 ) …….. (3) 

(1 + 𝑥2 + 𝑥4)𝑛 = (𝑎0 + 𝑎1𝑥
2 + 𝑎2𝑥

4 +

⋯+ 𝑎𝑛𝑥
𝑛 +⋯+ 𝑎2𝑛𝑥

4𝑛) ……………..(4) 

Equating coefficient of 𝑥2𝑛 on both sides of 

(3) and (4) 

𝑎0
2 − 𝑎1

2 + 𝑎2
2… . . +𝑎2𝑛

2= 𝑎𝑛. 

11. The set of all real number x such that 

||3-x|-|x+2||=5 is 

(a) [3, ∞)               (b) (-∞,−𝟐]             

(c) (-∞,−𝟐] ∪[3, ∞)             (d) (-

∞,−𝟑]   ∪[2, ∞) 
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Ans. (c) (||3 − x| − |x + 2||)2 = 25 

⤇(3 − x)2 + (x + 2)2 − 2|3-x||x+2|= 25 

⤇ x2 − 𝑥 − |−x2 + 𝑥 + 6| = 6 

So, it is clear that −x2 + 𝑥 + 6 < 0  , i.e. 

−x2 + 𝑥 + 6 ≥ 0 

(x-3)(x+2)≥ 0 

So, x ≤ −2 & 𝑥 ≥ 3 

∴x ∊ (-∞,−2] ∪[3, ∞)     

 

12. The differential equation of the system 

of circle touch the y – axis at the origin is 

(a) 𝒙𝟐 + 𝒚𝟐 − 𝟐𝒙𝒚
𝒅𝒚

𝒅𝒙
= 0                                       

(b) 𝒙𝟐 + 𝒚𝟐 + 𝟐𝒙𝒚
𝒅𝒚

𝒅𝒙
=0  

(c) 𝒙𝟐 − 𝒚𝟐 − 𝟐𝒙𝒚
𝒅𝒚

𝒅𝒙
 = 0                                       

(d) 𝒙𝟐 − 𝒚𝟐 + 𝟐𝒙𝒚
𝒅𝒚

𝒅𝒙
= 𝟎 

Ans. (d) 𝑥2 + 𝑦2 − 2𝑎𝑥= 0 

2x+2y
𝑑𝑦

𝑑𝑥
− 2𝑎=0 

⤇2(x+ y
𝑑𝑦

𝑑𝑥
)=2 (

𝑥2+𝑦2

2𝑥
) 

⤇2𝑥2 + 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2 

⤇𝑥2 − 𝑦2 + 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 0. 

13. Let y(x) be a non-trivial solution of the 

second order liner differential equation 

𝒅𝟐𝒚

𝒅𝒙𝟐
+ 𝟐𝒄

𝒅𝒚

𝒅𝒙
+ 𝒌𝒚 = 𝟎,𝒘𝒉𝒆𝒓𝒆 𝒄 < 0, 𝑘 >

0, 𝒄𝟐 − 𝒌. Then  

(a) |y(x)|⟶∞ 𝒂𝒔 𝒙 → ∞                                              

(b) |y(x)|⟶𝟎 𝒂𝒔 𝒙 → ∞      

(c) 𝐥𝐢𝐦
𝒙→±∞

|𝐲(𝐱)| exists & is finite                           

(d) none 

Ans. (a) 𝑚2 + 2𝑐𝑚 + 𝑘 = 0 

∴ m = 
−2𝑐±√4𝑐2−4𝑘

2
=
−2𝑐±√4 ( 𝑐2−𝑘)

2
=

−2𝑐±2𝑎

2
   [∵ 𝑐2 − 𝑘 = 𝑎2 =  𝑐2 − 𝑘] 

=  
−𝑐−𝑎

2
,
−𝑐+𝑎

2
 

The general solution of the given L.D.E. is y 

= 𝑐1𝑒
𝑚1𝑥 + 𝑐2𝑒

𝑚2𝑥 = 𝑐1𝑒
−(
𝑐+𝑎

2
)𝑥 +

𝑐2𝑒
−(
𝑐−𝑎

2
)𝑥

 

So, |y(x)|⟶∞ 𝑎𝑠 𝑥 → ∞  

14. Let y be a function of x satisfying  
𝒅𝒚

𝒅𝒙
= 𝟐𝒙𝟑√𝒚 − 𝟒𝒙𝒚. If y(0)= o and then 

y(1)equals 

(a) 
𝟏

𝟒𝒆𝟐
                      (b) 1/e                     

(c) 𝒆𝟏/𝟐                         (d) 𝒆𝟑/𝟐 

Ans. (a) 
𝑑𝑦

𝑑𝑥
(4𝑥)𝑦=2√𝑦𝑥3 (Bernoulli’s 

Equation) 

Putting√𝑦 = 𝑧, the equation reduces to  

𝑑𝑧

𝑑𝑥
+ (2𝑥)𝑧= 𝑥3(linear in z) 

∴ I. F.= e∫2𝑥𝑑𝑥 = 𝑒𝑥
2
 

Multiplying and integrating 

z𝑒𝑥
2
= ∫𝑥3𝑒𝑥

2
𝑑𝑥   (put 𝑥2 = 𝑢) 

= 
1

2
(𝑥2 − 1)𝑒𝑥

2
+ 𝑐 
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∴ General solution is given by:- √𝑦 =
1

2
(𝑥2 − 1) + 𝑐𝑒−𝑥

2
 

Since y(0)=0, so, c= 
1

2
 

∴y(1)= (
1

2𝑒
)2 =

1

4𝑒2
. 

15. Let 𝒙𝒊 are non -ve reals and s= 𝒙𝟏 +

𝒙𝟐 +⋯+ 𝒙𝒏, 𝒕𝒉𝒆𝒏 𝒙𝟏𝒙𝟐 + 𝒙𝟐𝒙𝟑 + …+

𝒙𝒏−𝟏𝒙𝒏 ≤  

(a) 
𝒔𝟐

𝟐
                           (b) 

𝒔𝟐

𝟑
                          

(c) 
𝒔𝟐

𝟒
                             (d) none 

Ans. (c) (𝑥1 + 𝑥3 + 𝑥5 +⋯)(𝑥2 + 𝑥4 +

𝑥6 +⋯)≥  𝑥1𝑥2 + 𝑥2𝑥3 + …+ 𝑥𝑛−1𝑥𝑛 

As when expanding LHS, we must get RHS 

and many additional non- negative terms 

since 𝑥𝑖 ≠ 0. 

Thus maximum achieved by taking 𝑥1 =

𝑥, 𝑥2 = 𝑠 − 𝑎 and all other terms 0, but 

x(s-x) ≤ 
𝑠2

4
 with equality when x = 

𝑠

2
 (using 

AM ≥ GM ) 

16. For any positive reals x, y, z and a is 

the arithmetic mean of x, y, z then 𝒙𝒙𝒚𝒚𝒛𝒛  

is 

(a) ≥ (𝒙𝒚𝒛)𝒂                 (b) < (𝒙𝒚𝒛)𝒂                 

(c) >(𝒙𝒚𝒛)𝒂                  (d) none 

Ans. (a) Let ≥ 𝑦 ≥ 𝑧 , then 𝑥𝑥𝑦𝑦 ≥ 𝑥𝑦𝑦𝑥, 

as (
𝑥

𝑦
) 𝑥 ≥ (

𝑥

𝑦
) 𝑦 is obviously true. 

Similarly, 𝑦𝑦𝑧𝑧 ≥ 𝑦𝑧𝑧𝑦𝑎𝑛𝑑𝑧𝑧𝑥𝑥 ≥ 𝑧𝑥𝑥𝑧 

Multiplying all these, (𝑥𝑥𝑦𝑦𝑧𝑧)2 ≥

 𝑥𝑦+𝑧. 𝑦𝑧+𝑥. 𝑧𝑥+𝑦 

⇒𝑥𝑥𝑦𝑦𝑧𝑧 × (𝑥𝑥𝑦𝑦𝑧𝑧)2 ≥

 𝑥𝑥+𝑦+𝑧. 𝑦𝑥+𝑦+𝑧. 𝑧𝑥+𝑦+𝑧 

⇒ (𝑥𝑥𝑦𝑦𝑧𝑧)3 ≥ (𝑥𝑦𝑧)3𝑎 

⇒ 𝑥𝑥𝑦𝑦𝑧𝑧 ≥ (𝑥𝑦𝑧)𝑎 

17.  The number of integers between 1 

and 567 are divisible by either 3 or 5, is 

(a) 200                     (b)  250                        

(c) 300                          (d) none 

Ans. (d)  Let z= {1, 2, 3, …., 566, 567} 

P = {x ∊ 
𝑧

3
 𝑑𝑒𝑣𝑖𝑑𝑒𝑠 𝑥} and  

Q = { x ∊ 
𝑧

5
 𝑑𝑒𝑣𝑖𝑑𝑒𝑠 𝑥 } 

Here, |P|= 189 [∵ 567= 189× 3] 

And |Q|= 113 [∵ 567= 113× 5 + 2] 

P ∩ 𝑄= set of multiple of both 3 and 5, 

| P ∩ 𝑄 |=37; |P ∪ 𝑄|= 189+ 113- 37= 265. 

18.  Sets A and B have 3 and 6 elements 

respectively.  The minimum number of 

elements          in A ∪B is 

(a) 3                               (b) 6                                  

(c) 9                                (d) none 

Ans. (b) n(A ∪ B)≥ max {𝑛 (𝐴), 𝑛 (𝐵)} 

Thus n (A ∪ B)≥ max {3, 6} = 6. 

19. A has n elements. How many (B, C) 

are such that ≠ 𝑩 ⊆ 𝑪 ⊆ 𝑨 ? 

(a)𝟐𝒏                        (b) 𝟑𝒏                       (c) 

𝟒𝒏                                  (d) none 

Ans. (b) There are (𝑛
𝑚
) choices for a subject 

B with m elements. 
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Then each of the remaining n-m elements 

can be in C or not, so there are 2𝑛−𝑚 

choices for C 

Thus the total no of pairs (B, C) is 

∑2𝑛−𝑚 . 𝑛𝑐𝑚 = ∑2
𝑚 . 𝑛𝑐𝑚= (1 + 2)𝑛 = 3𝑛 

(from binomial theorem) [∵𝑛𝑐𝑚 = 𝑛𝑐𝑛−𝑚  ] 

20. The value of the integral 

∫
|
𝟐[𝒙]

𝟑𝒙−[𝒙]
|

𝟐[𝒙]

𝟑𝒙−[𝒙]

𝟎

−𝟏𝟎
 dx, where [.] denotes greatest 

integer function is 

(a) 0                          (b) 10                              

(c) -10                                    (d) none of 

these 

Ans. (d) 

Let 𝑓(𝑥) =  
|
2[𝑥]

3𝑥−[𝑥]
|

2[𝑥]

3𝑥−[𝑥]

 

Clearly f is not defined if x= 0 and when 

3x= [x] 

So in (-10, 0), f is not defined at x= −
1

3
 . 

When x∊(−10,−
1

3
) 

[x] < 0 and 3x- [x]< 0 

So, 
[𝑥]

3𝑥−[𝑥]
> 0 ⟹ 𝑓(𝑥) = 1 

When x ∊ (−
1

3
, 0) 

[x] < 0 and 3x- [y] > 0⟹ f(x)= -1 

∫ 𝑓(𝑥)
0

−10

𝑑𝑥 =  ∫ 𝑑𝑥
−1/3

−10

+∫ (−1)
0

−1/3

𝑑𝑥

= [𝑥]
−
1
3

−10
− (𝑥)

0

−
1
3

= (−
1

3
+ 10) − (0 +

1

3
)

=  10 −
2

3
 

21. The equation ∫ (𝒂|𝐬𝐢𝐧 𝒙| +
𝒃𝐬𝐢𝐧 𝒙

𝟏+𝐜𝐨𝐬𝒙
+

𝝅

𝟒

−
𝝅

𝟒

𝒄)𝒅𝒙= 0 gives a relation between  

(a) a, b and c                  (b) a and b                   

(c) b and c                    (d) a and c 

Ans. (d) I = 2a∫ |sin 𝑥|
𝜋

4
0

𝑑𝑥 + 0 +

∫ 𝑐 𝑑𝑥
𝜋

4

−
𝜋

4

= 2𝑎 ∫ 𝑠𝑖𝑛𝑥
𝜋

4
0

𝑑𝑥 + 𝑐.
𝜋

2
 

= −2𝑎[𝑐𝑜𝑠𝑥]

𝜋
4
0
+
𝜋

2
𝑐

= −2𝑎 (
1

√2
− 1) +

𝜋

2
𝑐 

22. Let f(x) = max. {2- x, 2, 1+ x} then 

∫ 𝒇(𝒙)
𝟏

−𝟏
𝒅𝒙= 

(a) 0                          (b) 2                         (c) 

9/2                                (d) none of these 

Ans. (c) ∴ f(x) = 2-x,    x≤ 0 

                        = 2,       0≤x≤1 

                        = 1+ x,  x ≥1 

I= ∫ 𝑓(𝑥)
1

−1
𝑑𝑥 =  ∫ 𝑓(𝑥)𝑑𝑥

0

−1
+

∫ 𝑓(𝑥)𝑑𝑥
1

0
= ∫ (2 − 𝑥)𝑑𝑥

0

−1
+ ∫ 2 𝑑𝑥

1

0
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= [2𝑥 −
𝑥2

2
]
0

−1
+ 2[𝑥]

1

0

= 0 − (−2 −
1

2
) + 2(1 − 0)

=
9

2
 

23. Let f(x) be a continuous function such 

that f(a-x)+f(x)=0 for all x ∊[0, a].  

Then ∫
𝒅𝒙

𝟏+𝒆𝒇(𝒙)

𝒂

𝟎
 equals 

(a) a                     (b) a/2                       (c) ½ 

f(a)                            (d) none of these 

Ans. (b) Given, f(a- x)= - f(x) 

Now 2I= ∫
𝑑𝑥

1+𝑒𝑓(𝑥)
𝑎

0
+ ∫

𝑑𝑥

1+𝑒𝑓(𝑎−𝑥)
𝑎

0
=

∫
𝑑𝑥

1+𝑒𝑓(𝑥)
𝑎

0
+ ∫

𝑑𝑥

1+𝑒−𝑓(𝑥)
𝑎

0
= ∫ 𝑑𝑥

𝑎

0
= 𝑎  

∴ 𝐼 =
𝑎

2
 

24. Let f(x) be an integrable odd function 

in [-5, 5] such that f(10+ x)= f(x), 

then ∫ 𝐟(𝐭)𝐝𝐭
𝟏𝟎+𝐱

𝐱
 equals 

(a) 0                            (b) 2∫ 𝐟(𝐱)𝐝𝐱
𝟓

𝐱
                    

(c) > 0                      (d) none of these 

Ans. (a) Let y= ∫ 𝑓(𝑡)
𝑥+10

𝑥
𝑑𝑡…… (1) 

Then, 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥 + 10). 1 − 𝑓(𝑥) = 0  [∵ 

f(10+x)= f(x)] 

∴ y is independent of x. 

Putting x= -5 in (1), we get 

y= ∫ 𝑓(𝑡)
5

−5
𝑑𝑡 = 0 …………. (2) 

Since y is independent of x, therefore y has 

same value for all x. 

∴∫ 𝑓(𝑥)
𝑥+10

𝑥
𝑑𝑥= 0 

25. If  ∫ 𝒙𝒆𝒙
𝟐𝟏

𝟎
𝒅𝒙 = 𝒌∫ 𝒆𝒙

𝟐𝟏

𝟎
𝒅𝒙, then 

(a) k > 1                          (b)  0 < k < 1                                

(c) k=1                          (d) none 

Ans. (b) Here 0 < x < 1 

⟹0< x𝑒𝑥
2
< 𝑒𝑥

2
⟹ 0 < ∫ 𝑥𝑒𝑥

2
𝑑𝑥

1

0
<

 ∫ 𝑒𝑥
2
𝑑𝑥

1

0
⟹ 0 < 𝑘 ∫ 𝑒𝑥

2
𝑑𝑥

1

0
< ∫ 𝑒𝑥

2
𝑑𝑥

1

0
 

⟹ 0 < 𝑘

< 1                                 [𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 ∫ 𝑒𝑥
2
𝑑𝑥

1

0

] 

26. Consider the parabola 3𝒚𝟐 − 𝟒𝒚 −

𝟔𝒙 + 𝟖=0. The points on the axis of this 

parabola from where 3 distinct normals 

can be drawn are given by 

(a) (
𝟐

𝟑
, 𝒉) ,𝒘𝒉𝒆𝒓𝒆 𝒉 >  

𝟐𝟗

𝟏𝟖
                                         

(b) (𝒉,
𝟏

𝟑
) ,𝒘𝒉𝒆𝒓𝒆 𝒉 >  

𝟏𝟗

𝟏𝟖
    

(c) (𝒉,
𝟐

𝟑
) , 𝒘𝒉𝒆𝒓𝒆 𝒉 >  

𝟐𝟗

𝟏𝟖
                                           

(d) none of these 

Ans. (c) 

Given parabola is (𝑦 −
2

3
)
2

= 2(𝑥 −
10

9
) 

Let X= 𝑥 −
10

9
, 𝑌 = 𝑦 −

2

3
 

∴𝑌2 = 2𝑥 becomes the equation of parabola 

with reference to the new origin. 

Hence equation of normal will be 
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Y= mX – m- 𝑥 −
𝑚3

2
 

  [∵ three normals are drawn from point on 

the axis (H, 0) (say)] 

∴ H= 1 +
𝑚2

2
  ⟹ m= ±√2𝐻 − 1 

For m to be real, H > ½  

⟹ ℎ −
10

9
>
1

2
⟹ ℎ >

29

18
 

[where h is the abscissa w.r.t. the previous 

co-ordinate system] 

Hence the points are given by 

(ℎ,
2

3
) , 𝑤ℎ𝑒𝑟𝑒 ℎ >

29

18
. 

27. A (𝒙𝟏, 𝒚𝟏) and B (𝒙𝟐, 𝒚𝟐) are any two 

points on the parabola y= c𝒙𝟐 + 𝒃𝒙 + 𝒂. 

If P(𝒙𝟑, 𝒚𝟑) be the point on the arc AB 

where the tangent is parallel to the chord 

AB, then 

(a) 𝒙𝟐 is the A.M. between 𝒙𝟏𝒂𝒏𝒅 𝒙𝟑         

(b) 𝒙𝟐 is the G.M. between 𝒙𝟏𝒂𝒏𝒅 𝒙𝟑 

(c) 𝒙𝟐 is the H.M. between 𝒙𝟏𝒂𝒏𝒅 𝒙𝟑         

(d) none of these 

Ans. (d) Slope of tangent at p= 
𝑑𝑦

𝑑𝑥
𝑎𝑡 (𝑥3, 𝑦3) = 2𝑎𝑥3 + 𝑏 =

𝑦2−𝑦1

𝑥2−𝑥1
                

[given]……….(A) 

∵ A and B lie on the parabola, 

∴𝑦1 = 𝑎𝑥1
2 + 𝑏𝑥1 + 𝑐 ………………(1) 

And 𝑦2 = 𝑎𝑥2
2 + 𝑏𝑥2 + 𝑐 ……………..(2) 

∴ 𝑦1 − 𝑦2 = [𝑎(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) +

𝑏](𝑥1 − 𝑥2) 

∴ 
𝑦2−𝑦1

𝑥2−𝑥1
= 𝑎 (𝑥1 + 𝑥2) +  𝑏 

∴ From (A), a(𝑥1 + 𝑥2) + 𝑏 = 2𝑎𝑥3 +  𝑏 

⟹ 
𝑥1+𝑥2

2
= 𝑥3  

28. Let P (𝛼,β) be any point on parabola 

𝒚𝟐 = 𝟒𝒙(𝟎 ≤ 𝜷 ≤ 𝟐). M is the foot of 

perpendicular from the focus S to the 

tangent at P, then the maximum value of 

area of 

(a) 1                           (b) 2                         (c) 
𝝅

𝟑
                             (d) 

𝝅

𝟔
   

Ans. (a) Let 𝛼= 𝑡2, 𝛽 = 2𝑡 

∴ 0≤ 2t ≤ 2  ⟹ 0≤ t ≤ 1 

Equation of tangent at (𝑡2, 2𝑡) 𝑖𝑠 𝑦𝑡 = 𝑥 +

𝑡2 

If S be the focus, then S ≡(1, 0) 

SM= 
|1+𝑡2|

√1+𝑡2
= √1 + 𝑡2 

PS= √(𝑡2 − 1)2 + 4𝑡2 = (𝑡2 + 1) 

PM= √𝑃𝑆2 − 𝑆𝑀2 = 𝑡 √𝑡2 + 1 

Area of 𝛥 PMS= ½ .PM.SM= ½ 

.t√𝑡2 + 1. √𝑡2 + 1 

=
𝑡(𝑡2+1)

2
  

Which is an increasing function hence its 

maximum value occurs at t= 1 

∴ Maximum area= 1 sq. unit. 

 

29. The point A on the parabola 𝒚𝟐 = 𝟒𝒙 

for which |AC-AB | is maximum, where 

B≡ (𝟎, 𝒂) 𝒂𝒏𝒅 𝑪 ≡ (−𝒂, 𝟎) is 
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(a) (a, 2a)                 (b) (4a, 4a)                   

(c) (a- 2a)                      (d) none of 

these 

Ans. (a) 

For any three points A, B, and C 

|AC - AB|≤ BC 

∴ required point A will be on the 

intersection of BC and the parabola. 

∴ A≡ (a, 2a) [∵ AB ia tangent to the 

parabola] 

30. The mean and variance of a binomial 

variable X are 2 and 1 respectively. If X 

takes values greater than 1, then its 

probability will be 

(a) 
𝟓

𝟏𝟔
                               (b) 

𝟏𝟏

𝟏𝟔
                                 

(c) 
𝟏

𝟒
                                   (d) none of these 

Ans. (b) 

Given, np= 2, npq= 1 

∴ q= ½ , p= ½ , n= 4 

Now p(X> 1)= 1- P(X≤ 1) 

= 1- [P(X=0)+P(X= 1)] 

= 1- [4𝐶0𝑝
0𝑞4 + 4𝐶1𝑝

1𝑞3] = 1 − [(
1

2
)
4

+

4.
1

2
(
1

2
)
3

] =  1 −
5

16
=
11

16
 

 

 

 

 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 6 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 
 

1. If x ∊={1, 2, 3,……, 9}and 

fn(x)=xxx……x (n digits),then  

𝒇𝒏
𝟐(3)+𝒇𝒏(2) = 

(a) 2𝒇𝟐𝒏(1)                                                                 

(b) 𝒇𝒏
𝟐(1) 

(c) 𝒇𝟐𝒏(1)                                                                   

(d)−𝒇𝟐𝒏(4) 

Ans. (c) 

𝑓𝑛(𝑥) = 𝑥. 1 + 𝑥. 10
2 + 𝑥. 103 +

⋯𝑥. 10𝑛−1 = 𝑥
(10𝑛−1)

10−1
=
𝑥

9
(10𝑛 − 1)  

∴𝑓𝑛
2(3) + 𝑓𝑛(2) = [

3

9
(10𝑛 − 1)]

2

+

2

9
(10𝑛 − 1) =

1

9
(10𝑛 − 1)(10𝑛 − 1 + 2) =

10𝑛−1

9
 = 𝑓2𝑛(1) 

2. If 𝒂𝒊∊R-{0}, i=1, 2, 3, 4 and x∊R and 

(∑ 𝒂𝒊
𝟐𝟑

𝒊=𝟏 )𝒙𝟐 - 2x(∑ 𝒂𝒊
𝟑
𝒊=𝟏 𝒂𝒊+1) + ∑ 𝒂𝒊

𝟐𝟒
𝒊=𝟐  ≥ 

0, 

Then 𝒂𝟏,𝒂𝟐,𝒂𝟑,𝒂𝟒 are in 

(a) A.P.                            (b) G.P.                         

(c) H.P.                           (d) none of these 
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Ans. (b) 

Given quadratic expression≥ 0 

∴ D ≤ 0 

⟹(∑ 𝑎𝑖𝑎𝑖 + 1
3
𝑖=1 )2 −

(∑ 𝑎𝑖
23

𝑖=1 )(∑ 𝑎𝑖
24

𝑖=1 ) ≤ 0 

⟹(𝑎1𝑎2 + 𝑎2𝑎3 + 𝑎3𝑎4)
2 − (𝑎1

2 + 𝑎2
2 +

𝑎3
2)(𝑎2

2 + 𝑎3
2 + 𝑎4

2) ≤ 0 

⟹(𝑎2
2 − 𝑎1𝑎3)

2 + (𝑎3
2 − 𝑎2𝑎4)

2 +

(𝑎2𝑎3 − 𝑎1𝑎4)
2 = 0 

⟹(𝑎2
2 − 𝑎1𝑎3)

2 = 0, (𝑎3
2 − 𝑎2𝑎4)

2 =

0, (𝑎2𝑎3 − 𝑎1𝑎4)
2 = 0 

⟹
𝑎2

𝑎1
=
𝑎3

𝑎2
=
𝑎4

𝑎3
 

3. Let a = 
𝟏

𝒏!
 + ∑

𝒓

(𝒓+𝟏)!

𝒏−𝟏
𝒓=𝟏 , b = 

𝟏

𝒎!
 + 

∑
𝒓

(𝒓+𝟏)!

𝒎−𝟏
𝒓=𝟏   then a+b equals 

(a) 0                         (b) 1                       (c)2                                  

(d) none of these 

Ans. (c) 

𝑟

(𝑟+1)!
=
𝑟+1−1

(𝑟+1)!
=

1

𝑟!
−

1

(𝑟+1)!
  

∴ ∑
𝑟

(𝑟+1)!
= 1 −

1

𝑛!
 𝑛−1

𝑟=1 ⟹ 𝑎 = 1 

Similarly, 
1

𝑚!
+ ∑

𝑟

(𝑟+1)!
= 1𝑚

𝑟=1  

∴ a= 1, b=1 ⟹a+ b= 2 

4. If ∑ [
𝟏

𝟑

𝒌
𝒏=𝟏 +

𝒏

𝟗𝟎
] =21, where [x] denotes 

the integral part of x, then k= 

(a) 84                               (b) 80                             

(c) 85                      (d) none of these 

Ans. (b) 

21= ∑ [
1

3
+

𝑛

90
] , 𝑤ℎ𝑒𝑟𝑒 𝑚 = 𝑘!𝑘

𝑛=1  

= [
1

3
+

1

90
] + [

1

3
+

2

90
] + ⋯+ [

1

3
+
59

90
] +

[
1

3
+
60

90
] + [

1

3
+
61

90
] + ⋯+ [

1

3
+

𝑘

90
] 

= (0 + 0 +⋯𝑡𝑜 59 𝑡𝑒𝑟𝑚𝑠).+(1 + 1 +

⋯𝑡𝑜 (𝑘 − 59)𝑡𝑒𝑟𝑚𝑠)  

∴ 21= k- 59⟹ k= 80. 

5.  Let f: R→R such that f(x) is 

continuous and attains only rational value 

at all real x      and f(3)=4. If  

𝒂𝟏,𝒂𝟐,𝒂𝟑,𝒂𝟒,𝒂𝟓 are in H.P., then 

∑ 𝒂𝒓
𝟒
𝒓=𝟏 𝒂𝒓+𝟏= 

(a) f(5).𝒂𝟏𝒂𝟓             (b) f(3).𝒂𝟒𝒂𝟓                 

(c) f(3).𝒂𝟏𝒂𝟐                     (d) f(2).𝒂𝟏𝒂𝟑  

Ans. (a) 

Since f(x) is continuous and attains only 

rational values 

∴ f(x)= constant= 4 

∴ f(2) = f(3) = f(5) = 4 

Since 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 are in H.P. 

∴  𝑎1 𝑎2 + 𝑎2𝑎3 + 𝑎3 𝑎4 + 𝑎4 𝑎5 =

4𝑎1 𝑎5 = 𝑓(5). 𝑎1 𝑎5 

6.  If three successive terms of a G.P. with 

common ratio r >1 from the sides of a 

triangle and [r] denotes the integral part 

of x, then [r] + [-r]= 

(a) 0                             (b) 1                            

(c) -1                                 (d) none 

Ans. (b) 

Since root of equation 
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F(x)= 𝑥2 + 2(𝑎 − 3)𝑥 + 9 = 0 lie between-

6 and 1 

∴(i) D≥ 0  (ii) f(-6)> 0   (iii) f(1) > 0   (iv) -

6 <
𝛼+𝛽

2
  (v) 1 > 

𝛼+𝛽

2
 

Hence 6 ≤ 𝛼 <
27

4
 

∴|a| =6 

𝑎3 = 2 + 3𝑑 = 2 + 3.  
6−2

21
= 2 +

4

7
=
18

7
  

1

ℎ18
=
1

2
+ 18. (

1

6
−
1

2

21
) =

1

2
−
2

7
=

3

14
  

∴ 𝑎3ℎ18 =
18

7
.
14

3
= 12 

7. If 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓 are in H.P. then 
𝟏

𝒙𝟏𝒙𝟓
(∑ 𝒙𝒌

𝟒
𝒌=𝟏  𝒙𝒌+𝟏) is a root of equation 

(a) 𝒙𝟐 − 𝟑𝒙 + 𝟐 = 𝟎                                                   

(b) 𝒙𝟐 − 𝟓𝒙 − 𝟒 = 𝟎  

(c) 𝒙𝟐 − 𝟗𝒙 + 𝟐𝟎 = 𝟎                                                 

(d)  𝒙𝟐 − 𝟔𝒙 − 𝟖 = 𝟎 

Ans.(c) 

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5  are in H.P. 

∴∑ 𝑥𝑘𝑥𝑘+1
4
𝑘=1 = 𝑥1𝑥2 + 𝑥2 𝑥3 + 𝑥3𝑥4 +

𝑥4 𝑥5 = 4𝑥1𝑥5 

∴
1

𝑥1𝑥5
∑ 𝑥𝑘𝑥𝑘+1
4
𝑘=1 = 4 

Clearly, 4 is a root of equation 

𝑥2 − 9𝑥 + 20 =0. 

 

8. Let f : (0, ∞)⟶R and F(x)= ∫ 𝒇(𝒕)
𝒙

𝟎
𝒅𝒕 

If F(𝒙𝟐) =  𝒙𝟐(𝟏 + 𝒙), 𝒕𝒉𝒆𝒏 𝒇(𝟒) = 

(a) 5/4                                  (b) 7                                    

(c) 4                                     (d) 2 

Ans. (c) 

Given, F(x)= ∫ 𝑓(𝑡)
𝑥

0
𝑑𝑡 ………(1) 

𝐹(𝑥2) =  𝑥2(1 + 𝑥) ………..(2) 

From (1), F’(x)= f(x) 

∴ f(4)= F’(4)…………..(3) 

From (1), 

F’(𝑥2).2x= 2x+ 3𝑥2 

⟹ F’(𝑥2) =
2+3𝑥

2
 [∵ 0 < 𝑥 <  ∞ ∴ 𝑥 ≠ 0] 

⟹ 𝐹′(4) =
2+6

2
= 4 [Put x= 2] 

∴ from (3), f(4)= 4 

9. If n > 1 then ∫
𝒅𝒙

(𝒙+√𝟏+𝒙𝟐) 𝒏
 

∞

𝟎
= 

(a) 
𝒏

𝒏𝟐−𝟏
                               (b) 

𝒏𝟐−𝟏

𝒏
                             

(c) −
𝒏

𝒏𝟐−𝟏
                             (d) 

𝟏−𝒏𝟐

𝒏
 

Ans. (a) 

Put z= x+√1 + 𝑥2  

∴ z- x= √1 + 𝑥2 => 𝑧2 + 𝑥2 − 2𝑧𝑥 = 1 +

𝑥2 => 𝑥 =
𝑧2−1

2𝑧
 

∴ 𝑑𝑥 =
1

2

[𝑧. 2𝑧 − (𝑧2 − 1). 1]

𝑧2
𝑑𝑧

=
𝑧2 + 1

2𝑧2
𝑑𝑧 

When x= 0, z= 1 and when x= ∞, 𝑧 = ∞ 
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∴ I= ∫
1

𝑧𝑛

∞

1

𝑧2+1

2𝑧2
𝑑𝑧 =

1

2
∫ (𝑧−𝑛 +
∞

1

𝑧−𝑛−2) 𝑑𝑧 =
1

2
[
𝑧−𝑛+1

−𝑛+1
+
𝑧−𝑛−1

−𝑛−1
]∞
1

 

=
1

2
[0 − (

1

1 − 𝑛
−

1

1 + 𝑛
)] =

1

2
(−

2𝑛

1 + 𝑛2
)

=
𝑛

𝑛2 − 1
  

10. If f(x)= ae2x+ bex +cx satisfies the 

conditions f(0)= -1, f’(log 2)= 28, 

 ∫ [𝒇(𝒙) − 𝒄𝒙]𝒅𝒙
𝐥𝐨𝐠 𝟒

𝟎
=
𝟑𝟗

𝟐
, then 

(a) a= 5, b=6, c= 3            (b) a= 5, b= - 6, 

c= 0            (c) a= -5, b=6, c= 3           (d) 

none 

Ans. (b) 

Given f(x)= 𝑎𝑒2𝑥 + 𝑏𝑒𝑥 + 𝑐𝑥 ……(1) 

𝑔𝑖𝑣𝑒𝑛, 𝑓(0) =  −1 ⟹ 𝑎 + 𝑏 =  −1…..(2) 

f’(x)= 2 𝑎𝑒2𝑥 + 𝑏𝑒𝑥 + 𝑐𝑥 

∴f’ (log 2)= 𝑎𝑒log𝑒 4 + 𝑏𝑒log𝑒 2 + 𝑐 

Given 8a+ 2b+c= 28……….(3) 

Given, ∫ (𝑎𝑒2𝑥 + 𝑏𝑒𝑥)
log4

0
𝑑𝑥 =

39

2
  

⟹ [
𝑎

2
𝑒2𝑥 + 𝑏𝑒𝑥]

log 4

0
=
39

2
 

⟹ 
𝑎

2
𝑒log16 + 𝑏𝑒log4 − (

𝑎

2
+ 𝑏) =

39

2
 

⟹ 15a + 6b= 39……….(4) 

Thus a= 5, b= -6, c= 0 

11. Let  
𝒅

𝒅𝒙
𝒇(𝒙) =  

𝒆𝐬𝐢𝐧 𝒙

𝒙
, 𝒙 >

0.  𝐼𝑓 ∫
𝟐𝒆𝐬𝐢𝐧 𝒙

𝟐

𝒙

𝟒

𝟏
𝒅𝒙 = 𝒇(𝒌) −  𝒇(𝟏),  

then one of the possible value of k is 

(a) -4                                (b) 0                           

(c) 2                                      (d) 16 

Ans. (d) 

Given, 
𝑑

𝑑𝑥
(𝑓(𝑥)) =

𝑒sin 𝑥

𝑥
, 𝑥 > 0  

𝑛𝑜𝑤 𝐼 =  ∫
2𝑒𝑠𝑖𝑛𝑥

2

𝑥

4

1
𝑑𝑥 [put z= 𝑥2, 𝑑𝑧 =

2𝑥 𝑑𝑥] 

∴ I= ∫
2𝑒𝑠𝑖𝑛𝑥

2

𝑥2

4

1
𝑑𝑥 =  ∫

𝑒sin 𝑧

𝑧

16

1
𝑑𝑧 =

[𝑓(𝑧)] 16
1
= 𝑓(16) − 𝑓(1) 

 

∴ f(k)= f(16) 

∴ one possible value of k= 16 

12. All the values of a for which ∫ [𝒂𝟐 +
𝟐

𝟏

(𝟒 − 𝟒𝒂)𝒙 + 𝟒𝒙𝟑] 𝒅𝒙 ≤ 𝟏𝟐 are given by 

(a) a= 3                     (b) a ≤ 𝟒                          

(c) 0≤ 𝒂 ≤ 𝟑                     (d) none 

of these 

Ans. (a) 

 ∫ [𝑎2 + (4 − 4𝑎)𝑥 + 4𝑥3]
2

1

𝑑𝑥

= 𝑎2[𝑥]
2

1
+ (2 − 2𝑎)[𝑥2]

2

1

+ [𝑥4]
2

1
 

= 𝑎2 + (2 − 2𝑎)3 + 15 , 𝐺𝑖𝑣𝑒𝑛, 𝑎2

− 6𝑎 + 21 ≤ 12 

⟹ 𝑎2 − 6𝑎 + 9 ≤ 0 ⟹ (𝑎 − 3)2

≤ 0 ⟹ (𝑎 − 3)2 = 0

⟹ 𝑎 = 3 
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13. 𝐋𝐭
𝒏→∞

∑
(𝟐𝒓)𝒌

𝒏𝒌+𝟏
𝒏
𝒓=𝟏 , 𝒌 ≠ −𝟏, is equal to  

(a) 
𝟐𝒌

𝒌−𝟏
                               (b) 

𝟐𝒌

𝒌
                               

(c) 
𝟏

𝒌−𝟏
                               (d) 

𝟐𝒌

𝒌+𝟏
 

Ans. (d) 

Reqd. limit= Lt
𝑛→∞

∑
(2𝑟)𝑘

𝑛𝑘+1
𝑛
𝑟=1 =

Lt
𝑛→∞

2𝑘 ∑
𝑟𝑘

𝑛𝑘.𝑛

𝑛
𝑟=1 = Lt

𝑛→∞
2𝑘 ∑ (

𝑟

𝑛
)
𝑘

𝑛
𝑟=1 =

1

𝑛
= 2𝑘 ∫ 𝑥𝑘𝑑𝑥

1

0
= 2𝑘 . [

𝑥𝑘+1

𝑘+1
] 1
0
=

2𝑘

𝑘+1
  

14. 𝐋𝐭
𝒏→∞

{
𝒏!

(𝒌𝒏)𝒏
}  
𝟏

𝒏, 𝒌 ≠ 𝟎, is equal to 

(a) 
𝒌

𝒆
                              (b) 

𝒆

𝒌
                                

(c) 
𝟏

𝒌𝒆
                                     (d) none of 

these 

Ans. (c) 

Let P= Lt
𝑛→∞

1

𝑘
(
𝑛!

𝑛𝑛
)
1/𝑛

=
1

𝑘
Lt
𝑛→∞

(
𝑛!

𝑛𝑛
)
1/𝑛

=
1

𝑘𝑒
 

 

15. 𝐋𝐭
𝒏→∞

∑ √𝒏

(√𝒓 (𝟑√𝒓+𝟒√𝒏)𝟐
𝒏
𝒓=𝟏 = 

(a) 
𝟏

𝟕
                              (b) 

𝟏

𝟏𝟎
                                   

(c) 
𝟏

𝟏𝟒
                                   (d) none of these 

Ans. (c) 

Required  limit 

= Lt
𝑛→∞

∑ √𝑛

√𝑟.𝑛(3√
𝑟

𝑛
+4)

2
𝑛
𝑟=1 =

 Lt
𝑛→∞

∑
1

√
𝑟

𝑛
 (3+√

𝑟

𝑛
+4)

2
𝑛
𝑟=1 .

1

𝑛
 

= ∫
1

√𝑥 (3√𝑥 + 4)2

1

0

𝑑𝑥 

Put z= 3√𝑥 + 4, then dz= 
3

2√𝑥
 𝑑𝑥 

When x= 0, z= 4, when x= 1, z= 7 

∴Reqd. limit= 
2

3
∫

𝑑𝑧

𝑧2

7

4
=
2

3
[−

1

𝑧
] 7
4
= −

2

3
[
1

7
−

1

4
] =  −

2

3
(−

3

28
) =

1

14
 

16. If f(x)= excosx.sinx, |x|≤ 𝟐 =

𝟐, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 𝒕𝒉𝒆𝒏 ∫ 𝒇(𝒙)𝒅𝒙
𝟑

𝟐
 is equal to 

(a) 0                                 (b) 1                                  

(c) 2                                    (d) 3 

Ans. (c) 

∫ 𝑓(𝑥)
3

−2

𝑑𝑥 =  ∫ 𝑓(𝑥)
2

−2

𝑑𝑥 + ∫ 𝑓(𝑥)
3

2

𝑑𝑥

=  ∫ 𝑒cos𝑥 . sin 𝑥 
2

−2

𝑑𝑥

+ ∫ 2 𝑑𝑥 = 0 + 2(3 − 2),
3

2

 

= 2  [∵𝑒cos𝑥. sin 𝑥  𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

2] 

18. The area of the region enclosed by the 

curves y= xex and y= xe –x and the line x= 

1, is 

(a) 1/e                         (b) 1- 1/e                            

(c) 2/e                                     (d) 1- 2/e 

Ans. (c) 

y=x𝑒𝑥 …….(1) 

y= x𝑒−𝑥……(2) 

equating y from (1) and (2) we get 
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x𝑒𝑥 = 𝑥𝑒−𝑥⟹ 𝑥(𝑒𝑥 − 𝑒−𝑥) = 0 

⟹x= 0 

∴ Required area= ∫ (𝑦1 − 𝑦2)
1

0
𝑑𝑥 =

 ∫ (𝑥𝑒𝑥 − 𝑥𝑒−𝑥)
1

0
𝑑𝑥 = [𝑥𝑒𝑥 −

𝑒𝑥—𝑥𝑒−𝑥 − 𝑒−𝑥) 1
0
 

= (𝑒 − 𝑒) − (0 − 𝑒0)

+ [(𝑒−1 + 𝑒−1) − (0 + 1)]

=
2

𝑒
 

19. The area bounded by y = xe|x| and the 

lines |x|=1,  y= 0 is 

(a) 1                            (b) 2                                   

(c) 4                                         (d) 6 

Ans. (b) 

For x ≥ 0, curve is y= x𝑒𝑥……..(1) 

 

For curve (1), 
𝑑𝑦

𝑑𝑥
= 𝑒𝑥(1 + 𝑥) >  0 

∴ y is increasing. 

𝑑2𝑦

𝑑𝑥2
= 𝑒𝑥(2 + 𝑥) > 0 

∴ curve is convex downward. 

For x ≤ 0, y= x𝑒−𝑥 

∴
𝑑𝑦

𝑑𝑥
= 𝑒−𝑥(1 − 𝑥) >  0 

∴ y is increasing 

𝑑2𝑦

𝑑𝑥2
= 𝑒−𝑥 − 𝑒−𝑥(1 − 𝑥) > 0

=  −𝑒−𝑥(2 − 𝑥) < 0 

∴ curve is concave downward. 

Required area = 2∫ 𝑥𝑒𝑥𝑥
1

0
𝑑𝑥 = 2[𝑥𝑒𝑥 −

𝑒𝑥] 1
0
= 2[(𝑒 − 𝑒) − (0 − 𝑒0)] = 2 

 

20. A bag contains unlimited number of 

white, red, black, and blue balls. The 

number of ways of selecting 10 balls so 

that there is at least one ball of each 

colour is 

(a) 180                    (b0 270                           

(c) 192                                  (d) none 

Ans. (d) Number of ways= coefficient of 

𝑋10𝑖𝑛 (𝑋 + 𝑋2 + 𝑋3 +⋯)4 

= coefficient of 𝑋10𝑖𝑛 𝑋4(1 − 𝑋)−4 

= coefficient of 𝑋6𝑖𝑛  (1 − 𝑋)−4 

= 
(6+1)(6+2)(6+3)

1.2.3
  [∵coefficient of 𝑥𝑟𝑖𝑛(1 −

𝑋)−4 =
(𝑟+1)(𝑟+2)(𝑟+3)

1.2.3
] 

= 
7×8×9

1×2×3
 = 84. 

21. The number of ways of selecting r 

balls with replacement out of n balls 

numbered  

1, 2, 3, …., 100 such that  the largest 

numbered selected is 10 is 271, then r= 

(a) 3                               (b) 4                            

(c) 5                                  (d) none 

Ans. (a) from the given condition, we can 

write 

10𝑟 − 9𝑟= 271, 

Applying Trial and error method:- 

r= 1,     10-9= 1 
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r =2,      102 − 92= 19 

r = 3,      103 − 93 = 271 

∴ r= 3. 

22. N men and n women sit along a line 

alternatively in x ways and along a circle 

in y ways such that x= 10y, then the 

number of ways in which n men can sit at 

a round table so that all shall not have 

same neighbours is  

(a) 6                              (b) 12                              

(c) 36                                     (d) 

none 

Ans. (b) 
𝑥

𝑦
=

2.⎿𝑛⎿𝑛

⎿𝑛−1 ⎿𝑛
= 2𝑛 

⇒  x = 2ny = 10y  ⇒ n = 5 

Hence the required number = 
1

2
×⎿4= 12. 

 

23. A contest consists of predicting the 

result (win, draw or defeat) of 10 

matches. The number of ways in which 

one entry contains at least 6 incorrect 

results is 

(a) ∑ 𝟏𝟎𝒄𝒓 . 𝟑
𝒓𝟏𝟎

𝒓=𝟔                        (b) 

∑ 𝟏𝟎𝒄𝒓 . 𝟐
𝒓𝟓

𝒓=𝟏                  (c) 

∑ 𝟏𝟎𝒄𝒓
𝟏𝟎
𝒓=𝟔               (d) none 

Ans. (d) Since total number of ways 

predicting the results of one match is 3 , so 

results of 10 match is 310, now number of 

ways that the result of one match is correct 

is 1 and also number of ways to predict 

wrongly of one match is 2 . 

No. of ways to predict wrongly exactly r 

matches =10𝑐𝑟 . 2
𝑟 110−𝑟 

∴ The required number is 310 −

∑ 10𝑐𝑟 . 2
𝑟4

𝑟=1  

24. Let 1 to 20 are placed in any around a 

circle. Then the sum of some 3 

consecutive numbers must be at least  

(a) 30                          (b) 31                        

(c) 32                             (d) none 

Ans. (c) Suppose 𝑥1, 𝑥2, … . , 𝑥20 be the 

numbers placed around the circle. Now the 

mean of the 20 sums of 3 consecutive 

numbers such as (𝑥1 + 𝑥2 + 𝑥3), (𝑥2 + 𝑥3 +

𝑥4), …..,  

(𝑥19 + 𝑥20 + 𝑥21), (𝑥20 + 𝑥1 + 𝑥2) is 
1

20
{3(𝑥1 + 𝑥2 +⋯+ 𝑥20)} =

3×20×21

2×20
 = 

31.5 

Thus from Pigon hole principle that at least 

one of the sums must be ≥ 32. 

 

25. The number of different seven–digit 

numbers can be written using only there 

digits 1, 2, 3 under the condition that the 

digit 2 occurs twice in each number is 

(a) 512                          (b) 640                         

(c) 672                               (d) none 

Ans. (c) We have to put 2 twice in each 

numbers, so any 2 out of the 7 places can be 

chosen in 7𝑐2 ways. The remaining 5 places 

can be filled with the other two numbers in 

25 ways. 
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The required numbers of numbers are 7𝑐2 ×

25= 672. 

 

26. The value of {∑ (𝒌
𝒊
)( 𝑴−𝒌
𝟏𝟎𝟎−𝒊

)(
𝑴−𝒌

𝟏𝟎𝟎−𝒊
)} /𝟏𝟎𝟎

𝒊=𝟎

 ( 𝑴
𝟏𝟎𝟎
), where M - k > 100, k >100, is 

(a) 
𝒌

𝑴
                               (b) 

𝑴

𝒌
                                  

(c) 
𝒌

𝑴𝟐
                                    (d) none 

Ans. (a) {∑ (𝑘
𝑖
)( 𝑀−𝑘
100−𝑖

)(
𝑀−𝑘

100−𝑖
)}/ ( 𝑀

100
)100

𝑖=0  

= (
𝑘

𝑀−100
)∑ [

(𝑘𝑖)(
𝑀−𝑘
100−𝑖)

( 𝑀100)
−∑

𝑖(𝑘𝑖)(
𝑀−𝑘
100−𝑖)

(𝑀−100)( 𝑀100)

100
𝑖=0 ]100

𝑖=0  

= 
𝑘

𝑀−100
.
 ( 𝑀100)

 ( 𝑀100)
−

𝑘

𝑀
.100 ( 𝑀100)

(𝑀−100) ( 𝑀100)
 = 

𝑘

𝑀
. 

 

27. Let n be an odd positive integer. If 

𝒊𝟏, 𝒊𝟐, … . , 𝒊𝒏 is a permutation of 1, 2, 3, 

…., n.  

Then (1-𝒊𝟏)(2-𝒊𝟐)….(n-𝒊𝒏)is 

(a) Odd                         (b) even                          

(c) prime                     (d) none 

Ans. (b) since n is odd, let n= 2m+ 1, where 

m is a non-negative integer.  

Then set s ={1, 2, …, n} contains m+ 1 odd 

nos, namely 2, 4, …, 2m. 

This is also true for the 

permutation 𝑖1, 𝑖2, … . , 𝑖𝑛 of s.  

Consider m+ 1 numbers1 − 𝑖1, 3 − 𝑖3, …. n 

- 𝑖𝑛 which are of the from r - 𝑖𝑟, where r is 

odd. 

Since 𝑖5 is even for only m values of s, by 

P.H.P. , one of the m+ 1 , numbers, 

𝑖1, 𝑖2, … . , 𝑖𝑛, say it is odd, where t is also 

odd. Hence t-𝑖𝑡 is even and the product (1-

𝑖1)(2-𝑖2)….(n-𝑖𝑛) is even. 

 

28. The value of  ∑ 𝐬𝐢𝐧−𝟏
√𝒏−√𝒏−𝟏

√𝒏(𝒏+𝟏)
=∞

𝒏=𝟏  

(a) 
𝝅

𝟒
                               (b) 

𝝅

𝟐
                               

(c) - 
𝝅

𝟐
                                      (d) 

𝝅

𝟑
 

Ans. (b) 

𝑡𝑛 = sin
−1 (

√𝑛−√𝑛−1

√𝑛(𝑛+1)
)  

∴𝑡𝑛 = sin
−1 1

√𝑛
− sin−1

1

√𝑛+1
 

∴𝑆𝑛 = sin
−1(1) − sin−1

1

√𝑛+1
 

∴ 𝑆∞ = Lt
𝑛→∞

𝑆𝑛 = sin
−1(1) − sin−1(0) 

= 
𝜋

2
− 0 =  

𝜋

2
 

 

29. The number of ways to give 16 

different things to 3 persons, according as 

A< B < C       so that B gets 1 more than A 

and C get 2 more than B, is 

(a) 4!5!7!                     (b) 
𝟒!𝟓!𝟕!    

𝟏𝟔!
                         

(c) 
𝟏𝟔!    

𝟒!𝟓!𝟕!    
                           (d) none 

Ans. (c) Here x+ y +z=16, x= y+1, y= z+2 

∴x=4, y=5, z= 7 
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∴ Required number of ways = 16𝑐4 ×

12𝑐5 × 7𝑐7 =
16!    

4!5!7!    
  

 

30. For how many positive integers n less 

than 17,⎿n+⎿n+1+⎿n+2 is an integral 

multiple of 49?           (a) 4                              

(b) 5                              (c) 6                               

(d) none 

Ans. (b) ⎿n+⎿n+1+⎿n+2= 

⎿n{1+(n+1)+(n+2)(n+1)} 

= ⎿n(𝑛 + 2)2 

Since 49 divides (𝑛 + 2)2⎿n, so either 7 

devides (n+2) or 49 divides ⎿n. Thus n=5, 

12, 14, 15, 16, i.e. number of integers are 5. 

 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 7 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 
 

1. Let x, y, z be different from 1 satisfying 

x+ y +z = 2007, 

Then the value of 
𝟏

𝟏−𝒙
+ 

𝟏

𝟏−𝒚
+ 

𝟏

𝟏−𝒛
 is 

(a) 0        (b) 1        (c) 2008        (d) 
𝟏

𝟐𝟎𝟎𝟖
 

Ans:- (a)  
1

1−𝑥
+ 

1

1−𝑦
+ 

1

1−𝑧
 

= 
3−2(𝑥+𝑦+𝑧)+ (𝑥𝑦+𝑦𝑧+𝑧𝑥)

(1−𝑥)(1−𝑦)(1−𝑧)
  

 = 
3−2×2007+4011

(1−𝑥)(1−𝑦)(1−𝑧)
 = 0 

2. In a 𝛥ABC, if r= 𝒓𝟐 + 𝒓𝟑 +

𝒓𝟏, 𝒂𝒏𝒅 𝒂𝒏𝒈𝒍𝒆(𝐴) >
𝝅

𝟑
 𝒕𝒉𝒆𝒏 𝒕𝒉𝒆 𝒓𝒂𝒏𝒈𝒆 𝒐𝒇 

𝒔

𝒂
  is equal to 

(a) (½, 2)                      (b) (½, ∞)                       

(c) (½, 3)                                   (d) (3, ∞) 

Ans. (a) 

𝑟 =  𝑟2 + 𝑟3 − 𝑟1 

                   
Δ

s
=

Δ

s−b
+

Δ

s−c
−

Δ

s−a
 

⟹
1

s
+

1

s − a
=

1

s − b
+

1

s − c
 

⟹
2s − a

2s − b − c
=

s(s − a)

(s − b)(s − c)
 

⟹
2s − a

a
=  cot2

A

2
 ⟹

s

a

=
1

2
(cot2

A

2
+ 1)  ⟹

s

a

∊ (
1

2
, 2) 

 

3. If 𝒂𝟏, 𝒂𝟐, … . , 𝒂𝒏 are positive real nos, 

then  
𝒂𝟏

𝒂𝟐
+
𝒂𝟐

𝒂𝟑
+⋯+

𝒂𝒏−𝟏

𝒂𝒏
+
𝒂𝒏

𝒂𝟏
 is always  

i) ≥ 𝒏     ii) ≤ 𝒏       iii) 𝒏
𝟏
𝒏⁄       iv) none of 

these. 

Ans:- AM ≥ GM gives 
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𝑎1

𝑎2
+⋯+

𝑎𝑛−1

𝑎𝑛
+
𝑎𝑛

𝑎1
 ≥ 𝑛√

𝑎1

𝑎2
. … .

𝑎𝑛−1

𝑎𝑛
.
𝑎𝑛

𝑎1
 = 1 

∴ 
𝑎1

𝑎2
+⋯+

𝑎𝑛−1

𝑎𝑛
+
𝑎𝑛

𝑎1
 ≥ 𝑛 

 

4. The maximum possible value of x𝒚𝟐𝒛𝟑 

subject to the condition xyz ≥ 𝟎 and  

x+y+z = 3 is 

i) 1               ii) 𝟏 𝟖⁄            iii) 𝟏 𝟒⁄          iv) 

𝟐𝟕
𝟏𝟔⁄  

Ans:- x+ y+ z = 3 

⇒ x. 
2𝑦

2
+ 3.

𝑧

3
= 3 

Applying AM ≥ GM, 

So,   
𝑥+2.

2𝑦

2
+3.

𝑧

3

1+2+3
 ≥ 6√𝑥(

𝑦

2
)2(

𝑧

3
)3 

 ⇒ (
3

6
)6  ≥  

x𝑦2𝑧3

22.33
     

⇒ x𝑦2𝑧3 ≤
27

16
.  

5. If y(t) is a solution of (1+t)
𝒅𝒚

𝒅𝒕
− 𝒕𝒚 = 𝟏 

and y(t) then y(1) equals 

(a) ½          (b) e + ½        (c) e+ ½            

(d)- ½  

Ans:- (d) 
𝑑𝑦

𝑑𝑡
−

𝑡

1+𝑡
𝑦 =

1

1+𝑡
   

∴I.F. = 𝑒−∫
𝑡

1+𝑡
𝑑𝑡 = 𝑒−(𝑡−log (1+𝑡)) =

𝑒−𝑡. (1 + 𝑡) 

Multiplying and integrating 

y𝑒−𝑡. (1 + 𝑡) = ∫ 𝑒−𝑡. (1 + 𝑡)
𝑑𝑡

(1+𝑡)
= 𝑒−𝑡 +

𝑐 

When y(0) = -1, ⤇ c= 0. 

∴y𝑒−𝑡. (1 + 𝑡) = −𝑒−𝑡 

∴y= −
1

1+𝑡
             ∴y(1)= - ½. 

6. If the quadratic equation 𝒙𝟐 + 𝒂𝒙 +

𝒃 + 𝟏 = 𝟎 has non- zero 

Integer solutions, then 

a) 𝒂𝟐 + 𝒃𝟐 is a prime number 

b) 𝒂𝒃 is prime number 

c) Both a) and b) 

d) Neither a) nor b) 

Ans:- (d) 𝛼+𝛽= -a, 𝛼𝛽= (b+ 1) 

∴ 𝑎2 + 𝑏2 = (α + β)2 + (αβ − 1)2 

= (𝛼2 + 1)( 𝛽2 + 1) 

7. Let u = (√𝟓 − 𝟐)
𝟏
𝟑⁄ − (√𝟓 + 𝟐)

𝟏
𝟑⁄  and 

v= (√𝟏𝟖𝟗 − 𝟖)
𝟏
𝟑⁄ − (√𝟏𝟖𝟗 + 𝟖)

𝟏
𝟑⁄ , 

Then for each positive integer n, 𝒖𝒏 +

𝒗𝒏+𝟏 = ? 

(a) -1                         (b) 0                           

(c) 1                           (d) 2  

Ans:- (b) 𝑢3 = (√5 − 2) − (√5 + 2) −

3(√5 − 2)
1
3⁄ (√5 + 2)

1
3⁄ . (𝑢) 

i.e. 𝑢3 = −4 − 3𝑢 

⇒ (u-1)( 𝑢2 − 𝑢 + 4)= 0 

𝑢2 − 𝑢 + 4 is always +ve. So, u= 1 

Similarly 𝑣3 + 15𝑣 + 16 = 0 
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⇒ (v +1)( 𝑣2 − 𝑣 + 16)= 0 

⇒ v= -1 

So, for each n, 𝑢𝑛 + 𝑣𝑛+1 = 0 

 

8. The number of real values of x 

satisfying the equation 

𝒙. 𝟐
𝟏
𝒙⁄ +

𝟏

𝒙
. 𝟐𝒙= 4 is / are 

(a) 1                           (b) 2                          

(c) 3                                   (d)4 

Ans:- (a) if x < 0, LHS = -ve but RHS= +ve 

If x = 0, LHS= not defined. 

If x > 0, use AM ≥ GM inequality 

𝑥. 2
1
𝑥⁄ +

1

𝑥
. 2𝑥 ≥ 2√2

1
𝑥⁄ +𝑥 

≥ 2. √22 =4 

⇒ 𝑥. 2
1
𝑥⁄ = 

1

𝑥
. 2𝑥 ; so, x= 1. 

9. Let f (x) and g (x) be functions, which 

take integers as arguments. Let                                 

f (x+ y) = f (x) + f (y) + 8 for all integers x 

and y. Let f (x) = x for all negative 

numbers x and let g(8)=17,  then f (0)=? 

(a)  8                     (b) 9                   (c) 

17                           (d) 72 

Ans:- (c) put x = -8, y= 8 in the given 

functional equation, 

10. Let x = [
𝟐𝟎𝟎𝟕.𝟐𝟎𝟎𝟔.𝟐𝟎𝟎𝟒.𝟐𝟎𝟎𝟑

𝟏

𝟑
× (𝟐𝟎𝟎𝟓)𝟒

], where [x] 

denotes the greatest integer integer less 

than or equal to x. then 
((𝒙+𝟏).𝒙𝟐)+𝟏

(𝒙𝟐+𝟏)
 is 

(a) 80                               (b) 80.2                        

(c) 80.5                           (d) 81  

Ans:- (b) x= [3.
2007

2005
.
2006

2005
.
2004

2005
.
2003

2005
] 

= [3(1+
2

2005
)(1+

1

2005
 )(1-

1

2005
)(1-

2

2005
)] 

= [3(1-
4

(2005)2
)( 1-

1

(2005)2
)] 

⇒ x=2. 

11. A graph defined in polar co – 

ordinates by r (𝜃) = cos 𝜃+
𝟏

𝟐
. The smallest 

x –co- ordinates of any point on this 

graph is  

(a) 1/16                    (b) -1/16                   

(c) 1/8                      (d) -1/8 

Ans:- (b) x =r cos𝜃 

= cos2 𝜃 +
1

2
𝑐𝑜𝑠𝜃 

= (𝑐𝑜𝑠𝜃 +
1

4
)2 = 1/16 

12. A monic polynomial is one in which 

the coefficient of the highest order term is 

1. The monic polynomial P(x) (with 

integer coefficient) of least degree that 

satisfies P (√𝟐 + √𝟓)= 0 is 

(a) 𝒙𝟒 − 𝒙𝟑 − 𝟏𝟒𝒙𝟐 + 𝟗=0                                 

(b) 𝒙𝟒 − 𝟏𝟒𝒙𝟐 + 𝟗= 0 

(c) 𝒙𝟒 + 𝒙𝟑 − 𝟏𝟒𝒙𝟐 + 𝟗=0                                   

(d) 𝒙𝟒 + 𝟏𝟒𝒙𝟐 − 𝟗 

ANS:- (b) Let x=√2 + √5 . Squaring, 𝑥2 =

7 + 2√10 

⇒ 𝑥2 − 7 = 2√10. Squaring again, 𝑥4 −

14𝑥2 + 9= 0 
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13. The number of distinct real roots of 

the equation 𝒙𝟒 + 𝟖𝒙𝟐 + 𝟏𝟔 = 𝟒𝒙𝟐 −

𝟏𝟐𝒙 + 𝟗 is 

(a) 1                        (b) 2                              

(c) 3                                    (d) 4 

Ans:- (a) (𝑥2 + 4)2 = (2𝑥 − 3)2    ⇒ 𝑥2 +

4 = ±(2𝑥 − 3) 

Giving x2 – 2x + 7 = 0 and x2 +2x +1 = 0. 

Solving x = - 1 only one real root. 

14. If in an isosceles triangle with base ‘a’, 

vertical angle 20° and lateral side of each 

wih length ‘b’ is given then the value of 

𝒂𝟑 + 𝒃𝟑 equals 

(a) 3ab                             (b) 3a𝒃𝟐                     

(c) 3𝒂𝟐𝒃                             (d) 3 

Ans:- (b) sin 10° = 
𝑎

2𝑏
 ⇒ sin 30° =

3 𝑠𝑖𝑛10° − 4𝑠𝑖𝑛310° 

⇒ 
1

2
=
3𝑎

2𝑏
−
4𝑎3

8𝑏3
 

⇒ 1 = 
3𝑎

𝑏
−
4𝑎3

8𝑏3
 

⇒ 𝑎3 + 𝑏3 = 3𝑎𝑏2. 

15. If 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒂𝒃 = 𝟎, then the 

point of concurrency of family of lies ax+ 

by+ c= 0 lies on the line 

(a) y= x                         (b) y = x+ 1                       

(c) y = -x                             (d)3x= y 

Ans:- (c) (𝑎 − 𝑏)2 − 𝑐2 = 0 

⇒ (a-b -c)(a- b+ c)=0 

If a- b= c ⇒ ax + by+ (a-b)=0 

⇒ a (x+1)+b(y-1)=0⇒ x=-1 , y= 1 

If a-b = -c ⇒ ax+ by+ (b-a) =0 

⇒ a (x- 1)+ b(y +1)=0 

⇒ x=1, y= -1. 

16. The value of k for which the 

inequality k𝐜𝐨𝐬𝟐 𝒙 − 𝒌𝒄𝒐𝒔𝒙 + 𝟏 ≥ 𝟎 ∀ 𝒙 ∊

(−∞,∞)holds is 

(a) k < - 
𝟏

𝟐
                     (b) k > 4                    

(c) −
𝟏

𝟐
≤ 𝒌 ≤ 𝟒                       (d) 

𝟏

𝟐
≤ 𝒌 ≤ 𝟓 

Ans:- (c) kcos2 𝑥 − 𝑘𝑐𝑜𝑠𝑥 + 1 ≥ 0 ∀ 𝑥 ∊

(−∞,∞) 

⇒ k (cos2 𝑥 − 𝑐𝑜𝑠𝑥) +1 ≥ 0…………(i) 

But cos2 𝑥 − 𝑐𝑜𝑠𝑥 =  (𝑐𝑜𝑠𝑥 −
1

2
)2 −

1

4
 

⇒ −
1

4
≤ cos2 𝑥 − 𝑐𝑜𝑠𝑥 ≤ 2 

From (i) we get 2k+1 ≥ 0 ⇒ 𝑘 ≥ −
1

2
 

⇒ −
𝑘

4
+ 1 ≥ 0 

⇒ k ≤ 4 

⇒ −
1

2
≤ 𝑘 ≤ 4 

17. Consider two series (i) 

∑ 𝒔𝒊𝒏
𝝅

𝒏  
  ∞

𝒏=𝟏    (𝒊𝒊) ∑ (−𝟏)𝒏𝒄𝒐𝒔
𝝅

𝒏  

∞
𝒏=𝟏  , then  

(a) Both (i) and (ii) converge                          

(b) (i) converges, (ii) diverges  

(c) (i) diverges, (ii) converges                          

(d) both (i) and (ii) diverges. 
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Ans:- (d) ∑ 𝑠𝑖𝑛
𝜋

𝑛  
  ∞

𝑛=1 = 
𝜋

𝑛  
−
1

3!
(
𝜋

𝑛  
)3 +

⋯ = 𝑈𝑛  

Let 𝑉𝑛 =
1

𝑛
, ∴ lim

𝑛→∞

𝑈𝑛

𝑉𝑛
=  𝜋 ≠ 0 

Since ∑𝑈𝑛 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠, 𝑠𝑜 𝑑𝑜𝑒𝑠 ∑𝑉𝑛. 

(𝑖𝑖)∑(−1)𝑛𝑐𝑜𝑠
𝜋

𝑛  

∞

𝑛=1

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠  

𝑖𝑓∑ |(−1)𝑛𝑐𝑜𝑠
𝜋

𝑛  
|

∞

𝑛=1

=∑𝑐𝑜𝑠
𝜋

𝑛  

∞

𝑛=1

 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠.  

But lim 𝑐𝑜𝑠
𝜋

𝑛  
= 𝑐𝑜𝑠𝜃

𝑛→∞

= 1 ≠ 0 

So, ∑ 𝑐𝑜𝑠
𝜋

𝑛  
∞
𝑛=1  diverges. 

18. If a= 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟐
+⋯+

𝟏

𝒏
) 𝒂𝒏𝒅 𝒃 =

𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
(𝟏 +

𝟏

𝟐
+⋯+

𝟏

𝒏
) then 

(a) both a= ∞ 𝒂𝒏𝒅 𝒃 = ∞        

(b) a= ∞  and b= 0            

 (c) a= ∞ and b=1          

(d) none. 

 Ans:- (d) {𝑢𝑛}= {
1

𝑛
}, lim
𝑛→∞

𝑢𝑛 = 0, ∴ 𝑎 = 0 

So, By Cauchy’s first 

theorem lim
𝑛→∞

1+
1

2
+⋯+

1

𝑛

𝑛
= 0 

∴ b= 0. 

19. Let {𝒂𝒏} be a sequence of non-

negative real numbers such that the series 

∑ 𝒂𝒏
∞
𝒏=𝟏  is convergent. If p is a real 

number such that the series∑
√𝒂𝒏

𝒏𝒑
 

diverges, the  

(a) P< ½                 (b) P≤
𝟏

𝟐
                       

(c) 
𝟏

𝟐
 <P≤ 𝟏             (d) 

𝟏

𝟐
   ≤ P ≤ 𝟏    

Ans:- (a) ∑𝑎𝑛 is convergent 

⤇ ∑
𝑎𝑛

𝑛
 is convergent. 

∑(𝑎𝑛 +
1

𝑛
) is convergent. By AM≥ GM 

⇒∑
√𝑎𝑛

𝑛
1
2

  is converges 

S0, for P < ½ , the series is divergent. 

20. A rigid body is spinning about a fixed 

point (3, -2, -1) with angular velocity of 4 

rad/sec.,     the axis of rotation being in 

the direction of (1, 2, -2), then the velocity 

of the particle at the point (4, 1, 1) is 

(a) 4/3 (1, -4, 10)           (b) 4/3 (4, -10, 1)                

(c) 4/3 (10, -4, 1)                  (d) 4/3(10, 4, 1) 

Ans:-  (c) 

𝜔⃗ = 4(
�̂�+2�̂�−2�̂�

√1+4+4
) =

4

3
(𝑖̂ + 2𝑗̂ − 2�̂�) 

r⃗ = O⃗P- O⃗A 

= (4î+ĵ+k̂)-(3î-2ĵ-k̂)= î+3ĵ+ 2k̂ 

v̂= 𝜔 ̂× 𝑟 =
4

3
( î + 2ĵ −  2k̂) × ( î + 3ĵ +

 2k̂) =
4

3
(10𝑖̂ −  4𝑗̂ + �̂�) 

21. A particle has an angular speed of 3 

rad /sec and the axis of rotation passes 

through the point (1, 2, 2) and (1, 2, -2), 

then the velocity of the particle at the 

point P(3, 6, 4) is 
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(a) 
𝟑

√𝟏𝟕
(22, 8, -2)        

(b) 
𝟑

√𝟏𝟕
(𝟐𝟐, 𝟎, 𝟐)         

(c) 
𝟑

√𝟏𝟕
(𝟐𝟐,−𝟖,−𝟐)           

(d) 
𝟑

√𝟏𝟕
(𝟐𝟐,−𝟖, 𝟐) 

Ans:- (c) 

O⃗A= î + ĵ +  2k̂ 

O⃗B =î + 2ĵ −  2k̂  

∴ A⃗B= ĵ-4k̂ 

⟹ | A⃗B |= √17 

AP⃗= (3î+6ĵ+4k̂)- (î+ĵ+2k̂) 

= 2î+5ĵ+2k̂ 

∴𝜔⃗ = 
3

√17
(ĵ-4k̂) 

v⃗= 𝜔 ̂× 𝑟= 
3

√17
(ĵ-4k̂)× (2î + 5ĵ + 2k̂) =

3

√17
 (22î − 8ĵ − 2k̂) 

22. In a group of equal number of boys 

and girls, 20% girls and 35% boys are 

graduate. If a member of the group is 

selected at random, then the probability 

of this member not being a graduate is 

(a) 
𝟏𝟏

𝟒𝟎
                       (b) 

𝟗

𝟐𝟎
                       (c) 

𝟏𝟏

𝟐𝟎
                                (d) 

𝟐𝟗

𝟒𝟎
 

Ans. (d) Let A and B denotes the events that 

the member selected at random is a boy and 

a girl respectively. Let E denotes the event 

that the member selected is a graduate. 

Reqd. prob. 

=1- [P(A).P(E/A)+P(B).P(E/B)] 

=1- [
1

2
.
35

100
+
1

2
.
20

100
=

55

200
] = (1 −

11

40
) =

29

40
 

23. for any two events A and B in a 

sample space  

(a) P (A/B)≥
𝑷(𝑨)+𝑷(𝑩)−𝟏

𝑷(𝑩)
, 𝑷(𝑩) ≠ 𝟎 is 

always true. 

(b) P (A∩B̅) = P (A)- P(A∩B) does not 

hold 

(c) P (A∪B) =1-P (A̅).P(B̅) if A and B are 

independent 

(d) P (A∪B) =1-P (A̅).P(B̅) if A and B are 

disjoint 

Ans. (c) 

P(A/B͞)+P(A͞/B͞)= 1, 

∴ P(A͞+B͞)= 1-P(A/B͞) 

1 − 𝑃(𝐴 ∪ 𝐵)

𝑃(𝐵 )
=
𝑃(𝐴 ∪ 𝐵)′

𝑃(𝐵′)

=
𝑃(𝐴′ ∩ 𝐵′)

𝑃(𝐵′)
= 𝑃 (

𝐴′

𝐵′
) 

24. one hundred identical coins, each with 

probability P, of showing up heads are 

tossed. If 0 < P < 1 and the probability of 

heads showing on 50 coins is equal to that 

of the heads showing on 51 coins, then p= 

(a) 
𝟏

𝟐
                            (b) 

𝟒𝟗

𝟏𝟎𝟏
                             

(c) 
𝟓𝟎

𝟏𝟎𝟏
                                    (d) 

𝟓𝟏

𝟏𝟎𝟏
 

Ans. (d) 

Here n= 100, p= p, q= 1-p 

Given, p(50) = p(51) 
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⟹100𝐶50𝑝
50(1 − 𝑝)50 = 100𝐶51𝑝

51(1 −

𝑝)49 

⟹
100!

50! 50!
(1 − 𝑝) =

100!

51! 49!
𝑝

⟹ 51(1 − 𝑝) = 50𝑝 ⟹ 𝑝

=
51

101
 

25. A box contains 24 identical balls of 

which 12 are white and 12 are black. The 

balls are drawn at random from the box 

one at a time with replacement. The 

probability that a white ball is drawn for 

the  4th time on the 7th draw is 

(a) 
𝟓

𝟔𝟒
                               (b) 

𝟐𝟕

𝟑𝟐
                              

(c) 
𝟓

𝟑𝟐
                               (d) 

𝟏

𝟐
 

Ans. (c) Probability of drawing a white ball 

in any draw=
12

24
=
1

2
 

A white ball will be drawn for the 4th time 

on the 7th draw ball is drawn in the 7th draw 

and 3 white balls are drawn in the first 6 

draws. 

∴ Required probability 

= 6𝐶3𝑝
3𝑞3. 𝑝 = 20. (

1

2
)
3

. (
1

2
)
3

.
1

2
=

5

32
 

26. If [x]denotes the integral part of x, 

then the domain of the function 

f(x)= 𝐬𝐢𝐧−𝟏[𝟐𝒙𝟐 − 𝟑] + 𝐥𝐨𝐠𝟐{𝐥𝐨𝐠𝟏/𝟐(𝒙
𝟐 −

𝟓𝒙 + 𝟓)} is 

(a) (−√
𝟓

𝟐
 , −𝟏)         (b) (𝟏,√

𝟓

𝟐
)           

(c) (−√
𝟓

𝟐
 , −𝟏) ∪ (𝟏,√

𝟓

𝟐
)            

(d) none of these 

Ans. (d) 

For f(x) to be defined 

(i) [2𝑥2 − 3]= -1, 0, 1 

⟹ -1 ≤ 2𝑥2 − 3 < 2 ⟹2 ≤2𝑥2 < 5 

⟹ 1≤ 𝑥2 <
5

2
 

⟹ {
1 ≤ 𝑥2⟹ 𝑥 ≤ −1 𝑜𝑟 𝑥 ≥ 1

𝑥2 <
5

2
⟹ −√

5

2
< 𝑥 < √

5

2

 

⟹ −√
5

2
< 𝑥 ≤ −1 𝑜𝑟 1 ≤ 𝑥 <  √

5

2
 

………..(A) 

(ii) 𝑥2 − 5𝑥 + 5 > 0 ⟹ 𝑥 <
5−√5

2
 𝑜𝑟 𝑥 >

5+√5

2
  …….(B) 

(iii) log1
2

(𝑥2 − 5𝑥 + 5) > 0 

⟹ 𝑥2 − 5𝑥 + 5 < (
1

2
)
0

  

⟹ 𝑥2 − 5𝑥 + 5 < 1 ⟹ 𝑥2 − 5𝑥 +

4 < 0 

⟹ 1< x< 4 ……………(C) 

From (A), (B) and (C), 1 ≤ x < 
5−√5

2
 

27. If f(x)= 𝐋𝐭
𝒎→∞

𝐋𝐭
𝒏→∞

𝒄𝒐𝒔𝟐𝒎𝒏!𝝅𝒙, then 

range of f(x)is 

(a) [0, 1]                      (b) [0, 1]                         

(c) (0, 1)                      (d) {0} 

Ans. (b) 

When x is rational say p/q , then n! x𝜋 is a 

multiple of 𝜋 and 𝑐𝑜𝑠2𝑛! 𝑥𝜋 = 1 

∴ Lt
𝑚→∞

𝑐𝑜𝑠2𝑚 𝑛! 𝑥𝜋 = Lt
𝑚→∞

1𝑚 = 1 
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∴ f(x)= 1 

When x is irrational, 

n! x𝜋 ≠a multiple of 𝜋  

∴𝑐𝑜𝑠2𝑛! 𝑥𝜋 ≠ 1 

∴ 0≤ 𝑐𝑜𝑠2𝑛! 𝑥𝜋 < 1 

∴ Lt
𝑚→∞

𝑐𝑜𝑠2𝑚 𝑛! 𝑥𝜋 =

 Lt
𝑚→∞

(𝑐𝑜𝑠2𝑛! 𝑥𝜋)𝑚 = 0 

Thus f(x)= 0, when x is rational 

= 1, when x is irrational  

∴ Range f= {0, 1} 

28. The normal at any point P (𝒕𝟐, 𝟐𝒕) on 

the parabola  𝒚𝟐 = 𝟒𝒙 meets the curve 

again at Q, the area of 𝛥POQ, O being the 

origin is 
𝒌

|𝒕|
(𝟏 + 𝒕𝟐)(𝟐 + 𝒕𝟐) then 

(a) k > 2                         (b) k=2                       

(c) k < 2                         (d) k= 1 

Ans. (b) 

Given P ≡ (𝑡2, 2𝑡) 

Given parabola is 𝑦2 = 4𝑥 ……….. (1) 

Here a= 1. 

Let Q=( 𝑡1
2, 2𝑡1) 

Since normal at P meet the curve again at Q. 

∴ 𝑡1 = −𝑡 −
2

𝑡
=
𝑡2+2

𝑡
 ………… (2) 

Now O≡ (0, 0), P≡ (𝑡2, 2𝑡), Q=( 𝑡1
2, 2𝑡1) 

Given, 

𝑘

|𝑡|
(1 + 𝑡2)(2 + 𝑡2) = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝛥𝑃𝑂𝑄  

=
1

2
|𝑡2. 2𝑡1 − 2𝑡. 𝑡1

2|  

= |𝑡2𝑡1 − 𝑡𝑡1
2|  

= |−𝑡2 (
𝑡2+2

2
) − 𝑡

(𝑡2+2)
2

𝑡2
|  

= (𝑡2 + 2) |𝑡 +
(𝑡2+2)

𝑡
|   

= (𝑡2 + 2) |𝑡 +
(𝑡2+2)

𝑡
| = (𝑡2 + 2)2 

(1+𝑡)2

|𝑡|
   

∴ k= 2 

29. If {x} denotes the fractional part of x, 

then {
𝟑𝟐𝟎𝟎

𝟖
} = 

(a) 
𝟏

𝟖
                        (b) 

𝟑

𝟖
                             

(c) 
𝟓

𝟖
                        (d) none of these 

Ans. (d) 

3200

8
=
9100

8
=
(1 + 8)100

8

=
1 + 100𝐶18 + 100𝐶18

2 +⋯+ 8100

8

=
1

8
+ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

∴ {
3200

8
} =

1

8
 

30. The number of distinct terms in the 

expression of (𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒑)
𝒏 

(a) 𝒏 + 𝒑 − 𝟏𝑪𝒏         (b) n+ p+ 1               

(c) n+1                       (d) 𝒏 + 𝒑 − 𝟏𝑪𝒑+𝟏 

Ans. (d) Number of terms 

𝑛 + 𝑝 − 1𝐶𝑛 = 𝑛 + 𝑝 − 1𝐶𝑝−1  
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ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 8 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 
 

1. If [x] denotes the integral part of x, 

then 𝐋𝐭
𝒙→𝟎

𝐬𝐢𝐧 [𝒄𝒐𝒔𝒙]

𝟏+[𝒄𝒐𝒔𝒙]
= 

(a) 0                 (b) 1                 (c) 
𝐬𝐢𝐧𝟏

𝟐
                            

(d) does not exist 

Ans. (a) Lt
𝑥→0−0

[cos 𝑥] = 0 

[∵ when x ⟶0- 0, 0 < cosx < 1 ] and 

Lt
𝑥→0+0

[cos 𝑥] = 0   

[∵ when x ⟶0+ 0, 0 < cosx < 1 ] 

∴ Lt
𝑥→0−0

sin [cos𝑥]

1+[cos𝑥]
=
sin0

1+0
=

0 Lt
𝑥→0+0

sin [cos𝑥]

1+[cos𝑥]
=
sin0

1+0
= 0   

∴Required limit = 0 

2. Let f(x)= 𝐋𝐭
𝒏→∞

∑
𝒙

(𝒓𝒙+𝟏){(𝒓+𝟏)𝒙+𝟏)}

𝒏−𝟏
𝒓=𝟎  then  

(a) f(x) is continuous but not 

differentiable at x= 0  

(b) f(x) is both continuous and 

differentiable at x=  0  

(c) f(x) is neither continuous nor 

differentiable at x=0  

(d) f(x) is a periodic function 

Ans. (c) 

𝑡𝑟+1 =
𝑥

(𝑟𝑥 + 1){(𝑟 + 1)𝑥 + 1}

=
(𝑟 + 1)𝑥 + 1 − (𝑟𝑥 + 1)

(𝑟𝑥 + 1)[(𝑟 + 1)𝑥 + 1]
 

=
1

(𝑟𝑥 + 1)
−

1

(𝑟 + 1)𝑥 + 1
 

∴ 𝑆𝑛 = ∑ 𝑡𝑟+1

𝑛−1

𝑟=0

1

𝑛𝑥 + 1
= 1, 𝑥 ≠ 0 = 0, 𝑥

= 0 

∴ Lt
𝑛→∞

𝑆𝑛 = Lt
𝑛→∞

(1 −
1

𝑛𝑥+1
) 

Thus, f(x)= {
1, 𝑥 ≠ 0
0, 𝑥 = 0

 

∴ Lt
𝑥→0
𝑓(𝑥) = 1 𝑎𝑛𝑑 𝑓(0) = 0 

Hence f(x) is neither continuous nor 

differentiable at x= 0 

Clearly f(x) is not a periodic function. 

3. Let f(x)= 𝐋𝐭
𝒏→∞

𝐥𝐨𝐠(𝟐+𝒙)−𝒙𝟐𝒏𝒔𝒊𝒏𝒙

𝟏+𝒙𝟐𝒏
 then f(x) is 

discontinuous at 

(a) x= 1 only                (b) x=-1 only                    

(c) x= -1, 1 only           (d) no point 

Ans. (c) 
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Lt
𝑛→∞

𝑋2𝑛 = Lt
𝑛→∞

(𝑥2)𝑛

= {
∞,                𝑥2 > 1

0, 0 ≤ 𝑥2 < 1

1,                 𝑥2 = 1

=  {
∞,      𝑥 <  −1 𝑜𝑟 𝑥 > 1
0,            − 1 < 𝑥 < 1
1,                     𝑥 =  ±1

 

∴ 𝑓(𝑥)

=  {

−𝑠𝑖𝑛𝑥,                      𝑥 <  −1 𝑜𝑟 𝑥 > 1
log(2 + 𝑥) ,                      − 1 < 𝑥 < 1

log(2 + 𝑥) − 𝑠𝑖𝑛𝑥

2
,                𝑥 =  ±1

 

Lt
𝑥→1+0

𝑓(𝑥) =  −𝑠𝑖𝑛1, Lt
𝑥→1−0

𝑓(𝑥)

= 𝑙𝑜𝑔3, Lt
𝑥→1+0

𝑓(𝑥)

=  Lt
𝑥→−1

log(2 + 𝑥) = 0, 

 Lt
𝑥→1−0

𝑓(𝑥) =  Lt
𝑥→−1

(− sin 𝑥) =  𝑠𝑖𝑛1 

Clearly f(x) is discontinuous only at two 

points x= -1, 1 

4. The function f(x) = max {(1-x), (1+x), 2} 

is, where x ∊(-∞,∞) 

(a) discontinuous at all points                                

(b) differentiable at all points  

(c) differentiable at all points except -1 

and 1      (d) continuous at all points 

except -1 and 1 

Ans. (c) 

We draw the graph of y= 1- x, y= 1+ x and y 

= 2 

f(x)= max.{1-x, 1+x, 2} 

∴ f(x)= 1- x, x ≤ -1= 2, -1≤ x≤ 2 = 1+x, x ≥ 

2 

From graph it is clear that f(x) is continuous 

at all x and differentiable at all x except x= -

1 and x= 1 

5. If f(x) = p |sin x|+𝒒𝒆|𝒙| +

𝒓|𝒙|𝟑 𝒂𝒏𝒅 𝒇(𝒙) is differentiable at x=0, 

then 

(a) p= q= r=0                                                       

(b) p=0, q=0, r== any real number  

(c) q=0, r=0, p is any real number                    

(d) r=0, p=0, q is any real number 

Ans. (b) 

f’(0- 0)= Lt
ℎ→0−0

𝑓(ℎ)−𝑓(0)

ℎ
=

Lt
ℎ→0−0

𝑝|sinℎ|+𝑞𝑒|ℎ|+𝑟|ℎ|3−𝑞

ℎ
 

= Lt
ℎ→0−0

−𝑝 sin ℎ +  𝑞𝑒ℎ − 𝑟ℎ3 − 𝑞

ℎ
 

= Lt
ℎ→0−0

{−𝑝
𝑠𝑖𝑛ℎ

ℎ
−
𝑞(𝑒ℎ − 1)

−ℎ
− 𝑟ℎ2}

=  −𝑝 − 𝑞   

Similarly, f’ (0+0)= p+q 

Since f(x) is differentiable at x= 0 

∴ f’(0- 0) = f’(0+ 0)⟹ - p- q= p+ q 

⟹ p+ q= 0 

Here r may be any real number. 

6. Let f(x)= 𝒙𝟑 − 𝒙𝟐 + 𝒙 + 𝟏, 𝒈(𝒙) =

𝒎𝒂𝒙. {𝒇(𝒕), 𝟎 ≤ 𝒕 ≤ 𝒙}, 𝟎 ≤ 𝒙 ≤ 𝟏 

 = 𝟑 − 𝒙, 𝟏 < 𝑥 ≤ 2 

then in [0, 2] the points where g(x) is not 

differentiable is (are) 
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(a) 1                         (b) 2                            

(c) 1 and 2              (d) none of these 

Ans. (a) 𝑓(𝑡) =  𝑡3 − 𝑡2 + 𝑡 + 1 

∴ f’ (t)= 3𝑡2 − 2𝑡 + 1 > 0 

∴ f(t) is an increasing function. 

Since 0≤ t ≤ x 

∴ max f(t)= f(x)= 𝑥3 − 𝑥2 + 𝑥 + 1 

Thus g(x)= 𝑥3 − 𝑥2 + 𝑥 + 1, 0 ≤ 𝑥 ≤ 1= 3- 

x, 1 < x ≤ 2  

The only doubtful point for differentiability 

of g(x) in [0, 2] is x = 1 

Clearly,  Lt
𝑥→1+0

𝑔(𝑥) = 13 − 12 + 1 + 1 =

2  

Lt
𝑥→1+0

𝑔(𝑥) =  Lt
𝑥→1
(3 − 𝑥) = 2 𝑎𝑛𝑑 𝑔(1)

= 2 

∴ g(x) is continuous at x= 1 

Also g’ (x)= 3𝑥2 − 2𝑥 + 1, 0 ≤ 𝑥 < 1 =

 −1, 1 < 𝑥 ≤ 2 

∴ g’(1-0)= 3. 12 − 2.1 + 1 = 2 and 

g’(1+0)= -1 

Hence g(x) is not differentiable at x= 1. 

7. If [x] denotes the integral part of x and 

f(x)= [x]{
𝒔𝒊𝒏

𝝅

[𝒙+𝟏]
+𝐬𝐢𝐧𝝅[𝒙+𝟏]

𝟏+[𝒙]
},  then 

(a) f(x) is continuous in R                            

(b) f(x) is continuous  but not 

differentiable in R  

(c) f"(x) exists for all x in R                         

(d) f(x) is discontinuous at all integer 

points in R 

Ans. (d) 

Sin 𝜋 [x+ 1]= 0 

Also [x+ 1]= [x]+ 1 

∴ f(x)= 
[𝑥]

1+[𝑥]
sin

𝜋

[𝑥]+1
 𝑎𝑡 𝑥 = 𝑛, 𝑛 ∊

𝐼, 𝑓(𝑥) =
𝑛

1+𝑛
sin

𝜋

𝑛+1
 𝑓𝑜𝑟 𝑛 − 1 < 𝑥 <

𝑛, [𝑥] = 𝑛 − 1 

∴ f(x)= 
𝑛−1

𝑛
sin

𝜋

4
   

ℎ𝑒𝑛𝑐𝑒 Lt
𝑥→𝑛−0

𝑓(𝑥)
𝑛 − 1

𝑛
sin
𝜋

4
 , 

∴ f(n)= 
𝑛

1+𝑛
sin

𝜋

𝑛+1
 

∴ f(x) is discontinuous at all n ∊ I 

8. Let f(x) = 
[𝒕𝒂𝒏𝟐𝒙]−𝟏

𝒕𝒂𝒏𝟐𝒙−𝟏
, 𝒙 ≠ 𝒏𝝅 ±

𝝅

𝟒
= 𝟎, 𝒙 =

𝒏𝝅 ±
𝝅

𝟒
 then f(x) is 

(a) continuous at all x      (b) continuous at 

x= 
𝝅

𝟒
       (c) discontinuous at x= 

𝝅

𝟒
          (d) 

none 

Ans. (c) 

Since tan x is not defined at 

X= (2n+1) 
𝜋

2
, 𝑛 ∊

𝐼, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑓(𝑥)𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥 =

(2𝑛 + 1)
𝜋

2
, 𝑛 ∊ 𝐼 

Now f (
𝜋

4
) =  0 
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Lt
𝑥→
𝜋
4
−0
𝑓(𝑥) = Lt

𝑥→
𝜋
4
−0

[𝑡𝑎𝑛2𝑥] − 1

𝑡𝑎𝑛2𝑥 − 1

= Lt
𝑥→
𝜋
4
−0

0 − 1

𝑡𝑎𝑛2𝑥 − 1
=  ∞   

Hence f(x) is discontinuous at x= 
𝜋

4
 

9. Let f(x)= ∫ 𝒕 𝒔𝒊𝒏
𝟏

𝒕
𝒅𝒕

𝒙

𝟎
, then the number 

of points of discontinuity of f(x) in (0, 𝜋) is 

(a) 0                          (b) 1                           

(c) 2                          (d) more than 2 

Ans. (a) 

𝑓(𝑥) =  ∫ 𝑡 sin
1

𝑡
𝑑𝑡

𝑥

0

 

∴ f’(x)= x sin 
1

𝑥
 

Clearly f’(x) is a finite number at all x in (0, 

𝜋). 

∴ f(x) is differentiable and hence continuous 

at all x in (0, 𝜋) 

10. if [x] denotes the integral part of x and 

in (0, 𝜋), we define 

f(x)= [
𝟐(𝒔𝒊𝒏𝒙−𝒔𝒊𝒏𝒏𝒙)+|𝒔𝒊𝒏𝒙−𝒔𝒊𝒏𝒏𝒙|

𝟐(𝒔𝒊𝒏𝒙−𝒔𝒊𝒏𝒏𝒙)−|𝒔𝒊𝒏𝒙−𝒔𝒊𝒏𝒏𝒙|
] = 𝟑, 𝒙 =

 
𝝅

𝟐
𝒙 ≠

𝝅

𝟐
 then for n > 1 

(a) f(x) is continuous but not 

differentiable at x= 
𝝅

𝟐
  

(b) both continuous and differentiable 

at x= 
𝝅

𝟐
  

(c) (c) neither continuous nor 

differentiable at x= 
𝝅

𝟐
  

(d)  𝐋𝐭
𝒙→

𝝅

𝟐

𝒇(𝒙) 𝒆𝒙𝒊𝒔𝒕 𝒃𝒖𝒕 𝐋𝐭
𝒙→

𝝅

𝟐

𝒇(𝒙) ≠

𝒇(
𝝅

𝟐
)  

Ans. (b) 

For 0 < 𝑥 <  
𝜋

2
 𝑜𝑟 

𝜋

2
< 𝑥 <  𝜋 0 < sin 𝑥 <

1  

∴ for n > 1, sin x > 𝑠𝑖𝑛4𝑥 

∴ f(x)=[
3(sin𝑥−𝑠𝑖𝑛4𝑥)

sin𝑥−𝑠𝑖𝑛𝑛𝑥
] =  3, 𝑥 ≠

𝜋

2
= 3, 𝑥 =

 
𝜋

2
 

Thus in (0, 𝜋) , f(x) = 3 

Hence f(x)is continuous and differentiable at 

x= 
𝜋

2
 

11. If[x] denotes the integral part of x and 

f(x) = [n+ psin x], 0< x < 𝜋, n∊I and p is a 

prime number, then the number of points 

where f(x) is not differentiable is  

(a) p-1                        (b) p                          

(c) 2p-1                       (d) 2p +1 

Ans. (c) [x] is not differentiable at integral 

points. 

Also [n+ p sin x]= n+ [p sin x] 

∴ [p sin x] is not differentiable, where p sin 

x is an integer. But p is prime and 0 < sin x 

≤1 [∵ 0 < x < 𝜋] 

∴ p sin x is an integer only when 

sinx =  
𝑟

𝑝
, where 0< r ≤ p and r ∊ N 

For r= p, sin x= 1 ⟹ x= 
𝜋

2
 in (0, 𝜋) 

For 0 < r < p, sin x= 
𝑟

𝑝
 

∴ x= sin−1
𝑟

𝑝
 𝑜𝑟 𝜋 − sin−1

𝑟

𝑝
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Number of such values of x= p- 1+p- 1= 2p 

-2 

∴ Total number of points where f(x) is not 

differentiable 

= 1+ 2p – 2= 2p – 1 

12. If  
𝒔𝒆𝒄𝟒𝜽

𝒂
+
𝒕𝒂𝒏𝟒𝜽

𝒃
=

𝟏

𝒂+𝒃
, 𝒕𝒉𝒆𝒏 

(a) |b|=|a|                        (b) |b|≤ |𝒂|                         

(c) |b|≥ |𝒂|                     (d) none of these  

Ans. (b) 

𝑠𝑒𝑐4𝜃

𝑎
+
𝑡𝑎𝑛4𝜃

𝑏
=

1

𝑎 + 𝑏
=  
𝑠𝑒𝑐2𝜃 − 𝑡𝑎𝑛2𝜃

𝑎 + 𝑏
 

⟹ 
𝑠𝑒𝑐2𝜃

𝑎(𝑎+𝑏)
[(𝑎 + 𝑏)𝑠𝑒𝑐2𝜃 − 𝑎] +

𝑡𝑎𝑛2𝜃

(𝑎+𝑏)𝑏
[(𝑎 + 𝑏)𝑡𝑎𝑛2𝜃 + 𝑏] = 0 

⟹ a𝑡𝑎𝑛2𝜃 + 𝑏𝑠𝑒𝑐2𝜃 = 0 

⟹𝑠𝑖𝑛2𝜃 =  −
𝑏

𝑎
 𝑖𝑠 𝑛𝑜𝑛-negative and ≤ 1⟹ 

|
𝑏

𝑎
| ≤ 1 

13. If c be a positive constant and |f(y)-

f(x)|≤ 𝒄(𝒚 − 𝒙)𝟐 for all real x and y, then 

(a) f(x)= 0 for all x        (b) f(x)= x for all x        

(c) f’(x)= 0 for all x       (d) f’(x)= c for all x 

Ans. (c) 

Given, |f(y)- f(x)| ≤𝑐(𝑦 − 𝑥)2, 𝑐 > 0 

⟹|f(y)- f(x)| ≤𝑐|𝑦 − 𝑥|2⟹ |
𝑓(𝑦)−𝑓(𝑥)

𝑦−𝑥
| ≤

𝑐|𝑦 − 𝑥| ⟹ Lt
𝑦→𝑥

|
𝑓(𝑦)−𝑓(𝑥)

𝑦−𝑥
| ≤ Lt  𝑐|𝑦 − 𝑥|

𝑦→𝑥
 

⟹ |𝑓′(𝑥)| ≤ 0 

⟹|𝑓′(𝑥)| ≤ 0 for all real x 

⟹ f’(x)= 0∀x∊ R 

14. Let f(t)in t. then 
𝒅

𝒅𝒙
{∫ 𝒇(𝒕)𝒅𝒕
𝒙𝟑

𝒙𝟐
} 

(a) has a value 0 when x= 0                            

(b) has a value 0 when x=1 , x= 4/9  

(c) has a value 𝟗𝒆𝟐 − 𝟒𝒆 when x=e               

(d) has a differential coefficient 27e -8 

when x= e 

Ans. (c) 
𝑑

𝑑𝑥
∫ 𝑓(𝑡)
𝑥3

𝑥2
𝑑𝑡 = 𝑓(𝑥3). 3𝑥2 −

𝑓(𝑥2). 2𝑥 

= 𝑙𝑜𝑔𝑥3. 3𝑥2 − log 𝑥2 . 2𝑥

= 9𝑥2 𝑙𝑜𝑔𝑥 − 4𝑥 𝑙𝑜𝑔𝑥

= 𝑥 𝑙𝑜𝑔𝑥(9𝑥 − 4) 

𝑙𝑒𝑡 𝑧 = 𝑥 log 𝑥 (9𝑥 − 4)𝑡ℎ𝑒𝑛
𝑑𝑧

𝑑𝑥
= (1 + log 𝑥)(9𝑥 − 4)

+ 9𝑥 log 𝑥  

𝑎𝑡 𝑥 = 𝑒,
𝑑𝑧

𝑑𝑥
= 2(9𝑒 − 4) + 9𝑒 = 27𝑒 − 8 

15. If a, 

𝜶𝟏, 𝜶𝟐, …𝜶𝟐𝒏−𝟏, 𝒃 𝒂𝒓𝒆 𝒊𝒏 𝑨. 𝑷. , 𝒂, 𝜷𝟏, 𝜷𝟐, …𝜷𝟐𝒏−𝟏, 𝒃  

are in G.P. and  

a, 𝜸𝟏, 𝜸𝟐, … 𝜸𝟐𝒏−𝟏, 𝒃 are in H.P., where a, 

b are positive, then the equation 

 𝜶𝒏𝒙
𝟐 −𝜷𝒏𝒙 + 𝜸𝒏 = 𝟎 has 

(a) real and equal roots                                                 

(b) real and unequal roots  

(c) imaginary roots                                                        

(d) roots which are in A.P. 

Ans. (c) 
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The middle terms of the A.P., G.P. and H.P. 

are 𝛼𝑛, 𝛽𝑛 𝑎𝑛𝑑 𝛾𝑛 respectively 

∴ 𝛼𝑛= A.M. of a and b, 

𝛽𝑛= G.M. of a and b, 

𝛾𝑛= H.M. of a and b, 

∵ AH=𝐺2 

∴ 𝛼𝑛𝛾𝑛 = 𝛽𝑛
2
  

Now, discriminant of given equation =𝛽𝑛
2 −

4𝛼𝑛𝛾𝑛 = −3𝛼𝑛𝛾𝑛 < 0      (∵𝛼𝑛, 𝛾𝑛 are 

positive) 

16. If 𝒂𝒏 = the digit at units place in the 

number 1! +2! +3! +…+n! for n≥ 4,  

then 𝒂𝟒, 𝒂𝟓, 𝒂𝟔, … are in  

(a) A.P. only          (b) G.P. only           (c) 

A.P. and G.P. only           (d) A.P., G.P., 

and H.P. 

Ans.(c) 

1 ! +2 ! +3 ! +4! = 33 

The digits at units place in each of 5 !, 6 !,… 

is 0 

∴𝑎4 = 𝑎5 = 𝑎6 = ⋯ = 3 

Clearly 𝑎4, 𝑎5, 𝑎6, … are in A.P. and G.P. but 

not in H.P. as they are equal. 

 

17. Let p, q, r ∊ 𝑹+ and 27pqr ≥ (𝒑 + 𝒒 +

𝒓)𝟑 and 3p +4q +5r = 12 then 𝒑𝟑 + 𝒒𝟒 +

𝒓𝟓 is equal to 

(a) 3                      (b) 6                         

(c) 2                                 (d) none of these. 

Ans. (c) 

1 ! +2 ! +3 ! +4! = 33 

The digits at units place in each of 5 !, 6 !,… 

is 0 

∴𝑎4 = 𝑎5 = 𝑎6 = ⋯ = 3 

Clearly 𝑎4, 𝑎5, 𝑎6, … are in A.P. and G.P. but 

not in H.P. as they are equal. 

18. If (2+ x)(2+𝒙𝟐)(𝟐 + 𝒙𝟑)… (𝟐 + 𝒙𝟏𝟎𝟎) = 

∑ 𝒙𝒓𝒏
𝒓=𝟎 , then n equals 

(a) 2550                         (b) 5050                      

(c) 𝟐𝟖                            (d) none of these. 

Ans. (b) 𝑥𝑛 = 𝑥1+2+3+⋯+100 = 𝑥
100×101

2 =

𝑥5050  

⟹ n= 5050 

19. If p, q, r, s ∊ R, then equation (𝒙𝟐 +

𝒑𝒙 + 𝟑𝒒)(- 𝒙𝟐 + 𝒓𝒙 + 𝒒)(- 𝒙𝟐 + 𝒔𝒙 − 𝟐𝒒)= 

0 has 

(a) 6 real roots                                                       

(b) at least two real roots   

(c) 2 real and 4 imaginary roots                          

(d) 4 real and 2 imaginary roots. 

Ans. (b) 

𝐷1 + 𝐷2 + 𝐷3 = 𝑝
2 − 12𝑞 + 𝑟2 + 4𝑞 +

𝑠2 + 8𝑞 = 𝑝2 + 𝑟2 + 𝑠2 ≥ 0  

⟹ at least one of 𝐷1, 𝐷2, 𝐷3 ≥ 0 

20. If a, b, c, d, are four non-zero real 

numbers such that (𝒅 + 𝒂 − 𝒃)𝟐 +

(𝒅 + 𝒃 − 𝒄)𝟐= 0 and roots of the equation 
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a(b-c) 𝒙𝟐 + b(c-a)x + c(a-b)= 0 and real 

and equal, then a, b, c 

(a) are equal     (b) are not equal    (c) are 

zero      (d) none of the above 

Ans. (a) Equation 𝑎(𝑏 − 𝑐)𝑥2 + 𝑏(𝑐 −

𝑎)𝑥 + 𝑐(𝑎 − 𝑏)= 0 has equal roots 

⟹ b= 
2𝑎𝑐

𝑎+𝑐
                   …….(1) 

(𝑑 + 𝑎 − 𝑏)2 + (𝑑 + 𝑏 − 𝑐)2 =0 

⟹ a-b = b- c = -d 

⟹ 2b= a+ c                    ……(2) 

⟹ 
4𝑎𝑐

𝑎+𝑐
= a +c  

⟹ (𝑎 − 𝑐)2 = 0⟹ a= c 

From (2), b= a 

thus a= b= c. 

21. If p, q be non-zero real numbers and 

f(x)≠ 0 in [0, 2] and ∫ 𝒇(𝒙). (𝒙𝟐 + 𝒑𝒙 +
𝟏

𝟎

𝒒)𝒅𝒙 = ∫ 𝒇(𝒙). (𝒙𝟐 + 𝒑𝒙 + 𝒒)𝒅𝒙
𝟐

𝟎
= 𝟎  

then equation 𝒙𝟐 + 𝒑𝒙 + 𝒒= 0 has 

(a) two imaginary roots                                            

(b) no root in (0, 2)   

(c) one root in (0,1) and other in (1,2)                    

(d) one root in (-∞, 𝟎) and other in (2,∞) 

Ans. (c) 

Let F(x) = ∫𝑓(𝑥)(𝑥2 + 𝑝𝑥 + 𝑞)𝑑𝑥, 

Then according to question 

F(1) –F(0) = 0, F(2) – F(1) = 0 

∴ F(0) = F(1) and F(1)= F(2) 

Hence, equation F’(x)= 0 i.e. equation  

f(x). (𝑥2 + 𝑝𝑥 + 𝑞) = 0  

i.e. equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 has at least 

one root (here exactly one root) in (0, 1) and 

exactly one root in (1, 2). 

22. If a, b, c, ∊ R, a ≠ 0 and (𝒃 − 𝟏)𝟐 <

4𝒂𝒄, then the number of roots of the 

system of equation (in three unknowns 

𝒙𝟏, 𝒙𝟐, 𝒙𝟑) 

𝒂𝒙𝟏
𝟐 + 𝒃𝒙𝟏 + 𝒄 = 𝒙𝟐  

𝒂𝒙𝟐
𝟐 + 𝒃𝒙𝟐 + 𝒄 = 𝒙𝟑     

𝒂𝒙𝟑
𝟐 + 𝒃𝒙𝟑 + 𝒄 = 𝟏       is 

(a)  0                   (b)  1                         

(c)  2                     (d) 3 

Ans. (a) Let f(x) = 𝑎𝑥2 + (𝑏 − 1)𝑥+c 

Given system of equation is equivalent 

𝑡𝑜
𝑓(𝑥1)=𝑥2−𝑥1 
𝑓(𝑥2)=𝑥3−𝑥2
𝑓(𝑥3)=𝑥1−𝑥3

}    

⟹ 𝑓(𝑥1) + 𝑓(𝑥2) + 𝑓(𝑥3) = 0 

∴ 𝑎𝑓(𝑥1) + 𝑎𝑓(𝑥2) + 𝑎𝑓(𝑥3) = 0  (not 

possible) 

As (𝑏 − 1)2 − 4𝑎𝑐 < 0. 

∴ 𝑎𝑓(𝑥1), 𝑎𝑓(𝑥2), 𝑎𝑓(𝑥3) > 0. 

Hence given system of equation has no real 

root. 
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23. If α, 𝛽 are the roots of the equation 

𝒙𝟐-ax +b= 0 and 𝑨𝒏 = 𝜶
𝒏 + 𝜷𝒏 then 

which of the following is true? 

(a) 𝑨𝒏+𝟏 = 𝒂𝑨𝒏 + 𝒃𝑨𝒏−𝟏                                  

(b) 𝑨𝒏+𝟏 = 𝒃𝑨𝒏 + 𝒂𝑨𝒏−𝟏  

(c) 𝑨𝒏+𝟏 = 𝒂𝑨𝒏 − 𝒃𝑨𝒏−𝟏                                  

(d) 𝑨𝒏+𝟏 = 𝒃𝑨𝒏 − 𝒂𝑨𝒏−𝟏 

Ans.(a) 

𝛼 +𝛽= a, 𝛼𝛽= b 

Given, 𝐴𝑛 = 𝛼
𝑛 + 𝛽𝑛 

Now, 𝐴𝑛+1 = 𝛼
𝑛+1 + 𝛽𝑛+1 

= (𝛼𝑛 + 𝛽𝑛)( 𝛼 +𝛽)-𝛼𝛽(𝛼𝑛−1 + 𝛽𝑛−1) 

= a𝐴𝑛 + 𝑏𝐴𝑛−1 

 

24. If x satisfies |x-1|+|x-2|+|x-3|≥ 6, then  

(a) 0≤ 𝒙 ≤ 𝟒            (b) 𝒙 ≤ −𝟐 𝒐𝒓 𝒙 ≥ 𝟒           

(c)  𝒙 ≤ 𝟎 𝒐𝒓 𝒙 ≥ 𝟒           (d) 𝒙 ≥ 𝟎    

Ans. (c) 

For x ≤ 1,−3𝑥 + 6 ≥ 6 ⟹ 𝑥 ≤ 0    

……(A) 

For 1≤ 𝑥 ≤ 2,−𝑥 + 4 ≥ 6⟹ x≤ −2 

(not acceptable as 1≤ 𝑥 ≤ 2) 

For x≥ 3, 3𝑥 − 6 ≥ 6 ⟹ 𝑥 ≥ 4    

………(B) 

From (A) and (B) all positive value of x are 

given by x≤ 0 𝑜𝑟 𝑥 ≥ 4  

 

25. 𝟐𝒔𝒊𝒏𝒙 + 𝟐𝒄𝒐𝒔𝒙 ≥ 𝟐𝟏 −
𝟏

√𝟐
  

(a) only for x ≥0              (b) only for x≤ 0          

(c) for all real x           (d) only for x ≠0 

Ans. (c) 

Since A.M. ≥ G.M 

∴
2sin 𝑥+2cos𝑥

2
≥ √2sin𝑥. 2cos𝑥 =

2(
1

2
)(sin𝑥+cos𝑥) = 2

(
1

√2
) sin(𝑥+

𝜋

4
)
 

⟹ 2sin𝑥 + 2cos𝑥 ≥ 2
1+

1

√2
sin(𝑥+

𝜋
4
)
 ≥ 2

1−
1

√2 

[∵ least value of sin (𝑥 +
𝜋

4
) =  −1] 

 

26. How many different nine digit 

numbers can be formed from the number 

223355888 by rearranging its digits so 

that the odd digits occupy even positions? 

(a) 16                                 (b) 36                               

(c) 60                                   (d) 180 

Ans.  (c) 

Number of digits= 9 

Number of odd digits = 4, number of even 

digits= 5 

Number of even places= 4 

Odd digits can be arranged in even paces in 
|4̲ 

|2̲|2̲
 ways. Even digits can be arranged in 

remaining 5 places in 
|5̲ 

|2̲|3̲
 ways 

∴ Required number = 
|4̲ 

|2̲|2̲
.
|5̲ 

|2̲|3̲
= 60  
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27. For 2≤ 𝒓 ≤ 𝒏, (𝒏
𝒓
) + 𝟐( 𝒏

𝒓−𝟏
) + ( 𝒏

𝒓−𝟐
) = 

(a) (𝒏+𝟏
𝒓−𝟏
)                      (b) 2(𝒏+𝟏

𝒓+𝟏
)                          

(c) 2(𝒏+𝟐
𝒓
)                           (d) (𝒏+𝟐

𝒓
)   

Ans. (d) 

(𝑛
𝑟
) 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑛𝐶𝑟  

Now 𝑛𝐶𝑟 + 2𝑛𝐶𝑟−1 + 𝑛𝐶𝑟−2 

= (𝑛𝐶𝑟 + 𝑛𝐶𝑟−1) + (𝑛𝐶𝑟−1 + 𝑛𝐶𝑟−2)  =

 𝑛 + 1𝐶𝑟 + 𝑛 + 1𝐶𝑟−1 = 𝑛 + 2𝐶𝑟 

 

28. If ∑ 𝐬𝐢𝐧−𝟏𝑿𝒊
𝟏𝟎
𝒊=𝟏 = 𝟓𝝅, 𝒕𝒉𝒆𝒏∑ 𝑿𝒊

𝟐𝟏𝟎
𝒊=𝟏  =  

(a) 0                            (b) 5                              

(c) 10                                 (d) none of these 

Ans. (c) 

∑sin−1 𝑥𝑖

10

𝑖=1

= 5𝜋 = 10.
𝜋

2
 

⟹ sin−1 𝑥𝑖 =
𝜋

2
, ∀𝑖 ⟹ 𝑥𝑖 = 1∀𝑖  

⟹ ∑ 𝑥𝑖
210

𝑖=1 = 1 

 

29. Range of f(x) = 𝒔𝒊𝒏𝟐𝟎𝒙 + 𝒄𝒐𝒔𝟒𝟖𝒙 is  

(a) [0, 1]                      (b) (0, 1)                        

(c) (0, ∞)                             (d) none of 

these 

Ans. (b) 

0 ≤ 𝑠𝑖𝑛2𝑥 ≤ 1 ⟹ 𝑠𝑖𝑛20𝑥 ≤  𝑠𝑖𝑛2𝑥 

Thus 0 ≤ 𝑠𝑖𝑛20𝑥 ≤  𝑠𝑖𝑛2𝑥  ………. (1) 

Again 0 ≤ 𝑐𝑜𝑠48𝑥 ≤  𝑐𝑜𝑠2𝑥  ………..(2) 

𝑠𝑖𝑛𝑐𝑒 𝑠𝑖𝑛20𝑥 𝑎𝑛𝑑 𝑐𝑜𝑠48𝑥 𝑐𝑎𝑛′𝑡 𝑏𝑒 𝑧𝑒𝑟𝑜 𝑎𝑡 𝑎 𝑡𝑖𝑚𝑒 

⟹ 0 < f(x) ≤ 1 

Hence range of f(x) = (0, 1) 

 

30.  Let x, y, z = 105, where x, y, z ∊N. 

Then number of ordered triplets (x, y, z) 

satisfying the given equation is: 

(a) 15                             (b) 27                        

(c) 6                              (d) none of these  

Ans. (b) 

105= 3× 5 × 7 

When no 1 is taken as a solution, number of 

solutions= |3̲ = 6 

When only 1’ s taken, number of solutions= 

3𝐶2 . |3̲ = 18 

When two 1’s are taken, number of solutions 

= 3𝐶1 .
|3̲

|2̲
= 3 

∴ Reqd. number= 6+18+3 =27 

Second method: xyz = 3× 5 × 7 

3 will be a factor of x or y or z in 3 ways 

5 will be a factor of x or y or z in 3 ways 

7 will be a factor of x or y or z in 3 ways 

∴Total number of ways=3× 3 × 3 = 27 
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ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 9 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 
 

1. If f(x) = (𝒑𝜶 − 𝜶𝟐 − 𝟐)𝒙 − ∫ (𝒄𝒐𝒔𝟒 𝒕 +
𝒙

𝟎

𝒔𝒊𝒏𝟐𝒕 − 𝟐)𝒅𝒕 is a decreasing function of x 

for all x ∊R and 𝛼∊ R, where 𝛼 being 

independent of x, then  

(a) p∊ (-∞,𝟏)                   (b) p∊ (-1, √𝟑)                        

(c) p∊ (1, ∞)              (d) none of these 

Ans. (b) Given, 𝑓(𝑥) = (𝑝𝛼 − 𝛼2 − 2)𝑥 −

∫ (𝑐𝑜𝑠4𝑡 + 𝑠𝑖𝑛2𝑡 − 2)
𝑥

0
𝑑𝑡 ……….(1) 

∴𝑓′(𝑥) = 𝑝𝛼 − 𝛼2 − 2 − (𝑐𝑜𝑠4𝑥 +

𝑠𝑖𝑛2𝑥 − 2) =  −𝛼2 + 𝑝𝛼 − (𝑐𝑜𝑠4𝑥 +

𝑠𝑖𝑛2𝑥) 

= −𝛼2 + 𝑝𝛼 − (𝑐𝑜𝑠4𝑥 + 𝑐𝑜𝑠2𝑥 + 1) 

                                        = −𝛼2 + 𝑝𝛼 −

[(𝑐𝑜𝑠2𝑥 −
1

2
)
2

+
3

4
] = −𝛼2 + 𝑝𝛼 −

3

4
−

(𝑐𝑜𝑠2𝑥 −
1

2
)
2

  

Clearly f’(x) ≤ −𝛼2 + 𝑝𝛼 −
3

4
[∵

𝑀𝑖𝑛. 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (𝑐𝑜𝑠2𝑥 −
1

2
)
2

= 0] 

For f(x) to be decreasing for all real x, 

f’(x) ≤ 0 

∴ −𝛼2 + 𝑝𝛼 −
3

4
≤ 0 ⟹4𝛼2 − 4𝑝𝛼 + 3 ≥

0, ∀ 𝛼 ∊ 𝑅 

∴ D ≤ 0⟹ 16𝑝2 − 48 ≤ 0 ⟹ −√3 ≤ 𝑝 ≤

√3 

2. Consider the following statements S 

and R. S: both sinx and cosx are 

decreasing function in (
𝝅

𝟐
, 𝝅)  & R: If a 

differentiable function decreases in (a, b) 

then its derivative also decreases in (a, b). 

Which of the following are true? 

(a) both S and R are wrong                                       

(b) S is correct and R is wrong 

(c) both S and R are correct but R is not 

the correct expiation for S  

(d) S is correct and R is the correct 

explanation for S                  

Ans. (b) From the trend of value of sin x and 

cos x we know sin x and cosx decrease in 
𝜋

2
< 𝑥 <  𝜋. So, the statement S is correct.  

The statement R is incorrect cos x is a 

differentiable function which decreases in 

(
𝜋

2
, 𝜋) but its d.c.  – sin x is increasing in  

(
𝜋

2
, 𝜋) 

3. If f(x)= ∫ 𝒆−𝒕
𝟐𝒙𝟐+𝟏

𝒙𝟐
𝒅𝒕, then the interval 

in which f(x) is increasing is 

(a) (0, ∞)                       (b) (-∞,𝟎)                      

(c) [-2, 2]                       (d) none of these 

Ans. (b) 
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𝑓(𝑥) =  ∫ 𝑒−𝑡
2

𝑥2+1

𝑥2
𝑑𝑡 𝑓′(𝑥)

=  𝑒−(𝑥
2+1)

2

. 2𝑥 − 𝑒−𝑥
4
. 2𝑥

=
2𝑥

𝑒(𝑥
2+1)2

[1

− 𝑒−𝑥
4+(𝑥2+1)

2

] 

=
2𝑥

𝑒(𝑥
2+1)2

[1 − 𝑒2𝑥
2+1]

=
2(𝑒2𝑥

2+1 − 1)

𝑒(𝑥
2+1)2

(−𝑥)  

But 𝑒2𝑥
2+1 > 1 

∴ f’(x)> 0 in (-∞, 0) and hence f(x) is 

increasing in (-∞, 0) 

4. The value of ∫
(𝒕−|𝒕|)𝟐

𝟏+𝒕𝟐

𝒙

𝟎
𝒅𝒕 is equal to 

(a) 4(x-𝐭𝐚𝐧−𝟏 𝒙) if x < 0          (b) 0 if > 0         

(c) 𝐥𝐨𝐠(𝟏 + 𝒙𝟐) if x > 0           (d) none of 

these 

Ans. (a) 

𝐼 = ∫
(𝑡 − |𝑡|)2

1 + 𝑡2
𝑑𝑡

𝑥

0

  

𝑐𝑎𝑠𝑒 𝐼: 𝑥 > 0 , 𝑡ℎ𝑒𝑛 0 < 𝑡 < 𝑥, |𝑡| = 𝑡 

∴ I= ∫
(𝑡−𝑡)2

1+𝑡2
𝑑𝑡

𝑥

0
= 0 

Case II: x < 0, then x < t< 0⟹ |t|= -t 

∴ I= ∫
(𝑡+𝑡)2

1+𝑡2
𝑑𝑡

𝑥

0
= ∫

4𝑡2

1+𝑡2
𝑑𝑡

𝑥

0
= 4∫ (1 −

𝑥

0

1

1+𝑡2
)𝑑𝑡 = 4[𝑡 − tan−1 𝑡] 𝑥

0
= 4(𝑥 −

tan−1 𝑥) 

 

5. If ∫
𝒙𝟐−𝟐

(𝒙𝟒+𝟓𝒙𝟐+𝟒) 𝐭𝐚𝐧−𝟏(
𝒙𝟐+𝟐

𝒙
)
𝒅𝒙 =

𝒍𝒐𝒈|𝒇(𝒛)| + 𝒄, then 

(a) f(z) = 𝐭𝐚𝐧−𝟏 𝒛 ,𝒘𝒉𝒆𝒓𝒆 𝒛 =  √𝒙 + 𝟐           

(b) f(z) = 𝐭𝐚𝐧−𝟏 𝒛 ,𝒘𝒉𝒆𝒓𝒆 𝒛 = 𝒙 +
𝟐

𝒙
  

(c) f(z)= 𝐬𝐢𝐧−𝟏 𝒛 , 𝒘𝒉𝒆𝒓𝒆 𝒛 =  
𝒙+𝟐

𝒙
                    

(d) none of these 

Ans. (b) 

I= ∫
𝑥2−2

(𝑥4+5𝑥2+4) tan−1(
𝑥2+2

𝑥
)
𝑑𝑥 

Dividing numerator & denominator by 𝑥2 

we have 

= ∫
1−

2

𝑥2

(𝑥2+5+
4

𝑥2
) tan−1(𝑥+

2

𝑥
)
𝑑𝑥 =

 ∫
1−

2

𝑥2

[(𝑥+
2

𝑥
) 2+1] tan−1(𝑥+

2

𝑥
)
𝑑𝑥  

𝑙𝑒𝑡 tan−1 (𝑥 +
2

𝑥
) = 𝑢  

⟹
1

1+ (𝑥 +
2
𝑥) 

2
. (1 −

2

𝑥2
) =  𝑑𝑥 = 𝑑𝑢  

𝑛𝑜𝑤 𝐼 =  ∫
1

𝑢
𝑑𝑢 = log |𝑢| + 𝑐

= 𝑙𝑜𝑔 |tan−1 (𝑥 +
2

𝑥
)|

= tan−1 𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑧

= (𝑥 +
2

𝑥
) 

6. ∫𝒙 𝐥𝐨𝐠 (𝟏 +
𝟏

𝒙
)𝒅𝒙 = 𝒇(𝒙) 𝐥𝐨𝐠(𝒙 + 𝟏) +

𝒈(𝒙)𝒙𝟐 + 𝑳𝒙 + 𝒄, then 

(a) L= 1                      (b) f(x) = 
𝟏

𝟐
𝒙𝟐                        

(c) g(x) = log x                 (d) none of these 
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Ans. (d) 

I= ∫𝑥 log (1 +
1

𝑥
)   𝑑𝑥 = ∫ 𝑥 𝑙𝑜𝑔 (𝑥 +

1)𝑑𝑥 − ∫ 𝑥 𝑙𝑜𝑔 𝑥 𝑑𝑥 

=
𝑥2

2
log(𝑥 + 1) −

1

2
∫

𝑥2

1 + 𝑥
𝑑𝑥 −

𝑥2

2
𝑙𝑜𝑔𝑥

+
1

2
∫𝑥 𝑑𝑥

=
𝑥2

2
log(𝑥 + 1) −

𝑥2

2
𝑙𝑜𝑔𝑥

−
1

2
∫(𝑥 − 1 +

1

𝑥 + 1
)𝑑𝑥

+
1

2
∫𝑥 𝑑𝑥 

=
𝑥2

2
log(𝑥 + 1) −

𝑥2

2
log 𝑥 −

1

2
log(𝑥 + 1)

+
𝑥

2
+ 𝑐  

𝑓(𝑥) =
𝑥2

2
−
1

2
, 𝑔(𝑥) =  −

1

2
log 𝑥  

𝐿 =
1

2
. 

7. ∫
𝒅𝒙

(𝒙−𝟏)
𝟑
𝟒(𝒙+𝟐)

𝟓
𝟒

=  

(a) 
𝟒

𝟑
(
𝒙−𝟏

𝒙+𝟐
)

𝟏

𝟒
+ 𝒄                  (b) 

𝟒

𝟑
√
𝒙−𝟏

𝒙+𝟐
+ 𝒄                 

(c) (
𝒙+𝟐

𝒙−𝟏
)

𝟏

𝟒
+ 𝒄                    (d) none 

Ans. (a) 

𝐼 =  ∫
𝑑𝑥

(𝑥 − 1)2 (
𝑥 + 2
𝑥 − 1)

5
4

  

𝑝𝑢𝑡 𝑧 =
𝑥 + 2

𝑥 − 1
, 𝑡ℎ𝑒𝑛  

𝑑𝑥 =
(𝑥 − 1). 1 − (𝑥 − 2). 1

(𝑥 − 1)2
𝑑𝑥

=  −
3

(𝑥 − 1)2
𝑑𝑥  

𝑛𝑜𝑤 𝐼 =
1

3
∫𝑧−5/4 𝑑𝑧 =

4

3
𝑧−1/4 + 𝐶

=
4

3
. (
𝑥 − 1

𝑥 + 2
)
1/4

+ 𝐶 

 

8. ∫𝒆𝒙
𝟏+𝒏.𝒙𝒏−𝟏−𝒙𝟐𝒏

(𝟏−𝒙𝒏)√𝟏−𝒙𝟐𝒏
 𝒅𝒙= 

(a) 
𝒆𝒙√𝟏−𝒙𝟐𝒏

𝟏−𝒙𝟐𝒏
+ 𝒄                (b) 

𝒆𝒙√𝟏−𝒙𝒏

𝟏−𝒙𝒏
+ 𝒄                 

(c) 
𝒆𝒙√𝟏−𝒙𝟐𝒏

𝟏−𝒙𝒏
+ 𝒄                 (d) none of these 

Ans. (c) 

I= ∫ 𝑒𝑥 [
1−𝑥2𝑛+𝑛𝑥𝑛−1

(1−𝑥𝑛)√1−𝑥2𝑛
] 𝑑𝑥 =  ∫ 𝑒𝑥 [

√1−𝑥2𝑛

1−𝑥𝑛
+

𝑛𝑥𝑛−1

(1−𝑥𝑛)2
√
1−𝑥𝑛

1+𝑥𝑛
] 𝑑𝑥 =  ∫ 𝑒𝑥 {𝑓(𝑥) +

𝑓′(𝑥)]𝑑𝑥,  

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) = √
1 − 𝑥2𝑛

1 − 𝑥𝑛
= 𝑒𝑥𝑓(𝑥) + 𝐶

= 𝑒𝑥
1 − 𝑥2𝑛

1 − 𝑥𝑛
+ 𝐶   

9. ∫
(𝒙+𝟏)

𝒙(𝟏+𝒙𝒆𝒙)𝟐
𝒅𝒙 = 𝒍𝒐𝒈|−𝒇(𝒙)| + 𝒇(𝒙) +

𝒄 𝒕𝒉𝒆𝒏 𝒇(𝒙) = 

(a) 
𝟏

𝒙+𝒆𝒙
                       (b) 

𝟏

𝒙+𝒙𝒆𝒙
                         

(c) 
𝟏

(𝟏+𝒙𝒆𝒙)𝟐
                  (d) none  

Ans. (b) 

Put z= x𝑒𝑥, then dz = (𝑒𝑥 + 𝑥𝑒𝑥) dx 
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I= ∫
𝑑𝑧

𝑧(1+𝑧)2
= ∫ [

1

𝑧
−

1

1+𝑧
−

1

(1+𝑧)2
] 𝑑𝑧 =

log
𝑧

1+𝑧
+

1

1+𝑧
+ 𝐶 = 𝑙𝑜𝑔 |

𝑥𝑒𝑥

1+𝑥𝑒𝑥
| +

1

1+𝑥𝑒𝑥
+ 𝑐 

= log |1 −
1

1 + 𝑥𝑒𝑥
| +

1

1 + 𝑥𝑒𝑥
+ 𝐶 

 

10. If 𝑰𝒏 = ∫
𝐬𝐢𝐧(𝟐𝒏−𝟏)𝒙

𝒔𝒊𝒏𝒙

𝝅

𝟐
𝟎

𝒅𝒙, 𝒂𝒏𝒅 𝒂𝒏 =

∫ (
𝐬𝐢𝐧𝒏𝜽

𝐬𝐢𝐧𝜽
) 𝟐

𝝅

𝟐
𝟎

𝒅𝜽, 𝒕𝒉𝒆𝒏 𝒂𝒏+𝟏 − 𝒂𝒏= 

(a) 𝑰𝒏                             (b) 2𝑰𝒏                               

(c) 𝑰𝒏 + 𝟏                       (d) 0 

Ans. (c) 𝑎𝑛+1 − 𝑎𝑛 =

 ∫
𝑠𝑖𝑛2(𝑛+1)𝑥−𝑠𝑖𝑛2𝑛𝑥

𝑠𝑖𝑛2𝑥

𝜋

2
0

𝑑𝑥 

= ∫
sin(2𝑛 + 1) 𝑥𝑠𝑖𝑛 𝑥

𝑠𝑖𝑛2𝑥

𝜋
2

0

𝑑𝑥

=  ∫
sin(2𝑛 + 1)𝑥

sin 𝑥

𝜋
2

0

𝑑𝑥

=  𝐼𝑛+1 

11. If n ≠ 𝟏, ∫ (𝒕𝒂𝒏𝒏𝒙 + 𝒕𝒂𝒏𝒏−𝟐𝒙)
𝝅

𝟒
𝟎

𝒅(𝒙 −

[𝒙])= 

(a) 
𝟏

𝒏−𝟏
                                (b) 

𝟏

𝒏+𝟏
                           

(c) 
𝟏

𝒏
                                    (d) 

𝟐

𝒏−𝟏
 

Ans. (a) 

Let 𝐼𝑛 = ∫ (𝑡𝑎𝑛
𝑛𝑥 + 𝑡𝑎𝑛𝑛−2𝑥)

𝜋

4
0

𝑑(𝑥 − [𝑥]) 

ℎ𝑒𝑟𝑒 0 < 𝑥 <
𝜋

4
∴ [𝑥] = 0 ∴ 𝑥 − [𝑥] = 𝑥  

𝑛𝑜𝑤 𝐼𝑛 = ∫ 𝑡𝑎𝑛𝑛−2𝑥𝑠𝑒𝑐2𝑥

𝜋
4

0

𝑑𝑥

=  ∫ 𝑧𝑛−2
1

0

𝑑𝑧, 𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑧

= tan 𝑥 

                                     = [
𝑧𝑛−1

𝑛−1
] 1
0
=

1

𝑛−1
  

 

12. If f(𝛼)= f(𝛽) and n ∊N, then the value 

of  ∫ (𝒈(𝒇(𝒙)))
′′

𝒈′(𝒇(𝒙)). 𝒇′(𝒙)
𝜷

𝜶
𝒅𝒙 = 

(a) 1                          (b) 0                               

(c) 
𝜷𝒏+𝟏−𝜶𝒏+𝟏

𝒏+𝟏
              (d) none of these 

Ans. (b) 

Put z = g(f(x)), then dz = g’(f(x)) f’(x) dx 

= ∫ 𝑧𝑛𝑑𝑧 =
𝑧𝑛+1

𝑛+1
  

𝐼 =
1

𝑛+1
[{𝑔(𝑓(𝑥))]

𝑛+1
] 𝛽
𝛼
=

1

𝑛+1
[[{𝑔(𝑓(𝛼))]

𝑛+1
− [{𝑔(𝑓(𝛽))]

𝑛+1
] =  0 

[∵ f(𝛼)= f(𝛽)] 

13. Let [x] denotes the integral part of a 

real number x and {x} = x- [x], then 

solution of 4{x}= x+ [x] are   

(a) ±
𝟐

𝟑
, 𝟎                         (b) ±

𝟒

𝟑
, 𝟎                                

(c) 0, 
𝟓

𝟑
                              (d) ±𝟐,𝟎 

Ans. (c) 

4{x}= x+ [x]= [x]+ {x} +[x] 

⟹ {x}= 
2

3
[𝑥]                   …….(1) 

Since 0 ≤ {𝑥} < 1 
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∴ 0≤
2

3
[𝑥] < 1 ⟹ 0 ≤ [𝑥] <

3

2
 

Hence [x]= 0, 1 

∴{x}= 0, 
2

3
     [from (1)] 

∴ x= [x]+ {x}= 0, 
5

3
 

14. The maximum number of real roots of 

the equation 𝒙𝟐𝒏 − 𝟏= 0 (n ∊N) is 

(a) 2                                      (b) 3                                

(c) n                                     (d) 2n 

Ans. (a) 

𝑥2𝑛 − 1 = 0 ⟹ 𝑥2𝑛 = 1 = cos 0 + 𝑖 sin 0  

∴ 𝑥 = cos
2𝑟𝜋

2𝑛
+ 𝑖 sin

2𝑟𝜋

2𝑛
= cos

𝑟𝜋

𝑛
+

 𝑖 sin
𝑟𝜋

𝑛
, 𝑟 = 0, 1, … . , (2𝑛 − 1) 

x will be real only when sin 
𝑟𝜋

𝑛 
 = 0 

or 
𝑟𝜋

𝑛
= 𝑚𝜋 

or r = mn = a multiple of n 

But, r= 0, 1, 2,, …, 2n- 1 

∴ r = 0, n 

∴ 𝑥2𝑛 − 1 = 0 has only two real root 1, -1. 

Second method: Let f(x) = 𝑥2𝑛 − 1 

Then, f’(x) = 2𝑛𝑥2𝑛−1 

Sign scheme for f’(x) is 

Hence graph, of y= f(x) will either intersect 

x –axis at two points or touch x-axis or will 

not interest x-axis or will not interest x-axis. 

Therefore eqn. f(x)= 0 has two distinct real 

roots or two equal real roots or no real root. 

15. The roots of equation 𝟕 𝐥𝐨𝐠𝟕(𝒙
𝟐−𝟒𝒙+𝟓) 

are 

(a) 4, 5                            (b) 2, -3                              

(c) 2, 3                            (d) 3, 5 

Ans. (c) 

Given, 𝑥2 − 4𝑥 + 5 = 𝑥 − 1 

⟹ 𝑥2 − 5𝑥 + 6 = 0⟹ x= 2, 3 

16. Equation 
𝒂𝟐

𝒙−𝜶
+

𝒃𝟐

𝒙−𝜷
+

𝒄𝟐

𝒙−𝜸
= 𝒎−𝒏𝟐𝒙 

(a, b, c, m, n ∊ r) has necessarily 

(a) all the roots real                                                

(b) all the roots imaginary    

(c) two real and two imaginary roots                    

(d) two rational and two irrational roots 

Ans.(a) 

Let p + iq be a root of given equation, then 

𝑎2

𝑝−𝛼+𝑖𝑞
+

𝑏2

𝑝−𝛽+𝑖𝑞
+

𝑐2

𝑝−𝛾+𝑖𝑞
= 𝑚 − 𝑛2(𝑝 +

𝑖𝑞)  

⟹
𝑎2[𝑝−𝛼−𝑖𝑞]

(𝑝−𝛼)2+𝑞2
+
𝑏2[(𝑝−𝛽)−𝑖𝑞]

(𝑝−𝛽)2+𝑞2
+
𝑐2[(𝑝−𝛾)−𝑖𝑞]

(𝑝−𝛾)2+𝑞2
=

𝑚 − 𝑛2𝑝 − 𝑖𝑛2𝑞 

Equating imaginary parts we get 

𝑞 [{
𝑎2

(𝑝−𝛼)2+𝑞2
+

𝑏2

(𝑝−𝛽)2+𝑞2
+

𝑐2

(𝑝−𝛾)2+𝑞2
} +

𝑛2] =  0  

∴ q= 0. 

Hence p +iq= p= a real number. 

17. If a, b, c ∊ { 1, 2, 3, 4, 5}, the number 

of equations of the form 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 =

𝟎 which have real roots is  



Solving Mathematical Problems 

 

73 
 

(a) 25                               (b) 26                             

(c) 207                              (d) 24 

Ans. (d) 

For real roots ac ≤
𝑏2

4
 

B 𝑏2

4
 

Possible value 

of ac such that 

ac ≤
𝑏2

4
 

No. of 

possible 

pairs (a, c) 

2 1 1 1 

3 2.25 1.2 3 

4 4 1, 2, 3, 4 8 

5 6.25 1, 2, 3, 4, 5, 6 12 

                                Total 24 

 

Value of ac Possible pairs (a, c) 

1 (1, 1) 

2 (1, 2), (2, 1) 

3 (1, 3), (3, 1) 

4 (1, 4), (4, 1), (2, 2) 

5 (1, 5), (5, 1) 

6 (2, 3), (3, 2) 

 Hence number of quadratic equations 

having real roots = 24 

18. If x, 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … , 𝒂𝒏 ∊ 𝑹 𝒂𝒏𝒅 (𝒙 −

𝒂𝟏 + 𝒂𝟐)𝟐 + (𝒙 − 𝒂𝟐 + 𝒂𝟑)
𝟐 +⋯ 

+(𝒙 − 𝒂𝒏−𝟏 + 𝒂𝒏)
𝟐 = 0, 

then 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … , 𝒂𝒏  are in 

(a) A.P.  (b) G.P.  (c) H.P.   (d) none of 

these. 

Ans. (a) (𝑥 − 𝑎1 + 𝑎2)
2 + (𝑥 − 𝑎2 +

𝑎3)
2 +⋯+ (𝑥 − 𝑎𝑛−1 + 𝑎𝑛)

2 = 0 

⟹𝑎1 − 𝑎2 = 𝑎2 − 𝑎3 = ⋯ = 𝑎𝑛−1 −

𝑎𝑛 = 𝑥 

⟹ 𝑎1, 𝑎2, 𝑎3, … . 𝑎𝑛 are in A.P. with 

common difference x. 

19. Let f(x) = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 and g(x) = 

af(x) + bf′(x) + cf″(x) If f(x) > 0 for all x , 

then the sufficient condition for g(x) to be 

> 0 v x is 

(a) c > 0                                 (b) b > 0                           

(c) b< 0                                  (d) c < 0 

Ans. (d) 

g(x)= 𝑎(𝑎𝑥2 + 𝑏𝑥 + 𝑐) + 𝑏(2𝑎𝑥 + 𝑏) +

𝑐 + 2𝑎 = 𝑎2𝑥2 + 3𝑎𝑏𝑥 + 𝑏2 + 3𝑎𝑐 

discriminant of its corresponding equation , 

D = 9𝑎2𝑏2 − 12𝑎3𝑐 

= 9𝑎2𝑏2 − 36𝑎3𝑐 + 24𝑎3𝑐  

= 9𝑎2(𝑏2 − 4𝑎𝑐) + 24𝑎3𝑐             ……(1) 

Since f(x)> 0, ∀ 𝑥 ∊ 𝑅 

∴ a > 0 and 𝑏2 − 4𝑎𝑐< 0 

For g(x)> 0 ∀ 𝑥 ∊ 𝑅, 𝑎2 > 0 𝑎𝑛𝑑 𝐷 < 0 

But from (1), D < 0 when c < 0 

21. The constant term of the quadratic 

expression 

 ∑ (𝒙 −
𝟏

𝒌+𝟏
) (𝒙 −

𝟏

𝒌
)𝒂𝒔 𝒏 ⟶ ∞𝒏

𝒌=𝟏  is 
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(a) -1                             (b) 0                                   

(c) 1                              (d) none of these 

Ans. (c) Constant term  

c = 
1

1.2
+

1

2.3
+⋯+

1

𝑛(𝑛+1)
= 1 −

1

𝑛+1
   

lim
𝑛→∞

𝑐 =  lim
𝑛→∞

(1 −
1

𝑛 + 1
) = 1 

21. If 𝜽𝒊 ∊ [𝟎,
𝝅

𝟔
] , 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓 and 

𝒔𝒊𝒏𝜽𝟏𝒛
𝟒 + 𝒔𝒊𝒏𝜽𝟐𝒛

𝟑 + 𝒔𝒊𝒏𝜽𝟑𝒛
𝟐 +

𝒔𝒊𝒏𝜽𝟒𝒛 + 𝒔𝒊𝒏𝜽𝟓 = 𝟐 then z satisfies 

(a) |z|> 
𝟑

𝟒
   (b) |z|< 

𝟏

𝟐
    (c)  

𝟏

𝟐
< |z|< 

𝟑

𝟒
    (d) 

none of these 

Ans.(a) 

Since 0≤ 𝜃𝑖 , ≤
𝜋

6
 

∴ 0≤ 𝑠𝑖𝑛𝜃𝑖 , ≤
1

2
 

From given condition 

|2|= |𝑠𝑖𝑛𝜃5 + 𝑧𝑠𝑖𝑛𝜃4 + 𝑧
2𝑠𝑖𝑛𝜃3 +

𝑧3𝑠𝑖𝑛𝜃2 + 𝑧
4𝑠𝑖𝑛𝜃1| 

⟹ 2≤ |𝑠𝑖𝑛𝜃5| + |𝑧||𝑠𝑖𝑛𝜃4| +

|𝑧|2|𝑠𝑖𝑛𝜃3|+|𝑧|
3|𝑠𝑖𝑛𝜃2|+|𝑧|

4|𝑠𝑖𝑛𝜃1| ≤
1

2
+

1

2
|𝑧| +

1

2
|𝑧|2 +

1

2
|𝑧|3 +

1

2
|𝑧|4| <

1

2
|𝑧| +

|𝑧|2 +⋯  𝑡𝑜 ∞ ….(1) 

When|𝑧| < 1, from (1), 

2 < 
1

2
.
1

1−|𝑧|
 

∴ 1 − |𝑧| <
1

4
⟹ |𝑧| >

3

4
 

When |z|> 1, clearly |𝑧| >
3

4
  

Thus |𝑧| > 1, 𝑐𝑙𝑒𝑎𝑟𝑙𝑦 |𝑧| >
3

4
 

22. Number of solutions of  𝟑|𝒙| = |𝟐 −

|𝒙|| is 

(a) 0                                         (b) 2                                      

(c) 4                                         (d) infinite 

Ans. (b) 

Given equation is 

(
1

3
)
𝑥

= 2 − 𝑥,   − ∞ < 𝑥 ≤  −2  

         = 2+ x,     -2 ≤ 𝑥 ≤ 0 

3𝑥 = 2 − 𝑥, 0 ≤ 𝑥 ≤ 2     

      = x – 2,  2≤ 𝑥 < ∞ 

At x = 2, 3𝑥 − 𝑥 + 2 = 9  

For x >2, 3𝑥 − 𝑥 + 2 > 9 

(As 3𝑥 − 𝑥 + 2 is an increasing function for 

x > 2) 

For x= -2, (
1

3
)
𝑥

+ 2 + 𝑥 = 9 

For x < -2, (
1

3
)
𝑥

+ 2 + 𝑥 < 9 

[as (
1

3
)
𝑥

+ 2 + 𝑥 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔] 

Hence given equation has only two solutions 

-2 and 2. 

23. The number of real roots of the 

equation (𝟗 + 𝒔𝒊𝒏𝒙)
𝟏

𝟏−𝒙 + (𝟏𝟎 +

𝒔𝒊𝒏𝒙)
𝟏

𝟏−𝒙  = (𝟏𝟏 + 𝒔𝒊𝒏𝒙)
𝟏

𝟏−𝒙  for x ∊ (0, 1) 

is  
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(a) exactly one                        (b) at least 

one                   (c) at most one         (d)  

none of these 

Ans. (a) 

Given eqn. is f(x) = 1,  

where f(x) = (1 +
1

10+sin𝑥
)

1

1−𝑥
− (1 −

1

10+sin𝑥
)

1

1−𝑥
 

Clearly 

f(0)= 
1

5
< 1 𝑎𝑛𝑑 𝑓(1 − 0) =  ∞ 

Also f(x) is an increasing function 

∴ f(x)= 1 only for one value of x. 

24. If 0 < 𝛼r < 1 for r= 1, 2, 3, …, k and m 

be the number of real solutions of 

equation 

∑ (𝒂𝒓)
𝒙𝒌

𝒓=𝟏 = 𝟏 & n be the number of real 

solution of equation  ∑ (𝒙 − 𝒂𝒓)
𝟏𝟎𝟏𝒌

𝒓=𝟏 =

𝟎, then  

(a) m= n                       (b) m ≤ n                        

(c) m ≥ n                         (d) m > n 

Ans. (b) 

Let 𝛼 be a root of eqn. 

𝑎1
𝑥 + 𝑎2

𝑥 +⋯+ 𝑎𝑘
𝑥 = 1             

…………….(1) 

Then when x < 𝛼, L.H.S. of (1)> 1 

And when x > 𝛼, L.H.S. of (1)< 1 

Hence, eqn. (1) cannot have more than one 

root. 

∴ 𝑚 ≤ 1 

Let f(x) = (𝑥 − 𝑎1)
101 + (𝑥 − 𝑎2)

101 +⋯+

(𝑥 − 𝑎𝑛)
101 

∴ f’(x) > 0 ⟹ f(x) is an increasing function 

Also f(−∞) = −∞ < 0 𝑎𝑛𝑑 𝑓(∞) = ∞ >

0 

∴ f(x) = 0 has exactly one real root 

∴ n= 1   

Hence m ≤ 𝑛. 

25. If m be number of integral solutions of 

equation 𝟐𝒙𝟐 − 𝟑𝒙𝒚 − 𝟗𝒚𝟐 − 𝟏𝟏 = 𝟎 and 

n be the number of real solutions of 

equation 𝒙𝟑 − [𝒙] − 𝟑= 0, then m =  

(a) n                                (b) 2n                                 

(c) n/2                             (d)   3n 

Ans. (b) 

Given, 2𝑥2 − 3𝑥𝑦 − 9𝑦2 − 11 = 0 

⟹ (2x +3y)(x- 3y)= 11 

∴
2𝑥 + 3𝑦 = 1
𝑥 − 3𝑦 = 11

} ,
2𝑥 + 3𝑦 = 11
𝑥 − 3𝑦 = 1

} 

2𝑥 + 3𝑦 =  −1
𝑥 − 3𝑦 = −11

} ,
2𝑥 + 3𝑦 = −11
𝑥 − 3𝑦 = −1

}  

∴ x= 4, y= 1, x= -4, y= -1 

∴ m= 2 

Again, given 

𝑥3 − [𝑥] − 3 = 0 ⟹𝑥3 − (𝑥 − 𝛼) − 3 = 0, 

Where 𝛼= {x}= x-[x] 

⟹𝑥3 − 𝑥 = 3 − 𝛼. But 0 ≤ 𝛼 < 1 
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∴ 2 < 𝑥3 − 𝑥 ≤ 3 

For x ≥ 2, 

𝑥3 − 𝑥 = 𝑥(𝑥2 − 1) ≥ 2(22 − 1) = 6  

For x≤ −1, 𝑥3 − 𝑥 =  𝑥(𝑥2 − 1) < 0  

For -1 < x< 0, 𝑥3 − 𝑥 < 1 < 2 

For 0 < x ≤ 1, 𝑥3 − 𝑥 < 𝑥3 < 1 < 2 

For x= 0, 𝑥3 − 𝑥 = 0 < 2 

∴1 < x< 2           ∴ [x]=1 

∴Given equation becomes 

𝑥3 − 4= 0⟹x= 4
1

3 

∴ n= 1 

Thus m= 2, n=1 

26. If [x] denotes the integral part of x 

and k = 𝒔𝒊𝒏−𝟏
𝟏+𝒕𝟐

𝟐𝒕
> 0, then integral 

value of 𝛼 for which the equation (x-

[k])(x+𝛼) - 1 = 0 has integral roots is  

(a) 1                            (b) 2                              

(c) 4                            (d) none of these 

Ans. (d) 

For sin−1
1+𝑡2

2𝑡
 𝑡𝑜 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑, |

1+𝑡2

2𝑡
| ≤ 1 

⟹ 
1+𝑡2

2𝑡
< 1 

⟹ 1+ |𝑡|2 ≤ 2|𝑡| 

⟹ (1+ |𝑡|)2 ≤ 0 

⟹ (1+ |𝑡|)2 = 0 ⟹ |𝑡| = 1 

⟹ t= ±1 

∴ k= sin−1 1 =
𝜋

2
          (∵k> 0) 

∴ [k] = [
𝜋

2
]= 1 

Given equation is (x-1)(x-𝛼)-1= 0 

⟹ (x- 1)(x+ 𝛼)= 1               ……. (1) 

We have to find integral value of 𝛼 for 

which equation (1) has integral roots. 

∴ x and 𝛼 are integers. 

From (1), (i) x- 1 = 1⟹ x= 2 

X+ 𝛼= 1⟹ 𝛼= 1- x= -1 

(ii) x- 1 = -1⟹ x= 0 

X+ 𝛼= -1 ⟹ 𝛼= -1 

Thus, 𝛼= -1. 

 

27. If [x] denotes the integral part of x 

and m= [
|𝒙|

𝟏+𝒙𝟐
] , 𝒏 =

𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒍 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 
𝟏

𝟐−𝒔𝒊𝒏𝟑𝒙
 , then  

(a) m≠ n                         (b) m > n                         

(c) m + n = 0                   (d) 𝒏𝒎 = 𝟎 

Ans. (a) 

0 ≤
|𝑥|

1+𝑥2
< 1 ;  

∴ m= [
|𝑥|

1+𝑥2
] =  0 

Again 1≤ 2 − sin 3𝑥 ≤ 3 

∴
1

3
≤

1

2−sin3𝑥
≤ 1 

∴ n= integral value of 
1

2−sin3𝑥
= 1 
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∴m≠ n is the correct choice. 

 

28. If 1 lies between the roots of equation 

𝒚𝟐 −𝒎𝒚 + 𝟏 = 𝟎 and [x] denotes the 

integral part of x, then [(
𝟒|𝒙|

𝒙𝟐+𝟏𝟔
)
𝒎

] = 

(a) 1                         (b) 0                           (c) 

undefined                                   (c) 2  

Ans. (b) 

Since 1 lies between the roots of equation 

𝑦2 −𝑚𝑦 + 1 = 0,  

∴ f(1)< 0 

⟹ 2-m < 0 ⟹ m > 2                      …… (1) 

Let y= 
4|𝑥|

𝑥2+16
= 

4|𝑥|

|𝑥|2+16
=

4𝑧

𝑧2+16
, where z= |x| 

∴ y𝑧2 − 4𝑧 + 16𝑦 = 0 

Since z is real,  

∴ 16- 64𝑦2 ≥ 0 ⟹ −
1

2
≤ 𝑦 ≤

1

2
 

∴ 0≤ 𝑦 ≤
1

2
   [∵ y > 0] 

∴0≤ 𝑦𝑚 ≤
1

2𝑚
< 1 

∴ [𝑦𝑚] = 0                               …….. (2) 

 

29. Let {fn(x)} be a sequence of 

polynomials defined inductively as  

f1(x) = (x − 2)2 

    fn+1(x) = (fn(x) − 2)2 , n ≥ 1. 

Let an and bn respectively denote the 

constant term and the coefficient of x in 

fn(x). Then  

(a) an = 4, bn = −4n                                            

 (b) an = 4, bn = −4n2  

(c) an = 4(n−1)! , bn = −4n                                     

 (d) an = 4(n−1)! , bn  = −4n2  

Ans. (a) an  = (an-1 – 2)2 ;  an-1 = 4 ; an = 4 

fn(x) = (fn-1(x) − 2)2 = (fn-1(x))2 - 4 fn-1(x) + 4 

So, bn = 2an-1bn-1 – 4bn-1 = 4bn-1 = 4nb0 = - 4n 

 

30. Let x be a positive real number. Then  

(a) x2 + π2 + x2π > xπ + (π + x)xπ                                       

(b) xπ + πx > x2π + π2x  

(c) πx + (π + x)xπ > x2 + π2 + x2π                                      

(d) none of the above  

Ans. (a) By A.M > GM inequality, we have 

(i) Π2 + x2π > 2πxπ 

(ii) x2 + x2π > 2πxπ 

(iii) x2 + π2 > 2πx 

So we have x2 + π2 + x2π > xπ + (π + x)xπ  
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ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 10 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 

 

1. If the tangents at points P and Q of the 

parabola 𝒚𝟐 = 𝟒𝒂𝒙 meet at R and b, c, d 

be the length of perpendiculars from P, 

Q, R to any tangent to the parabola, then 

the roots of equations b𝒙𝟐+ 2dx+ c = 0 are 

necessarily 

(a) imaginary                (b) real and equal               

(c) real and unequal             (d) rational 

Ans. (b) 

Let P ≡ (a𝑡1
2, 2𝑎𝑡1), Q ≡ ( a𝑡2

2, 2𝑎𝑡2 ) 

Then R ≡ [a𝑡1𝑡2, 𝑎(𝑡1 + 𝑡2)] 

Let any tangent to the parabola be yt = x + 

a𝑡2 

or, x- yt+ a𝑡2 = 0 ………….(4) 

b= length of perp. from P to line (4) = 

|a𝑡1
2−2𝑎𝑡1𝑡+a𝑡

2|

√1+𝑡2
=

|𝑎|

√1+𝑡2
(𝑡1 − 𝑡)

2 

c = 
|𝑎|

√1+𝑡2
(𝑡2 − 𝑡)

2 

d = 
|a𝑡1

2−𝑎(𝑡1+𝑡2)+a𝑡
2|

√1+𝑡2
= 

|𝑎|

√1+𝑡2
|(𝑡1 −

𝑡)2(𝑡2 − 𝑡)| 

Clearly, bc = 𝐷2⟹ 𝑟𝑜𝑜𝑡𝑠 𝑜𝑓 𝑒𝑞𝑛. 

b𝑥2 + 2𝑑𝑥 + 𝑐 = 0 are real and equal. 

2. If n𝒄𝟎 − 𝒏𝒄𝟏 + 𝒏𝒄𝟐 − 𝒏𝒄𝟑 +⋯+

(−𝟏)𝒓𝒏𝒄𝒓 = 𝟐𝟖, then n is equal to 

(a) 6                                (b) 7                                 

(c) 8                                     (d) 9 

Ans. (d) (𝑛
0
) − (𝑛

1
) + (𝑛

2
) − (𝑛

3
) + ⋯+

(−1)𝑟(𝑛
𝑟
) 

= (𝑛−1
0
) − ((𝑛−1

0
) + (𝑛−1

1
)) + ((𝑛−1

1
) +

(𝑛−1
2
)) − ((𝑛−1

2
) + (𝑛−1

3
)) + ⋯+

(−1)𝑟(((𝑛−1
𝑟−1
) + (𝑛−1

𝑟
)) 

= (−1)𝑟(𝑛−1
𝑟
) 

∴(−1)𝑟 (𝑛−1
𝑟
) = 28 ⇒ r is even 

∴ (𝑛−1
𝑟
) = 28 = 7× 4 =

7×8

2
= 8𝑐2 

⇒ n= 9. 

3. If x ∊ (𝟎,
𝝅

𝟐
) and cosx= ½ then the value 

of  ∑
𝒄𝒐𝒔𝒏𝒙

𝟑𝒏
∞
𝒏=𝟎  is equal to  

(a) 1                                (b) -1                               

(c) 2                                 (d) -2 

Ans. (a) let c= 1+
𝑐𝑜𝑠𝑥

3
+
𝑐𝑜𝑠2𝑥

32
+⋯ 

And S = 
𝑠𝑖𝑛𝑥

3
+
𝑠𝑖𝑛2𝑥

32
+⋯ 

⇒c + iS= 1+
𝑒𝑖𝑥

3
+
𝑒𝑖𝑥

32
+⋯ 

= 
1

1−
𝑒𝑖𝑥

3

= 
3

3−𝑐𝑜𝑠𝑥−𝑖 𝑠𝑖𝑛𝑥
 

Comparing real parts 
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c = 
3(3−𝑐𝑜𝑠𝑥)

(3−𝑐𝑜𝑠𝑥)2+𝑠𝑖𝑛2𝑥
 

⇒ c =1 (cosx = 
1

3
) 

4. The number of value of n for which 

𝟑𝟗 + 𝟑𝟏𝟐 + 𝟑𝟏𝟓 + 𝟑𝒏 a perfect cube, is 

(a) 2                           (b) 6                                

(c) 8                                    (d) none 

Ans. (d) 39 + 312 + 315 + 3𝑛 

= 39(1 + 34 + 36 + 3𝑛−9) 

= (33)3{1 + 3 . 32 + 3. (32)2 + (32)3 +

3𝑛−9 − 3. (32)2} 

= (33)3(1 + 32)3, 

⇒3𝑛−9 − 35 = 0 

⇒ n-9 =5 

⇒ n = 14. 

5. The number of integral solution of xy = 

𝟐𝟐. 𝟑𝟒. 𝟓𝟕(𝒙 + 𝒚)is 

(a) 675                                 (b) 680                              

(c) 685                               (d) none 

Ans. (a) Let N = 22. 34. 57 

Then, xy = N (x+ y) 

⇒ xy- Nx- Ny= 0 

⇒(x- N)(y- N)=𝑁2 = 24. 38. 514 

∴ The number of integral solutions = (4+ 

1)(8+ 1)(14+ 1) = 675. 

6. A printer numbers the pages of a book 

starting with 1 and uses 3189 digit in all, 

then the number of pages are  

(a) 200                              (b) 300                            

(c) 400                                (d) none 

Ans. (d) No. of digits used for numbering 

pages 1 to 9 = 1 ×9 = 9. 

Similarly, 10 to 99 = 90×2 = 180, 100 to 

999 = 900×3 = 2700 

Number of digits will remain after using 

2889 (=9+ 180+ 2700)digits = 3189- 2889= 

300, 

The digits can be used for numbering 300 

÷4 = 75 pages, i.e. from 1000 to 1074. 

Hence the book has 1074 pages. 

7. The unit’s digits of 𝟑𝟏𝟎𝟎𝟏. 𝟕𝟏𝟎𝟎𝟐. 𝟏𝟑𝟏𝟎𝟎𝟑 

is 

(a) 1                            (b) 3                               

(c) 5                                     (d) none 

Ans. (d) unit digit in 31001 is 3 ; 

71002 is 9;  

And 31001 is 7; 

∴Ans. is = 3× 9 × 7 = 9 (𝑢𝑛𝑖𝑡 𝑑𝑖𝑔𝑖𝑡) 

∴ 9 is in unit place.  

8. The number of pairs of positive integer 

(x, y) which satisfy the equation 𝒙𝟐 +

𝒚𝟐 = 𝒙𝟑 is 

(a) 0                                (b) 1                             

(c) 2                                 (d) none 

Ans. (d) 𝑦2 = 𝑥2(𝑥 − 1) 

So, if k is an integer satisfying  x - 1 =𝑘2 

⇒ x= 𝑘2 + 1 
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Thus there are infinitely many solutions. 

9. If 16−𝒙𝟐 > |𝑥 − 𝑎| is to be satisfied by 

at least one non- negative values of x, then 

complete set of values of ‘a’ is 

(a) (-8, 8)                          (b) (-16,
𝟔𝟓

𝟒
)                       

(c) (-8, 
𝟔𝟓

𝟒
 )                     (d) none 

Ans. (b) 16−𝑥2 > |𝑥 − 𝑎| 

⇒𝑥2 − 16 < 𝑥 − 𝑎 < 16−𝑥2 

⇒𝑥2 − 16 − 𝑥 < −𝑎 < 16 − 𝑥2 − 𝑥  

⇒x + 16-𝑥2 > 𝑎 >  −16 + 𝑥2 + 𝑥 

⇒
65

4
− (𝑥 −

1

2
)2 > 𝑎 > −16 + 𝑥2 + 𝑥; 𝑥 ≤

0 

∴ a ∊ (-16, 
65

4
) (∵x ∊ℝ) 

10.  Number of positive solutions for  𝒙𝟐 −

𝟐 − 𝟐[𝒙] = 𝟎, where [ .]= the greatest 

integer, is 

(a) 0                             (b) 1                              

(c) 2                              (d) none 

Ans. (b)  𝑥2 − 2 − 2[𝑥] ≥ 0 ⇒ [𝑥] =  −1 

When [x]=-1, then 𝑥2 − 2 =  −2 ⇒ 𝑥 =

0, which is  not possible. 

When [x]=1 ⇒ 𝑥2 = 4 ⇒ 𝑥 =

±2(impossible) 

When [x]= 2 ⇒ 𝑥2 = 6 ⇒ 𝑥 = ±√6, i.e. 

only one possible value , i.e. √6 . 

11. The solution set of |
𝒙+𝟏

𝒙
|+|x+1|=

(𝒙+𝟏)𝟐

|𝒙|
 is 

(a) {x:x ≥ 𝟎}                 (b) {x: x > 0}∪

{−𝟏}                    (c) {-1, 1}                

(d) none 

Ans. (b) |
𝑥+1

𝑥
|+|x+1|=

|𝑥+1|2

|𝑥|
  

⇒ |x+1| (
1

|𝑥|
+ 1 −

|𝑥+1|

|𝑥|
)= 0 

⇒ |x+1|= 0 or, 1+ |𝑥| − |x + 1| = 0 

⇒|x+1|= 0 

⇒ x+ 1 > 0 and x ≠ 0 

i.e. x = -1 ,or >0             i.e. {x:x > 0}∪

{−1}  . 

12. The sum of the cubes of the root of 

equation 

𝒙𝟒 + 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅 = 𝟎 is 

(a) 𝒂𝟑 −  𝟑𝒄                           (b) 3ab -

𝒂𝟑                          (c) 3ab- c                        

(d) none 

Ans. (d) let  𝛼1, 𝛼2, 𝛼3, 𝛼4 be the root of the 

equation 

Here 𝑎0 = 1, 𝑎1 = 𝑎, 𝑎2 = 𝑏, 𝑎3 = 𝑐, 𝑎4 =

𝑑 

∴𝑎0𝑠1 + 𝑎1 = 0 ⇒ 𝑠1 + 𝑎 = 0 ⇒ 𝑠1 = −𝑎, 

Now, 𝑎0𝑠2 + 𝑎1𝑠1 + 2𝑎2 = 0 

⇒ 𝑠2 +  𝑎 (−𝑎) + 2𝑏 = 0 

⇒ 𝑠2 = 𝛼
2 − 2𝑏, 

⇒ 𝛼1
2 + 𝛼2

2 + 𝛼3
2 + 𝛼4

2 = 𝑎 − 2𝑏, 

∴𝑎0𝑠3 + 𝑎1𝑠2 + 𝑎1𝑠1+3𝑎3 = 0 

⇒ 𝑠3 = −𝑎
3 + 3𝑎𝑏 − 3𝑐 
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⇒𝛼1
3 + 𝛼2

3 + 𝛼3
3 + 𝛼4

3 = 3𝑎𝑏 − 𝑎3 −

3𝑐. 

13. The integral roots of 𝟓𝒙𝟑 − 𝟏𝟏𝒙𝟐 +

𝟏𝟐𝒙 − 𝟐 = 𝟎 are  

(a) (1, 2, 3)                          (b) (-1, -2, -3)                       

(c) (0, 1, 2)                             (d) none 

Ans. (d) f(x)= 5𝑥3 − 11𝑥2 + 12𝑥 − 2 = 0 

Where constant term = -2, and divisors of 

constant term are  ±1,±2, i.e. the possible 

value of integral roots are ±1,±2 

Now, f(1)≠ 0, 𝑓(−1) ≠ 0; 𝑓(2) ≠

0; 𝑓(−2) ≠ 0.so it has no integral roots. 

14. If f(x) = 𝒙𝟐 + 𝟐𝒃𝒙 + 𝟐𝒄𝟐 and g(x)= 

−𝒙𝟐 − 𝟐𝒄𝒙 + 𝒃𝟐 are such that min f(x), 

then relation between b and c, is 

(a) |c|> √𝟐                        (b) 0 < c < 
𝒃

𝟐
                      

(c)  |c|< √𝟐|b|                          (d) 

none 

Ans. (a) f(x) = (𝑥 + 𝑏)2 + 2𝑐2 − 𝑏2 

⇒ min f(x) = 2𝑐2 − 𝑏2 

g(x) = 𝑏2 +𝑐2- (𝑥 + 𝑐)2 

⇒ max g(x) = 𝑏2 +𝑐2 

Thus, min f(x) > max g(x) 

⇒ 2𝑐2 − 𝑏2 > 𝑏2 +𝑐2 

⇒ |c|> √2|𝑏| 

 

 

15. The number of positive integers which 

are less than or equal to 1000 and are 

divisible by none of 17, 19 and 23 equals 

(a) 854                           (b) 153                          

(c) 160                             (d) none. 

Ans. (a) A: integers divisible by 17 

                  B: integers divisible by 19 

                  C: integers divisible by 23 

n(𝐴 ∪ 𝐵 ∪ 𝐶)𝑐 = 1000 − 𝑛(𝐴) − 𝑛(𝐵) −

𝑛(𝐶) + 𝑛(𝐴 ∩ 𝐵) + 𝑛(𝐵 ∩ 𝐶) + 𝑛(𝐶 ∩

𝐴) − 𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) 

= 1000− [
1000

17
] − [

1000

19
] − [

1000

23
] +

[
1000

17×19
]+ [

1000

17×23
] + [

1000

19×23
] − [

1000

17×19×23
] 

= 1000- 58- 52- 43+3+2+2-0 

= 854 

16. Let {𝒂𝒏} be a sequence of real 

numbers. Then 𝐥𝐢𝐦
𝒏→∞

𝒂𝒏 exists if and only if 

(a) 𝐥𝐢𝐦
𝒏→∞

𝒂𝟐𝒏 and 𝐥𝐢𝐦
𝒏→∞

𝒂𝟐𝒏+𝟏 exist 

(b) 𝐥𝐢𝐦
𝒏→∞

𝒂𝟐𝒏 and 𝐥𝐢𝐦
𝒏→∞

𝒂𝟐𝒏+𝟐 exist 

(c) 𝐥𝐢𝐦
𝒏→∞

𝒂𝟐𝒏 and 𝐥𝐢𝐦
𝒏→∞

𝒂𝟐𝒏+𝟏and 

𝐥𝐢𝐦
𝒏→∞

𝒂𝟑𝒏 exist 

(d) None of the above 

Ans. (a) If a sequence converges then all of 

its subsequences converges. 

∴ lim
𝑛→∞

𝑎𝑛  converges ⤇ lim
𝑛→∞

𝑎2𝑛 and 

lim
𝑛→∞

𝑎2𝑛+1 exist 

𝑎2𝑛 & 𝑎2𝑛+1 cover all the terms in 𝑎𝑛 

So, converse is also true. 
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17. In the Taylor expansion of the 

function f(x) = 𝒆
𝒙

𝟐 about x=3, the 

coefficient of (𝒙 − 𝟑)𝟓 is 

(a) 𝒆
𝟑

𝟐.
𝟏

𝟓!
                       (b) 𝒆

𝟑

𝟐.
𝟏

𝟐𝟓𝟓!
                      

(c) 𝒆−
𝟑

𝟐.
𝟏

𝟐𝟓𝟓!
                          (d) none 

Ans. (b) 
𝑓(𝑟)(𝑥0)

𝑟!
(𝑥 − 𝑥0)

𝑟 = 
𝑓5(3)(𝑥−3)5

5!
=

𝑒
3
2(𝑥−3)5

255!
  

18. Let f(x, y) = 

{
𝒆−𝟏/(𝒙

𝟐+𝒚𝟐) 𝒊𝒇 (𝒙, 𝒚) ≠ (𝟎, 𝟎)

𝟎                 𝒊𝒇 (𝒙, 𝒚) = (𝟎, 𝟎)
 

Then f(x, y) is 

(a) Not continuous at (0, 0)                               

(b) Differentiable at (0, 0) 

(c) Continuous at (0, 0) but does not 

have first order partial derivatives  

(d) Continuous at (0, 0) and has first 

order partial derivatives but not 

differentiable at (0, 0) 

Ans. (a) check yourself. 

19. The maximum value of   

[
𝟏 + 𝒔𝒊𝒏𝟐𝒙 𝒄𝒐𝒔𝟐𝒙 𝟒𝒔𝒊𝒏𝟐𝒙
𝒔𝒊𝒏𝟐𝒙 𝟏 + 𝒄𝒐𝒔𝟐𝒙 𝟒𝒔𝒊𝒏𝟐𝒙
𝒔𝒊𝒏𝟐𝒙 𝒄𝒐𝒔𝟐𝒙 𝟏 + 𝟒𝒔𝒊𝒏𝟐𝒙

] is  

(a) 0    (b) 2  (c )  4  (d)  6 

Ans. (d) ∆= [
1 −1 0
0 1 −1

𝑠𝑖𝑛2𝑥 𝑐𝑜𝑠2𝑥 1 + 4𝑠𝑖𝑛2𝑥
]   

[𝑅1
′ = 𝑅1 − 𝑅2][ 𝑅2

′ = 𝑅2 − 𝑅3] 

= (1+ 4𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥) + ( 𝑠𝑖𝑛2𝑥) 

= 2+ 4𝑠𝑖𝑛2𝑥 

Since | 𝑠𝑖𝑛2𝑥 |≤ 1 , 𝑠𝑜, 2 + 4𝑠𝑖𝑛2𝑥 ≤ 2+4 = 

6 

20. The pages of book are numbered 

consecutively starting from pages. A total 

of 2989 digits was used to number the 

pages. Then the number of pages is 

divisible by 

(a) 2                             (b) 3                                

(c) 5                                  (d) 7 

Ans. (a) 2989 = 189 + 2800= 

189+2700+100 = 1× 9 + 20 × 9 + 300 ×

9 + 25 × 4 

From 1 to 9 pages, there are 9 digits 

From 10 to 99 pages, there are 20×9 digits 

From 100 to 999 pages, there are 300 × 9 

digits. 

From 1000 to 1024 pages, there are 25 × 4 

digits. 

So, there are total 1024 pages in the book. 

21. Let A be a set of n elements. The 

number of ways, we can choose an 

ordered pair (B, C), where B, C are 

disjoint subsets of A, equals  

(a) n2                          (b) n3                              

(c) 2n                               (d) 3n 

Ans. (d) 3n  (Give reason) 

22. Consider the following system of 

equivalences of integers.  

x ≡ 2 mod 15                     &                             

x ≡ 4 mod 21.  
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The number of solutions in x, where 1 ≤ x 

≤ 315, to the above system of equivalences 

is  

(a) 0                                 (b) 1                           

(c) 2                               (d) 3 

Ans. (a) Use Chinese Remainder Theorem, 

there will be no solution. 

23. The set of complex numbers z 

satisfying the equation (3 + 7i)z + (10 − 

2i)�̅� + 100 = 0 represents, in the complex 

plane,  

(a) a straight line                                                 

(b) a pair of intersecting straight lines  

(c) a point                                                             

(d) a pair of distinct parallel straight lines 

Ans. (c) Hint: Put z = x + iy, 𝑧̅ = x – iy 

24. The 𝐥𝐢𝐦
𝒏→∞

∑ ∣ 𝒆
𝟐𝝅𝒊𝒌

𝒏 − 𝒆
𝟐𝝅𝒊(𝒌−𝟏)

𝒏 ∣𝒏
𝒌=𝟏 𝒊𝒔  

(a) 2                                         (b) 2e                                   

(c) 2π                                (d) 2i 

Ans. (c) lim
𝑛→∞

∑ ∣ 𝑒
2𝜋𝑖𝑘

𝑛 ∣∣ 𝑒
2𝜋𝑖

𝑛 − 1 ∣𝑛
𝑘=1  = 

lim
𝑛→∞

𝑛 ∣ 𝑒
2𝜋𝑖

𝑛 − 1 ∣ = 2π 

25. For non-negative integers m, n define 

a function as follows  

f(m, n) = 

{

𝒏 + 𝟏                                      𝒊𝒇 𝒎 = 𝟎

𝒇(𝒎− 𝟏, 𝟏)                             𝒊𝒇 𝒎 ≠ 𝟎, 𝒏 = 𝟎

𝒇(𝒎 − 𝟏, 𝒇(𝒎,𝒏 − 𝟏)          𝒊𝒇 𝒎 ≠ 𝟎, 𝒏 ≠ 𝟎
 

Then the value of f(1, 1) is  

(a) 4                               (b) 3                                   

(c) 2                                         (d) 1 

Ans. (b) From 1st equation, f(0, 1) = 2 

From 3rd equation, f(1, 1) = f(0, f(1, 0)) = 

f(1, 0) + 1 (from 1st equation)  = 3 

26. Let S be the set of real numbers x for 

which the power series ∑ [𝟏 −∞
𝒏=𝟏

(−𝟐)𝒏]𝒙𝒏 converges. Then s equals 

(a) {0}                             (b) (-
𝟏

𝟐
,
𝟏

𝟐
)                           

(c) (-
𝟏

𝟐
,
𝟏

𝟐
)                           (d) (-1, 1) 

Ans. (b) ∑ 𝑎𝑛
∞
𝑛=1 𝑥𝑛 converges if |x| < 

1

lt
𝑛→∞

|𝑎𝑛|
1
𝑛

 

i.e. |x| < 
1

lt
𝑛→∞

[1−(−2)𝑛]
1
𝑛

 

i.e. |x| <- 
1

2
. 

27. There are 30 questions in a multiple 

choice test. A student gets 1 mark for 

each unattempted question, 0 mark for e 

wrong answer and 4 marks for each  

correct answer. A student has answered x 

question correctly and has score then the 

number of possible  values of x is  

(a) 15                               (b) 10                                

(c) 6                                  (d) 5 

 Ans. (c)  

60 =10 × 4 + 20 × 1, x =10 

     = 11 × 4 + 16 × 1 + 3 × 0 , x= 11 

      = 12× 4 + 12 × 1 + 6 × 0 , x= 12 

      = 13× 4 + 8 × 1 + 9 × 0 , x= 13 

       = 14 × 4 + 4 × 1 + 12 × 0  , x= 14 
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       = 15 × 4 + 0 × 1 + 15 × 0, x= 15 

Total, 6 possible values are there, 10≤ 𝑥 ≤

15. 

28. The number of permutations of {1, 2, 

3, 4, 5} that keep at least one integer fixed 

is 

(a) 81                                (b) 76                              

(c) 120                                  (d) 60 

Ans. (c) There are total 5! Permutations of 

these 5 digits. 

 

29. If f(x) is a real value function such 

that 2f(x) + 3f(-x) = 15- 4x, ∀ x ∊ℝ, then 

f(2) is 

(a) -15                             (b) 22                            

(c) 11                               (d) 0 

Ans. (c) put x= -x , 2f (-x) + 3f(x) = 15+ 4x 

                                2f(x) + 3f(-x) = 15- 4x 

          _______________________________ 

Solving equations, we get f(x) = 3+4x, f(2) 

= 11. 

 

30. If M is a matrix of 3×3 order such 

that 

[0   1   2] M = [1   0   0] and [3   4    5] M = 

[0    1    0]. Then [6    7     8] M is equal to 

(a) [2    1    -2]                (b) [0    1    0]                     

(c) [-1     2     0]           (d) [9     10     

8] 

Ans. (b) Do yourself. 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 11 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 

 

1. Let f(x) = cosx(sinx + 

√𝒔𝒊𝒏𝟐𝒙 + 𝒔𝒊𝒏𝟐𝜽), where ‘𝜃’ is a 

given constant,  

then maximum value of f(x) is 

(a) √𝟏 + 𝐜𝐨𝐬𝟐 𝜽            (b) √𝟏 + 𝐬𝐢𝐧𝟐 𝜽              

(c) |cos𝜃|                      (d) none 

Ans. (b) {𝑓(𝑥)𝑠𝑒𝑐𝑥 − 𝑠𝑖𝑛𝑥}2 = 𝑠𝑖𝑛2𝑥 +

𝑠𝑖𝑛2𝜃, 

⤇ 𝑓2(𝑥)(1 + 𝑡𝑎𝑛2𝑥) − 2𝑓(𝑥𝑡𝑎𝑛𝑥) =

𝑠𝑖𝑛2𝜃 

⤇ 𝑓2(𝑥)𝑡𝑎𝑛2𝑥 − 2𝑓(𝑥𝑡𝑎𝑛𝑥) + 𝑓2(𝑥) −

𝑠𝑖𝑛2𝜃 = 0 

⤇4𝑓2(𝑥) ≥ 4𝑓2(𝑥){ 𝑓2(𝑥) − 𝑠𝑖𝑛2𝜃} 

⤇𝑓2(𝑥) ≤ 1 + 𝑠𝑖𝑛2𝜃 

i.e. |f(x)|≤ √1 + 𝑠𝑖𝑛2𝜃. 

2. 𝐥𝐢𝐦
𝒏→∞

𝟏+√𝟐+𝟑√𝟑+⋯+𝒏√𝒏

𝒏
  

(a) equals 0                          (b) equals 1                     

(c) equals ∞                   (d) none 
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Ans. (b) Cauchy’s First limit theorem:-  

If lim
𝑛→∞

𝑢𝑛 = 𝑙, 𝑡ℎ𝑒𝑛 lim
𝑛→∞

𝑢1+𝑢2+⋯+𝑢𝑛

𝑛
= 𝑙 . 

Here lim
𝑛→∞

𝑢𝑛 = lim
𝑛→∞

𝑛
1

𝑛 =

1, 𝑠𝑜, 𝑏𝑦  Cauchy’s first limit theorem  

lim
𝑛→∞

𝑢1+𝑢2+⋯+𝑢𝑛

𝑛
= 

lim
𝑛→∞

1+√2+3√3+⋯+𝑛√𝑛

𝑛
= 1. 

3. The sum of the series 1+
𝟑

𝟒
+
𝟑.𝟓

𝟒.𝟖
+

𝟑.𝟓.𝟕

𝟒.𝟖.𝟏𝟐
+⋯  is  

(a) 𝒆𝟐                       (b)  3                     

(c) √𝟓                      (d)   √𝟖 

Ans. (d) √8 =  2
3

2 = (
1

2
)−

3

2 = (1 −
1

2
)−

3

2   

= 1+(
1

2
) (
3

2
) +

(−
3

2
)(−

3

2
−1)

2!
(−

1

2
)2 +⋯ 

= 1+
3

4
+
3.5

4.8
+

3.5.7

4.8.12
+⋯   

4. If 0 < x < 1, then the sum of the infinite 

series 
𝟏

𝟐
𝒙𝟐 +

𝟐

𝟑
𝒙𝟑 +

𝟑

𝟒
𝒙𝟒 +⋯ is 

(a) 𝐥𝐨𝐠
𝟏+𝒙

𝟏−𝒙
        (b) 

𝒙

𝟏−𝒙
+ 𝐥𝐨𝐠(𝟏 + 𝒙)       

(c) 
𝟏

𝟏−𝒙
+ 𝐥𝐨𝐠(𝟏 − 𝒙)        (d) 

𝒙

𝟏−𝒙
+

𝐥𝐨𝐠(𝟏 − 𝒙) 

Ans. (b) 
1

2
𝑥2 +

2

3
𝑥3 +

3

4
𝑥4 +⋯ 

= (1-
1

2
) 𝑥2+ (1-

1

3
) 𝑥3+ (1-

1

4
)𝑥4+…. 

= {𝑥2+𝑥3+𝑥4+….  }-{
1

2
𝑥2 +

1

3
𝑥3 +

1

4
𝑥4 +

⋯} 

= {1+x+𝑥2+….}-{x+
1

2
𝑥2 +

1

3
𝑥3+…}-1 

= 
1

1−𝑥
+ log(1 − 𝑥)-1 

= 
𝑥

1−𝑥
+ log(1 − 𝑥) 

5. The polar equation r= acos𝜃 represents 

(a) a spiral                      (b) a parabola                        

(c) a circle                       (d) none 

Ans. (c) 𝑟2 = 𝑎𝑟𝑐𝑜𝑠𝜃    

∴ 𝑥2 + 𝑦2 = 𝑎𝑥   (since r = 𝑥2 + 𝑦2, 𝑥 =

𝑎𝑐𝑜𝑠𝜃  ) 

∴𝑥2 + 𝑎𝑥 + 𝑦2 = 0 

∴(x+
𝑎

2
)2 + 𝑦2 =

𝑎

4

2
  

This is a circle of radius 
𝑎

2
 and centre (-

𝑎

2
, 0). 

6. The value of the infinite product P = 

𝟕

𝟗
×
𝟐𝟔

𝟐𝟖
×
𝟔𝟑

𝟔𝟓
×…×

𝒏𝟑−𝟏

𝒏𝟑+𝟏
×… is 

(a) 1                       (b)  2/3                        

(c)  7/3                           (d) none 

Ans. (b) 

P= 
23−1

23+1
.
33−1

33+1
……. 

= (
(2−1)(22+1+2)

(2+1)(22+1−2)
)(
(3−1)(32+1+3)

(3+1)(32+1−3
)….. 

= (
1.2.3.4…..

3.4.5.6……
)(
7.13.21……

3.7.13……..
) 

= 
1.2

3
= 

2

3
. 

7. If f(x) = 𝐋𝐭
𝒊→∞

(𝟏+𝒔𝒊𝒏𝝅𝒙)𝒕−𝟏

(𝟏+𝒔𝒊𝒏𝝅𝒙)𝒕+𝟏
, then range of 

f(x) is 

(a) {-1, 1}                   (b)  {0, 1}                   

(c) {-1, 1}                      (d) {-1, 0, 1} 
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Ans. (d) 

f(x)= Lt
𝑡→∞

(1+sin𝜋𝑥)𝑡−1

(1+sin𝜋𝑥)𝑡+1
=

 

{
 
 

 
 
1−

1

(1+sin𝜋𝑥)𝑡

1+(
1

1+sin𝜋𝑥
)
𝑡,           sin 𝜋𝑥 > 0

0−1

0+1
,                       sin 𝜋𝑥 < 0

1−1

1+1
,                        sin 𝜋𝑥 = 0

      = 

{
1,             sin 𝜋𝑥 > 0
−1,          𝑠𝑖𝑛𝜋𝑥 < 0
0,             𝑠𝑖𝑛𝜋𝑥 = 0

 

∴ Range f= {-1, 0, 1} 

8. If f: (𝟎,
𝝅

𝒏
) → 𝑹, 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒃𝒚 𝒇(𝒙) =

∑ [𝟏 + 𝐬𝐢𝐧 𝒌𝒙]𝒏
𝒌=𝟏 , where [x] denotes the 

integral part of x, then range of f(x) is 

(a) {n-1, n+1}              (b) {n-1, n, n+1}                

(c) {n, n+1}                    (d) none of these 

Ans. (c) 

f(x )= ∑ (1 + [sin 𝑘𝑥])𝑛
𝑘=1 = 𝑛 + [sin 𝑥] +

[sin 2𝑥] + …+ [sin 𝑛𝑥] …….(1) 

case 1: when kx ≠
𝜋

2
 for k= 1, 2, 3, …, n 

since 0 < kx < 𝜋 and kx ≠
𝜋

2
 

∴ 0 < sin kx < 1, for k= 1, 2, …., n 

∴ [sin kx]= 0, for k= 1, 2, 3, …., n 

∴ from (1), f(x)= n 

When exactly one of x, 2x, 3x, …, nx is 
𝜋

2
. 

Here not more than one of x, 2x, 3x, …, nx 

can be 
𝜋

2
. In this case one of sin x, sin 2x, …, 

sinmnx is 1 and other lie between 0 and 1 

∴ from (1), f(x)= n+1 

Hence range of f= {n, n+ 1} 

9. If f(x) = 𝐋𝐭
𝒏→∞

𝒙

𝒙+𝟏
+

𝒙

(𝒙+𝟏)(𝟐𝒙+𝟏)
+

𝒙

(𝟐𝒙+𝟏)(𝟑𝒙+𝟏)
+⋯+ to n terms, then range 

of f(x) is 

(a) {0, 1}                (b) {-1, 0}              (c) 

{-1, 1}                  (d) none of these 

Ans. (a) 

𝑆𝑛 = (1 −
1

1 + 𝑥
)

+ (
1

1 + 𝑥
−

1

1 + 2𝑥
)

+ (
1

1 + 2𝑥
−

1

1 + 3𝑥
)

+⋯

+ (
1

1 + (𝑛 − 1)𝑥

−
1

1 + 𝑛𝑥
) 

= 1 −
1

1 + 𝑛𝑥
  

𝑏𝑢𝑡 Lt
𝑛→∞

𝑛𝑥 =  ∞, 𝑥 > 0 =  −∞, 𝑥 < 0 =

0, 𝑥 = 0   

∴𝑓(𝑥) = Lt
𝑛→∞

𝑆𝑛 = 1,𝑤ℎ𝑒𝑛 𝑥 ≠ 0 

            = 0,                  𝑤ℎ𝑒𝑛  𝑥 = 0   

       Hence range f= {0, 1} 

10. Period of f(x) = sin 
𝝅𝒙

(𝒏−𝟏)!
+ 𝐜𝐨𝐬

𝝅𝒙

𝒏!
  is 

(a) n !                          (b) 2 (n!)                           

(c) 2 (n-1)!                      (d) none of these 

Ans. (b) sin
𝜋𝑥

(𝑛−1)!
 is a periodic function with 

period 2𝜋+ 
𝜋

(𝑛−1)!
= 2(𝑛 − 1)! 

𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 cos
𝜋𝑥

𝑛!
= 2𝜋 +

𝜋

𝑛!
= 2𝑛! 
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𝐿. 𝐶.𝑀. 𝑜𝑓 2(𝑛 − 1)! 𝑎𝑛𝑑 2(𝑛!)𝑖𝑠 2(𝑛!) 

∴ 𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑓(𝑥)𝑖𝑠 2(𝑛!) 

11. Period of the function cos {(x+3)-

[x+3]}, where [x] denotes the integral part 

of x is 

(a) 1                         (b) 2                        (c) 

𝜋                                  (d) 2𝜋 

Ans. (a) 

x- [x] is a periodic function with period 1. 

∴ (x+ 3)- [x+ 3] is a periodic function with 

period 1. 

∴ cos {(x+ 3)}- [x+ 3]] is a periodic function 

with period 1. 

12. If f(x) = 𝟐𝒔𝒊𝒏
𝟑𝝅𝒙+𝒙−[𝒙], where [x] 

denotes the integral part of x is a periodic 

function with period 

(a) 1                          (b) 2                          (c) 

𝜋                                       (d) none of these 

Ans. (b) 

Period of x- [x] is 1 and period of 𝑠𝑖𝑛3𝜋𝑥 is 

2. 

L.C.M. of 1 and 2 is 2 

∴ f(x) is a periodic function with period 2. 

13. If f(x)= cos x+ cos ax is a periodic 

function, then a is necessarily 

(a) an integer   (b) a rational number     

(c) an irrational number     (d) an event 

number 

Ans. (b) Period of cos x= 2𝜋 and period of 

cos ax= 
2𝜋

|𝑎|
 

Period of f(x) = L.C.M. of 
2𝜋

1
 𝑎𝑛𝑑 

2𝜋

|𝑎|
=

𝐿.𝐶.𝑀.𝑜𝑓 2𝜋 𝑎𝑛𝑑 2𝜋

𝐻.𝐶.𝐹.𝑜𝑓 1 𝑎𝑛𝑑 |𝑎|
 

Since k= H.C.F. of 1 and |a| 

∴ 
1

𝑘
= an integer= m (say) and 

|𝑎|

𝑘
= an integer 

= n (say) 

∴ |a|=
𝑛

𝑚
⟹ 𝑎 = ±

𝑛

𝑚
= a rational number. 

14. Let f : R⟶ R defined by f(x)= 𝒙𝟑 +

𝒙𝟐 + 𝟏𝟎𝟎𝒙 + 𝟓𝐬𝐢𝐧 𝒙, then f is  

(a) many-one onto        (b) many-one into       

(c) one-one onto          (d) one-one into 

Ans. (c) 

𝑓(𝑥) =  𝑥3 + 𝑥2 + 100𝑥 + 5 sin x 

∴ f’(x)= 3𝑥2 + 2𝑥 + 100 + 5 cos 𝑥 

= 3𝑥2 + 2𝑥 + 94 + (6 + 5 𝑐𝑜𝑠𝑥) >  0 

∴ f is an increasing function and 

consequently a one –one function. 

Clearly f(−∞)=−∞ , f(∞)=∞ and f(x) is 

continuous, therefore range f= R= co 

domain f. Hence f is onto. 

15. Let f(x) =  
𝒔𝒊𝒏𝟏𝟎𝟏𝒙

[
𝒙

𝝅
]+
𝟏

𝟐

, where [x] denotes 

the integral part of x is 

(a) an odd function                                                      

(b) an even function  

(c) neither odd nor even function                               

(d) both odd and even function 
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Ans. (a) when x= n𝜋, n 𝜖 I, sin x = 0 and 

[
𝑥

𝜋
] +

1

2
≠ 0 

∴ f(x) = 0 

∴ when x = n𝜋, f(x)= 0 and f(-x)= 0 

∴ f(-x)= f(x) 

When x ≠ 𝑛𝜋, 𝑛 𝜖 𝐼,
𝑥

𝜋
≠ 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  

∴ [
𝑥

𝜋
] + [−

𝑥

𝜋
] =  −1 ∴ [−

𝑥

𝜋
] = −1 − [

𝑥

𝜋
] 

⟹ [−
𝑥

𝜋
] +
1

2
=  − [

𝑥

𝜋
] −
1

2
=  − ([

𝑥

𝜋
] +
1

2
) 

Now 𝑓(−𝑥) =
𝑠𝑖𝑛101(−𝑥)

[−
𝑥

𝜋
]+
1

2

=
−sin𝑥

−([
𝑥

𝜋
]+
1

2
)
=

sin𝑥

[
𝑥

𝜋
]+
1

2

= 𝑓(𝑥)  

Hence in all cases f(-x)= f(x) 

 

16. . If k be the value of x at which the 

function  

f(x) =∫ 𝒕(𝒆𝒕 − 𝟏)(𝒕 − 𝟏)(𝒕 − 𝟐)𝟑(𝒕 −
𝒙

−𝟏

𝟑)𝟓 𝒅𝒕 has maximum value and sinx + 

cosecx = k, then for n ∊N, 𝒔𝒊𝒏𝒏𝒙 +

𝒄𝒐𝒔𝒆𝒄𝒏𝒙 = … 

(a) 2                                  (b) -2                                  

(c) 
𝝅

𝟐
                                  (d) 𝜋 

Ans. (a) f’(x) = 𝑥(𝑒𝑥 − 1)(𝑥 − 1)(𝑥 −

2)3(𝑥 − 3)5 

By Sign Rule we get 

f(x) has max. at x = 2 

∴ k = 2 

Now sin x + cosec x = k ⟹ sin x + cosec x 

= 2 

⟹(sin 𝑥 − 1)2 = 0 ⟹ sin 𝑥 = 1 

∴ cosec x = 1 

Hence 𝑠𝑖𝑛𝑛𝑥 + 𝑐𝑜𝑠𝑒𝑐𝑛𝑥 = 2 

17. If f(x+ y) = f(x) + f(y) – xy – 1for all x, 

y ∊R and f(1)=1, then the number of 

solutions of f(n)= n, n ∊N is 

(a) 0                       (b) 1                           (c) 

2                              (d) more than 2 

Ans. (b) 

Given 

f(x+ y)= f(x)+f(y)- xy- 1∀𝑥, 𝑦, 𝜖 𝑅 

……………(1) 

f(1)= 1 ……………..(2) 

f(2) = f(1+1)= f(1)+f(-1)-1-1= 0 

f(3 )= f(2+1)= f(2)+f(1)-2.1-1= -2 

f(n+1) = f(n) +f(1) – n – 1 = f(n)- n< f(n) 

Thus f(1) > f(2) > f(3)> …and f(1)= 1 

∴f(1)= 1 and f(n)< 1, for n> 1 

Hence f(n)= n, n 𝜖 N has only one solution 

n= 1 

18. If f is an increasing function and g is a 

decreasing function such that g(f(x)) 

exists, then  

(a) g(f(x)) is an increasing function                                

(b) g(f(x)) is an decreasing  

(c) nothing can be said                                                     

(d) g(f(x)) is a constant function 



Solving Mathematical Problems 

 

89 
 

Ans. (b) 

f’ (x)> 0 (∵ f(x) is an increasing function) 

g’(x)< 0  

(∵g(x) is a decreasing function) 

(g(f(x)))’= g’ (f(x)).f’(x) < 0 

∴g(f(x)) is a decreasing function 

19. f: R⟶ R, f(x)=x|x| is 

(a) one-one and onto                                                          

(b) one-one but not onto  

(c) not one-one but onto                                                    

(d) neither one-one nor onto 

Ans. (a) 

𝑓(𝑥) =  {
−𝑥2, 𝑥 ≤ 0

𝑥2, 𝑥 ≥ 0
 

∴  𝑓′(𝑥) = {
−2𝑥2, 𝑥 ≤ 0
2𝑥, 𝑥 ≥ 0

  

∴ f’(x)=>0 ∴ f(x) is an increasing function 

and consequently it is a one –one function. 

Also f(−∞)= -∞, f(∞)=∞, 

Hence range f= R 

20. Let f(r) = 1+ 
𝟏

𝟐
 +
𝟏

𝟑
+⋯+

𝟏

𝒓
, 𝒕𝒉𝒆𝒏 ∑ 𝒇(𝒊)𝒏

𝒊=𝟏 = 

(a) (n+1) f(n)-(n- 1)           (b) (n+ 1) f(n)- n        

(c) n f(n)- (n-1)          (d) (n-1) f(n) 

Ans. (b) 

f(1)+ f(2)+ …+f(n)= 1+ (1 +
1

2
) + (1 +

1

2
+

1

3
) + ⋯(1 +

1

2
+
1

3
+⋯+

1

𝑛
) 

= 𝑛 +
(𝑛 − 1)

2
+
(𝑛 − 2)

3
+⋯

+
[𝑛 − (𝑛 − 1)]

𝑛
 

= 𝑛 (1 +
1

2
+
1

3
+⋯+

1

𝑛
)

− (
1

2
+
2

3
+⋯+

𝑛 − 1

𝑛
) 

= 𝑛𝑓(𝑛) − [(1 −
1

2
) + (1 −

1

3
) +⋯

+ (1 −
1

𝑛
)] 

= 𝑛𝑓(𝑛) − (𝑛 − 1) + 𝑓(𝑛) − 1

= (𝑛 + 1)𝑓(𝑛) − 𝑛 

21. The period of f(x) = 𝒆𝐬𝐢𝐧{𝒙} +

𝐬𝐢𝐧 (
𝝅

𝟐
[𝒙]) is ([.]) and {.} are the greatest 

integer function and fraction function 

(a) 1                                  (b) 4                               

(c) 2                                   (d) not periodic 

Ans. (b) 

Period of {x} i.e. x- [x] is 1 and period of 

sin (
𝜋

2
[𝑥])  𝑖𝑠 4 

L.C.M. of 1 and 4 is 4 

∴ Period of f(x) is 4 

22. If f(x) = (𝒂 − 𝒙𝒏)𝟏/𝒏, x > 0 and g(x)> x 

⋁x ∊R, then for all x > 0 

(a) g(g(x))= f(f(x))         (b)  g(g(x))>2 

f(f(x))          (c) g(g(x))< f(f(x))       (d) 

g(g(x))> f(f(x)) 

Ans. (d) 

f(x)= (𝑎 − 𝑥𝑛)1/𝑛, 𝑥 > 0 
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∴ f(f(x))= f(y), where y= f(x)=  (1 − 𝑦𝑛)
1

𝑛 =

{1 − (𝑎 − 𝑥𝑛)} 
1

𝑛 =  𝑥, 𝑥 >  0 

Given, g(x)-> 0 ∀ x 𝜖 R 

∴ g(g(x))-g(x)> 0 ∀ x 𝜖 R 

[Putting g(x) in place of x] 

Adding we get, g(g(x))-x> 0 

⟹ g(g(x))> x ⟹g(g(x))> f(f(x)), x > 0 

[∵ f(f(x))= x, x > 0] 

23. Let f : R ⟶R be a function defined by 

f(x)=
𝒆|𝒙|−𝒆−𝒙

𝒆𝒙+𝒆−𝒙
 , then 

(a) ‘f’ is one-one and onto                                          

(b) ‘f’ is one-one but not onto  

(c) ‘f’ is not one-one but onto                                    

(d) ‘f’ is neither one-one nor onto  

Ans. (d) 

𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, 𝑥 ≥ 0 = 0, 𝑥 ≤ 0 

Since f(x)= 0, for all x ≤ 0 

∴ f(x) is a many –one function 

Let y= 
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
, 𝑥 ≥ 0 

⟹ 
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
=
1

𝑦
 

⟹
𝑒𝑥

𝑒−𝑥
=
1+𝑦

1−𝑦
 

⟹𝑒2𝑥 =
1+𝑦

1−𝑦
 ⟹ 𝑥 =

1

2
log

1+𝑦

1−𝑦
  

𝑦 =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=
𝑒2𝑥 − 1

𝑒2𝑥 + 1
, 𝑥 ≥ 0  

Clearly 𝑒2𝑥 ≥ 1 𝑓𝑜𝑟 𝑥 ≥ 0 

∴y≥ 0 for x ≥ 0 

∴ Range f = [0, ∞) ≠ co domain f. 

Hence f is not onto. 

Thus f is a many-one into mapping. 

24. Given, y= sgn(x), then 

(a) |x|= x sgn(x)                                                            

(b) sgn(sgn(x)) = sgn(x)  

(c) x= |x|sgn(x)                                                             

(d) all of (a), (b), (c) 

Ans. (d) 

𝑓(𝑥) = 𝑠𝑔𝑛(𝑥) =  {
1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

 

𝑥 𝑠𝑔𝑛 (𝑥) =  {
𝑥, 𝑥 > 0
0, 𝑥 = 0
−𝑥, 𝑥 < 0

=  |𝑥| 

𝑠𝑔𝑛 (𝑠𝑔𝑛(𝑥)) =  {

𝑠𝑔𝑛(1), 𝑥 > 0

𝑠𝑔𝑛(0), 𝑥 = 0

𝑠𝑔𝑛(−1), 𝑥 < 0

=  {
1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

= 𝑠𝑔𝑛(𝑥) 

|𝑥|𝑠𝑔𝑛(𝑥) =  {
𝑥, 𝑥 > 0
0, 𝑥 = 0
𝑥, 𝑥 < 0

= 𝑥, ∀ 𝑥 𝜖 𝑅 

25. If 𝒍𝟏 𝒂𝒏𝒅 𝒍𝟐 are the side length of two 

variables squares 𝒔𝟏 𝒂𝒏𝒅 𝒔𝟐, respectively. 

If 𝒍𝟏 = 𝒍𝟐 + 𝒍𝟐
𝟑 + 𝟔, then the rate of 

change of the area of 𝒔𝟐 with respect to 

rate of change of the area  of 𝒔𝟏 when 

𝒍𝟐 = 𝟏 is 
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(a) 3/2                           (b) 2/3                              

(c) 4/3                            (d) none 

Ans. (d) Let ∆1 𝑎𝑛𝑑 ∆2 be the area of the 

sequences 𝑠1 𝑎𝑛𝑑 𝑠2, 

∆1=𝑙1
2 𝑎𝑛𝑑 ∆2= 𝑙2

2  

∴ 
𝑑∆1

𝑑𝑙1
= 2𝑙1 𝑎𝑛𝑑 

𝑑∆2

𝑑𝑙2
= 2𝑙2. 

⤇ 
𝑑∆2

𝑑∆1
=
𝑙2

𝑙1
.
𝑑𝑙2

𝑑𝑙1
=
𝑙2

𝑙1
.

1

1+3𝑙2
  

When𝑙2 = 1, 𝑙1 = 8 , 𝑡ℎ𝑒𝑛 
𝑑∆2

𝑑∆1
=

1

32
. 

 

26. The limit 𝐥𝐢𝐦
𝒙→∞

(
𝟒𝒙

𝟓+𝟒𝒙
)𝟐𝒙    is 

(a) 𝒆−𝟓/𝟐                               (b) 𝒆−𝟐/𝟓                             

(c) 𝒆−𝟓                              (d) none 

Ans. (a) lim
𝑥→∞

(
1

1+
5

4𝑥

) 2𝑥 = 
1

{ lim
𝑥→∞

(1+
5

4𝑥
)𝑥}2

=

 𝑒−
5

4
×2 = 𝑒−5/2. 

 

27. Let a and b be real numbers such that 

𝐥𝐢𝐦
𝒙 →∞

√𝒙𝟐 − 𝒙 − 𝟏 − 𝒂𝒙 − 𝒃 = 𝟎.  

Then the value of b is 

(a) -1                         (b) - ½                           

(c) 0                                     (d) ½  

Ans. (b) lim
𝑥 →∞

(√𝑥2 − 𝑥 − 1−𝑎𝑥 − 𝑏) =

lim
𝑥 →∞

(𝑥2−𝑥−1)−(𝑎𝑥+𝑏)

√𝑥2−𝑥−1+𝑎𝑥2+𝑏
  

                                                              = 

lim
𝑥 →∞

(1−𝑎2)𝑥
2
−(1+2𝑎𝑏)𝑥−(1+𝑏2)

√𝑥2−𝑥−1+𝑎𝑥2+𝑏
 = 0 

⤇ 1 − 𝑎2 = 0 ⤇ a= 1, 1+2ab= 0  1+2b= 0 

⤇ b = - ½ . 

 

 

28. 𝐥𝐢𝐦
𝒙→𝟎

𝒔𝒊𝒏
𝒆𝒙−𝒙−

𝒙𝟐

𝟐

𝒙𝟐
  is equal to 

(a) 0                          (b) ½                         

(c) 1                                    (d) does 

not exist 

Ans. (a) For x⟶ 0, 𝑒𝑥 ≏ 1 + 𝑥 + 𝑥
2

2!⁄  

So, lim
𝑥→0

𝑠𝑖𝑛
(1+𝑥+𝑥

2

2⁄ )−(1+𝑥+
𝑥2
2⁄ )

𝑥2
  = 

lim
𝑥→0

sin(0) = 0. 

29. The limit 𝐥𝐢𝐦
𝒙→𝟎+

𝐥𝐨𝐠 (
𝟏+𝒙

𝟏−𝒙
)
𝟏

𝒙 equals  

(a) 0                      (b) 1                       (c) 

2                                    (d) does not 

exist 

Ans. (c) L= log (
1+𝑥

1−𝑥
)
1

𝑥  

  𝑙𝑜𝑔𝐿 =
1

𝑥
log (

1+𝑥

1−𝑥
)  

lt
𝑥→0+

log 𝐿= lt
𝑥→0+

1

𝑥
{2(𝑥 + 

𝑥3

3
+⋯)} = 2. 

30. If 0 < c < d, then the sequence 𝒂𝒏 =

(𝒄𝒏 + 𝒅𝒏)
𝟏

𝒏 is  

(a) Bounded & monotone decreasing                     

(b) bounded & monotone increasing   

(c) monotone increasing & unbounded for 

1 < c < d    
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(d) monotone decreasing & unbounded 

for 1 < c < d. 

Ans. (b) 0 < c < d ⤇ 0 < 𝑐𝑛 < 𝑑𝑛 ∀ 𝑛 ∊ ℕ  

∴𝑐𝑛 + 𝑑𝑛 < 2𝑑𝑛  

or, 𝑎𝑛 < 2
1

𝑛. 𝑑∀ 𝑛 ∊ ℕ 

or, d < 𝑎𝑛 < 𝑑. 2
1

𝑛 

By squeeze theorem, lim(𝑎𝑛)= d. So, the 

sequence is bounded and monotone 

increasing. 

 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 12 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 
 

1. For positive real numbers 

𝒂𝟏, 𝒂𝟐, …… . 𝒂𝟏𝟎𝟎, let P= ∑ 𝒂𝒊
𝟏𝟎𝟎
𝒊=𝟏  𝒂𝒏𝒅 𝒒 =

 ∑ 𝒂𝒊𝒂𝒋𝟏≤𝒊≤𝒋≤𝟏𝟎𝟎  , then 

(a) q =
𝑷𝟐

𝟐
                           (b) 𝒒𝟐 ≤

𝑷𝟐

𝟐
                       

(c) q < 
𝑷𝟐

𝟐
                             (d) none 

Ans. (c) 𝑎1 + 𝑎2 +⋯… .+𝑎100 = P, 

𝑃2= (𝑎1 + 𝑎2 +⋯… .+𝑎100)
2= ∑ 𝑎𝑖

100
𝑖=1

2
+

2∑ 𝑎𝑖𝑎𝑗
100
𝑖<𝑗  

∴ 𝑃2- 2q  ≥ 0 [∵∑ 𝑎𝑖
100
𝑖=1

2
≥ 0] 

∴ q ≤
𝑃2

2
   . 

2. A club with x members is organized 

into four committees such that (a) each 

member is in exactly two committees, (b) 

only two committees have exactly one 

member in common, then x has  

(a) Exactly two values both between  4 

and 8 

(b)  Exactly one value between 4 and 8 

(c) Exactly  two values both between 8 

and 16 

(d) Exactly one value between 8 and 

16 

Ans. (b) Four committees are there, let us 

denote member 

A , B, C, D, E, F, ….. 

1st combination :- ADE                                      

[(a) each member is exactly in two 

committees                                                                 

2nd combination:- ABF                            (b) 

only two committees exactly one member 

common] 

3rd combination:- BCE 

4th combination:- CDF  

3. Let A = (
𝟏 𝟏 𝟏
𝟏 𝟐 𝟐
𝟏 𝟐 𝟑

) and B = 

(
𝟏 𝟎 𝟎
𝟏 𝟏 𝟎
𝟏 𝟏 𝟏

). Then 

(a) there exists a matrix C such that A= 

BC= CD. 
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(b) there is no matrix C such that A= BC. 

(c) there exists a matrix C such that A= 

BC, but A ≠ CB 

(d) there is no matrix C such that A= CB. 

Ans. (c) B=(
1 0 0
1 1 0
1 1 1

) is an lower 

triangular mtx. 

Take, C = (
1 1 1
0 1 1
0 0 1

) is an upper triangular 

mtx. 

∴BC= (
1 1 1
1 2 2
1 2 3

) , 𝐶𝐵 ≠ (
1 1 1
1 2 2
1 2 3

) 

4. If the matrix A = [
𝒂 𝟏
𝟐 𝟑

] has 1 as an 

eigenval then trace (A) is 

(a) 4                                  (b) 5                                 

(c) 6                                  (d) 7 

Ans. (b) |A- 𝜆I| = 0 ⇒a = 2 

∴ trace (A) = 2+ 3 = 5= sum of diagonal 

elements. 

5. The eigen values of the matrix X= 

(
𝟐 𝟏 𝟏
𝟏 𝟐 𝟏
𝟏 𝟏 𝟐

) are 

(a) 1, 1, 4                            (b) 1, 4, 4                                 

(c) 0, 1, 4                                (d) 0, 4, 4 

Ans. (a) |X-𝜆I|= 0 

⤇ [
2 − 𝜆 1 1
1 2 − 𝜆 1
1 1 2 − 𝜆

]= 0 

⤇ 𝜆3 − 6𝜆2 + 9𝜆 − 4 = 0 

⤇ (𝜆-1)(𝜆-1)(𝜆-4)= 0 

⤇ 𝜆= 1, 1, 4 are the eigen value of X. 

6. If f(x) = 𝒙𝟐 and g(x) = 𝒙𝒔𝒊𝒏𝒙 + 𝒄𝒐𝒔𝒙 

then 

(a) f and g agree at no points                                    

(b) f and g agree at exactly one points   

(c) f and g agree at exactly two point                       

(d) f and g agree at more than two points 

Ans. (c) So, we can two graphs meet at 

exactly two points. 

7. A subset S of the set of numbers {2, 3, 

4, 5, 6, 7, 8, 9, 10} is said to be good if it 

has exactly 4 elements and their gcd = 1. 

Then the number of good subset is  

(a) 0126                     (b) 125                      

(c)  123                         (d) 121 

Ans. (d) Total number of subsets containing 

exactly 4 elements from 9 elements are 

= 9𝑐4 =
9!

4!5!
= 126. 

Now, gcd = 1, so we need not to take into 

count these subset: {2, 4, 6, 8}, {2, 4, 6, 10}, 

{2, 4, 8, 10},{2, 6, 8, 10}, {4, 6, 8, 10}. 

So, there are total (126 - 5) = 121 good 

subsets. 

 

8. In how many ways can there persons, 

each throwing a single die once,  

make a score of 11? 

(a) 22   (b) 27     (c) 24    (d) 38 

Ans. (b) we can use a tree diagram here:- 
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    1<
→6  ,4             ∶3!𝑤𝑎𝑦𝑠

→5  ,   5                  ∶3 𝑤𝑎𝑦𝑠
 

    2 < 
→4 ,    5             ∶3!𝑤𝑎𝑦𝑠
→3  ,   6                 ∶3! 𝑤𝑎𝑦𝑠

 

    3< 
→4 ,    5             ∶3 𝑤𝑎𝑦𝑠
→3  ,   6                 ∶3 𝑤𝑎𝑦𝑠

 

So, there are total (3!+3 +3!+3!+3+3)= 27 

ways. 

Explanation: - For {1, 6, 4} there are total 3! 

Ways, since{1, 6, 4}, {4, 6, 1}, {1, 4, 6}, {4, 

1, 6}, {6, 4, 1} are six possibilities, but in 

case of {1, 5, 5} there are total 3 ways, since 

there are {1, 5, 5}, {5, 1, 5}, {5, 5, 1} only 3 

such permutations. 

 

9. 𝒙𝟐 + 𝒙 + 𝟏 is a factor of (𝒙 + 𝟏)𝒏 −

𝒙𝒏 − 𝟏, wherever  

(a) n is odd                                               (b) 

n is odd and a multiple of 3   

(c) n is even multiple of 3                      (d) 

n is odd and not a multiple 3 

Ans. (c) Let n= 1, (x+1)-x-1= 0 

n=2, (𝑥 + 1)2 − 𝑥2 − 1 = +2𝑥 

n= 3, (𝑥 + 1)3 − 𝑥3 − 1 = 3𝑥2 + 3𝑥 

⁞ 

10. The map f(x) = 𝒂𝟎𝒄𝒐𝒔|𝒙| + 𝒂𝟏𝒔𝒊𝒏|𝒙| +

𝒂𝟐|𝒙|
𝟑 is different at x=o if and only if 

(a) 𝒂𝟏 = 𝟎 𝒂𝒏𝒅 𝒂𝟐 = 𝟎                                              

(b) 𝒂𝟎 = 𝟎 𝒂𝒏𝒅 𝒂𝟏 = 𝟎    

(c) 𝒂𝟏 = 𝟎                                                                    

(d) 𝒂𝟎, 𝒂𝟏, 𝒂𝟐 can take any real value 

Ans. (c) |𝑥|3 is differentiable at x=0. 

𝑐𝑜𝑠|𝑥| = 𝑐𝑜𝑠𝑥 is differentiable at x= 0. 

So, 𝑎1 = 0  is the only criteria for f(x) to be 

differentiable. 

11. f(x)is a differentiable function on the 

real line such that 𝐥𝐢𝐦
𝒙⟶∞

𝒇(𝒙) =

𝟏𝒂𝒏𝒅 𝐥𝐢𝐦
𝒙⟶∞

𝒇′(𝒙) = 𝜶 , then 

(a) 𝛼 must be 0            (b) 𝛼 need not to 

be 0, but |𝛼|<1             (c) 𝛼 > 1              

(d) 𝛼 < -1 

Ans. (a) Let f(x)=1+
𝑘

𝑥𝑃
, 𝑝 > 0 

So, lt
𝑥⟶∞

𝑓(𝑥) = 1, 

∴ lim
𝑥⟶∞

𝑓′(𝑥) = lt
𝑥⟶∞

𝑘(−𝑃)

𝑥𝑃+1
= 0 =  𝛼. 

12. ∫ 𝐦𝐢𝐧 (𝒔𝒊𝒏𝒙, 𝒄𝒐𝒔𝒙)𝒅𝒙
𝝅

𝟎
 equals 

(a) 1-2√𝟐                      (b) 1                         

(c) 0                                   (d) 1-√𝟐 

Ans. (d) f(x)= {
𝑠𝑖𝑛𝑥, 0 ≤ 𝑥 ≤

𝜋

4

𝑐𝑜𝑠𝑥,
𝜋

4
≤ 𝑥 ≤ 𝜋 

 

∴ ∫ min (𝑠𝑖𝑛𝑥, 𝑐𝑜𝑠𝑥)𝑑𝑥
𝜋

0
= ∫ 𝑠𝑖𝑛𝑥𝑑𝑥 +

𝜋

4
0

∫ 𝑐𝑜𝑠𝑑𝑥
𝜋
𝜋

4

= (1 −
1

√2
) + (−

1

√2
) = 1 − √2 

13. The value of the integral ∫ 𝐦𝐢𝐧 {|𝒙 −
𝟐

−𝟐

𝟏|, |𝒙 + 𝟐|}𝒅𝒙 , is  

(a) 
𝟏𝟏

𝟒
                               (b) 

𝟗

𝟒
                                    

(c) 
𝟏𝟏

𝟐
                                       (d) 

𝟗

𝟐
 

Ans.  ∫ min {|𝑥 − 1|, |𝑥 + 2|}𝑑𝑥
2

−2
 

= ∫ |𝑥 + 2|𝑑𝑥 + ∫ |𝑥 − 1|𝑑𝑥
2

−
1

2

−
1

2
−2
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14. Let f(x) be a given differentiable 

function. Consider the following 

differential equation in y f(x)
𝒅𝒚

𝒅𝒙
=

𝒚𝒇′(𝒙) − 𝒚𝟐. 

The general solution of the equation is 

given by 

(a) y= −
𝒙+𝒄

𝒇(𝒙)
                      (b) 𝒚𝟐 =

𝒇(𝒙)

𝒙+𝒄
                    

(c) y = 
𝒇(𝒙)

𝒙+𝒄
                   (d) y = 

[𝒇(𝒙)]𝟐

𝒙+𝒄
 

Ans. (c) 
𝑑𝑦

𝑑𝑥
=
𝑦𝑓′(𝑥)−𝑦2

𝑓(𝑥)
 

⇒ -
1

𝑦2
𝑑𝑦

𝑑𝑥
+
1

𝑦

𝑓′(𝑥)

𝑓(𝑥)
=

1

𝑓(𝑥)
  [put 

1

𝑦
  = v, -

1

𝑦2
𝑑𝑦

𝑑𝑥
=
𝑑𝑣

𝑑𝑥
 ] 

⇒
𝑑𝑣

𝑑𝑥
+ 𝑣.

𝑓′(𝑥)

𝑓(𝑥)
=

1

𝑓(𝑥)
  which is a linear 

equation in v 

∴ I.F. = 𝑒 ∫
𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 = 𝑒log𝑓(𝑥) = 𝑓(𝑥).   

Hence solution is: v. f(x)= ∫
1

𝑓(𝑥)
. 𝑓(𝑥)𝑑𝑥 +

𝑐 = 𝑥 + 𝑐  𝑖. 𝑒. 𝑦 =
𝑓(𝑥)

𝑥+𝑐
 . 

15. Number of integral terms in the 

expansion of (√𝟔 + √𝟕)𝟑𝟐= 

(a) 15                                    (b) 17                                  

(c) 19                            (d) none 

Ans. (b) (√6 + √7)32 =

 ∑ 32𝑐𝑟
32
𝑟=0 . 6

𝑟

2. 7
32−𝑟

2  

For integral terms 
𝑟

2
 and 

32−𝑟

2
 both are 

integers and w is in turn possible if 
𝑟

2
 is an 

integer. 

∴ r = 0, 2, 4,…, 32 means r can take 17 

different values. 

 

16. Let P is an odd prime and n= 1+p!, 

then total number of prime in the list n+1, 

n+2, n+3, ……, n+p-1 is equal to 

(a) P- 3                           (b) P- 5                          

(c) 0                                   (d) none 

Ans. (c) ∵ n= 1+p! 

∴ n+ r= (r+1)+p! 

If 1 ≤ 𝑟 ≤ 𝑝 − 1, 𝑡ℎ𝑒𝑛 2 ≤ 𝑟 + 1 ≤ 𝑝 and 

clearly, 

(n+ r) is divisible by r+1. ∴ n+ r can’t be a 

prime 

Hence, there is no prime in the given list. 

 

17. The remainder obtained when 1! +2! 

+3!+….+ 95! is divided by 15, is 

(a)  3                              (b) 5                               

(c) 7                                   (d) none 

Ans. (a) here 1! +2! +3! +4! = 33 and n! is 

divisible by 15 where n ≥ 5. 

The remainder is same as the remainder 

obtained by dividing 33 with 15, i.e., 3. 

 

18. The value of 𝐋𝐭
𝒙→𝟎

𝒆𝒕𝒂𝒏𝒙−𝒆𝒙

𝒕𝒂𝒏𝒙−𝒙
 is 

(a) 0                             (b) 1                                 

(c) e                                  (d) none 
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Ans. (b) Lt
𝑥→0

𝑒tan𝑥−𝑒𝑥

tan𝑥− 𝑥
= Lt

𝑥→0
𝑒𝑥 (

𝑒tan𝑥−1

tan𝑥− 𝑥
) =

 𝑒0. log𝑒 𝑒 = 1 

 

19. Total number of solutions of sinx = 
|𝒙|

𝟏𝟎
 

is  

(a) 0 ;  (b) 3 ;  (c) 4 ;  (d) none 

Ans. (d) Two graphs meet exactly 6 times, 

hence, it has 6 solutions. Draw graph 

yourself. 

20. Let f(x)= 

|
𝒙𝟑 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙
𝟔 −𝟏 𝟎
𝒑 𝒑𝟐 𝒑𝟑

|  𝒘𝒉𝒆𝒓𝒆 𝒑 𝒊𝒔 𝒂 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 , 𝒕𝒉𝒆𝒏 𝒂𝒕 𝒙 =

𝟎,
𝒅𝟑(𝒇(𝒙))

𝒅𝒙𝟑
 = 

(a) p                                  (b) 0                                

(c) 𝒑𝟐                                   (d) –p  

Ans. (b) 
𝑑3

𝑑𝑥3
(𝑥3) = 3! = 6,

𝑑3

𝑑𝑥3
(sin 𝑥) =

 − cos 𝑥, 
𝑑3

𝑑𝑥3
(𝑐𝑜𝑠𝑥) = 𝑠𝑖𝑛𝑥 

∴ 
𝑑3𝑓(𝑥)

𝑑𝑥3
= |

6 − cos 𝑥 sin 𝑥
6 −1 0
𝑝 𝑝2 𝑝3

| 𝑎𝑡 𝑥 = 0, 

𝑑3𝑓(𝑥)

𝑑𝑥3
= |

6 −1 0
6 −1 0
𝑝 𝑝2 𝑝3

| =  0 

21. Let f : (0, +∞) → 𝑹 𝒂𝒏𝒅 𝑭(𝒙) =

∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
 𝒊𝒇 𝑭(𝒙𝟐) = 𝒙𝟐(𝟏 + 𝒙), then f(4) 

equals 

(a) 5/4                                 (b) 7                                  

(c) 4                                       (d) 2 

Ans. (c) 

We have, f(𝑥2)= ∫ 𝑓(𝑡)
𝑥2

0
 𝑑𝑡 =  𝑥2 + 𝑥3 

Differentiating both sides, we get; 

f(𝑥2).2𝑥 = 2𝑥 + 3𝑥2 

⟹ f(𝑥2)= 1+(3/2)x 

⟹ f(4)= 1+3/2(2)= 4 

22. The equation of a curve is y= f(x). The 

tangents at (𝛼, f(𝛼)), (𝛽,f(𝛽)) and (𝛾, f(𝛾)) 

make angles 
𝝅

𝟔
,
𝝅

𝟑
,
𝝅

𝟒
 respectively with the 

positive direction of the x- axis. Then the 

value of 

∫ 𝒇′(𝒙). 𝒇′′(𝒙)𝒅𝒙
𝜸

𝜷
+ ∫ 𝒇′′(𝒙)𝒅𝒙

𝜸

𝜶
 is equal 

to 

(a) −
𝟏

√𝟑
                           (b) 

𝟏

√𝟑
                                

(c) 0                             (d) none of 

these 

Ans. (a) 

Given, 𝑓′(𝛼) =
1

√3
, 𝑓′(𝛽) =  √3, 𝑓′(𝛾) = 1 

Now ∫ 𝑓′(𝑥)𝑓′′(𝑥)
𝛾

0
𝑑𝑥 + ∫ 𝑓′′(𝑥)

𝛾

𝛼
 𝑑𝑥 =

[
1

2
(𝑓′(𝑥))

2
] 𝛾
𝛽
+ [𝑓′(𝑥)] 𝛾

𝛼
=
1

2
(𝑓′(𝑦))

2
−

1

2
{𝑓′(𝛽)}2 + 𝑓′(𝛾) − 𝑓′(𝛼) =

1

2
(1 − 3) +

1 −
1

√3
= −

1

√3
 

23. A rod of length 10ft sides with ends on 

the co-ordinates axes. If the end on x-axis 

moves with constant velocity of 2ft/ 

minute, then the magnitude of the velocity 

of the middle point at the instant the rod 

makes an angle of 30° with x-axis is 

(a) 2ft / sec                    (b) 3 ft / sec                        

(c) √𝟑 ft / sec                     (d) none of these 
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Ans. (a) 

Let AB be the position of rod at any time t 

and p be its middle point. 

Let OA= x, OB= y, then P ≡ (
𝑥

2
,
𝑦

2
) 

𝑥2 + 𝑦2 =  102 

                                                                    

∴2𝑥
𝑑𝑥

𝑑𝑡
+ 2𝑦

𝑑𝑦

𝑑𝑡
= 0 

𝑑𝑦

𝑑𝑡
=  −

𝑥

𝑦

𝑑𝑥

𝑑𝑡
=  −

𝑥

𝑦
. 2  

𝑤ℎ𝑒𝑛 𝜃 = 30°,
𝑥

𝑦
= cot 30° =  √3 

∴
𝑑𝑦

𝑑𝑡
=  −2√3𝑓𝑡/𝑠𝑒𝑐 

𝑛𝑜𝑤 𝑉 =  √(
1

2

𝑑𝑥

𝑑𝑡
)
2

+ (
1

2

𝑑𝑦

𝑑𝑡
)
2

=
1

2
√22 + 12 = 2 𝑓𝑡/𝑠𝑒𝑐 

24. Two persons are moving on the curve  

𝒙𝟑 + 𝒚𝟑 = 𝒂𝟑. When the position of first 

and second persons are (𝛼, 𝛽) and (𝛾, 𝛿) 

the second persons is in the direction of 

the instantaneous motion, then  

(a) 
𝜸

𝜶
+
𝜹

𝜷
+ 𝟏 = 𝟎              (b) 

𝜶

𝜸
+
𝜷

𝜹
− 𝟏 =

𝟎               (c) 𝛼𝛾 +𝛽𝛿 = 1               (d) none 

of these 

Ans. (a) 

Given curve is 𝑥3 + 𝑦3 = 𝑎3……….(1) 

Let P≡ (𝛼, 𝛽), 𝑄 ≡ (𝛾, 𝛿) 

Since P and Q lie on(1) 

∴𝛼3 + 𝛽3 = 𝑎2 𝑎𝑛𝑑 𝛾3 + 𝛿3 = 𝑎2 

 𝛼3 − 𝛾3 = 𝛿3 − 𝛽3……………(2) 

From(1), 
𝑑𝑦

𝑑𝑥
= −

𝑥2

𝑦2
 

Equation of tangent at P(𝛼, 𝛽) 𝑖𝑠 𝑦 −  𝛽 =
𝛼2

𝛽2
(𝑥 − 𝛼)…………(3) 

According to question, (3) passes through 

Q ∴ 𝛼2(𝛼 − 𝛾) = 𝛽2(𝛿 − 𝛽) ……(4) 

𝛼2 + 𝛾2 +𝛼𝛾

𝛼2
=
𝛽2 + 𝛿2 + 𝛽𝛽

𝛽2

⟹ 1+
𝛾2

𝛼2
+
𝛾

𝛼

= 1 +
𝛿2

𝛽2
+
𝛿

𝛽
 

⟹ (
𝛾

𝛼
)
2

− (
𝛿

𝛽
)
2

= (
𝛾

𝛼
−
𝛿

𝛽
) ⟹ 

𝛾

𝛼
−
𝛿

𝛽
+ 1

= 0[∵
𝛾

𝛼
≠
𝛿

𝛽
] 

 

25. The triangle formed by the tangents to 

the curve f(x) = 𝒙𝟐 + 𝒃𝒙 − 𝒃 at the point 

(1, 1) and the co-ordinate on the first 

quadrant. If its area is 2 then the value of 

b is 

(a) -1                                     (b) 3                                   

(c) -3                                    (d) 1 

Ans. (c) 
𝑑𝑦

𝑑𝑥
= 2𝑥 + 𝑏 

∴ The equation of the tangent at (1, 1) is 

y-1= (2+b)(x-1)  

or (2+b)x- y= 1+ b 
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∴ OA= 
1+𝑏

2+𝑏
 𝑎𝑛𝑑 𝑂𝐵 = −(1 + 𝑏) 

Since 𝛥 AOB lies in the first quadrant, 

∴ 
1+𝑏

2+𝑏
> 0𝑎𝑛𝑑 1 + 𝑏 < 0 

∴1+b < 0, 2+b < 0⟹ b < -2………..(1) 

Now, area (𝛥AOB)= 2 

∴ 2= 
1

2
 .
1+𝑏

2+𝑏
{−(1 + 𝑏)} 

or, 4(2+b)+ (1 + 𝑏)2 = 0 

or,  𝑏2 + 6𝑏 + 9 = 0 

Or (𝑏 + 3)2 = 0 

∴ b= -3 > 1 

26. If 2a+ 3b +6c = 0, then equation 𝒂𝒙𝟐 +

𝒃𝒙 + 𝒄 = 𝟎 has at least one root in  

(a) (-1, 1)                       (b) (1, 2)                        

(c) (-1, 0)                          (d) (2, 3) 

Ans. (a) 

Let f’(x) = a𝑥2 + 𝑏𝑥 + 𝑐, then 

f(x) = 
𝑎𝑥3

3
+
𝑏𝑥2

2
+ 𝑐𝑥 =

2𝑎𝑥3+3𝑏𝑥2+6𝑐𝑥

6
  

𝑓(1) =
2𝑎 + 3𝑏 + 6𝑐

6
= 0, 𝑓(0) = 0 

∴ f(0)= f(1) 

∴ there exists 𝛼, 0< 𝛼 < 1 such that f’ (𝛼)= 0 

i.e., equation a𝑥2 + 𝑏𝑥 + 𝑐 = 0 has at least 

one root in (0, 1). 

 

27. Equation sin x + 2sin 2x +3 sin 3x= 
𝟖

𝝅
 

has at least one root in 

(a) (𝝅,
𝟑𝝅

𝟐
)                           (b) (𝟎,

𝝅

𝟐
)                           

(c) (
𝝅

𝟐
, 𝝅)                     (d) none of these 

Ans. (b) 

Let f(x) = 
8

𝜋
𝑥 + cos 𝑥 + cos 2𝑥 + cos 3𝑥  

𝑡ℎ𝑒𝑛 𝑓′(𝑥) =
8

𝜋
𝑥 − 𝑠𝑖𝑛𝑥 − 2sin 2𝑥

− 3 sin 3𝑥  

f(x) is continuous and differentiable at every 

point 

Also f(0)= f(
𝜋

2
)   ∴ By Rolle’s theorem 

f’(c)= 0 for at least one c in (0,
𝜋

2
) 

 

28. Let f(x) = 1+|x- 2|+|sin x|, then 

Lagrange’s mean value theorem is 

applicable for f(x) in 

(a) [0, 𝜋]                            (b) [𝜋, 2𝜋]                         

(c)[
𝝅

𝟐
,
𝟑𝝅

𝟐
]                           (d) [−

𝝅

𝟐
,
𝝅

𝟐
]   

Ans. (b) 

f(x) is not differentiable at x= 2 and x= n𝜋,  

n ∊I 

29. let f(x) and g(x) be differentiable 

functions for 0≤ 𝒙 ≤ 𝟏 such that f(0) = 2, 

g(0)= 0, f(1)= 6.Let there exist a real 

number c in (0, 1) such that f’(c)= 2g’(c), 

then g(1)= 
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(a) 1                                  (b) 2                                      

(c) -2                                   (d) -1 

Ans. (b) 

Let 𝜙(x)= f(x)+Ag(x) 

Then 𝜙’(x)= f’(x)+ Ag’(x) 

Choosing A such that φ(0)= 𝜙(1), 

We have A= - 
𝑓(1)−𝑓(0)

𝒈(𝟏)−𝒈(𝟎)
 

for this value of A using Rolle’s theorem for 

𝜙(x) in (0, 1), we have 

𝜙’(c)= 0  for some c ∊ (0, 1) 

⟹
𝑓′(𝑐)

𝑔′(𝑐)
=  −𝐴 =

𝑓(1) − 𝑓(0)

𝑔(1) − 𝑔(0)

=
6 − 2

𝑔(1) − 0
⟹ 2 =

4

𝑔(1)

⟹ 𝑔(1) = 2 

30. Which of the following function does 

not obey mean value theorem in [0, 1] 

(a) f(x)= 
𝟏

𝟐
 - x,  x < ½; f(x)=(

𝟏

𝟐
− 𝒙)

𝟐

, 𝒙 ≥
𝟏

𝟐
                

(b) f(x) = 
𝐬𝐢𝐧 𝒙

𝒙
, 𝒙 ≠ 𝟎; 𝒇(𝒙) = 𝟏, 𝒙 = 𝟎  

(c) f(x)= x |x|                                                                   

(d) f(x)= |x| 

Ans. (a) 

Let f(x) = 𝑥3 − 3𝑥 + 𝑘 

Then f’(x) = 3(𝑥2 − 1) < 0 𝑖𝑛 (0, 1) 

⟹ f’(x) has no root in (0, 1) 

But f(x) = 0 has two distinct roots 𝛼and 𝛽 in 

(0, 1) 

⟹ f’(x)= 0 has at least one root in (𝛼, 𝛽). 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 13 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 
 

1. When m, n are positive integers, then 

(m+n)! is divisible by 

(a) m!n!                               (b) m! +n!                      

(c) m!-n!                           (d) none 

Ans. (a) (m+n)!= 

1.2…….m(m+1)(m+2)….(m+n) 

= 
𝑚! .(m+1)(m+2)….(m+n)n!

𝑛!
 

= m! n! × an integer 

⇒ 
(𝑚+𝑛)!

𝑚!𝑛!
= 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

2. If n and r are positive integers such 

that 0 < r< n, then the roots of the 

quadratic equation 𝒏𝒄𝒓−𝟏𝒙
𝟐 + 𝟐. 𝒏𝒄𝒓𝒙 +

𝒏𝒓+𝟏 = 0 are 

(a) rational                    (b) imaginary                     

(c) real & distinct                    (d) 

none 

Ans. (c) Discriminant(D) = 4 {(𝑛𝑐𝑟)
2 −

𝑛𝑐𝑟−1. 𝑛𝑐𝑟+1} = 4 (a - b),  

Where, a = (𝑛𝑐𝑟)
2 and b = 𝑛𝑐𝑟−1. 𝑛𝑐𝑟+1 
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∴
𝑎

𝑏
=
𝑟+1

𝑟
.
𝑛−𝑟+1

𝑛−𝑟
= (1 +

1

𝑟
) (1 +

1

𝑛−𝑟
) > 1 

as, n > r 

∴ a > b 

⇒ D > 0. 

3. Given, f(x+y) = f(x)+ f(y) ∀ 𝒙, 𝒚 ∊  ℝ 

and f(1)=3, then the value of ∑ 𝒇(𝒓)𝒏
𝒓=𝟏 is 

(a) 𝟑𝒏 − 𝟏                          (b) 
𝟑

𝟐
(𝟑𝒏 −

𝟏)                   (c) 
𝟑

𝟐
. 𝟑𝒏 − 𝟏                   

(d)  none 

Ans. (b) let f(x)= 𝑎𝜆𝑥, 𝜆 is a constant 

f(1)= 𝑎𝜆 = 3 

∴  ∑ 𝑓(𝑟)𝑛
𝑟=1 = ∑ 𝑎𝜆𝑟 =𝑛

𝑟=1 𝑎𝜆 + 𝑎2𝜆 +

𝑎3𝜆 + … .+𝑎𝑛𝜆 

= 
𝑎𝜆(𝑎𝑛𝜆−1)

(𝑎𝜆−1)
= 

3(3𝑛−1)

3−1
=
3

2
(3𝑛 − 1) 

4. If f(x). 𝒇 (
𝟏

𝒙
) = f(x) + 𝒇 (

𝟏

𝒙
) and f(4)= 65, 

then f(6)is  

(a) 201                          (b) 205                           

(c) 215                             (d) none 

Ans. (d) f(x)= 𝑥𝑛 ± 1, where n ∊ I 

1st case: f(4)= 4𝑛 + 1= 65 ⇒ 4𝑛= 64 ⇒ n=3 

2nd case: f(4)= 4𝑛 − 1=65 ⇒ 4𝑛 =66, 

impossible as n ∊ I 

∴ f(x)= 𝑥3 + 1 

∴ f(6) =63 + 1 =217. 

5. Let f be a function of a real variable 

such that it satisfies f(x +y) = f(x)+f(y) 

)∀ 𝒙, 𝒚 ∊ 𝑰, then 𝒇 (
𝒎

𝒏
) 

(a) 
𝒎

𝒏
                          (b) 

𝒇(𝒎)

𝒇(𝒏)
                           

(c) 
𝒎

𝒏
𝒇(𝟏)                     (d) none 

Ans. (c) since f(x+ y)= f(x)+f(y) ∀ x, y 

So, f(x) =ax is the functional form, where a= 

constant. 

∴f(1)=a 

i.e. f(
𝑚

𝑛
)= a(

𝑚

𝑛
)= f(1). 

𝑚

𝑛
 

6. Let f(x)= (𝒙 − 𝒂)𝟑 + (𝒙 − 𝒃)𝟑 + (𝒙 −

𝒄)𝟑, a < b < c. Then no. of real roots of 

f(x) = 0 is 

(a)  3                              (b) 2                              

(c) 1                               (d) none 

Ans. (c) f′(x)= 3{(𝑥 − 𝑎)2 + (𝑥 − 𝑏)2 +

(𝑥 − 𝑐)2}> 0 

∴ f(x) is an increasing function 

Note that f(x)< 0 if x< a 

f(x) > 0 if x > c 

∴ there is one root. 

 

7. A, B are two square matrix such that 

AB = A and BA = B, then  

(a) A, B both are idempotent                             

(b) only A is idempotent. 

(c) only B is idempotent                                     

(d) none 

Ans. (a) (AB)A = A× 𝐴 = 𝐴2 

⇒ A (BA)= 𝐴2  
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⇒ AB= 𝐴2 

⇒A = 𝐴2 

Hence A is idempotent 

Similarly, B is idempotent 

8. Let B is non- singular matrix and A is a 

square matrix, then det(𝑩−𝟏𝑨𝑩) = 

(a) det B                           (b) det A                          

(c) det(AB)                       (d) none 

Ans. (b) det(𝐵−1𝐴𝐵) =

det(𝐵−1) det(𝐴) det(𝐵) =
1

det(𝐵)
. det(𝐴) . det(𝐵) = det 𝐴 

9. A subset A of the set X= {1, 2, 3, 

…..,100}is chosen at random. The set X is 

reconstructed by replacing the elements 

of A and another subset B of x is chosen 

at random. The probability that A∩B 

contains exactly 10 elements is 

(a) (𝟏𝟎𝟎
𝟏𝟎
)(
𝟑

𝟒
)𝟗𝟎           (b) (𝟏𝟎𝟎

𝟏𝟎
)(
𝟏

𝟐
)𝟏𝟎𝟎                 

(c) (𝟏𝟎𝟎
𝟏𝟎
)(
𝟐

𝟑
)𝟏𝟎𝟎               (d) none 

Ans. (d) A and B can be chosen in general in 

={∑ 90𝑐𝑟2
90−𝑟90

𝑟=0 }.100𝑐10  Ways 

= (1 + 2)90. 100𝑐10= 100𝑐10 . 3
90 ways. 

10.  Let A be a 2× 2 matrix to be written 

down using the numbers 1, -1 as elements. 

The probability that the matrix is non-

singular is  

(a)1/2                              (b) 3/8                              

(c) 5/8                                 (d) none 

Ans. (a) A 2× 2 matrix has 4 elements each 

of which can be chosen in 2 ways, so, total 

number of 2× 2 square matrices with 

elements 1, -1 is 24 = 16. 

Out of these 16 matrices, following matrices 

are singular  

[
1 1
−1 −1

] , [
−1 −1
1 1

] , [
1 1
1 1

] , [
−1 −1
−1 −1

],  

[
−1 1
−1 1

] , [
1 −1
1 −1

] , [
1 −1
−1 1

] , [
−1 1
1 −1

].  

Thus the number of non-singular matrices = 

16-8 =8 

∴ required probability is = 
8

16
=
1

2
. 

11. Let 𝑨𝟏, 𝑨𝟐, … . , 𝑨𝒏 are n independent 

events with P(𝑨𝒋) =
𝟏

𝟏+𝒋
(𝟏 ≤ 𝒋 ≤ 𝒏). The 

probability that not one of  𝑨𝟏, 𝑨𝟐, … . , 𝑨𝒏 

occur is 

(a) 
𝟏

(𝒏+𝟏)!
                          (b) 

𝟏

𝒏+𝟏
                             

(c) 
𝒏!

(𝒏−𝟏)!
                             (d) none 

Ans. (c) Required probability = P (𝐴1    ∩

𝐴2   ∩ … . .∩  𝐴𝑛)  

= P (𝐴1    )P(𝐴2  )…. P(𝐴𝑛  ) 

= 
1

2
×
2

3
× … .×

𝑛

𝑛+1
= 

𝑛!

(𝑛+1)!
   (Ans.) 

[∵P (𝐴𝑗  )= 1-𝐴𝑗) = 1 −
1

1+𝑗
=

𝑗

1+𝑗
] 

12. Given a circle of radius r. Tangents 

are drawn from points A and B lying on 

one of its diameters which meet at a point 

P lying on another diameter 

perpendicular to the other diameter. The 

minimum area of the triangle PAB is 
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(a) 𝒓𝟐                               (b) 2𝒓𝟐                             

(c) 𝜋𝒓𝟐                                (d) 
𝒓𝟐

𝟐
 

Ans. (b) 

OP = r sec 𝛼 

OA = r cosec 𝛼 

Area of 𝛥 APB = 
1

2
. 𝑂𝑃. 2𝑂𝐴 = 𝑂𝑃.𝑂𝐴 =

2𝑟2

sin2𝜃
 

∴Minimum area = 2𝑟2 

13. Solution set of 
(𝒙−𝟏)(𝒙−𝟐)𝟐(𝒙+𝟒)

(𝒙+𝟐)(𝒙−𝟑)
≥ 𝟎 𝒊𝒔 

(a) (−∞,−𝟒] ∪ (−𝟐, 𝟏] ∪ {𝟐} ∪ (𝟑,∞)                                

(b) [-4, -2)∪ [𝟏, 𝟐] ∪ (𝟑,∞) 

(c) (−∞,−𝟒] ∪ {𝟐} ∪ (𝟑,∞)                                              

(d) none 

Ans. (a) G(x) = 
(𝑥−1)(𝑥−2)2(𝑥+4)

(𝑥+2)(𝑥−3)
≥ 0 

So, sign change is like this :- 
+ − + − − +

−4 −2  1  2  3
, 

⤇ x ∊ (−∞,−4] ∪ (−2, 1] ∪ {2} ∪ (3,∞). 

 

14. If 𝑿𝟏, 𝑿𝟐, … . , 𝑿𝒏 are the roots of 𝒙𝒏 +

𝒂𝒙 + 𝒃 = 𝟎, then the value of 

 (𝑿𝟏 − 𝑿𝟐)( 𝑿𝟏 − 𝑿𝟑)( 𝑿𝟏 − 𝑿𝟒)….(𝑿 −

𝑿𝒏) =  

(a) n𝑿𝟏 + 𝒃                        (b) n𝑿𝟏
𝒏−𝟏

                    

(c) n𝑿𝟏
𝒏−𝟏 + 𝒂                   (d) none 

Ans. (c) 𝑥𝑛 + 𝑎𝑥 + 𝑏 = (𝑋 − 𝑋1)(𝑋 −

𝑋2)(𝑋 − 𝑋3)… . (𝑋 − 𝑋𝑛) 

⤇ (𝑋 − 𝑋2)(𝑋 − 𝑋3)… . (𝑋 − 𝑋𝑛) =
𝑋𝑛+𝑎𝑋+𝑏

(𝑋−𝑋1)
 

⤇ (𝑋1 − 𝑋2)( 𝑋1 − 𝑋3)( 𝑋1 −

 𝑋4)….. (𝑋1 − 𝑋𝑛) =

 lt
𝑋→𝑋1

𝑋𝑛+𝑎𝑋+𝑏

(𝑋−𝑋1)
, [𝐵𝑦 𝐿′ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑟𝑢𝑙𝑒] 

= n𝑋1
𝑛−1 + 𝑎. 

 

15. Let these three values of X such that 

X, [X], {X} are in H.P. then the number of 

values of x are 

(a) 1                         (b) 2                             

(c) 3                                   (d) none 

Ans. (a) [X]= 
2 {𝑋}𝑋

{𝑋}+𝑋
; Now, we know X = 

[X]+ {X}, putting value of X , we get 

⤇ [𝑋]2 = 2 {𝑋}2 

⤇ {𝑋}2 =
1

2
[𝑋]2   

⤇ 0 < 
[𝑋]2

2
< 1, 

⤇ 0 < [𝑋]2 < 2, ⤇ 0 < [X] < √2 ⤇ [X]= 1 

⤇ {X}= 
1

√2
, 

So, X = 1+
1

√2
  is the only value. 

 

16. Let f(x) = 𝐬𝐢𝐧−𝟏
𝟐𝒈(𝒙)

𝟏+(𝒈(𝒙))𝟐
 , then 

(a) f(x) is decreasing if g(x) is increasing 

and |g(x)|> 1  

(b) f(x) is an increasing function if g(x) is 

increasing and |g(x)|≤ 𝟏  
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(c) f(x) is decreasing if g(x) is decreasing 

and |g(x)|> 1  

(d) none of these 

Ans. (c) 

𝑓(𝑥)

=  sin−1

2
𝑔(𝑥)

1 + (
1

𝑔(𝑥)2
)

=  sin−1(sin 2𝜃) , 𝑤ℎ𝑒𝑟𝑒 tan 𝜃 =
1

𝑔(𝑥)
 

= 2 𝜃 = 2 cot−1(𝑔(𝑥)), |𝑔(𝑥)| > 1 

𝑡ℎ𝑢𝑠 𝑓′(𝑥) =
2

1+(𝑔(𝑥))2
𝑔′(𝑥), |𝑔(𝑥)| ≤ 1 =

 −
2

1+(𝑔(𝑥))2
𝑔′(𝑥), |𝑔(𝑥)| > 1 . 

17. Let f(x)−∫ (𝒄𝒐𝒄𝟒𝜽 + 𝒔𝒊𝒏𝟒𝜽)𝒅𝜽
𝒙

𝟎
+

(𝒑𝒒 − 𝒒𝟐 − 𝟏)𝒙 then for f(x) to be a 

decreasing function in R for all real 

values of q independent of x, the set of 

values of p is 

(a) [10, √𝟏𝟎]                (b) [−√𝟏𝟎,√𝟏𝟎]                     

(c) [-√𝟏𝟎, 𝟎]                 (d) none of these 

Ans. (d) 

𝑓′(𝑥) =  −(𝑐𝑜𝑠4𝑥 + 𝑠𝑖𝑛4𝑥)

+ (𝑝𝑞 − 𝑞2 − 1)

=  −(𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥)2

+ 2𝑠𝑖𝑛2𝑥𝑐𝑜𝑠2𝑥 + 𝑝𝑞 − 𝑞2

− 1 

= 𝑝𝑞 − 𝑞2 +
1

2
𝑠𝑖𝑛22𝑥 − 2 

But f’(x)  ≤ pq - 𝑞2 − 2 +
1

2
= 𝑝𝑞 − 𝑞2 −

3

2
 

For f(x) to be decreasing in R, f’(x) ≤ 0 

This will be true if 𝑝𝑞 − 𝑞2 −
3

2
≤

0 𝑜𝑟 2𝑞2 − 2𝑝𝑞 + 3 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑞 ∊ 𝑅 ⟹

𝐷 ≤ 0  

𝑜𝑟 4𝑝2 − 24 ≤ 0 𝑜𝑟 − √6 ≤ 𝑝 ≤ √6. 

 

18. The lengths of the sides of a triangle 

are 𝛼- 𝛽, 𝛼 +𝛽 and √𝟑𝜶𝟐 + 𝜷𝟐, (𝜶 > 𝛽 >

0). Its largest angle is 

(a) 
𝟑𝝅

𝟒
                                  (b) 

𝝅

𝟐
                              

(c) 
𝟐𝝅

𝟑
                                   (d) 

𝟓𝝅

𝟔
 

Ans. (c) 

𝛼, 𝛽 > 0 

∴  𝛼+ 𝛽 > 𝛼- 𝛽 

Also 𝛼- 𝛽 > 0 

∴ 𝛼 > 𝛽 then 3𝛼2 + 𝛽2 − (𝛼 + 𝛽)2 =

2𝛼(𝛼 − 𝛽) >  0 

⟹√3𝛼2 + 𝛽2 >  𝛼 + 𝛽 

Let a = 𝛼 − 𝛽, 𝑏 =  𝛼 + 𝛽, 𝑐 = √3𝛼2 + 𝛽2  

Now cos 𝐶 =  
𝑎2+𝑏2−𝑐2

2𝑎𝑏
=

 
2𝛼2+2𝛽2−3𝛼2−𝛽2

2(𝛼2−𝛽2)
= −

1

2
 

∴ 𝐶 =
2𝜋

3
 

19. The set of critical points of the 

function 

f(x) = 𝒙 − 𝑰𝒏 𝒙 + ∫ (
𝟏

𝒕
− 𝟐 − 𝟐 𝐜𝐨𝐬 𝟒𝒕)

𝒙

𝟐
𝒅𝒕 

is 
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(a) {
𝝅

𝟐
, 𝒏𝝅 +

𝝅

𝟔
} , 𝒏 ∊ 𝑰         (b) {

𝝅

𝟔
,
𝒏𝝅

𝟐
±

𝝅

𝟔
, 𝒏 ∊ 𝑵}          (c) {n𝜋}, n ∊I         (d) none 

of these 

Ans. (b) 

f’(x)= 1 −
1

𝑥
+
1

𝑥
− 2 − 2 cos 4𝑥  𝑜𝑟 𝑓′(𝑥) =

 −1 − 2 cos 4𝑥 

for critical points f’(x)= 0 

⟹ cos 4𝑥 =  −
1

2
= cos

2𝜋

3
⟹ 4𝑥 = 2𝑛𝜋 ±

2𝜋

3
⟹ 𝑥 = 

𝑛𝜋

2
±
𝜋

6
, 𝑛 ∊ 𝐼 

But for log x to be defined, x > 0 

∴ x = 
𝜋

6
,
𝑛𝜋

2
±
𝜋

6
, 𝑛 ∊ 𝑁 

20. If 0 < 𝛼< 𝛽 < 𝛾< 
𝝅

𝟐
 , then the equation 

𝟏

𝒙−𝒔𝒊𝒏𝜶
+

𝟏

𝒙−𝒔𝒊𝒏𝜷
+

𝟏

𝒙−𝒔𝒊𝒏𝜸
= 𝟎 has 

(a) imaginary roots                                                   

(b) real and equal roots     

(c) real and unequal roots                                        

(d) rational roots 

Ans. (c) 

0 < 𝛼 < 𝛽 < 𝛾 < 
𝜋

2
  

⟹ sin 𝛼< sin 𝛽 < sin 𝛾 

Given equation is 

(x- sin𝛽)(x- sin𝛾 )+(x- sin𝛼) (x- sin𝛾) +( x- 

sin𝛼)(x- sin𝛽 )= 0 

Or,  f(x)= 0 

f(sin 𝛼) = (sin 𝛼- sin 𝛽)(sin 𝛼- sin 𝛾)> 0 

f(sin 𝛽) = (sin 𝛽- sin 𝛼)(sin 𝛽- sin 𝛾)< 0 

f(sin 𝛾) = (sin 𝛾- sin 𝛼)(sin 𝛾- sin 𝛽)> 0 

Hence equation f(x) = 0 has one root 

between sin 𝛼 and sin 𝛽 and other between 

sin 𝛽 and sin 𝛾. 

21. If f(x)= ∑ 𝒂𝒓𝒙
𝒓𝟏𝟎𝟎

𝒓=𝟎  and f(0) and f(1) are 

odd numbers, then for any integer x 

(a) f(x) is odd or even according as x is 

odd or even   

(b) f(x) is even or odd according as x is 

odd or even  

(c) f(x) is even for all integral value of x   

(d) f(x) is odd for all integral values of x 

Ans. (d) Given f(x)= 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +

⋯+ 𝑎100𝑥
100 

∴ f(2m) = 𝑎0 + 𝑎𝑛 (even number) 

             = f(0) + an even number 

             = an odd number 

f(2m +1) = 𝑎0 + 𝑎1(1 + 2𝑚) + 𝑎2(1 +

2𝑚)2 +⋯+ 𝑎100(1 + 2𝑚)
100 

               = 𝑎0 + 𝑎1 +⋯+ 𝑎100 + 𝑎𝑛 even 

number 

               = f(1) + an even number 

               = an odd number 

22. Let P= √𝟑 𝒆𝒊𝝅/𝟑, 𝑸 =

√𝟑 𝒆−𝒊𝝅/𝟑 𝒂𝒏𝒅 𝑹 = √𝟑 𝒆−𝒊𝝅 form a 

triangle PQR in the Argand plane. Then 

𝛥PQR is  

(a) isosceles                        (b) equilateral                     

(c) scalene                (d) none of these 
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Ans. (b) 

The points P, Q, R lie on a circle |z|= √3 

with a difference in argument = 
2𝜋

3
 for any 

two complex numbers. 

∴ 𝛥 PQR is equilateral. 

23. A, b and C are points represented by 

complex numbers 𝒛𝟏, 𝒛𝟐, 𝒂𝒏𝒅 𝒛𝟑. If  the 

circumcentre of the  𝛥ABC is at the origin 

and the altitude AD of the triangle meets 

the circumcircle again at P, then P 

represents the complex number 

(a) 
−𝒛𝟏𝒛𝟐

𝒛𝟑
                      (b)  

𝒛𝟏𝒛𝟑

𝒛𝟐
                         

(c) 
−𝒛𝟐𝒛𝟑

𝒛𝟏
                                 (d) 

𝒛𝟏𝒛𝟐

𝒛𝟑
     

Ans. (c) 

|𝑧1|= |𝑧2|𝑧3| =|z|= r (say) 

∴ |𝑧1| 
2 = |𝑧2| 

2 = |𝑧3| 
2 = |𝑧|2 = 𝑟2 

⟹𝑧1𝑧1̅= 𝑧2𝑧2̅= 𝑧3𝑧3̅ = 𝑧𝑧̅ = 𝑟
2 

∴
𝑧−𝑧1

�̅�−𝑧1̅̅ ̅
=
𝑧3−𝑧3

𝑧2̅̅ ̅−𝑧3̅̅ ̅
  ⟹ 

𝑧−𝑧1
𝑟2

𝑧
−
𝑟2

𝑧1

= −
𝑧3−𝑧3
𝑟2

𝑧2
−
𝑟2

𝑧3

=

−𝑧𝑧1 = 𝑧2𝑧3 

⟹ z = - 
𝑧3

𝑧1
 

24. If |2z- 1|= |z- 2| and 𝒛𝟏, 𝒛𝟐, 𝒛𝟑   are 

complex numbers such that |𝒛𝟏 − 𝜶|< 𝛼, 

|𝒛𝟐 − 𝜷|< 𝜷, then |
𝒛𝟏+ 𝒛𝟐

𝜶+𝜷
| 

(a) < |z|                      (b) <2|z|                            

(c) > |z|                              (d) > 2|z|  

 Ans. (b) 

|2z- 1|= |z- 2| 

⟹ |2z −  1|2 = |z −  2|2 

⟹ (2z -1) (2z̅ -1)= (z- 2) (z̅ -2) 

⟹ 4zz̅- 2z̅- 2z +1 = zz̅ -2z̅ -2z +4 

⟹3|z|2 = 3 ⟹|z|= 1 

Again 

|𝑧1 − 𝑧2| =|𝑧1 − 𝛼 + 𝑧2 − 𝛽 + 𝛼 + 𝛽|≤ |𝑧1 −

𝛼|+|𝑧2 − 𝛽|+|𝛼+𝛽|< 𝛼+𝛽+ |𝛼+ 𝛽| 

= 2|𝛼+ 𝛽|[∵ 𝛼, 𝛽> 0] 

∴ |
𝑧1+𝑧2

𝛼+ 𝛽
| < 2 ⟹ |

𝑧1+𝑧2

𝛼+ 𝛽
| < 2|𝑧| 

25. If 1, 𝜶𝟏, 𝜶𝟐, … , 𝜶𝟑𝒏 be the roots of 

equation 𝒙𝟑𝒏+𝟏 − 𝟏 = 𝟎 , and 𝜔 be an 

imaginary cube root of unity, then 

(𝝎𝟐−𝜶𝟏)(𝝎
𝟐−𝜶𝟐)…(𝝎

𝟐−𝜶𝟑𝒏)

(𝝎−𝜶𝟏)(𝝎−𝜶𝟐)…(𝝎−𝜶𝟑𝒏)
= 

(a) 𝜔                            (b) –𝜔                              

(c) 1                                   (d) 𝝎𝟐 

Ans. (c) 

Since 1, 𝛼1, 𝛼2, … , 𝛼3𝑛 are the roots of 

equation 

𝑥3𝑛+1 − 1 = 0 

∴ 𝑥3𝑛+1 − 1 = (x- 1) (x-𝛼1) (x-𝛼2) … (x- 

𝛼3𝑛) 

⟹ (x-𝛼1) (x-𝛼2) … (x- 𝛼3𝑛) = 
𝑥3𝑛+1−1

𝑥−1
 

⟹ (x-𝛼1) (x-𝛼2) … (x - 𝛼3𝑛) = 1+ x+𝑥2 +

⋯+ 𝑥3𝑛          ……………(1) 

∴ 
(𝜔2−𝛼1)(𝜔

2−𝛼2)…(𝜔
2−𝛼3𝑛)

(𝜔− 𝛼1)(𝜔− 𝛼2)…(𝜔−𝛼3𝑛)
 = 

𝜔6𝑛+2−1

𝜔2−1
.

𝜔−1

𝜔3𝑛+1−1
=
(𝜔2−1) (𝜔−1)

(𝜔2−1)(𝜔−1)
= 1  
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26. If 𝜔 be an imaginary cube root of 

unity and 𝒙𝟏, 𝒙𝟐, 𝒙𝟑  ∊ 𝑹, ∑
𝟏

𝒙𝒓+𝝎
=𝟑

𝒓=𝟏

𝟐𝝎𝟐 , ∑
𝟏

𝒙𝒓+𝝎𝟐
= 𝟐𝝎𝟑

𝒓=𝟏  then ∑
𝟏

𝒙𝒓+𝟏
=𝟑

𝒓=𝟏  

(a) -2                                (b) 2                                 

(c) 0                                     (d) none of 

these 

Ans. (b) 

Consider the equation 

1

𝑥1+𝑥
+

1

𝑥2+𝑥
+

1

𝑥3+𝑥
=
2

𝑥
            

………………..(1) 

Equation (1) is 

x (x+𝑥2 ) (x+𝑥3) + 𝑥(𝑥 + 𝑥1)(𝑥 + 𝑥3) +

𝑥(𝑥 + 𝑥1)(𝑥 + 𝑥2) − 2(𝑥 + 𝑥1)(𝑥 +

𝑥2)(𝑥 + 𝑥3)= 0 

or,  𝑥3 − (𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1) −

2𝑥1𝑥2𝑥3 = 0 ……………(2) 

from given conditions it is clear that 𝜔 and 

𝜔2 are the roots of equation (1) i.e. of eqn. 

(2). 

Therefore, if 𝛾 be its third roots, then 

𝜔+ 𝜔2 + 𝛾= 0 ⟹ 𝛾= 1 

∴ 1 is a root of equation (1) 

⟹ ∑
1

𝑥𝑟+1

3
𝑟=1 = 2 

27. If 1, 𝛼, 𝜶𝟐, … , 𝜶𝒏−𝟏 be the nth roots of 

unity, then (
𝟑𝒏−𝟏

𝟑𝒏−𝟏
) (∑

𝟏

𝟑−𝜶𝒓
+
𝟏

𝟐

𝒏−𝟏
𝒓=𝟏 ) = 

(a) –n                                (b) 0                                    

(c) n                                       (d) 1 

Ans. (c) 

According to question, 

𝑥𝑛 − 1= (x- 1) (x- 𝛼) (x- 𝛼2)… (x - 𝛼𝑛−1) 

Taking logarithm, we get 

log(𝑥𝑛 − 1) = log(𝑥 − 1) + log(𝑥 − 𝛼) +

 …+ log(𝛼𝑛−1)  

Differentiating w.r.t.x, we get 

𝑛𝑥𝑛−1

𝑥𝑛−1
=

1

𝑥−1
+

1

𝑥−𝛼
+

1

𝑥−𝛼2
+⋯+

1

𝑥−𝛼𝑛−1
  

⟹ 
𝑥𝑛−1

𝑥𝑛−1
(
1

𝑥−1
+

1

𝑥−𝛼
+⋯+

1

𝑥−𝛼𝑛−1
)= n 

⟹ 
3𝑛−1

𝑥𝑛−1
(
1

2
+ ∑

1

3−𝛼𝑟
𝑛−1
𝑟=1 ) =  𝑛, 

[Putting x= 3] 

28. If |
𝒙𝟐 + 𝒙 𝒙 − 𝟏 𝒙 + 𝟏
𝒙 𝟐𝒙 𝟑𝒙 − 𝟏

𝟒𝒙 + 𝟏 𝒙 − 𝟐 𝒙 + 𝟐

| = 𝒑𝒙𝟒 +

𝒒𝒙𝟑 + 𝒓𝒙𝟐 + 𝒔𝒙 + 𝟏 be an identity in x 

and 𝜔 be an imaginary cube root of unity, 

then 
𝒂+𝒃𝝎+𝒄𝝎𝟐

𝒄+𝒂𝝎+𝒃𝝎𝟐
+
𝒂+𝒃𝝎+𝒄𝝎𝟐

𝒃+𝒄𝝎+𝒂𝝎𝟐
 =  

(a) p                                (b) 2p                                 

(c) -2p                                   (d) –p 

Ans. (a) 

Equating the coefficient of 𝑥4, we get 

P=1. (2-3)= -1 

Given expression 

= 
𝜔2(𝑐+𝑎𝜔+𝑏𝜔2)

𝑐+𝑎𝜔+𝑏𝜔2 
+
𝜔 (𝑏+𝑐𝜔+𝑎𝜔2)

𝑏+𝑐𝜔+𝑎𝜔2
= 𝜔2 +

𝜔 = −1 = 𝑝 

29. If the equation- (𝒑 + 𝒊𝒒)𝒙𝟐 + (𝒎+

𝒊𝒏)𝒙 + 𝒓 = 𝟎 has real roots where p, q, m, 

n and r are real (r≠ 𝟎) then 𝒑𝒏𝟐 + 𝒓𝒒𝟐 −

𝒎𝒏𝒒 =  
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(a) 1                                 (b) 0                                  

(c) -1                                   (d) none of these 

Ans. (b) 

Let 𝛼 be the real root satisfying the given 

equation, then 

(p𝛼2 +𝑚𝛼 + 𝑟) + 𝑖 (𝑞𝛼2 + 𝑛𝛼)= 0 

Equating real and imaginary parts, we have 

𝛼 = −
𝑛

𝑞
 𝑎𝑛𝑑

p𝑛2

𝑞2
−
𝑚𝑛

𝑞
+ 𝑟 = 0 [𝛼 =  −

𝑛

𝑞
] 

⟹ p𝑛2 + r𝑞2 −𝑚𝑛𝑞 = 0 

30. If n(A)= p, n(B)= q and total number 

of mappings from A to 343, then p - q = 

(a) 3                                     (b) -3                                 

(c) 4                                (d) none of these 

Ans. (d) 

Total number of mapping from A to B = 𝑞𝑝 

Given 𝑞𝑝 = 343 = 73⟹ 𝑞 = 7, 𝑝 = 3 

∴ p – q= - 4 

 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 14 

 

There will be 30 questions in MMA Paper. 

For each question, exactly one of the four 

choices is correct. You get four marks for 

each correct answer, one mark for each 

unanswered question, and zero mark for 

each incorrect answer. 

 

1. Let X be a non-empty set and let P(X) 

denotes the collection of all subsets of X. 

Define 

F: X× 𝑷(𝑿) → 𝑹 by 

f(x, A) = {
𝟏    𝒊𝒇 𝒙 ∈ 𝑨
𝟎    𝒊𝒇 𝒙 ∉ 𝑨

 

Then f(x, A∪B) equals 

(a) f(x, A) + f(x, B)                                                         

(b) f(x, A) + f(x, B) – 1  

(c) f(x, A) + f(x, B) – f(x, A)f(x, B)                                

(d) none 

Ans. (c) n(A∪B) = n(A) + n(B) – n(A∩B) 

So, f(x, A∪B) = f(x, A) + f(x, B) – f(x, 

A)f(x, B) 

2. The set { 𝒙 ∶ ∣
∣ 𝒙 +

𝟏

𝒙 ∣
∣> 6 } equals the 

set 

(a) (0, 𝟑 − 𝟐√𝟐) ∪ (𝟑 + 𝟐√𝟐,∞)                                      

(b) (-∞, −𝟑 − 𝟐√𝟐) ∪ (−𝟑 + 𝟐√𝟐,∞) 

(c) (-∞, 𝟑 − 𝟐√𝟐) ∪ (𝟑 + 𝟐√𝟐,∞)                                     

(d) none 

Ans. (c) x2 – 6x + 1 = 0 gives us x = 

−6±√36−4

2
= 3 ± 2√2 

So, set is (-∞, 3 − 2√2) ∪ (3 + 2√2,∞) 

3. If f : (3, 6) ⟶(2, 5) is a function defined 

by f(x)= x-[
𝒙

𝟑
] (where [.] denotes the 

greatest integer function), then 𝒇−𝟏𝒙 

(a) x -1 (b) x +1 (c) x (d) none of these 

Ans. (b) 
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3 < x < 6 

⟹ [
𝑥

3
] =  1 ∴ 𝑓(𝑥) = 𝑥 − 1 ∴ 𝑓−1(𝑥) =

𝑥 + 1 

4. The possible values of ‘a’ for which the 

function f(x) = 𝒆𝒙−[𝒙] + 𝐜𝐨𝐬𝒂𝒙 (where [.] 

denotes the greatest integer function) is 

periodic with finite fundamental period is 

(a) 𝜋                                     (b) 0                                       

(c) 1                                          (d) 2 

Ans. (a) 

Period of x- [x] is 1. 

∴ Period of 𝑒𝑥−[𝑥]is 1 and period of cos ax is 
2𝜋

|𝑎|
 

When a= 𝜋, period of cos ax = 2 

When a= 2𝜋, period of cos ax= 1 

In first case period of f(x) will be 2 and in 

second case it will be 1. 

But when a = 1 or 2. 

Period of cos ax will be an irrational number 

T and L.C.M. of 1 and T will not exist. 

5. If f(x)= [𝒙]𝟐 − [𝒙𝟐], (where [.] denotes 

the greatest integer function), and x ∊[0, 

2], then the range of f(x) is 

(a) {-1, 0, 2} (b) {0, 1, 2} (c) {-2, -1, 0} (d) 

{-2, 0, 1} 

Ans. (c) 

𝑓(𝑥) =  [𝑥]2 − [𝑥2]

=  

{
 
 

 
 0,     0 ≤ 𝑥 <  √2

−1,   √2 ≤ 𝑥 < √3

−2,     √3 ≤ 𝑥 < 2
0,              𝑥 = 2

 

∴ Range of f(x) is {-2, -1, 0} 

6. Let f: R⟶R be a function defined by 

f(x)= max [x, 𝒙𝟑]. The set of all points 

where f(x) is not differentiable is 

(a) {-1, 1}          (b) {-1, 0}                (c) {0, 

1}                   (d) {-1, 0, 1} 

Ans. (d)                                           𝑓(𝑥) =

max{𝑥, 𝑥3}  

⟹ 𝑓(𝑥) =  {

𝑥,             𝑥 ≤  −1

𝑥3 ,     − 1 < 𝑥 ≤ 0
𝑥,          0 < 𝑥 ≤ 1

𝑥3,                𝑥 ≥ 1

 

Clearly f(x) is non-differentiable at x= -1, 0, 

1 

7. Let f: R⟶R  be a function defined by 

f(x)= 2x + sinx, x ∊R. Then f is 

(a) one-to-one and onto                                                      

(b) one-to-one but not onto  

(c) onto but not one-to-one                                                

(d) neither one-to-one nor onto 

Ans. (a) 

f’(x)= 2+ cosx > 0∀ x 𝜖 R 

⟹ f(x) is increasing 

⟹ f is one-one 

Also, as x⟶∞ , f(x)⟶ ∞ 𝑎𝑛𝑑 𝑎𝑠 𝑥 ⟶

−∞, 𝑓(𝑥) ⟶ −∞ 
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More over f is continuous 

⟹ Range of R ⟹ f is onto. 

8. f : [0, ∞)  → [𝟎,∞), 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒃𝒚 𝒇(𝒙) =

 
𝒙

𝟏+𝒙
 is 

(a) one-one and onto                                                            

(b) one-one but not onto  

(c) onto but not one-one                                                      

(d) neither one-one nor onto 

Ans. (b) 

f : [0, ∞)⟶ [0, ∞) ;   𝑓(𝑥) =
𝑥

1+𝑥
= 1 −

1

1+𝑥
 

∴f’(x)= 
1

(1+𝑥)2
> 0 

Hence f(x) is increasing and therefore one-

one. 

Also 0≤ x < ∞ ∴ f(0)≤ f(x) < f(∞) 

⟹0 ≤ f(x) < Lt
𝑥→∞

𝑥

1+𝑥
 

⟹ 0≤ f(x) < 1 

Hence range f(x) = [0, 1), therefore f is not 

onto. 

9. The value of 𝐥𝐢𝐦
𝒙→𝟎

|
𝒙 𝟏
𝒙−𝟏 𝒍𝒐𝒈𝒙

| 

(𝒙−𝟏)𝒍𝒐𝒈𝒙
 is 

(a) 1                                      (b) -1                                   

(c) ½                                    (d) -½  

Ans. (c) 

Required limit= Lt
𝑥→1

𝑥 log𝑥−(𝑥−1)

(𝑥−1) log𝑥
=

Lt
ℎ→0

(1+ℎ) log(1+ℎ)−ℎ

ℎ log(1+ℎ)
 [𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑥 =  1 + ℎ] 

= Lt
ℎ→0

log(1 + ℎ) − ℎ + ℎ log(1 + ℎ)

ℎ log(1 + ℎ)

=  Lt
ℎ→0

(ℎ −
ℎ2

2 +
ℎ3

3 −⋯) − ℎ + ℎ log
(1 + ℎ)

ℎ log(1 + ℎ)
 

= Lt
ℎ→0

−
ℎ2

2 (1 −
ℎ
3 +

ℎ2

4 −⋯) +
ℎ2 log(1 + ℎ)

ℎ

ℎ2 log(1 + ℎ)
ℎ

= Lt
ℎ→0

−
1
2 (1 −

ℎ
3 +

ℎ2

4 −⋯) +
log(1 + ℎ)

ℎ

log(1 + ℎ)
ℎ

 

=
−
1
2 + 1

1
=
1

2
 

10. The value of 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏𝟒
[𝟏(∑ 𝒌𝒏

𝒌=𝟏 ) +

𝟐(∑ 𝒌𝒏−𝟏
𝒌=𝟏 ) + 𝟑(∑ 𝒌𝒏−𝟐

𝒌=𝟏 )] + ⋯+ 𝒏. 𝟏] will 

be 

(a) 
𝟏

𝟐𝟒
                              (b) 

𝟏

𝟏𝟐
                                

(c) 
𝟏

𝟔
                                   (d) 

𝟏

𝟑
 

Ans. (a) 

(r+1) th term of the series 

𝑡𝑟+1 = (𝑟 + 1).∑𝑘

𝑛−𝑟

𝑘−1

=
(𝑟 + 1)(𝑛 − 𝑟)(𝑛 − 𝑟 + 1)

2
 

=
𝑟[(𝑛 − 𝑟)2 + 𝑛 − 𝑟]

2
+ 𝑃(𝑛), 

𝑤ℎ𝑒𝑟𝑒 𝑃(𝑛) =
𝑛2 − (2𝑛 + 1)𝑟 + 𝑛 + 𝑟2

2

=
𝑟

2
(𝑛2 − (2𝑛 + 1)𝑟 + 𝑟2

+ 𝑛) + 𝑃(𝑛) 
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=
1

2
[𝑟3 − (2𝑛 + 1)𝑟2 + (𝑛2 + 𝑛)𝑟] + 𝑃(𝑛) 

∴sum of the series= ∑ 𝑡𝑟+1
𝑛−1
𝑟=0 =

1

2
[∑ 𝑟3𝑛−1
𝑟=0 − (2𝑛 + 1)∑ 𝑟2𝑛−1

𝑟=0 + 𝑛(𝑛 +

1)∑ 𝑟𝑛−1
𝑟=0 ] + 𝑞(𝑛) 

Where q(n) is a polynomial in n of degree 3 

= 
1

2
[{
(𝑛−1)𝑛

2
}
2

− (2𝑛 + 1)
(𝑛−1)𝑛(2𝑛−1)

6
+

𝑛 (𝑛 + 1)
(𝑛−1)𝑛

2
] + 𝑞(𝑛) 

=
1

2
[
(𝑛2 − 2𝑛 + 1)𝑛2

4

−
(𝑛2 − 𝑛)(4𝑛2 − 1)

6

+
𝑛2(𝑛2 − 1)

2
] + 𝑞(𝑛) 

∴ 𝑅𝑒𝑞𝑑. 𝑙𝑖𝑚𝑖𝑡 =
1

2
(
1

4
−
4

6
+
1

2
)

=
1

2
(
3

4
−
2

3
) =

1

24
 

11. If 𝐋𝐭
𝒙→∞

[𝟏 + 𝒙
𝒇(𝒙)

𝒙
]𝟏/𝒙 = 𝒆𝟑, then the 

value of the function f(x) may be 

(a) 
𝒙𝟐

𝟐
                                 (b) 𝒙𝟐                                  

(c) 2𝒙𝟐                                 (d) 3𝒙𝟐 

Ans. (c) 

When 𝑓(𝑥) = 𝑘𝑥2, Lt
𝑥→0

[1 + 𝑥 +
𝑓(𝑥)

𝑥
]
1/𝑥

=

Lt
𝑥→0
[1 + 𝑥(1 + 𝑘)]1/𝑥 = 𝑒𝑘+1 

For 𝑒𝑘+1 = 𝑒3, 𝑘 = 2 

∴ f(x) = 2𝑥2 

12. 𝐋𝐭
𝒏→∞

𝒏𝒄𝒙(
𝒎

𝒏
) 𝒙 (𝟏 −

𝒎

𝒏
)
𝒏−𝒙

 equals to 

(a)
𝒎𝒙

𝒙!
. 𝒆−𝒎                                   (b) 

𝒎𝒙

𝒙!
. 𝒆𝒎                                 

(c) 1                                 (d) 0 

Ans. (a) 

Lt
𝑛→∞

𝑛𝐶𝑥 (
𝑚

𝑛
)
𝑥

(1 −
𝑚

𝑛
)
𝑛−𝑥

= Lt
𝑛→∞

𝑛!

𝑥! (𝑛 − 𝑥)!
(
𝑚

𝑛
)
𝑥 (1 −

𝑚
𝑛)

𝑥

(1 −
𝑚
𝑛)

𝑥 

= Lt
𝑛→∞

𝑚𝑥

𝑥!

(1 −
𝑚
𝑛)

𝑥

(1 −
𝑚
𝑛)

𝑥 .
𝑛(𝑛 − 1)… (𝑛 − 𝑥 + 1)

𝑛𝑥
 

=
𝑚𝑥

𝑥!
 𝑒−𝑚. Lt

𝑛→∞
[1 (1 −

1

𝑛
)…(1 −

𝑥 − 1

𝑛
)]

=  𝑒−𝑚
𝑚𝑥

𝑥!
 

13. If f(x) = 𝐥𝐢𝐦
𝒏→∞

𝒏𝟐 (𝒙
𝟏

𝒏 − 𝒙
𝟏

𝒏+𝟏) , 𝐱 >

𝟎 𝐭𝐡𝐞𝐧 ∫ 𝐱 𝐟(𝐱)𝐝𝐱 equals to 

(a) 
𝒙𝟐

𝟐
                                 (b) 0                             

(c) 
𝒙𝟑

𝟐
                                (d) none of these 

Ans. (d) 

𝑓(𝑥) =  Lt
𝑛→∞

𝑛2 (𝑥
1
𝑛 − 𝑥

1
𝑛+1) , 𝑥

> 0[∞/ 0 𝑓𝑟𝑜𝑚] 

                                               =

Lt
𝑛→∞

𝑛2 [𝑐
1

𝑛
log𝑥 − 𝑒

1

𝑛+1
log𝑥] 

= Lt
𝑛→∞

𝑛2 [{1 +
𝑙𝑜𝑔𝑥

𝑛
+ (
𝑙𝑜𝑔𝑥

𝑛
)
2

+⋯}

− {1 +
𝑙𝑜𝑔𝑥

𝑛 + 1
+ (

𝑙𝑜𝑔𝑥

𝑛 = 1
)
2

+⋯}] 



Solving Mathematical Problems 

 

111 
 

= Lt
𝑛→∞

𝑛2 [(
1

𝑛
−

1

𝑛 + 1
) log 𝑥

+ (log 𝑥)2 {
1

𝑛2
−

1

(𝑛 + 1)2
}

+ (log 𝑥)3 {
1

𝑛3
−

1

(𝑛 + 1)3
}

+ ⋯ ]

= Lt
𝑛→∞

𝑛2

𝑛(𝑛 + 1)
log 𝑥

+ 𝑛2 {
1

𝑛2

−
1

(𝑛 + 1)2
} (log 𝑥)2 +⋯

= log 𝑥 

 

14. If f(x) = 𝐥𝐢𝐦
𝐧→∞

𝐱𝐧−𝐱−𝐧

𝐱𝐧+𝐱−𝐧
, 𝟎 < 𝐱 < 𝟏, 𝐧 ∊

𝐍, 𝐭𝐡𝐞𝐧 ∫(𝐬𝐢𝐧−𝟏 𝐱) 𝐟(𝐱)𝐝𝐱 is equal to 

(a) – [𝐱𝐬𝐢𝐧−𝟏 𝒙 + √𝟏 − 𝒙𝟐] + 𝒄                                     

(b) 𝐱𝐬𝐢𝐧−𝟏 𝒙 + √𝟏 − 𝒙𝟐 + 𝒄   

(c) constant                                                                     

(d) none of these 

Ans. (a) 

𝑓(𝑥) = Lt
𝑛→∞

𝑥𝑛 − 𝑥−𝑛

𝑥𝑛 + 𝑥−𝑛
 , 0 < 𝑥 < 1, 𝑛𝜖 𝑁 

= Lt
𝑛→∞

𝑥2𝑛−1

𝑥2𝑛+1
= Lt

𝑛→∞

(𝑥2)𝑛−1

(𝑥2)𝑛+1
= −1 

∴ ∫ sin−1 𝑥 . 𝑓(𝑥)𝑑𝑥 =  −∫1. sin−1 𝑥 𝑑𝑥

=  − [𝑥 sin−1 𝑥

−∫
2𝑥

2√1 − 𝑥2
𝑑𝑥]

= − [𝑥 sin−1 𝑥 + √1 − 𝑥2]

+ 𝑐 

15. 𝐋𝐭
𝒙→𝟏

𝒙 𝐬𝐢𝐧{𝒙}

𝒙−𝟏
 , where {x} denotes the 

fractional part of x, is equal to 

(a) -1                            (b) 0                               

(c) 1                                     (d) does not 

exist 

Ans. (d) 

Lt
𝑥→1−0

{𝑥} = Lt
𝑥→1−0

(𝑥 − [𝑥]) = 1 − 0 = 1 

Lt
𝑥→1−0

{𝑥} =  Lt
𝑥→1−0

(𝑥 − [𝑥]) = 1 − 1 = 0  

∴ Lt
𝑥→1−0

𝑥 sin{𝑥}

𝑥 − 1
=  Lt

𝑥→1−0

𝑥

𝑥 − 1
sin{𝑥}

=  −∞. sin(1) = −∞  

Lt
𝑥→1−0

 
𝑥 sin{𝑥}

𝑥 − 1
= Lt
𝑥→1−0

𝑥 sin{𝑥}

{𝑥}
.
{𝑥}

𝑥 − 1
 

= Lt
𝑥→1−0

𝑥 sin{𝑥}

{𝑥}
.
𝑥 − [𝑥]

𝑥 − 1

=  Lt
𝑥→1−0

𝑥 sin{𝑥}

{𝑥}
 .
𝑥 − 1

𝑥 − 1

= 1 × 1 × 1 = 1 

Since L.H. limit ≠R.H. limit 

∴ limit does not exist. 

16. If a = 𝐋𝐭
𝒏→∞

∑
𝟏

(𝒓+𝟐)𝒓!
 𝒏

𝒓=𝟏 𝒂𝒏𝒅 𝒃 =

 𝐋𝐭
𝒙→𝟎

𝒆𝐬𝐢𝐧 𝒙−𝒆𝒙

𝐬𝐢𝐧 𝒙− 𝒙
, then 

(a) a= b                                (b) a= 2b                          

(c) 2a = b                      (d) a+ b = 0 

Ans. (c) 

𝑡𝑟 =
1

(𝑟 + 2)𝑟!
=

𝑟 + 1

(𝑟 + 2)!
=
(𝑟 + 2) − 1

(𝑟 + 2)!

=
1

(𝑟 + 1)!
−

1

(𝑟 + 2)
  



Solving Mathematical Problems 

 

112 
 

∑𝑡𝑟

𝑛

𝑟=1

=
1

2!
−

1

(𝑛 + 2)!
  

∴ 𝑎 = Lt
𝑛→∞

[
1

2
−

1

(𝑛 + 2)!
] =

1

2
  

𝑏 =  Lt
𝑥→0

𝑒𝑠𝑖𝑛𝑥 − 𝑒𝑥

𝑠𝑖𝑛𝑥 − 𝑥

=  Lt
𝑥→0
𝑒𝑥 . (

𝑒𝑠𝑖𝑛𝑥−𝑥 − 1

𝑠𝑖𝑛𝑥 − 1
)

=  𝑒0. 1 = 1 

                        ∴ 2a = b 

17. If 𝐋𝐭
𝒙→∞

(√𝒙𝟐 − 𝒙 + 𝟏 − 𝒂𝒙 − 𝒃) =

𝟎, 𝒕𝒉𝒆𝒏 𝒇𝒐𝒓 𝒌 ≥ 𝟐, 𝐋𝐭
𝒏→∞

𝒔𝒆𝒄𝟐𝒏(𝒌!  𝝅𝒃)= 

(a) a                                         (b) –a                                

(c) 2a                                 (d) b 

Ans. (a) 

Lt
𝑥→∞

(√𝑥2 − 𝑥 + 1 − 𝑎𝑥 − 𝑏)

=  0[ℎ𝑒𝑟𝑒 𝑎 > 0 𝑓𝑜𝑟 𝑖𝑓 𝑎 

≤ 0, 𝑡ℎ𝑒𝑛 𝑙𝑖𝑚𝑖𝑡 = ∞] 

⟹ Lt
𝑛→∞

𝑥2 − 𝑥 + 1 − (𝑎𝑥 + 𝑏)2

√𝑥2 − 𝑥 + 1 + 𝑎𝑥 + 𝑏

⟹ Lt
𝑛→∞

(1 − 𝑎2)𝑥2 − (1 + 2𝑎𝑏)𝑥 + 1 − 𝑏

√𝑥2 − 𝑥 + 1 + 𝑎𝑥 + 𝑏
= 0 

This is possible only when 1- 𝑎2 = 0 and 1+ 

2ab= 0 

∴ a= 1(∵ a > 0) and b= - ½  

Now k! 𝜋 b= k! 𝜋 (- ½ )= an integer multiple 

of 𝜋 as k ≥ 2 

∴𝑠𝑒𝑐2𝑘! 𝜋𝑏 = 1 

∴ Lt
𝑛→∞

(𝑠𝑒𝑐2𝑛𝑘! 𝜋𝑏) = 1 = 𝑎 

18. 𝐋𝐭
𝒏→∞

𝐋𝐭
𝒙→𝟎

𝟏

(𝟏𝒄𝒐𝒕
𝟐𝒙+𝟐𝒄𝒐𝒕

𝟐𝒙+⋯+𝒏𝒄𝒐𝒕
𝟐𝒙)

𝒕𝒂𝒏𝟐𝒙
 is 

equal to 

(a) 0                                      (b) ∞                                

(c) n                                (d) none of these 

Ans. (a) 

Lt
𝑥→0
(1𝑐𝑜𝑡

2𝑥 + 2𝑐𝑜𝑡
2𝑥 +⋯

+ 𝑛𝑐𝑜𝑡
2𝑥)

𝑡𝑎𝑛2𝑥
[∞0𝑓𝑜𝑟𝑚] 

= Lt
𝑦→∞

(1𝑦 + 2𝑦 +⋯+ 𝑛𝑦)
1
𝑦[𝑤ℎ𝑒𝑟𝑒 𝑦

= 𝑐𝑜𝑡2𝑥 ] 

= Lt
𝑦→∞

𝑛 [(
1

𝑛
) 𝑦 + (

2

𝑛
)
𝑦

+⋯+ (
𝑛 − 1

𝑛
)
𝑦

+ 1)

1
𝑦

] 

= 𝑛. Lt
𝑦→∞

1

𝑒𝑦
[
1

𝑛
) 𝑦 + (

2

𝑛
)
𝑦

+⋯+ (
𝑛 − 1

𝑛
)
𝑦

]

= 𝑛. 𝑒0 = 𝑛 

∴ 𝑅𝑒𝑞𝑑. 𝑙𝑖𝑚𝑖𝑡 = Lt
𝑛→∞

1

𝑛
= 0 

19. 𝐋𝐭
𝒙→∞

𝒍𝒐𝒈𝒙𝒏−[𝒙]

[𝒙]
, 𝒏 ∊ 𝑵, where [x] denotes 

the integral part of x, is equal to 

(a) 0                                   (b) 1                              

(c) -1                                        (d) ∞ 

Ans. (c) 

Lt
𝑥→∞

𝑙𝑜𝑔𝑥𝑛 − [𝑥]

[𝑥]
=  Lt

𝑥→∞

𝑛 log 𝑥 − [𝑥]

[𝒙]
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= Lt
𝑥→∞

𝑛
𝑙𝑜𝑔𝑥
𝑥 −

[𝑥]
𝑥

[𝑥]
𝑥

……… . (1) 

𝑏𝑢𝑡 Lt
𝑥→∞

 
𝑙𝑜𝑔𝑥

𝒙
[
∞

∞
from] = Lt

𝑥→∞

1

𝑥

1
= 0 and 

Lt
𝑥→∞

[𝑥]

𝑥
 

= Lt
𝑥→∞

𝑥 − [𝑥]

𝑥
=  Lt

𝑥→∞
 (1 −

[𝑥]

𝑥
) =  1 − 0

= 1 

∴ 𝑓𝑟𝑜𝑚, 𝑟𝑒𝑞𝑑. 𝑙𝑖𝑚𝑖𝑡 =
0 − 1

1
=  −1 

20. If 𝛼 = min. of (𝒙𝟐 + 𝟐𝒙 + 𝟑) and 𝛽= 

𝐋𝐭
𝒏→∞

∑
𝟏

(𝒓+𝟐)𝒓!

𝒏
𝒓=𝟏 , 𝒕𝒉𝒆𝒏 ∑ 𝜶𝒓𝜷𝒏−𝒓𝒏

𝒓=𝟎 = 

(a) 
𝟐𝒏+𝟏+𝟏

𝟑.𝟐𝒏
                              (b) 

𝟐𝒏+𝟏−𝟏

𝟑.𝟐𝒏
                           

(c) 
𝟒𝒏+𝟏−𝟏

𝟑.𝟐𝒏
                      (d) none of these 

Ans. (c) 

𝛼 = 𝑚𝑖𝑛. 𝑜𝑓 𝑥2 + 2𝑥 + 3 =
4. 1. 3 − 22

4
= 2 

𝛽 = Lt
𝑛→∞

∑
1

(𝑟 + 2)𝑟!

𝑛

𝑟=1

=  Lt
𝑛→∞

∑
𝑟+ 1

(𝑟 + 2)!

𝑛

𝑟=1

= Lt
𝑛→∞

∑
(𝑟 + 2) − 1

(𝑟 + 2)!

𝑛

𝑟=1

 

= Lt
𝑛→∞

∑(
1

(𝑟 + 1)!
−

1

(𝑟 + 2)!
)

𝑛

𝑟=1

= Lt
𝑛→∞

[
1

2
−

1

(𝑛 + 2)!
] =

1

2
  

𝑛𝑜𝑤 ∑𝛼𝑟𝛽𝑛−𝑟
𝑛

𝑟=0

= 𝛽𝑛 + 𝛼𝛽𝑛−1 +⋯+ 𝛼𝑛 

= 𝛽𝑛 [1 +
𝛼

𝛽
+ (
𝛼

𝛽
)
2

+⋯+ (
𝛼

𝛽
)
𝑛

]

=  𝛽𝑛
(
𝛼
𝛽
)
𝑛+1

− 1

𝛼
𝛽
− 1

 

=
1

2𝑛
(
4𝑛+1 − 1

3. 2𝑛
) 

21. If [x]denotes the integral part of x, 

then 

𝐋𝐭
𝒙→∞

𝐥𝐨𝐠𝒆[𝒙]

𝒙
= 

(a)-1                                  (b) 1                           

(c) 0                                (d) none of these 

Ans. (c) 

𝑥 −  1 <  [𝑥] ≤ 𝑥 

⟹ 𝑙𝑜𝑔𝑒(𝑥 − 1) <  𝑙𝑜𝑔𝑒[𝑥] ≤ 𝑙𝑜𝑔𝑒 𝑥 

⟹ Lt
𝑥→∞

log𝑒(𝑥 − 1)

𝑥
≤ Lt
𝑥→∞

log𝑒[𝑥]

𝑥

≤ Lt
𝑥→∞

log𝑒 𝑥

𝑥
 

⟹ Lt
𝑥→∞

1
𝑥 − 1
1

≤ Lt
𝑥→∞

log𝑒[𝑥]

𝑥
≤

1
𝑥
1
  

⟹ 0 ≤ Lt
𝑥→∞

log𝑒[𝑥]

𝑥
≤ 0 ⟹ Lt

𝑥→∞

log𝑒[𝑥]

𝑥
= 0  

22. 𝐋𝐭
𝒙→𝟏+𝟎

∫ |𝒕−𝟏|𝒅𝒕
𝒙
𝟏

𝐬𝐢𝐧(𝒙−𝟏)
=  

(a) -1                                 (b) 0                              

(c) 1                                 (d) none of these 

Ans. (b) 
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Reqd. limit = Lt
𝑥→1+0

∫ (𝑡−1)𝑑𝑡
𝑥
1

sin (𝑥−1)
=

Lt
𝑥→1+0

[
(𝑡−1)2

2
]𝑥1

sin (𝑥−1)
= Lt
𝑥→1+0

 
(𝑥−1)2

2

sin(𝑥−1)
=

Lt
𝑥→1+0

𝑥−1

sin(𝑥−1)
. (
𝑥−1

2
) = 1 × 0 = 0   

23. 𝐋𝐭
𝒏→∞

∏ 𝐥𝐨𝐠𝒓−𝟏(𝒓)
𝒏𝟒
𝒓=𝒏  = 

(a) 0                                  (b) ∞                           

(c) k                                      (d) k! 

Ans. (c) 

Lt
𝑥→∞

∏log𝑟−1 𝑟

𝑛𝑘

𝑟=𝑛

= Lt
𝑛→∞

 ∏
𝑙𝑜𝑔𝑟

log(𝑟 − 1)

𝑛𝑘

𝑟=𝑛

= Lt
𝑛→∞

log 𝑛

log(𝑛 − 1)
.
log(𝑛 + 1)

log 𝑛
.
log(𝑛 + 2)

log(𝑛 + 1)
 

…
log 𝑛𝑘

log(𝑛𝑘 − 1)
 

= Lt
𝑛→∞

log 𝑛𝑘

log(𝑛 − 1)

= Lt
𝑛→∞

𝑘 log 𝑛

log(𝑛 − 1)
[
∞

∞
𝑓𝑟𝑜𝑚] 

= Lt
𝑛→∞

𝑘.
1
𝑛
1

𝑛 − 1

=  Lt
𝑛→∞

𝑘 (1 −
1

𝑛
) = 𝑘  

 

24. If 𝜶𝒓 =
𝒙−𝒂𝒓

|𝒙−𝒂𝒓|
, 𝒓 = 𝟏, 𝟐, 𝟑, . . , 𝒏 & 𝜶𝟏 <

 𝜶𝟐 < ⋯ < 𝜶𝒏. Then 𝐋𝐭
𝒙→𝜶𝒎

(𝜶𝟏 𝜶𝟐…𝜶𝒏),  

𝟏 ≤ 𝒎 ≤ 𝒏 is equal to 

(a) (−𝟏)𝒎−𝟏                                (b) (−𝟏)𝒎                          

(c) (−𝟏)𝒎+𝟏                  (d) none 

Ans. (d) 

When x ⟶ 𝑎𝑚 + 0, 𝛼𝑟 = 1, 𝑟 =

1, 2, 3, … ,𝑚 =  −1, 𝑟 = 𝑚 + 1,𝑚 + 2,… , 𝑛 

∴ Lt
𝑥→𝑎𝑚+0

(𝛼1, 𝛼2, … , 𝛼𝑛) =  1
𝑚(−1)𝑛−𝑚

= (−1)𝑛−𝑚  

𝑤ℎ𝑒𝑛 𝑥 ⟶ 𝑎𝑚 − 0,  

𝛼𝑟 = 1, 𝑓𝑜𝑟 𝑟 = 1, 2, … ,𝑚 − 1

= −1, 𝑓𝑜𝑟 𝑟

= 𝑚,𝑚 + 1,… , 𝑛 

∴ Lt
𝑥→𝑎𝑚−0

 (𝛼1, 𝛼2, … , 𝛼𝑛)

=  1𝑚−1(−1)𝑛−𝑚+1

= (−1)𝑛−𝑚+1  

Since L.H. limit ≠ R.H.  limit 

Lt
𝑥→𝑎𝑚

(𝛼1, 𝛼2, … , 𝛼𝑛) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 

25. If 𝑺𝒏 = ∑ 𝒂𝒓
𝒏
𝒓=𝟏  𝒂𝒏𝒅 𝐋𝐭

𝒏→∞
𝒂𝒏 =

𝒂, 𝒕𝒉𝒆𝒏 𝐋𝐭
𝒏→∞

𝑺𝒏+𝟏−𝑺𝒏

√∑ 𝒓𝒏
𝒓=𝟏

  

(a) a                                  (b) 2a                             

(c) –a                                   (d) 0 

Ans. (d) 

Lt
𝑛→∞

𝑆𝑛+1 − 𝑆𝑛

√∑ 𝑟𝑛
𝑟=1

= Lt
𝑛→∞

𝑎𝑛+1

√𝑛(𝑛 + 1)
2

=
Lt
𝑛→∞

𝑎𝑛+1
𝑛

√1 (1 +
1
𝑛)

2

= 0  [

∵ Lt
𝑛→∞

𝑎𝑛+1 = 𝑎] 
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26. If 𝐋𝐭
𝒏→∞

𝒏𝒌𝒔𝒊𝒏𝟐𝒏!

𝒏+𝟏
= 𝟎 for  

(a) all k                              (b) 0≤k < 1                           

(c) k= 1                             (d) for k > 1 

Ans. (b) 

Lt
𝑛→∞

𝑛𝑘𝑠𝑖𝑛2 𝑛!

𝑛 + 1
=  Lt

𝑛→∞

𝑛𝑘

𝑛 + 1
. (𝑠𝑖𝑛2𝑛!) 

Lt
𝑛→∞

𝑠𝑖𝑛2𝑛! does not exist but if 

Lt
𝑛→∞

𝑛𝑘

𝑛 + 1
= 0, 𝑡ℎ𝑒𝑛 Lt

𝑛→∞

𝑛𝑘𝑠𝑖𝑛2 𝑛!

𝑛 + 1
= 0  

𝑏𝑢𝑡 Lt
𝑛→∞

𝑛𝑘

𝑛 + 1
= 0 ⟺ 0 ≤ 𝑘 ≤ 1 

 

27. 𝐋𝐭
𝒏→∞

{𝒙}+{𝟐𝒙}+{𝟑𝒙}+⋯+{𝒏𝒙}

𝒏𝟐
 where {x} = x-

[x] denotes the fractional part of x,  

(a) 1                             (b) 0                                      

(c) ½                                 (d) none of these 

Ans. (b) 

0≤ {nx} < 1, for n= 1, 2, 3,…, n 

⟹ 0≤ ∑ {𝑛𝑥} < 𝑛𝑛
𝑛=1  ⟹

0

𝑛2
≤
∑ {𝑛𝑥}𝑛
𝑛=1

𝑛2
<
1

𝑛
 

 Lt
𝑛→∞

0

𝑛2
≤ Lt
𝑛→∝

≤ 
∑ {𝑛𝑥}𝑛
𝑛=1

𝑛2
< Lt

𝑛→∞

1

𝑛
 

⟹ 0 ≤ Lt
𝑛→∞

∑ {𝑛𝑥}𝑛
𝑛=1

𝑛2
≤ 0  

⟹ Lt
𝑛→∞

{𝑥} + {2𝑥} + ⋯+ {𝑛𝑥}

𝑛2
= 0 

 

28. If [x] denotes the integral part of x, 

then 𝐋𝐭
𝒏→∞

[𝒙]+[𝟐𝒙]+[𝟑𝒙]+⋯+[𝒏𝒙]

𝒏𝟐
 is  

(a) x                                  (b) x/2                               

(c) x/3                         (d) independent of x 

Ans. (b) 

nx – 1 < [nx] ≤ nx, for n= 1, 2, …, n 

⟹ ∑ (𝑛𝑥 − 1)𝑛
𝑛=1 < ∑ [𝑛𝑥]𝑛

𝑛=1  ≤ ∑ 𝑛𝑥𝑛
𝑛=1   

⟹
𝑛(𝑛 + 1)

2
𝑥 − 𝑛 <  ∑[𝑛𝑥]

𝑛

𝑛=1

≤ 
𝑛(𝑛 + 1)

2
 

⟹ 
𝑛(𝑛 + 1)

2𝑛2
𝑥 −

1

𝑛
<
∑ [𝑛𝑥]𝑛
𝑛=1

𝑛2

≤
𝑛(𝑛 + 1)

2𝑛2
𝑥 

⟹ Lt
𝑛→∞

(
𝑛(𝑛 + 1)

2𝑛2
𝑥 −

1

𝑛
)

≤ 𝑙 Lt
𝑛→∞

𝑛(𝑛 + 1)

2𝑛2
𝑥 ⟹

𝑥

2
≤ 𝑙

≤
𝑥

2
⟹ 𝑙 =

𝑥

2
 

 

29. If [x] denotes the integral part of x, 

and 𝒂𝒏 = ∑ [𝒙 +𝒏−𝟏
𝒓=𝟎

𝒓

𝒏
] , 𝒕𝒉𝒆𝒏 𝐋𝐭

𝒏→∞

𝒂𝟏+𝒂𝟐+⋯+𝒂𝒏

𝒏𝟐
 = 

(a) 
𝒙

𝟐
                                    (b) 

𝒙

𝟑
                              

(c) x                                 (d) none of these 

Ans. (a) 

[𝑥] + [𝑥 +
1

𝑛
] + [𝑥 +

2

𝑛
] + ⋯+ [𝑥 +

𝑛 − 1

𝑛
]

= [𝑛𝑥] 

∴ 𝑎𝑛 = [𝑛𝑥] 
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∴ Lt
𝑛→∞

𝑎1 + 𝑎2 +⋯+ 𝑎𝑛
𝑛2

= Lt
𝑛→∞

[𝑥] + [2𝑥] + [3𝑥] + ⋯+ [𝑛𝑥]

𝑛2
=
𝑥

2
 

 

30. 𝐋𝐭
𝒏→∞

(𝐭𝐚𝐧𝜽 +
𝟏

𝟐
𝒕𝒂𝒏

𝜽

𝟐
+

𝟏

𝟐𝟐
𝒕𝒂𝒏.

𝜽

𝟐𝟐
+

⋯+
𝟏

𝟐𝒏
𝒕𝒂𝒏

𝜽

𝟐𝒏
)= 

(a) 
𝟏

𝜽
                                 (b) 

𝟏

𝜽
− 𝟐𝒄𝒐𝒕𝟐𝜽                             

(c) 2 cot2𝜃                        (d) none 

Ans. (b) tan 𝜃 = cot 𝜃 − 2 cot 2𝜃 

∴
1

2
tan

𝜃

2
=
1

2
cot

𝜃

2
− 𝑐𝑜𝑡𝜃  

…   …      … 

1

2𝑛
tan

𝜃

2𝑛
=
1

2𝑛
cot 

𝜃

2𝑛
−

1

2𝑛−1
𝑐𝑜𝑡

𝜃

2𝑛−1
  

∴𝑆𝑛 = 
1

2𝑛
cot

𝜃

2𝑛
− 2 cot 2𝜃 

 

 

∴ Reqd. limit = Lt
𝑛→∞

𝑆𝑛 = 

Lt
𝑛→∞

(

 
 
 
 

1

2𝑛 tan
𝜃
2𝑛

𝜃
2𝑛

.
𝜃
2𝑛

− 2𝑐𝑜𝑡2𝜃

)

 
 
 
 

=
1

𝜃
− 𝑐𝑜𝑡2𝜃  

 

 

ISI OBJECTIVE SAMPLE PAPER 

WITH SOLUTIONS  

SET – 15 

 

1. Let f(x) = 𝒅𝒆𝒕 (
𝒙𝟑 𝒔𝒊𝒏𝒙 𝒄𝒐𝒔𝒙
𝟔 −𝟏 𝟎
𝒑 𝒑𝟐 𝒑𝟑

)  

where p is a constant. Then 
𝒅𝟑

𝒅𝒙𝟑
{𝒇(𝒙)} at x 

= 0 is 

(a) p                                (b) p+ 𝒑𝟐                          

(c) p + 𝒑𝟑                    (d) independent of p 

Ans. (d) 

f‴(x) = |
6 − cos 𝑥 sin 𝑥
6 −1 0
𝑝 𝑝2 𝑝3

| 

∴ f‴(0) = |
6 −1 0
6 −1 0
𝑝 𝑝2 𝑝3

| = 0 

2. The number of solutions of the 

equations 𝒙𝟐 − 𝒙𝟑 = 𝟏                                                                 

−𝒙𝟏 + 𝟐𝒙𝟑 = 𝟐                                                                  

𝒙𝟏 − 𝟐𝒙𝟐 = 𝟑   is 

(a) zero                        (b) one                            

(c) two                                   (d) infinite 

Ans. (b) 

Hence 𝛥 = |
0 1 −1
−1 0 2
1 −2 0

| 

= -1 (-2)-1 (2)=0 

Hence given system of equations is 

consistent and since have no two equations 
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are identical, therefore number of solutions 

is one. 

3. If p(x), q(x), r(x) be three quadratic 

expressions in x and f(x) = 

|

𝒑(𝒙) 𝒒(𝒙) 𝒓(𝒙)

𝒑′(𝒙) 𝒒′(𝒙) 𝒓′(𝒙)

𝒑″(𝒙) 𝒒″(𝒙) 𝒓″(𝒙)

| , where dash 

denotes the derivative with respect to x, 

then 

(a) f(x) = f(0)                 (b)  f(x) = 2f(0)                    

(c) f(x) = -f(0)                    (d) none of these 

Ans. (b) Let p(x) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 𝑞(𝑥) =

𝑚𝑥2 + 𝑛𝑥 + 𝑘, 𝑟(𝑥) = 𝑢𝑥2 + 𝑣𝑥 + 𝑤 

f(x) = 

2

|
𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑚𝑥2𝑛𝑥 + 𝑘 𝑢𝑥2 + 𝑣𝑥 + 𝑤
2𝑎𝑥 + 𝑏 2𝑚𝑥 + 𝑛 2𝑢𝑥 + 𝑣
𝑎 𝑚 𝑢

| =

2 |
𝑎 𝑘 𝑤
𝑏 𝑛 𝑣
𝑎 𝑚 𝑢

| 𝑅1→ 𝑅1−𝑥𝑅2+𝑥
2𝑅3

𝑅2→𝑅2−2𝑥𝑅3
 

= 2f(0) 

4. If (𝟏 + 𝒂𝒙 + 𝒃𝒙𝟐)𝟒 = 𝒂𝟎 + 𝒂𝟏𝒙 +

𝒂𝟐𝒙
𝟐 +⋯+ 𝒂𝟖𝒙

𝟖, where a, 

b, 𝒂𝟎, 𝒂𝟏, … , 𝒂𝟖 ∊ 𝑹  such that  𝒂𝟎 + 𝒂𝟏 +

𝒂𝟐 ≠ 𝟎 𝒂𝒏𝒅 |

𝒂𝟎 𝒂𝟏 𝒂𝟐
𝒂𝟏 𝒂𝟐 𝒂𝟎
𝒂𝟐 𝒂𝟎 𝒂𝟏

| = 0 then 

(a) a= 3/4, b= 5/8               (b) a= 1/4, b= 

5/32               (c) a= 1, b= 2/3                (d) 

none 

Ans. (b) 

Putting x= 0, 𝑎𝑛 = 1 

Differentiating both sides and putting 

X= 0, we get 𝑎1 = 4𝑎 

Differentiating again and putting x= 0 

We get 𝑎2 = 6𝑎
2 + 4𝑏 

Clearly, 𝛥= −(𝑎0
3 + 𝑎1

3 + 𝑎2
3 − 3𝑎0𝑎1𝑎2) 

∵ 𝑎0 + 𝑎1 + 𝑎2 ≠ 0 ∴ 𝑎0 = 𝑎1 = 𝑎2 

∴ 1= 4a= 6𝑎2 + 4𝑏 ⟹ 𝑎 =
1

4
, 𝑏 =

5

32
 

5. If 𝛼, 𝛽, 𝛾 ∊ R, then 

|

(𝒆𝒊𝜶 + 𝒆−𝒊𝜶)𝟐 (𝒆𝒊𝜶 − 𝒆−𝒊𝜶)𝟐 𝟏

(𝒆𝒊𝜷 + 𝒆−𝒊𝜷)𝟐 (𝒆𝒊𝜷 − 𝒆−𝒊𝜷)𝟐 𝟏

(𝒆𝒊𝜸 + 𝒆−𝒊𝜸)𝟐 (𝒆𝒊𝜸 − 𝒆−𝒊𝜸)𝟐 𝟏

| equals 

(a) 𝒆𝒊(𝜶+𝜷+𝜸)                       (b) 𝒆−𝒊(𝜶+𝜷+𝜸)                   

(c) 𝒆𝒊𝜶𝜷𝜸                           (d) none of these 

Ans. (d) 

Applying  

𝐶1 → 𝐶1 − 𝐶2 , we have 𝛥= 0 

6. If 𝒇𝒏(𝒙) = (𝒏
𝒙 + 𝒏−𝒙)𝟐, 𝒈𝒏(𝒙) =

(𝒏𝒙 − 𝒏−𝒙)𝟐 then |

𝒇𝟐(𝒙) 𝒈𝟐(𝒙) 𝟏
𝒇𝟑(𝒚) 𝒈𝟑(𝒚) 𝟏
𝒇𝟓(𝒛) 𝒈𝟓(𝒛) 𝟏

| is 

(a) equal to zero          (b) independent of 

x, y, z             (c) 𝟐𝒙𝟑𝒚𝟓𝒛              (d) 
𝟏

𝟐𝒙𝟑𝒚𝟓𝒛
 

Ans.(a) 

𝛥 = |

(2𝑥 + 2−𝑥)2 (2𝑥 − 2−𝑥)2 1

(3𝑦 + 3−𝑦)2 (3𝑦 − 3−𝑦)2 1

(5𝑧 + 5−𝑧)2 (5𝑧 − 5−𝑧)2 1

| =

|

4 (2𝑥 − 2−𝑥)2 1

4 (3𝑦 − 3−𝑦)2 1

4 (5𝑧 − 5−𝑧)2 1

| =  0 
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7. If ∑ 𝜶𝒏
𝒏
𝒏=𝟏 = 𝒑𝒏𝟐 + 𝒒𝒏 + 𝒓 and 

𝜶𝟏, 𝜶𝟐, 𝜶𝟑 ∊ {𝟏, 𝟐, 𝟑, … , 𝟗} and 

25𝜶𝟏, 𝟑𝟕𝜶𝟐, 𝟒𝟗𝜶𝟑 be three digit numbers, 

then |

𝜶𝟏 𝜶𝟐 𝜶𝟑
𝟓 𝟕 𝟗

𝟐𝟓𝜶𝟏 𝟑𝟕𝜶𝟐 𝟒𝟗𝜶𝟑

| = 

(a) 𝜶𝟏 + 𝜶𝟐 + 𝜶𝟑                         (b) 𝜶𝟏 −

 𝜶𝟐 + 𝜶𝟑                     (c) 7                             

(d) 0 

Ans. (d) 

𝛼𝑛 = 2𝑝𝑛 + 𝑞  

𝛥= |

𝛼1 𝛼2 𝛼3
5 7 9

25𝛼1 37𝛼2 49𝛼3
| =

|
𝛼1 𝛼2 𝛼3
5 7 9
200 300 400

| [𝑅3 → 𝑅3 − 𝑅1 − 10𝑅2] 

= |
𝛼1 2𝑝 2𝑝
5 2 2
200 100 100

| =  0 [𝐶3→𝐶3−𝐶2
𝐶2→ 𝐶2−𝐶1

] 

8. If f(x) = |

𝒑(𝒙) 𝒒(𝒙) 𝒓(𝒙)
𝒑(𝜶) 𝒒(𝜶) 𝒓(𝜶)

𝒑′(𝜶) 𝒒′(𝜶) 𝒓′(𝜶)

|, where 

p(x), q(x), r(x) are polynomials of degree 

3, 4, 5 respectively, then (𝒙 − 𝜶)𝒎 is a 

factor of F(x), where 

(a) m ≥ 1                        (b) m ≥ 2                         

(c) m= 2                                  (d) m ≥ 3 

Ans. (b) F(𝛼) = 0, F’(𝛼) = 0 

∴ (𝑥 − 𝛼)2 will necessarily be a factor or 

F(x) ∴ m≥ 2 

 9. If Y= SX, Z= tX, all the variables being 

differentiable functions of x, and lower 

suffices denotes the derivative w.r.t. to x 

and |
𝑿 𝒀 𝒁
𝑿𝟏 𝒀𝟏 𝒁𝟏
𝑿𝟐 𝒀𝟐 𝒁𝟐

| + |
𝑺𝟏 𝒕𝟏
𝑺𝟐 𝒕𝟐

| = 𝒙𝒏 , then 

n=  

(a) 1                            (b) 2                               

(c) 3                                           (d) none of 

these 

Ans. (c) 

𝛥= 

|
𝑋 𝑆𝑋 𝑡𝑋
𝑋1 𝑆𝑋1 + 𝑆1𝑋 𝑡𝑋1 + 𝑡1𝑋
𝑋2 𝑆𝑋2 + 2𝑆1𝑋1 + 𝑆2𝑋 𝑡𝑋2 + 2𝑡1𝑋1 + 𝑡2𝑋

| 

=

 |
𝑋 0 0
𝑋1 𝑆1𝑋 𝑡1𝑋
𝑋2 2𝑆1𝑋1 + 𝑆2𝑋 2𝑡1𝑋1 + 𝑡2𝑋

| [𝐶3→𝐶3−𝑡𝐶1
𝐶2→ 𝐶2−𝑆𝐶1

]  

= 𝑋2 |
𝑆1 𝑡1

2𝑆1𝑋1 + 𝑆2𝑋 2𝑡1𝑋1 + 𝑡2𝑋
| =

𝑋3 |
𝑆1 𝑡1
𝑆2 𝑡2

| [𝑅3 → 𝑅2 − 2𝑋1𝑅1]  

∴ n= 3 

10. If f(x) = cos[𝜋]x+ cos[𝜋x], where [y]is 

the greatest integer function of y, then 

f(
𝝅

𝟐
)=  

(a) 0                         (b) cos3                          

(c) cos4                             (d) none of these 

Ans. (c) 

f(x) = cos [𝜋]x + cos [𝜋x] 

∴ 𝑓 (
𝜋

2
) =  𝑐𝑜𝑠[π]

𝜋

2
+ cos [

π2

2
] = cos

3𝜋

2
+

cos 4 = 0 + cos 4 = cos 4 
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11. Let g(x) = 

|

𝒇(𝒙 + 𝜶) 𝒇(𝒙 + 𝟐𝜶) 𝒇(𝒙 + 𝟑𝜶)
𝒇(𝒙) 𝒇(𝟐𝜶) 𝒇(𝟑𝜶)

𝒇′(𝜶) 𝒇′(𝟐𝜶) 𝒇′(𝟑𝜶)

|, 

where 𝛼 is a constant, then 𝐥𝐭𝒙⟶𝟎
𝒈(𝒙)

𝒙
= 

(a) 0                             (b) 1                                     

(c) -1                                  (d) none of these 

Ans. (a) 

Lt
𝑥→0

𝑔(𝑥)

𝑥
[
0

0
 𝑓𝑟𝑜𝑚 𝑎𝑠 𝑔(0) = 0]  

= Lt
𝑥→0

𝑔′(𝑥)

1
= 𝑔′(0) = 0  

12. Choose any 9 distinct integers. These 9 

integers can be arranged to from 9! 

determinants each of order 3. The sum of 

these 9! determinants is  

(a) 0                         (b) > 0                          

(c) < 0                                    (d) 9! 

Ans. (a) Let the nine distinct digits be 

𝑎1, 𝑎2, … , 𝑎9 

Let 𝛥1= one of the 9! Determinates then 

there exists 

𝛼 Determinant 𝛥2= adding 9! Determinants 

obtained by interchanging 𝑅1 𝑎𝑛𝑑 𝑅2 𝑖𝑛 𝛥1 

such that 

𝛥1 + 𝛥2 = 0 

Thus 9! /2 pairs of determinants will be 

there such that sum of each pair is zero. 

∴ Required sum = 0 

13. If a complex number z satisfies 

𝐥𝐨𝐠𝟏
𝟐

(
|𝒛|𝟐+𝟐|𝒛|+𝟔

𝟐|𝒛|𝟐−𝟐|𝒛|+𝟏
) < 0, then locus of point 

represented by z is  

(a) |z|< 5                              (b) |z| > 6                               

(c) 1 <|z|< 3                              (d) |z|=5 

Ans. (a) 

Since log1
2

(
|𝑧|2+2|𝑧|+6

2|𝑧|2−2|𝑧|+1
) < 0 

∴ 
|𝑧|2+2|𝑧|+6

2|𝑧|2−2|𝑧|+1
> 1 

⟹ |𝑧|2 − 2|𝑧| − 5 < 0 

⟹ (|z|- 5)(|z| +1) < 0   ⟹ |z| < 5 

14. If |z|= maximum {|z+2|, |z-2|}, then 

(a) |z-z̅|= ½                        (b) |z +z̅|=2                           

(c) |z +z̅|= ½                           (d) |z-z̅|= 2 

Ans. (b) 

|z| =|z +2|  

⟹ zz̅ = (z +2)(z̅+ 2) 

⟹ z+ z̅= -2 ⟹ |z +z̅|= 2 

|z|= | z -2| ⟹ zz̅ = (z -2)(z̅- 2) 

⟹ z+ z̅= 2 ⟹ |z +z̅|= 2 

15. Let a be a complex number such that 

|a|< 1 and 𝒛𝟏, 𝒛𝟐, 𝒛𝟑, … be the vertices of a 

polygon ∋ 𝒛𝒌 = 𝟏 + 𝒂 + 𝒂𝟐 +⋯+ 𝒂
𝒌−𝟏 

for all k= 1, 2, 3, … then 𝒛𝟏, 𝒛𝟐, … lie 

within the circle 

(a) |𝒛 −
𝟏

𝟏−𝒂
| =

𝟏

|𝒂−𝟏|
  

(b) |𝒛 +
𝟏

𝒂+𝟏
| =

𝟏

|𝒂+𝟏|
 

(c) |𝒛 −
𝟏

𝟏−𝒂
| =  |𝒂 − 𝟏| 

(d) |𝒛 +
𝟏

𝒂+𝟏
| = |𝒂 + 𝟏|  
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Ans. (a) 

Given 𝑧𝑘 = 1 + 𝑎 + 𝑎
2 +⋯+ 𝑎𝑘−1 =

 
1−𝑎𝑘

1−𝑎
 

⟹ 𝑧𝑘 −
1

1−𝑎
= −

𝑎𝑘

1−𝑎
 

⟹ |𝑧𝑘 −
1

1−𝑎
| =

|𝑎| 𝑘

|1−𝑎|
<

1

|1−𝑎|
   [∵  |𝑎| < 1]  

⟹ 𝑧𝑘 lies within the circle 

|𝑧 −
1

1−𝑎
| =

1

|1−𝑎|
  

16. The number of ordered triplets of 

positive integers which satisfy the 

inequality             20 ≤ 𝒙 + 𝒚 + 𝒛 ≤ 𝟓𝟎 is 

(a)  (𝟓𝟎
𝟑
) − (𝟏𝟗

𝟐
)                      (b)  (𝟓𝟎

𝟐
) −

 (𝟏𝟗
𝟑
)                     (c)  (𝟓𝟎

𝟑
) − (𝟐𝟎

𝟑
)                 

(d) none  

Ans. (a) 20 ≤ 𝑥 + 𝑦 + 𝑧 ≤

50,𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦, 𝑧, ∊ 𝑁   

⟹ 17 ≤ 𝑎 + 𝑏 + 𝑐 ≤ 47, 

Where a = x - 1, b = y - 1, c = z - 1 

∴ Reqd. number =  (𝟏𝟗
𝟏𝟕
) + (𝟐𝟎

𝟏𝟖
) + ⋯+ (𝟒𝟗

𝟒𝟕
) 

=  (𝟏𝟗
𝟐
) + (𝟐𝟎

𝟐
) + ⋯+ (𝟒𝟗

𝟐
) 

= (𝟓𝟎
𝟑
) − (𝟏𝟗

𝟐
) 

17. Let A= {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓}. Then the 

number B= {𝒚𝟏, 𝒚𝟐, 𝒚𝟑, 𝒚𝟒, 𝒚𝟓}. Then the 

number of one-one mappings, from A to 

B such that f(𝒙)𝒊 ≠ 𝒚𝒊, 𝒊 = 𝟏, 𝟐, … , 𝟓 is 

(a) 40                         (b) 44                              

(c) 6                                    (d) 24 

Ans. (b) 

Required number= 5!(
1

|2̲̲̲
̲̲̲
̲̲̲
̲̲

̲
−
1

|3̲̲̲
̲̲̲
̲̲
̲
+
1

|4̲̲̲
̲̲
̲
−
1

|5̲̲̲
) 

= 120 (
1

2
−
1

6
+

1

24
−

1

120
)  

=  60 − 20 + 5 − 1 = 44  

18. Number of divisors of 𝟐𝟐. 𝟑𝟑. 𝟓𝟑. 𝟕𝟓 of 

the form 4n+1, n ∊N is  

(a) 46                          (b) 47                                 

(c) 96                                 (d) none of these 

Ans. (b) 4n + 1 is an odd number 

Divisor will be of the from 4n+1 if and only 

if it is the product of 

(i) All numbers of the from 4k +1,      

or  

(ii)  2 or 4 numbers of the from 4n 

+3 

∴ Number of divisors of 

N= 22. 33. 53. 73, which are of the from 4n 

+1 excluding 1 

= number of terms in the product 

(1+32)(1 + 5 + 52 + 53)(1 + 72 + 74) + 

number of terms in the product 

(3 + 33)(7 + 73 + 75)(1 + 5 + 52 + 53) −

1  

= 2 × 4 × 3 + 2 × 3 × 4 − 1 = 47   

19. If m = number of distinct rational 

numbers  
𝒑

𝒒
 ∊ (𝟎, 𝟏) such that p, q ∊ {1, 2, 
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3, 4, 5} and n = number of mappings from 

{1, 2, 3} onto {1, 2}, then m –n is 

(a) 1                                       (b) -1                              

(c) 0                              (d) none of these 

Ans. (c) 

n= 23 − 2 = 6  

𝑚 = 4 + 3 + 2 + 1 − 1 = 9(𝑎𝑠 
2

4
=
1

2
)     

∴ m – n = 3 

 20. There are n different books each 

having m copies. If the total number of 

ways of making a selection from them is 

255 and m-n+1 = 0. Then distance of 

point (m, n) from the origin is  

(a) 3                            (b) 4                               

(c) 5                                    (d) none of these 

Ans. ( c) Total number of selections = 

(𝑚 + 1)𝑛 − 1 (number of ways in which no 

book is selected = 1) 

Given,  (𝑚 + 1)𝑛 − 1 = 255 ⟹ (𝑚 +

1)𝑛 = 256  

∴ 𝑛𝑛 = 256 =  44                [∵ m+ 1= n] 

⟹ n= 4, m= 3 

∴ Required distance= √𝑚2 + 𝑛2= 5 

21. Let f(x) = 𝒔𝒊𝒏𝟐
𝒙

𝟐
+ 𝒄𝒐𝒔𝟐

𝒙

𝟐
 𝒂𝒏𝒅 𝒈(𝒙) =

𝒔𝒆𝒄𝟐𝒙 − 𝒕𝒂𝒏𝟐𝒙 𝒂𝒍𝒔𝒐 𝒇(𝒙) = 𝒈(𝒙),then 

(a) x ∊R                                                                                 

(b) x ∊𝛷 (empty set)   

(c) x ∊R - {x: x = (2n+1)
𝝅

𝟐
where n ∊ I}                               

(d) none of these 

Ans. (c) 

Clearly f(x) = g(x) 

But here sec x and tan x should be defined 

∴𝑥 ≠ (2𝑛 + 1)
𝜋

2
, 𝑛 ∈ 𝐼 

∴ x ∊ R – {x : x=(2𝑛 + 1)
𝜋

2
, 𝑛 ∈ 𝐼 } 

22. Consider a set P consisting of n 

elements. A subset ‘A’ of P is chosen 

thereafter set P is reconstructed by 

replacing the elements of A and finally 

another subset ‘B’ of P is chosen. The 

number of ways of choosing ‘A’ and ‘B’ 

such that (A∪B) is a proper subset of P is 

(a) 𝟒𝒏                          (b) 𝟒𝒏 − 𝟑𝒏                        

(c) 𝟒𝒏 − 𝟐𝒏                       (d) none of these 

Ans. (b) 

For any element 𝑎𝑖 of P, there are 4 

possibilities: 

(i) 𝑎𝑖 ∊ 𝐴 𝑎𝑛𝑑 𝑎𝑖 ∊ 𝐵 

(ii) 𝑎𝑖 ∊ 𝐴 𝑏𝑢𝑡 𝑎𝑖 ∉ 𝐵 

(iii) 𝑎𝑖 ∉ 𝐴  𝑏𝑢𝑡 𝑎𝑖 ∊ 𝐵 

(iv) 𝑎𝑖 ∉ 𝐴 𝑎𝑛𝑑 𝑎𝑖 ∉ 𝐵 

Total number of ways for one element of P 

and two subsets A and B = 4 

∴ Total number of ways for n elements 

𝑎1, 𝑎2, … , 𝑎𝑛  of P and two subsets A and B=  

4𝑛 

Number of ways in which one particular 

element 𝑎𝑖 ∊ 𝐴 ∪ 𝐵 = 3 

∴ number of ways in which all elements 

𝑎1, 𝑎2, … , 𝑎𝑛 ∊ 𝐴 ∪ 𝐵 =3𝑛 
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∴ number of ways in which at least one 

element of p does not belong to 

A∪ B = 4𝑛 − 3𝑛 

∴ Required number = 4𝑛 − 3𝑛. 

23. Suppose 𝑨𝟏, 𝑨𝟐, 𝑨𝟑, 𝑨𝟒, … , 𝑨𝟑𝟎 are 

thirty sets each with five elements and 

𝑩𝟏, 𝑩𝟐, …𝑩𝒏 are n sets each with three 

elements such that ⋃ 𝑨𝒊
𝟑𝟎
𝒊=𝟏 = ⋃ 𝑩𝒊

𝒏
𝒊=𝟏 = 𝒔. 

If each element of S belongs to exactly ten 

of the 𝑨𝒊′s and exactly 9 of 𝑩𝒊′𝒔 then the 

value of n is  

(a) 15                              (b) 135                               

(c) 45                                  (d) 90 

Ans. (c) 

Since 𝐴𝑖 has 5 elements, we have 

∑ 𝑛(𝐴𝑖) = 5 × 30
30
𝑖=1 = 150  

……………..(1) 

Suppose S has ‘m’ distinct elements. 

Since each element of S belongs to exactly 

10 of 𝐴𝑖′𝑠 we also have 

∑𝑛(𝐴𝑖)

30

𝑖=1

= 10𝑚, 

From (1) and (2) , we get 10m = 150 

⟹ m= 15 

Since 𝐵𝑖 has 3 elements and each element of 

S belongs to exactly 9 of 𝐵𝑖′𝑠 , we have 

∑𝑛(𝐵𝑖)

𝑛

𝑖=1

= 3𝑛 𝑎𝑛𝑑 ∑𝑛(𝐵𝑖) = 9𝑚

𝑛

𝑖=1

 

⟹ 3n= 9m  

⟹ n= 3m 

⟹ n= 45 

24. Triplet (x, y, z) is chosen from the set 

{1, 2, 3, …, n}, such that x ≤y < z. The 

number of such triplets is 

(a) 𝒏𝟑                                (b) 𝒏𝑪𝟑                                

(c) 𝒏𝑪𝟐                                (d) 𝒏𝑪𝟐 + 𝒏𝑪𝟑 

Ans. (d) 

Number of selections when x < y < z = (𝑛
3
) 

Number of selections when x= y < z = (𝑛
2
) 

(Here in fact we have to select only two 

numbers out of n numbers). 

∴ required number= (𝑛
3
)+(𝑛

2
) 

25. There are n locks and n keys. If all 

locks and keys are to be matched 100% 

then maximum numbers of trials 

required are 

(a) 
𝒏(𝒏−𝟏)

𝟐
                             (b) ∑ 𝒓𝒏

𝒓=𝟏                      

(c) (𝑛+1
2
)                         (d) (𝑛−1

2
) 

Ans. (a) 

Maximum number of trials to match first 

lock and key is (n- 1). 

Max. number of trails to match second lock 

and key is (n- 2) and so on. 

∴ Required number = ∑ 𝑟𝑛−1
𝑟=1 =

(𝑛−1)𝑛

2
 

26. If 𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙 + 𝐭𝐚𝐧 𝒙 + 𝐜𝐨𝐭 𝒙 +

𝐬𝐞𝐜 𝒙 + 𝒄𝒐𝒔𝒆𝒄 𝒙 = 𝟕 𝒂𝒏𝒅 𝒔𝒊𝒏𝟐𝒙 = 𝒂 −

𝒃√𝟕 ordered pair (a, b) can be 
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(a) (6, 2)                               (b) (8, 3)                              

(c) (22, 8)                            (d) (11, 4) 

Ans. (c) 

sin 𝑥 + cos 𝑥 + tan 𝑥 + cot 𝑥 + sec 𝑥

+ 𝑐𝑜𝑠𝑒𝑐 𝑥 = 7 

⟹ (sin 𝑥 + cos 𝑥) + (
1

sin 𝑥 . cos 𝑥
)

+
(sin 𝑥 + cos 𝑥)

sin 𝑥 . cos 𝑥
= 7 

⟹ (sin 𝑥 + cos 𝑥) (1 +
2

sin 2𝑥
)

= (7 −
2

sin 2𝑥
) 

⟹ (1 + sin 2𝑥) (1 +
4

𝑠𝑖𝑛22𝑥
+

4

sin2𝑥
) =

49 +
4

𝑠𝑖𝑛22𝑥
−

28

sin2𝑥
 (Squaring both sides) 

⟹ 𝑠𝑖𝑛22𝑥 − 44𝑠𝑖𝑛22𝑥 + 36𝑠𝑖𝑛2𝑥 = 0 

⟹ sin2x = 22 - 8√7  

27. If ur denotes the number of one–one 

functions from 

{𝒙𝟏, 𝒙𝟐, … , 𝒙𝒓} 𝒕𝒐 {𝒚𝟏, 𝒚𝟐, … , 𝒚𝒓} such that 

f(𝒙𝒊) ≠ 𝒚𝒊, for i= 1, 2, 3, …, r then 𝒖𝟒 = 

(a) 9                                  (b) 44                             

(c) 265                             (d) none of these 

Ans. (a) 

𝑢𝑟 = number of ways of putting  

𝑥1, 𝑥2, … , 𝑥𝑟 in r corresponding place so that 

no 𝑥1 is put in the corresponding place 

= |r̲(
1

|2̲̲̲
̲̲̲
̲̲̲
̲̲̲

̲
−
1

|3̲̲̲
̲̲̲
̲̲̲
̲
+⋯+

(−1)𝑟

|�̲̲�̲
) 

∴𝑢𝑟 = |4̲

(

 
 
 
1

|2̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲

̲
−
1

|3̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲̲̲
̲

̲
+
1

|4̲̲̲
̲̲̲
̲
̲

)

 
 
 

=  12 − 4 + 1 

28. Number of positive unequal integral 

solutions of equation x+ y+ z = 6 is 

(a) 4!                                 (b) 3!                               

(c) 6!                                    (d) 2×4! 

Ans. (b) 

Given x+ y+ z = 6 …….(1) 

x, y, z ∊ N and are unequal. 

⟹ x, y, z ∊ {1, 2, 3} and are unequal 

∴ Required number of solutions= 3! = 6 

 

29. The plain containing the two straight 

lines r⃗= a⃗+ 𝜆b⃗ and r⃗= b⃗+ 𝜇a⃗ is  

(a) [r⃗   a⃗   b⃗] = 0                                                              

(b) [r⃗    a⃗    a⃗ × 𝒃⃗] = 0  

(c) [r⃗    b⃗     a⃗ × 𝒃⃗] = 0                                                   

(d) none 

Ans. (a) 

Given lines are r⃗ = a⃗ + 𝜆b⃗ …………..(1) 

r⃗ = b⃗ + 𝜇a⃗ ……………..(2) 

lines (1) and (2) intersect at (a⃗ + b⃗ ) 

Then the plane passes through (a⃗ + b⃗ ) 

Also, line (1) is parallel to b⃗ and line (2) is 

parallel to a⃗ ⟹ (a⃗ ×b⃗ ) is normal to plane 

containing these lines. 
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 ∴ Eqn. of reqd. plane is 

[r⃗ - (a⃗ +b⃗ )].(a⃗ ×b⃗ ) = 0 

r⃗(a⃗ ×b⃗ ) - (a⃗ +b⃗ ). (a⃗ ×b⃗) = 0 

⟹ [r⃗ a⃗ b⃗] = 0 

30. Let a⃗= 2î + ĵ - 2k̂ and b⃗= î + ĵ . If c⃗ is 

a vector such that a⃗.c⃗ = |c⃗|, |c⃗-a⃗| = 2√𝟐 

and     angle between | (a⃗× 𝒃⃗) × 𝒄⃗| = 

(a) 2/3                              (b) 1/3                           

(c) 3/2                                (d) 1 

 Ans. (c) Given a⃗ = 2 î+ ĵ- 2 k̂ 

b⃗= î+ ĵ 

a⃗ .c⃗=|c⃗|……………(1) 

|c⃗-a⃗|= 2√2 …………….(2) 

Angle between (a⃗ ×b⃗ ) and c⃗= 
𝜋

6
 

Now,  |(a⃗ ×b⃗ )× 𝑐⃗|= |a⃗ ×b⃗ ||c⃗|sin 
𝜋

6
=

3

2
|𝑐⃗|……(3) 

From (3), |𝑐 − 𝑎⃗|2 = 8 

⟹(𝑐 − 𝑎⃗).( 𝑐 − 𝑎⃗)= 8 

⟹|𝑐|2 + |𝑎⃗|2 − 2�⃗�. 𝑐 = 8 

⟹ |𝑐|2 + 9 − 2|𝑐| = 8 (from (1)) 

∴  |𝑐| = 1 

From (3), |(a⃗ ×b⃗ )× 𝑐⃗ | =  
3

2
 . 

 

 

 

  

THEORY OF EQUATIONS 

1. The sum of the roots of equation 𝒙𝟕 +

𝟗𝒙𝟔 − 𝟐 = 𝟎 is 

(a) 0                                    (b) 3                               

(c) -9                              (d) 7 

Solution:- (c)  

Sum of the roots = (−
𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥6 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥7
)   

= −9. 

2. The sum of all the roots of the equation 

∣ 𝒙 − 𝟐 ∣𝟐 +∣ 𝒙 − 𝟐 ∣ −𝟐 = 𝟎 is 

(𝒂)  4                               (b)   2                                

(c) 6                                     (d) none. 

Solution:- (a) ∣ x -2∣  = t 

𝑡2 + 𝑡 − 2 = 0  

∴ t = 1, -1, but -1 is not acceptable. 

So, x = 3, 1. 

Sum of the roots = 4. 

 

3. The equation 𝟑𝒙𝟏𝟎 + 𝟕𝒙𝟔 + 𝟓𝒙𝟒 +

𝟐𝒙𝟐 + 𝟏 = 𝟎 has 

(a) 10          (b) 6            (c) 2                    

(d) zero real roots. 

Solution:-  

TOPIC-WISE OBJECTIVE 

SOLVED PROBLEMS 
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Let 𝑓(𝑥) =  3𝑥10 + 7𝑥6 + 5𝑥4 + 2𝑥2 + 1    

𝑓(−𝑥) =  3𝑥10 + 7𝑥6 + 5𝑥4 + 2𝑥2 + 1 

Here f(x) and f(-x) has no sign change. 

By sign rule, f(x) = 0 has no real roots. 

4. The equations 𝒙𝟐 − 𝒌𝒙 − 𝟐𝟏 =

𝟎 𝒂𝒏𝒅 𝒙𝟐 − 𝟑𝒌𝒙 + 𝟑𝟓 = 𝟎 have a 

common root then the value of k is equal 

to 

(a)  -6                             (b) 4                            

(c) 5                           (d) 6 

Solution:- (b) From the above two 

equations, we have 

𝑥2

−35𝑘 − 63𝑘
=  −

𝑥

35 + 21
=

1

−3𝑘 + 𝑘
 

∴ 𝑥 =
7𝑘

4
, 𝑥 =

28

𝑘
 

𝑆𝑜,   𝑘2 = 16 

⇨ 𝑘 =  ± 4. 

5. The numbers of solutions of the equation 

∣ 𝒙 ∣= 𝐜𝐨𝐬 𝒙 is  

(a) 1                                 (b) 2                                   

(c) 3                                      (d) 

none 

Solution: (b) Two graphs below intersect at 

two points only.  

 

6. The equation (𝒙 − 𝒂)𝟑 + (𝒙 − 𝒃)𝟑 +

(𝒙 − 𝒄)𝟑 has 

(a) All real roots     (b) one real two 

imaginary roots      (c) three real 

roots        (d) none 

       Solutions:- (b) Differentiating the 

function w.r.t. x, we get 

𝑓′(𝑥) = 3{(𝑥 − 𝑎)2 + (𝑥 − 𝑏)2

+ (𝑥 − 𝑐)2} > 0 ∀ 𝑥 

𝑆𝑜, 𝑓′(𝑥) = 0 has no repeated roots. 

 

7. If √𝒂 + √𝒃  be one of the roots of the 

given equation (a and b are not perfect 

squares) with rational coefficients, then 

lowest degree of such an equation must 

be 

(a) 2                             (b) 3                              

(c) 4                              (d) none. 

Solutions:- (c) Irrational roots occur in pairs. 

If one root is √𝑎 + √𝑏, then the other roots 

are: √𝑎 − √𝑏,−√𝑎 + √𝑏, √𝑎 − √𝑏. 

∴ Number of roots are = 4. 

So, the lowest degree is 4. 

8. If 𝜶𝟏, 𝜶𝟐, … . , 𝜶𝒏 are the roots of the 

equations 𝒙𝒏 − 𝒏𝒂𝒙 − 𝒃 = 𝒄 𝒂𝒏𝒅 𝒕𝒉𝒆𝒏 

 (𝜶𝟏 − 𝜶𝟐)(𝜶𝟏 − 𝜶𝟑)… . (𝜶𝟏 − 𝜶𝒏) 

equals 

(a) nα                   (b) n (𝜶𝟏
𝒏−𝟏 + 𝒂)                          

(c) na. 𝜶𝟏
𝒏−𝟏                         (d) 

none 

Solution:- (b) (𝑥 − 𝛼1)(𝑥 − 𝛼2)… (𝑥 −

𝛼𝑛) =  𝑥
𝑛 − 𝑛𝑎𝑥 − 𝑏 
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Differentiating w. r. t. x,  

(𝑥 − 𝛼2)(𝑥 − 𝛼3)… (𝑥 − 𝛼𝑛) + (𝑥 −

𝛼1)(𝑥 − 𝛼3)… . (𝑥 − 𝛼𝑛) +⋯+ (𝑥 −

𝛼1)(𝑥 − 𝛼2)… (𝑥 − 𝛼𝑛−1) = 𝑛𝑥
𝑛−1 + 𝑛𝑎  

Putting x =  𝛼1, we get _____ 

(𝛼1 − 𝛼2)(𝛼1 − 𝛼3)… (𝛼1 − 𝛼𝑛) =

 𝛼1
𝑛−1. 𝑛 + 𝑛𝑎.  

 

9. Let p, q ∈{1, 2, 3, 4}, the number of 

equations of 𝒑𝒙𝟐 + 𝒒𝒙 + 𝟏 = 𝟎 having 

real roots are 

(a) 7                            (b) 8                            

(c) 9                                  (d) none 

Solutions:-   (a) Δ= 𝑞2 − 4𝑝 ≥ 0 for real 

roots. 

i.e. 𝑞2 ≥ 4𝑝 

Now, if p =1, then 𝑞2 ≥ 4, i.e. q= 2, 3, 4. 

If p = 2, then 𝑞2 ≥ 8, i.e. q = 3, 4. 

If p = 3, then 𝑞2 ≥ 12, q = 4 

If p =4, then 𝑞2 ≥ 16, 𝑖. 𝑒. 𝑞 = 4 

There are 7 such favourable cases. 

 

10. If 0 <a <  b <c and the roots α, β of the 

equation 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = are imaginary, 

then 

(a) ∣α∣ <1                           (b) ∣β∣ <1                           

(c) ∣α∣ = ∣β∣                           (d) 

none 

Solution:- Since roots are imaginary, so Δ= 

𝑏2 − 4𝑎𝑐 < 0 

∴The roots α and β are given by, α= 

−𝑏+𝑖√4𝑎𝑐−𝑏2

2𝑎
 𝑎𝑛𝑑 𝛽 =

−𝑏−𝑖√4𝑎𝑐−𝑏2

2𝑎
. 

And α = β͞, so ∣ α∣  = ∣ β∣ . 

Moreover, ∣ α∣  = √
𝑏2

4𝑎2
+
4𝑎𝑐−𝑏2

4𝑎2
= √

𝑐

𝑎
    ⇒∣

𝛼 ∣> 1 (∵ 𝑐 > 𝑎). 

∴ ∣ α∣  = ∣ β∣  & ∣ α∣  >1. 

 

NUMBER THEORY 

11. The  congruence 35x ≡14 (mod 21) has 

(a) 7 solutions          (b) 6 solutions           

(c) Unique solution            (d) No 

solution 

Solution:- (a) 35x -14 is divisible by 21 

gcd (35, 21) = 7 

and 7 divides 14; hence the given 

congruence has 7 solution. 

 

 

12. The maximum value of f(x) = (𝒙 −

𝟐)𝒏 (𝟑 − 𝒙)𝒏 for a natural number n≥ 1 

and 2 ≤ x ≤ 3 is 

(a) 
𝟏

𝟐𝒏
                                (b) 

𝟏

𝟒𝒏
                                

(c) 
𝟏

𝟖𝒏
                                    (d) 

𝟏

𝟏𝟔𝒏
 

Solution:- (b) [If a + b = λ is given then ab is 

maximum when a = b = 
𝜆

2
.] 
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Here (x -2) + (3- x) = 1 then(x- 2) = ½ = (3- x) 

∴ [𝑓(𝑥)]𝑚𝑎𝑥 = (
1

2
)
𝑛

(
1

2
)
𝑛

= (
1

4
)
𝑛 

. 

13. If a ≡ b (mod n). Prove that gcd(a, n) is 

(a) gcd (b, n)                              (b) b                              

(c) n                                     (d) none 

Solution:- (a) gcd (a, n) = d 

⤇d ∣ a, d∣ n but n∣  (a-b) 

⤇ d ∣ a –b , d ∣ a 

⤇ d ∣  a –(a –b)= b 

⤇ d ∣ a, d ∣ b. 

Same as gcd (b, n) = d. So, gcd (a, n) = gcd 

(b, n). 

14. The highest power of 3 contained in 

1000! Is 

(a) 493                              (b) 494                               

(c) 495                                      (d) 

496 

Solution:- (d) P= 3, n = 1000. 

The highest power of 3 contained in n! Is 

given by  

𝑘(𝑛!) = [
𝑛

𝑝
] + [

𝑛

𝑃2
] + [

𝑛

𝑃3
] + ⋯ 

𝑆𝑜, 𝐴𝑛𝑠 = [
1000

3
] + [

1000

9
] + [

1000

33
]

+ [
1000

34
] + [

1000

35
]

+ [
1000

36
] 

= 496. 

15. The sum if the series  
𝟏

𝟓.𝟔
+

𝟏

𝟔.𝟕
+⋯+

𝟏

𝟏𝟎𝟒.𝟏𝟎𝟓
   is 

(a) 
𝟐𝟐

𝟐𝟏
                                      (b) 

𝟐𝟎

𝟐𝟏
                                      

(c) 1                                       (d) None 

Solution:- (b) 
1

5.6
+

1

6.7
+⋯+

1

104.105
 =

(
1

5
−
1

6
) + (

1

6
−
1

7
) + ⋯+ (

1

104
−

1

105
) =

1

5
−

1

105
 =

20

21
. 

16. The sum of the series  
𝟏

𝟏+√𝟐
+

𝟏

√𝟐+√𝟑
+

𝟏

√𝟑+√𝟒
+⋯+

𝟏

√𝟗𝟗+√𝟏𝟎𝟎
 is 

 

(a) 1                                    (b) 9                                   

(c) 10                                       (d) None 

Solution:- (b) S = 
1−√2

1−2
+
√2−√3

2−3
+
√3−√4

3−4
+

⋯+
√99−√100

99−100
= −1 + 10 = 9. 

17. The last digit of 𝟒𝟑𝟏𝟕 is 

(a) 3                                 (b) 7                                

(c) 1                                      (d) 

None 

Solution:- (a) 43 ≡ 3 (mod 10) 

(43)17 ≡ 317(mod 10) ;  

i.e. last digit of 4317 is the last digit of 317 . 

Now, 34 ≡ 1 (𝑚𝑜𝑑 10) 

(34)4 ≡ 1 (𝑚𝑜𝑑 10) 

So, the last is 3. 

18. The remainder when (𝟐𝟐𝟐𝟐)𝟓𝟓𝟓𝟓 is 

divisible by 7 is 

(a) 3                                (b) 5                                  

(c) 7                                       (d) 9 
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Solution:- (b) 2222 ≡ 3 mod 7 

(2222)3≡ 27 mod 7 

(2222)3≡ (-1) mod 7 

(2222)5553 ≡ (−1)1851 mod 7 

(2222)2 ≡ 9 mod 7 

(2222)5553 ≡ −9 mod 7− 9  ≡ 5 mod 7. 

19. The unit digit of  (𝟐𝟑𝟑𝟕)𝟐𝟑𝟑𝟕 is 

(a) 3                                     (b) 5                                         

(c) 7                                          (d) 9 

Solution:- (c) Last digits 

(2337)1 ≡ 7 (𝑚𝑜𝑑 10) 

(2337)2 ≡ 9 (𝑚𝑜𝑑 10) 

(2337)3  ≡ 3 (𝑚𝑜𝑑 10) 

(2337)4 ≡ 1 (𝑚𝑜𝑑 10) 

(2337)5  ≡ 5 (𝑚𝑜𝑑 10) 

2337 ≡ 1 (mod 4) 

((2337)584)4. 2337 ≡ 7(𝑚𝑜𝑑 10) 

Unit digit is 7. 

20. The least positive residue in 𝟐𝟒𝟏(mod 23) 

is 

(a) 3                                 (b) 5                             

(c) 7                                   (d) 9 

Solution:- If a ≡ b (mod m) then b is said to 

be the residue of a modulo m. 

If a ≡ b (mod m) then  𝑎𝑛  ≡ 𝑏𝑛∀ 𝑛 ∈ 𝐼+. 

But the 23 is a prime & 2 is a prime to 23. 

By Fermat’s theorem, 222 ≡ 1 (𝑚𝑜𝑑 23) 

244 ≡ 1 (𝑚𝑜𝑑 23) 

244 ≡ 24 (𝑚𝑜𝑑 23) 

241. 8 ≡ 3 × 8 (𝑚𝑜𝑑 23) 

241 ≡ 3 (𝑚𝑜𝑑 23) 

So, the least positive residue is 3. 

21. The remainder when 4(29)! +5! Is 

divisible by 31 is 

(a) 3                               (b) 5                                

(c) 7                                      (d) 

None 

Solution :-(d) Wilson’s theorem states that “ 

If p is a prime then (p -1)!+ 1 ≡ 0(mod p). 

The converse of this theorem is also true. 

So, by Wilson’s theorem,  

(30)! +1 ≡ 0 (mod 31), since 31 is prime. 

(31 -1)(29)! +1 ≡ 0 (mod 31) 

⇨-29! +1 ≡ 0(mod 31) 

⤇ 29! -1 ≡ 0 (mod 31) 

⤇   4(29)! -4≡ 0 (mod 31) 

⤇   4(29)! -4 +124 ≡ 0 (mod 31) 

⤇   4(29)! +120 ≡ 0 (mod 31) 

⤇   4(29)! +5! ≡ 0(mod 31) 

 

22. The smallest positive integer that has 

remainder 4, 3 and 1 when divided by 5, 

7, and 9, respectively, is 

(a) 211                                  (b) 201                               

(c) 199                                 (d) 189 
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Solution:- X ≡ 4 (mod 5) 

X ≡ 3 (mod 7) 

X ≡ 1 (mod 9) 

Let X = 4 +5t, t ∈Z 

So, 4 + 5t ≡ 3 (mod 7) ⇨   5t +1 ≡ 0 (mod 7) 

Let, t = 4 + 7u, u ∈ℤ 

So, X = 4 +5 (4+ 7u) = 24+ 35u. 

24 +35u ≡ 1(mod 9)  ⤇   35u + 23 ≡ 0 (mod 9)  

⤇   36u –u ≡ -23 (mod 9)  ⤇ - u ≡ -23 (mod 9) 

⤇   23 –u ≡ 0 (mod 9) 

∴ u = 5 +9v (let), v ∈ ℤ 

∴ X = 24 + 35 (5+ 9v) = 199+ 315v. 

So, the smallest positive solution is 199. 

 

23. The last digit of  𝟑𝟖𝟎 is 

(a) 3                                          (b) 9                                       

(c) 7                                         (d) 1 

Solution:- (d) 31 ≡ 3 (𝑚𝑜𝑑 10) 

32  ≡ 9 (𝑚𝑜𝑑 10) 

33 ≡ 7 (mod 10) 

34 ≡ 1 (mod 10) 

35 ≡ 3 (mod 10) 

380=(316)5 = (33×5. 3)5 = (325)3. 35 ≡

 33. 3  (𝑚𝑜𝑑 10) ≡ 1 (mod 10) 

More explicitly, we can write :- 

Ends in 9 : 310, 330, 350, 370, 390, …. ;    

Ends in 1 : 320, 340, 360, 380, 3100, ….. 

24. The last digit of 𝟗𝟗
𝟗
 is 

(a) 1     (b) 7      (c) 9          (d) none 

Solution:- The last digit of 93 is 9. 

The last digit of 99 is 9. 

Thus, the last digit of 99
9
 is 9. 

 

LINEAR ALGEBRA 

25. Which of the following sets is not LIN? 

(a) {𝟏, 𝑿, 𝟏 + 𝑿 + 𝑿𝟐} in a vector space 

of all polynomials over the field of 

real numbers. 

(b) {𝟏, 𝑿, 𝑿𝟐, … } in a vector space of all 

polynomials over the field of real 

numbers. 

(c) {(𝟏, 𝟏, 𝟎, 𝟎), (𝟎, 𝟏, −𝟏, 𝟎), (𝟎, 𝟎, 𝟎, 𝟑)} 

in 𝑽𝟒(𝑹). 

(d) {(𝟏, 𝟐, 𝟏), (𝟑, 𝟏, 𝟓), (𝟑,−𝟒, 𝟕)} in 

𝑽𝟑(𝑹). 

Solution:- (a) Let a, b, c be scalars such that 

a(1) + bX +c (1 + 𝑋 + 𝑋2) = 0  ⇒  (a+ c) + (b 

+c)X + c𝑋2= 0  ⇒  a+ c = 0, b+ c = 0, c = 0 

⇒  a = 0, b = 0, c = 0. 

∴ The vectors 1, X, 1 + 𝑋 + 𝑋2are LIN over 

the field of real no’s.  

(𝑏)𝑎01 + 𝑎1𝑋 + 𝑎2𝑋
2 +⋯ = 0 

By definition of equality of two polynomials 

𝑎0 = 𝑎1 = 𝑎2 = ⋯ = 0 
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∴ The vectors are LIN. 

(c)  a(1,1, 0, 0) + b(0, I, -1, 0) + c(0, 0, 0, 3) = 

0 

⇒   {

𝑎 = 0
𝑎 + 𝑏 = 0
−𝑏 = 0
3𝑐 = 0

 ⇒ 𝑎 = 𝑏 = 𝑐 = 0 is the 

only solution. 

∴The vectors are LIN. 

(𝑑)│
1 3 3
2 1 −4
1 5 7

│ = 0 ⇒ rank (A) <3  ⇒ the 

set of vectors are linearly dependent. 

26. The eigenvalue of  𝑨𝟒, where A = 

(
𝟏 𝟎 −𝟏
𝟗 𝟒 𝟏
𝟑 𝟏 𝟏

), is 

(a) 3, 4, 5,    (b) 1, 2, 3,    (c) 5, 6, 7,     (d) 

none 

Solution:-  (d) ∣ A –λI∣  = 0 

⇒  𝑑𝑒𝑡 [
1 − 𝜆 0 −1
9 4 − 𝜆 1
3 1 1 − 𝜆

] = 0 ⇒

(1 − 𝜆)(2 − 𝜆)(3 − 𝜆) = 0 ⇒ 𝜆 = 1, 2, 3  

∴For the matrix 𝐴4, the eigen values 

are: (1)4 = 1, (2)4 = 16, (3)4 = 81. 

27. Let, 𝑴𝟐×𝟐(𝑹) be the vector space of all 

2× 𝟐 matrices over R and 

Let 𝒘𝟏 = {[
𝒙 𝒚
𝟎 𝒙

] : 𝒙, 𝒚, ∈ ℝ}  & 𝒘𝟐 =

{[
𝒙 𝒚
𝒛 𝟎

] ∶ 𝒙, 𝒚, 𝒛 ∈ ℝ} then dim (𝒘𝟏 ∩

𝒘𝟐) is 

(a) 2                           (b) 3                               

(c) 4                               (d) 1 

Solution:- (d) 𝑤1 ∩ 𝑤2 = {[
𝑥 𝑦
0 0

] ∶ 𝑥, 𝑦 ∈

ℝ};   dim (𝑤1 ∩ 𝑤2) = 1. 

28. Let T:𝑹𝒏 ⟶> 𝑹𝒎, m >n, be a linear 

transformation. 

Consider the following statements about T: 

(i)T can be one to one (ii) T can onto (iii) dim 

(T(𝑹𝒏))≥ n 

(A) Only (i) is true     (B) only (ii) is false       

(C) only (ii) is true      (D) only (iii) is 

true 

Solution:-  (B) T:𝑅𝑛 ⟶> 𝑅𝑚, m >n. 

i.e. no. Of elements in domain < no. of 

elements in range. 

i.e. T can be one to one is true statement. 

But T can be onto is false as m > n. 

dim(T(𝑅𝑛))≥ n is also a true statement as n < 

m. 

 

29. If A = [
𝒂 −𝒃
𝒃 𝒂

] ∈ 𝒌𝟐×𝟐, 𝒃 ≠ 𝟎 then A 

has eigen values if k is 

(A) R                                (B) C                                 

(C) Q                                       (D) All 

above 

Solution:- (D) Ch. Equation ∣ A- λI∣  = 0 

⇒    [
𝑎 − 𝜆 −𝑏
𝑏 𝑎 − 𝜆

] = 0 

⇒ 𝜆2 − 2𝑎𝜆 + (𝑎2 + 𝑏2) = 0 
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⇒ 𝜆 =
2𝑎 ± √4𝑎2 − 4(𝑎2 + 𝑏2)

2
= 𝑎 ± 𝑏 

Hence the eigenvalues of A be a + b and a – 

b. 

Then A has eigenvalues when k = R, C, Q 

 

30. The no. of solution of the system of 

equation 

2x +y –z = 7 

X -3y +2z = 1 

X +4y -3z = 5 

(a) Unique solution        (b) no solution         

(c) many solution          (d) exactly two 

solution 

Solution:- (b) (
2 1 −1
1 −3 2
1 4 −3

)(
𝑥
𝑦
𝑧
) =  (

7
1
5
) 

⇒ 𝐴𝑋˷ = 𝑏˷ 

[
2 1 −1
1 −3 2
1 4 −3

]~ [
2 1 −1
−1 −4 3
1 4 −3

] ~ [
2 1 −1
1 4 −3
0 0 0

] 

Rank (A) = 2 

[
2 1 −1
1 −3 2
1 4 −3

: 7
: 1
: 5

] = [
2 1 −1
−1 −4 3
1 4 −3

: 7
:−6
: 5

]

=  [
2 1 −1
−1 −4 3
0 0 0

  
: +7
:−6
:−1

] 

Rank (A ⋮  b) = 3  

∴ rank (A) ≠ rank (A ⋮  b) 

The system has no solution. 

31. The equations have:  

x –y +2z =4 

3x +y +4z = 6 

x +y +z = 1 

 

(a) Unique solution         (b) infinite 

solution           (c) no solution          

(d) none of these 

Solution:-  (b) A = [
1 −1 2
3 1 4
1 1 1

|
4
6
1
]  ∼

 [
1 −1 2
0 4 −2
0 0 0

|
4
−6
0
] 

∴ rank (A ⋮  B) = 2 = rank (A) < 3  

∴ the given system of equations are 

consistent & have infinite number of 

solutions. 

32. If the matrix A = [
𝟏 −𝟏
−𝟏 𝟏

], then find 

the matrix 𝑨𝒏+𝟏 

(a) 2𝑨𝒏                        (b) 𝟐𝒏𝑨                         

(c) 𝟐𝒏−𝟏𝑨                            (d) A 

Solution:- (b)  ∣A- λI∣  = 0 

⇒    [
1 − 𝜆 −1
−1 1 − 𝜆

] = 0 ⇒ 𝜆2 − 2𝜆 = 0 

So 𝐴2 −  2𝐴 = 0 

⇒  𝐴3 = 2𝐴2 = 4𝐴 

∴  𝐴𝑛+1 = 2𝑛𝐴 

33. The following system of linear equation is 

constant if α, β don’t equal to 

x +3y +z = 3 

2x +3y +5z = 4 

4x +9y +αz = β 
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(a)  (1, 3)                          (b) (5, 10)                         

(c) (7, 10)                            (d) None 

Solution:- (c) Given system of equation can 

be expressed as AX = B 

Argumented matrix [A ∣  B] = 

[
1 3 1
2 3 5
4 9 𝛼

|
3
4
𝛽
]  ∼

 [
1 3 1
0 −3 3
0 −3 𝛼 − 4

|
3
−2

𝛽 − 12
] 𝑅2⟷𝑅2−2𝑅
𝑅3⟷𝑅3−4𝑅

  

∼ [
1 3 1
0 −3 3
0 0 𝛼 − 7

|
3
−2

𝛽 − 10
] 𝑅3⟷𝑅3 − 𝑅2 

Given system of linear equation be constant  

i.e. rank (A) = rank (A∣ B) = 3 

i.e. α -7 ≠ 0 ,  β -10 ≠ 0 

⇒   α ≠ 7 &  β ≠ 10 

34.  Let x & y in 𝑹𝒏 be non zero row vectors 

from the matrix A = x𝒚𝑻, wherer 𝒚𝑻 

denote the transpose of y. Then the rank 

of A is 

(a) 0 or 1                      (b) 2                         

(3) at least n/2                         (d) 

none 

Solution:- (a) A = x𝑦𝑇 

Then A is a matrix of order 1× 1. 

If A is non -zero then rank (A) = 1 

If A i zero mtx. Then rank (A) = 0. 

35. Which of the following is false? 

(a) The eigenvalues of Hermition 

matrix are real. 

(b) The eigenvalues of real symmetric 

matrix are real. 

(c) The eigenvalues of skew 

Hermition matrix are real. 

(d) The eigenvalues of unitary matrix 

may be real. 

Solution:- (c) As the eigenvalues of skew-

Hermition matrix are either pure imaginary 

or zero. 

36. Let 𝑴𝒏(𝑹) be the set of n×m matrices 

with real entries, if all A ∈ 𝑴𝒏(𝑹) have 

both negative and positive eigen values 

then the set is having 

(a) Positive semi definite matrices 

only 

(b) Positive & negative semi definite 

matrices 

(c) Negative definite matrices only 

(d) Indefinite matrices 

Solution:-  (d) A positive and positive semi 

definite matrices have positive eigenvalues 

only. 

Negative definite matrices have negative 

eigenvalues only. 

But indefinite matrices have both positive 

and negative eigenvalues. 

37. Which of the following is true? 

(a) The matrix [
𝟐 𝟐
𝟏 𝟐

] is diagonalisable 

(b) The matrix [
𝟏 𝟎
𝟏 𝟓

] is diagonalisable 

(c) The matrix [
𝟐 𝟏
𝟎 𝟓

] is diagonalisable 

(d) The matrix[
𝟓 𝟎
𝟏 𝟏

] is not 

diagonalisable 



Solving Mathematical Problems 

 

133 
 

Solution:- (b) We know that any matrix (2 

×2) is said to be diagonalisable if it has two 

different eigen values. 

[
1 0
1 5

] is lower triangular matrix, its 

diagonal entries are its eigen values since 

they are distinct . 

⇒  the matrix is said to be diagonalisable. 

38. If V is vector space on the field ℤ / 3ℤ and  

𝒅𝒊𝒎 ℤ

𝟑ℤ

(𝑽) = 𝟑 then V has 

(a) 27 elements                 (b) 9 elements                

(c) 30 elements               (d) 15 

elements  

Solution:- (a) since, dim V = 3 and ℤ / 3ℤ = 

{0, 1, 2} 

So, they are 33 elements in V which can be 

expressed as the linear combination of 

elements of basis. 

39. If V is a vector space over the field ℤ /7ℤ  

and 𝒅𝒊𝒎 ℤ

𝟕ℤ

(𝒀) = 𝟐 then V has 

(a) 49 elements                 (b) 14 elements                 

(c) 128 elements                (d) None 

Solution:- (a) Since, dim V = 2 and ℤ /7ℤ = 

{0, 1, 2, 3, 4, 5, 6} 

So, there may be 72 elements which can be 

expressed which can be expressed as the 

linear combination of elements of basis & 

their coefficient could only be {0, 1, 2, 3, 4, 

5, 6}. 

40. If V is the real vector space of all mapping 

from ℝ to ℝ, 𝑽𝟏 =

{𝒇 ∈ 𝑽 ∣∣ 𝒇(−𝑿) = 𝒇(𝑿) }𝒂𝒏𝒅 𝑽𝟐 =

{𝒇 ∈ 𝑽 ∣ 𝒇(−𝑿) = −𝒇(𝑿)}, 

(A) Neither 𝑽𝟏  nor 𝑽𝟐 is a subspace 

of V. 

(B) 𝑽𝟏 is a subspace of V, but not 𝑽𝟐. 

(C) 𝑽𝟐 is a subspace of V, but not 𝑽𝟐. 

(D) 𝑩𝒐𝒕𝒉 𝑽𝟏, 𝑽𝟐 are subspaces of V. 

Solution:- (D) The necessary and sufficient 

condition for a non-empty subset W of a 

vector space V(F) to be subspace of V is 

a, b 𝜖 F and for all α, β ∈ W ⇒   aα + bβ ∈W  

λa ∈ W 

Hence both 𝑉1, 𝑉2 satisfied these conditions. 

41. Let P be an n × m idempotent matrix, i.e. 

𝑷𝟐 = 𝑷. Which of the following is FALSE? 

(a) 𝑷𝑻 is idempotent. 

(b) The possible eigenvalues of P can be 

zero. 

(c) The non-diagonal entries of P can be 

zero. 

(d) There may be infinite no. of n× m 

non- singular matrices that one 

idempotent. 

Solution:- (d) Given P be an n × m 

idempotent matrix s. t 𝑃2 = 𝑃 

If P is idempotent then 𝑃𝑇 is also 

idempotent P (P –I) = 0 

⇒  the possible eigenvalues of P are 0 and 1. 

⇒  non-diagonal entries of P can be zero. 

So, (d) is false. 
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42. If A is a 3 ×3 non-zero matrix such that 

𝑨𝟐= 0, then the number of non-zero 

eigen values of A is  

(a) 0                                       (b) 1                                       

(c) 2                                      (d) 3 

Solution:- (a) 𝐴2 = 0 

A is nilpotent matrix, so all of its eigenvalues 

will be zero. 

43. Let T : ℝ𝟑⟶ℝ𝟐 be a linear 

transformation defined by T (x, y, z) =  (x 

+) 

(a) 0                            (b) 1                             

(c) 2                                      (d) 3 

Solution:- (b) T(x, y, z) = (x +y, x –z) Now, (x 

+y, x –z) = (0, 0) 

⇒  (x +y) = 0; (x –z) = 0 ⇒ x = -y = z 

⇒  N(T) = (a, -a, a) │a∈ R𝜁 

i.e. nullity = 1. 

 

ABSTRACT ALGEBRA 

44. Let G be the set of cube roots of unity. 

Then under multiplication of complex 

numbers 

(a) G is a group of finite order 

(b) G is an abelian group 

(c) G is a cyclic group 

(d) None of the above. 

Solution:-  

(c) Here G = {1, W, 𝑊2} 

So, G is an abelian cyclic group of order 3, 

since  

 1                     w                  𝑤2 

1 

W                             

𝑤2  

1                       w                𝑤2 

w                       𝑤2               1 

𝑤2                      1                  w 

 

45. The irreducible polynomials in C[X] are 

the polynomials of degree 

(a) 0                                    (b) 1                                  

(c) 2                                       

(d)None 

Solution:- (b) The polynomials of degree 

0 are the invertible element of  C[X]. 

By the fundamental theorem of algebra, 

any polynomial of positive degree has a 

root in C and hence a linear factor. 

Therefore, any polynomial of degree 

greater than 1 are reducible and those of 

degree 1 are irreducible. 

46. Which of the following statement is 

false : 

(a) The polynomial 𝑿𝟑 − 𝑿+ 𝟏 is 

irreducible in ℤ / 2ℤ [X] 

(b) The polynomial 𝑿𝟐 − 𝟑 is 

irreducible in Q[X]. 

(c) The polynomial 𝑿𝟐 + 𝟏 is 

irreducible in ℤ / 5ℤ [X]. 

(d) The polynomial 𝑿𝟐 + 𝟏 is 

irreducible in ℤ/7ℤ [X]. 

Solution:- (c) The polynomial 𝑋2 + 1 is 

reducible in ℤ/5ℤ[X]. 

As ℤ5 = {0, 1, 2, 3, 4}𝑎𝑛𝑑 𝑓(𝑥) =  𝑥
2 + 1. 

f(3) = 10 ≡ 0 (mod 5) 
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⟾ 𝑋2 + 1 is reducible in ℤ /5ℤ[X]. 

47. Let f : G ⟶ H be a group 

homomorphism from a group G into a 

group H with kernel K. If O(G) = 75, 

O(H) = 45, O(K) = 15. Then the order 

of the image f(G) is : 

(a) 3                             (b)5                             

(c) 15                               (d) 45 

Solution:- (b) f(G) ≅ 
𝐺

𝐾
. 

O{f(G)} = O(
𝐺

𝐾
) =

𝑂(𝐺)

𝑂(𝐾)
=
75

15
= 5. 

48. Which of the following is a cyclic 

group? 

(i) ℤ𝟏𝟐 × ℤ𝟗                (ii) ℤ𝟏𝟎 ×

ℤ𝟖𝟓                  (iii) ℤ𝟐𝟐 ×

 ℤ𝟐𝟏 × ℤ𝟔𝟓            (iv) None 

Solution:- (iii) Any group ℤ𝑝 × ℤ𝑟 is said 

to be cyclic if the greatest common divisor 

(GCD) of p and r is equal to 1. Similarly, 

for  ℤ𝑝 × ℤ𝑞 × ℤ𝑟  is called cyclic if GCD 

between any two is equal to one. 

(i) GCD of (12, 9) = 3 

(ii) GCD of (10, 85) = 5 

(iii) GCD of (22, 21) & (21, 65) & 

(22, 65) = 1. 

⟾ℤ22 × ℤ21 × ℤ65 is a cyclic group. 

49. Factor P(X) = 2𝑿𝟑 + 𝟑𝑿𝟐 − 𝟏 in Q[X] 

(i) (𝑿 − 𝟏)𝟐(𝟐𝑿 + 𝟏)    (ii) (𝑿 +

𝟏)𝟐(𝟐𝑿 − 𝟏)   (iii) (𝑿 −

𝟏)𝟐(𝟐𝑿 − 𝟏)   (iv) (𝑿 +

𝟏)𝟐(𝟐𝑿 + 𝟏) 

Solution:- (ii)  

 

 

X -1 0 ½  1 2 

P(X) 0 -1 0 4 27 

 

∴ P(X) = (𝑋 + 1)2(2𝑋 − 1). 

50. Any group of 2p, where p is a prime 

number has a normal subgroup of order 

p, then the index of subgroup H in G is 

(a) P                                 (b) 2                                   

(c) 
𝑷𝟐

𝟐
                                      (d) 

none 

Solution:- (b) Given that O(G) = 2p. 

Since p is prime, and  

By Cauchy’s theorem, G has an element of 

order p then the cyclic group, H = {a, 

𝑎2, … . , 𝑎𝑃}is a subgroup  of order p. 

∴ The index of H in G is = 
𝑂(𝐺)

𝑂(𝐻)
=
2𝑝

𝑝
= 2. 

51. If 1, ℤ𝟏, ℤ𝟐, … , ℤ𝟏𝟏 are the 12 roots of 

unity forming the cyclic group under 

multiplication. Then  ℤ𝟗 generates a 

cyclic sub group of the above containing: 

(a) 12 elements                    (b) 9 

elements                     (c) 8 

elements                      (d) none 
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Solution:-  (d) The integral divisors of 9 are 

1, 3, 9. 

∴ All the elements of order 1, 3, 9 will give 

subgroups. 

So, {ℤ9} has the subgroups {e}, (ℤ1), (ℤ3), 

(ℤ9). 

So there is 4 elements. 

52. The n equal rotations of a regular 

polygon of n sides 

(a) From an abelian but not cyclic 

group 

(b) From a cyclic group 

(c) Don’t from a cyclic group 

(d) From non-abelian non-cyclic 

group. 

Solution:- (b) The rotations are the 

generators of the group G. 

Hence, G must be a cyclic group. 

53. Let G = {z ∈ c : ∣ z∣  = 1}, then under 

multiplication of complex numbers  

(a) G is a group of order (finite)    

(b)  G is a group of infinite 

(c) G is a cyclic group 

(d) None of the above. 

Solution:- (c) Let G ={z ∈ c : ∣ z∣  = 1} and 

𝑧1𝑧2 ∈ 𝐺. 

Then 𝑧1𝑧2∈ G ⟾∣     𝑧1∣  = 1, ∣ 𝑧2∣  = 1.  

⟾∣      𝑧1𝑧2∣  = ∣ 𝑧1∣  ∣ 𝑧2∣  = 1. 

∴ G is closed for multiplication. 

And ∃ inverse of every element in G. Hence, 

G is multiplicative group. 

REAL ANALYSIS 

54. If f and F be both continuous in [a, b] and  

are derivable in (a, b) and F’(x) = f’(x) ∀ x 

in (a, b) then f(x) and F(x) differ b 

(A) 1 in [a, b]                (B) x in [a, b]                   

(C)constant in [a, b]               (D) 

none 

Solution:- (c) Since they are continuous 

f’(x) = F’(x) 

Let 𝜙(x)= f(x) – F(x) 

⇒ 𝜙’(x) = f’(x)-F’(x)= 0 i.e. 𝜙 (x) = 

constant. 

55. Let 𝒇𝑿(𝒙) =  𝒏 𝒔𝒊𝒏
𝟐𝒏+𝟏 𝒙 𝐜𝐨𝐬 𝒙, then 

the value of 𝐋𝐭
𝒏→∞

∫ 𝒇𝒏(𝒙)
𝒏

𝟐
𝟎

𝒅𝒙 −

 ∫ 𝐋𝐭
𝒏→∞

 
𝝅/𝟐

𝟎
(𝒇𝒏(𝒙))𝒅𝒙 is 

(a) ½                                  (b) 0                             

(c) -½                            (d) -∞ 

Solution:- (d) Value = 

Lt
𝑛→∞

[
𝑛⎾(

2𝑛+1+1

2
)⎾ (

1+1

2
)

2 ⎾ (
2𝑛+1+1+2

2
)
] −

 ∫ Lt
𝑛→∞

 
𝜋/2

0
 𝑛𝑠𝑖𝑛2𝑛+1 𝑥 cos 𝑥 𝑑𝑥 

                                   = Lt
𝑛→∞

𝑛

2

⎾𝑛+1

⎾𝑛+2
−

 ∫ ∞ 
𝜋/2

0
= Lt
𝑛→∞

𝑛

2

1

𝑛+1
−∞ = −∞ . 

56. If {𝒔𝒏} be a convergent sequence of 

positive numbers ∋ 𝒔𝒏 =
𝟏

𝟐
(𝒔𝒏−𝟏 +

𝒔𝒏−𝟐)∀𝒏 ≥ 𝟐 then 𝐋𝐭
𝒏→∞

 𝒔𝒏 = ? 

(a) 
𝟏

𝟑
(𝒔𝟐 + 𝒔𝟑)                   (b) 

𝟏

𝟑
(𝒔𝟑 +

𝟏

𝟐
𝒔𝟏)                     (c) 

𝟏

𝟑
(𝒔𝟏 +

𝟐𝒔𝟐)                 (d) None 
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Solution:- (c) Let Lt
𝑛→∞

 𝑠𝑛 = 𝑙 

𝑠𝑛 =
1

2
(𝑠𝑛−1 + 𝑠𝑛−2) 

𝑠3 =
1

2
(𝑠2 + 𝑠1) 

𝑠4 =
1

2
(𝑠3 + 𝑠2) 

𝑠𝑘−1 =
1

2
(𝑠𝑘−2 + 𝑠𝑘−3)  

𝑠𝑘 =
1

2
(𝑠𝑘−1 + 𝑠𝑘−2) 

Adding all these, 𝑠𝑘 +
1

2
𝑠𝑘−1 =

1

2
(𝑠1 + 2𝑠2) 

⇒    𝑙 +
1

2
𝑙 =

1

2
(𝑠1 + 2𝑠2) 

⇒   𝑙 =
1

3
(𝑠1 + 2𝑠2)  

57. For every function f : [0, 1] ⟶ℝ, which is 

twice differentiable and satisfies f’ (x) ≥1 

∀ x ∈ [0, 1], we must have  

(a) f’’(x) ≥ 0∀ x∈[0, 1 

(b) f(x) ≥ x ∀ x ∈ [0, 1] 

(c) f(𝒙𝟐) − 𝒙𝟐 ≤ 𝒇(𝒙𝟏) −

𝒙𝟏 ∀ 𝒙𝟏, 𝒙𝟐  ∈ [𝟎, 𝟏]𝒘𝒊𝒕𝒉 𝒙𝟐 ≥

𝒙𝟏 

(d) f(𝒙𝟐) -𝒙𝟐  ≥ 𝒇(𝒙𝟏) −

𝒙𝟏 ∀ 𝒙𝟏, 𝒙𝟐  ∈ [𝟎, 𝟏] with 𝒙𝟐 ≥

 𝒙𝟏 

Solution:- (d) Taylor’s formula gives 

f(𝑥2)- f(𝑥1) > (𝑥2 −

𝑥1)𝑓
′ (
𝑥1+𝑥2

2
)∀ 𝑥1, 𝑥2 ∈

[0, 1] 𝑤𝑖𝑡ℎ 𝑥2 > 𝑥1 

if 𝑥2 > 𝑥1, then 𝑓′ (
𝑥1+𝑥2

2
) =

𝑓′(𝑥1) ≥ 1 ∀𝑥1  ∈ [0, 1] 

𝑓(𝑥2) − 𝑓(𝑥1) > (𝑥2 − 𝑥1)𝑓
′(𝑥1)

≥ (𝑥2 − 𝑥1)∀𝑥2  

≥ 𝑥1 ∀ 𝑥1 , 𝑥2 ∈ [0, 1] 

⇒ 𝑓(𝑥2) − 𝑥2 ≥ 𝑓(𝑥1) − 𝑥1. 

 

58. A function f is defined as {0, 1}, by f(x) = 
𝟏

𝒙
 ∀ 

𝟏

𝒙
> 𝒙 >

𝟏

𝒏+𝟏
 for all n = 1, 2, 3, .... if 

given that f ∈ R {0, 1} then evaluate 

∫ 𝒇(𝒙)
𝟏

𝟎
 𝒅𝒙  

(𝑨)
𝝅𝟐

𝟔
                                 (B)  

𝝅𝟐

𝟔
+ 𝟏                            

(C)  
𝝅𝟐

𝟔
− 𝟏                          (D) none 

Solution:- (C) ∫ 𝑓(𝑥)
1

0
 𝑑𝑥 =

 Lt
𝑛→∞

 ∑
1

𝑟

𝑛
𝑟=1 {

1

𝑟
−

1

𝑟+1
} 

= Lt
𝑛→∞

 {(1 −
1

2
) +

1

2
(
1

2
−
1

3
) +⋯

+
1

𝑛
(
1

𝑛
−

1

𝑛 + 1
)} 

= Lt
𝑛→∞

 {(1 +
1

22
+⋯+

1

𝑛2
)

− (1 −
1

𝑛 + 1
)} 

=
𝜋2

6
− 1. 

59. Let f be a differentiable function defined 

on [0, 1], 

 k ∈ (0, 1) ∋ f(x) < f(k) = f(0) ∀ x ∈ [0, 

1], x ≠ k, then 

(a) f’(k) = 0 and f’ (0)= 0                                                                         

(b) f’(k) = 0 and f(0) = 0   
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(c) f’(k) = 0 and f’(0) ≤ 0                                                                           

(d) f’(k) > 0 and f’(0) ≤ 0. 

Solution:- (c) f(k) = f(0) is maximum of f in [0, 

1] 

∴ f’(k) = 0 

f’(0)= Lt
ℎ→0

𝑓(ℎ)−𝑓(0)

ℎ
 

Since f(h) < f(0) ∀ h ∈ [0, 1] 

⇒   f(h) –f(0)  < 0 

⇒   
𝑓(ℎ)−𝑓(0)

ℎ
< 0   [∵ ℎ > 0] 

i.e. f’(0) ≤ 0. 

60. Let {𝒂𝒏} 𝒂𝒏𝒅 {𝒃𝒏} be sequence of real 

nos. Defined as 𝒂𝟏 = 𝟏 𝒂𝒏𝒅 𝒇𝒐𝒓 𝒏 ≥

𝟏, 𝒂𝒏+𝟏 = 𝒂𝒏 + (−𝟏)
𝒏𝟐𝒏, 𝒃𝒏 =

𝟐𝒂𝒏+𝟏−𝒂𝒏

𝒂𝒏
  then  

(a) {𝒂𝒏} converges to zero and {𝒃𝒏} is a 

Cauchy sequence 

(b) {𝒂𝒏} converges to non-zero and {𝒃𝒏} is a 

Cauchy sequence. 

Solution :- (b) 𝑎1 = 1 

𝑎2 = 𝑎1 +
(−1)

2
=
1

2
 

𝑎3 = 𝑎2 +
1

22
=
3

4
  [𝑎2 =

1

2
] 

𝑎4 = 𝑎3 −
1

23
=
5

8
    [𝑎3 =

3

4
] 

𝑎5 = 𝑎4 +
1

24
=
11

16
   [𝑎4 =

5

8
] 

                                                          ⁞               ⁞ 

And so on. 

Since 𝑎1, 𝑎3, 𝑎5, … ..  is a decreasing 

sequence and 𝑎2, 𝑎4, 𝑎6, …. is a increasing 

sequence. 

{𝑎𝑛} converges to  
1

3
(𝑎1 + 2𝑎2) =

1

3
(1 +

2

2
) =

2

3
. 

Again, 𝑏𝑛 =
2𝑎𝑛+1−𝑎𝑛

𝑎𝑛
 

𝑏1 = 0 

𝑏2 = 2 

𝑏3 =
2

3
 

𝑏4 =
6

5
 

𝑏5 =
10

11
 

                                                                                ⁞          

⁞ 

And so on. 

𝑏1, 𝑏3, 𝑏5…. are increasing sequence & 

𝑏2, 𝑏4, 𝑏6, …. are decreasing sequence the                             

{𝑏𝑛} converges to limit  

1

3
(𝑏1 + 2𝑏2) =

1

3
(0 + 2.2) = 4 

∴ {𝑏𝑛} is a Cauchy sequence. 

61. On x = c [0, 1] define T: x ⟶ > x by T(f(x)) 

= ∫ 𝒇(𝒕)
𝒙

𝟎
 𝒅𝒕 ∀ f in x then 

a) T is one-one and onto    b) T is 

one- one but not onto   c) T is not 

one-one but onto      d) T is neither 

one-one nor onto. 
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Solution:- (a) T(f(x)) = ∫ 𝑓(𝑡)
𝑥

0
 𝑑𝑡 ∀ f in x 

⇒   Let 𝑥1, 𝑥2  ∈ 𝑋 

S.t., T(f(𝑥1)) = T (f(𝑥2)) 

⇒  ∫ 𝑓(𝑡)
𝑥1

0
𝑑𝑡 =  ∫ 𝑓(𝑡)

𝑥2

0
𝑑𝑡. 

⇒  𝑥1 = 𝑥2 

i.e. T is one-one 

for each T(f(x)) , ∃ only one x ∈ X,  

S.t, T(f(x)) = ∫ 𝑓(𝑡)
𝑥

0
 𝑑𝑡 

⇒ T is onto. 

62. Evaluate  ∫ 𝒇(𝒙)
𝟓

𝟎
𝒅𝒙, 𝒊𝒇 𝒇(𝒙) =

 {

𝟎, 𝒊𝒇 𝟎 ≤ 𝒙 ≤ 𝟏

𝟏, {𝟏 ≤ 𝒙 < 𝟐} ∪ {𝟑 ≤ 𝒙 < 𝟒}

𝟐, {𝟐 ≤ 𝒙 < 𝟑} ∪ {𝟒 ≤ 𝒙 < 𝟓}
 

By using Riemann & Lebesgue definition of 

the integral 

a) R ∫ 𝒇(𝒙)
𝟓

𝟎
𝒅𝒙 > 𝑳∫ 𝒇(𝒙)

𝟓

𝟎
𝒅𝒙                                         

b) R∫ 𝒇(𝒙)
𝟓

𝟎
𝒅𝒙 < 𝑳∫ 𝒇(𝒙)

𝟓

𝟎
𝒅𝒙   

c) R∫ 𝒇(𝒙)
𝟓

𝟎
𝒅𝒙 = 𝑳∫ 𝒇(𝒙)

𝟓

𝟎
𝒅𝒙                                      

d) None. 

Solution:- c) Using Riemann definition of the 

integral (where the subdivision is taken of 

the segment [0, 5] by the division points 

𝑥0, 𝑥1, … , 𝑥𝑛 on X-axis) the upper & lower 

Riemann sums tend to the common value. 

0(1- 0) +1 (2- 1) + 2( 3- 2) + 1 (4 -3) +2 (5 -4) 

= 6 

(Since the function is constant an each of 

the subintervals) 

∴ R ∫ 𝑓(𝑥)
5

0
𝑑𝑥= 6. 

Evaluating the Lebergue integral [0, 2+ δ[ , δ 

>0],  

We get 

∴ L∫ 𝑓(𝑥)
5

0
𝑑𝑥 = 6. 

0[1- 0]+ 1 [(2 -1)+ (4 -3)]+ 2[(3- 2) + (5 -4)] = 

6. 

63.  Let f be an one to one function from the 

closed interval [-1, 1] to the set of real 

numbers ℝ, then 

a) f must not be onto 

b) Range of f must contain a rational 

number. 

c) Range of f must contain an 

irrational no. 

d) Range of f must contain both 

rational and irrational nos. 

Solution:- d) y = sin−1 𝑥  (let) 

x ∈ [-1 , 1] 

y ∈ [-
𝜋

2
,
𝜋

2
] 

⇒  range of f must contain both rational and 

irrational nos. f is onto here. 

64. The sequence 

√𝟏𝟏,√𝟏𝟏 + √𝟏𝟏,√𝟏𝟏 + √𝟏𝟏 + √𝟏𝟏,….

converges to 

a) 
𝟏+√𝟒𝟑

𝟐
                        b) 

𝟏+√𝟒𝟓

𝟐
                         

c) 
𝟏+√𝟐𝟑

𝟐
                          d) 

𝟏+√𝟐𝟗

𝟐
 

Solution:- b) 𝑆2 = 2 + 𝑆 ⇒ 𝑆2 − 𝑆 − 11 =

0 ⇒ 𝑆 =
1+√45

2
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65. The sequence 

√𝟐,√𝟐 + √𝟐,√𝟐 + √𝟐 + √𝟐, ..... 

converges to 

a) 2                                   b) 3                                   

c) 
𝟐+√𝟐

𝟑
                                d) 

√𝟑+𝟏

𝟐
 

Solution:- a) 𝑆2 = 2 + 𝑆 ⇒  𝑆2 − 𝑆 − 2 =

0 ⇒ (𝑆 + 1)(𝑆 − 2) = 0 ⇒ 𝑆 = 2. 

66. For x > 0, 𝐋𝐭
𝒙→𝟎

[(𝐬𝐢𝐧 𝒙)
𝟏

𝒙 + (
𝟏

𝒙
)
𝐬𝐢𝐧𝒙

] is 

a) 0                                b) -1                                   

c) 1                                         d) 2 

Solution:- c) L = Lt
𝑥→0
(sin 𝑥)

1

𝑥 + Lt
𝑥→0
 (
1

𝑥
)
sin𝑥

 

= 0 + Lt
𝑥→0
𝑒log(

1
𝑥
)
sin𝑥

    [ Lt
𝑥→0
 (𝑑𝑒𝑐𝑖𝑚𝑎𝑙)) ∞

=  0] 

= 𝑒
Lt
𝑥→0

log(
1
𝑥
)

𝑐𝑜𝑠𝑒𝑐 𝑥
 
 

Applying L’ Hospital’s rule, we get 

L = 𝑒
Lt
𝑥→0

 
𝑥(
−1

𝑥2
)

−𝑐𝑜𝑠𝑒𝑐 𝑥 cot𝑥 = 𝑒
Lt
𝑥→0

sin𝑥

𝑥
.tan𝑥

 

= 𝑒0 = 1.  

 

67. The function f(x) = 
𝐥𝐨𝐠(𝟏+𝒂𝒙)−𝐥𝐨𝐠(𝟏−𝒃𝒙)

𝒙
 is 

not defined at x = 0. The value which 

should be assigned to &  at x = 0, so that 

f(x) is continuous at x = 0, is 

a) a –b                                b) a +b                             

c) 𝐥𝐨𝐠 𝒂 + 𝐥𝐨𝐠𝒃                       d) 

none 

Solution:- b)  

f(0)= Lt
𝑥→0
 𝑓(𝑥) = Lt

𝑥→0

log(1+𝑎𝑥)−log(1−𝑏𝑥)

𝑥
 

= Lt
𝑥→0

𝑎 log(1 + 𝑎𝑥)

𝑎𝑥

+ Lt
𝑥→0

−𝑏 log(1 − 𝑏𝑥)

−𝑏𝑥
 

= 𝑎. 1 + 𝑏. 1 

= 𝑎 + 𝑏. 

68. If a is a real number then 

𝐋𝐭
𝒏→∞

 [
𝟏 𝒂/𝒏

−𝒂/𝒏 𝟏
]
𝒏

 is equal to 

a) 𝑰𝟐×𝟐                             b) 𝑶𝟐×𝟐                          

c) 1’                                d) None. 

Solution:- b) A = [
1 𝑎/𝑛

−𝑎/𝑛 1
] =

1

𝑛
[
𝑛 𝑎
−𝑎 𝑛

] 

Let  n = 𝑟 cos 𝜃 , 𝑎 =  𝑟 sin 𝜃. 

⇒  r = √𝑛2 + 𝑎2 ;  𝜃 =  tan−1 (
𝑎

𝑛
) 

𝐴 =
𝑟

𝑛
[
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]  ⇒ 𝐴𝑛

=
𝑟𝑛

𝑛𝑛
(
cos 𝑛𝜃 sin 𝑛𝜃
− sin 𝑛𝜃 cos 𝑛𝜃

) 

⇒ 𝐴𝑛

= (√1 +
𝑎2

𝑛2
)

𝑛

(
cos 𝑛𝜃 sin 𝑛𝜃
− sin 𝑛𝜃 cos 𝑛𝜃

) 

⇒
𝐴𝑛

𝑛

=  (1 +
𝑎2

𝑛2
)

𝑛
2

(

cos 𝑛𝜃

𝑛

sin 𝑛𝜃

𝑛

−
sin 𝑛𝜃

𝑛

cos 𝑛𝜃

𝑛

) 

⇒ Lt
𝑛→∞

 
𝐴𝑛

𝑛
= (1 + 0) (

0 0
0 0

) 
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⇒ Lt
𝑛→∞

 𝐴𝑛 = (
0 0
0 0

) =  𝑂2×2. 

69. The series ∑
(−𝟏)𝒏

(𝒏+𝟏)𝒑
 is 

a) Conditionally convergent if 0<p ≤ 1 

b) Absolutely convergent if p >1 

c) Oscillatory if  p ≤0 

d) All above 

Solution: d) Case I: p ≤ 0 

p = -q  

Then the given series becomes  

∑(−1)𝑛 (𝑛 + 1)𝑞

= −2𝑞 + 3𝑞 − 4𝑞 + 5𝑞 −⋯ 

This is an Oscillatory series. 

Case II:- 0 < p < 1 

This series is : 

∑𝑈𝑛 = −
1

2𝑝
+
1

3𝑝
−
1

4𝑝
+
1

5𝑝
−⋯ 

By Leibnitz’s test this series is convergent. 

Also, ∣ ∑𝑈𝑛∣  = 
1

2𝑝
+

1

3𝑝
+

1

4𝑝
+⋯ 

This series is P-series and p ≤ 1. 

So, it is divergent. 

Case III:  p >1 , the series is 

∑𝑈𝑛 = −
1

2𝑝
−
1

3𝑝
−
1

4𝑝
−⋯ 

By Leibnitz’s test this series is convergent. 

∣ ∑𝑈𝑛∣  = 
1

2𝑝
+

1

3𝑝
+

1

4𝑝
+⋯ 

The series is also convergent. 

So, the series is absolutely convergent. 

70. 𝐋𝐭
𝒙→𝟎
 [
𝐬𝐢𝐧𝒙

𝒙
] is equal to 

a) 1                                     b) 0                                   

c) does not exist                                 d) 

none 

Solution:- b) since, │
sin𝑥

𝑥
│ <1 

⟹
         sin𝑥

𝑥
 tends to 1 forms the values that 

are less than one as x ⟶    0. Thus, Lt
𝑥→0
 [
sin𝑥

𝑥
] 

= 0 

71. The net profit of an industry in a year is 

given by y = 2ax -𝒙𝟐, where x denotes the 

input. 

Then the profit increases in relation to 

x if  

a) 0 < a < x                            b) x = a                             

c) a < x < 2a                            d) x <a 

Solution:- d) y = 2ax -𝑥2  ⟹
𝑑𝑦

𝑑𝑥
= 2𝑎—2𝑥 

Profit will increase if 2a -2x > 0 i.e. x < a 

72. If 𝒂𝟏 = 𝟏 𝒂𝒏𝒅 𝒂𝒏+𝟏 =
𝟒+𝟑𝒂𝒏

𝟑+𝟐𝒂𝒏
, 𝒏 ≥ 𝟏; 

then 𝐋𝐭
𝒏→∞

 𝒂𝒏 = 𝒍. The l is equal to 

a) −√𝟐   b) √𝟐   c) 2    d) none 

Solution: b) 𝑙 =
4+3𝑙

3+2𝑙
 ⟹ 𝑙2 = 2 ⟹ 𝑙 = √2. 

Since lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑎𝑛+1 = 𝑙.  

73. 𝐋𝐭
𝒏→∞

𝒏𝑷𝒔𝒊𝒏𝟐(𝒏!)

𝒏+𝟏
, 𝟎 < 𝑷 < 𝟏, is equal to 

a) 0                                           b) ∞                                 

c) 1                                     d) none 
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Solution : a) Lt
𝑛→∞

𝑠𝑖𝑛2(𝑛!)

𝑛1−𝑃(1++
1

𝑛
)
   (∵ 0 < 𝑃 <

1) 

=
𝑠𝑎𝑚𝑒 𝑟𝑒𝑎𝑙 𝑛𝑜. 𝑖𝑛 [0, 1]

∞
    [∵ 1 − 𝑃 > 𝑛0] 

= 0 

74. The series ∑ 𝐬𝐢𝐧
𝝅

𝒏𝑷
∞
𝒏=𝟏  is  

a) Convergent for all values of P 

b) Convergent for p ≤ 1 and divergent 

for P >1 

c) Convergent for P > 1  and 

divergent for p ≤1 

d) Divergent for all values of P. 

Solution: c) 𝑈𝑛 = sin
𝜋

𝑛𝑃
=  

𝜋

𝑛𝑃
−

𝜋3

3!𝑛3𝑃
+

⋯𝑎𝑛𝑑  𝑉𝑛 =
1

𝑛𝑃
  

∴ Lt
𝑛→∞

𝑈𝑛
𝑉𝑛
=  𝜋 ≠ 0 

∑𝑉𝑛 is convergent for P > 1 and divergent 

for P≤ 1 

∴ ∑𝑈𝑛 is convergent for P > 1 and divergent 

for P ≤ 1. 

75. Let 𝑼𝒏 = 𝐬𝐢𝐧(𝟏/𝒏) and consider the 

series ∑𝑼𝒏. 

Which of the following statement is 

true? 

a) ∑𝑼𝒏 is convergent               

b) 𝑼𝒏  ⟶ 𝟎 𝒂𝒔 𝒏 ⟶ ∞                           

c) ∑𝑼𝒏 is divergent   

d) ∑𝑼𝒏 is absolutely convergent. 

Solution:- c) 𝑈𝑛 = sin(1/𝑛) , 𝑉𝑛 =
1

𝑛
 

∴lim
𝑛→∞

 
𝑈𝑛

𝑉𝑛
= lim
𝑛→∞

sin1/𝑛

1/𝑛
= 1 

So, ∑𝑉𝑛  𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠. 

∴ By limit comparison test, ∑𝑈𝑛 is also 

diverges. 

76. If 𝒇𝒏(𝒙) be a function defined on [0, 1] 

and then the sequence {𝒇𝒏(𝒙) }, where 

𝒇𝒏(𝒙) = 𝒙𝒏, is __________ 

a) Uniformly convergent in [0, 1]  

b) Uniformly convergent in (0, 1) 

c) Uniformly convergent in ℝ 

d) None 

Solution:- b) lim
𝑛→∞

 𝑓𝑛(𝑥) lim
𝑛→∞

𝑥𝑛 =

 {
0,   𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑥 < 1
1,        𝑤ℎ𝑒𝑟𝑒 𝑥 = 1.

 

Then the sequence is point wise convergent 

in [0, 1] and uniformly convergent in (0, 1). 

77. Which of the following functions is 

uniformly continuous on the domain as 

stated? 

(a) f(x) = 𝒙𝟐, x ∈ ℝ          (b) f(x) = 
𝟏

𝒙
, 𝒙 ∈  [𝟏,∞)           (c)  f(x) = 

𝐭𝐚𝐧 𝒙 , 𝒙 ∈ (−
𝝅

𝟐
,
𝝅

𝟐
)   (d) f(x) = 

[x], x ∈ [0, 1] 

Solution:- (b) f(x) = 
1

𝑥
 is uniformly 

continuous in  [1,∞). 

 

SET, COMBINATORICS, 

PROBABILITY 

78. The number of non–empty of a set 

consisting 6 elements is 
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(a) 63                              (b) 64                             

(c) 65                             (d) none 

Solution:- (a) The no. of non-empty 

subset of a set consisting n element is  

= 2𝑛. 

79. Le A and B be two sets having 7 

common elements, then the number of 

elements common to 𝑨 × 𝑩 𝒂𝒏𝒅 𝑩 × 𝑨 

is 

(a) 0                                       (b) 𝟐𝟕                               

(c) 49                            (d) none. 

Sol. (c) The no. of common elements to ×

𝐵 𝑎𝑛𝑑 𝐵 × 𝐴 is = 𝑛2. 

80. The number of squares that can be 

formed on a chess board is 

(a) 204                            (b) 224                           

(c) 230                         (d) None 

Solution:-  (a)A chess board has 9 equi-

spaced horizontal and vertical lines we 

need to choose two consecutive 

horizontal and vertical lines to make a 1 ×

1 square from among these which is done 

in 8 × 8 =  ways. 

Similarly,  2 × 2 square needs 3 

consecutive horizontal and vertical lines, 

i.e. in 7 × 7 = 72 ways. 

∴ Total number of squares = 82 + 72 +

62 + 52 +⋯+ 12 

=∑𝑖2
8

𝑖=1

=
8(8 + 1)(16 + 1)

6
= 204 

81. How many friends must you have to 

guarantee that it least five of them will 

have birthdays in the same month? 

(a) 50 ≤ n ≤ 60          (b) 49 ≤n ≤59            

(c) 40 ≤ n ≤60               (d) 49 ≤ n ≤ 60 

Sol. (d) No of friends = n 

Months (holes) (m) = 12. 

By extended pigeon –Hole principle, 

[
𝑛 − 1

𝑚
] + 1 = 5 

⟹ [
𝑛 − 1

12
] + 1 = 5 

⟹ 49 ≤ 𝑛 ≤ 60. 

82. Let U be the set of positive integers not 

exceeding 1000 then the number of 

sets of such integers which are not 

divisible by 3, 5, 7 is 

(a) 255                                   (b) 456                                

(c) 457                                (d) 256 

Sol. (c)  

A : integers divisible by 3 

B : integers divisible by 5 

C : integers divisible by 7 

n(A)= [
1000

3
] = 333, 𝑛(𝐵) = [

1000

5
] =

200, 𝑛(𝐶) = [
1000

7
] = 142 

𝑛(𝐴 ∩ 𝐵) = [
1000

15
] =  66, 𝑛(𝐵 ∩ 𝐶)

= [
1000

35
] =  28, 𝑛(𝐴 ∩ 𝐶)

= [
1000

21
] = 47  

𝑛(𝐴 ∩ 𝐵 ∩ 𝐶) = [
1000

105
] = 9.  
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By inclusion –exclusion principle, 

n(A ∪B ∪C) = n(A)+ n(B)+ n(C) –n(A∩ 

B) –n (B∩ C) –n(A∩ C) +n(A∩ B∩C) = 

543. 

So, required answer is = 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶)𝑐 

= 1000 − 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶) = 457. 

83. A and B toss a fair win each 

simultaneously 50 times. The 

probability that both of them will not 

get tail in the same toss is 

(a) (
𝟑

𝟒
)
𝟓𝟎

                      (b) (
𝟐

𝟕
) 𝟓𝟎                       

(c) (
𝟏

𝟖
)
𝟓𝟎

                        (d) none. 

Sol. (a) There are four possibilities in 

each toss, i.e.. 

A = tail        B = Head 

A = Head     B = tail 

A = Head      B = Head 

A = tail          B= tail 

Total number of cases = 450 

In each case there are 3 possibilities of 

not getting tail on the same toss, 

 ∴ Favourable cases = 350. 

Hence the required probability is (
3

4
)
50

. 

84. If the integers m and n are chosen at 

random between 1 to 100. 

Then the probability that a number 

of the form 𝟕𝒎 + 𝟕𝒏 is 

(a) 
𝟏

𝟒
                                 (b) 

𝟏

𝟕
                           

(c) 
𝟏

𝟖
                             (d) None. 

Sol. (a) The unit place of 7𝑘,where k is an 

integer will be 9, 3, 1, 7. 

71 = 7, 72 = 49, 73 = 343, 74

= 2407,… , 77

≡ 1 (𝑙𝑎𝑠𝑡 𝑑𝑖𝑔𝑖𝑡) 

Now 7𝑚 + 7𝑛 is divisible by 5 if m = 3 or 

7 and n = 7 or 3. 

Also, 7𝑚 + 7𝑛 is divisible by 5 if m = 9 or 

1 and n = 1 or 9. 

Now, 7𝑚 + 7𝑛 is divisible by 5 only when 

the last digit in the unit place is zero. 

∴ Required probability is =  
4

24
=

1

22
=
1

4
. 

85. The total number of subsets of a set of 

12 elements are 

(a) 144                              (b) 𝟏𝟐𝟏𝟐                     

(c) 47900                          (d) 

4096 

Sol. (d) Answer = 212= 4096. 

86. The total number of non-empty even 

subsets of a set having n elements is 

(a) 𝟐𝐧−𝟏                             (b) 𝟐𝐧−𝟏 −

𝟏                            (c) 𝟐𝐧                       

(d) 𝟐𝐧+𝟏 + 𝟏 

Sol. (b) If a set having n elements then 

total no. of subsets is = 2𝑛 

Total no. of even subsets is = 2𝑛−1. 

Excluding the empty set 𝜙, we have 

2𝑛−1 − 1 as total number of non-empty 

subsets. 
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87. A bar of unit length is broken into 3 

parts x, y, z.  The probability that a 

triangle can be formed from the 

resulting parts is 

(a) 
𝟏

𝟐
                                  (b) 

𝟏

𝟑
                           

(c) 
𝟏

𝟒
                               (d) None 

Sol. (c) Let z = 1- (x +y) 

x > 0, y > 0, (x +y) <1. 

The sample space is 
1

2
𝑋 ∣ 𝑋 ∣=

1

2
 = interior 

of a unit triangle with unit legs.    

Then two conditions are needed to satisfy 

to from a triangle: 

(a) The sum of the two sides is greater 

than the third side 

(b) The difference between any two 

sides is smaller than the third one. 

The area of the new triangle domain is = 
1

2
×
1

4
=
1

8
 

∴ Prob. is = 
1

8
1

2

=
1

4
. 

88. Total number of non-negative integer 

solutions of 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 = 𝟏𝟎 is 

(a) 𝟏𝟎𝑪𝟐                            (b) 𝟏𝟎𝑪𝟑                            

(c) 𝟏𝑪𝟐                           (d) none. 

Sol. (c) 𝑛 + 𝑟 − 1𝐶𝑟−1 = 10 + 3 −

1𝐶3−1 = 12𝐶2  

89. A point is selected at random from the 

interior of a circle.  

The probability that the point is 

closed to the centre than the 

boundary of the circle is 

(a) 
𝟏

𝟐
                         (b)  

𝟏

𝟒
                           

(c) 
𝟏

𝟔
                          (d) none 

Sol. (b)  AB = r ;  CD = 
𝑟

2
 

n(S) = the area of the circle of radius r = 

𝛱(𝑟2) 

n(E) = the area of the circle of radius 
𝑟

2
=

 𝛱 (
𝑟

2
)
2

     

∴ P(E) = 
𝑛(𝐸)

𝑛(𝑠)
=
𝛱(
𝑟

2
)
2

𝛱𝑟2
=
1

4
. 

90. Two finite sets have m and elements. 

The total number of subsets of the first 

set is 56, more than the total number of 

subsets of the second set, The value of 

m, n are  

(a) 7, 6                             (b) 6, 3                              

(c) 5, 1                            (d) none 

Sol. (b) We know that 2𝑚 − 2𝑛 = 56. 

By trial, m = 6, n = 3 

So, (b) is correct. 

91. Total number of polynomials of the 

form 𝒙𝟑 + 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 which is 

divisible by 𝒙𝟐 + 𝟏, where 𝒂, 𝒃, 𝒄 ∈

{𝟏, 𝟐, 𝟑, … , 𝟏𝟎} is 

(a) 15       (b) 10        (c) 5         (d) none 

Solution: (b) 

Take 𝑖3 + 𝑎𝑖2 + 𝑏𝑖 + 𝑐 = 0 

and −𝑖3 + 𝑎𝑖2 − 𝑏𝑖 + 𝑐 = 0 

implying (𝑏 − 1)𝑖 + (𝑐 − 𝑎) = 0 
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Thus, b = 1 and a = c. 

So, total number of polynomials equals to 

(10
1
) = 10. 

 

92. Let 𝒙 + 𝒚 = 𝟐𝒂, where a is a constant, 

and all values of x lying between 0 and 

2a are equally likely. Then the chance 

that 𝒙𝒚 >
𝟑𝒂𝟐

𝟒
 is 

(a) ½         (b) 1/3         (c) ¼      (d) none 

Solution:- (a) 

Let OP = a, AP = x, AQ = y, and x + y =

2a.  

Now, AB2 = AP, PQ = xy. 

Also, MP = MO, and NO = NQ. 

If A lies in MN then AB > a√
3

4
 

Thus, 𝑃 (𝒙𝒚 >
𝟑𝒂𝟐

𝟒
) =

𝑴𝑵

𝑨𝑩
=
𝟏

𝟐
 

 

 

DIFFERENTIAL EQUATIONS 

93. The differential equation │
𝒅𝒚

𝒅𝒙
│ =

 │𝒚│, 𝒚(𝟎) =  𝟏, 𝒚 ≠ 𝟎 has  

(a) Unique solution        (b) non-

trivial solution          (c) finite 

number of solution    (d) infinite 

number of solution 

Solution:-  (b) The equation is │y│ = 𝑒𝑥+𝑐 

y(0) = 1, gives 𝑒𝑐 = 1 =  𝑒0⟹ 𝑐 = 0. 

So, y = ex and y = - ex are two solutions. 

So, the ODE has non-trivial solution. 

[Note: Trivial solution:- A solution in 

which ever variable has zero value is 

called trivial solution. 

Infinite solution:- If the constant(s) of the 

solution of the ODE remain undetermined 

then the equation has infinite number of 

solutions.] 

 

94. Number of solution of the ODE   
𝒅𝟐𝒚

𝒅𝒙𝟐
+

𝟒𝒚 = 𝟎, 𝒚(𝟎) =  𝟎, 𝒚 (
𝜫

𝟒
) =  𝟏 is  

(a) 0    (b) 1    (c) 2    (d) None  

Solution:- (b) 

𝑑2𝑦

𝑑𝑥2
+ 𝜆𝑦 = 0 (𝜆 > 0) has the general 

solution 

y = 𝑐1 cos √𝜆𝑥 + 𝑐2 sin√𝜆𝑥 ;  where λ > 0. 

So, 
𝑑2𝑦

𝑑𝑥2
+ 4𝑦 = 0 has the solution 

 y = 𝑐1 cos 2𝑥 + 𝑐2 sin 2𝑥  

𝑦(0) = 0 ⟹ 𝑐1 = 0 
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𝑦 (
𝛱

4
) =  1 ⟹ 𝑐2 = 1. 

∴ y = sin 2x is the unique solution of the 

given differential equation. 

 

95. The solution of the ODE 
𝒅𝒚

𝒅𝒙
= 𝒙,

𝒚(𝟎) =  𝟎 is 

(a) Unbound                   (b) positive                 

(c) negative                  (d) zero 

Solution:- (b) 

 ∫𝑑𝑦 =  ∫ 𝑥 𝑑𝑥 

⟹ 𝑦 = 𝑥2 + 𝑐 

𝑦(0) = 0 𝑔𝑖𝑣𝑖𝑛𝑔 𝑐 = 0 

∴ y = 𝑥2 is the solution which is always 

positive. 

 

96. Number of solutions of the ODE    
𝒅𝟐𝒚

𝒅𝒙𝟐
=

𝟎,     𝒚(𝟎) =  𝟏 is 

(a) 0                   (b) 1                   (c) 

infinite no. of solutions                      

(d) none 

Solution:- (c) 

 
𝑑2𝑦

𝑑𝑥2
= 0 has the solution y = 𝑐1𝑥 + 𝑐2 

y(0)= 1 ⟹ 𝑐2 = 1. 

∴ y = 𝑐1𝑥 + 1,  𝑐1 is arbitrary constant. 

⟹ The ODE has infinite number of 

solutions. 

 

97. One of the integrating factors of the 

ODE 

(𝒚𝟐 − 𝟑𝒙𝒚)𝒅𝒙 + (𝒙𝟐 − 𝒙𝒚)𝒅𝒚 = 𝟎 

is 

(a) 
𝟏

(𝒙𝟐𝒚𝟐)
                          (b) 

𝟏

(𝒙𝟐𝒚)
                        

(c) 
𝟏

(𝒙𝒚𝟐)
                             (d) 

𝟏

(𝒙𝒚)
 

Solution:- (b) 

 M = 𝑦2 − 3𝑥𝑦 

N = 𝑥2 − 𝑥𝑦 

As M dx + N dy = 0 is homogeneous. 

An I.F. is =  
1

𝑀𝑥+𝑁𝑦
=

1

(−2𝑥2𝑦)
. 

So, 
1

𝑥2𝑦
 is an I. F. by ignoring the constant. 

 

98. General solution of (𝒙𝒚𝒔𝒊𝒏(𝒙𝒚) +

𝒄𝒐𝒔(𝒙𝒚))𝒚𝒅𝒙 + (𝒙𝒚𝒔𝒊𝒏(𝒙𝒚) −

𝒄𝒐𝒔(𝒙𝒚))𝒅𝒚 = 𝟎 is 

(a) ysin(xy) = cx         (b) xsec(xy) = cy 

(c) ytan(xy) = cx         (d) none. 

Solution: (b)  

xysin(xy)(ydx+xdy)+cos(xy)(ydx-

xdy)=0 

implies tan(xy).d(xy)+dx/x – dy/y = 0 

implies log⃒secxy⃒ + log ⃒x/y⃒ = c’ 

implies xsec(xy) = cy 

 

99.  The solution of the curve y = f(x) 

satisfying the differential equation 
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√(𝒙 − 𝒚)
𝒅𝒚

𝒅𝒙
= |𝒙𝟐 − 𝒚𝟐| and passing 

through the point (1,0) is 

 

(a) (𝒙 − 𝟏) = 𝒚𝟐(𝒙𝟐 − 𝒚𝟐) 

(b) 𝒚𝟐 = 𝒙 − 𝟏 

(c) (𝟐𝒙 − 𝟑) +
𝟏

(𝒙𝟐−𝒚𝟐)
= 𝟎 

(d) None 

Solution: (c) 

√(𝑥 − 𝑦)
𝑑𝑦

𝑑𝑥
= |𝑥2 − 𝑦2| 

→ 
𝑑(𝒙𝟐 − 𝒚𝟐)

2(𝒙𝟐 − 𝒚𝟐)2
= 𝑑𝑥 

→ 
−1

(𝒙𝟐 − 𝒚𝟐)
= 2𝑥 + 𝑐 

Which passes through (1,0). 

Thus, - 1 = 2x + c which gives c = - 3. 

Hence the curve is  

(2𝑥 − 3) +
1

(𝑥2 − 𝑦2)
= 0 

 

100. The solution of the equation 𝒙𝒅𝒚 −

𝒚𝒅𝒙 = √(𝒙𝟐 − 𝒚𝟐)𝒅𝒙 subject to the 

condition y(1)=0, is 

 

(a)  y = xsin(logx) 

(b)  y = x2sin(logx) 

(c)  y = x2(x – 1) 

(d)  None 

Solution: (a) 

𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝑥2
=
1

𝑥
√1 − (

𝑦

𝑥
)
2

𝑑𝑥 

→ 𝑑 (
𝑦

𝑥
) =

1

𝑥
√1 − (

𝑦

𝑥
)
2

𝑑𝑥 

→
𝑑 (
𝑦
𝑥)

√1 − (
𝑦
𝑥)
2
=
1

𝑥
𝑑𝑥 

→ 𝑠𝑖𝑛−1 (
𝑦

𝑥
) = log(𝑥) + 𝑐 

 

 

 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 1 

 

1. Find all real numbers satisfying  𝟔𝒙 +

𝟐𝟐𝒙 + 𝟐𝟒𝒙 − 𝟑𝟔𝒙 − 𝟏𝟔𝒙 = 𝟏. 

Ans:-  Rewrite  the given relation as: 

6𝑥 + 4𝑥 − 36𝑥 + 24𝑥 − 16𝑥= 1 

Let 6𝑥 = 𝑎, 4𝑥 = 𝑏,  we have 

a+ b -𝑎2 + 𝑎𝑏 − 𝑏2 = 1 

⇒𝑎2 − 𝑎𝑏 + 𝑏2 − 𝑎 − 𝑏 + 1=0 

⇒ 2𝑎2 − 2𝑎𝑏 + 2𝑏2 − 2𝑎 − 2𝑏 + 2=0 

⇒ (𝑎2 − 2𝑎𝑏 + 𝑏2)+ (𝑎2 − 2𝑎 + 1)+ (𝑏2 −

2𝑏 + 1)=0 
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⇒ (𝑎 − 𝑏)2 + (𝑎 − 1)2 + (𝑏 − 1)2=0 

∴ a= 1 and b= 1 when a= b. 

⇒ 4𝑥 = 1 𝑎𝑛𝑑 6𝑥 = 1, giving x= 0 only. 

2. Two boxes contain between them 65 

balls of several different sizes. Each ball is 

white, black, red, or yellow. If you take 

any five balls of the same colour, at least 

two of them will always be of the same 

size (radius). Prove that there are at least 

three balls which lie in the same box, have 

the same colour and are of the same size. 

Ans:- we will make repeated use of pigon–

hole- principle (PHP). As there are 65 balls 

and 2 boxes , one of these boxes must 

contain at least [
65

2
]+1 = 33 balls. 

Consider that box, now we have four colours 

(white, black, red, yellow) and hence there 

must be at least (
33

4
)+1 = 9 balls of the same 

colour. 

There can be at most 4 different sizes 

available for these 9 balls of the same 

colour, For if there were  5 (or 

more)different sizes, then collection of 5 

balls, all of different sizes, would not satisfy 

the given property. 

Thus of these 9 balls there must be at least 3 

balls of the same size. 

3. Find all continuous function f : (0, 

∞)⟶(0, ∞) ∋ f (1)= 1 and  

𝟏

𝟐
∫ (𝒇(𝒕))𝟐𝒅𝒕 =  

𝟏

𝒙
 (∫ 𝒇 (𝒕)𝒅𝒕)

𝒙

𝟎

𝟐𝒙

𝟎

 

Ans:- Define  , F (x) = ∫ 𝑓(𝑡)𝑑𝑡   
𝑥

0
 and G 

(x)= ∫ (𝑓(𝑡))2𝑑𝑡 
𝑥

0
 

Since f: (0, ∞) ⟶ (0, ∞) 

we have F (x)> 0 ∀ 𝑥 > 0 

Also,  
1

2
𝐺(𝑥) =  

1

𝑥
{𝐹(𝑥)}2, from the given 

condition  on differentiation, we have 

1

2
𝐺′(𝑥)= 

1

𝑥
. 2𝐹(𝑥). 𝐹′(𝑥) −

1

𝑥2
(𝐹(𝑥))2 

This means that  
1

2
(𝐹(𝑥))2=

2

𝑥
𝐹(𝑥) 𝐹′(𝑥) −

1

𝑥2(𝐹(𝑥))2
  

or, 
1

2
(
𝑥𝐹′(𝑥)

𝐹(𝑥)
)2 = 2

𝑥𝐹′(𝑥)

𝐹(𝑥)
− 1 

Solving this equation as a quadratic in 

𝑥𝐹′(𝑥)

𝐹(𝑥)
we have 

𝑥𝐹′(𝑥)

𝐹(𝑥)
= 2 ± 2 = 𝑘(say) 

On integration, we obtain ∫
𝑑𝐹(𝑥)

𝐹(𝑥)
= 𝑘 ∫

𝑑𝑥

𝑥
 

⇒ ln 𝐹(𝑥)= klnx + ln𝜆 ⇒ 𝐹(𝑥)= 𝜆𝑥𝑘 

⇒ f (x)=𝜆k𝑥𝑘−1 ⇒ f (1) = 1 

⇒ 𝜆k=1 

∴ f(x)= 𝑥𝑘−1 = 𝑥1+√2 /𝑥
1−√2

  

 

4. Let x ≥ 𝟏, 𝒇(𝒙) =  
√[𝒙]+√{𝒙}

√𝒙
 , where [.] 

denotes G.I.F. and { } denotes fractional 

part. Determine the smallest number k ∋ 

f(x)≤ 𝒌 for each x ≥ 𝟏 

Ans:-  Let x = a+ b where a= [x], b= {x} 
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f(x)= 
√𝑎+√𝑏

√𝑎+𝑏
 

(f(𝑥))2 =
𝑎+𝑏+2√𝑎𝑏

𝑎+𝑏
= 1 + 

2√𝑎𝑏

𝑎+𝑏
 

Using AM≥ 𝐺𝑀, ≤ 1 + 1 ⇒ 𝑓(𝑥) ≤ √2. 

5. Solve the equation (√𝟐 + √𝟐)𝒙 +

(√𝟐 − √𝟐)𝒙 = 𝟐𝒙 

Ans:- 1+ 
√2

2
= 1 + 𝑐𝑜𝑠

𝜋

4
= 2 cos2

𝜋

8
 

(
2+ √2

4
)
𝑥
2⁄ + (

2− √2

4
)
𝑥
2⁄  

= (𝑐𝑜𝑠
𝜋

8
)𝑥 + (𝑠𝑖𝑛

𝜋

8
)𝑥 

⇒ x= 2 

6. Let f(x) be a polynomial with real 

coefficient for which the equation f(x)= x 

has no real solution. Prove that the 

equation f(f(x))= x has no real solution, 

either. 

Ans:- Suppose, if possible that f(f(a))=a, let 

b= f(a), then f(b)=a by hypothesis b ≠ a. 

Assume that a < b then f(a)- a > 0 and f(b)-b 

< 0. So, by intermediate value theorem f(x) - 

x = 0 should be a root between (a, b). 

But this contradicts our assumption. Hence, 

f(f(x)) can have no real solution. 

7. Let a ∊ [0, 4]. Prove that the area 

bounded by the curves y=1 -|x-1| and y= 

|2x -a| can’t exceed 1/3. 

Ans:- when a ∊ [0, 1].the area is a triangle 

formed by (0, 0), (1 2⁄ , 0) and (1, 1) with 

area equals 1/4. 

When a ∊ [1, 3] , the area is a quadrilateral 

with vertices at (
𝑎

3
,
𝑎

3
), (

𝑎

2
, 0), (

𝑎+2

3
,
4−𝑎

3
) and 

(1, 1) 

So, the net area is 
1

3
−
(𝑎−2)

6

2
 which also does 

not exceed 1/3. 

When a ∊ [3, 4], the area is same as when a 

∊ [0, 1] 

8. Determine a value of the parameter 𝜃 ∋ 

f(x)= 𝐜𝐨𝐬𝟐 𝒙 + 𝐜𝐨𝐬𝟐(𝒙 + 𝜽) −

𝒄𝒐𝒔𝒙𝒄𝒐𝒔(𝒙 + 𝜽).  

Is a constant function of x? 

Ans:- f(x)=sin2 𝜃 + (2 𝑐𝑜𝑠𝜃 −

1)(cos2𝑥𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛2𝑥𝑠𝑖𝑛𝜃) 

The function f(x)is constant when 

(2 𝑐𝑜𝑠𝜃 − 1)= 0 

i.e. 𝜃= 
𝜋

3
 and the constant value is  

3

4
. 

9. If 
𝒏𝑪𝟎

𝟐
−
𝒏𝑪𝟏

𝟑
+
𝒏𝑪𝟐

𝟒
−⋯+ (−𝟏)𝒏

𝒏𝑪𝒏

𝒏+𝟐
=

𝟏

𝟏𝟗𝟗𝟗×𝟐𝟎𝟎𝟎
, then what is the value of n? 

Ans:- (a) 

(1 − 𝑥)𝑛 = 𝑐0 − 𝑐1𝑥 + 𝑐2𝑥
2 −⋯+

(−1)𝑛. 𝑐𝑛𝑥
𝑛  

⟹ x(1 − 𝑥)𝑛 = 𝑐0𝑥 − 𝑐1𝑥
2 + 𝑐2𝑥

3…+

(−1)𝑛. 𝑐𝑛𝑥
𝑛+1 

Integrating between the limits 0 and 1, 

We get [𝑐0
𝑥2

2
− 𝑐1

𝑥3

3
+ 𝑐2

𝑥4

2
−⋯+

(−1)𝑛. 𝑐𝑛
𝑥𝑛+2

𝑛+2
] 1
0
= [−𝑥.

(1−𝑥)𝑛+1

𝑛+1
] 1
0
+

∫ 1.
1

0

(1−𝑥)𝑛+1

𝑛+1
𝑑𝑥 
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= 0 − [
(1−𝑥)𝑛+2

(𝑛+1)(𝑛+2)
] 1
0
 =

1

(𝑛+1)(𝑛+2)
  

∴ 
𝑐0

2
−
𝑐1

3
+⋯+ (−1)𝑛

𝑐𝑛

𝑛+2
=

1

(𝑛+1)(𝑛+2)
 

Given, 
1

(𝑛+1)(𝑛+2)
=

1

1999×2000
 

So n = 1998. 

10. For what value of m the sum 

∑ (𝟏𝟎
𝒊
)( 𝟐𝟎
𝒎−𝒊
)𝒎

𝒊=𝟎 , 𝒘𝒉𝒆𝒓𝒆 (𝒑
𝒒
) = 𝟎 if p< q, is 

maximum? 

Ans:- (c) 

∑ 10𝐶𝑖
10
𝑖=0 = 20𝐶𝑚−𝑖 = 10𝐶020𝐶𝑚 +

10𝐶120𝐶𝑚−1 +⋯+ 10𝐶𝑚20𝐶0 ……..(1) 

(1 + 𝑥)20 = 20𝐶0 + 20𝐶1𝑥 +⋯+

20𝐶𝑚−1𝑥
𝑚−1 + 20𝐶𝑚𝑥

𝑚 +⋯+ 20𝐶20𝑥
20  

……………….(2) 

(1 + 𝑥)10 = 10𝐶0 + 10𝐶1𝑥 +⋯+ 10𝐶10𝑥
10 

……………….(3) 

Multiplying (2) and (3) and equating the co-

efficient of 𝑥𝑚, we get 

10𝐶020𝐶𝑚 + 10𝐶120𝐶𝑚−1 +⋯+

10𝐶𝑚20𝐶0 = 30𝐶𝑚 , 30𝐶𝑚 will be greatest 

when m= 15. 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS   

SET – 2 

 

1. Find 
𝒅𝒚

𝒅𝒙
 𝒊𝒇 𝒙𝒄𝒐𝒔𝒚 + 𝒚𝒄𝒐𝒔𝒙 = 𝟏 

Ans:- u= 𝑥𝑐𝑜𝑠𝑦 

Log u=cos y logx 

1

𝑢
.
𝑑𝑢

𝑑𝑥
= 𝑐𝑜𝑠𝑦.

1

𝑥
− 𝑙𝑜𝑔𝑥. 𝑠𝑖𝑛𝑦.

𝑑𝑦

𝑑𝑥
   

∴
𝑑𝑢

𝑑𝑥
= 𝑥𝑐𝑜𝑠𝑦(

𝑐𝑜𝑠𝑦

𝑥
− 𝑙𝑜𝑔𝑥. 𝑠𝑖𝑛𝑦.

𝑑𝑦

𝑑𝑥
)  …..(1) 

v=𝑦𝑐𝑜𝑠𝑥 => 𝑙𝑜𝑔𝑣 = 𝑐𝑜𝑠𝑥𝑙𝑜𝑔𝑦 

𝑑𝑣

𝑑𝑥
= 𝑦𝑐𝑜𝑠𝑥{−𝑙𝑜𝑔𝑦. 𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥.

1

𝑦
.
𝑑𝑦

𝑑𝑥
} 

………………(2) 

Now, u+ v=1 

𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑥
= 0. 

⤇𝑦𝑐𝑜𝑠𝑥. 𝑐𝑜𝑠𝑥.
1

𝑦
.
𝑑𝑦

𝑑𝑥
− 𝑥𝑐𝑜𝑠𝑦 . 𝑙𝑜𝑔𝑥𝑠𝑖𝑛𝑦

𝑑𝑦

𝑑𝑥
=

𝑦𝑐𝑜𝑠𝑥. 𝑙𝑜𝑔𝑦. 𝑠𝑖𝑛𝑥 − 𝑥𝑐𝑜𝑠𝑦.
𝑐𝑜𝑠𝑦

𝑥
 

⤇
𝑑𝑦

𝑑𝑥
= 

𝑦𝑐𝑜𝑠𝑥.𝑙𝑜𝑔𝑦.𝑠𝑖𝑛𝑥−𝑥𝑐𝑜𝑠𝑦.
𝑐𝑜𝑠𝑦

𝑥

𝑦𝑐𝑜𝑠𝑥.𝑐𝑜𝑠𝑥.
1

𝑦
−𝑥𝑐𝑜𝑠𝑦.𝑙𝑜𝑔𝑥.𝑠𝑖𝑛𝑦

. 

2. Find the inverse of the following matrix 

with R1 = (c0 , c1 , c2 , c3 ); R2 = (c2 , c3 , c0 , 

c1 );  

R3 = (c3 , -c2 , c1 , -c0 ); R4 = (c1 , -c0 , c3 , -c2 

),  

where 𝒄𝟎 =
𝟏+√𝟑

𝟒√𝟐
, 𝒄𝟏 =

𝟑+√𝟑

𝟒√𝟐
, 𝒄𝟐 =

𝟑−√𝟑

𝟒√𝟐
, 𝒄𝟑 =

𝟏−√𝟑

𝟒√𝟐
 

Ans:- Put 𝑐0
2 + 𝑐1

2 + 𝑐2
2 + 𝑐3

2 = 1 

𝑐0 𝑐3 = −
1

16
,  𝑐2𝑐1 =

3

16
,  𝑐0𝑐2 =

−3

16
,

𝑐1𝑐3 =
−3

16
 .  

Here 𝐴2 = 𝐼 ⤇ 𝐴 = 𝐴−1 
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3. True/False: If f is a continuous function 

on ℝ ∋ f(x+ y)= f(x)+ f(y) ∀ x, y∊ ℝ.  

Then f(0)= 0 ∀ x∊ℝ. 

Ans:-  False  

f(x+ y)= f(x) .f(y) 

Let f(x) = 𝑎𝑥 , f(y)=𝑎𝑦 ∀ x, y∊ ℝ 

f(x+ y)= 𝑎𝑥 + y 

f(0)=1 ≠0. 

4. 𝐥𝐭
𝒙⟶𝟎

(𝒄𝒐𝒔𝒙)
𝟏
𝒙𝟐
⁄ = ? 

Ans:- (𝑐𝑜𝑠𝑥)
1
𝑥2⁄ = 𝑘, 𝑠𝑎𝑦 

∴ lnk= 
1

𝑥2
𝑙𝑛(𝑐𝑜𝑠𝑥)  

∴ lt
𝑥⟶0

(𝑙𝑛𝑘) = lt
𝑥⟶0

𝑙𝑛 cos𝑥

𝑥2
 (
0

0
) = 

lt
𝑥⟶0

−tan𝑥

2𝑥
 (
0

0
) = lt

𝑥⟶0

−𝑐𝑜𝑠𝑒𝑐2𝑥

2
  = −

1

2
 

∴ lt
𝑥⟶0

𝑘 = 𝑒−
1

2  

 

5.  Maximize x+ y subject to the condition 

that 2𝒙𝟐 + 𝟑𝒚𝟐 ≤ 𝟏. 

Ans:-    
𝑥2

1
2⁄
+
𝑦2

1
3⁄
≤ 1 

Let z= x+ y 

Now, 4x + 6y
𝑑𝑦

𝑑𝑥
= 0  ⇒

𝑑𝑦

𝑑𝑥
= −

2𝑥

3𝑦
 

At the touching point. -
2𝑥

3𝑦
 = -1 

⇒ 2x= 3y and 2𝑥2 + 3𝑦2=1   ⇒ 2 (
3𝑦

2
)2 +

(3𝑦2) = 1 

⇒ 15𝑦2 = 2   ⇒ y= ±√
2

15
 

∴ x= 
3

2
 (±√

2

15
) =  ±√

3

10
      ∴ Max (z)= 

√
3

10
+√

2

15
= 

5

√30
. 

 

6. For any positive a, b prove that (𝒂 +
𝟏

𝒂
)𝟐 + (𝒃 +

𝟏

𝒃
)𝟐 ≥ 𝟖. 

Ans: AM ≥ GM 

(𝑎 +
1

𝑎
)2 + (𝑎 +

1

𝑎
)2 ≥ 

2√(𝑎 +
1

𝑎
)2 + (𝑏 +

1

𝑏
)2 

≥ 2(ab+
1

𝑎𝑏
+
𝑎

𝑏
+
𝑏

𝑎
) 

≥ 2(2+2)   [∵ ab +
1

𝑎𝑏
≥ 2] 

7. Let A & B be two invertible n ×n real 

matrices. Assume that A + B is invertible. 

Show that 𝑨−𝟏 + 𝑩−𝟏 is also invertible. 

Ans:- A, B are invertible 

         A + B is invertible. 

   |A||𝐴−1 + 𝐵−1||B| = |B+ A|≠0 

⇒ |𝐴−1 + 𝐵−1| ≠0 as |A|, |B|≠ 0 

⇒ 𝐴−1 + 𝐵−1is invertible. 

 

8. Let A be n ×n orthogonal mtx where A 

is even and suppose |A| =-1. S.T. |I−A|= 0, 

where I denotes n ×n identity mtx. 

Ans:- 𝐴−1 = 𝐴𝑇         |A|  = −1  
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⇒ 
1

𝜆
=  𝜆       ⇒ ∏ 𝜆𝑖 = −1

𝑛
𝑖=1  then at least 

one 𝜆𝑖 = −1 

⇒ 𝜆= ± 1 

∴ Characteristics Equation is |𝜆𝐼𝑛 − 𝐴|= 0 

⇒|𝐼𝑛 − 𝐴 |= 0 for 𝜆𝑖 = +1 

 

9. If f(x+ y)=f(x).f(y)for all x and y f(1)= 2 

and 𝜶𝒏 = 𝒇(𝒏), 𝒏 ∊ 𝑵, then find equation 

of the circle having (𝜶𝟏, 𝜶𝟐) and (𝜶𝟑, 𝜶𝟒) 

as the ends of its one diameter? 

Ans:- (a) 

Given f(x+ y) = f(x)f(y), for all x, y 

………………….(1) 

f(1)= 2 ……………..(2) 

Putting x = 1, y = 1 in (1), we get 

f(2) = (𝑓(1))2 = 22 

Putting x = 2, y = 1 in (1), we get 

f (3) = f(2)f(1) = 22. 2= 23 

Similarly, f(n) = 2𝑛, n ∊ N 

Given 𝛼𝑛 = 𝑓(𝑛) 

∴ 𝛼𝑛 =2𝑛, n ∊ N           ∴ 𝛼1 = 2, 𝛼2 =

4, 𝛼3 = 8, 𝛼4 = 16 

Let P ≡ (2, 4), Q ≡ (8, 16) 

∴ Equation of circle having PQ as a 

diameter is 

(x - 2)(x - 8)+ (y - 4)(y - 16)= 0 

 

10. If 0 < x < 𝜋, and f(x) 

=√𝟐 + √𝟐 + √𝟐 +⋯+ √𝟐(𝟏 + 𝐜𝐨𝐬𝐱) there 

being n number of 2’s, then 𝐋𝐭
𝒏→∞

𝒇(𝒙) = ⋯ 

Ans:- (b) 

Let y= Lt
𝑛→∞

𝑓(𝑥)  

𝑤ℎ𝑒𝑛 𝑛 → ∞,  𝑦2 = 2 + 𝑦 

⟹ 𝑦2 − 𝑦 − 2 = 0   

⟹  y = 2, -1   

⟹ y = 2   (∵ y > 0) 

 

 

 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 3 

 

1. Let s= {(𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒): 𝒂𝒊 ∊ ℝ, 𝒊 =

𝟏, 𝟐, 𝟑, 𝟒 ; 𝒂𝟏 + 𝒂𝟐 + 𝒂𝟑 + 𝒂𝟒 = 𝟎 } 

And T= {(𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒): 𝒂𝒊 ∊ ℝ, 𝒊 =

𝟏, 𝟐, 𝟑, 𝟒 ; 𝒂𝟏 − 𝒂𝟐 + 𝒂𝟑 − 𝒂𝟒 = 𝟎 } 

Find a basis for S∩T. Also find its 

dimension. 

Ans:- S∩T={(𝑎1, 𝑎2, 𝑎3, 𝑎4): 𝑎𝑖 ∊ ℝ, 𝑖 =

1, 2, 3, 4 ; 𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 = 0 } 
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Let x̰ ∊ S∩T, then 

 𝑎1 + 𝑎2 = −𝑎3 − 𝑎4……………..(1) 

𝑎1 − 𝑎2=-𝑎3 + 𝑎4………………(2) 

_________________________________ 

 𝑎1 = −𝑎3 

𝑎2=-2𝑎3 − 𝑎4 

Here, x̰= (−𝑎3, −2𝑎3 − 𝑎4, 𝑎3, 𝑎4) 

= 𝑎3(−1,−2, 1, 0) + 𝑎4(0, −1, 0, 1) 

Here, {(−1,−2, 1, 0), (0, −1, 0, 1)} forms a 

basis. 

And also dim(S∩T)= 2. 

2. Find the following limit: 𝐥𝐢𝐦
𝒙→∞

(
𝟏

√𝒏𝟐+𝟏
+

𝟏

√𝒏𝟐+𝟐
+⋯+

𝟏

√𝒏𝟐+𝒏
) 

Ans:- Let 𝑢𝑛 =
𝑛

√𝑛2+𝑛
 

∴ lim
𝑥→∞

𝑢𝑛 = lim
𝑥→∞

𝑛

√𝑛2+𝑛
= lim
𝑥→∞

1

√1+
1

𝑛

= 1 . 

By Cauchy’s first theorem:-

 lim
𝑥→∞

(
𝑢1+⋯+𝑢𝑛

𝑛
) = 1. 

So, lim
𝑥→∞

(
1

√𝑛2+1
+

1

√𝑛2+2
+⋯+

1

√𝑛2+𝑛
)= 1. 

3. for any real number x and for any 

positive integer n show that 

[x]+[x+
𝟏

𝒏
] + [𝒙 +

𝟐

𝒏
] + ⋯+ [𝒙 +

𝒏−𝟏

𝒏
] =

[𝒏𝒙] 

Ans:- Let x= [x]+y, where 0 ≤ y < 1, 

Let p be an integer such that P-1 ≤ 𝑛𝑦 < 𝑃 

Now, x+
𝑘

𝑛
= [𝑥] + 𝑦 +

𝑘

𝑛
 

Also, 
𝑃+𝑘−1

𝑛
< 𝑦 +

𝑘

𝑛
< 

𝑃+𝑘

𝑛
 

So, long as 
𝑃−1+𝑘

𝑛
< 1 , i.e. , k < n-(P-1) 

So, 𝑦 +
𝑘

𝑛
< 1 and consequently 

[x+
𝑘

𝑛
] = [x]for k= 0, 1, 2, …, n-P. 

But [x+
𝑘

𝑛
] = [x]+1 for k= n-P+1, …..n-1. 

∴[x]+ [x+
1

𝑛
]+…+[x+

𝑛−1

𝑛
] 

= ([𝑥] + [𝑥] + ⋯+ [𝑥])⏟              +

(([𝑥] + 1) + ([𝑥] + 1) + ⋯+ ([𝑥 + 1))]⏟                           

= n[x]+(P-1)……………………(1) 

Also, [nx]=[n[x]+ny]= n[x]+(P-1) 

Since P-1 ≤ ny < P……(2) 

From equation (1) & (2), 

[x]+[x+
1

𝑛
]+…+[x+

𝑛−1

𝑛
] = [nx]. 

4. Prove that for n > 1,  1+
𝟏

𝟐𝟐
+

𝟏

𝟑𝟐
+⋯+

𝟏

𝒏𝟐
< 2 −

𝟏

𝒏
 

Ans:- P(1)= 1+
1

22
=
5

4
< 2 −

1

2
=
3

2
=
6

4
. 

The statement is true for n= 2. 

Let , the statement is true for n= m. 

∴P(m)=  1+
1

22
+

1

32
+⋯+

1

𝑚2
< 2 −

1

𝑚
. 

Now, we need to show that the statement is 

also true for n=m+1. 
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P(m+1)= 1+
1

22
+

1

32
+⋯+

1

𝑚2
< 2 −

1

(𝑚+1)2
 

< 2 −
1

𝑚
+

1

𝑚(𝑚+1)
.    [∵

1

(𝑚+1)2
<

 
1

𝑚(𝑚+1)
∀ 𝑚 > 1] 

< 2-
1

𝑚+1
. 

∴ The statement is true for n= m+1 

So, for all n ∊ ℕ the statement is true.  

Hence proved. 

5. Show that (a) 𝛷(p)= p-1;    

(b) 𝛷(pq)=𝛷(p)𝛷(q);  where p and q are 

prime numbers. 

Ans:- (a) Let us take k as a positive integer 

and p be prime. The positive integer ≤ 𝑝𝑘 

which are not prime to 𝑝𝑘are p, 2p, 3p,…, 

(𝑝𝑘−1)p. therefore , the number of positive 

integers less than 𝑝𝑘 and prime to 𝑝𝑘 is 

𝑝𝑘 − 𝑝𝑘−1 

Hence (𝑝𝑘)= 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘 (1 −
1

𝑝
). 

For k= 1, (p)= p-1. 

To prove this , we use: 

(i) a is prime to pq if and only if a is 

prime to p and a is prime to q. 

(ii) If r be the residue of a modulo q 

and r is prime to q then a is prime 

to q. 

(iii) If c be an integer and a is prime 

to q then the number of integers 

in the set {c, c+a, c+2a, …, c+(n-

1)a}that are prime to q is 𝛷(q) 

(b) Since (1)=1, the theorem is trivial 

true when p and q equals 1. 

Let us assume p > 1 and q > 1. We arrange 

pq integers in q rows of p columns as 

follows: 

1         2         ……    r        p 

p+1     p+2    …….  p+r     2p 

2p+1   2p+2   …..   2p+r    3p 

…          ….   ….    ……. 

(q-1)p+1 (q-1)p+2 …..  (q-1)p+r    qp 

The number of integers among these, that 

are prime to pq is (pq) [By lemma]. 

The number of integers in the first row that 

the prime to p is (p) [Lemma] 

Each column in the arrangements 

contain(q)integers prime to q [By lemma 3] 

Hence (pq) = 𝛷(p)𝛷(q). 

 

6. Determine x, y, and z so that the 3× 3 

matrix with the following row vectors is 

orthogonal: 

(𝟏
√𝟑
⁄ , 𝟏

√𝟑
⁄ , 𝟏

√𝟑
⁄ ), (𝟏

√𝟐
⁄  , − 𝟏

√𝟐
⁄ , 𝟎), 

(x, y,z). 

Ans:- 

(

 
 

1
√3
⁄ 1

√3
⁄ 1

√3
⁄

1
√2
⁄ −1

√2
⁄ 0

1
√6
⁄ 1

√6
⁄ −2

√6
⁄ )

 
 
  

𝑖𝑠 𝑎𝑛 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥. 

 

7. Solve: dy/dx= (y+2)/(x-2) 
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Ans:- ∫
𝑑𝑦

𝑦+2
= ∫

𝑑𝑥

𝑥−2
 

⤇ log|𝑦 + 2| = log|𝑥 − 2| + log |𝑐| 

⤇ (𝑦 + 2)2 = 𝑘(𝑥 − 2)2 is the required 

solution. 

 

8. If w is a complex cube root of unity 

then show that 

𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 − 𝟑𝒂𝒃𝒄

= (𝒂 + 𝒃 + 𝒄)(𝒂 + 𝒃𝒘

+ 𝒄𝒘𝟐)(𝒂 + 𝒃𝒘𝟐 + 𝒄𝒘). 

Ans:- 𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐 

= (a+ b +c)( 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑏𝑐 − 𝑐𝑎) 

= (a+ b +c){ 𝑎2 + 𝑏2𝑤3 + 𝑐2𝑤3 + (𝑤 +

𝑤2)𝑎𝑏 + (𝑤 + 𝑤2)𝑏𝑐 + (𝑤 + 𝑤2)𝑐𝑎} 

= (a+ b +c){ 𝑎2 + 𝑏2𝑤3 + 𝑐2𝑤3 + 𝑤𝑎𝑏 +

𝑤2𝑎𝑏 + 𝑤𝑏𝑐 + 𝑤2𝑏𝑐 + 𝑤2𝑏𝑐 + 𝑤𝑐𝑎 +

𝑤2𝑐𝑎} 

= (a+ b +c){a(a +b𝑤2 + 𝑐𝑤)+bw(a+b𝑤2 +

𝑐𝑤)+c𝑤2(𝑎 + 𝑏𝑤2 + 𝑐𝑤)) 

= (a+ b+ c)(a+ b𝑤2 + 𝑐𝑤)(a+ bw+ c𝑤2). 

 

9. In a 𝛥PQR, ⦟R = 
𝝅

𝟐
. If 

𝒕𝒂𝒏
𝑷

𝟐
 𝒂𝒏𝒅 𝒕𝒂𝒏

𝑸

𝟐
  are the roots of 

equation a𝒙𝟐 + 𝒃𝒙 + 𝒄= 0 (a≠0), then 

show that a + b = c. 

Ans:- (a) tan
𝑝

2
+ tan

𝑄

2
=

 −
𝑏

𝑎
,   tan

𝑃

2
tan

𝑄

2
=
𝑐

2
         ∴

𝑃

2
+
𝑄

2
=
𝜋

4
 

∴ 
tan

𝑝

2
 + tan

𝑄

2

1 − tan
𝑝

2
tan

𝑄

2

= tan
𝜋

4
=  1 

⟹  
− 
𝑏

𝑎

1 − 
𝑐

𝑎

 = 1 ⟹ 𝑏 = 𝑐 − 𝑎 ⟹ 𝑎 +

𝑏 = 𝑐 

10. If (𝟏 + 𝒙)𝒏 = ∑ 𝒂𝒓𝑿
𝒓𝒏

𝒓=𝟎  𝒂𝒏𝒅 𝒃𝒓 =

𝟏 +
𝒂𝒓

𝒂𝒓−𝟏
 𝒂𝒏𝒅 ∏ 𝒃𝒓 = 

(𝟏𝟎𝟏)𝟏𝟎𝟎

𝟏𝟎𝟎!

𝒏
𝒓=𝟏  , then n 

= ? 

Ans:- (b) (1 + 𝑥)𝑛 = ∑ 𝑎𝑟
𝑛
𝑟=0 𝑎𝑟 = 𝑛𝐶𝑟 

 𝑏𝑟 = 1 +
𝑎𝑟

𝑎𝑟−1
=
𝑎𝑟+𝑎𝑟−1

𝑎𝑟−1
= 
𝑛𝐶𝑟+𝑛𝐶𝑟−1

𝑛𝐶𝑟−1
=

𝑛+1𝐶𝑟
𝑛𝐶𝑟−1

=
𝑛+1

𝑟
.𝑛𝐶𝑟−1

𝑛𝐶𝑟−1
=
𝑛+1

𝑟
 

 ∏𝑏𝑟

𝑛

𝑟=1

=
𝑛 + 1

1
.
𝑛 + 1

2
…
𝑛 + 1

𝑛
=
(𝑛 + 1)2

𝑛!
 

Given, 
(𝑛+1)𝑛

𝑛!
= 

(101)100

100!
 

∴ n = 100 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 4 

 

1. If A and B are real orthogonal matrices 

of the same order and |B|+|A|= 0.  

Prove that |A+ B|= 0 

Ans:-  |A|+|B|=0 

⇒ |A|= −|B| 
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|A|.|B|=−1    [∵ |B|=|𝐵−1|as they are 

orthogonal] 

Let, C = A (𝐴𝑇 + 𝐵𝑇)B 

⇒ |C|= |A𝐴𝑇𝐵 + 𝐴𝐵𝑇𝐵| =  |𝐵 + 𝐴| 

………..(i) 

And |C|= |A||𝐴𝑇 + 𝐵𝑇||𝐵| =  −|𝐴𝑇 + 𝐵𝑇| 

⇒ - |(𝐴 + 𝐵)𝑇| =  −|𝐴 + 𝐵|…………..(ii) 

|𝐴 + 𝐵| =  −|𝐴 + 𝐵| 

⇒ 2 |A +B|=0 

⇒ |A+ B|=0 

2. Determine whether there is a one –to – 

one function f: ℝ⟶ ℝ such that  

 f(𝒙𝟐)-[f(𝒙)]𝟐 ≥
𝟏

𝟒
∀ 𝒙 

Ans:- Take x= 0, then f(0) – (f(0))2 ≥
1

4
 

⇒ (f(0))2 + (
1

2
)2 −  2.

1

2
. f(0) ≤ 0 

⇒ (f(0) −
1

2
)2 ≤ 0 

⇒ f(0) −
1

2
 = 0 ⇒ f(0) =

1

2
  

Also, taking x=1 we have f(1) - 
1

2
 = 0 ∴ 

f(0) = f(1)= 
1

2
 

∴ This is not one -to –one function. 

 

3. if 0 < u < 1 and 𝒖𝒏+𝟏 = 𝟏 −

 √𝟏 − 𝒖𝒏  ∀ 𝒏 > 1, 

 Prove that (i) {𝒖𝒏} converges to zero 

  (ii) 𝐥𝐢𝐦
𝒏⟶∞

𝒖𝒏+𝟏

𝒖𝒏
= 
𝟏

𝟐
 

Ans:- (i) 0 < 𝑢1 < 1 

⇒ 0 < √1 − 𝑢1 < 1 

⇒ 0 < 1 -√1 − 𝑢1 < 1 

i.e. 0 < 𝑢2 < 1 

Similarly, 0 < 𝑢3 < 1 ….. and so on. 

Let 0 < 𝑢𝑛 < 1, then 0 < 1- √1 − 𝑢𝑛 < 1, 

i.e. 0 < 𝑢𝑛+1 < 1 

Thus {𝑢𝑛} is bounded. 

Again, 𝑢𝑛+1 − 𝑢𝑛= 1-√1 − 𝑢𝑛  -𝑢𝑛 

=(1- 𝑢𝑛)- √1 − 𝑢𝑛  

= (√1 − 𝑢𝑛 )
2 −√1 − 𝑢𝑛  

= √1 − 𝑢𝑛  (√1 − 𝑢𝑛 − 1) 

< 0 as 0 < √1 − 𝑢𝑛 < 1 

∴ 𝑢𝑛+1 < 𝑢𝑛       as 0 < √1 − 𝑢𝑛 <1 

∴ {𝑢𝑛} is monotonically decreasing.  ∴ {𝑢𝑛} 

converges two zero. 

(ii) Let  lim
𝑛⟶∞

𝑢𝑛 = 𝑙, then lim
𝑛⟶∞

𝑢𝑛+1

𝑢𝑛
 

∴ lim
𝑛⟶∞

1− √1−𝑙

𝑙
= lim
𝑛⟶∞

𝑙

𝑙(
1+ √1−𝑙

)
 = 

1

1+ √1−0
=
1

2
 

;  Since 𝑢𝑛 converges to zero. 

4. Let g: ℝ⟶ ℝ be a continuous function 

∋ g(x) = g (
𝒙−𝟏

𝟐
)   ∀ x. 

Show that g must be a constant function. 
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Ans:- g(x) = g (
𝑥−1

2
) 

⇒ g (
𝑥−1

2
) = g (

𝑥−1

2
−1

2
) = g (

𝑥−3

4
) 

Again putting x= 
𝑥−1

2
 

g (
𝑥−1

2
)= g (

𝑥−7

2
) and so on 

Generally we have, g(
𝑥−1

2
)= g (

𝑥−(2𝑛−1)

2𝑛
) 

∴ g (x)= g (
𝑥

2𝑛
− 1 +

1

2𝑛
) 

∴ lim
𝑛⟶∞

𝑔 (𝑥) = 𝑔 (−1) 

⇒ g (x)= g (-1)= constant ∀ x. 

5. Find the greatest and least value of the 

function f (x)= 𝒙𝟑 − 𝟑𝒙𝟐 + 𝟐𝒙 + 𝟏 in [2, 

3]. 

Ans:- f (x)= 𝑥3 − 3𝑥2 + 2𝑥 + 1 

f′(x)= 3𝑥2 − 6𝑥 + 2;    f′ (2) = 2 > 0;     f′ 

(3) =11 > f′ (2) 

∴ f(x) is an increasing function 

Note that f″(x) = 6x -6 > 0 ∀ x ∊ [2, 3] 

∴ f(x) is concave. 

Thus the function has min. value at x= 2 and 

max. Value at x= 3  

∴ minimum value= f(2)=1  ∴ maximum  

value = f(3) = 7 

 

6. Let F (x) = ∑ 𝒂𝒌𝒙
𝒌𝒏

𝒌=𝟎  , where 𝒂𝒌 satisfy 

∑
𝒂𝒌

𝒌+𝟏
= 𝟎𝒏

𝒌=𝟎  so that there exists a real 

root of     f (x) = 0 in the interval (0, 1) 

Ans:- F (x) = ∫ 𝑓(𝑡)𝑑𝑡 =
𝑥

0

 ∫ (∑ 𝑎𝑘𝑡
𝑘𝑛

𝑘=0 )𝑑𝑡
𝑥

0
 = ∑ 𝑎𝑘

𝑛
𝑘=0  .

𝑥𝑘+1

𝑘+1
 

Clearly F (x) satisfies the conditions of 

Rolle’s Theorem as F (0) = 0 and  

F (1) =∑
𝑎𝑘

𝑘+1
= 0𝑛

𝑘=𝑜  

Hence ∃ a ‘c’ ∊ (0, 1) ∋ F′(c) =0 ⇒ F (c) =0 

 

7.  Show that 1+ 
𝟏

𝟐
+
𝟏

𝟑
+
𝟏

𝟒
+⋯ .+ 

𝟏

𝒏
 can 

never be an integer value. 

Ans:- We are to show:- 1+ 
1

2
+
1

3
+
1

4
+

⋯ .+ 
1

𝑛
 = 

𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 ∀ 𝑛 > 1 

Let, P (n): 1+ 
1

2
+
1

3
+
1

4
+⋯ .+ 

1

𝑛
= 

𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 ∀ 𝑛 > 1 

When n=2, LHS= 1+ 
1

2
=
3

2
=

𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 

∴ P (2) is true. Let P (m)be true 

⇒ 1+ 
1

2
+
1

3
+
1

4
+⋯ .+ 

1

𝑚
=

𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
= 

𝑘

𝑟
(𝑠𝑎𝑦)  

Now, P (m+1) =  
𝑘

𝑟
 + 

1

𝑚+1
 

m is odd or even, 

But in case, it can be shown that 

P (m)= 
𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
 

∴P (n) is true for all n ∊ℕ 
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8. Give an example of a function f:[a, 

b]⟶ ℝ ∋ |f (x)- f (y)| < (x-y)∀ x, y ∊ [a, b]. 

Prove that any function satisfying the 

above condition also satisfies 

|∫ 𝒇 (𝒙)𝒅𝒙
𝒃

𝒂
− (𝒃 − 𝒂)𝒇(𝒂)|  ≤

𝟏

𝟐
(𝒃 − 𝒂)𝟐, 

provided f (x) is integrable on [a, b]. 

Ans:- f(x)= sin 𝑥 

| f (x)- f (y)| = |sin 𝑥 − sin 𝑦| 

= |2cos (
𝑥+𝑦

2
) sin (

𝑥−𝑦

2
)| ≤ 2|sin (

𝑥−𝑦

2
) | ≤

2|
𝑥−𝑦

2
|=|x- y| 

[∵ for x > 0, sin 𝑥 ≤ 𝑥] 

[|
f (x)− f (y)

𝑥−𝑦
|≤ 1   ∴ | lt

𝑥⟶𝑦

f (x)− f (y)

𝑥−𝑦
| ≤ 1⇒ 

|f′(y)|≤ 1] 

Let ∫ 𝑓(𝑥)𝑑𝑥
𝑢

−∞
= 𝐹(𝑢) 

By Taylor’s theorem:-  F(b)= F (a)+ (b-a)f′ 

(a)+ 
(𝑏−𝑎)2

2
𝑓″(𝑐 ∗) 

⇒ F (b)-F (a) = (b-a) f (a) + 
(𝑏−𝑎)2

⎿2
f′(c*) 

⇒ |∫ 𝑓 (𝑥)𝑑𝑥
𝑏

𝑎
− (𝑏 − 𝑎)𝑓(𝑎) |=

  
(𝑏−𝑎)2

2
| 𝑓′(𝑐 ∗)| ≤  

(𝑏−𝑎)2

2
 . 

 

9. Let f: ℝ → ℝ be differentiable and 

assume there is no x 𝒊𝒏 ℝ ℈ f(x) = f’(x) = 

0.  Show that S = {x| 0≤ 𝒙 ≤ 𝟏 ; 𝒇(𝒙) = 𝟎} 

is finite. 

Ans:- Consider 𝑓−1({0}). Since {0} is 

closed and f is continuous 𝑓−1({0}) is 

closed. Therefore, S=[0,1]∩ 𝑓−1({0}) is 

closed and bounded subset of ℝ. Hence, S is 

complete. 

Assume S is infinite. 

Then there is a limit point 𝑥 ∊ 𝑆; 

i.e. there is a sequence {𝑥𝑛} of distinct 

points in S which converges to x. 

Also, as all points are in S, 𝑓(𝑥𝑛) = 𝑓(𝑥) =

0 ∀ 𝑛 ∊ 𝑁. 

We now show that f’(x) =0. 

Since.|𝑥𝑛 − 𝑥|→0 ,  

so 

f’(x) = lim
𝑛→∞

𝑓(𝑥+(𝑥𝑛−𝑥))−𝑓(𝑥)

𝑥𝑛−𝑥
 

        = lim
𝑛→∞

𝑓(𝑥𝑛)−𝑓(𝑥)

𝑥𝑛−𝑥
 

        = 0 

The last equality holds since f(x) = f(𝑥𝑛) =0 

holds ∀ 𝑛 ∊ 𝑁. 

 

10. If f’(a) = f’’(a) = f’’’(a)=0 but 

𝒇(𝒊𝒗)(a)>0 and 𝒇(𝒊𝒗)(x) is continuous at 

x=a. Then show that f(a) is local 

minimum. 

Ans:- Toylor’s theorem states that 

f(x) = f(a) + (x-a)f’(a) +
(𝑥−𝑎)2

2!
f”(a) 

+……+
(𝑥−𝑎)𝑛

𝑛!
𝑓𝑛(𝑐), a < c < x 

Now, applying Taylor’s theorem, 

f(x) = f(a) +
(𝑥−𝑎)4

4!
𝑓(𝑖𝑣)(c) 
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=> f(x) –f(a)= 
(𝑥−𝑎)4

4!
𝑓(𝑖𝑣) ≥ 0  ∀ 𝑎 ∊ (𝑎−∊

, 𝑎+∊) 

i.e. f(x) ≥ f(a). 

So, f(a) is the local minimum. 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 5 

 

1.  The four digit number aabb is a 

square. Find the number. 

Ans:-  aabb = 𝑛2 

Then   𝑛2 = 1100a + 11b 

                   = 11(100a + b) 

                   = 11(99a + a + b) 

Since, 𝑛2 is divisible by112, we see that 11 | 

(a+b) 

i.e. a+b=11. Since 𝑛2 𝑖𝑠 a square , bcan’t be  

0,1,2,3,5,7 or 8 . Checking the remaining we 

see that 7744= 882 

2.  Find the maximum value of 

 𝒄𝒐𝒔𝜶𝟏. 𝒄𝒐𝒔𝜶𝟐. 𝒄𝒐𝒔𝜶𝒏, under the 

restrictions 

 0 <𝜶𝟏, 𝜶𝟐, …𝜶𝒏  ≤ 𝟐  𝒄𝒐𝒕𝜶𝟏. 𝒄𝒐𝒕𝜶𝟐. 𝒄𝒐𝒕𝜶𝒏 

= 1. 

Ans.  

Given, (cot 𝛼1). (cot 𝛼2)…. (cot 𝛼𝑛) = 1 

⟹cos𝛼1 . cos 𝛼2… . cos 𝛼𝑛 =

 sin 𝛼1 . sin 𝛼2… . sin 𝛼1 …………….(1) 

Now, (cos 𝛼1 . cos 𝛼2… . cos 𝛼𝑛)
2 =

(cos𝛼1 . cos 𝛼2… . cos 𝛼𝑛)(cos 𝛼1 . cos 𝛼2… . cos 𝛼𝑛) 

=

(cos𝛼1 . cos 𝛼2… . cos 𝛼𝑛)(

sin 𝛼1 . sin 𝛼2… . sin 𝛼𝑛) [from (1)] 

= 
1

2𝑛
sin 2𝛼1 . sin 2𝛼2… . sin 2𝛼𝑛 ≤

1

2𝑛
  

∴ (cos 𝛼1 . cos 𝛼2… . cos 𝛼𝑛)
2 ≤

1

2𝑛
 

∴cos 𝛼1 . cos 𝛼2… . cos 𝛼𝑛 ≤ √
1

2𝑛
 ≤

1

2
𝑛
2

  

[∵cos𝛼𝑖 ≥ 0] 

 

3. f(x, y) = 0 is a circle such that f(0, 𝜆) = 0 

and f(𝜆,0) = 0 have equal roots and f(1,1)= 

- 2 then the radius of the circle is 

(a) 4                             (b) 8                             

(c) 2                                    (d) 1 

Ans. (c) 

Let f(x, y) = 𝑥2 + 𝑦2 + 2𝑔𝑥 + 2𝑓𝑦 + 𝑐 =

0 𝑏𝑒 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑖𝑟𝑐𝑙𝑒 

f(0, 𝜆) = 𝜆2 + 2𝑓𝜆 + 𝑐 = 0  ………….(1) 

f(𝜆, 0) = 𝜆2 + 2𝑔𝜆 + 𝑐= 0…………….(2) 

∵ (1) and (2) have equal roots. 

∴ D= 0 

⟹ 𝑓2 = 𝑔2 = 𝑐 

∴ f(x, y) = 𝑥2 + 𝑦2 + 2𝑔𝑥 ± 2𝑓𝑦 + 𝑔2 = 0 

f(1, 1) = - 2  ⟹ 𝑔2 + 2𝑔 ± 2𝑔 + 4 = 0 
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when f = - g, 𝑔2 = −4 (not possible) 

∴ f = g and g = f = -2 and c = 4 

∴ Radius of circle is 2. 

4. If 
𝟏

𝟏!𝟗!
+

𝟏

𝟑!𝟕!
+

𝟏

𝟓!𝟓!
=
𝟐𝒎

𝒏!
, then 

orthocenter of the triangle having sides x 

- y + 1 = 0,                x + y + 3 = 0 and 2x + 

5y - 2= 0 is 

(a) (2m- 2n, m- n)             (b) (2m- 2n, n- 

m)             (c) (2m- n, n+ m)              (d) 

none 

Ans. (a) 

2𝑚

|�̲� ̲
=

2

|1̲|9̲
+

2

|3̲|7̲
+

1

|5̲|5̲
  

=
1

|1̲0̲
[2. 10𝐶1 + 2. 10𝐶3 + 10𝐶5  ]  

=
1

|10̲
[10𝐶1 + 10𝐶3 + 10𝐶5 + 10𝐶7 +

10𝐶9]    [∵  10𝐶1 = 10𝐶9 , 10𝐶3 = 10𝐶7]  

=
29

|10̲
   

∴ m= 9, n= 10 

Two sides of the given triangle are x - y + 1 

= 0 and x + y + 3 = 0.  

Clearly they are perpendicular. Therefore 

orthocenter of the triangle will be point of 

intersection of these two lines which is (-2, -

1). 

5. If the algebraic sum of the 

perpendicular distance from the points (3, 

1), (-1, 2), and (1, 3) to a variable line be 

zero, and 

|
𝒙𝟐 + 𝟏 𝒙 + 𝟏 𝒙 + 𝟐
𝟐𝒙 + 𝟑 𝟑𝒙 + 𝟐 𝒙 + 𝟒
𝒙 + 𝟒 𝟒𝒙 + 𝟑 𝟐𝒙 + 𝟓

| = 𝒎𝒙𝟒 +

𝒏𝒙𝟑 + 𝒑𝒙𝟐 + 𝒒𝒙 + 𝒓 be an identity in x, 

then the variable line always passes 

through the point 

(a) (-r, m)                         (b) (-m, r)                           

(c) (r, m)                             (d) (2r, m) 

Ans. (c)  

Let the variable line be ax + by + c= 0 

Given, 

3𝑎+𝑏+𝑐

√𝑎2+𝑏2
+
−𝑎+2𝑏+𝑐

√𝑎2+𝑏2
+
𝑎+3𝑏+𝑐

√𝑎2+𝑏2
= 0  

⟹ 3a+ 6b+ 3c⟹ 0 ⟹ a+ 2b +c = 0 

⟹ line ax + by +c = 0 passes through the 

point (1, 2) 

Also in the given identity putting x= 0, we 

get r= 1 and equating the coefficient of  𝑥4, 

we get     m = 6 – 4 = 2. 

6. If a, b, c are positive integers such that 

abc + ab + bc + ca + a + b + c = 1000. 

Find the value of a + b +c ? 

Ans:- abc +ab + ac + bc +a + b+ c = 1000 

⇒ a (bc +b+ c)+ a+ b+ c+ bc +1 = 1000+1 

⇒ a (bc +b+ c+ 1)+ (b+ c+ bc+1) = 1001 

⇒ (a+ 1) (b+ 1) (c+ 1) = 1001 = 13× 7 ×

11 

⇒ a= 12, b= 6, c = 10, 

∴ a + b + c = 28. 
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7. Find minimum value of 𝟐𝐜𝐨𝐬 𝒙 +

𝟐𝐬𝐢𝐧𝒙, 𝟎 ≤ 𝒙 ≤ 𝟐𝝅 ? 

Ans:-  By AM ≥ 𝐺𝑀 inequality, we have 

 2cos𝑥 + 2sin𝑥 ≥ 2 √2cos𝑥+sin𝑥 

                         = 2. 2 
sin𝑥+cos𝑥

2
 

Note that the RHS will be minimum if 

sin 𝑥 + cos 𝑥 is minimum, i.e. when both sin 

x and cos x are minimum, i.e. at x= 2250, 

sin x = -
1

√2
= cos 𝑥 

∴  2cos𝑥 + 2sin𝑥 ≥ 2.2 
−
2

√2

2
   = 2.2

−
1

√2          

 ∴ The minimum value is 2
1 −

1

√2  

 

8. f (x) = 
𝒆𝟐𝒙−𝟏

𝟏+𝒆𝟐𝒙−𝟏 
. Then f(

𝟏

𝟏𝟐𝟑𝟒
)+ f(

𝟑

𝟏𝟐𝟑𝟒
)+ … 

+ f (
𝟏𝟐𝟑𝟏

𝟏𝟐𝟑𝟒
)+ f (

𝟏𝟐𝟑𝟑

𝟏𝟐𝟑𝟒
)= ? 

Ans:-  f (
1

2
)= 

𝑒1−1

1+𝑒1−1 
  = 

1

2
 

Now, f (x) + f(1-x)=1 

So, f (
1

1234
)+ f(1- 

1

1234
)=1 

⁞ 

Now there are 308 terms up to f (
615

1234
)+ f (1- 

615

1234
)= 1 

Now, f(
617

1234
)+ f(1-

617

1234
) =1 

⇒ f (
1

2
)+ f (

1

2
) = 1 

i.e. f (
617

1234
) = ½ 

∴ f (
1

1234
) + f (

3

1234
) + …+ f (

615

1234
) +f (

617

1234
) + 

f (
619

1234
) + …+ f (

1233

1234
) 

= 308 + 0.5 = 308.5 

 

9. Show that 
𝒃−𝒂

𝟏+𝒃𝟐
 < 𝐭𝐚𝐧−𝟏 𝒃 − 𝐭𝐚𝐧−𝟏 𝒂 <

𝒃−𝒂

𝟏+𝒂𝟐
. 

Ans:- Let f(x)=tan−1 𝑥. 

From Mean-value theorem,
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓′(𝑐) 

→ 
tan−1 𝑏−tan−1 𝑎

𝑏−𝑎
= 𝑓′(𝑐) =

1

1+𝑐2
 ; a < c < b. 

→ tan−1 𝑏 − tan−1 𝑎 = 
𝑏−𝑎

1+𝑐2
. 

 ∴  
𝑏−𝑎

1+𝑏2
 <
tan−1 𝑏−tan−1 𝑎 

1
 < 

𝑏−𝑎

1+𝑎2
 . 

 

10. Let s=√𝟏 + √𝟐 + √𝟑 +⋯+ √𝟏𝟎𝟎𝟎𝟎 

and I=∫ √𝒙 𝒅𝒙
𝟏𝟎𝟎𝟎

𝟎
. Show that I ≤ 𝒔 ≤ 𝑰 +

𝟏𝟎𝟎. 

Ans:- I=∫ √𝑥 𝑑𝑥
1000

0
= ∫ √𝑥 𝑑𝑥

1

0
+

∫ √𝑥 𝑑𝑥
2

1
+⋯+ ∫ √𝑥 𝑑𝑥

10000

9999
 

→∫ 0. 𝑑𝑥 + ∫ √1  
2

1

1

0
dx 

+….+∫ √9999 𝑑𝑥
10000

9999
≤ 𝐼 ≤ ∫ 1. 𝑑𝑥 +

1

0

∫ √2  𝑑𝑥 +⋯+ ∫ √10000 
10000

9999

2

1
 dx 

→√1 +√2 +…..+√9999 ≤ 𝐼 ≤ √1 +√2 

+…..+√10000 

→I ≤ 𝑆 

Also, S ≤ 𝐼 + √10000 
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∴ I ≤ 𝑆 ≤ 𝐼 + 100 

 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 6 

 

1. Prove that  

1 < 
𝟏

𝟏𝟎𝟎𝟏
+

𝟏

𝟏𝟎𝟎𝟐
+⋯+

𝟏

𝟑𝟎𝟎𝟏
< 

𝟒

𝟑
 

Ans:- consider 2001 numbers 
1

𝑘
, 1001 ≤

𝑘 ≤ 3001 

Using AM- HM inequality, we get 

(∑ 𝑘3001
𝑘=1001 )(∑

1

𝑘
≥ (2001)23001

𝑘=1001  

But ∑ 𝑘3001
𝑘=1001 = (2001)2 

Hence we get the inequality ∑
1

𝑘
> 13001

𝑘=1001  

On the other hand grouping 500 terms at a 

time, we also have  

S= ∑
1

𝑘
< 

500

1000
+

500

1500
+

500

2000
+

500

2500
+3𝑛+1

𝑘=𝑛+1

1

3001
< 

1

2
+
1

3
+
1

4
+
1

5
+

1

3001
=
3851

3000
<
4

3
 

[Remarks:- if S =∑
1

𝑘

3001
𝑘=1001 , there are (2n+ 

1) terms in the sum and the middle term is  

1

2𝑛+1
; then  

29

27
< 𝑆 <

7

6
 ]. 

2. How many ordered triplet (x, y, z) of 

non zero real numbers have the property 

that each number is the product of the 

other two? 

Ans:- x = yz, y = zx , z = xy 

∴ xyz = (𝑥𝑦𝑧)2 

i.e. xyz= 0 or 1 

now, xyz = 𝑥2 = 𝑦2 = 𝑧2 

⇒ |x|= |y|= |z|= 1 

However the remaining 4 cases are: (1, 1, 1), 

(-1, -1, -1), (-1, 1, -1) or (1, -1, -1); i.e. it has 

4 solutions. 

3. If X= {n: n is a positive integer, n≤ 𝟓𝟎}, 

A = {n ∊ X:n is even} and B= {n ∊ X: n is 

a multiple of 7}, then what is the number 

of elements in the smallest subset of X 

containing both A and B ? 

Ans:- The number of integers ≤n and 

divisible by k is given by [
𝑛

𝑘
], where [ .] 

denotes the greatest integer function. 

Accordingly, n(A)= [
50

2
] = 25 , n(B)= [

50

7
] = 

7 

n (A∩ 𝐵)= [
50

14
]=3. 

n (A ∪ B)= 𝑛 (𝐴) +  𝑛 (𝐵) − n (A ∩ 𝐵)= 

25+7-3 

=29.

  

4. If  
𝟏

𝒙(𝒙+𝟏)(𝒙+𝟐)….(𝒙+𝒏)
= ∑

𝑨𝒓

𝒙+𝒓
,   𝒏

𝒓=𝟎 then Ar 

= ? 

Ans:- By method of representation for 

partial fraction Ar , is obtained by putting x+ 

r= 0, 

 i.e. x= - r in all factors, except (x+ r). 
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∴ Ar = 
1

−𝑟(−𝑟+1)…(−𝑟+𝑟+1)(−𝑟+𝑟+1)(−𝑟+𝑟+2)…….(−𝑟+𝑛)
 

= 
1

(−1)𝑟{𝑟!}{(𝑛−𝑟)!}
 

 

5. If 𝒂𝟏, 𝒂𝟐, … . , 𝒂𝒏 are non-ve 

and 𝒂𝟏, 𝒂𝟐, … . , 𝒂𝒏 = 𝟏. Show (1+𝒂𝟏) 

(1+𝒂𝟐)….. (1+𝒂𝒏)≥ 𝟐𝒏 

Ans:- By AM ≥ GM 

(
1+𝑎𝑖

2
)≥ √𝑎𝑖  ∀ 𝑖 = 1(1)𝑛 

Multiplying all these 

(1+𝑎1) (1+𝑎2)….. (1+𝑎𝑛)≥ 

2𝑛√𝑎1, 𝑎2, … . , 𝑎𝑛 = 2𝑛 

 

 6. If 𝒂𝒊 > 0  ∀ 𝑖 = 1(1)𝑛. Prove that 

(𝒂𝟏 + 𝒂𝟐 + … .+ 𝒂𝒏) (
𝟏

𝒂𝟏
+

𝟏

𝒂𝟐
+⋯+

𝟏

𝒂𝒏
) > 𝒏𝟐 

Ans:- AM> GM 

𝑎1, 𝑎2, … . , 𝑎𝑛
𝑛

> (𝑎1, 𝑎2, … . , 𝑎𝑛)
1
𝑛 

And       

1

𝑎1
+
1

𝑎2
+⋯+

1

𝑎𝑛

𝑛
> (

1

𝑎1
.
1

𝑎2
. … .

1

𝑎𝑛
)
1

𝑛 

⇒ (𝑎1 + 𝑎2 + … .+ 𝑎𝑛) >

𝑛(𝑎1, 𝑎2, … . , 𝑎𝑛)
1

𝑛 

And 
1

𝑎1
+

1

𝑎2
+⋯+

1

𝑎𝑛
> n(

1

𝑎1…….𝑎𝑛
)
1

𝑛 

⇒ (𝑎1 + 𝑎2 + … .+ 𝑎𝑛) (
1

𝑎1
+

1

𝑎2
+⋯+

1

𝑎𝑛
) >  𝑛2 

 

7. Show that  
𝒂𝟏

𝒂𝟐
+
𝒂𝟐

𝒂𝟑
+⋯+

𝒂𝒏−𝟏

𝒂𝒏
+
𝒂𝒏

𝒂𝟏
> 𝑛 

Ans:-  AM > GM 

1

𝑛
(
𝑎1
𝑎2
+
𝑎2
𝑎3
+⋯+

𝑎𝑛
𝑎1
) >  (

𝑎1
𝑎2
.
𝑎2
𝑎3
. … .

𝑎𝑛
𝑎1
) 

or, (
𝑎1

𝑎2
+
𝑎2

𝑎3
+⋯+

𝑎𝑛

𝑎1
) > 𝑛 

 

8. If 𝒂𝟏, 𝒂𝟐, … . , 𝒂𝒏 be non- negative real 

numbers such that  

  𝒂𝟏 + 𝒂𝟐 + 𝒂𝟑 + … .+ 𝒂𝒏 = 𝒎, then 

prove that ∑ 𝒂𝒊𝒂𝒋 ≤
𝒎𝟐

𝟐𝒊<𝑗  

Ans:- 𝑚2 = (𝑎1 + … .+ 𝑎𝑛)
2 

𝑚2 = 𝑎1
2 +⋯+ 𝑎𝑛

2 + 2∑ 𝑎𝑖𝑎𝑗𝑖<𝑗  

⇒ ∑ 𝑎𝑖𝑎𝑗 ≤
𝑚2

2𝑖<𝑗 .                    [∵𝑎1
2 +⋯+

𝑎𝑛
2 ≥ 0] 

 

9. Let A be a set containing n elements. If 

the number of elements in the set,  

B = {(x, y, z) : x ∊A, y ∊A, z ∊A and x, y, z, 

are not all distinct}  is equal to 280,  

then find the value of n? 

Ans:- (b) 

According to question 𝑛3 − (𝑛
3
). 3! = 280 

∴ 𝑛3 − 𝑛(𝑛 − 1)(𝑛 − 2) = 280 

⟹ n(𝑛2 − 𝑛2 + 3𝑛 − 2)= 280 

⟹ n(3n- 2)= 280= 10(3.10- 2) 
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∴ n= 10. 

 

10. If the maximum number of trails 

required to open all locks when there are 

n locks and n keys is 105, then what is the 

value of n?  

Ans:- Max. number of trails to open the first 

lock = n – 1  

Max. number of trails to open the second 

lock = n – 2  and so on. 

∴ Maximum number of trails to open all the 

locks = ( n- 1) + (n -2) +…+1 = 
(𝑛−1)𝑛

2
 

Given, 
(𝑛−1)𝑛

2
= 105 

⟹ n(n -1)= 210= 15× 14 

∴ n= 15 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 7 

 

1. Find the no. of real roots of the 

equation  

2cos (
𝒙𝟐+𝒙

𝟔
) =  𝟐𝒙 + 𝟐−𝒙 

Ans:- cos (
𝑥2+𝑥

6
) =  

2𝑥+2−𝑥

2
≥ √2𝑥 + 2−𝑥 =

1, by AM ≥ GM 

But cos (
𝑥2+𝑥

6
) ≤ 1 

∴ cos (
𝑥2+𝑥

6
) = 1 = cos (

𝑛𝜋

2
) 

∴ 
𝑥2+𝑥

6
= 

𝑛𝜋

2
 

⇒ 𝑥2 + 𝑥 − 3𝑛𝜋 = 0 

Here 𝑏2 − 4𝑎𝑐 = 1 − 4.1(−3𝑛𝜋) 

= 1+12 𝑛𝜋 ≥ 0 ∀ 𝑛 = 0, 1, 2, …… 

∴there are infinitely many roots. 

2. Find the no. of real roots of the 

polynomial f(x) = 𝒙𝟓 + 𝒙𝟑 − 𝟐𝒙 + 𝟏. 

Ans:- Descarte’s sign rule:- 

f(x)= 0 has two sign changes. 

∴ No. of +ve roots ≤ 2 

f(-x)= 0 = -𝑥5 − 𝑥3 + 2𝑥 + 1 

-    -     +       + 

∴f(-x) has the one sign change. 

∴no. of –ve roots ≤1 

⇒ there is no negative roots,  

∴ As complex roots occure in pair, so, there 

is one +ve roots. 

3. Let f(x)= 𝒙𝟑 + 𝟑𝒙 − 𝟐 , x ∊ ℝ, Show 

that f(x)=0 has only one real root. 

Ans:- f′(x)= 3(𝑥 + 1)2 > 0 

f(-1)= -6  < 0, f(2)> 0 

∴ It has one root. 

4. If 𝐥𝐭
𝐱→∞

𝐟(𝐱) = 𝟏 𝐚𝐧𝐝 𝐥𝐭
𝐱→∞

𝐟′(𝐱) = 𝛂  , 

find 𝛼 . 

Ans:- Let f(x)=1+
𝑘

𝑥𝑝
, p> 0 
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Then lt
𝑥→∞

𝑓(𝑥) = 1   

∴ 𝛼= lt
𝑥→∞

𝑓′(𝑥) = lt
𝑥→∞

𝑘(−𝑝)

𝑥𝑝+1
= 0  

5. Let f (x)= {
𝒙  𝒊𝒇 𝒙 ∊ [𝟎, 𝟐]
𝟎  𝒊𝒇 𝒙 ∉ [𝟎, 𝟐]

 and g(x)= 

{
𝟏  𝒊𝒇 𝒙 ∊ [𝟎, 𝟐]
𝟎  𝒊𝒇 𝒙 ∉ [𝟎, 𝟐]

 

Let A = {(x, y): x+ y ≤ 𝟑}, then find the 

value of the integral ∫ ∫𝒇(𝒙)𝒈(𝒚)𝒅𝒙𝒅𝒚
𝑨

 

ANS:- ∫ ∫𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
𝐴

 

= ∫∫𝑥 .1. 𝑑𝑥𝑑𝑦 

{(x, y): 0 < x < y < 2 & x+ y≤ 3}     where      

0 < x < 1   0 < y < 2 & 1≤ x < 2 , 0 ≤ 𝑦 <

3 − 𝑥 

= ∫ ∫ 𝑥𝑑𝑦𝑑𝑥 + ∫ (∫ 𝑥𝑑𝑦
3−𝑥

0
)𝑑𝑥

2

1

2

0

1

0
 = 1+ 

[
3

2
𝑥2 −

𝛼3

3
]
1

2

 = 
19

6
. 

6. Using the change of variable evaluate 

∫ ∫𝒙𝒚𝒅𝒙𝒅𝒚
𝑹

, when the region R is 

bounded by the curves xy = 1, xy  = 3,  y = 

3x,  y = 5x in the 1st coordinate. 

Ans:-  

Then transformation domain is D = {(u, v): 

1 ≤ 𝑢 ≤ 3, 3 ≤ 𝑣 ≤ 5} 

∴ y = √𝑢𝑣 , 𝑥 =  √
𝑢

𝑣
 

Jacobian of the transformation is  

J = |

1

√𝑣
.
1

2√𝑢
√𝑢(−

1

2
.
1

𝑣√𝑣
)

√𝑣.
1

2√𝑢
√𝑢.

1

2√𝑣

| 

= 
1

4𝑣
+
1

4
.
1

𝑣
=

1

2𝑣
. 

I = ∫ ∫ 𝑢.
3

1

5

3

1

2𝑣
𝑑𝑢𝑑𝑣  = [[

𝑢2

4
]
1

3

  [𝑙𝑛𝑣]3
5  = 

log (
25

9
) . 

7. Find the value of 

∫ ∫
𝟐

𝟏+𝒙𝟐+𝒚𝟐
𝒅𝒙𝒅𝒚

𝒙𝟐+𝒚𝟐≤𝟏
 . 

Ans:- Let x = rcos𝜃, y=  r sin𝜃 

As 𝑥2 + 𝑦2 ≤ 1 

∴ 0< r < 1 

& 0 < 𝜃 < 2𝜋                                                         

J= |
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
𝑟𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃

| = 𝑟 

∴ I = ∫ ∫
2

1+𝑟2
𝑟. 𝑑𝑟𝑑𝜃

1

0

2𝜋

0
 

= [|n (1 + 𝑟2)]1
0
  [𝜃]

2𝜋
0

 

= 2𝜋log 𝑒2. 

8. Give an example of each of the types of 

functions 

(a) The function which is continuous 

but not differentiable at only 

(i) One  point                  (ii) 

two points                          

(iii) ten points 

(b) The function which is 

discontinuous at 

(i) Four points                 (ii) 15 

points. 

(c) The function which is 

differentiable once but not twice at  

(i) One points                  (ii) 

three points. 

Ans:- (a) (i) f(x)= |x|  
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               (ii) f(x)= |x|+|x-1| 

               (iii) f(x)=∑ |𝑥 − 𝑘|10
𝑘=1  

(b) (i)         f(x)= [x],  0< x < 5 

(ii) f(x)= [x],  0 < x < 16 

 

(c) (i) f(x)= {
−𝑥2, 𝑥 ≤ 0

𝑥2, 𝑥 > 0
 

= 𝑥2𝑠𝑖𝑔𝑛(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑠𝑖𝑔𝑛(𝑥) =

{
−1  , 𝑖𝑓 𝑥 ≤ 0
1  , 𝑖𝑓 𝑥 > 0

  

(ii) f(x)= 𝑥2𝑠𝑖𝑔𝑛(𝑥) + (𝑥 −

1)2𝑠𝑖𝑔𝑛(𝑥 − 1) + (𝑥 −

2)2𝑠𝑖𝑔𝑛(𝑥 − 2). 

9. If the angles of a triangle are in the 

ratio 1: 2: 3, then the sides opposite to the 

respective angles are in the ratio  

(a) 1 : √𝟐  : √𝟑                          (b) 1 : √𝟑 : 

2                        (c) 1 : √𝟐 :3                      

(d) 1: 2: 3 

Ans:- (b) 

Let the angles be x, 2x, 3x, then 

6x = 180° ⟹ 𝑥 = 30° 

∴ Angles are 30°, 60°, 90° 

∴ Ratio of sides is 

Sin 30° ∶ sin 60° : sin 90°  𝑖. 𝑒. 1 ∶ √3 ∶ 2 

10. If a⃗ +b⃗ +c⃗ are non-coplanar, then 

[�⃗⃗⃗�+𝟐�⃗⃗⃗��⃗⃗⃗�+𝟐�⃗⃗��⃗⃗�+𝟐�⃗⃗⃗�]

[�⃗⃗⃗��⃗⃗⃗��⃗⃗�]
 = 

(a) 3                                       (b) 9                                      

(c) 8                                     (d) 6 

Ans:- (b) 

[�⃗� + 2 �⃗⃗��⃗⃗� + 2 𝑐𝑐 +  2 𝑎⃗]

[�⃗��⃗⃗�𝑐⃗]

=
[(�⃗� + 2 �⃗⃗�) × (�⃗⃗� + 2 𝑐). (𝑐 +  2 𝑎⃗)]

[�⃗��⃗⃗�𝑐⃗]

=
9[�⃗��⃗⃗�𝑐⃗]

[�⃗��⃗⃗�𝑐⃗]
= 9 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 8 

 

1. Find the maximum value of (𝟏 +

𝟐𝒙)𝟐(𝟑 − 𝟐𝒙). 

Ans:- AM ≥ 𝐺𝑀 

⇒ 
2.
1+2𝑥

2
+(3−2𝑥)

2+1
 ≥ 3 √(

1+2𝑥

2
)
2

(3 − 2𝑥) 

⇒ (1 + 2𝑥)2(3 − 2𝑥) ≤ 22(
4

3
)3 

2. Minimize 3x+ 4y subject to 𝒙𝟐𝒚𝟑 = 𝟔. 

Ans:- AM ≥ 𝐺𝑀 

⇒ 

3𝑥

2
+
3𝑥

2
+
4𝑦

3
+
4𝑦

3
+
4𝑦

3

5
 ≥ 5√(

3𝑥

2
)2(

4𝑦

3
)3 

⇒ 
3𝑥+4𝑦

5
 ≥ 2, 𝑎𝑠 𝑥2𝑦3 = 6 

⇒ 3x + 4y ≥ 10 

(3x+ 4y) attains its minimum sub. To 

𝑥2𝑦3 = 6 when ‘=’holds in AM ≥ 𝐺𝑀 

i.e. iff  
3𝑥

2
=
4𝑦

3
 ⇒ 𝑥 =

8

9
𝑦 

∴ 𝑥2𝑦3 = 6 ⇒ 𝑦 =  
3

2
 , 𝑥 =  

4

3
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3.  Evaluate the determinant of the matrix 

𝛥= (
𝟏 + 𝒙𝟏𝒚𝟏 ⋯ 𝟏 + 𝒙𝒏𝒚𝒏

⋮ ⋱ ⋮
𝟏 + 𝒙𝒏𝒚𝟏 ⋯ 𝟏 + 𝒙𝒏𝒚𝒏

) 

Ans:- (a) |𝛥|  =  𝑑𝑒𝑡 (
1  𝑥1  0 ⋯ 0
⋮ ⋱ ⋮

1  𝑥𝑛   0 ⋯ 0
) ×

𝑑𝑒𝑡 (
1  𝑦1  0 ⋯ 0
⋮ ⋱ ⋮

1  𝑦𝑛   0 ⋯ 0
) = 0 

 

4. Do there exist function f : R⟶R and g: 

R⟶R ∋ 

f (g (x))= 𝒙𝟐 𝒂𝒏𝒅 𝒈 (𝒇(𝒙)) = 𝒙𝟑 ∀ 𝒙 ∋ ℝ 

Ans:- f(𝑥3)= f (g(f(x))= {𝑓(𝑥)}2 

Now x ∊ {-1, 0} ⇒𝑥3= x ⇒ f(x) = {𝑓(𝑥)}2 

⇒ x ∊ {0, 1} 

Hence ∃ different a, b ∊ {-1, 0, 1} such that 

f(a)= f(b) But then 𝑎3 = 𝑔 (𝑓(𝑎)) =

𝑔(𝑓(𝑏)) = 𝑏3, a contradiction . Thus the 

function f and g satisfying the given 

conditions don’t exist. 

5. Let f be a twice differentiable function 

such that  

f″(x) = -f (x) ; f′ (x) =g (x) and h (x) =𝒇𝟐 

(x) +𝒈𝟐 (x). Given that h (5) =1 and find 

h(10). 

Ans:-    Take      f (x) =sinx 

                              f′ (x) = -cosx=g (x)  

                              f″ (x) =- sinx= f (x) 

h(x) = 𝑓2 (x) +𝑔2 (x) 

= 𝑠𝑖𝑛2 x+𝑐𝑜𝑠2 x =1 

∴ h (5) = h (10) = 10. 

6. Test the convergence of the series x+ 

𝟐𝟐𝒙𝟐

𝟐!
+
𝟑𝟑𝒙𝟑

𝟑!
+
𝟒𝟒𝒙𝟒

𝟒!
+ [Assume x> 0 and 

examaine all possible cases] 

Ans: - we have  𝑢𝑛 =
𝑛𝑛.𝑥𝑛

𝑛!
  

𝑢𝑛+1= 
(𝑛+1)𝑛+1.𝑥𝑛+1

(𝑛+1_!
 

⤇ 
𝑢𝑛

𝑢𝑛+1
=
1

𝑥
.
𝑛𝑛

𝑛!
.
(𝑛+1)!

(𝑛+1)𝑛+1
 

= 
1

𝑥
.

𝑛𝑛

(𝑛+1)𝑛
=
1

𝑥
.

𝑛𝑛

𝑛𝑛{1+(1/𝑛)}𝑛
 

⤇ lim
𝑢𝑛

𝑢𝑛+1
=
1

𝑥
𝑙𝑖𝑚

1

[1+
1

𝑛
]𝑛
=  

1

𝑒𝑥
. 

∴by ratio test, ∑𝑢𝑛 is convergent if 
1

𝑒𝑥
>

1 ⤇ 𝑥 <
1

𝑒
 and ∑𝑢𝑛 is divergent if x >

1

𝑒
  

But ratio test fails when x = 
1

𝑒
. Here we can 

use logarithm test. 

When x = 
1

𝑒
, we have

𝑢𝑛

𝑢𝑛+1
= 𝑒.

1

(1+
1

𝑛
)𝑛

 

⤇𝑛𝑙𝑜𝑔
𝑢𝑛

𝑢𝑛+1
= 𝑛 [14 − 𝑛𝑏𝑙𝑜𝑔{1 + 1/𝑛}] 

=n[1-n(
1

𝑛
−

1

2𝑛2
+

1

3𝑛3
……)] 

= n[
1

2𝑛
-
1

3𝑛2
+⋯.] 

= 
1

2
−

1

3𝑛
+⋯ 

∴ lim
𝑛→∞

𝑛𝑙𝑜𝑔
𝑢𝑛

𝑢𝑛+1
=
1

2
< 1, 

∴ ∑𝑢𝑛 is divergent at x= 
1

𝑒
. 
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7. Find the maximum value of ∬𝒅𝒙𝒅𝒚 as 

a function of m , 0 < m< 1, where, limit of 

integration is 𝛥= {(x, y): 
𝒙𝟐

𝒎
+

𝒚𝟐

𝟏−𝒎
≤ 𝟏}. 

Ans:- ∬dxdy  = 

√𝑚 √1 −𝑚 ∫ (∫ 𝑟𝑑𝑟
1

0
) 𝑑𝜃

2𝜋

0
 ; where 

𝑥

√𝑚
=

𝑟𝑐𝑜𝑠𝜃,
𝑦

√1−𝑚
 = rsin𝜃 

                        = 𝜋 √𝑚 √1 −𝑚 

                        ≤ 𝜋. 
𝑚+1−𝑚

2
  (∵ AM≥ 𝐺𝑀) 

                         = 
𝜋

2
. 

8. Find maximum value of xyz subject to 

𝒙𝟐 + 𝟐𝒚𝟐 + 𝟗𝒛𝟐 = 𝟔. 

Ans:- AM≥ 𝐺𝑀  =>
𝑥2+2𝑦2+9𝑧2

3
 ≥

√𝑥2. 2𝑦2. 9𝑧2
3

 

⇒ (
𝑥2+2𝑦2+9𝑧2

3
)3 ≥ 18𝑥2𝑦2𝑧2 

⇒ 23 ≥ 18𝑥2𝑦2𝑧2 

⇒ (𝑥𝑦𝑧)2 ≤ 
8

18
 ⇒ xyz ≤ 

2

3
. 

 

9. If in a 𝜟𝑨𝑩𝑪,∑ 𝐜𝐨𝐬 𝟑𝑨  = 1, then show 

that 𝛥ABC is an obtuse angled triangle. 

Ans:-  

We have A+ B + C= 𝜋 and ∑cos 3𝐴 =

1 𝑏𝑢𝑡 ∑ cos 3𝐴 = 1 +

4 sin
3𝐴

2
. sin

3𝐵

2
. sin

3𝑐

2
  

⟹ sin
3𝐴

2
. sin

3𝐵

2
. sin

3𝑐

2
 = 0  

𝑖. 𝑒. sin
3𝐴

2
= 0 𝑜𝑟 sin

3𝐵

2
=0 𝑜𝑟 sin

3𝑐

2
= 0   

𝑜𝑟 𝐴 =
2𝜋

3
𝑜𝑟 𝐵 =

2𝜋

3
 𝑜𝑟 𝐶 =

2𝜋

3
 

 𝐴𝑙𝑠𝑜, 𝑟 = (𝑠 − 𝑎) tan
𝐴

2

= (𝑠 − 𝑏) tan
𝐵

2

= (𝑠 − 𝑐) tan
𝐶

2
  

⟹ 𝑟 = √3(𝑠 − 𝑎)𝑜𝑟 𝑟 =  √3(𝑠 − 𝑏)𝑜𝑟  𝑟

=  √3(𝑠 − 𝑐)  

 

10. If (𝟏 + 𝒙 + 𝒙𝟐 + 𝒙𝟑)𝟏𝟎𝟎 =

∑ 𝒃𝒓𝒙
𝒓𝟑𝟎𝟎

𝒓=𝟎  𝒂𝒏𝒅 𝒌 =

 ∑ 𝒃𝒓
𝟑𝟎𝟎
𝒓=𝟎 , 𝒕𝒉𝒆𝒏 ∑ 𝒓. 𝒃𝒓

𝟑𝟎𝟎
𝒓=𝟎  is 

(a) 50.𝟒𝟏𝟎𝟎                              (b) 150. 𝟒𝟏𝟎𝟎                      

(c) 300. 𝟒𝟏𝟎𝟎              (d) none of these 

Ans:- (b) 

Given (1 +  𝑥 + 𝑥2 + 𝑥3)𝑛 = ∑ 𝑏𝑟𝑥
𝑟3𝑛

𝑟=0  

 𝑜𝑟(1 +  𝑥 + 𝑥2 + 𝑥3)𝑛 = 𝑏0 + 𝑏1𝑥 +

𝑏2𝑥
2 +⋯+ 𝑏3𝑛𝑥

3𝑛   …….(1) 

Putting (1/x) 

 In place of x, we get 

(1 +  𝑥 + 𝑥2 + 𝑥3)𝑛 = 𝑏0𝑥
3𝑛 + 𝑏1𝑥

3𝑛−1 +

𝑏3𝑛     ………..(2) 

Equating the co- efficient of similar powers 

of x on the R.H.S. of (1) and (2) we have 

𝑏0 = 𝑏3𝑛𝑏1 = 𝑏3𝑛−1, 𝑏𝑟 =  𝑏3𝑛−𝑟  

Given, k= ∑ 𝑏𝑟
3𝑛
𝑟=0   …..(3) 
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Let y= ∑ 𝑟 𝑏𝑟
3𝑛
𝑟=0  

 

Then y = ∑ [3𝑛 − (3𝑛 − 𝑟)]𝑏𝑟
3𝑛
𝑟=0  =

3𝑛 ∑  𝑏𝑟
3𝑛
𝑟=0 − ∑ (3𝑛 − 𝑟)𝑏𝑟

3𝑛
𝑟=0  

= 3𝑛𝑘 −∑(3𝑛 − 𝑟)𝑏3𝑛−𝑟

3𝑛

𝑟=0

[∵ 𝑏𝑟 = 𝑏3𝑛−𝑟] 

= 3𝑛𝑘 −∑𝑟 𝑏𝑟

3𝑛

𝑟=0

= 3𝑛𝑘 − 𝑦  

∴ 2𝑦 = 3𝑛𝑘 ⟹ 𝑦 =
3𝑛𝑘

2
  

Putting x= 1 in the given expansion, 

We get ∑  𝑏𝑟
𝑛
𝑟=1 = 4𝑛⟹ 𝑘 = 4𝑛 

Putting n= 100, we get 

y= 
300.4100

2
= 150. 4100 

 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 9 

 

1. Evaluate ∫ |
𝟏

𝟐
+ 𝐜𝐨𝐬 𝒙 |𝒅𝒙

𝝅

𝟎
 

Ans:- note that, |
1

2
+ cos 𝑥| =

 {

1

2
+ cos 𝑥  𝑖𝑓 cos 𝑥 >  −

1

2

−
1

2
− cos 𝑥  𝑖𝑓 cos 𝑥 <  −

1

2

 

                                             = 

{

1

2
+ cos 𝑥  𝑖𝑓𝑥 <  

2𝜋

3

−(
1

2
+ cos 𝑥) 𝑖𝑓 𝑥 >

2𝜋

3
 
 

I = ∫ (
1

2
+ cos 𝑥)𝑑𝑥

2𝜋

3
0

− ∫ (
1

2
+ cos 𝑥)𝑑𝑥

𝜋
2𝜋

3

 

  = 
1

2
.
2𝜋

3
+ sin

2𝜋

3
− [

1

2
(
𝜋

3
) + sin 𝜋 − sin

2𝜋

3
] 

  = 
𝜋

6
+ √3. 

 

2. If a circle intersects a hyperbola y = 
𝟏

𝒙
 

at 4 distinct points {𝒙𝒊, 𝒚𝒊: 𝒊 = 𝟏(𝟏)𝟒},  

then prove that 𝒙𝟏𝒙𝟐 = 𝒚𝟑𝒚𝟒 

Ans:- let the circle be 𝑥2 + 𝑦2 = 𝑎2  

hyperbola be y = 
1

𝑥
  is given. 

For points of contact, 𝑥2 +
1

𝑥2
= 𝑎2 

⇒ 𝑥4 − 𝑥2𝑎2 + 1 = 0 

It has 4 roots, so, Now, we know x = 
1

𝑦
 

∴  i.e. 𝑥3 =
1

𝑦3
 & 𝑥4 =

1

𝑦4
 

∴ 𝑥1𝑥2 = 𝑦3𝑦4 

 

3. If 𝜶𝟏, 𝜶𝟐,…………..𝜶𝒏  be the roots of 

𝒙𝒏 +1 =0, then (1- 𝜶𝟏)  (1-𝜶𝟐)…(1-𝜶𝒏)=?  

Ans:-   𝑥𝑛 +1=(x- 𝛼1)  (x-𝛼2)…(x-𝛼𝑛)  

Putting x=1, 

∴ 2=(1- 𝛼1)  (1-𝛼2)…(1-𝛼𝑛) 
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4.   The equation 
𝟏

𝟑
 +
𝟏

𝟐
𝒔𝟐 +

𝟏

𝟔
𝒔𝟑 = 𝒔 has 

exactly _____ solution(s) in [0,1]. 

Ans:- f(s)= 
1

3
 +
1

2
𝑠2 +

1

6
𝑠3 − 𝑠 

f(1)=0 

f(0)= 
1

3
 

f′(s)=s+
1

2
𝑠2 − 1 =

𝑠2+2𝑠−2

2
=
1

2
(𝑠 − 𝛼)(𝑠 −

𝛽); 

here 𝛼=  -1 -√3, 𝛽= -1+√3. 

∴f′(s)={
> 0     𝑖𝑓 𝑥 <  𝛼 𝑜𝑟 𝑥 > 𝛽
< 0                  , 𝛼 < 𝑥 < 𝛽.

 

There are two roots. 

 

5. The number of terms free from radical 

sign in the expression of (𝟏 + 𝟑
𝟏

𝟑 + 𝟕
𝟏

𝟕 )𝟏𝟎  

is ----------- 

Ans:- The term from radical sign must be of 

the from (constant)(3
1

3)3𝑚. (7
1

7)7𝑛  

where 3m+ 7n≤ 10 and m, n are non- 

negative integers.  

This inequality has 6 solutions(m, n) ∊ {(0, 

0), (1, 0), (0, 1), (1, 1), (2, 0), (3, 0)} 

∴ Number of terms free from radical sign is 

6. 

Second method: General term in the given 

expansion= 
|10̲

|�̲�|𝛽|̲𝛶̲̲
1𝛼 . 3

𝛽

3 . 7
𝛶

7 , 

Where 𝛼+𝛽+𝛶= 10 

∴ Possible value of 𝛽 are: 0, 3, 6, 9 

Possible values of 𝛶 are: 0, 7 

Possible values of 𝛼 are: 0, 1, 2, …, 10 

Since 𝛼+𝛽+𝛶= 10 

∴ Possible triplets (𝛼, 𝛽, 𝛶) will be 

(0, 0, 10), (0, 7, 3), (3, 0, 7), (3, 7, 0), (6, 0, 

4), (9, 0, 1) 

 

6. Find all pairs of prime numbers p, q 

such that p+q = 18(p−q). Justify your 

answer. 

Ans:- Solving the equation we have 19q = 

17p. 

Pair of prime number is (17, 19) 

 

 

7. In a group of n persons, each person is 

asked to write down the sum of the ages 

of all the other (n − 1) persons. Suppose 

the sums so obtained are S1, . . . , Sn. It is 

now desired to find the actual ages of the 

persons from these values. Formulate the 

problem in the form of a system of linear 

equations. 

Ans:- Let Pi be the actual age of person i. 

Then the equation is given by 

Pi = Si – ∑
𝑆𝑖

𝑛−1𝑖   .  
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8. For n ≥ 4, prove that 1! + 2! + · · · + n! 

cannot be the square of a positive integer. 

Ans:- 1! + 2! + 3! = 9 ≡ 3 (𝑚𝑜𝑑 4)  

1! + 2! + 3! + …. + n! = Odd Number  

By induction, we can say the given sum 

can’t be the square of a positive number. 

 

9. If f is continuous in [0, 1], then 

𝐥𝐢𝐦
𝒏→∞

∑
𝟏

𝒏
𝒇 (

𝒋

𝒏
)

[
𝒏

𝟐
]

𝒋=𝟎
 = ? 

Ans:- Express limiting sum in the form of 

definite integral. i.e. ∫ 𝑓(𝑥)𝑑𝑥
1/2

0
 

 

10.  Let 𝛼= 𝐋𝐭
𝒎→∞

𝐋𝐭
𝒏→∞

𝒄𝒐𝒔𝟐𝒎 𝒏!𝝅𝒙, where x 

is rational, 𝛽= 𝐋𝐭
𝒎→∞

𝐋𝐭
𝒏→∞

𝒄𝒐𝒔𝟐𝒎 𝒏!𝝅𝒙, 

where x is irrational, then the area of the 

triangle having vertices (𝛼, 𝛽), (-2, 1) and 

(2, 1) is 

(a) 2                             (b) 4                              

(c) 1                                    (d) none of these 

 Ans. (a) 

When x is rational: let x= 
𝑝

𝑞
. 

Then |n̲ x= (1 . 2…q …n) 
𝑝

𝑞
= 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  

∴ 𝑐𝑜𝑠2|�̲�𝑥𝜋 = 1 

∴ Lt
𝑚→∞

Lt
𝑛→∞

𝑐𝑜𝑠2𝑚|�̲�𝑥𝜋 = 1 

When x is irrational |�̲�𝑥 is not an integer 

∴ 0≤ 𝑐𝑜𝑠2|�̲�𝑥𝜋 < 1 

⟹ Lt
𝑚→∞

Lt
𝑛→∞

𝑐𝑜𝑠2𝑚|�̲�𝑥𝜋 = 0 

Thus 𝛼= 1, 𝛽= 0 

Area of triangle =| ½ [1(1-1) -2 (1- 0)+ 2(0- 

1)]| = 2 

 

ISI SUBJECTIVE SAMPLE 

PAPER WITH SOLUTIONS  

SET – 10 

 

1. Evaluate 𝐥𝐢𝐦
𝒙→𝟎
{𝒙𝟐(𝟏 + 𝟐 + 𝟑 +

⋯+ [
𝟏

∣𝒙∣
])}    

Ans. 

 Lim
𝑥→0
{𝑥2(1 + 2 + 3 +⋯+[

1

∣𝑥∣
])}  

= lim
𝑥→0

𝑥2
[
1
∣ 𝑥 ∣] [

1
∣ 𝑥 ∣ + 1]

2
= lim
𝑥→0

∣ 𝑥 ∣ +1

2

=
1

2
 

2. Find 𝐥𝐢𝐦
𝒙→𝟎

∣𝒙∣

√𝒙𝟒+𝟒𝒙𝟐+𝟕
𝐬𝐢𝐧 (

𝟏

𝟑√𝒙
) . 

Ans. −1 ≤ sin (
1

3√𝑥
) ≤ 1 

−∣ 𝑥 ∣

√𝑥4 + 4𝑥2 + 7

≤
∣ 𝑥 ∣

√𝑥4 + 4𝑥2 + 7
sin (

1

3√𝑥
)

≤
∣ 𝑥 ∣

√𝑥4 + 4𝑥2 + 7
 

Taking limits, we will have 

 0 ≤
∣𝑥∣

√𝑥4+4𝑥2+7
sin (

1

3√𝑥
) ≤ 0 
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So answer is 0. 

 

3. Evaluate the following two integrals 

directly and compare them  

∬ 𝒅𝒙𝒅𝒚
√𝒂∣𝒙∣≤𝟏,√𝒃∣𝒚∣≤𝟏

 and 

∬ 𝒅𝒙𝒅𝒚
𝒂𝒙𝟐+𝒃𝒚𝟐𝟐≤𝟏

 . 

Ans. ∬ 𝑑𝑥𝑑𝑦
√𝑎∣𝑥∣≤1,√𝑏∣𝑦∣≤1

 

= ∫ ∫ 𝑑𝑥𝑑𝑦

1

√𝑏
−1

√𝑏

1

√𝑎
−1

√𝑎

  

= 
4

√ab
 

> ∬ dxdy
ax2+by22≤1

  

= 
𝜋

√𝑎𝑏
 

 

4. Find 
𝒅𝒚

𝒅𝒙
 where y = (𝒙𝒍𝒐𝒈𝒙)(𝒍𝒐𝒈𝒙)𝒙 , 

when x > 1. 

Ans. Take log both sides, 

logy = (logx)2 + xlog(logx) 

Now differentiate w.r.t. x both sides, 

𝑑𝑦

𝑑𝑥
= 𝑦 (

2

𝑥
𝑙𝑜𝑔𝑥 +

1

𝑙𝑜𝑔𝑥
+ log(𝑙𝑜𝑔𝑥)) 

Put the value of y and get the answer. 

 

5. Show that 

𝐥𝐢𝐦
𝒏→∞

𝒏𝟐{ √(𝟏 − 𝒄𝒐𝒔
𝟏

𝒏
)√(𝟏 − 𝒄𝒐𝒔

𝟏

𝒏
)√(𝟏 − 𝒄𝒐𝒔

𝟏

𝒏
)… . .∞ } 

 = 
𝟏

𝟐
 . 

Ans.  Take y = 

√(1 − 𝑐𝑜𝑠
1

𝑛
)√(1 − 𝑐𝑜𝑠

1

𝑛
)√(1 − 𝑐𝑜𝑠

1

𝑛
)… . .∞ 

 y2 = y (1 − 𝑐𝑜𝑠
1

𝑛
) 

 y = (1 − 𝑐𝑜𝑠
1

𝑛
)  

So lim
𝑛→∞

𝑛2𝑦 = lim
𝑛→∞

𝑛2 (1 − 𝑐𝑜𝑠
1

𝑛
) =

lim
𝑛→∞

𝑛2𝑦 = lim
𝑛→∞

𝑛2 (1 − 1 +
1

2𝑛2
) =

1

2
  

6. Show that ∫ 𝒆−𝒙
𝟐
𝒅𝒙 = √𝝅

∞

−∞
 . 

Ans. 

(∫ 𝑒−𝑥
2
𝑑𝑥

∞

−∞
)
2
=

 (∫ 𝑒−𝑥
2
𝑑𝑥)

∞

−∞
(∫ 𝑒−𝑥

2
𝑑𝑥) =

∞

−∞

(∫ 𝑒−𝑥
2
𝑑𝑥)

∞

−∞
(∫ 𝑒−𝑦

2
𝑑𝑦) 

∞

−∞
  

= ∫ ∫ 𝑒−(𝑥
2+𝑦2)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
  

= ∫ ∫ 𝑒−𝑟
2
𝑟𝑑𝑟𝑑𝜃 =  ∫

𝑑𝜃

2
= 𝜋

2𝜋

0

∞

0

2𝜋

0
 

7. A total of n balls, numbered 1 through 

n, are put into n urns, also numbered 

1 through n in such a way that ball i is 

equally likely to go into any of the 

urns 1, 2, 3, …, i.  Find the expected 

number of urns that are empty. 

Ans. Xi  = {
1        𝑖𝑓 𝑢𝑟𝑛 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦
0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

E(Xi) = P(Xi = 1)  
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= (1 −
1

𝑖
) (1 −

1

𝑖+1
)…(1 −

1

𝑛
) =

𝑖−1

𝑛
  

E(X) = ∑ 𝐸(𝑋𝑖)
𝑛
𝑖=1 = 

𝑛−1

𝑛
 . 

 

8.  If  
∑ 𝒙𝟐𝒓𝒌−𝟏
𝒓=𝟎

∑ 𝒙𝒓𝒌−𝟏
𝒓=𝟎

 is a polynomial in x for two 

values p and q of k, then roots of 

equation 𝒙𝟐 + 𝒑𝒙 + 𝒒 = 0 cannot be 

rational. Justify. 

Ans. 

 
∑ 𝑥2𝑟𝑘−1
𝑟=0

∑ 𝑥𝑟𝑘−1
𝑟=0

 is a polynomial, 

⟹ 1+𝑥2 + 𝑥4 +⋯+

𝑥2(𝑘−1) 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 1 + 𝑥 + 𝑥2 +⋯+

𝑥𝑘+1  

⟹ 

1−𝑥2𝑘

1−𝑥2

1−𝑥𝑘

1−𝑥

 𝑖. 𝑒.
1+𝑥𝑘

1+𝑥
 

is a polynomial in x. 

⟹ 1+𝑥𝑘 is divisible by 1+ x 

⟹ 1+(−1)𝑘 = 0 

⟹ 𝑘 = 𝑎𝑛 𝑜𝑑𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

⟹ p, q are odd integers    

(since p, q are value of k) 

Now since coefficients of the quadratic 

equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0 are odd integers 

and hence its roots cannot be rational. 

 

9. Let G be a group with identity 

element e. If x and y are elements in G 

satisfy x5y3 = x8y5 = e, then what is the 

relation between x & y? 

Ans.  

 x5y3 = x8y5  = x3y2 = x2 e = e  

(from the given relation) 

i.e. x = e, so y = x-1 = e. 

 

10.  Let 𝝏 be the permutation: 

              1    2    3    4    5    6    7    8    9 

              3    5    6    2    4    9    8    7    1 

I be the identity permutation and m 

be the order of 𝝏, i.e.,  

m = min {positive integers n: 𝝏𝒏 = 𝟏}. 

Then what is the value of m? 

Ans.  

1→3→6→9→1   : order 4 

 2→5→4→2         : order 3 

 7→8→7               : order 2 

LCM (4, 3, 2) = 12 = m. 

  

SHORT ANSWER TYPE 

QUESTIONS (MAINLY 

FOR MSTAT EXAM) 

Q1. If 𝒂𝟏<𝒂𝟐<………< 𝒂𝒎, 𝒃𝟏< 𝒃𝟐< 

……<, 𝒃𝒏 and also ∑ |𝒂𝒊 −𝒎
𝒊=𝟏

𝒙|=∑ |𝒃𝒋 − 𝒙|𝒏
𝒋=𝟏 , where x is any real 

number then prove that ai = bj for all i 

and n = m. 

Solution: let f(x)=|𝑎1-x|+|𝑎2-x|+…..+|𝑎𝑚-x| 
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And g(x) = |𝑏1-x|+|𝑏2-x|+…..+|𝑏𝑛-x|. 

Then we know only points of non-

differentiability of f(x) is 

𝑎1,𝑎2,………, 𝑎𝑚,and only points of non-

differentiability of g(x) is 𝑏1, 𝑏2,………, 𝑏𝑛, 

Since, m, n are finite numbers and  also 

given that f(x)=g(x) 

So, we may write,  
𝑓(𝑎𝑖+ℎ)−𝑓(𝑎𝑖)

ℎ
 = 

𝑔(𝑎𝑖+ℎ)−𝑔(𝑎𝑖)

ℎ
  ∀   h. 

So, RHL{f’(ai)}=RHL {g’(ai)} 

And also, LHL{f’(ai)}=LHL {g’(ai)} 

But as f(x) is non-differentiable at x=ai, 

So, LHL{f’(ai)}≠RHL {f’(ai)}, 

LHL{g’(ai)}≠RHL {g’(ai)→g(x) is also not 

differentiable at x=ai. 

Now, since both the functions are equal so 

the points of discontinuity are same so m=n. 

To show the another part, we need to show 

ai=bi. 

In a similar way, we can say, for any given 

𝑏𝑟there exists 𝑎𝑝 

Such that 𝑏𝑟=𝑎𝑝. 

So, {𝑎1,𝑎2,………, 𝑎𝑚} and 

{𝑏1, 𝑏2,………, 𝑏𝑛} has one –to-one and 

onto correspondence. 

Therefore, m=n and every ai = bj if i = j. 

 

Q2. Suppose 𝒘𝟏 and 𝒘𝟐 are subspaces of 

ᴪ𝟒 spanned by {(1, 2, 3, 4) , (2, 1, 1, 2)} 

and {(1, 0, 1, 0), (3, 0, 1, 0)} respectively. 

Find a basic of 𝒘𝟏 ∩𝒘𝟐. Also find a basis 

of 𝒘𝟏 + 𝒘𝟐 containing {(1, 0, 1, 0), (3, 0, 1, 

0)}. (ᴪ : The set of all real numbers) 

Solution:  𝑤1 ={(1, 2, 3, 4) , (2, 1, 1, 2)}         

𝑤2 = {(1, 0, 1, 0), (3, 0, 1, 0)} 

Now we will calculate dim(𝑤1𝜐𝑤2) which is 

equal to number of independent rows in 

 

             1    2     3      4 

             2    1     1      2 

            1     0     1      0 

i.e. Rank(A)=4. 

Now, dim(𝑤1∪𝑤2)=dim𝑤1+dim𝑤2-

dim(𝑤1 ∩ 𝑤2) 

⇰ 4 =2 + 2 - dim (𝑤1 ∩ 𝑤2) 

⇰ dim (𝑤1 ∩ 𝑤2)=0. 

i.e. basis of (𝑤1 ∩ 𝑤2)={(0, 0, 0, 0)} 

⇰ᴪ4 = 𝑤1⊕𝑤2 

⇰ basis of 𝑤2 can be extended to form basis 

of 𝑤1 + 𝑤2 which is given by 

= {(1, 0, 1, 0), (3, 0, 1, 0), (0, 1, 0, 0), (0, 0, 

0, 1)} 

Q3. Two players 𝒑𝟏 and 𝒑𝟐 are playing 

the final of a chess championship, which 

consist of a series of matches. Probability 

of  𝒑𝟏 winning a match is 𝟐 𝟑⁄ and for  𝒑𝟐 

is 𝟏 𝟑⁄ . The winner will be one who is 

ahead by 2 games as compared to the 

other player and wins at least 6 games. 
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Now, if the player  𝒑𝟐 wins first four 

matches, find the probability of  𝒑𝟏 

winning the championship. 

Solution:-   𝑝1 can win in the following 

mutually exclusive ways: 

(a)  𝑝1 wins the next six matches. 

(b)  𝑝1 wins five out of next six matches, 

so that after next six matches score 

of 𝑝1  and  𝑝2 are tied up. This is 

continued up to ‘2𝑛’ matches (n≥ 0) 

and finally  𝑝1 wins 2 consecutive 

matches. 

Now, probability of case (a) =(
2

3
)6 and 

probability of tie after 6 matches (in case 

(b)) =(
2

3
)5(

1

3
) =

26

35
. 

Now probability that scores are still tied up 

after another next two matches=
2

3
 . 
1

3
 +
1

3
. 
2

3
=
4

9
. 

[1st match is own by 𝑝1 and 2nd by 𝑝2,or , by 

reversively ] 

Similarly probability that scores are still tied 

up after another ‘2n’ matches=(
4

9
)𝑛 . 

⇰Total probability of  𝑝1 winning the 

championship 

= (
2

3
)6 +

26

35
 (∑ (

4

9
)2  (

2

3
)2∞

𝑛=0 ) 

= (
2

3
)6 +

26

35
 (
2

3
)2(

1

1−
4

9

) 

= 
17

5 
(
2

3
)6 

= 
1088

3645
 . 

Q4. Let 𝑿𝟏, 𝑿𝟐, … . , 𝑿𝒏  be a random 

sample drawn from a continuous 

distribution. The random variables are 

ranked in the increasing order of 

magnitude. 𝑹𝒊 be the rank of the ith 

sample. Find the correlation coefficient 

between 𝑹𝟏 and 𝑹𝟐. 

Solution:- 𝑅𝑖 be the rank of 𝑋𝑖. 

𝑅𝑖 be the random variable such that P(𝑅𝑖 =

𝑟𝑖) =
1

𝑛
 ; ri=1(1)n . 

∴ ∑ 𝑅𝑖 =
𝑛(𝑛+1)

2

𝑛
𝑖=1  , a constant quantity. 

And since 𝑅1, 𝑅2, … , 𝑅𝑛 is identical random 

variable, now 𝑅𝑖 is th random variable and 

∑ 𝑅𝑖
𝑛
𝑖=1  is a constant. 

∴ cov(𝑅1, ∑ 𝑅𝑖
𝑛
𝑖=1  )=0 

⇰ cov(𝑅1, 𝑅1 + 𝑅2 +⋯+ 𝑅𝑛, )=0 

⇰var(𝑅1) +cov(𝑅1, 𝑅2) + ….+cov(𝑅1, 𝑅𝑛)=0 

⇰var(𝑅1)+(n-1). Cov(𝑅1, 𝑅2)=0           

[∵𝑅𝑖’s are identically distributed; cov(𝑅𝑖, 

𝑅𝑗)= cov(𝑅𝑖)] 

⇰cov(𝑅1, 𝑅2)=-
𝑣𝑎𝑟(𝑅𝑖)

(𝑛−1)
 

=−
𝑛2−1
12

(𝑛−1)

 = -
(𝑛+1)

12
  

∴ 𝛒 = 
𝑐𝑜𝑣(𝑅1,𝑅2)

√𝑣𝑎𝑟(𝑅1)𝑣𝑎𝑟(𝑅2)
 = 

−
𝑛+1

12
(𝑛+1)(𝑛−1)

12

 = −
1

(𝑛+1)
 . 

 

Q5. Let X and Y be two random variables 

with joint P. D. F.  

f(x, y) = 1   if –y< x<y , 0<y <1                                                                                                                      
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          = 0     elsewhere 

Find the regression equation of Y on X 

and that of probability density function. 

Solution:- 

 Here –y< x<y and 0<y <1 

⇰ -1< x <1 , which is the marginal range of 

x. 

Again, y> -x and y > x 

∴ y > max (𝑥1 -x) 

∴ max (𝑥1 -x) < y < 1 

∴ Marginal PDF of X is given by,  

𝑓𝑋(𝑥) = ∫ (𝑥, 𝑦)
1

max (𝑥1 −x)
𝑑𝑦 ,   -1 < x < 1 

Case –I:-   -1 < x <0 

∴ max (𝑥1 -x) = -x 

∴ 𝑓𝑋(𝑥) = ∫ 𝑑𝑦
1

−x
 ,  if   -1 < x < 0 

              = 1+ x       if -1 < x <0 

Case –II:- 0 < x< 1 

Max(x, -x) = x, 

∴ 𝑓𝑋(𝑥) = ∫ 𝑑𝑦
1

x
 ,  if   0 < x < 1 

              = 1- x       if 0< x <1 

Marginal PDF of Y is given by. 

𝑓𝑦(𝑦) = ∫ 𝑑𝑥
1

−y
 ,  if   0 <y < 1 

          = 2y     if 0 <y < 1 

Case 1. -1 <x < 0, 

The conditional distribution of Y given X= x 

is given by, 

 

𝑓𝑦
𝑥⁄
(𝑦)= 

𝑓(𝑥,𝑦)

𝑓𝑥(𝑥)
 = 

1

1+𝑥
    if –x < y < 1 

∴ E (Y|X) = ∫
𝑦 𝑑𝑦

(1+𝑥)

1

−𝑥
 = 

1

(1+𝑥)
 .
1

2
(1 − 𝑥2) = 

1−𝑥

2
. 

Case 2. 0 < x < 1, 

The conditional distribution of Y given X=X 

is given by,  

𝑓𝑌|𝑋(𝑦)= 
𝑓(𝑥,𝑦)

𝑓(𝑥)
 = 

1

1−𝑥
        if x < y < 1 

Similarly, E (Y|X) = 
1+𝑥

2
 

∴ If -1 < x < 1, then regression equation of 

Y on X is given by, 

Y= 
1− |𝑥|

2
. 

The conditional distribution of X given Y = 

y is given by, 

𝑓𝑋|𝑌(𝑥)= 
𝑓(𝑥,𝑦)

𝑓𝑌(𝑦)
 = 

1

2𝑦 
    if –y < x < y 

∴ E (X|Y)=0 

∴ Regression equation of X and Y is given 

by x =0. 

 

Q6. (a) Let 𝒇𝒏be a sequence of continuous 

real valued functions on, [0,1] which 

converges uniformly to f . Prove that 

𝐥𝐢𝐦
𝒏→∞

𝒇𝒏(𝒙𝒏) = 𝒇 (
𝟏

𝟐
)for any sequence 

{𝒙𝒏}converges to ½. 
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(b) Must the conclusion still hold if the 

convergence is only point wise? Explain. 

Solution:- (a) Let {𝑥𝑛} be a sequence in [0,1] 

with 𝑥𝑛→1/2 as n→      Fix ∊>0 and let 𝑁0 ∊

𝑁 be such that n ≥ 𝑁0 implies |𝑓𝑛(𝑥) −

𝑓(𝑥)|< for all x∊[0,1]. Let δ>0 be such that 

|𝑓(𝑥) − 𝑓(𝑦)|∊/2 ∀ x, y ∊ [0,1] with |𝑥 −

𝑦| < 𝛿. Finally, let 𝑁1 ∊ 𝑁  be such that n ≥ 

𝑁1 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 |𝑥𝑛 − 1/2|<δ. Then n ≥ Max { 

𝑁0, 𝑁1} inplise 

|𝑓𝑛(𝑥𝑛) − 𝑓(
1

2
)| ≤ |𝑓𝑛(𝑥𝑛) − 𝑓(𝑥𝑛)| + 

|f(𝑥𝑛) − 𝑓(
1

2
)| 

 ≤ 
∊

2
+
∊

2
  = ∊. 

(b) Suppose the convergence is only 

pointwise. 

Then the conclusion is false, demonstrating 

by an counter example: 

Defining 𝑓𝑛(𝑥) to be the function, 

f(x)= 0          , if 0≤ 𝑥 <
1

2
−

1

2𝑛
 

       = 2nx-(n-1), if 
1

2
−

1

2𝑛
≤ 𝑥 <

1

2
 

i.e. 𝑓𝑛(𝑥)is constantly zero for, x< ½ - 
1

2𝑛
, 

then it increases linearly until it reaches ‘1’ 

at x= ½ , and then it remains constantly ‘1’ 

for  x> ½ . 

Now, define the sequence, 𝑥𝑛 =
1

2
−
1

𝑛
, 

Then f( 𝑥𝑛)=0 ∀ 𝑛 ∊ 𝑁 and 𝑥
𝑛→

1

2

 for n→∞. 

Therefore, f( ½ )=1≠0 = lim
𝑛→∞

𝑓𝑛(𝑥𝑛) . 

Q7. Let {𝒙𝒏: 𝒏 ≥ 𝟎} be a sequence of real 

numbers such that 𝒙𝒏+𝟏 = 𝝀𝒙𝒏 + (𝟏 −

𝝀)𝒙𝒏−𝟏, 𝒏 ≥ 𝟏, for some 0< 𝝀 < 1. 

(a) show that 𝒙𝒏 = 𝒙𝟎 + (𝒙𝟏 −

𝒙𝟎)∑ ( 𝝀 − 𝟏)𝒌𝒏=𝟏
𝒌=𝟎 . 

(b) Hence, or, otherwise, show that 𝒙𝒏 

converges and find the limit. 

Solution :- 𝑥𝑛+1 − 𝑥𝑛 = 𝜆𝑥𝑛+(1 −

𝜆)𝑥𝑛−1 − 𝜆𝑥𝑛−1 + 𝜆𝑥𝑛−1 − 𝑥𝑛 

                                        =(𝜆 − 1)𝑥𝑛 +

𝑥𝑛−1(1 − 𝜆 − 𝜆 + 𝜆) 

  = (𝜆 − 1)[𝑥𝑛 − 𝑥𝑛−1] 

                                       =  (𝜆 − 1)2[𝑥𝑛−1 −

𝑥𝑛−2] 

 ⁞ 

  = (𝜆 − 1)𝑛(𝑥1−𝑥0) 

∴ 𝑥𝑛 − 𝑥𝑛−1= (𝜆 − 1)
𝑛−1(𝑥1−𝑥0) 

𝑥𝑛−1 − 𝑥𝑛−2 =  (𝜆 − 1)
𝑛−2(𝑥1−𝑥0) 

                                                          ⁞ 

𝑥1−𝑥0 =  (𝜆 − 1)
0(𝑥1−𝑥0) 

Adding we get, 𝑥𝑛−𝑥0 = (𝑥1−𝑥0)∑ ( 𝜆 −𝑛=1
𝑘=0

1)𝑘 

∴𝑥𝑛 = 𝑥0 + (𝑥1−𝑥0) ∑ ( 𝜆 − 1)𝑘𝑛=1
𝑘=0  

∴ Lt
 n→∞

𝑥𝑛  = 𝑥0 + (𝑥1−𝑥0).
1

1−𝜆+1
, as n→∞. 

=𝑥0 + (𝑥1−𝑥0).
1

2−𝜆
. 

Q8. Let f:ℝ→ℝ be a continuous function 

with |f(x)-f(y)|≥ |𝒙 − 𝒚 for every x,y,∊ℝ. 

Is f one –to-one? Show that there can’t 
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exist three points a, b, c ∊ ℝ with a< b< c 

such that f(a)<f(c)< f(b). 

Solution:- f: ℝ→ℝ such that |f(x)-f(y)|≥

|𝑥 − 𝑦| 

or, |
𝑓(𝑥)−𝑓9𝑦)

𝑥−𝑦
|≥ 0 ∀ 𝑥, 𝑦 ∊ ℝ. 

⇰|
𝑓(𝑦+ℎ)−𝑓(𝑦)

ℎ
≥ 0, taning x=y+h.| 

⇰|f’(y)|≥ 0 

⇰f is either an increasing or decreasing 

function. 

⇰∀ 𝑎 < 𝑏 < 𝑐 → 𝑓(𝑎) < 𝑓(𝑏) < 𝑓(𝑐) 

Or, a> b> c→ 𝑓(𝑎) < 𝑓(𝑏) < 𝑓(𝑐) 

i.e. a< b<c   s.t. 𝑓(𝑎) < 𝑓(𝑏) < 𝑓(𝑐). 

Q9. (a) Let ṵ and ṽ eigenvectors of A 

corresponding to the eigenvalues 1 and 3, 

respectively. Prove that ṵ +ṽ is not an 

eigenvector of A. 

(b) Let A and B be real matrices such that 

the sum of each row of A is 1 and the sum 

of each row of B is 2. Then show that 2 is 

an  eigenvalue of AB. 

Solution:-As ṵ and ṽ are given eigen vectors 

corresponding to eigen values 1 and 3, so, 

𝐴𝑢 = 1. 𝑢 ; 𝐴𝑣 = 3. 𝑣 = 3𝑣. 

⇰ A(u+v)=u+3v. 

As, RHS is not multiple of u+v, so, u+v 

can’t be eigen vector of A. 

(b) A=[
1/2 1/2
1/2 1/2

], B=[
1 1
1 1

] 

⇰AB=[
1 1
1 1

] 

|AB -λI|=(1 − 𝜆)2 − 1=0 

⇰1− 𝜆=± 1 

⇰ 𝜆 = 0, 2. 

So, 2 is an eigen value of AB. 

Q10. Let A and B be n×n real matrices 

such that 𝑨𝟐 = 𝑨, 𝑩𝟐 = 𝑩. Let I-(A+B) is 

invertible. Show that R(A)=R(B). 

Solution:- A[I –(A+B)]=A -𝐴2-AB 

= 𝐴2 − 𝐴2-AB 

= -AB. 

And,[ I –(A+B)]B=B -AB - 𝐵2 

=𝐵2- AB - 𝐵2 

=-AB 

∴ rank(A)= rank[A(I – A-B)] 

=rank(-AB)=rank(b). 

Q11.  Let  P be a matrix of order n>1 and 

entries are positive integers. Suppose 𝑷−𝟏 

exists and has integer entries, then what 

are the set of possible values of |p| ? 

Solution:- P has integer entries, 

⇰𝜆1 + 𝜆2 +⋯ .+𝜆𝑛=trace(P)=integer. 

⇰ ∑ 𝜆𝑖 𝜆𝑗𝑖<𝑗  = sum of minors 

⁞ 

⇰∏ 𝜆𝑖𝑛
𝑖=1 |p| = integer, 



Solving Mathematical Problems 

 

180 
 

Then the eigen-values of 𝑃−1  are 
1

𝜆𝑖
 and 

they are also integers 

⇰ 𝜆𝑖 =
1

𝜆𝑖
 

⇰ 𝜆𝑖 = ±1 

So, |P|=∏ 𝜆𝑖𝑛
𝑖=1 = ±1. 

Q12. Let X, Y be a bivariate normal 

vector such that E(X)=E(Y)=0 and 

V(X)=V(Y)=1. Let s be a subset of ℝ𝟐 and 

defined by S={(a, b) : (ax+ by) is 

independent of Y}. 

(i) show that S be a sub space, 

(ii) Find its dimension. 

Solution:- S={(a, b) : (ax+by) is independent 

of Y } 

(i) (𝑎1, 𝑏1), (𝑎2, 𝑏2)∊S. 

Then 𝑎1𝑥 + 𝑏1𝑦 is independent of y, 

similarly, 

𝑎2𝑥 + 𝑏2𝑦 is independent of y. 

⇰ (𝛂𝑎1+𝛃𝑎2)x +(𝛂𝑏1 + 𝜷𝒃𝟐)y is 

independent of y. 

⇰ (𝛂𝑎1+𝛃𝑎2, 𝛂𝑏1 + 𝜷𝒃𝟐 ∊s). 

⇰ (𝑎1, 𝑏1) +𝛃(𝑎2, 𝑏2)∊ s ∀ (𝜶, 𝜷) ∊ ℝ 

Hence, S is a subspace. 

(ii) (a, b)∊S. 

⇰ax +by is independent of y. 

⇰ cov(ax +by, y) =0 

⇰ acov(x,y) + bcov(y, y) =0 

⇰a𝛒 +b=0, since, cov(x, y)=𝛒, 

cov(y,y)=var(y)=1 as,E(x)=E(y)=0 

&v(x)=v(y)=1’ 

⇰ b= -a𝛒. 

∴ (a, b)=a(1-𝛒), a∊ℝ. 

∴ S={(a, b) : (a,b)=a(1-𝛒); a∊ℝ } 

∴ dim(s)=1. 

Q13.  In a knockout tournament, 𝟐𝒏 

equally skilled players namely, 

𝒔𝟏, 𝒔𝟐, 𝒔𝟑, … . . , 𝒔𝟐𝒏 are participating. In 

each round, player are divided in pairs at 

random and winner from each pair moves 

in the next round. If 𝒔𝟐 reaches semi-final 

, then find the probability that 𝒔𝟏 will win 

the tournament. 

Solution:- In a knockout tournament, 2𝑛 

equally skilled players namely, 

𝑠1, 𝑠2, 𝑠3, … . . , 𝑠2𝑛 are participating.  

Let 𝐸1 be the event that 𝑠1 wins the 

tournament and 

𝐸2 be the event that 𝑠2 reaches the semifinal. 

We are to obtain P(𝐸1/𝐸2). 

Since all the players are of equal skill and 

there will be four person in the semifinal. 

So, P(𝐸2) =
2𝑛−1 𝑐3

2𝑛 𝑐4
=
4

2𝑛
. 

P(𝐸1 ∩ 𝐸2) =probability that 𝑠1 and 𝑠2 both 

are in the semifinal & then 𝑠1 wins the 

semifinal and also in final 

=
2𝑛−2𝑐2

2𝑛 𝑐4
 .
1

2
 .
1

2
=

3

2𝑛(2𝑛−1)
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Hence, P[𝐸1/𝐸2]=
P(𝐸1∩𝐸2)

P(𝐸2)
  

=
3 .2𝑛

2𝑛(2𝑛−1).4
=

3

4(2𝑛−1)
. 

Q14. Let Y, 𝒀𝟐, 𝒀𝟑 be i.i.d. continuous 

r.v.s for i=1, 2. Define 𝑼𝒊 as 𝑼𝒊 =1   if  

𝒀𝒊+𝟏 > 𝒀𝒊 

                                                                                                                      

=0   ow 

Find the mean and variance of 𝑼𝟏 + 𝑼𝟐. 

Solution:- E(𝑈𝑖)=1.P[𝑌𝑖+1 > 𝑌𝑖]=
1

2
 

E (𝑈𝑖)
2=12.P[𝑌𝑖+1 > 𝑌𝑖]=

1

2
  

V (𝑈𝑖) =
1

2
−
1

4
 =
1

4
 

E (𝑈1 + 𝑈2)= 
1

2
+
1

2
 =1. 

E (𝑈1𝑈2) =1.1.P[𝑌2 > 𝑌1, 𝑌3 > 𝑌2] = 

P[𝑌3>𝑌2 > 𝑌1]=
1

6
 . 

Cov(𝑈1, 𝑈2)= E(𝑈1𝑈2)-E(𝑈1)E(𝑈2) = -
1

12
 

∴ V(𝑈1 + 𝑈2)=V(𝑈1)+V(𝑈2)+2cov(𝑈1, 𝑈2) 

=
1

3
 . 

Q15. A and B have respectively (n+1) and 

n coins. If they toss their coin 

simultaneously. What is the probability 

that, ____ 

i>A will have more heads than B. 

ii> A and B will have an equal number of 

heads. 

iii> B will have more heads than A. 

Soln:-  Let us define the random variable as 

follows,  

X= no. of heads obtained by A. 

Y= No. of heads obtained by B. 

X ∼bin (n+1, 
1

2
) 

Y ∼ bin (n, 
1

2
) 

Then, (n+1-X) ∼ bin (n+1, 
1

2
) 

(n-Y) ∼ bin (n, 
1

2
) 

i> P(A will have more heads than b) 

=(x>Y) 

=P(n+1-X > n-Y) 

=P (Y >X -1) 

=P(Y≥ 𝑋) 

=1 –P(X>Y) 

∴ 2P(X>Y)=1 

⇰ P(X>Y)=
1

2
 . 

ii> P(A and b have equal number of 

heads) 

=P(X=Y) 

= ∑ 𝑃(𝑋 = 𝑖0 𝑃(𝑌 = 𝑖)𝑛
𝑖=1  

= 

∑ (
𝑛+1

𝑖
)  (

1

2
)
𝑖

 (
1

2
)
𝑛+1−𝑖

𝑛
𝑖=1 .(

𝑛

𝑖
)

  (
1

2
)
𝑖

 (
1

2
)
𝑛−𝑖

 

=∑ (
𝑛+1

𝑖
) .𝑛

𝑖=1 (
𝑛

𝑖
) (

1

2
)
2𝑛+1

=

 (
1

2
)
2𝑛+1

∑ (
𝑛+1

𝑖
)𝑛

𝑖=1 (
𝑛

𝑖
) 

= (
1

2
)
2𝑛+1

 ∑
(𝑛+1)!

𝑖!(𝑛−𝑖+1)!
 .

𝑛!

𝑖!(𝑛−𝑖)!

𝑛
𝑖=1  

=  (
1

2
)
2𝑛+1

 (
2𝑛+1

𝑛
) 

iii> P(B  have more heads than A) 
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=P(y>x) 

=1-P(X≥ 𝑌) 

= 1-P(X=Y)-P(X>Y) 

=1- (
1

2
)
2𝑛+1

 (
2𝑛+1

𝑛
) −

1

2
 

=
1

2
[1- (

1

2
)
2𝑛

(
2𝑛+1

𝑛
) ] 

Q16. A book of N pages contains on the 

average λ misprints per page. Estimate 

the probability that a page drawn at 

random contains, 

(a) at least one misprints. 

(b) More than k misprints. 

Solution:- Let us define the random variable 

X as follows, 

X= no. of misprints per page, 

The book contains λ misprints per page on 

an average. 

Since the number of trials i.e. the no. of 

words is very large and probability of a 

misprint is very small, hence according to 

the definition of poisson distribution, 

X ∼ p(λ) 

∴ P(X = x) = 
𝑒−𝜆.𝜆𝑥

𝑥1
 , x=0, 1, 2, …; λ>0 

                   =0          , otherwise 

(a)P(at least one misprint) 

    = P(X≥ 1) 

    = 1-P(X<1) 

   = 1- P(X=0) 

= (1- 𝑒−𝜆) 

(b) P(more than k misprints) 

=P(x>k) 

=P(X≥ k-1) 

= 1 – P(X≤ k-1) 

= 1- ∑
𝑒−𝜆.𝜆𝑥

𝑥!

𝑘=1
𝑥=0  

Q17. A certain mathematician carries two 

match boxes in his pocket, each time he 

wants to use a match, he selects one of 

boxes at random. Each pocket contain n 

matchsticks.  

(a) Find the distribution of the number of 

sticks in one box, while the other is found 

empty. 

(b) Also find the distribution of the 

number of sticks  remaining in one box 

become empty.  

Solution:- (a) Let us define a r.v. X denoting 

the number of the matchsticks remaining in 

the match box when the other box is found 

empty. 

Let𝑋𝑖𝑗, I, j, i≠j denotes the number of 

matchsticks remaining in the  ith box cohen 

the jth box is found to be empty. 

The mass points of X are 0, 1, …., N 

For any such mass point x, 

P[X=x] =P(𝑋12=x) +P(𝑋21=x) 

We consider the distribution of 𝑋12. 

The second box will be found empty if the 

box is chosen for the (N+1) th time. At that 

time the first box contain x matches if (N-x) 

matches have already taken from it. If the 
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selection of the second box is regarded as 

success, then the event. 

P[𝑋12=x]=P[(N-x) failures occur preceeding 

the (N+1)th success]. 

=p[Z=N-x], where Z ∼ NB(N+1,
1

2
) 

Similarly for P[𝑋21=x]  

(b) Let us define a random variable Y 

denoting the number of matchsticks 

remaining in a matchbox when the 

other match box becomes empty. 

Let 𝑌𝑖𝑗, I, j, i≠ 𝑗denotes the number of 

matchsticks remaining in the ith box 

when jth box becomes empty. 

The mass points of Y are 0, 1, 2, …, n. 

P[Y=y]=p[𝑌21=y]+P[𝑌12=y] 

Now, P[𝑌12=y]p[Z=n-y] , Z ∼ N.B(N, 
1

2
 )  

=(N+N-y-1C N-y) (
1

2
)𝑁(

1

2
)𝑁−𝑦 

=(2N-y-1C N-y) (
1

2
)2𝑁−𝑦 

    Similarly, P[𝑌21=y]=(2N-y-1C N-y) (
1

2
)2𝑁−𝑦                                        

∴ P[Y=y] ]=(2N-y-1C N-y) (
1

2
)2𝑁−𝑦+1 

                               

Q18. A drunk man performed a random 

walk over the position 0, ±𝟏,±𝟐,…. The 

drunk man stars from the point o. He 

takes successive unit steps with 

probability p at right and probability (1-

p) at left. His steps are independent. X be 

a location of the drunk man after taking 

n- steps, 

Find the distribution of 
(𝒏+𝑿)

𝟐
 and find out 

E(X). 

Solution:- R denotes no. of steps at right 

after taking n steps. 

∴ R∼ Bin(n, p) 

L denotes no. of steps at left after taking n 

steps. 

∴ L∼ Bin(n,1-p) 

Let us define, 

X: the position of the drunk and after n 

steps. 

R + l= n, 

r- l=X. 

∴ 2R= n+X ⇰ R=
𝑛+𝑋

2
 ∼ Bin(n,p) 

∴ E(
𝑛+𝑋

2
)=nP 

⇰ E(X) =2[np - 
𝑛

2
] 

=2n (p - 
1

2
) 

=n (2p-1). 

Q19. Let X be an R.V. with mean 𝜇 and 

variance 𝝈𝟐>0. 

If 𝝃𝒒 denotes the 𝒒𝒕𝒉 quantile of X, show 

that 

𝜇-𝜎 √
𝟏−𝒒

𝒒
≤ 𝝃𝒒 ≤ 𝜇+𝜎 √

𝒒

𝟏−𝒒
. 

ANS:- We know that 𝜉𝑞 statistics the 

incauality  p(X≤ 𝜉𝑞)≥q 
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∴ P(
𝑋−𝜇

𝜎
≤
𝜉𝑞−𝜇

𝜎
) ≥ 𝑞 

If 𝜉𝑞 <𝜇, i.e. 
𝜉𝑞−𝜇

𝜎
<0, we have from one 

sided chebyshev’s inequality, 

q≤ 𝑃[
𝑋−𝜇

𝜎
≤
𝜉𝑞−𝜇

𝜎
] ≤

1

1+(
𝜉𝑞−𝜇

𝜎
)2

  

∴ q≤
1

1+(
𝜉𝑞−𝜇

𝜎
)2

  

⇰ (
𝜉𝑞−𝜇

𝜎
)2 ≤

1−𝑞

𝑞
 

⇰ -√
1−𝑞

𝑞
≤
𝜉𝑞−𝜇

𝜎
≤ √

1−𝑞

𝑞
 

⇰ 𝜇-𝜎√
1−𝑞

𝑞
 ≤ 𝜉𝑞  ≤ 𝜇+𝜎√

1−𝑞

𝑞
 .(Proved) 

Q20. Let g be a non – negative non 

decreasing function, prove that if 

E(𝐠(|𝐗 − 𝛍|)) exists, where 𝜇= E(X), then 

prove that if P[|𝐗 − 𝛍| > 𝒕]< 
(𝐠(|𝐗−𝛍|)) 

𝒈(𝒕)
 

ANS:- P[g|X − μ| > 𝑔(𝑡)]≤ 
𝐸{𝑔|X−μ|}

𝑔(𝑡)
 

But, g|X − μ| > 𝑔(𝑡) 

⇔|X − μ|>t     [∵ g is non decreasing & 

non-negative function] 

∴ P [|X − μ|>t] < 
𝐸{𝑔|X−μ|}

𝑔(𝑡)
. (Proved) 

Q21. For a Laplaces distribution with 

PDF f(x )= 
𝟏

𝟐 
 𝒆−|𝒙| , -∞ < 𝑥 < ∞. 

Find the minimum probability of an 

observation lying with in the mean ± 3 s. 

d. interval. 

ANS:- P (|X − μ| ≤ 3𝜎 

=P (𝜇-3𝜎≤ 𝑋 ≤ μ + 3σ ) 

= 
1

2
∫ 𝑒−|𝑥|
μ+3σ 

μ−3σ
𝑑𝑥 

= ∫ 𝑒−𝑥𝑑𝑥
μ+3σ

0
   [Since the integrand is an 

even function] 

= 1-𝑒−(μ+3σ)  

=.95        [X∼ Laplace (0, 1)] 

By Chebyshev’s inequality, 

P [|X − μ| ≥ 3𝜎]≤ 
1

32
 

⇰ P [|X − μ| ≤ 3𝜎] ≥ 1 −
1

9
=
8

9
=.88 

Hence the given probability and the 

Chebyshev’s upperbound is nearer to each 

other. 

Q22. For the r. v. X having the following 

PDF 

f(x)=
𝒆−𝒙.𝒙𝝀

√𝝀+𝟏
 , x> 0 show that   P (0< X 

<2(𝝀 + 𝟏))> 
𝝀

𝝀+𝟏
 

ANS:- E(X)= (𝜆 + 1)=Y(X) 

From Chebyshev’s inequality, 

P [|
X−μ

𝜎
|< t]> 1-

1

𝑡2
                                                                                                       

1-
1

𝑡2
=
𝜆

𝜆+1
 

⇰ P[-𝜎t < (X − μ)<𝜎t]> 1-
1

𝑡2
                                                                                

⇰ t= √𝜆 + 1                                                                                 

⇰ P[-(√𝜆 + 1) (√𝜆 + 1)< (X-

 √𝜆 + 1)<λ+1]> 1- 
1

𝜆+1
 

⇰ P [0, X, 2(𝜆 + 1)]> 
𝜆

𝜆+1
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Q23. Let the random variables X and Y 

have the joint probability density 

function(x, y) given by   

f(x, y)= 𝒚𝟐𝒆 − 𝒚(𝒙+𝟏); 𝒙 ≥ 𝟎, 𝒚 ≥ 𝟎 

           = 0                   ;otherwise 

Are the random variables x and Y 

independent? Justify your answer . 

Solution:- The marginal p d f of x is given 

by : 

F(x) =∫ 𝑦2
∞

0
𝑒−𝑦(𝑥+1)𝑑𝑦                           

let, 𝑦(𝑥 + 1)=t, (x+1) dy =dt. 

= ∫
𝑡2

(𝑥+1)2

∞

0
 𝑒−𝑡.

1

(𝑥+1)
 𝑑𝑡  

= 
1

(𝑥+1)3
 ∫ 𝑡2𝑒−𝑡
∞

0
𝑑𝑡 

=
√(3)

(𝑥+1)3
  =

2

(𝑥+1)3
 ; x ≥ 0 

The marginal p d f of Y is given by : 

F(y) =  ∫ 𝑦2
∞

0
𝑒−𝑦(𝑥+1)𝑑𝑥    

= ∫
𝑦2

−𝑦
. 𝑒−𝑦(𝑥+1)

∞

0
 

= 𝑦𝑒−𝑦  ;y≥0 

As, f(x, y)≠f(x), f(y) 

So, X and Y are not independent. 

Q24. Let X and Y are i.i.d. with P[X= x] = 
𝟏

𝒙
−

𝟏

𝒙+𝟏
, x=1, 2, … 

Find E[Min(X, Y)]. 

Solution:- Let T= min (x, Y). 

P[T= t]= P[X=t, Y>t]+ P[Y=t, X>t] + P[x=t, 

Y=t] 

=P[x=t]P[Y> t]+ P[X> t]P[Y=t]+p 

[X=t]P[Y= t] 

Now, P[Y≤t]= P[Y=1]+ P[Y=2]+…+P[Y=t] 

=(1-
1

2
) + (

1

2
− 

1

3
) + …+ (

1

𝑡
−

1

𝑡+1
) 

= 1- 
1

𝑡+1
 

⇰ P[Y>t]= 
1

𝑡+1
 

Similarly, P[X> t]= 
1

𝑡+1
 

Hence, P[T=t]=( 
1

𝑡
−

1

𝑡+1
). 

1

𝑡+1
 + 
1

𝑡
−

1

𝑡+1
). 

1

𝑡+1
 + (

1

𝑡
−

1

𝑡+1
)2 

=
1

𝑡(𝑡+1)2
+

1

𝑡2(𝑡+1)
 

∴ E(T) =∑
1

(𝑡+1)2
 +  ∑

1

𝑡 (𝑡+1)
∞
𝑡=1

∞
𝑡=1  

=(
𝜋2

6
− 1) + ∑  (

1

𝑡
−

1

𝑡+1
)∞

𝑡=1  

=
𝜋2

6
 -1 + 1 

=
𝜋2

6
  

Q25. Suppose a random vector (X, Y) has 

joint probability density function 

f(x, y) =3y  on the triangle bounded by the 

lines y=0, y=1 –x and y= 1 +x 

find the marginal PDF of X and Y. 

Compute (Y| X≤
𝟏

𝟐
). 

Solution:- The joint PDF of the random 

vector 
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(X, Y) is given by  

F(x, y) = 3y, on the shaded triangle of figure 

1. 

From the figure, the range of the marginal  

Distributions of X and Y are given by,  

0 < x < 1, -1 < y <1, respectively, 

Now, f(x, y) = 3y   if 1 –x <y <1+x, 0 < x < 

1 

Now, 1+ x> y 

⇰x > y -1 

And 1 –x< y 

⇰ x-1 > -y 

⇰ x > 1 – y 

∴ x> max {(1-y), (y-1)} 

∴ max {(1-y), (y-1)}< x < 1 

Case I:- -1 < y < 0 

If -1< y <0 

⇰ -2 <y-1 < -1 

And 1 > -y > 0 

⇰ 2 > 1-y > 1 

∴ max {(y-1), (1-y)}= 1-y 

∴ 1-y < x < 1 

Q26.  Let x be a continuous random 

variable with distribution function f(x), 

which is such that F(a+x) +F(a-x) =1 for 

some fixed a. 

i> Show that E(X) =a 

ii> If y be an another r. v. defined as  

Y=0   if X < a ; 1 if  X > a 

Then S.T. Y and Z=|X-a| will be 

independently distributed. 

ANS:- i> It is given that, F(a+x) +F(a-x) =1 

From the above equation it is clear that the 

disth of X is symmetric about ‘a’, 

Hence, E(X-a) =0 

⇰ E(X)=a 

Ii > It is given that, 

Y ={ 0  if X < a ; 1 if X≥a 

And Z=|X-a| 

Now form the equation, F(x+a) +F(a-x)=1, 

It is clear that F(a)=
1

2
     [since the 

distribution is symmetric about ‘a’] 

∴ Y= { 0 with prob. 
1

2
     ; 1, with prob. 

1

2
      

Now, for same Z > 0 

P[Z≤z , Y=0] 

=P [|X-a|≤ z , X < a] 

= P[-x +a≤ z≤ X-a , X < a] 

= P[a-z≤ X≤ a+z, X < a] 

=P [a-z≤ X≤ min (a+z, a)] 

= P [a-z≤ X≤a] 

=F(a) –F(a-z) 

 = 
1

2
 – F (a-z) 
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= 
1

2
 [F(a+z) –F(a- z)] 

= 
1

2
 P [a-z ≤ X ≤ a+ z] 

= 
1

2
 P [|X|≤ a+z] 

= 
1

2
 P [|X - a|≤z]  , since a > 0 

= 
1

2
 P [Z≤z] 

=P [Z≤z]. F (a) 

=P [Z≤z]. P [Y=0] 

Similarly, it can be shown that, 

P [Z≤z , Y=1]=P [Z≤z]. P [Y=1] 

Hence, 

P [Z≤z]. P [Y= y]= P [Z  ≤z, Y=y] 

Hence, Y and Z are independently 

distributed. 

Q27. A bag contains a coin of value M 

and a number of other coins whose 

aggregate value is m. A person draws 

coins one at a time till the draws the coin 

of value M. Find the value of   his 

expectation. 

ANS:- Let the coins be A, 𝐵1, 𝐵2, … . , 𝐵𝑛. 

Value of A= M & value of 𝐵𝑖 = 𝑚𝑖(say) 

Such that ∑ 𝑚𝑖 = 𝑚
𝑛
𝑖=1 . 

Let 𝑌𝑥  be the value of the coins if x 

drawings are needed, x= 0, 1, 2, …., n+1. 

And Y is the total value of the coins 

eventually. 

Now, E(Y)=E {E(𝑌𝑥 |X = x)} 

Now, E (𝑌𝑥 |X = 1)=M 

E (𝑌𝑥 |X = 2) =
𝑀+𝑚1

𝑛
 +
𝑀+𝑚2

𝑛
 + ….. + 

𝑀+𝑚𝑛

𝑛
 

=M + 
𝑚

𝑛
 

E (𝑌𝑥 |X = 3) = M + 
2𝑚

𝑛
 

In general, E (𝑌𝑥 |X = x) = M + 
(𝑥−1)𝑚

𝑛
 

Now, E (Y)= ∑ [𝑀 + (𝑥 − 1)
𝑚

𝑛
]𝑛+1

𝑥=1 .P (X=x) 

Now, P (X= x)= P(X drawings are required 

to get the coin A) 

=
𝑛

𝑛+1
 .
𝑛−1

𝑛
 .
𝑛−2

𝑛−1
… .

𝑛−𝑥+1

𝑛−𝑥+2
 .

1

𝑛−𝑥+1
 

=
1

𝑛+1
 

∴ E(Y)= ∑ [𝑀 + (𝑥 − 1)
𝑚

𝑛
]𝑛+1

𝑥=1 .
1

𝑛+1
  

= 
1

(𝑛+1)
[(𝑛 + 1)𝑀 +

𝑚

𝑛
.
𝑛(𝑛+1)

2
] 

= M + 
𝑚

2
. 

So the required value of the expectation is 

(M + 
𝑚

2
). 

Q28. Let X & Y be two joining 

distributed continuous random variable 

with joint PDF,  

𝒇𝑿𝒀(𝒙, 𝒚) =
𝟏

√𝟏−𝑷𝟐
𝟐𝝅  exp [- 

𝟏

𝟐 (𝟏−𝑷𝟐)
 {𝒙𝟐 −

𝟐𝑷𝒙𝒚 + 𝒚
𝟐}], x ∊ ℝ  ,y ∊ ℝ 

I > find the marginal PDF of X 

ii> Find the conditional PDF of Y for 

given X = x. 

Solution :- i> 𝑓𝑋(𝑥) = ∫ 𝑓𝑋𝑌(𝑥, 𝑦)𝑑𝑦
∞

−∞
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=
1

√1−𝑃2
2𝜋  ∫ exp [− 

1

2 (1−𝑃2)
 {𝑥2 − 2𝑃𝑥𝑦 +

∞

−∞

𝑦2}]dy 

=
1

√1−𝑃2
2𝜋  ∫ exp [− 

1

2 (1−𝑃2)
 {(𝑦 − 𝑃𝑥)2 +

∞

−∞

(1 − 𝑃2)𝑥2}]dy 

=
1

√1−𝑃2
2𝜋  𝑒−

𝑥2
2 ⁄ ∫ exp[−

(𝑦−𝑃𝑥)2

2 (1−𝑃2)
]

∞

−∞
𝑑𝑦 

Since, 
1

√2𝜋𝜎𝑌
 ∫ exp[−

1

2𝜎𝑌2
 (𝑦 −  𝜇𝑌)2]

∞

−∞
= 1 

Here,Y =Px and 𝜎2𝑌= (1 − 𝑃2)  

∴
1

√(1−𝑃2)
√2𝜋

 ∫ exp[−
1

2(1−𝑃2)
 (𝑦 −

∞

−∞

𝑃𝑥)2]  𝑑𝑦 

∴ ∫ exp[−
1

2(1−𝑃2)
 (𝑦 −

∞

−∞

𝑃𝑥)2]  𝑑𝑦=√2𝜋(1 − 𝑃2) 

∴𝑓𝑋(𝑥) =
1

√2𝜋
𝑒−
𝑥2
2 ⁄ , x∊ℝ, 

∴ X∼ N(0, 1). 

ii> Conditional PDF of Y for Given X= x is  

𝑓𝑦
𝑥
=𝑥

(
𝑦
𝑥
) =

𝑓𝑋𝑌(𝑥,𝑦)

𝑓𝑋(𝑥)
= 

1

√1−𝑃2
2𝜋

 
 𝑒−

𝑥2
2 ⁄  𝑒−

(𝑦−𝑃𝑥)2

2(1−𝑃2)
  

1

√2𝜋
𝑒−
𝑥2

2 ⁄
 

=
1

√2𝜋(1−𝑃2)
 𝑒−

(𝑦−𝑃𝑥)2

2(1−𝑃2)
 

i.e. 
𝑌

𝑋
=x∼ N (𝑃𝑥, ( √1 − 𝑃2)2) , ∞ < 𝑦 < ∞ 

E [
𝑌

𝑋
= 𝑥] =∫ 𝑓𝑋𝑌

(
𝑦

𝑥
)𝑑𝑦∞

−∞
=Px. 

Q29. Let x and Y have the circular 

normal distribution with zero mean, i.e. X 

& Y ∼ 𝑵𝟐(0, 0, 𝝈𝟐, 𝝈𝟐, 𝟎). Cosider a circle 

C and a square S of equal area both with 

ac (0, 0). Prove that, P [(X , Y)∊s]. 

Solution:- The joint PDF of X & y is given 

by 

F(x,y)=
1

2𝜋𝜎2
 𝑒
−

1

2𝜎2
(𝑥2+𝑦2)

,                   x∊ℝ, y 

∊ ℝ, 𝜎 > 0 

Let us consider a square S, with vertices (a, -

a), (a, a), (-a, -a) 

The area of the square =4𝑎2= s 

Consider a circle C with radius = r, and the 

centre at (0, 0) 

Area of C = 𝜋𝑟2 

Hence, 𝜋𝑟2=4𝑎2[given] 

⇒r =
2𝑎

√𝜋
 

Therefore, a < r < √2𝑎 

Now, P [XY∊ S] =∬ 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦∊𝑆

 

= 4 ∫ ∫ 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑎

0

𝑎

0
 [ By symetry] 

P [X, Y∊ C]= ∬ 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦∊𝐶

 

Now in the first quadrant, 

P [X, Y∊ C] - P [X, Y∊ S]   

= ∬ 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦∊𝐴

 - 

∬ 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦∊𝐵

   [From the figure 

canceling the common region] 

A = shaded region, 

B = dotted region. 

Now, if (x, Y)∊ A, then, 

𝑥2 + 𝑦2 <𝑟2 
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⇒- 
(𝑥2+𝑦2)

2 𝜎2
 > - 

𝑟2

2 𝜎2
 

⇒ f(x, y)> 
1

2𝜋𝜎2
 𝑒−

𝑟2

2 𝜎2
  ………………<i> 

If (X, Y)∊ B 

𝑥2 + 𝑦2 > 𝑟2 

⇒ f(x, y)< 
1

2𝜋𝜎2
 𝑒−

𝑟2

2 𝜎2
  ………………<ii> 

From <i> & <ii> we get, 

∬ 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦∊𝐴

> ∬ 𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦∊𝐵

 

∴P [X, Y∊ C] > P [X, Y∊ S]   

This inequality similarly holds for the other 

quadrants. 

Q30. Show that,    
𝟏

√𝟐𝛑
 ∫ 𝐞

−
𝐱𝟐

𝟐
 𝐝𝐱 <

𝐚

𝟎

 √𝟏 − 𝐞−
𝟐𝐚𝟐

𝛑

𝟏
𝟐

 

Solution:- P (x, Y∊ S)=4 

∫ ∫
1

2𝜋𝜎2

𝑎

0
 𝑒−

1

2
(𝑥2+ 𝑦2)𝑎

0
 𝑑𝑥𝑑𝑦 

= 
4

2𝜋
  [∫ 𝑒− 

𝑥2

2
𝑑𝑥𝑎

0
]2 

P (x, Y∊ C) = 4 ∫ ∫
1

2𝜋
 𝑒
−

1

2𝜎2
𝑟

0

𝜋
2⁄

0
 𝑅2. RdRd0 

=
4

4
 (1-𝑒−

𝑟2

2  ) 

∴ P (x, Y∊ C) > P (x, Y∊ S) 

⇒ 
1

4
(1 − 𝑒−

𝑟2

2 ) >  
1

2𝜋
 [∫ 𝑒− 

𝑥2

2
𝑑𝑥]

𝑎

0

2

  

⇒ ,    
1

√2π
 ∫ e

−
x2

2
 dx < √1 − e−

2a2

π

1
2

a

0
 

Q31. Let X and y be two r. v.’s with 

means zero, variance unity and 

correlation coefficient P, then S. T.  

E[Max(𝑿𝟐, 𝒀𝟐)]≤ 𝟏 + √𝟏 − 𝑷𝟐 

Solution:- Max(𝑋2, 𝑌2) + Min(𝑋2, 𝑌2) =

𝑋2 + 𝑌2  

 Max(𝑋2, 𝑌2) − Min(𝑋2, 𝑌2) =

𝑋2 − 𝑌2 

                  Max(𝑋2, 𝑌2) =
1

2
 [ (𝑋2 + 𝑌2) +

 |𝑋2 − 𝑌2|] 

E [Max(𝑋2, 𝑌2)] = 
1

2
 [𝐸 (𝑋2) + 𝐸(𝑌2) +

 𝐸|(𝑋 + 𝑌)(𝑥 − 𝑌)|] 

=
1

2
 [1 + 1 𝐸|(𝑋 + 𝑌)(𝑥 − 𝑌)|]  

By C – S inequality, 

𝐸2[|(𝑋 + 𝑌)(𝑥 − 𝑌)|]

≤ 𝐸(𝑋 + 𝑌)2𝐸(𝑋 − 𝑌)2  

i.e. 𝐸2|𝑋2 − 𝑌2|  ≤ (2 + 2𝐸(𝑋𝑌))(2 −

2𝐸(𝑋𝑌)) 

⇒ E  |𝑋2 − 𝑌2|  ≤  √1 − 𝑃2
2

 

∴ E [ max(𝑋2, 𝑌2)]≤ 1 +
1

2
  . √1 − 𝑃2

2
 

 ≤ 1+ √1 − 𝑃2 

Q32. (a) S.T. for a r.s. 

𝑿𝟏, 𝑿𝟐, … . , 𝑿𝒏  𝒇𝒓𝒐𝒎 𝒏(𝝁, 𝝈
𝟐), show that, 

√
𝒏

𝒏−𝟏
 (𝑿𝟏−𝐱 )

√(𝒏−𝟏)𝑺
𝟐−

𝒏
𝒏−𝟏

(𝑿𝟏−𝐱 
𝟐

𝒏−𝟐

 ∼ 𝒕𝒏−𝟐 
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Solution:- (a) Let 𝑌𝑖 = √
𝑖

𝑖−1
  (x 𝑖 − 𝑋𝑖) = 

√
𝑖

𝑖−1
 (
𝑋1+𝑋2,….,𝑋𝑖   

𝑖
− 𝑋𝑖) 

=√
𝑖

𝑖−1
 (
𝑋1+ ….+ 𝑥𝑖−1− (𝑖−1)𝑋𝑖

𝑖
) 

=
𝑋1+ ….+ 𝑥𝑖−1− (𝑖−1)𝑋𝑖

√𝑖(𝑖−1)
 ∀ i=2(1)n. 

Let 𝑌1= 
1

√𝑛
 𝑋1 +⋯+

1

√𝑛
𝑋𝑛. 

Hence the transformation reduces Y=AX, 

where 

A=
1

√𝑛
   
1

√𝑛
   
1

√𝑛
   ………………..

1

√𝑛
    

      
1

√1.2
   

1

√1.2
     0 ……………0                                 

is orthogonal 

       ⦙         ⦙           ⦙ …………   ⦙ 

     
1

√𝑛(𝑛−1)
  

1

√𝑛(𝑛−1)
   

1

√𝑛(𝑛−1)
    …..

(𝑛−1)

√𝑛(𝑛−1)
             

[ Helmert’s transformation] 

The PDF of (𝑋1, … . . , 𝑋𝑛) is  

F(𝑥1, … . . , 𝑥𝑛) = (
1

𝜎√2𝜋
)𝑛𝑒

−
1

2
∑

(𝑋𝑖−𝜇

𝜎2

)2
𝑛
𝑖=1 , 𝑥𝑖∊ 

R 

Here 𝑦1𝑦=𝑥1𝑥  and𝑦1=√𝑛x   

∴ |J|=1 is the Jacobian of the transformation. 

The PDF of (𝑦1, … . . , 𝑦) is  

g (𝑦1, 𝑦2,… . . , 𝑦𝑛)= 

(
1

𝜎√2𝜋
)𝑛𝑒

−
+∑ 𝑦𝑖

2−2𝜇√𝑛 𝑦1
𝑛
𝑖=1 𝑛𝜇2

2𝜎2   

= {
1

𝜎√2𝜋
 𝑒
−
(𝑦1−𝜇√𝑛)

2

2𝜎2 }∏ {
1

𝜎√2𝜋
 𝑒
−
𝑦𝑖
2

2𝜎2}𝑛
𝑖=2  

Hence 𝑦1 ∼ N (𝜇√𝑛 , 𝜎2 )and 𝑦𝑖 ∼ N 

(0 , 𝜎2) I = 1(1)n independently distributed. 

Now, ∑
𝑖

𝑖−1
 
(𝑋𝑖 − x 𝑖)

2

𝜎2
⁄𝑛

𝑖=2  

=∑ (
𝑦𝑖

𝜎
)2𝑛

𝑖=2 , which is the sum of squares of 

(n-1) 

i.i. d. N (0, 1) R.V.’s , follows 𝜆𝑛−1
2
 

[𝑦𝑖 ∼ N (0 , 𝜎2) , 𝑖 = 2(1)𝑛 

⇒
𝑦𝑖

𝜎
∼  N (0 ,1)] 

⇒  ∑
𝑖

𝑖−1
(𝑋𝑖 − x 𝑖)

2  ∼ 𝜎2𝜆𝑛−1
2  𝑛

𝑖=2  

Note :- 𝑦1 = √𝑛 x ∼ N (𝜇√𝑛 , 𝜎
2) 

(c) Consider the transformation 

Y= A(X –𝜇1), where 

A=       
1

√𝑛
   
1

√𝑛
   
1

√𝑛
………………..

1

√𝑛
  

−(𝑛−1)

√𝑛(𝑛−1)
    

1

√𝑛(𝑛−1)
      

1

√𝑛(𝑛−1)
    ………… ..   

1

√𝑛(𝑛−1)
  

𝑎31     𝑎32      𝑎33     ……………………..  

𝑎3𝑛 

𝑎𝑛1     𝑎𝑛2      𝑎𝑛3     ……………………..  

𝑎𝑛𝑛 

Note that y’ y= (𝑋1- 𝜇)’ (X –𝜇) 

⇒ ∑ 𝑦2
𝑖

𝑛
𝑖=1 = ∑ (𝑋𝑖 − 𝜇)

2𝑛
𝑖=1  

And |J=1| 

The PDF of X is  

𝑓𝑋(𝑥) =(
1

𝜎√2𝜋
)𝑛. 𝑒

−
1

2𝜎2 
 ∑ (𝑋𝑖−𝜇)

2𝑛
𝑖=1  , 𝑥𝑖∊ R 

The PDF of Y is  
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𝑓𝑌(𝑦)= (
1

𝜎√2𝜋
)𝑛. 𝑒

−
1

2𝜎2 
 ∑ 𝑦2𝑖
𝑛
𝑖=1  , 𝑦𝑖∊ R 

⇒ 𝑦𝑖 ∼ N (0 , 𝜎2), i= 1(1) n 

Here, 𝑦1= 
1

√𝑛
 ∑ (𝑋𝑖 − 𝜇)
𝑛
𝑖=1 = √𝑛 (x̄- 𝜇) 

and  𝑦2= 
−(𝑛−1)(𝑋1− μ)+ (𝑋2− μ)+ ….+(𝑋𝑛− μ)

√𝑛(𝑛−1)
 

= 
𝑛 x −nX1

√𝑛(𝑛−1)
 = -√

𝑛

𝑛−1
  (X1 − x ) 

Hence, √
𝑛

𝑛−1
 (X1 − x )= -𝑦2 ∼ N (0 , 𝜎2) 

And ∑ 𝑦2
𝑖

𝑛
𝑖=3 = ∑ (𝑋𝑖 − 𝜇)

2𝑛
𝑖=1 − 𝑦2

1
− 𝑦2

2
 

={ ∑ (𝑋𝑖 − 𝜇)
2𝑛

𝑖=1  -n(x −  μ)2} -
𝑛

𝑛−1
(X1 −

x )2 

= ∑ (Xi − x )
2𝑛

𝑖=1  -
𝑛

𝑛−1
(X1 − x )

2 

Therefore, √
𝑛

𝑛−1
 (
X1−x 

𝜎
)= -

 𝑌2

𝜎
 ∼ N(0, 1) 

And, 
∑ (Xi−x )

2𝑛
𝑖=1 −

𝑛

𝑛−1
(X1−x )

2

𝜎2
= ∑ (

 𝑌𝑖

𝜎
)2𝑛

𝑖=3 , 

The sum of squares of (n-2) iid N(0, 1) 

R.V.’S, follows 𝜆𝑛−2
2
, independent 1 by 

defn of t- distn. 

√
𝑛

𝑛−1
 (
X1−x 

𝜎
)

√{
∑ (Xi−x )

2
−
𝑛
𝑛−1

(X1−x )
2𝑛

𝑖=1
𝜎2

}

(𝑛−2)
⁄

 ∼ 𝑡𝑛−2 

⇒ 
√

𝑛

𝑛−1
 (
X1−x 

𝜎
)

{ (𝑛−1)𝑆2−
𝑛
𝑛−1

(X1−x )
2}

(𝑛−2)

 ∼ 𝑡𝑛−2 

 

Q33. Suppose (X, Y)∼ BN(0, 0, 1, 1, P). 

S.T. 

i) 
𝑿𝟐−𝟐𝑷𝑿𝒀+𝒀𝟐

𝟏− 𝑷𝟐
 ∼ 𝝀𝟐

𝟐
 

ii) 𝑴𝒛(𝒕)= [{𝟏 − (𝟏 +  𝐏)𝐭} {𝟏 + (𝟏 −

𝐏)𝐭}]
−𝟏

𝟐⁄  

Solution :-i) (X, Y)∼ BN(0, 0, 1, 1, P) 

∴ the joint PDF of (X, Y) is given by, 

𝑓𝑋𝑌(𝑥, 𝑦)= 

1

𝜎𝑥𝜎𝑦√1−𝑃2.2𝜋
 𝑒
−

1

2 (1−𝑃2)
(𝑋2−2𝑃𝑋𝑌+𝑌2) 

  ; (x, 

y)∊ ℝ2 

Let, U= X+ Y 

         V= X- Y 

∴ |J|= 
1

2
, X= 

𝑈+𝑉

2
, Y = 

𝑈−𝑉

2
 

Now, note that, 

1

1 − 𝑃2
 {
(𝑈 + 𝑉)2

4
+
(𝑈 − 𝑉)2

4

−  𝑃
(𝑈 + 𝑉)(𝑈 − 𝑉)

2
 } 

=
1

1−𝑃2
 {
𝑈2+𝑉2

4
−  𝑃

(𝑈2−𝑉2)

2
} 

=
1

2(1−𝑃2)
{𝑈2 − 𝑃𝑈2 + 𝑉2 − 𝑃𝑉2} 

=
1

2(1+𝑃)(1−𝑃)
{𝑈2(1 − 𝑃) + 𝑉2(1 + 𝑃)} 

=
𝑈2

2(1+𝑃)
+

𝑉2

2(1−𝑃)
, ____________<i> 

∴ Joint PDF of U and V is given by, 
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𝑓𝑈𝑉(𝑢, 𝑣)=

1

√2 √2𝜋 √1+𝑃
 𝑒
−

1

4(1+𝑃)
𝑢2
.

1

√2 √2𝜋 √1+𝑃
 𝑒
−

1

4(1+𝑃)
𝑣2

, (u,v)∊ℝ2 

∴ U and V are independent. 

U ∼ N(0, 2(1+P)) 

∴ 
𝑈

√2(1+𝑃)
 ∼ 𝑁(0, 1) ⇒ 

𝑈2

2(1+𝑃)
 ∼  𝜆1

2
 

Similarly, 
𝑉2

2(1−𝑃)
 ∼  𝜆1

2
. 

∴ 
𝑈2

2(1+𝑃)
 + 

𝑉2

2(1−𝑃)
 ∼ 𝜆1

2
  [By the 

reproductive property of  𝜆2-distribution] 

ii) MGF of X, Y is given By, 

𝑀𝑋𝑌(𝑡)=E(𝑒𝑡𝑋𝑌) 

= E[E(𝑒𝑡𝑋𝑌| 𝑋)] 

Y| X ∼ N(𝑃𝑋, (1-𝑃2)) 

∴ E [𝑒𝑡𝑋.𝑃𝑋 + 
1

2
𝑡2𝑋2(1 − 𝑃2)] 

= E [𝑒𝑡𝑋.𝑃𝑋
2
+
1

2
𝑃2(1 − 𝑃2)𝑋2] 

= E [𝑒{𝑡𝑃+
1

2
𝑡2(1−𝑃2)}𝑋2

] 

= 
1

[1−2(𝑡𝑃+
1

2
𝑡2(1−𝑃2))]

1
2⁄
    [∵𝑋2∼𝜆1

2
  ] 

= 
1

[1−2𝑡𝑃−𝑡2(1−𝑃2)]
1
2⁄
     

= 
1

√(1−𝑡𝑃)2−𝑡2
 

= 
1

√{(1−𝑃)𝑡+1}{(1−𝑡(1+𝑃)}
 

= [{1 − (1 + P)t} {1 + (1 − P)t}]
−1

2⁄  

 

Q34. X ∼ R(0, 1) find 

i) the distn of 𝑿(𝒓). 

ii) The m.g.f. , mean (E(𝑿(𝒓))) and 

variance (var(𝑿(𝒓))) 

ANS:- i) If X ∼ R (0, 1), then the p.d.f of X 

is given by, 

F(x)=1,   0 < x < 1 

The distn function of X is given by, 

F(x)= ∫ 𝑑𝑥
𝑥

0
=x 

∴ The PDF of 𝑟𝑡ℎ order statistic is given by, 

g(x) = 
𝑛 !

(𝑟−1)!(𝑛−𝑟)!
 𝑥𝑟−1 (1 − 𝑥)𝑛−𝑟 , 0< x < 

1 

∴ 𝑋(𝑟) ∼ B (r, n-r+1) 

ii) Let 𝑋(𝑟) be denoted as U, then 

U ∼ B(r-1, n-r) 

𝑀𝑈(𝑡)= E(𝑒𝑈𝑡) 

=E [1+Ut+
𝑈2𝑡2

2!
+⋯] 

= ∑
𝑡𝑟

𝑟!
 𝐸(𝑈𝑟)∞

𝑟=0  

=∑
𝑡𝑟

𝑟!
∞
𝑟=0  .𝜇𝑟

1  [∵𝜇𝑟
1 = rth order raw 

moment about zero] 

E(U)=
1

𝐵(𝑟,𝑛−𝑟+1)
 ∫ 𝑢. 𝑢𝑟−1(1 − 𝑢)𝑛−𝑟
1

0
𝑑𝑢 , 

0<x <1 

=
𝐵(𝑟+1,𝑛−𝑟+1)

𝐵(𝑟,𝑛−𝑟+1)
 

=
𝑟

𝑛+1
. 
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E (𝑈2)=
𝑟(𝑟+1)

(𝑛+1)(𝑛+2)
 

V(U) =
𝑟(𝑟+1)

(𝑛+1)(𝑛+2)
 - 

𝑟2

(𝑛+1)2
 = 

𝑟

𝑛+1
 [
𝑟+1

𝑛+2
−

𝑟

𝑛+1
] 

=
𝑟(𝑛−𝑟+1)

(𝑛+1)2 (𝑛+2)
 

Q35. If 𝑿𝟏, 𝑿𝟐 be a random sample of size 

2 drawn from a population having p.d.f. 

f(x)=𝛌𝐞 −𝝀𝒙, x> 0, λ>0. Then find the distn 

of the sample range. Is the distn 

independent from the sampling  

distribution of simple AM? 

ANS:- 𝑋1, 𝑋2 be a random sample drawn 

from a population with pdf f(x)= λe −𝜆𝑥, 

x>0, λ> 0. 

Let us consider the following transformation 

(𝑋1, 𝑋2) → (𝑋(1) , 𝑋(2)) , where 𝑋(𝑖)=ith 

order  statistic. 

∴ Joint distn of 𝑋(1) , 𝑋(2) is given by, 

𝑓𝑋(1) ,𝑋(2)
(𝑥1,𝑥2)= 2𝜆2 𝑒−𝜆(𝑋(1)+ 𝑋(2))   

Let us define a variable, 

𝑈𝑖= 𝑋𝑖 − 𝑋(𝑖−1) ∀ i=1, 2. 

𝑈1=𝑋(1)   [Assuming𝑋(0) = 0] 

𝑈2= 𝑋(2) − 𝑋(1) 

∴ 𝑋2=𝑢1+𝑢2 

∴ |J|=|J(
𝑋(1) ,𝑋(2)

𝑢1,𝑢2
)|=|
1 0
1 1

|=1 

∴ Joint pdf of 𝑢1, 𝑢2 is given by, 

𝑓𝑈1 ,𝑈2
(𝑢1,𝑢2)=2𝜆2𝑒−𝜆(2𝑢1+𝑢2)   

=2 λ .𝑒−2𝜆𝑢1 , λ .𝑒−2𝜆𝑢2, (𝑢1,𝑢2)>0 

∴ 𝑈1 , 𝑈2 are independently distributed, 

∴ sample range(R)= 𝑋(2) − 𝑋(1) 

                                     =𝑢2 

∴ E(R)=E(𝑢2)= λ∫ 𝑢
∞

0
 𝑒−𝜆𝑢2  𝑑𝑢 

= 
𝜆

𝜆2
= 
1

𝜆
 

∴ PDF of sample range (R) is  𝑓𝑅(R)=λ 

𝑒−𝜆𝑅, R> 0 

Now, simple AM = 
𝑋(1)+ 𝑋(2)

2
 = 
2𝑢1+𝑢2

2
 = 

𝑢1+
1

2
𝑢2= Z, say, 

∴ Joint PDF of (Z, 𝑢2) is given by, 

𝑓𝑍,𝑢2(Z, 𝑢2)= 2𝜆2 𝑒−2𝜆𝑍, Z>0 

So, the distn of sample range & simple AM 

are different. 

Q36. F(x, y) be a joint distribution 

function of X and Y. G(𝜉, )be a function 

∋𝜉= max(X, Y). Show that G(x, 

y){𝑭(𝒙, 𝒙)𝒊𝒇 𝒙 < 𝑦 

               F(x, y)+F(x,x)-F(y, y) if x≥ y 

Solution:- G(x, y)= P [Max(X, Y)≤x, 

Min(X, Y)≤ y]  if x < y 

= P[P [Max(X, Y)≤x, Min(X, Y)≤ x] 

=P [X≤ x , Y ≤ x] 

= F(x, x) 

Now, G(x, y)= P [Max(X, Y)≤x, Min(X, 

Y)≤ y]  if x ≤ y 

= P[𝑋(2) ≤x, 𝑋(1) ≤ 𝑦 ];    A= 𝑋(2) ≤x, 

B=𝑋(1) ≤ 𝑦 
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=P (A) –P(A ∩BC)  

= P[𝑋(2) ≤x] –[P[𝑋(2) ≤x, 𝑋(1) ≥ 𝑦 ] 

= P [X≤ x, Y≤ x]- P [y ≤ 𝑋(1)  ≤ 𝑋(2)  ≤

𝑥 ] 

= F(x,x)-(F(y,y)-F(x, y)) 

= F(x,x) +(F(x ,y)-F(y , y)). 

Q37. f(x,y)= {
𝟏

𝝅
  𝒊𝒇 𝒙𝟐 + 𝒚𝟐 ≤ 𝟏     (𝒂)Are 

X and Y uncorrelated? 

  =0  if 𝒙𝟐 + 𝒚𝟐 > 1       (b)Are X 

and y independent? 

Solution:-  f(x,y)= {
1

𝜋
𝐼 𝑥2 + 𝑦2 ≤ 1      

𝑓𝑋(𝑥) =
1

𝜋
∫ 𝑑𝑋
√1−𝑥2

−√1−𝑥2
=
2

𝜋
√1 − 𝑥2 ; -1 < x 

< 1 

𝑓𝑌(𝑦)=
2

𝜋
√1 − 𝑦2 ; -1 < y < 1 

E(X)= 
2

𝜋
∫ 𝑥
1

−1
√1 − 𝑥2 dx = 0  [∵ the 

function is odd] 

Similarly, E(Y)=0 

E(XY)=∫ ∫ 𝑥𝑦 
1

𝜋
 𝑑𝑥𝑑𝑦

√1−𝑦2

−√1−𝑦2
= 0

1

−1
    [∵ 

∫
𝑥

𝜋
𝑑𝑥 = 0

√1−𝑦2

−√1−𝑦2
] 

∴ X and Y are uncorrelated. 

Note that, f(x,y)=
4

𝜋
√(1 − 𝑥2)(1 − 𝑦2) ≠ 

f(x). f(y). 

∴ X and Y are not independent. 

 

Q38.  𝑿𝟏, ………, 𝑿𝒏 , …… be i.i.d r. v. ‘s 

satisfying P [𝑿𝟏=𝟐𝒋]= 
𝟏

𝟐𝒋
 , 

j = 1, 2, 3, ….. show that WLLN dose not 

hold for {𝑿𝒏}. 

Solution:- WLLN holds iff [|𝑥| > 𝑛]𝑛⟶∞
𝐿𝑡 =

0 

Let, 2𝑘  ≤ 𝑛  ≤ 2𝑘+1 

i.e. n=2𝑘 +r 

P[X > n]=P [𝑋 ≥ 2𝑘+1]= P [𝑋 = 2𝑘+1]+ 

𝑋 ≥ 2𝑘+2+ …… 

=
1

2𝑘+1
+

1

2𝑘+2
  + ……. 

= 
1

2𝑘+1
 .(1+ 

1

2
 + 
1

4
+ …..)= 

1

2𝑘
 

∴ nP [X > n]= 
2𝑘+𝑟

2𝑘
  

= 1+
𝑟

2𝑘
 

∴  𝑛𝑃[𝑥 > 𝑛]𝑛⟶∞
𝐿𝑡 =  (1 +

𝑟

2𝑘
)𝑘⟶∞

𝐿𝑡 =1. 

∴ WLLN does not hold 

Q39. There are 10 balls in an urn 

numbered 1 through 10.You randomly 

select 3 of those balls. Let the random 

variable Y denotes the maximum of the 

three numbers on the extracted balls. 

Find the probability mass function of y. 

You should simplify your answer to a 

fraction that does not involve binomial 

coefficients. Then calculate: 

P [Y ≥7]. 

Solution:-  The random variable Y can take 

the values in the set {3, 4, …. , 10}. For any 

I, the triplet resulting in Y attaining the 
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value i must consist of the ball numbered i 

and a pair of balls with lower numbers. So , 

Pi =P[Y =i]= 
(𝑖−12 )

(103 )
= 

(𝑖−1)(𝑖−2)

2
10.9.8

3.2.1

 = 
(𝑖−1)(𝑖−2)

240
 

Since the balls are numbered 1 through 10, 

we have 

P [Y ≥7] =P [Y= 7] + P [Y= 8] + P[ Y=9] + 

P [Y= 10] 

So, P [Y ≥7]= 
6.5

240
 + 

7.6

240
 + 

8.7

240
 + 

9.8

240
 

= 
5

6
 . 

Q40. The number of misprints per page of 

text is commonly modeled by a poisson 

distribution . It is given that the 

parameter of this distribution is λ = 0.6 

for a particular book. Find the 

probability that there are exactly two 

misprints on a given page of the book. 

How about the prob. that there are two or 

more misprints? 

Solution:- Let X denote the random variable 

which stands for the number of misprints on 

a given page. Then 

P [X =2]= 
0.62

2!
 𝑒−0.6≈ 0.0988 

P [X≥ 2] = 1- P [X < 2] 

= 1- P [X=1] – P[X=0] 

=1-𝑒−0.6 - 0.6𝑒−0.6 

≈  0.122. 

Q41. The unit interval (0,1)is divided into 

two subintervals picking a point at 

random from inside the interval. 

Denoting by Y and Z, the lengths of the 

larger and the shorter subintervals 

respectively. Show that Y/Z does not have 

finite expectations. 

Solution:- Let X ∼ U(0, 1) and U be the 

length of the intervals (0, X) and (X, 1); i.e. 

Z = min(X, 1-X) 

And let, Y = 1- U. 

We can write Y and Z as Y = Y(X), Z = 

Z(X); as functions of X ∼ U (0, 1). 

To show the expectation is infinite; we need 

to show that  

∫
𝑌(𝑥)

𝑍(𝑥)
 𝑑𝑥

0

1
=∞ 

Now, Z = min (X, 1-X) , Y = max(X, 1-X) 

But, ∫
𝑌(𝑥)

𝑍(𝑥)
 𝑑𝑥

1

2
1

 = ∫
 max(X,1−X)

min (X,1−X)
 𝑑𝑥

1

2
1

 = 

∫
1−𝑥

𝑥
 𝑑𝑥

1

2
1

 = ∞ 

One get the same thing on the interval [
1

2
, 1] 

as well after a substitution, so the integral on 

[0, 1] is ∞. 

Aliter:- let T (x)= 
 max(X,1−X)

min (X,1−X)
  

To calculate P [T (X)≤], for some t, If t < 1, 

then trivially we get 0. 

Otherwise, P [T (X)≤]= P [
1−𝑋

𝑋
≤ 𝑡, X∊ (0, 

1

2
) ] + P [

𝑋

1−𝑋
≤ 𝑡, X∊ ( 

1

2
, 1) ] 

= 2P [X≥ 
1

1+𝑡
, X∊ (0, 

1

2
)] 

=2 ∫ 𝑑𝑥
1
2⁄

1
1+𝑡⁄

 = 1- 
2

𝑡+1
. 

Differentiating, we get f(t) = 
2

(𝑡+1)2
 for t≥ 1. 
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Now, ∫
2

(𝑡+1)2

∞

1
 𝑑𝑡 = ∞. 

Q42.  Let 𝑿𝟏, 𝑿𝟐∼  R(0, 1). Show 

that____________ 

𝑼𝟏= √−𝟐𝟏𝒏𝑿𝟏 𝐜𝐨𝐬 (𝟐𝝅𝑿𝟐) 

𝑼𝟐= √−𝟐𝟏𝒏𝑿𝟏 𝐬𝐢𝐧 (𝟐𝝅𝑿𝟐) 

Are standard normal variables. 

Solution:- The PDF of (𝑋1, 𝑋2) is 

𝑓𝑋1,𝑋2(𝑥1, 𝑥2)= 𝑓(𝑥) =

{
1     , 0 < 𝑥1, 𝑥2 < 1 
0                        ,    𝑜𝑤

 

 Here, 𝑢1= √−21𝑛𝑥1 cos (2𝜋𝑥2) 

𝑢2= √−21𝑛𝑥1 sin (2𝜋𝑥2) 

∴ 𝑢1
2 + 𝑢2

2 = -21n𝑥1 

⇒𝑥1 = 𝑒
−
1

2
(𝑢1

2+ 𝑢2
2 )

  

And tan(2𝜋𝑥2)= 
𝑢2

𝑢1
 

⇒ 𝑥2 =
1

2𝜋
 tan−1

𝑢2

𝑢1
 

Note that, 0 < 𝑥1 < 1 

⇒ -21n𝑥1 > 0   , 0<2𝜋𝑥2 <2𝜋 

⇒ √−21𝑛𝑥1 > 0  , -1 ≤

cos(2𝜋𝑥2) , sin(2𝜋𝑥2) ≤ 1 

⇒ 𝑢1 , 𝑢2∊ ℝ 

The Jacobian is J = |

∂𝑥1

∂𝑢1 

∂𝑥1

∂𝑢2 

∂𝑥2

∂𝑢1 

∂𝑥2

∂𝑢1 

| 

=

|
𝑒−

1

2
(𝑢1

2+ 𝑢2
2 ). (−𝑢1) 𝑒−

1

2
(𝑢1

2+ 𝑢2
2 ). (−𝑢2)

1

2𝜋{1+(
𝑢2
𝑢1
)2}
 . (−

𝑢2

𝑢1
)

1

2𝜋{1+(
𝑢2
𝑢1
)2}
 .
1

𝑢1

| 

= 
𝑒
−
1
2
(𝑢1

2+ 𝑢2
2 )

2𝜋{1+(
𝑢2
𝑢1
)2}

 |
−𝑢1 −𝑢2

−
𝑢2

𝑢12
1

𝑢1

| 

= - 
1

2𝜋
 . 𝑒−

1

2
(𝑢1

2+ 𝑢2
2 )

 

The PDF of (𝑢1 , 𝑢2) is 

𝑓𝑈1 ,𝑈2(𝑢1, 𝑢2)= 1 . |  −  
1

2𝜋
 . 𝑒−

1

2
(𝑢1

2+ 𝑢2
2 ) |. 

(𝑢1 , 𝑢2)∊𝑅
2 

= 
1

√2𝜋
. 𝑒−

1

2
 𝑢1

2

 .
1

√2𝜋
. 𝑒−

1

2
 𝑢2

2

  , (𝑢1 , 𝑢2)∊ℝ2 

= 𝑓𝑢1(𝑢1). 𝑓𝑢2(𝑢2) , 𝑢1 , 𝑢2 ∊ℝ 

Hence, 𝑈1, 𝑈2 ∼  N(0, 1). 

Q43. Let X, Y ∼ N(0, 1). Show that U = 
𝑿

𝒀 
 

has a standard Cauchy distribution. 

What would be the distn of 
𝑿

|𝒀| 
 ? 

Soln:- Here, 𝑓𝑋,𝑌(𝑥, 𝑦)= 
1

2𝜋
 𝑒−

(𝑥2+𝑦2)

2 , (x, y) 

∊ℝ2 

Let, U=
𝑋

𝑌 
 and V = y. 

∴ u = 
𝑥

𝑦 
, v= y       [-∞ < 𝑢 < ∞  , −∞ < 𝑣 <

 ∞] 

⇒ x= uv , y=v 

∴ J = |
𝑣 𝑢
0 1

|= v = |

𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣
𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

| 

Clearly, (u,v) ∊ℝ2 
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The PDF (U, V) is ___ 

𝑓𝑈,𝑉(𝑢, 𝑣𝑦)= 
1

2𝜋
 𝑒−(1+𝑢

2)
𝑣2

2  |𝑣| , (u,v) ∊ℝ2 

The PDF of U is  

𝑓𝑈(𝑢) =∫ 𝑓𝑈𝑉(𝑢, 𝑣)
∞

−∞
𝑑𝑣 = 

∫  
1

2𝜋
 𝑒−(1+𝑢

2)
𝑣2

2  |𝑣|𝑑𝑣
∞

−∞
 

Or, =[2 ∫
𝑣

2𝜋
𝑒−

1

2
𝑣2(1+𝑢2)𝑑𝑣]

∞

0
                   = 

2

𝜋
 ∫ 𝑒−(1+𝑢

2)
𝑣2

2
∞

0
𝑣𝑑𝑣 

   [ ∫
1

𝜋

∞

0
  

1

(1+𝑢2)
 . 𝑒−𝑍𝑑𝑍

1

2
𝑣2(1+𝑢

2)=𝑍]                      

= 
1

𝜋
 ∫ 𝑒−(1+𝑢

2)𝑍∞

0
𝑑𝑍     

[where, Z=
𝑣2 

2
 , ⇒dZ = vdv] 

   [
1

𝜋(1+𝑢2)
[−𝑒−𝑍]]                                             

= 
1

𝜋
 .
┌(1)

(1+𝑢2)
, u ∊ ℝ 

    [
1

𝜋(1+𝑢2)
]                                                     

= 
1

𝜋(1+𝑢2)
, u ∊ ℝ 

Hence, U=
𝑋

𝑌 
 ∼ C(0, 1) distn 

Let, w = 
𝑥

|𝑌|
, The PDF of w is 𝑓𝑊(𝑤)= P 

[W≤ w/Y < 0]P [Y < 0]+ P [W≤ w/Y > 0]P 

[Y > 0] 

= 
1

2
 {P [

𝑋

−𝑌
 ≤ 𝑤] + P [

𝑋

𝑌
 ≤ 𝑤]} 

= 
1

2
 {P[-U≤ 𝑤] + P [U ≤ 𝑤]} 

=  
1

2
 .2 .P [U≤ 𝑤 ]   [∵ U∼ C (0, 1)is 

symmetrical about ‘0’ ] 

[⇒𝑓𝑈(−𝑢) =𝑓𝑈(𝑢) 

⇒ u and –U have identical distribution] 

∴ 𝑓𝑊(𝑤)= 𝑓𝑈(𝑤) ∀ w 

⇒ W = 
𝑋

|𝑌|
∼ C (0, 1). 

Q44. If X, Y ∼ N(0, 1). Find the distns of 

U = √𝑿𝟐 + 𝒀𝟐 and V = 
𝑿

𝒀
 

Solution:- 𝑓𝑥,𝑌(𝑥, 𝑦) = 
1

2𝜋
 .𝑒−

1

2
(𝑥2+𝑦2)

, (x, y)∊ 

ℝ2 

 Note that, u= √𝑥2 + 𝑦2 , v = 
𝑥

𝑦
 

⇒ u = |y|. √1 + 𝑣2 , x= vy 

⇒ x = ± 
𝑢𝑣

√1+𝑣2
 , y = ± 

𝑢

√1+𝑣2
 

Let, 𝑥1 = 
𝑢𝑣

√1+𝑣2
 , 𝑦1 = 

𝑢

√1+𝑣2
 

Then for a pair (U, V), there are two points 

of (x, y): 

(𝑥1 , 𝑦1), (−𝑥1 , −𝑦1) 

The transformation is not one – to one, 

Clearly, 0 < u < ∞ , v ∊ ℝ 

Now, 𝐽1 = |

∂𝑥1

∂u

∂𝑥1

∂v
∂𝑦1

∂u

∂𝑦1

∂v

| = |

𝑣

√𝑣2+1

𝑢

(√𝑣2+1)
3
2⁄

1

√𝑣2+1

𝑢𝑣

(√𝑣2+1)
3
2⁄

| 

= -
𝑢

1+ 𝑣2
 = 𝐽2 

 Hence, The PDF of (U, V)is 

𝑓𝑈,𝑉(𝑢, 𝑣)= 

{
𝑓𝑥,𝑌(𝑥1, 𝑦1)|𝐽1| + 𝑓𝑥,𝑌(−𝑥1, −𝑦1)|𝐽2|, 𝑖𝑓 0 < 𝑢 <  ∞,−∞ < 𝑣 <  ∞

0                                , 𝑜𝑤
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= {
2

2𝜋
 𝑒
−
𝑢2

2
 .|−

𝑢

1+ 𝑣2
|,𝑖𝑓0<𝑢< ∞,𝑎𝑛𝑑−∞<𝑣< ∞ 

0                   , 𝑜𝑤
 

=

{(𝑢𝑒
−
𝑢2

2 ) .
1

𝜋(1+ 𝑣2)
, 𝑖𝑓 0 < 𝑢 <  ∞ 𝑎𝑛𝑑 𝑣 ∊ ℝ

0                            ,                               𝑜𝑤          
 

Hence, U = √𝑋2 + 𝑌2 has the PDF 

𝑓𝑈(𝑢) = {𝑢 𝑒
−
𝑢2

2  , 0 < 𝑢 <  ∞
0      , 𝑜𝑤                  

 

and V ∼ Cauchy (0, 1), independently. 

Q45. If X, Y ∼ N(0, 1), Find the distn of 

U= 
𝑿𝒀

√𝑿𝟐+𝒀𝟐
, and V = 

𝑿𝟐−𝒀𝟐

√𝑿𝟐+𝒀𝟐
. 

Solution:- 𝑓𝑥,𝑌(𝑥, 𝑦)= 
1

2𝜋
 𝑒−

𝑋2+𝑌2

2 , (x, y)∊ ℝ2 

Let, x= rcos𝜃, y = rsin𝜃, 

Here, 0< r<∞, 0< 𝜃< 2𝜋, 

∴ J = r, 

The PDF of (r, 𝜃)is _____ 

g (r, 𝜃)= {𝑟𝑒
−
𝑟2

2
 .
1

2𝜋
  ,0<𝑟< ∞ 𝑎𝑛𝑑 0< 𝜃<2𝜋

0      ,               𝑜𝑤             
 

Here, u= rsin𝜃cos𝜃 = 
𝑟

2
𝑠𝑖𝑛2𝜃 

And v= rcos2𝜃 

Clearly, (U, V) ∊ ℝ2 

𝐽1= 
∂(r,θ)

∂(u,v)
 = 

1
∂(u,v)

∂(r,θ)

 = 
1

|
1

2
𝑠𝑖𝑛2𝜃 rcos2θ

cos2θ −2𝑠𝑖𝑛𝜃
|

 = 
1

𝑟
 = 𝐽2 

Here, (2𝑢)2 + 𝑣2 = 𝑟2 [ a pair(u,v)is a 

obtained, for two pairs: (r, 𝜃), (r, 𝜃+2𝜋). The 

transformation is not one-to-one] 

⇒ r = √4𝑢2 + 𝑣2 

The PDF of (U, V)is 

𝑓𝑈𝑉(𝑢, 𝑣)= 
2 .𝑒

−
4𝑢2+𝑣2

2

2π
 

.( √4𝑢2 + 𝑣2)|
1

√4𝑢2+𝑣2
|, (u, v) ∊ ℝ2 

= 
1

1

2
√2π
 . 𝑒

−
𝑢2

2.
1
4 .

1

√2π
 . 𝑒−

𝑣2

2  ; (u, v) ∊ ℝ2 

= 𝑓𝑈(𝑢). 𝑓𝑉(𝑢) , u, v ∊ ℝ 

Hence, U ∼ N (0, 
1

4
) and V ∼ N (0, 1), 

independently. 

Q46. Let 𝑿𝟏, 𝑿𝟐 ∼ r (0, 1). Find out CDF 

and hence the PDF of 𝑿𝟏 + 𝑿𝟐. How 

should the above result be modified in 

case 𝑿𝟏, 𝒂𝒏𝒅 𝑿𝟐 ∼ R (a, b)? 

Solution:- 𝑓𝑈(𝑢) = P [U≤ u] 

= P [𝑋1 + 𝑋2  ≤ u] 

=∬ (𝑥1, 𝑥2)𝑑𝑥1, 𝑑𝑥2𝑋1+ 𝑋2
 

Here, U = 𝑋1 + 𝑋2 takes values between 0 

and 2. 

Note that for 0< u <1, 

P [U≤ u]= P [𝑋1 + 𝑋2 ≤ 𝑢] 

= 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝐴

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑝𝑎𝑐𝑒 (𝛺)
 

[Using the concept of geometric probability, 

As (𝑋1, 𝑋2) is uniformly distributed 

Over 𝛺, here, 

𝛺 = {(𝑋1, 𝑋2) : 0< 𝑋1, 𝑋2< 1} 
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And A ={(𝑋1, 𝑋2) : 𝑋1 + 𝑋2 ≤ 𝑢}≤ 𝛺] 

∴ P [U≤ u] = 

1

2
𝑢2

12
 = 
1

2
𝑢2, for 0< u< 1. 

For, 1 ≤ u< 2 , ___ 

P [U ≤ u]= P [𝑋1 + 𝑋2 ≤ 𝑢] 

= 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝐴

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑝𝑎𝑐𝑒 (𝛺)
 

= 
12−

1

2
(2−𝑢)2

12
 

= 1 -
1

2
(2 − 𝑢)2 

Hence the CDF of U is___             𝐹𝑈(𝑢)= 

{
 
 

 
 

0, 𝑢 ≤ 0
1

2
𝑢2, 0 < 𝑢 < 1

1 −
1

2
(2 − 𝑢)2, 1 ≤ 𝑢 < 2

1, 𝑢 ≥ 2

 

And  the PDF of U is _____            

            𝐹𝑈(𝑢)= {

𝑢, 0 < 𝑢 < 1
2 − 𝑢, 1 ≤ 𝑢 < 2

0 , 𝑜𝑤    
 

Modification:-  𝑋𝑖∼ R (a, b) , i=1, 2 

⇒ 𝑈𝑖 = 
𝑋𝑖−𝑎

𝑏−𝑎
 ∼ R (0, 1), i=1, 2. 

Q47. Let 𝑿𝟏, 𝑿𝟐 ∼ R (0, 1). Find out CDF 

and PDF of 

 i> |𝑿𝟏 − 𝑿𝟐|, ii>𝑿𝟏 𝑿𝟐 

Solution:-  

i> Let U=|𝑋1 − 𝑋2| 

Note that U takes values between 0 and 1. 

For, 0< u< 1, 

P [U ≤ u]= P [|𝑋1 − 𝑋2| ≤ u] 

= P [-u≤ 𝑋1 − 𝑋2 ≤ u ] 

=
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑎𝑑𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑝𝑎𝑐𝑒 (𝛺)
 

[ Using the concept of Geometric 

Probability as (𝑋1, 𝑋2) is  

Uniformly distributed over 𝛺] 

P [U ≤ u]= 
12−

1

2
(1−𝑢)2

12
 

= 1- (1 − 𝑢)2 

Hence, the CDF of u is  

𝑓𝑈(𝑢)={

0   , 𝑢 ≤ 0

1 − (1 − 𝑢)2, 0 < 𝑢 < 1
1     ,   𝑢 ≥ 1

 

And  the PDF of U is 

𝑓𝑈(𝑢)={
2 (1 − 𝑢), 0 < 𝑢 < 1

0 ,       𝑜𝑤
 

ii> Let U= 𝑋1 𝑋2 

 Then U takes value between 0 and 1. 

For, 0< u< 1: 

P [U ≤ u]= P [𝑋1 𝑋2 ≤  u ] 

= 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠ℎ𝑎𝑑𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑝𝑎𝑐𝑒 (𝛺)
 

=
𝑢𝑋1+∫ 𝑥2𝑑𝑥1

1
𝑢

12
 

=u +∫
𝑢

𝑥1

1

𝑢
 𝑑𝑥1 

= u+ u [1n𝑥1]1,u =u(1-|nu) 

Q48.  X and Y ∼ R (0, 1) X & Y are 

independent, 

i> X+Y ∼ ? 
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ii> X- Y ∼? 

iii> XY ∼? 

iv> 
𝑿

𝒀
 ∼? 

v> |𝑿 − 𝒀|∼? 

ANs:-i)  Z= X+Y 

0< X, Y<1 

⇒ 0< Z < 2. 

Distribution function of Z is  

𝐹𝑍(𝑧)= P [z≤ z] 

= P[Y≤z-X] 

= 

{
 
 

 
 

0 , 𝑧 ≤ 0
1

2
𝑧2 , 𝑖𝑓 0 < 𝑧 < 1

1 −
1

2
(2 − 𝑧)2, 𝑖𝑓 1 < 𝑧 < 2

1              ,   𝑖𝑓 𝑧 ≥ 2

 

PDF of Z is, _____ 

𝐹𝑍(𝑧)= {
𝑧 , 𝑖𝑓 0 < 𝑧 < 1

2 − 𝑧 , 𝑖𝑓 1 < 𝑧 < 2
0    ,                  𝑜𝑤

 

ii) Z = X- Y 

0< X, Y< 1 

⇒ -1< z< 1 

𝐹𝑍(𝑧) = P [X-Y ≤z] 

=P [Y ≥ 𝑋 − 𝑧 ] 

= 

{
 
 

 
 

0 , 𝑖𝑓 𝑧 ≤  −1
1

2
(𝑧 + 1)2, 𝑖𝑓 − 1 < 𝑧 < 0

1 −
1

2
(1 − 𝑧)2, 𝑖𝑓 0 < 𝑧 < 1

1       ,   𝑧 ≥ 1

 

PDF of Z is, ________ 

𝐹𝑍(𝑧)= {
𝑧 + 1 , 𝑖𝑓 − 1 < 𝑧 < 0
1 − 𝑧 , 𝑖𝑓 0 < 𝑧 < 1
0         ,      𝑜𝑤

 

iii) Z=XY 

0< X, Y< 1 ⇒ 0< XY <1. 

⇒ 0<x < 1 

𝐹𝑍(𝑧)= P [XY ≤ 𝑧] 

=

{

0  , 𝑖𝑓 𝑧 ≤ 0

∫ ∫ 𝑑𝑥𝑑𝑦
𝑧

0
+ ∫ ∫ 𝑑𝑥𝑑𝑦

𝑧/𝑥

0
 , 𝑖𝑓 0 < 𝑧 < 1 

1

𝑧
 

1

0

1 ,      𝑖𝑓 𝑧 ≥ 1

 

= z+∫
𝑧

𝑥
𝑑𝑥

1

𝑧
 , if 0< z< 1 

= z + z [|n|-|nz] 

= z- z|nz = z (1-|nz). , if 0< z<1 

∴ CDF of z is, _____ 

 𝐹𝑍(𝑧)= {

0   , 𝑖𝑓 𝑧 ≤ 0

𝑧 (1 − |𝑛𝑧), 𝑖𝑓 0 < 𝑧 < 1
1     , 𝑖𝑓 𝑧 ≥ 1

 

PDF of  z is, ___ 

𝐹𝑍(𝑧)= {
−1𝑛𝑧 , 𝑖𝑓 0 < 𝑧 < 1
0              , 𝑜𝑤   

 

iv) Z= 
𝑋

𝑌
 

0< X, Y< 1 

⇒ 0<
𝑋

𝑌
 < ∞  

∴ 0< Z <∞ 

P [Z ≤ z] 

=P [
𝑋

𝑌
≤ z] 



Solving Mathematical Problems 

 

201 
 

= P [Y ≥ ½ X] 

= 

{
 
 

 
 

0 , 𝑖𝑓 𝑧 ≤ 0
1

2
𝑧 , 𝑖𝑓 0 < 𝑧 < 1

1 −
1

2𝑧
, 𝑖𝑓 𝑧 ≥ 1

 

 

∴ 𝐹𝑍(𝑧)=

{
 
 

 
 

1

2
, 𝑖𝑓 𝑧 ≤ 0

1

2𝑧2
, 𝑖𝑓 𝑧 ≥ 1

0      , 𝑜𝑤
 

 

v) Z = |𝑋 − 𝑌| 

0< X, Y< 1 

⇒ 0<|𝑋 − 𝑌| < 1 

P [Z ≤z] 

= P [X –Z ≤Y ≤ X+Z] 

={

0 , 𝑖𝑓 𝑧 ≤ 0

1 − (1 − 𝑧)2 ,𝑖𝑓 0<𝑧<1

1, 𝑖𝑓 𝑧 ≥ 1

 

∴ 𝑓𝑍(𝑧) = {
2(1 − 𝑧) , 𝑖𝑓 0 < 𝑧 < 1

0   ,        𝑜𝑤
 

Q49. X ∼ R(0, a) 

Y ∼ R( 0, b) 

X and Y are independent & a> b 

i> X+Y ∼ ? 

ii> X- Y ∼? 

iii> XY ∼? 

iv> 
𝑿

𝒀
 ∼? 

v> |𝑿 − 𝒀|∼? 

ANS :- i) X + Y= Z, 

0< x < a, 0<y < b 

⇒ 0< x+y< a+b 

∴ P [Z ≤z]= P [Y≤z-X] 

= 

{
 
 
 

 
 
 

0 , 𝑧 ≤ 𝑜
1

𝑎𝑏
×
1

2
𝑧2 , 𝑖𝑓 0 < 𝑧 ≤ 𝑏

1

𝑎𝑏
×
𝑏

2
× (2𝑧 − 𝑏), 𝑏 < 𝑧 ≤ 0

𝑎𝑏−(
𝑎+𝑏−𝑧)2

2

𝑎𝑏
 𝑎 < 𝑧 < 𝑎 + 𝑏

1, 𝑖𝑓 𝑧 ≥ 𝑎 + 𝑏

 

=

{
 
 

 
 

𝑧

𝑎𝑏
 , 𝑎 < 𝑧 ≤ 𝑏

1

𝑎
, 𝑏 < 𝑧 ≤ 𝑎

𝑎+𝑏−𝑧

𝑎𝑏
 , 𝑎 < 𝑧 < 𝑎 + 𝑏

𝑜   ,   𝑜𝑤

 

 

ii) X- Y  = z 

P [Z ≤ z] 

= P [X-Y ≤ z] 

= P [Y ≥ X- z] 

= 

{
  
 

  
 

0 , 𝑧 ≤  −𝑏
1

2𝑎𝑏
(𝑏 + 𝑧)2 , −𝑏 < 𝑧 ≤ 0

1

2𝑎𝑏
 (𝑏 + 2𝑧)𝑏, 0 < 𝑧 ≤ 𝑎 − 𝑏

1 − 
1

2𝑎𝑏
(𝑎 − 𝑧)2 , 𝑎 − 𝑏 < 𝑧 < 𝑎

1    ,    𝑧 ≥ 𝑎

 

∴ 𝑓𝑧(𝑧)= 

{
 
 

 
 
1

𝑎𝑏
(𝑏 + 𝑧), −𝑏 < 𝑧 ≤ 0

1

𝑎
 , 0 < 𝑧 ≤ 𝑎 − 𝑏

𝑎−𝑧

𝑎𝑏
 , 𝑎 − 𝑏 < 𝑧 < 𝑎

0   , 𝑜𝑤

 

iii) Z= XY , 0< z < ab 

P [Z ≤ z] 
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= P [Y ≤ 
𝑧

𝑋
] 

= {

0  , 𝑧 ≤ 0
1

𝑎𝑏
[𝑧 + ∫

𝑍

𝑋
𝑑𝑥

𝑎
𝑧

𝑏

] , 0 < 𝑧 < 𝑎𝑏

1   ,    𝑧 ≥ 𝑎𝑏

 

∴ 

𝑓𝑧(𝑧)=

{
[ 1 − 𝑏 + 1𝑛𝑏𝑎 − 1𝑛𝑧]

1

𝑎𝑏
, 0 < 𝑧 < 𝑎𝑏

0    ,    𝑜𝑤
 

iv) Z = 
𝑋

𝑌
 , 0< z 

P [
𝑋

𝑌
 ≤ 𝑧] 

P[Y≥ 
𝑋

𝑧
] 

= {

0   ,   𝑧 ≤ 0
1

2𝑎𝑏
× 𝑏𝑧 × 𝑏 , 0 < 𝑧 < 1

1 − 𝑎.
𝑎

𝑧
.
1

2𝑎𝑏
 , 1 ≤ 𝑧

 

∴ 𝑓𝑧(𝑧)= {

𝑏

2𝑎
 , 0 < 𝑧 < 1

𝑎

2𝑏
(
1

𝑧2
) , 𝑧 ≥ 1

0  ,    𝑜𝑤

 

v) Z = |X- Y| , 0< z < a 

P [X-z ≤Y ≤ X + z] 

= {

0  , 𝑧 ≤ 0

1 −
1

2
(𝑏 − 𝑧)2 −

1

2
(𝑎 − 𝑧)2 , 0 < 𝑧 < 𝑎

1   ,    𝑧 ≥ 𝑎

 

∴ 𝑓𝑧(𝑧)= {
𝑎 + 𝑏 − 2𝑧 , 0 < 𝑧 < 𝑎

0   ,    𝑜𝑤
 

Q50. let 𝑿𝟏, 𝑿𝟐, 𝑿𝟑 be iid RV’s with PDF 

F(x) = {
𝒆−𝒙 , 𝒙 > 0
𝟎 , 𝒐𝒘

 

Show that ⟶ 𝒀𝟏 = 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 

𝒀𝟐 = 
𝑿𝟏+ 𝑿𝟐

𝑿𝟏+ 𝑿𝟐+ 𝑿𝟑
 

𝒀𝟑 = 
𝑿𝟏

 𝑿𝟏+ 𝑿𝟐
 , are independently 

distributed. 

Identify their distribution. 

Solution :- 𝑓𝑋1,𝑋2,𝑋3(𝑥1, 𝑥2, 𝑥3)= 

{
𝑒−(𝑥1+𝑥2+ 𝑥3) , 𝑖𝑓 𝑥𝑖 > 0 ∀ 𝑖 = 1, 2, 3

0  ,                  𝑜𝑤
 

Here, 𝑥1 + 𝑥2 + 𝑥3 = 𝑦1 

 𝑥1 + 𝑥2 = 𝑦1𝑦2                                                  

[∵𝑥1 + 𝑥2 < 𝑥1 + 𝑥2 + 𝑥3 ⇒ 
𝑥1+𝑥2

𝑦1
<

1,
𝑥1

 𝑥1+𝑥2
< 1  ] 

𝑥3= 𝑦1 (1 − 𝑦2) 

Clearly, 0< 𝑦1 < ∞ and 0< 𝑦2, 𝑦3< 1 

The Jacobian is J= 

𝜕𝑥1

𝜕𝑦1

𝜕𝑥1

𝜕𝑦2

𝜕𝑥1

𝜕𝑦3
𝜕𝑥2

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥2

𝜕𝑦3
𝜕𝑥3

𝜕𝑦1

𝜕𝑥3

𝜕𝑦2

𝜕𝑥3

𝜕𝑦3

 

= 

𝑦2 𝑦3 𝑦1𝑦3 𝑦1 𝑦2
𝑦2(1 − 𝑦3) 𝑦1(1−𝑦3) − 𝑦1 𝑦2
1 − 𝑦2 −𝑦1 0

 = 

1 0 0
 𝑦2(1 − 𝑦3) 𝑦1(1 − 𝑦3) −𝑦1 𝑦2
1 − 𝑦2 −𝑦1 0

 

= - 𝑦1
2𝑦2 

The PDF of (𝑌1, 𝑌2, 𝑌3)is  

𝑓𝑌1,𝑌2,𝑌3(𝑦1, 𝑦2, 𝑦3)=

{𝑒
−𝑦1 ⎸𝑦1

2𝑦2⎸,𝑖𝑓 0 <  𝑦1 <  ∞ 𝑎𝑛𝑑 0 < 𝑦2 , 𝑦3 < 1 
0    ,                                                𝑜𝑤
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= 

{
𝑒−𝑦1  .𝑦1

3−1

┌(3)
. 2𝑦2 .1 , 𝑖𝑓 0 <  𝑦1 <  ∞ , 0 <  𝑦2,

0    ,                               𝑜𝑤
 𝑦3 <

1 

Where, 𝑓𝑌1(𝑦1) =

 {
𝑒−𝑦1  .𝑦1

3−1

┌(3)
 , 0 < 𝑦1 <  ∞   ∴ 𝑌1 ∼ 𝐺𝑎𝑚𝑚𝑎(3)

0    ,                                            𝑜 𝑤
 

 

𝑓𝑌2(𝑦2)

=  {

𝑦2,
2−1(1 − 𝑦2,)

1−1

𝛽(2, 1)
 , 0 < 𝑦2<1   ∴  𝑌2 ∼  𝛽(2, 1)

0      ,                   𝑜𝑤

 

And 𝑓𝑌3(𝑦3) = 

{
1  , 0 < 𝑦3 < 1        , ∴  𝑌3  ∼ 𝑈(0, 1)

0     ,    𝑜𝑤
 

[ Due to independence] 

Q51. let 𝒇𝑿,𝒀,𝒁(𝒙, 𝒚, 𝒛)= 

{
𝟔

(𝟏+𝒙+𝒚+𝒙)𝟒
 , 𝒊𝒇 𝒙, 𝒚, 𝒛 > 0

𝟎   ,    𝒐𝒘
 

Be the PDF of (X, Y, Z). find the distn of 

U = X+ Y+ Z. 

Solution :- U = X+ Y+ Z 

 V= 
𝑋+𝑌

𝑋+𝑌+𝑍
   ℎ𝑒𝑟𝑒, 0 < 𝑈 < ∞  𝑎𝑛𝑑 0 <

𝑉 , 𝑤 < 1 

W= 
𝑋

𝑋+𝑌
 

J= - 𝑢2𝑣 

𝑓𝑈,𝑉,𝑊(𝑢, 𝑣, 𝑤)= 

{
6

(1+𝑢)4
 . |− 𝑢2𝑣|, 0 < 𝑢 <  ∞ 𝑎𝑛𝑑 0 < 𝑣,𝑤 < 1

0     ,                                 𝑜𝑤
 

 The PDF of U is , ___________ 

𝑓𝑈(𝑢)= 

{
∫ (∫

6𝑢2𝑣

(1+𝑢)4
𝑑𝑣

1

0
) 𝑑𝑤 , 𝑖𝑓 0 < 𝑢 < ∞

1

0

0          ,        𝑜𝑤
 

= {
1

𝛽(3,1)
 .

𝑢3−1

(1+𝑢)3+1
 , 0 < 𝑢 <  ∞

0   ,   𝑜𝑤
 

Hence U ∼ second kind Beta (3, 1) 

Q. If 𝑋1, 𝑋2, 𝑋3 ∼ N(0, 1). Find the distn s of  

𝑌1= 
𝑋1+  𝑋2+  𝑋3

√3
 

𝑌2= 
𝑋1−  𝑋2

√2
 

𝑌3= 
𝑋1+  𝑋2−  2𝑋3

√6
 

Solution:-𝑓𝑋1,𝑋2,𝑋3(𝑥1, 𝑥2, 𝑥3)=( 

1

2𝜋
)
3
2⁄  . 𝑒−

1

2
(𝑥1

2+ 𝑥2
2+ 𝑥3

2)
 ; xi ∊ ℝ 

Note that, y = (
𝑦1
𝑦2
𝑦3

) =

 

(

 
 

1

√3

1

√3

1

√3
1

√2
−

1

√2
0

1

√6

1

√6
−

2

√6)

 
 
(
𝑥1
𝑥2
𝑥3

)  

= a x , wher A is orthogonal, i. e. 𝐴𝐴𝑇 = 𝐼3. 

∴ x= 𝐴−1𝑦 = 𝐴𝑇𝑦 and 

(
𝑥1
𝑥2
𝑥3

) =  

(

 
 

1

√3

1

√2

1

√6
1

√3
−

1

√2

1

√6
1

√3
0 −

2

√6)

 
 
(
𝑦1
𝑦2
𝑦3

) 

⇒ 𝑥1 = 
𝑦1

√3
 +
𝑦2

√2
  + 

𝑦3

√6
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𝑥2 =
𝑦1

√3
 - 
𝑦2

√2
 + 
𝑦3

√6
 

𝑥3= 
𝑦1

√3
 +0.y  - 

2𝑦3

√6
 

Jacobian = |
𝜕(𝑜𝑙𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝜕(𝑜𝑙𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
|= |

𝜕𝑥

𝜕𝑦
|or |

𝜕(𝑥1,𝑥2,𝑥3)

𝜕(𝑦1,𝑦2,𝑦3)
| 

= 

𝜕𝑥1

𝜕𝑦1

𝜕𝑥1

𝜕𝑦2

𝜕𝑥1

𝜕𝑦3
𝜕𝑥2

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥2

𝜕𝑦3
𝜕𝑥3

𝜕𝑦1

𝜕𝑥3

𝜕𝑦2

𝜕𝑥3

𝜕𝑦3

 =

(

 
 

1

√3

1

√2

1

√6
1

√3
−

1

√2

1

√6
1

√3
0 −

2

√6)

 
 

 = 

|𝐴𝑇 |=± 1. 

Note that, yˊy = xˊ AˊAx = xˊx⇒ ∑ 𝑦𝑖
2 =3

𝑖=1

∑ 𝑥𝑖
23

𝑖=1  

Clearly, 𝑦𝑖∊ ℝ , i=1, 2, 3 

The PDF of 𝑌1, 𝑌2, 𝑌3 is 

𝑓𝑌1,𝑌2,𝑌3(𝑦1, 𝑦2, 𝑦3)= (
1

2𝜋
)
3
2⁄ . 𝑒−

1

2
∑ 𝑦𝑖

23
𝑖=1 . ⎸ ±

 1⎸, 𝑦𝑖∊ ℝ 

=∏ {
1

√2𝜋
 . 𝑒−

1

2
𝑦𝑖
2

}3
𝑖=1 = ∏ 𝑓𝑌𝑖(𝑦𝑖)

3
𝑖=1  

Hence, 𝑌𝑖∼ N (0, 1)  , i= 1, 2, 3. 

Q52. Let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏be a r. s. from N (𝜇, 

𝜇), 𝜇 > 0. 

(a) Find a consistent estimator of 𝝁𝟐. Is it 

unbiased? 

(b) Find out an UE which is consistent? 

Solution :- (a) x̄ ∼ N (𝜇, 
𝜇

𝑛
) 

⇒ E (x̄)= 𝜇 

V(x̄)= 
𝜇

𝑛
 ⟶0 as n ⟶∞ 

Hence  x̄ is consistent for 𝜇. 

By invariance property, x 2 is consistent for 

𝜇2. 

But, E (x 2)= v(x̄)+ 𝐸2(x ) 

=
𝜇

𝑛
+ 𝜇2  ≠ 𝜇2    [∵ 𝑋𝑖  ∼ N (μ, μ) ] 

i.e. x 2 is biased for 𝜇2. 

(b) In a normal sample, x̄ and 𝑆2 are 

independently distributed. 

Also, E (x̄)= 𝜇 and E (𝑆2)= 𝜇 

Hence,E(x̄. 𝑆2) = E(x̄) .E (𝑆2), due to 

independence. 

= 𝜇2 

And var(x̄.𝑆2)= E (𝐸2)2-𝐸2(x . 𝑆2)  

= E (x 2. 𝑆4) - 𝜇4 

= E (x 2). E(. 𝑆4) - 𝜇4 

= {v(x̄) +𝐸2(x ) } {v(𝑆2)+ 𝐸2(𝑆2)  }-𝜇4 

= {
𝜇

𝑛
+ 𝜇2} {

2𝜇2

𝑛−1
+ 𝜇2}- 𝜇4 

⟶0 as n ⟶∞ 

Hence, x . 𝑆2 is consistent as well as 

unbiased for 𝜇2. 

Q52. give an example of an estimator 

which is 

(i) Consistent but not unbiased, 

(ii) Unbiased but not consistent, 

(iii) Consistent as well as unbiased. 

ANs :- (i) Let 𝑇1 = x + 
1

n
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Clearly, 𝑇1 = x +  
1

n
 is consistent but E 

(𝑇1)= 𝜇 +
1

n
  ≠ 𝜇 

So, it is not unbiased. 

[if {𝑇𝑛} is consistent for 𝜃, the {𝑇𝑛 + 𝑎𝑛} is 

consistent for 𝜃 if  lim
𝑛⟶∞

𝑎𝑛 = 0.] 

(ii) note that, T = 
𝑋1+𝑋𝑛

2
 is an unbiased 

estimator of 𝜇. 

T ∼ n(𝜇, 𝜎
2

2⁄ ) 

Now, P [|T- 𝜇|< ∊] = P [|
T− μ
𝜎

√2

| < 
∊√2

𝜎
 ] 

= 2 I[
∊√2

𝜎
]-1 

↛1 as n ⟶∞ 

Hence, T is unbiased but not consistent for 

𝜇. 

(iii) Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a r. s. from N 

(𝜇, 𝜎2 ) 

Then x  ∼ n (𝜇, 𝜎
2

𝑛⁄ ) 

E (x )= 𝜇 , v(x̄) = 𝜎
2

𝑛⁄ ⟶ 0 as n⟶ ∞ 

⇒ x  is consistent as well as unbiased. 

Q53. Show that for a r. s. from Cauchy 

distribution with location parameter 𝜇, 

i.e. C(𝜇, 1), the sample mean is not 

consistent for 𝜇 but the sample median is 

consistent for 𝜇. 

ANS: - let  𝑋1, 𝑋2, … , 𝑋𝑛 be a r. s. from C (𝜇, 

1) 

Then  x  ∼ c (𝜇, 1) 

Now, P [|x  -𝜇|< ∊]= P [𝜇- ∊ <x  < 𝜇+ ∊  ] 

=∫
𝑑x 

𝜋{1+(x  –μ)2}

μ+ ∊

μ− ∊
 

= [
1

𝜋
 tan−1(x  – μ)] μ+ ∊ μ− ∊  

=
2

𝜋
 tan−1 ∊ ↛1 as n ⟶∞ 

Hence x  is not consistent for 𝜇. 

 

It can be  shown that for large samples, 

𝜉𝑝  ∼ 𝑁 (𝜉𝑝,
𝑃 (1−𝑃)

𝑛.𝑓2(𝜉𝑝)
), 

Where, f(.)is the PDF of the distribution. 

For, C (𝜇, 1) distribution, 𝜉𝑝  ∼

𝑁 (𝜉𝑝,
1

4𝑛𝑓2(𝜇)
) 

⇒ x  ∼ N (𝜇,
𝜋2

4𝑛
)  [∵ f(𝜇)=

1

𝜋
] 

Hence, for large n, E (x )=𝜇 

V (x )= 
𝜋2

4𝑛
 ⟶ 0 as n ⟶∞ 

⇒ x (𝜉1
2

) is consistent for 𝜇. 

Remarks: - By khinchinte’s WLLN: x 
𝑃
→ 𝜇, 

provided E(𝑋1)=𝜇, the population mean 

exists. In Cauchy population, the population 

mean does not exist and 𝜇 is not the 

populations mean but it is the population 

median. Hence for 𝜇, X̄ is not consistent, but 

x  is consistent. 

 

Q54. let  𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be a r. s. from the 

population with PDF  
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f (x; 𝜃) = {𝒆
−(𝐱− 𝛉),𝐢𝐟 𝐱> 𝜃

𝟎  , 𝒐𝒘
 

Show that 𝑿(𝟏) is consistent for 𝜃. 

ANS :- 𝑓𝑋(1)(𝑥)= n[1 −

 ∫ 𝑒−(𝑥−𝜃)𝑑𝑥
𝑥

0
]𝑛−1. 𝑒−(𝑥−𝜃); x> 𝜃 

= n [1 + 𝑒−(𝑥−𝜃)  − 1]𝑛−1. 𝑒−(𝑥−𝜃) 

= n𝑒−𝑛(𝑥−𝜃); x> 𝜃 

P [|𝑋(1) −  𝜃|< ∊]= P [𝜃 <𝑋(1)< 𝜃 +∊ ] = 

n∫ 𝑒−𝑛(𝑥−𝜃)𝑑𝑥
θ +∊

𝜃
 

= n𝑒𝑛𝜃 [
𝑒−𝑛𝑥

−𝑛
]𝜃

θ +∊

 

= 1- 𝑒−𝑛∊ 

⟶1 as n ⟶∞ 

∴ 𝑋(1) is consistent for 𝜃. 

 

Q55. If 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be a r. s. from f(x) = 
𝟏

𝟐
 (1+𝜃x); 

-1< x<1, -1<𝜃 <1. Find a consistent 

estimator of 𝜃. 

Solution :- f(x)= 
1

2
 (1+𝜃x)I -1< x< 1 

∴ E(X) =  
1

2
∫ (1 + θx)xdx
1

−1
=
𝜃

3
 

Now, E (X̄) = 
1

𝑛
 ∑ 𝐸 (𝑋𝑖)
𝑛
𝑖=1 =

𝜃

3
 

⇒ E (3X̄) = 𝜃 

 Now, E (𝑋2) = 
1

2
∫ 𝑥2(1 + θx)dx
1

−1
 = 
1

2
 

∫ (𝑥2 + 𝜃𝑥3)𝑑𝑥
1

−1
= 

1

3
 

∴ V(X) = E (𝑋2) -𝐸2(𝑋) 

⇒ V(X) = 
1

3
 - 
𝜃2

9
 

V (X̄) = 
1

𝑛2
. 𝑛(

1

3
 - 
𝜃2

9
)= 

1

𝑛
(
1

3
 - 
𝜃2

9
) 

∴ lt
𝑛⟶∞

𝑉(3X̄) = 9 lt
𝑛⟶∞

𝑉(X̄)= 9 lim
𝑛⟶∞

1

𝑛
(
1

3
 −

 
𝜃2

9
)=0 

∴ 3X̄ is a consistent estimator of 𝜃. 

Q56. Examine whether the WLLN holds 

for the following sequences {𝑿𝒏} of 

independent R.Vs:  

I> P [𝑿𝒏 = −𝟐
𝒏] = 𝟐−𝟐𝒏−𝟏 = P[𝑿𝒏 = 𝟐

𝒏] 

P [𝑿𝒏 = 𝟎]= 1- 𝟐−𝟐𝒏 

II> P [𝑿𝒏 = −
𝟏

𝒏
]= ½ =P [𝑿𝒏 =

𝟏

𝒏
] 

Solution :- i> 𝜇k= E(𝑋𝑘)= (-2𝑘). 2−2𝑘−1 +

(2𝑘). 2−2𝑘−1 + 0. (1 − 2−2𝑘) 

 = 0 

And var(𝑋𝑘)=𝛔𝑘2 = 𝐸(X𝑘2) 

= (−2𝑘)2 . 2−2𝑘−1 + (2𝑘)2. 2−2𝑘−1 + 0 

= 1 , k ∊ℕ 

Now, 
1

𝑛2
∑ σ𝑘2 =𝑛
𝑘=1

1

𝑛2
∑ 1 =𝑛
𝑘=1

1

𝑛
 ⟶0 as n 

⟶∞ 

Hence, {𝑋𝑛} obeys WLLN , by chebyshev’s 

WLLN. 

II) Here 𝜇k = 0 and 𝛔𝑘2 = 𝑉(𝑋𝑘) =

𝐸 (𝑋2𝑘) =
1

𝑘2
 , n ∊ℕ 

Now, 
1

𝑛2
 ∑ σ𝑘2𝑛
𝑘=1 = 

1

𝑛2
 ∑

1

𝑘2
<

𝐶

𝑛2
 𝑛

𝑘=1  
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[∑
1

𝑘2
𝑛
𝑘=1  is a convergent p-series, 

⇒ ∑
1

𝑘2
𝑛
𝑘=1 < ∑

1

𝑘2
= 𝑐∞

𝑘=1 , a finite quantity] 

Hence, {𝑋𝑛}obeys WLLN, by chebyshev’s 

WLLN. 

Q57.  Let P [𝑿𝒏 = −𝒏
𝑷]= 

𝟏

𝟐
= 𝑷[𝑿𝒏 =

 𝒏𝑷] 

Show that WLLN holds for the sequence 

{𝑿𝒏} of independent R.V.’s if P < 
𝟏

𝟐
 

Solution :- here, 𝜇𝑘 = 𝐸 (𝑋𝑘) = 0 

σ𝑘2= V (𝑋𝑘) = 𝐸(𝑋𝑘)
2 = (−𝑘𝑃)2.

1

2
+

(𝑘𝑃)2.
1

2
 

= 𝑘2𝑃, k ∊ℕ 

Now, 
1

𝑛2
 ∑ σ𝑘2𝑛
𝑘=1 =

1

𝑛2
 ∑ 𝑘2𝑃 <𝑛
𝑘=1

 
1

𝑛2
∫ 𝑥2𝑃𝑑𝑥
𝑛

1
 

= 
𝑛2𝑝+1−1

𝑛2(2𝑃+1)
 

Now, 0 ≤ 
1

𝑛2
 ∑ σ𝑘2𝑛
𝑘=1 < 

𝑛2𝑝+1−1

𝑛2(2𝑃+1)
<

𝑛2𝑝−1

(2𝑃+1)
 ⟶0 as n ⟶∞     [if 2P-1< 0, if p < 

1

2
] 

⇒ if p < 
1

2
 , 
1

𝑛2
 ∑ σ𝑘2𝑛
𝑘=1  ⟶0 as n ⟶∞      

Hence, {𝑋𝑛} obeys WLLN if p < 
1

2
 . 

Q58. Decide whether WLLN holds for the 

sequence,{ 𝑿𝒏} o0f independent R.V.’s : 

P [𝑿𝒏 = ±𝟐
−𝒏]= 

𝟏

𝟐
 

⟺ P [𝑿𝒏 = −𝟐
−𝒏]= 

𝟏

𝟐
= P[𝑿𝒏 = 𝟐

−𝒏] 

Solution :- Here, 𝜇k=0, 

And σ𝑘2 = V (𝑋𝑘) = 𝐸(𝑋𝑘
2) = 2−2𝑘, 𝑘 ∊

ℕ 

Now, 
1

𝑛2
 ∑ σ𝑘2𝑛
𝑘=1 =

1

𝑛2
 ∑ 2−2𝑘 =𝑛
𝑘=1

1

𝑛2
.
1

4
{1−(

1

4
)𝑛}

1−
1

4

 

=  
1

3
 .
1

𝑛2
{1 − (

1

4
)𝑛} <  

1

3𝑛2
 ⟶0 as n ⟶∞      

Hence, lim
𝑛⟶𝑘

1

𝑛2
 ∑ σ𝑘2𝑛
𝑘=1 = 0 

⇒ 𝑋𝑛} obeys WLLN by chebyshev’s 

WLLN. 

II)  𝜇k=0 

And σ𝑘2 = 𝐸(𝑋𝑘
2) = (−𝑘)2.

1

√𝑘
2 +

 (𝑘)2.
1

√𝑘
2 +  0 

= 𝑘
3
2⁄  

Now, 
1

𝑛2
 ∑ σ𝑘2𝑛
𝑘=1 =

1

𝑛2
∑ 𝑘

3
2⁄𝑛

𝑘=1  

For, large n, 
1

𝑛
 ∑ (

𝑘

𝑛
)
3
2⁄ ≃ ∫ 𝑥

3
2⁄ 𝑑𝑥 =

2

5

1

0
𝑛
𝑘=1   

⇒ ∑𝑘
3
2⁄ ≃ 

2𝑛
5
2⁄

5
=
2

5
√𝑛  ↛ 0 ⟶

∞   as n ⟶ ∞              

As 
1

𝑛2
 ∑ σ𝑘2𝑛
𝑘=1  ↛0 as n ⟶∞  

We cannot draw any conclusion by 

chebyshev’s WLLN, whether WLLN holds 

or not. 

Q59. Let (𝑿𝟏, 𝑿𝟐, 𝑿𝟑) be a r.s. from Bin(1, 

p). Is T= 𝑿𝟏 +  𝟐𝑿𝟐 + 𝑿𝟑 sufficient for p 

? is 𝑿𝟏 + 𝑿𝟐 + 𝑿𝟑 is sufficient for p? 
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ANS :- (i) Here T takes the value 0, 1, 2, 3, 

4. 

P [𝑋1 = 1, 𝑋2 = 0, 𝑋3 = 1|𝑇 = 2 ] 

= 
𝑃[𝑋1=1,𝑋2=0,𝑋3=1 ;𝑇=2]

𝑃[𝑇=2]
 

= 
𝑃[𝑋1=1,𝑋2=0,𝑋3=1 ]

𝑃[𝑋1=1,𝑋2=0,𝑋3=1]+𝑃[𝑃[𝑋1=0,𝑋2=1,𝑋3=0]
 

= 
𝑝2(1−𝑝)

𝑝2(1−𝑝)+ 𝑝(1−𝑝)2
 = 

𝑝

𝑝+1−𝑝
 = p, which 

depends on p. 

Hence T is not sufficient for p 

(ii) Here, 𝑋1 + 𝑋2 + 𝑋3 = 𝑇 

Let us consider a specific case, 𝑋1 = 1, 𝑋2 =

1, 𝑋3 = 0 and T =1 

Here, 𝑋1 + 𝑋2 + 𝑋3 = 1 for, 

{(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0),( 𝑋1 = 1, 𝑋2 =

0, 𝑋3 = 1),( 𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 1), (𝑋1 =

0, 𝑋2 = 0, 𝑋3 = 1) } 

∴ P [𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0|𝑇 = 1] 

= {
P [𝑋1=1,𝑋2=1,𝑋3=0]

𝑃[𝑇=1]
 , if T = 1

0    ,    𝑜𝑤
 

= {
𝑝2(1−𝑝)

3𝑝2(1−𝑝)+ (1−𝑝)2𝑝
 , 𝑖𝑓 𝑇 = 1

0               , 𝑜𝑤
 

={
𝑃

2𝑃+1
 , 𝑖𝑓 𝑇 = 1

0   ,   𝑜𝑤
 

E. T is not sufficient for p. 

Q60. Let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be a r. s. from the 

following PDF & find the non trival 

sufficient statistic in each case : 

(i) f(x ; 𝜃)= {
𝜽𝒙𝜽−𝟏  ; 𝟎 < 𝑥 < 1

𝟎   ,    𝒐𝒘
 

(ii) f(x ; 𝜇)= 
𝟏

|𝝁|√𝟐𝝅
 . 𝒆

−
(𝒙−𝝁)

𝟐𝝁𝟐  ; x ∊ℝ 

(III) f (x ; 𝛼,𝛽)= {
𝒙𝜶−𝟏(𝟏−𝒙)𝜷−𝟏

𝜷(𝜶,𝜷)
 , 𝟎 < 𝑥 < 1

𝟎       , 𝒐𝒘
 

(iv) f(x ; 𝜇, 𝜆)= {
𝟏

𝝀
 𝒆−

(𝒙−𝝁)

𝝀
 ,𝒊𝒇 𝒙>𝜇

𝟎     ,   𝒐𝒘
 

(v) f(x; 𝜇, 𝛔)= 

{
𝟏

𝒙𝝈√𝟐𝝅
 𝒆
− 

𝟏

𝟐𝝈𝟐
(|𝒏𝒙−𝝁)𝟐 ,   𝒊𝒇 𝒙>0

𝟎    ,    𝒐𝒘
 

(vi) f(x;𝛼,𝜃)={
𝜽 𝜶𝜽

𝒙𝜽+𝟏
  𝒊𝒇𝒙 > 𝛼

𝟎    ,    𝒐𝒘
 

(vii) f(x; 𝜃)  ={
𝟐(𝜽−𝒙)

𝜽𝟐
 ; 𝟎 < 𝑥 <  𝜃

𝟎   ,    𝒐𝒘
 

Ans:- (I) The joint PDF of  𝑋1, 𝑋2, … , 𝑋𝑛 is  

f(x) = 𝜃𝑛(∏ 𝑥𝑖
𝑛
𝑖=1 )𝜃−1 

= 𝑔𝜃 {∏ 𝑥𝑖
𝑛
𝑖=1 }. h(x). where h(x)=1 

And T (x)= ∏ 𝑥𝑖
𝑛
𝑖=1  

∴ By Neyman – Fisher factorization 

criterion, 

T = ∏ 𝑥𝑖
𝑛
𝑖=1  is sufficient for 𝜃. 

(ii) f(x; 𝜇, 𝛔)= 
1

|𝜇|√2𝜎
 . 𝑒

−
(𝑥−𝜇)

2𝜎2  

So, X ∼ N (𝜇, 𝜇2), where 𝜇 ≠ 0. 

By Ex.(3).   T (x)= (∑ 𝑋𝑖 , ∑ 𝑋𝑖
2𝑛

𝑖=1
𝑛
𝑖=1 ) is 

sufficient for 𝜇. 

Note : - If in the range of 𝑋𝑖 , there is the 

parameter of the distribution present then we 
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have to use the concept of indicator 

function(𝑋(1) 𝑜𝑟 𝑋(𝑛)) or min
𝑖
{𝜒𝑖}. 

(iii> 𝑓𝜃(𝑥) =  
1

𝐵(𝛼,𝛽)
 𝑥 . (1 − 𝑥) , if 0< x< 1 , 

𝛼, 𝛽> 0 

∴ Joint PDF of 𝑋1, … , 𝑋𝑛 is  

f(x ̰)= [
1

𝐵(𝛼,𝛽)
]
𝑛

(∏ 𝑥𝑖
𝑛
𝑖=1 )𝛼−1(∏ 1 −𝑛

𝑖=1

𝑥𝑖)
𝛽−1 

= g(T((x ̰) ; 𝛼, 𝛽)h(x ̰), where, h(x ̰)= 1 and T 

(x ̰) =(∏ 𝑥𝑖
𝑛
𝑖=1 , ∏ 1 − 𝑥𝑖

𝑛
𝑖=1 ) is jointly 

sufficient for (𝛼, 𝛽) 

(iv> f(x ̰)= 
1

𝜃𝑛
 . 𝑒−

∑
(𝑥𝑖−𝜇)

𝜎
𝑛
𝑖=1   if 𝑥𝑖 > 𝜇 

= 
1

𝜎𝑛
 . exp {

−∑ 𝑥𝑖−𝑛𝜇
𝑛
𝑖=1

𝜎
}. I (𝑥(1) ,𝜇) where I (a, 

b)= 1 if a ≥ b 

                                                                                       

= 0      ow 

= g(∑ 𝑋𝑖,
𝑛
𝑖=1 𝑥(1)  ; 𝜎,𝜇) . h(x ̰), where h(x ̰)= 

1. 

Thus, 𝑋(1) and ∑ 𝑋𝑖,
𝑛
𝑖=1  are  jointly sufficient 

statistic for 𝜇 and 𝛔. 

<v> f(x; 𝜇, 𝛔)= 
1

𝑥𝜎√2𝜋
 𝑒
− 

1

2𝜎2
(|𝑛𝑥−𝜇)2 ,   𝑖𝑓 𝑥>0

 

The joint PDF of x ̰ is 

F(x ̰) = 
1

(∏ 𝑥𝑖
𝑛
𝑖=1 )𝜎𝑛(√2𝜋)𝑛

 . exp{−
1

2𝜎2
 ∑ (|𝑛𝑥𝑖 −
𝑛
𝑖=1

𝜇)2,}  if 𝑥𝑖 > 0 

= 
1

𝜎𝑛(√2𝜋)𝑛
 . 𝑒

−(
∑(1𝑛𝑥𝑖)

2

2𝜎2
−
𝜇∑1𝑛𝑥𝑖
𝜎2

+ 
𝑛𝜇2

𝜎2
)
.

1

(∏ 𝑥𝑖
𝑛
𝑙=1 )

 

= T (∑ |𝑛𝑥𝑖, ∑ (|𝑛𝑥𝑖)
2𝑛

𝑖=1  ;  𝜇, 𝜎𝑛
𝑖=1 ). h(x ̰) ; 

where, 

h(x ̰) = 
1

∏ 𝑥𝑖
𝑛
𝑖=1

  ; T (x ̰)= 

∑ |𝑛𝑥𝑖 , ∑ (|𝑛𝑥𝑖)
2𝑛

𝑖=1  𝑛
𝑖=1  

is sufficient for 𝜇 and 𝛔. 

(vi) f (x ̰)= 𝜃𝑛
(𝛼𝜃)𝑛

∏ (𝑥𝑖
𝜃+1)𝑛

𝑖=1

 if 𝑥𝑖 > 𝛼 

= (𝜃𝛼𝜃)𝑛.
1

∏ {𝑥𝑖}
𝜃+1𝑛

𝑖=1

 𝐼(𝑥(1),𝛼) if 𝑥(1)> 𝛼  

where I (a, b)=1 if a > b 

 = 0   ow 

= g (∏ 𝑥𝑖
𝑛
𝑖=1 , 𝑥(1);  𝛼,   𝛼 ). h (x ̰); where , h 

(x ̰)= 1 and hence 

T =∏ 𝑥𝑖
𝑛
𝑖=1 , 𝑥(1) is sufficient for 𝜃 and 𝛼. 

(vii> f (x ̰)  = 
2𝑛

𝜃2𝑛
∏ (𝜃 −𝑛
𝑖=1

𝑥𝑖)  ;  0 <𝑥𝑖 < 𝜃 

= (
2𝑛

𝜃2𝑛
)
𝑛

. (𝜃 − 𝑥1)(𝜃 −

𝑥2)… . (𝜃 − 𝑥𝑛);  0 <𝑥𝑖 < 𝜃 

These cannot be expressed in the form of 

factorization criterion. 

So (𝑋1, 𝑋2, … , 𝑋𝑛) or(𝑋(1), 𝑋(2), … , 𝑋(𝑛)) are 

trivally sufficient for   here , ̰ .there is no 

non- trival sufficient statistic. 

Q61. Let 𝑿𝟏, … , 𝑿𝒏 be a r.s. from gamma 

distn with pdf  

𝒇𝜽(𝒙) =
𝜶𝑷

⎾(𝑷)
 𝐞𝐱𝐩 [−𝜶𝒙]𝒙𝑷−𝟏   if 0< x< ∞  

, where 𝛼> 0, P > 0 

Show that ∑ 𝑿𝒊 𝒂𝒏𝒅 ∏ 𝑿𝒊𝒊𝒊  are jointly 

sufficient for (𝛼, P) 
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Solution:- f(x )̰= 

{
𝛼𝑃

⎾(𝑃)
}𝑛 . exp[−𝛼 ∑ 𝑋𝑖𝑖 ] . (∏ 𝑋𝑖)𝑖

𝑃−1
 

= g (T(x )̰;  , P). h (x )̰; where h(x )̰=1 

∴ T (x )̰= (∑ 𝑋𝑖,
𝑛
𝑖=1 ∏ 𝑋𝑖

𝑛
𝑖=1 ) is jointly 

sufficient for (𝛼, P). 

Q62.  If f(x)= 
𝟏

𝜽
 𝒆−

𝒙
𝜽⁄ ; 𝟎 < 𝑥 <

 𝜃. 𝐹𝑖𝑛𝑑 𝑎 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑓𝑜𝑟 𝜃. 

Solution:- f(x )̰= 
1

𝜃𝑛
 . 𝑒𝑥𝑝 {−

1

𝜃
∑ 𝑥𝑖
𝑛
𝑖=1 } 

= g {∑ 𝑥𝑖
𝑛
𝑖=1 , 𝜃}. h (x )̰; where h (x ̰)= 1. 

∴T =  ∑ 𝑥𝑖
𝑛
𝑖=1  is sufficient statistic for 𝜃. 

Q63. If 𝒇𝜽(𝒙)= ½ ; 𝜃 -1< x < 𝜃 -1 , then 

show that 𝑿(𝟏) 𝒂𝒏𝒅 𝑿(𝒏) are jointly 

sufficient for 𝜃. (𝑿𝒊 ∼ 𝑼(𝛉 − 𝟏, 𝛉 + 𝟏)) 

Solution:- f(x )̰=(
1

2
)𝑛 

= 
1

2𝑛
. 𝐼 (θ − 1, 𝑥(1) )𝐼 (𝑥(𝑛), θ + 1); θ − 1< 

𝑥(1)< 𝑥(𝑛) <  θ + 1 

Where I (a, b)= {
1   𝑖𝑓 𝑎 < 𝑏
0       𝑖𝑓 𝑎 ≥ 𝑏

 

= g (T (x )̰; 𝜃)h(x )̰; where h(x )̰= 
1

2𝑛
. 

∴ T (x )̰ = (𝑋(1), 𝑋(𝑛))is jointly sufficient for 

𝜃. 

Q64. let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be a R.S. from c (𝜃, 

1), where 𝜃 is the location parameter, S. 

T. there is no sufficient statistic other 

than the trivial statistic (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏) or 

(𝑿(𝟏), 𝑿(𝟐), … , 𝑿(𝒏))  

If a random sample of size n ≥ 2 from a 

Cauchy distn with p.d.f.  

𝒇𝜽(𝒙)=  
𝟏

𝝅[𝟏+ (𝒙− 𝜽)𝟐]
 , where -∞ < 𝜃 <∞, is 

considered. 

Then can you have a single sufficient 

statistic for 𝜃? 

Solution:- The PDF of (𝑋1, … , 𝑋𝑛) is  

∏𝑓 (𝑋𝑖, 𝜃) =  
1

𝜋𝑛{∏ [1 + ((𝑋𝑖 − 𝜃)2]
𝑛
𝑖=1 }

𝑛

𝑖=1

 

Note that, ∏ {1 + ((𝑋𝑖 − 𝜃)
2 }𝑛

𝑖=1  

= {1 + ((𝑥1 − 𝜃)
2}{1 + ((𝑥2 − 𝜃)

2}…. 

{1 + ((𝑥𝑛 − 𝜃)
2} 

= 1+ term involving one  𝑋𝑖+ term involving 

two 𝑋𝑖′𝑠 + ……. + term involving all 𝑋𝑖′𝑠. 

= 1+ ∑ (𝑥𝑖 − 𝜃)
2

𝑖 + ∑ ∑ (𝑥𝑖 − 𝜃)
2

≠𝑗𝑖 ((𝑥𝑗 −

𝜃)
2
+ … .+ ∏ ((𝑥𝑖 − 𝜃)

2𝑛
𝑖=1  

Clearly, ∏ 𝑓(𝑥𝑖, 𝜃)
𝑛
𝑖=1 cannot be written as g 

(T (x ̰), 𝜃). h(x ̰) 

For a statistic other than the trivial choices 

(𝑋1, … , 𝑋𝑛) or (𝑋(1), … , 𝑋(𝑛)). 

Hence there is no non-trivial sufficient 

statistic 

Therefore, in this case, no reduction in the 

space is possible. 

⇒ The whole set (𝑋1, … , 𝑋𝑛) is jointly 

sufficient for 𝜃. 

Q65. Let 𝑿𝟏  𝒂𝒏𝒅 𝑿𝟐 be iid RVS having 

the discrete uniform distribution on {1, 2, 

……, N}, where n is unknown. Obtain the 

conditional distribution of 𝑿𝟏  , 𝑿𝟐 given 

(T = max (𝑿𝟏  , 𝑿𝟐)) 
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Hence, show that T is sufficient for n but 

𝑿𝟏  + 𝑿𝟐 is not. 

ANS :- (i) p (T= t)= P [max (𝑋1  , 𝑋2) = 𝑡] 

= P [𝑋1   < 𝑡, 𝑋2  = 𝑡]+ P [𝑋1  = 𝑡, 𝑋2  <

𝑡]+ P [𝑋1 = 𝑡, 𝑋2  = 𝑡] 

= P [𝑋1   < 𝑡] P [𝑋2  = 𝑡]+ P [𝑋1  = 𝑡] P 

[𝑋2  < 𝑡] + P [𝑋1 = 𝑡] P [𝑋2  = 𝑡] 

Now, P [𝑋1   < 𝑡]= P [𝑋2  = 1]+ P [𝑋2  =

2]+ …. + P [𝑋2  = 𝑡 − 1] 

= 
1

𝑁
+
1

𝑁
+ … .+ 

1

𝑁
 ⏟           

               (t-1) times 

= 
𝑡−1

𝑁
 & P [𝑋1 = 𝑡]= P [𝑋2 = 𝑡]= 

1

𝑁
 

∴ P [T = t]= 
1

𝑁
.  
𝑡−1

𝑁
+
𝑡−1

𝑁
.
1

𝑁
+
1

𝑁
.
1

𝑁
 

= 
2 (𝑡−1)+1

𝑁2
 

∴ P [𝑋1   = 𝑥1   , 𝑋2   = 𝑥2   |𝑇 = 𝑡]= 

{
𝑃[𝑋1   =𝑥1   ,𝑋2   = 𝑥2   ]

𝑃 [𝑇=𝑡]
 , 𝑖𝑓 𝑀𝑎𝑥(𝑥1  , 𝑥2) = 𝑡

0   ,   𝑜𝑤
 

= 

1

𝑁
.
1

𝑁
2 (𝑡−1)+1

𝑁2

= 
1

2 (𝑡−1)+1
 , which is independent 

of N. 

(ii) T = 𝑋1  + 𝑋2 then,  

For 2 ≤ 𝑡 ≤ 𝑁 + 1 ;P [T=t]= P [𝑋1  = 2, 

𝑋2  = 𝑡 − 1]+ P [𝑋1  = 2, 𝑋2  = 𝑡 − 2] + 

…+P [𝑋1  = 2, 𝑋1  = 𝑡 − 1, 𝑋2  = 1] 

= 
(𝑡−1)

𝑁2
 

For N +2≤ 𝑡 ≤ 2𝑁 ; P [T=t]= P[𝑋1  = 𝑡 −

𝑁, 𝑋2  = 𝑁] + P [𝑋1  = 𝑡 − 𝑁 + 1, 𝑋2  =

𝑁 − 1]+ …..+P [𝑋1  = 𝑁, 𝑋2  = 𝑡 − 𝑁] 

= 
2𝑁−𝑡+1

𝑁2
 

∴ P [𝑋1  = 𝑥1  ;  𝑋2  = 𝑥2  |𝑇 = 𝑡]= 
𝑃 [𝑋1  =𝑥1  ; 𝑋2  =𝑥2  ]

𝑃 [𝑋1  + 𝑋2=𝑡]
 

= 

{
 
 

 
 

1

𝑁2

(𝑡−1)

𝑁2

= 
1

𝑡−1
  𝑖𝑓 𝑋1  + 𝑋2 = 𝑡

1

𝑁2

2𝑁−𝑡+1

𝑁2

=
1

2𝑁−𝑡+1
   𝑖𝑓 𝑋1  + 𝑋2 = 𝑡 

 

Which depends on N, so for the 2nd case 

(𝑋1  + 𝑋2)is not sufficient. 

Q66. Let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be a R.S. from one 

of the following two PDFs 

If 𝜃 = 0, f(x/𝜃)= {
𝟏  , 𝟎 < 𝑥 < 1
𝟎  ,      𝒐𝒘

 

If 𝜃=1, , f(x/𝜃)= {
𝟏

√𝒙
𝟐  , 𝟎 < 𝑥 < 1

𝟎  ,            𝒐𝒘
 

Find the MLE of 𝜃. 

Solution: - The Likelihood function is  

L (𝜃/ x ̰)= ∏ 𝑓 (
𝑥𝑖

𝜃
) , 𝜃 ∊ 𝛺 = (0, 1)𝑛

𝑖=1  

When 𝜃 = 0, L (𝜃/ x ̰) = 

{
1  𝑖𝑓  0 < 𝑥𝑖 < 1 ∀ 𝑖 = 1(1)𝑛

0        ,                  0𝑤
 

When 𝜃= 1, L (𝜃/ x ̰) 

={

1

√∏ 𝑥𝑖
𝑛
𝑖=1

2𝑛
 , 0 <  𝑥𝑖 < 1 , 𝑖 = 1(1)𝑛

0   ,     𝑜𝑤

 

Now, 
𝐿 (θ=1/ x ̰)

𝐿 (θ=
0

x
)
̰

⋛ 1 

iff 
1

√4𝑛𝐺𝑛
 ⋛ 1, where G = (∏ 𝑥𝑖)

𝑛
𝑖=1

1/𝑛
  

iff 4 G ⋚ 1 iff G⋚ 
1

4
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Hence MLE of 𝜃 is 𝜃’ = 

{
 
 

 
 1 𝑖𝑓 𝐺 <

1

4
 

0 𝑖𝑓 𝐺 >
1

4

0,1 𝑖𝑓 𝐺 =
1

4

 

Q67. Let 𝑿𝟏, … , 𝑿𝒏 be a R.S. from N (𝜇, 

𝝈𝟐), 𝜇 𝜖R, 𝜎 > 0 

Find the MLE of (𝜇, 𝝈𝟐). 

Solution: - Likelihood function: 

L (𝜇, 𝜎2/x ̰) = 

1

(2𝜋𝜎2)𝑛/2
 . 𝑒

−
1

2𝜎2
 ∑ (𝑥𝑖−𝜇)

2 𝑛
𝑖=1 ; 𝑥𝑖  𝜖ℝ    where μ ϵ R, σ >

0  

⇒ |nL (𝜇, 𝜎2/x ̰)= constant (-
𝑛

2
|𝑛𝜎2 −

1

2𝜎2
∑(𝑥𝑖 − 𝜇)

2) 

0= 
𝜕|𝑛𝐿

𝜕𝜇
= −

1

2𝜎2
∑2(𝑥𝑖 − 𝜇)(−1) =  

∑𝑥𝑖

𝜎2
−

𝑛𝜇

𝜎2
 

0= 
𝜕|𝑛𝐿

𝜕𝜎2
= −

𝑛

2𝜎2
+
∑(𝑥𝑖−𝜇)

2

2𝜎4
 

⇒ {
𝜇 = x ́

𝜎2 = 
1

𝑛
∑(𝑥𝑖 − x )

2, the likelihood 

function has a unique solution. 

Note that, the matrix of second order partial 

derivatives at (𝜇, 𝜎2) is 

(

𝛿2|𝑛𝐿

𝜕𝜇2
𝛿2|𝑛𝐿

𝛿𝜇𝛿𝜎2

𝛿2|𝑛𝐿

𝛿𝜎2𝛿𝜇

𝛿2|𝑛𝐿

𝛿(𝜎2)2

)  (𝜇, 𝜎2)= (𝜇, 𝜎2) 

= (
−
𝑛

𝜎2
0

0 −
𝑛

2𝜎4

) is negative definite (n. d.) 

Hence, L (𝜇, 𝜎2/x ̰) is maximum at (𝜇, 𝜎2)= 

(𝜇, 𝜎2) 

Therefore, the MLE of (𝜇, 𝜎2) is 

(𝜇, 𝜎2) = (x , S2) where nS2= ∑ (𝑋𝑖 − x )
2𝑛

𝑖=1 . 

Q68. Let 𝑿𝟏, … , 𝑿𝒏 be a R.S. from f (x; 

𝜇,)=
𝟏

𝟐𝝈
 𝒆−

|𝒙−𝝁|

𝝈 ; 𝒙 𝝐  𝑹,where 𝜇 𝜖R, 𝜎 > 0. 

Find the MLE of 𝜇 and 𝜎. 

Solution:- The log- likelihood function is 

L (𝜇, 𝜎2/x ̰) = -n|n2- n|n𝜎- 
1

𝜎
∑ | 𝑥𝑖 −

𝜇| ;  𝜇 𝜖𝑅, 𝜎 > 0 

[As∑ | 𝑥𝑖 − 𝜇|is not differentiable w.r.t. 𝜇, 

hence the derivative technique is not 

applicable for maximizing |nL w.r.t.𝜇] 

We adopt two stage maximization:- 

First fix 𝜎, and then maximize |nL for 

variation in 𝜇. 

For fixed 𝜎, lnL is maximum, 

iff, ∑ | 𝑥𝑖 − 𝜇|is minimum 

iff, 𝜇=x = the sample median 

= 𝜇, say. 

Now, we maximize |nL (𝜇, 𝜎2/x ̰)=-n|n2-

n|n𝜎- 
1

𝜎
∑ | 𝑥𝑖 − 𝜇|, 𝑤. 𝑟. 𝑡. 𝜎 

Note that 
𝛿

𝛿𝜎
|nL (𝜇, 𝜎2/x ̰) 

= -
𝑛

𝜎
+

1

𝜎2
∑ | 𝑥𝑖 − 𝜇| 

= -
𝑛

𝜎2
{𝜎 −

1

𝑛
 ∑ | 𝑥𝑖 − 𝜇|} 
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{
> 0, 𝜎 <  

1

𝑛
 ∑|𝑥𝑖 − 𝜇|

< 0, 𝜎 >  
1

𝑛
 ∑|𝑥𝑖 − 𝜇|

 

By, 1st derivative test, |nL (𝜇, 𝜎2/x ̰) is 

maximum at 𝜎=
1

𝑛
 ∑ |𝑥𝑖 − 𝜇|
𝑛
𝑖=1  

Hence, the MLE of 𝜇 and 𝜎 are 𝜇= x  , 

𝜎= 
1

𝑛
 ∑ | 𝑥𝑖 − x  |. 

 

Q69. let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be a R.S. from 

F(x; 𝜇,)= {
𝟏

𝝈
 𝒆
−
(𝒙−𝝁)

𝝈 ,𝒊𝒇 𝒙> 𝜇⁄

𝟎       ,   𝒐𝒘
 

Where 𝜇 ∊ R, 𝜎 > 0. Find the MLE of (i) 𝜇 

and 𝜎 

                                                               (ii)𝜇 

when 𝜎= 𝜇 (>0) 

Solution:- (i) The likelihood function is  

L (𝜇, 𝜎/x )= {
1

𝜎𝑛
 . 𝑒−

∑(𝑥𝑖−𝜇)

𝜎
 ;𝑖𝑓 𝑥(1)≥ 𝜇

0, 𝑜𝑤
 

𝜇 ∊ R, 𝜎> 0 

We adopt two stage maximization. 

First fix 𝜎, then maximize L (𝜇, 𝜎/x ) w.r.t.𝜇 

For fixed 𝜎, L (𝜇, 𝜎/x ) is maximum 

iff ∑(𝑥𝑖 − 𝜇) is minimum subject to 𝜇 ≤

𝑥(1) 

iff 𝜇 is as large as possible subject to the 

restriction  ≤ 𝑥(1). 

iff 𝜇= 𝑥(1)= 𝜇 (say) 

Now we shall maximize L (𝜇, 𝜎/x ) w.r.t.𝜎 

Now, in L(𝜇, 𝜎/x )= -nln𝜎-
∑(𝑥𝑖−𝜇)

𝜎
 

Note that, 
𝛿

𝛿𝜎
 𝑙𝑛L(μ,

σ

x 
)= -

𝑛

𝜎
+

1

𝜎2
∑(𝑥𝑖 − 𝜇)  

= 
𝑛

𝜎2
{𝜎-(x − x(1))} 

{
> 0 𝑖𝑓 𝜎 < x − x(1) 

< 0 𝑖𝑓 𝜎 > x − x(1) 
 

Hence, L(𝜇, 𝜎/x ) is maximum at 𝜎=x −

x(1)= 𝜎 

Therefore, The MLE of 𝜇 and 𝜎 are 𝜇= x(1) 

and 𝜎= x − x(1) 

(ii) When 𝜎= 𝜇> 0 

L (𝜇/ x ̰) = {
1

𝜇𝑛
 𝑒
−
∑(𝑥𝑖−𝜇)

𝜇
 ; x(1)≥ μ 

0                      , 𝑜𝑤
 

L (𝜇/ x ̰) is maximum iff 

For 𝜇 ≤ x(1) 

𝛿

𝛿𝑢
 𝑙𝑛L =

𝛿

𝛿𝑢
 {−𝑛𝑙𝑛𝜇 −

1

𝜇
∑(𝑥𝑖 − 𝜇) } 

                                                                                

= -
𝑛

𝜇2
 (𝜇 − x ) 

{
> 0 𝑖𝑓 𝜇 < x  
< 0 𝑖𝑓 𝜇 > x  

 

⇒ L (𝜇/ x ̰) is maximum at 𝜇 = x  

From the graph for 𝜇 ≤ 𝑥(1),L (μ/ x ̰) is 

maximum at 𝜇 = 𝑥(1), 

Therefore, 𝜇 = 𝑥(1), is the MLE of 𝜇. 
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 Q70. Let X be a single observation from 

the PDF 

F (x; 𝜃) = {
𝟏

𝝅{𝟏+(𝒙−𝜽)𝟐}
 , 𝒙 ∊ ℝ 

Show that the test  

𝛷 (x)= {
𝟏,
𝒇(𝒙,𝟏)

𝒇(𝒙,𝟎)
> 𝑘

𝟎   , 𝒐𝒘  

Is an MP test of 𝑯𝟎: 𝜽 = 𝟎 aginst 𝑯𝟏: 𝜽 =

𝟏 of its size. 

Solution:- For a particular value of k, the 

test 

𝛷 (x)= {
1,
𝑓(𝑥,1)

𝑓(𝑥,0)
> 𝑘

0   , 𝑜𝑤  

Is an MP test of 𝐻0: 𝜃 = 0 aginst 𝐻1: 𝜃 = 1 

of its size, by NP lemma, 

Now, 
𝑓(𝑥,1)

𝑓(𝑥,0)
> 𝑘⇒ 

1+𝑥2

1+(𝑥−1)2
> 𝑘 

⇒ 𝑥2(𝑘 − 1) − 2𝑘𝑥 + (2𝑘 − 1) < 0 

[If (k-1)> 0, 𝑥2 −
2𝑘

(𝑘−1)
𝑥 +

2𝑘−1

𝑘−1
< 0 

⇒ (x- α)(x-𝛽)< 0 

Where, 𝛼+𝛽= 
2𝑘

(𝑘−1)
, and 𝛼𝛽= 

2𝑘−1

𝑘−1
 

⇒ 𝛼< x< 𝛽 

In the given MP test 𝛼=1, 𝛽=3 

Hence, 1+3 =
2𝑘

(𝑘−1)
 ⇒ k=2] 

Set, k=2, 
𝑓(𝑥,1)

𝑓(𝑥,0)
 > 2 

⇒ 1< x < 3 

For k=2, the test 𝛷 (x)={
1  , 1 < 𝑥 < 3
0  , 𝑜𝑤

 

Is an MP test of 𝐻0 against 𝐻1 of its size  

= E [𝛷 (x)/ 𝐻0]= P [1< x<3/𝜃=0] 

= ∫
1

𝜋(1+𝑥2)
𝑑𝑥

3

1
= 
1

𝜋
[tan−1 𝑥]3,1 

=
1

𝜋
[tan−1 3 − tan−1 1] 

= 
1

𝜋
tan−1

3−1

1+3.1
 

= 
1

𝜋
tan−1

1

2
. 

Q71. Find an MP test of testing 𝑯𝟎 such 

that 𝑯𝟎 ∶ 𝑿 ∼  𝒇𝟎(𝒙) against 𝑯𝟏 ∶ 𝑿 ∼

𝒇𝟏(𝒙) of its size, where  

𝒇𝟎(𝒙)= 
𝟏

√𝟐𝝅
 𝒆−

𝒙𝟐
𝟐
⁄ ,𝒙 ∊ 𝑹 

𝒇𝟏(𝒙)= 
𝟏

𝟐
 𝒆−|𝒙|, 𝒙 ∊ 𝑹 

S.T. the power of the test is greater than 

its size. 

Solution:- By N-P lemma, for a particular 

value of k, the test  

𝛷(x)={
1  ,

𝑓1(𝑥)

𝑓0(𝑥)
> 𝑘 

0   , 𝑜𝑤
 

Is an MP test of 𝐻0 against 𝐻1 of its size. 

Now, 
𝑓1(𝑥)

𝑓0(𝑥)
> 𝑘 

⇒ 𝑒
1

2
{𝑥2−2|𝑥|}

> 𝑘1 

⇒ 𝑒
1

2{(|𝑥| − 1)2 − 1} > 𝑘1 

⇒ (|𝑥| − 1)2 > 𝑘2
2
, 𝑘2 > 0 
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⇒ |x|-1 < -𝑘2 or |x|-1>𝑘2 

⇒ |x|< 𝐶1 or |x|> 𝐶2 

[Alternative: - note that 𝑓1(𝑥) has more 

probability in its tails and near 0 than 𝑓0(𝑥) 

has. If either a very large or very small value 

of x is observed, we suspect that 𝐻1 is true 

rather than𝐻0. For some 𝐶1 and𝐶2, we shall 

reject 𝐻0 iff  
𝑓1(𝑥)

𝑓0(𝑥)
> 𝑘 

To |x|< 𝐶1  or |x|<𝐶2.] 

Hence, for some 𝐶1 and𝐶2, the test 

𝛷(x) = {
1 , |x| <  𝐶1  or |x| < 𝐶2 

0 , 𝑜𝑤
 

Is an MP test of 𝐻0 against 𝐻1 of its size 

Note, that, 𝛽𝛷(𝑓1) = 𝑃[1 × 1 < 𝐶1𝑜𝑟 1 ×

1 < 𝐶2 ] 

= ∫ 𝑓1(𝑥)𝑑𝑥
𝑓1

𝑤
 , 𝑤 = {𝑥: |𝑥| < 𝐶1 𝑜𝑟 |𝑥| >

 𝐶2 } 

>∫ 𝑓0𝑤
(𝑥)𝑑𝑥 , as 𝑓1(𝑥) >  𝑓0(𝑥)∀𝑥𝜖𝑤 

= 𝑃𝑓0[1 × 1 < 𝐶1 𝑜𝑟 1 × 1 < 𝐶2 ] 

= 𝛽𝛷(𝑓0) . (Proved). 

Q72. Find an MP test of 𝑯𝟎 : X∼N(0, ½ ) 

against 𝑯𝟏  : X∼c (0, 1) of its size .  

Solution :- For a given K , the test  𝛷 (x) = 

{
1,
𝑓1(𝑥)

𝑓0(𝑥)
> 𝑘 

0, 𝑜𝑤 
 

Is an MP test  of 𝐻0 against 𝐻1  of its size, 

By N-P lemma,  

Note that , 
𝑓1(𝑥)

𝑓0(𝑥)
> 𝑘    

⇒  
𝑒𝑥
2

1+𝑥2
>  𝑘1 ,  say  

Let u (x) = 
𝑒𝑥
2

1+𝑥2
 

Now, u′ (x)= 
(1+𝑥2)𝑒𝑥

2
 .2𝑥−𝑒𝑥

2
 .2𝑥

(1+𝑥2)2
 

= 
2𝑥3.𝑒𝑥

2

(1+𝑥2)2
 

[u′ (0)=0 ⇒2𝑥3. 𝑒𝑥
2
= 0 ⇒ 𝑥 = 0 𝑜𝑟𝑒𝑥

2
=

0 ⇒ 𝑥2 = ∞  ] 

={
< 0 , 𝑖𝑓 𝑥 < 0 
> 0 , 𝑖𝑓 𝑥 > 0

 

From the graph ,u(x) >𝑘1 

⇔ |x|>𝑐1 

Hence, for a particular value of 𝑐1, the test  

𝛷(x) = {
1 , |x| >  𝐶1   
0 , 𝑜𝑤

 

Is an MP test 𝐻0 against 𝐻1  of its size.  

Q73. Find on MP test at level 𝛼= 0.05 for 

testing 𝑯𝟎: X ∼ N (0, 1)against 𝑯𝟏: X 

∼C(0, 1). 

Solution:- for a given k, the test 𝛷(x) = 

{
1  ,

𝑓1(𝑥)

𝑓0(𝑥)
> 𝑘 

0   , 𝑜𝑤
 

Is an MP test of 𝐻0 against 𝐻1  of its size, by 

NP lemma. Note that. R (x)= 
𝑓1(𝑥)

𝑓0(𝑥)
> 𝑘 

⇒ 
𝑒

𝑥2

2
⁄

1+𝑥2
> 𝑘1, say. 



Solving Mathematical Problems 

 

216 
 

Let u (x) =
𝑒

𝑥2

2
⁄

1+𝑥2
 

Note that, u′ (x)= {

< 0 , 𝑥 <  −1
> 0 , −1 < 𝑥 < 0
< 0  , 0 < 𝑥 < 1
> 0 , 𝑥 > 1

 

[for k> 0.7979, then the critical region: 

|x| > 𝑐2  with size< 0.1118. 

For 0.6524≤ k≤ 0.7979, 

Then critical region: 

|x|>𝑐1 𝑜𝑟|x| > 𝑐2with size 𝜖 (0.1118, 

0.3913) 

For, k < 0.6524, the critical region: x 𝜖R 

with size=1] 

For 𝛼= 0.05, a small quantity, then u(x)> 𝑘1, 

where 𝑘1 is such that P [u(x)> 𝑘1/𝐻0]=0.05 

and from the graph u(x)> 𝑘1⇔ |x|> 𝑐2. 

Hence, 𝛷(x) = {
1 , |x| >  𝐶2   
0 , 𝑜𝑤

 

Is an MP test of 𝐻0 against 𝐻1   at level 𝛼= 

0.05, where  

0.05= P [|x| > 𝑐2/𝐻0] 

=P [[|x| > 𝑐2/X ∼  N (0, 1)] 

= 2 [1- ⏀ (𝑐2)] 

⇒ 1- ⍕(𝑐2) = 0.025 = 1-⍕ (0.025) 

⇒ 𝑐2= 0.025 

=1.96 

Hence, 𝛷(x) ={
1 , |x| >  1.96   

0 , 𝑜𝑤
 

Is an MP test for testing𝐻0: X ∼ N (0, 1) 

against 𝐻1: X ∼c (0, 1) at level 𝛼= 0.05. 

Q74. Let 𝑿𝟏, … , 𝑿𝒏 be a R.S. from f(x; 𝜃) 

= {
𝜽 𝒆−𝜽𝒙, 𝒊𝒇 𝒙 >  𝜃

𝟎  , 𝒐𝒘
 

Find the size 𝛼 LRT of (i) 𝑯𝟎:𝜃= 

𝜽𝟎 𝒂𝒈𝒂𝒊𝒏𝒔𝒕 𝑯𝟏: 𝜃≠ 𝜽𝟎 

(ii) 𝑯𝟎:𝜃= 𝜽𝟎 𝒂𝒈𝒂𝒊𝒏𝒔𝒕 𝑯𝟏: 𝜃> 𝜽𝟎 

(𝒊𝒊𝒊 > 𝑯𝟎:𝜃≥ 𝜽𝟎 𝒂𝒈𝒂𝒊𝒏𝒔𝒕 𝑯𝟏: 𝜃< 𝜽𝟎 

Solution:- The likelihood function is  

L  (x̰;  θ) = {θ
n𝑒−𝜃∑ 𝑥𝑖

𝑛
𝑖=1 , 𝑖𝑓 𝑥𝑖 >  𝜃
0   , ow

 

Where , 𝜃> 0 

(i) To test 𝐻0:𝜃= 𝜃0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 

𝜃≠ 𝜃0:∼ 

Here 𝛺0 = {𝜃0} and 𝛺= {0, 𝜃> 0}           

[∵𝑒
−𝜃0𝑛x +

1

x 
nx 

                             

                                                                                     

= 𝑒
−𝜃0𝑛x +n                            ] 

The likelihood ratio is 

𝜆= 
𝜃𝑠𝑢𝑝𝜖𝛺0

L  (x̰; θ)

𝜃𝑠𝑢𝑝𝜖𝛺L  (x̰; θ)
 = 

L  (x̰; 𝜃0)

(𝜃ˆ)𝑛.𝑒−𝜃
∑ 𝑥𝑖
𝑛
𝑖=1

 

Where, 𝜃ˆ =  
1

𝑥
 is the MLE of 𝜃 under 𝛺. 

Here, 𝜆= (𝜃0x )
𝑛. 𝑒

−𝑛(𝜃0x −1)                             

= 𝑦𝑛. 𝑒
−𝑛(𝑦−1)

                            , where y = 𝜃0x  

Now, 
𝑑𝜆

𝑑𝑦
= 𝑦𝑛. 𝑒

−𝑛(𝑦−1)
                            (-

n)+𝑛𝑦𝑛−1. 𝑒
−𝑛(𝑦−1)
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= 𝑛𝑦𝑛−1. 𝑒
−𝑛(𝑦−1)

                            {1 − 𝑦} 

= {
> 0 𝑖𝑓 𝑦 < 1
< 0  𝑖𝑓 𝑦 > 1

 

From graph, 𝜆< c 

⇒ y < 𝑘1 𝑜𝑟 y > 𝑘2 

⇒ 2 𝜃0∑ 𝑥𝑖
𝑛
𝑖=1 < 𝑎 𝑜𝑟 2 𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1 > 𝑏 

Where, 2n𝑘1 = 𝑎, 2𝑛𝑘2 = 𝑏 

Here, the size 𝛼LRT is given by: 

Reject 𝐻0 iff 𝜆 > c iff 2 𝜃0∑ 𝑥𝑖
𝑛
𝑖=1  ∉ [𝑎, 𝑏] 

Where ‘a’, ‘b’ are such that 

𝛼 = P𝐻0 [2 𝜃0 ∑ 𝑥𝑖
𝑛
𝑖=1  ∉ [𝑎, 𝑏]] 

= 1- P𝐻0[a ≤  2 𝜃0 ∑𝑥𝑖  ≤ 𝑏] 

= 1- P [a ≤ 𝜒2
2𝑛
 ≤ 𝑏] 

= 1- F𝜒2
2𝑛
(𝑏)+ 𝜒2

2𝑛
(𝑎) and (𝑘1)= 𝜆(𝑘2)⇒ 

𝑘1
𝑛

. 𝑒
−𝑛(𝑘1−1)                              

=𝑘2
𝑛

. 𝑒
−𝑛(𝑘2−1)                              

(II) To test 𝐻0:≥ 𝜃0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝜃> 𝜃0:- 

Here, 𝛺0 = {𝜃0} and 𝛺= { ≥ 𝜃0} 

The likelihood ratio is  

𝜆= 
𝜃𝑠𝑢𝑝𝜖𝛺0

L  (x̰; θ)

𝜃𝑠𝑢𝑝𝜖𝛺L  (x̰; θ)
= 

𝜃0
𝑛.𝑒−𝜃0 ∑ 𝑥𝑖

𝑛
𝑖=1

𝜃𝑠𝑢𝑝≥𝜃0{L  (x̰; θ)}
 

For 𝜃 > 0, L  (x̰;  θ) is maximum at 𝜃= 
1

x 
=

 𝜃ˆ 

∴ Sup L  (x̰;  θ)   𝜃≥ 𝜃0 

= {
(𝜃ˆ)𝑛𝑒−𝜃ˆ2𝑥𝑖 ,𝑖𝑓𝜃0< 𝜃ˆ 

𝜃0
𝑛. 𝑒−𝜃0∑𝑥𝑖 ,𝑖𝑓𝜃0>𝜃ˆ  

 

Now, 𝜆= {
(𝜃0x )

𝑛. 𝑒−𝑛(𝜃0x −1),𝑖𝑓 𝜃0x <1

1   , 𝑖𝑓 𝜃0x ≥ 1
 

From graph, 𝜆< c(<1) 

⇒ y< k 

⇒ 2𝜃0∑ 𝑥𝑖
𝑛
𝑖=1  < a , say 

The size 𝛼 LRT is given 

by: reject 𝐻0 iff 𝜆 < c, iff 2 𝜃0 ∑ 𝑥𝑖
𝑛
𝑖=1 < 𝑎 

Where ‘a’ is such that 𝛼= P𝐻0 [2 

𝜃0 ∑ 𝑥𝑖
𝑛
𝑖=1 < 𝑎] 

∴ 𝛼 = P [𝜒2
2𝑛
< 𝑎] 

⇒ a=𝜒2
1−𝛼;2𝑛

 

Therefore the size 𝛼 LRT is given by: 

Reject  𝐻0 iff ∑ 𝑥𝑖
𝑛
𝑖=1  < 

𝜒21−𝛼;2𝑛

2𝜃0
. 

(III) Hint:- 𝜆 = 
𝜃𝑠𝑢𝑝≥𝜃0 L  (x̰; θ)

𝜃𝑠𝑢𝑝𝜖𝑅 L  (x̰; θ)
 

The size 𝛼 LRT is given by: Reject 𝐻0 iff 

∑ 𝑥𝑖
𝑛
𝑖=1  > 

𝜒2𝛼;2𝑛

2𝜃0
. 

 

Q75. let  𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be a R.S. from  N 

(𝜃, 𝝈𝟐), 𝜎 known. Derive size 𝛼 LRT for 

testing 

(i) 𝑯𝟎:𝜃= 𝜽𝟎 𝒂𝒈𝒂𝒊𝒏𝒔𝒕 𝑯𝟏: 𝜃≠ 𝜽𝟎 

(ii) 𝑯𝟎:𝜃= 𝜽𝟎 𝒂𝒈𝒂𝒊𝒏𝒔𝒕 𝑯𝟏: 𝜃> 𝜽𝟎 

Show that the LRT’s obtained are 

unbiased. 

Solution:- the likelihood function is 
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  L  (x̰;  θ) =

(
1

𝜎√2𝜋
)𝑛. 𝑒

−
1

2𝜎2
∑ (𝑥𝑖−𝜃)

2𝑛
𝑖=1 ;  𝑤ℎ𝑒𝑟𝑒 𝜃 𝜖ℝ             

(i) To test 𝐻0:𝜃= 𝜃0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 

𝜃≠ 𝜃0:- 

Here 𝛺0 = {𝜃0} and 𝛺={𝜃0: 𝜃𝜖ℝ} 

The likelihood ratio is 𝜆 = 
𝜃𝑠𝑢𝑝𝜖𝛺0L  (x̰; θ)

𝜃𝑠𝑢𝑝𝜖ΩL  (x̰; θ)
 

= 
L  (x̰,𝜃0 )

𝜃𝑠𝑢𝑝𝜖RL  (x̰; θ)
 

= 
(
1

𝜎√2𝜋
)𝑛.𝑒

−
1

2𝜎2
∑ (𝑥𝑖−𝜃0)

2𝑛
𝑖=1

(
1

𝜎√2𝜋
)𝑛.𝑒

−
1

2𝜎2
∑ (𝑥𝑖−x )

2𝑛
𝑖=1

 

= 𝑒
−

1

2𝜎2
{∑(𝑥𝑖−𝜃0)

2−∑(𝑥𝑖−x )
2}

 

= 𝑒
−

1

2𝜎2
.𝑛 (x −𝜃0)

2

 

Note that 𝜆< c 

⇒ 𝑒
−

𝑛

2𝜎2 
 (x −𝜃0)

2<𝑐
 

⇒ 
𝑛(x −𝜃0)

2

𝜎2
 > 𝑐1 

⇒ |
√𝑛 (x −𝜃0)

𝜎
|> k, say. 

The size 𝛼 LRT is given by: 

Reject 𝐻0 iff 𝜆> c iff |
√𝑛 (x −𝜃0)

𝜎
|> k, where k 

is such that  

𝛼 = 𝑃𝐻0 [|
√𝑛 (x −𝜃0)

𝜎
| >  𝑘] = 𝑃 [|𝑧| > 𝑘], z 

∼N (0, 1) 

⇒ k = 𝛼/2  

(II) to test  𝐻0:𝜃= 𝜃0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝜃> 𝜃0:- 

 Here 𝛺0 = {𝜃0} and 𝛺= {𝜃0: 𝜃≥  𝜃0} 

 The likelihood ratio is 𝜆= 
𝜃𝑠𝑢𝑝𝜖𝛺0L  (x̰; θ)

𝜃𝑠𝑢𝑝𝜖ΩL  (x̰; θ)
 

= 
L  (x̰; θ)

𝜃sup  ≥ 𝜃0L  (x̰; θ)
 

Here L  (x̰;  θ) is maximum at 𝜃= x̄= 𝜃ˆ 

Now, 𝜃sup  ≥ 𝜃0L  (x̰;  θ) =

 {
L  (x̰;  θˆ), if x > 𝜃0 

L  (x̰;  𝜃0) , if 𝜃0 ≥ x 
 

Here, 𝜆= {𝑒
−

𝑛

2𝜎2 
 (x −𝜃0)

2,𝑖𝑓𝜃0<x   

1   , 𝑖𝑓 𝜃0 ≥ x 
 

Note that, 𝜆 <c (< 1) 

⇒  𝑒
−

𝑛

2𝜎2 
 (x −𝜃0)

2<𝑐
 , where 𝜃0 < x  

⇒
𝑛 (x −𝜃0)

𝜎
> 𝑐1, where x >𝜃0  

⇒ 
√𝑛  (x −𝜃0)

𝜎
 > k , as (x − 𝜃0)> 0 

The size 𝛼 LRT is given by: Reject 𝐻0 iff 𝜆 

< c 

iff  
√𝑛  (x −𝜃0)

𝜎
 > k , where k is such that  

𝛼 = 𝑃𝐻0 [
√𝑛 (x −𝜃0)

𝜎
>  𝑘] 

= 𝑃 [𝑧 > 𝑘], z ∼N (0, 1) 

The size   LRT is given by:  Reject 𝐻0 iff 

x  > 𝜃0 +
𝜎

√𝑛
 𝛼, 

Which is the UMP test for testing 𝐻0: θ =

 𝜃0 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: θ >  𝜃0 and is unbiased. 

 𝐻1: θ ≠  𝜃0 is 𝛽(𝜃)= 𝑃𝐻0 [|
√𝑛 (x −𝜃0)

𝜎
| >

α

2
] 

= 1- ⏀ (
√𝑛 (x −𝜃0)

𝜎
+
α

2
)+ ⏀(

√𝑛 (𝜃0−𝜃)

𝜎
−
α

2
)  
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Note that, 𝛽′(𝜃)= ⏀(
√𝑛 (𝜃0−𝜃)

𝜎
+
α

2
)(
√𝑛

𝜎
)- 

⏀(
√𝑛 (𝜃0−𝜃)

𝜎
−
α

2
)× (

√𝑛

𝜎
) ;    if 𝜃 > 𝜃0 

Now, 𝛽′(𝜃)={
> 0 𝑖𝑓 θ >  𝜃0
< 0 𝑖𝑓θ <  𝜃0 

 

Clearly, 𝛽 (𝜃)> (𝜃0) ∀ 𝜃 ≠ 𝜃0 

⇒ power > size 

i.e the LRT is unbiased 

Q76. Let  𝑿𝟏, … , 𝑿𝒏 be a R.S. from B (1, 

p) population. Derive a LRT of its size of  

𝑯𝟎: 𝒑 = {𝒑𝒐}𝒂𝒈𝒂𝒊𝒏𝒔𝒕𝑯𝟏: 𝒑 ≠ 𝒑𝒐 

Solution: - Here 𝛺0 = {𝑝0} 𝑎𝑛𝑑 𝛺 =

{𝑝 ; 0 < 𝑝 < 1} 

The likelihood function is 

L  (x̰; p)= {
𝑝∑𝑥𝑖(1 − 𝑝)𝑛− ∑𝑥𝑖 , 𝑖𝑓 𝑥𝑖 = 0, 1

0   , 𝑜𝑤  

The LR is  

𝜆= 
𝑝𝑠𝑢𝑝𝜖𝛺0L  (x̰;p)

𝑝𝑠𝑢𝑝𝜖ΩL  (x̰; p)
 = 
L  (x̰;𝑝0)

L  (x̰; pˆ)
 , where 

 

𝜆= 
𝑝0
𝑡(1−𝑝0)

𝑛−𝑡pˆ

pˆt(1−pˆ)n−t
 , 𝑡 =  ∑ 𝑥𝑖 

= (
𝑛𝑝0

𝑡
)𝑡(

𝑛 (1−𝑝0)

𝑛−𝑡
)𝑛−𝑡 

Now, ln 𝜆= tln(
𝑛𝑝0

𝑡
)+ (n-t)ln {

𝑛 (1−𝑝0)

𝑛−𝑡
} 

And 
𝑑

𝑑𝑡
𝑙n𝜆 = ln(

𝑛𝑝0

𝑡
)- ln {

𝑛 (1−𝑝0)

𝑛−𝑡
} 

= | n(
𝑛𝑝0

𝑡
.

𝑛−𝑡

𝑛 (1−𝑝0)𝑡
) 

= {
> 0 , 𝑖𝑓 𝑡 < 𝑛𝑝0
< 0 , 𝑖𝑓 𝑡 > 𝑛𝑝0 

 

From graph, 𝜆 < c ⇒ t > 𝑘2 𝑜𝑟 𝑡 < 𝑘1  

The LRT of its size is given by; 

Reject 𝐻0 iff 𝜆 < c iff ∑ 𝑥𝑖 < 
𝑛
𝑖=1 𝑘1 or 

∑ 𝑥𝑖 >
𝑛
𝑖=1 𝑘2 ∋ 𝜆 (𝑘1)= 𝜆 (𝑘2) 

Q77. let X be a discrete random variable 

with P [X= -1]= P and P [x= k]= (𝟏 −

𝒑)𝟐𝑷𝒌, where P 𝜖 (0, 1)is unknown. Show 

that U(X)is an unbiased estimator of 𝜃 iff 

U (k)= ak , k = -1, 0, 1, 2, ….  for some a. 

Solution:- E [U(x)] = ∑ 𝑎𝑘. 𝑃 [𝑋 = 𝑘]
∞
𝑘= −1  

= -ap + ∑ 𝑘(1 − 𝑝)2𝑃𝑘 ∞
𝑘=0  

= -ap + a(1 − 𝑝)2[p+ 2𝑝2 + 3𝑝3 + …∞] 

=-ap +a(1 − 𝑝)2p(1 − 𝑝)2 

= -ap+ ap 

= 0. 

Now, ∑ 𝑢 (𝑥)𝑓(𝑥) = 0∞
𝑥= −1  

⇨ u (-1) P [X= -1]+ ∑ 𝑢 (𝑥)𝑓(𝑥) = 0∞
𝑥=0  

⇨ u (-1) p + ∑ 𝑢 (𝑥)(1 − 𝑝)2𝑝𝑥∞
𝑥=0 = 0 

⇨ p (u (-1)) + (1 − 𝑝)2∑ 𝑢 (𝑥)∞
𝑥=0 𝑝𝑥=0 

 ⇨ ∑ 𝑢 (𝑥)∞
𝑥=0 𝑝𝑥= 

−𝑝𝑢(−1)

𝑞2
 

⇨ ∑ 𝑢𝑥∞
𝑥=0 𝑝𝑥= -u (-1) p (1 − 𝑝)2 

= -u (-1) p (1+ 2p +3𝑝2 +⋯) 

= -u (-1) [p+2𝑝2 + 3𝑝3 +⋯] 

= -u (-1) ∑ 𝑥∞
𝑥=0 𝑝𝑥     [comparing power 

series from both side] 

⇨ u (x) = -u (-1)x 

⇨ u(x) = ax. 
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Q78. f(x) = {𝒆
−(𝒙− 𝜽) 𝒊𝒇 𝒙 ≥𝜽

𝟎      𝒐𝒘
 

Find (a) MLE of 𝜃    (b) 95% C. I. for 𝜃 

Solution:- (a) let  𝑋1, … , 𝑋𝑛 be a R.S. from 

f(x). then, 

𝑓𝜃(𝑥) = exp[−∑ (𝑥𝑖 − 𝜃)
𝑛
𝑖=1 ]. 𝐼 𝑋(1) ≥ 𝜃; 

= L(θ|x̰) 

The likelihood function will be maximum 

when ∑ (𝑥𝑖 − 𝜃)𝑖 is minimum 

i.e. , when 𝜃 is maximum. 

i.e. 𝜃ˆ𝑀𝐿𝐸 = 𝑋(1) 

(b) CI will based on sufficient statistic 

𝑓𝜃(x̰)= {𝑒
−∑ 𝑥𝑖𝑖 +𝑛𝜃  ; 𝑋(1)≥𝜃 

0                  ; 𝑜𝑤
 

= 𝑒−∑ 𝑥𝑖𝑖 +𝑛𝜃  ⏀ (𝜃, 𝑋(1) ) ; where 

⏀ (𝜃, 𝑋(1) )= {
1  𝑖𝑓 𝜃 ≤ 𝑖
0   𝑖𝑓 𝑜𝑤

 

∴𝑓𝜃(x̰) = 𝑔𝜃 (𝑡). ℎ (x̰)  

Where, 𝑔𝜃 (𝑡) =  𝑒
𝑛𝜃. ⏀ (𝜃, 𝑡) and ℎ (x̰) =

𝑒−∑𝑥𝑖 

∴ by NF Factorization theorem 𝑋(1) is 

sufficient. 

Now, the PDF of 𝑋(1) is given by 𝑓𝑋(1)(𝑦) =

𝑛𝑒−𝑛 (𝑦−𝜃)𝐼  𝑦 ≥ 𝜃 

Note that, it is a shifted exponential 

distribution, 

∴ 2n (𝑋(1) − 𝜃) ∼ 𝜒2
2
 

∴ 𝑝
𝜃  [𝜒22;1−

𝛼

2
≤2𝑛(𝑋(1)−𝜃)≤𝜒

2
2;
𝛼

2𝑛
]=1−𝛼

 

⇨ 𝑃
𝜃 [
𝜒22;1−

𝛼
2

2𝑛
 ≤𝑋(1)−𝜃 ≤𝑋(1)  ]=1−𝛼

 

⇨𝑃𝜃  [𝑋(1) −
𝜒22;1−

𝛼

2

2𝑛
 ≥  𝜃 ≥ 𝑋(1) −

𝜒2
2
;
𝛼

2𝑛
 ] = 1 − 𝛼 

∴ Confidence interval for 𝜃 is 

(𝑋(1) − 𝜒
2
2
;
𝛼

2𝑛
 , 𝑋(1) −

𝜒22;1−
𝛼

2

2𝑛
) 

Q79. suppose 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 are i.i.d. N (𝜃, 

1), 𝜽𝟎 ≤  𝜽 ≤  𝜽𝟏, where 𝜽𝟎 < 𝜽𝟏 are two 

specified numbers. Find the MLE of 𝜃 

and show that it is better than the sample 

mean x̄ in the sense of having smaller 

mean squared error. 

Solution:- L = ∏ 𝑓 (𝑥𝑖, 𝜃) =
𝑛
𝑖=1

 
1

(√2𝜋)𝑛
 . 𝑒−

1

2
 ∑(𝑥𝑖−𝜃)

2

 ; 𝑥𝑖𝜖 ℝ  

Here we wish to maximize L w.r.t. 𝜃 subject 

to the condition𝜃0 ≤  𝜃 ≤  𝜃1; L will be 

maximum iff 𝑒
1

2
 ∑(𝑥𝑖−𝜃)

2

 is minimum.      Iff 

∑(𝑥𝑖 − 𝜃)
2 is minimum at 𝜃ˆ𝑀𝐿𝐸 = 𝜃0 

 For x̄, 

lnL = c-
1

2
 ∑(𝑥𝑖 − 𝜃)

2  

𝜕|𝑛𝐿

𝜕𝜃
=  ∑(𝑥𝑖 − 𝜃) = 0 

⇨ ∑𝑥𝑖 = 𝑛𝜃 

⇨𝜃ˆ𝑀𝐿𝐸 = x  ; where 𝜃0 ≤  x  ≤  𝜃1 as 𝜃0 ≤

 𝜃 ≤  𝜃1 

E (𝑋 − 𝜃0)
2 = 𝐸 [𝑋 − x ) + (𝑋 − 𝜃0)]

2 

= E (𝑋 − x )2+ E (𝑋 − 𝜃0)
2 

⇨ E (𝑋 − 𝜃0)
2 ≤ E (𝑋 − x )2. 
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Q80. if T: ℝ 𝟑  ⟶ ℝ 𝟑 be a linear 

transformation defined by 

T (x, y, z) = (x+y+z, y+z, z) then find 𝑻𝒏(x, 

y, z). 

Solution: - 𝑇2(x, y, z) = T (x + y+ z, y+z, z) 

= (x+ 2y + 3z, y+ 2z, z) 

𝑇3(x, y, z) = T (x + 2y + 3z, y + 2z, z) 

= (x+ 3y + 6z, y+ 3z, z) 

⦙ 

𝑇𝑛(x, y, z) = (x+ ny +
𝑛 (𝑛+1)

2
. 𝑧, 𝑦 + 𝑛𝑧, 𝑧). 

Q81. Let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be i.i.d random 

variables with family f(𝜃 ; x ; x 𝝐 ℝ , 𝜃 𝜖 

(0, 1) be the unknown parameter. 

Suppose that there exit an unbiased 

estimator T of 𝜃 based on sample size one, 

i.e. 

E [T (𝑿𝟏)] = 𝜃. Assume that V (T (𝑿𝟏)) < 

∞. 

(I) find the estimator 𝑽𝒏 for 𝜃, E (𝑿𝒏) ∍ 

𝑽𝒏 is constant. 

(II) Let 𝒔𝒏 be the MVUE of 𝜃 based on 

𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 s.t. 𝐥𝐭
𝒏⟶∞

𝑽 (𝒔𝒏 ) ⟶ 𝟎 

Solution:- (I) 𝑋𝑖 ∼ 𝑓𝜃(x) 

Y = T (𝑋1) ∼𝑓𝜃(t) 

Now, Y̅ ⟶ E (𝑌1) 

i.e. 𝑉𝑛= 
1

𝑛
∑ T (𝑋𝑖) ⟶ E [T(𝑋1) = θ ] 
𝑛
𝑖=1  

(II) E (Y̅) = 0 

𝑉 (𝑠𝑛 ) ≤ 𝑉 (𝑉𝑛) −
𝑉 (T(𝑋1))

𝑛2
 

= 
𝑉 (T(𝑋1))

𝑛
 

⇨ lt
𝑛⟶∞

𝑉 (𝑠𝑛 ) = 0  . 

 

Q82. Let f (0)=0 then show that 

𝐥𝐢𝐦
𝒉⟶𝟎

𝒇 (𝒉)+ 𝒇 (−𝒉)

𝒉𝟐
= 𝒇″(𝟎) 

Solution:- f (h)= f(0)+hf′(0)+
ℎ2

2!
𝑓″(0)+ 

ℎ3

3!
𝑓‴(𝑐)   [∵ f(0)= 0] 

Similarly, f(-h)= - hf′(0)+ 
ℎ2

2!
𝑓″(0) −

 
ℎ3

3!
𝑓‴(𝑐) 

f (h)+ f (-h)= ℎ2𝑓″(0) 

∴ 𝑓″(0) = lt
ℎ⟶0

𝑓 (ℎ)+ 𝑓 (−ℎ)

ℎ2
. 

 

 

Q83. Suppose x has a normal distribution 

with mean 0 and variance 25. 

Let Y be an independent RV taking 

values -1 and +1 with equal probability ½ 

.define  

S= X y + 
𝑿

𝒚
 ,  T = xy -

𝒙

𝒚
. 

(I) Find the probability 

distribution of S. 

(II)  Find the probability 

distribution of ( 
𝑺+𝑻

𝟏𝟎
)𝟐 

Solution:- (i) 𝐹𝑆(𝑠) = 𝑃 [𝑆 ≤ 𝑠] 



Solving Mathematical Problems 

 

222 
 

= P [S≤ 𝑠 | 𝑌 = −1]𝑃 [𝑌 = −1] +  𝑃 [𝑆 ≤

𝑠|𝑌 = 1] 𝑃 [𝑌 = 1] 

= 
1

2
 𝑃 [−2𝑋 ≤ 𝑠] +

1

2
 𝑃 [−2𝑥 ≤ 𝑠]  

=P [x ≤
𝑠

2
], since ‘X’ is symmetrically 

distributed about ‘0’, 

= P [
𝑥−0

𝑆
 ≤  

𝑠−0

10
] 

= ⏀(
𝑠

10
) 

∴ S ∼ N (0, 102). 

(Ii) s + T =2 xy 

(𝑆 + 𝑇)2 = 4 𝑥2𝑦2 = 4 𝑥2,  since P [𝑌2 =

1]=1 

⇨ (𝑆 + 𝑇)2 = (
𝑋

5
)2 ∼ 𝜒2. 

Q84. using an appropriate probability 

distribution or otherwise find the value of 

𝐥𝐢𝐦
𝒏⟶∞

𝟏

𝟐
𝒏
𝟐⁄ ⎾(

𝒏

𝟐
)
 . ∫ 𝒆−

𝒕
𝟐⁄   𝒕

𝒏
𝟐−𝟏⁄∞

𝒏+√𝟐 𝒏
 𝒅𝒕 

Solution:- Let {𝑥𝑛} be a sequence of i.i.d. 

Random variables following Gamma (
1

2
 , 
1

2
) 

Here , f (x)= {
𝑒−
𝑥
2⁄ .𝑥

1
2−1⁄

2
1
2⁄  .⎾(

1

2
)
 𝑖𝑓 𝑥 > 0

0     𝑜𝑤

 

Then ∑ 𝑋𝑘 = 𝑆𝑛 ∼ 𝐺𝑎𝑚𝑚𝑎(
1

2
 ,
𝑛

2
)𝑛

𝑘=1  

E (𝑆𝑛)= n, V(𝑆𝑛)= 2n. by lindeberg- lavy 

central Limit theorem  

lim
𝑛⟶∞

𝑃 [
𝑆𝑛 − 𝐸 (𝑆𝑛)

√V(𝑆𝑛)
 ≤ 𝑥] =  ⏀ (𝑥) 

⇨ lim
𝑛⟶∞

𝑃 [
𝑆𝑛−𝑛

√2𝑛
≤ 1] =  ⏀(1) 

⇨ lim
𝑛⟶∞

𝑃 [𝑆𝑛  ≤ 𝑛 + √2𝑛 ] = ⏀(1) 

⇨ lim
𝑛⟶∞

𝑃 [𝑆𝑛 > 𝑛 + √2𝑛 ] = 1 −⏀(1) 

 ⇨ lim
𝑛⟶∞

{
1

2
𝑛
2⁄ ⎾(

1
2
)
 ∫ 𝑒−

𝑡
2⁄   𝑡

𝑛
2−1⁄∞

𝑛+√2 𝑛
 𝑑𝑡} =

⏀(−1) 

Q85. let𝒀𝟏, 𝒀𝟐, 𝒀𝟑, 𝒀𝟒  has four 

uncorrelated r.v.s with E (𝒀𝒊) = i𝜃, 

V (𝒀𝒊) = 𝒊𝟐𝝈𝟐, i= 𝟏(𝟏)𝟒, where 𝜃, 𝜎> 0 are 

unknown parameter 

Find the values of 𝒄𝟏, 𝒄𝟐, 𝒄𝟑, 𝒄𝟒 for which 

∑ 𝒄𝒊𝒀𝒊
𝟒
𝒊=𝟏  is unbiased for   and has least 

variance. 

Solution:- E (∑ 𝑐𝑖𝑌𝑖
4
𝑖=1 )= (∑ 𝑖𝜃𝑐𝑖

4
𝑖=1 )𝜃, 

∑𝑐𝑖 = 1 

Again, V (∑ 𝑐𝑖𝑌𝑖𝑖 )= ∑𝑐𝑖
2 𝑖2𝜎2 =𝜎2 =

∑ 𝑖2𝑐𝑖
2     

 Now,       ∑𝑐𝑖𝑌𝑖is unbiased. 

So, 1 =  (∑ 𝑖𝑐𝑖𝑖 )2  ≤ (∑ 𝑖2𝑐𝑖
2

𝑖 )(∑ 1𝑖 )    , by 

C-S inequality. 

‘=’ holds when 𝑖𝑐𝑖 = k= 
1

4
 ⇨𝑐𝑖=

1

4𝑖
. 

Alternative way:- 

𝑋𝑖 ∼ (𝜃, 𝜎
2) 

 

𝑌𝑖 ∼  (𝑖𝜃, 𝑖
2𝜎2 ) 

                                                                                         
𝑌𝑖

𝑖
∼ (𝜃, 𝜎2) 

                                                                                          

Y̅ 
𝐵𝐿𝑈𝐸
→    𝜃 
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1

4
 ∑

𝑌𝑖

𝑖
 is BWE for 𝜃 

∑𝑐𝑖𝑌𝑖 is BWE for 𝜃, where 𝑐𝑖 =
1

4𝑖
         

Q86. Let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be independently 

distributed random variables with 

densities  

f (𝒙𝒊;  𝜽)= {
𝒆𝒊𝜽−𝒙𝒊   ,𝒊𝒇 𝒙𝒊 ≥𝒊𝜽 

𝟎    , 𝒐𝒘
       [Here 

𝒙𝒊
′𝒔𝒂𝒓𝒆 𝒏𝒐𝒕 𝒓𝒂𝒏𝒅𝒐𝒎 𝒔𝒂𝒎𝒑𝒍𝒆𝒔] 

Find a one –dimensional sufficient 

statistic for𝜃. 

Solution:- the joint PDF of 𝑋1, 𝑋2, … , 𝑋𝑛 is 

∏𝑓 (𝑥𝑖;  𝜃)

𝑛

𝑖=1

= {𝑒
𝜃∑ 𝑥𝑖−∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
𝑖=1  ; 𝑖𝑓𝑥𝑖 ≥ 𝑖𝜃, ∀ 𝑖 = 1(1)𝑛 
0                               ,           𝑜𝑤

 

= {𝑒
𝑛(𝑛+1)𝜃

2
−∑ 𝑥𝑖

𝑛
𝑖=1  ; 𝑖𝑓

𝑥𝑖

𝑖
≥ 𝜃∀ 𝑖 = 1(1)𝑛 

0              ;      𝑜𝑤
 

= {𝑒
𝑛(𝑛+1)𝜃

2
−∑ 𝑥𝑖

𝑛
𝑖=1 ; 𝑖𝑓 min

𝑖
{
𝑥𝑖

𝑖
} ≥ 𝜃

0                   ; 𝑜𝑤
 

=𝑒
𝑛(𝑛+1)𝜃

2
−∑ 𝑥𝑖

𝑛
𝑖=1 . 𝐼 (𝜃,min{

𝑥𝑖

𝑖
}); where 

I(a,b)= {
1  𝑖𝑓 𝑎 ≤ 𝑏
0  𝑖𝑓 𝑎 > 𝑏

 

= 𝑒
𝑛(𝑛+1)𝜃

2 . 𝐼 (𝜃,min{
𝑥𝑖

𝑖
}). 𝑒−∑ 𝑥𝑖

𝑛
𝑖=1  

= g (T (x ̰) ;𝜃). h(x ̰), where  h(x ̰)= 𝑒−∑𝑥𝑖         

so, T (x̰) = min
𝑖
{
𝑥𝑖

𝑖
} is sufficient for 𝜃, by 

NFFT. 

Q87. If f(x) = 
𝜽𝒂𝜽

𝒙𝜽+𝟏
 𝑰 𝒂 < 𝑥 < ∞, 𝜃 > 0, 𝑎 >

0; 

(a) Find UMVUE of 𝜃, when a is known, 

(b) Find UMVUE of a, when 𝜃 is known 

Solution: - (a) from OPEF, the complete 

sufficient statistic is ∑ |𝑛𝑋𝑖
𝑛
𝑖=1  and 

hence∑ |𝑛
𝑋𝑖

𝑎

𝑛
𝑖=1  will also be complete 

sufficient statistic. 

Now,   |𝑛
𝑋𝑖

𝑎
 ∼ Exp (𝜃) 

∴ 2𝜃 ∑ |𝑛
𝑋𝑖

𝑎

𝑛
𝑖=1 ∼ 𝜒2𝑛

2 

⇨ E [
1

2θ ∑ |𝑛
𝑋𝑖
𝑎

𝑛
𝑖=1

] = 
1

(2𝑛−2)
   [If X ∼𝜒𝑛

2     E 

(
1

𝑋
) =

1

𝑛−2
 ] 

⇨ E [
𝑛−1

∑ |𝑛
𝑋𝑖
𝑎𝑖

] =  𝜃 

             ⇓        

        Function of complete sufficient statistic 

∴ 
𝑛−1

∑ |𝑛
𝑋𝑖
𝑎𝑖

 is the required UMVUE. 

(b) 𝑓𝑎(�̰�) =  
𝜃𝑛𝑎𝑛𝜃

(∏ 𝑋𝑖)
𝑛
𝑖=1

𝜃+1  . ⏀(𝑎, 𝑥); where 

⏀(𝑎, 𝑥) = {
1 , 𝑖𝑓 𝑎 < 𝑥
0,   𝑜𝑤

 

∴ 𝑔𝑎(𝑡) = 𝑎
𝑛𝜃 . ⏀(𝑎, 𝑡) With T = 𝑋(1) 

∴ 𝑋(1) is the sufficient statistic for 𝜃. 

Now, 𝑓𝑋(1)(𝑡) = 𝑃 [𝑋(1) ≤  𝑡]= 1-P [𝑋(1) >

𝑡]= 1- (𝑃[𝑋 > 𝑡])𝑛 

Where, P [X > t]= ∫ 𝜃𝑎𝜃𝑥−𝜃−1
∞

𝑡
𝑑𝑥 =

𝑎𝜃

𝑡𝜃
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∴ 𝑓𝑋(1)(𝑡) =  −𝑛𝜃 (
𝑎

𝑡
)
𝑛𝜃−1

. (−
𝑎

𝑡2
) 

= n . 
𝑎𝑛𝜃

𝑡𝑛𝜃+1
 𝐼𝑎 > 0 

Now, if (t) is any arbitrary function of  t, 

then E [𝜓(t)]=0 

⇨ ∫ 𝑛𝜃
𝑎𝑛𝜃

𝑡𝑛𝜃+1
𝜓(𝑡)𝑑𝑡

∞

𝑎
= 0 

⇨ ∫
𝜓(𝑡)

𝑡𝑛𝜃+1
𝑑𝑡 = 0

∞

𝑎
 

g (t), say 

⇨ G (∞)-G (a)=0 

⇨ g (∞)-0 - g (a)-1=0 

⇨ g (a)=0 ⇨ 𝜓(a)=0 

∴ 𝑋(1) is complete sufficient for 𝜃 

Let 𝑋(1) = 𝑇 

Now, E (T)= ∫ 𝑡.
∞

𝑎
𝑛𝜃

𝑎𝑛𝜃

𝑡𝑛𝜃+1
𝑑𝑡 

=
𝑛𝜃−𝑎

𝑛𝜃+1
 

∴ E [t. 
𝑛𝜃−1

𝑛𝜃
]= a 

∴ UMVUE of a is
𝑛𝜃−1

𝑛𝜃
= (1 −

1

𝑛𝜃
). 

Q88. let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏∼ Rec (0, 𝜃) with an 

unknown 𝜃 (1, ∞) 

Suppose we only observe 𝒛𝒊 =

{
𝑿𝒊  𝒊𝒇𝑿𝒊 ≥ 𝟏 
𝟏  𝒊𝒇 𝑿𝒊 < 1

 

Derive UMVUE of 𝜃. 

Solution:- let T (𝑋(𝑛)) be an unbiased 

estimator of 0. 

∴ E [T (𝑋(𝑛))]=0 

⇨ ∫ 𝑡(𝑥(𝑛))
∞

0
.
𝑛𝑥(𝑛)𝑛−1

𝜃𝑛
 𝑑𝑥(𝑛) = 0 

⇨ ∫ 𝑡(𝑥(𝑛)).
𝜃

0
 𝑥(𝑛)𝑛−1𝑑𝑥(𝑛) = 0⇨ G (𝜃)- 

G(0)=0 

⇨ g (𝜃)= 0 ⇨ u (𝑥(𝑛)). 𝑥(𝑛)
𝑛−1=0 ⇨ u 

(𝑥(𝑛))=0 

∴ 𝑋(𝑛) is complete sufficient for 0. 

To find UE of 𝜃 based on𝑋(𝑛), let us 

consider the function, 

h (ˆ𝑋(𝑛))= {
𝑎  𝑖𝑓 𝑋(𝑛) < 1

𝑏𝑋(𝑛)  𝑖𝑓 𝑋(𝑛) ≥ 1
 

∴ E [h (𝑋(𝑛))] = 𝜃      [∵ h (𝑋(𝑛)) is UE of 𝜃] 

⇨ a. P [𝑋(𝑛) ≤ 1]+ b 𝑥(𝑛).
𝑛𝑥(𝑛)𝑛−1

𝜃𝑛
𝑑𝑥(𝑛)=𝜃 

⇨ a ∫
𝑛𝑥(𝑛)𝑛−1

𝜃𝑛

1

0
 𝑑𝑥(𝑛) +

𝑏 ∫ 𝑛.
𝑥(𝑛)

𝜃𝑛

𝜃

1
 𝑑𝑥(𝑛) = 𝜃 

⇨ a. 
𝑛

𝜃𝑛
.
1

𝑛
+

𝑏.𝑛

(𝑛+1)𝜃𝑛
= 𝜃 

⇨ a+ 
𝑏𝑛

𝑛+1
(𝜃𝑛+1 − 1) = 𝜃𝑛+1 

⇨ a+ 
𝑏𝑛

𝑛+1
𝜃𝑛+1 -

𝑏𝑛

𝑛+1
= 𝜃𝑛+1 

∴ 
𝑏𝑛

𝑛+1
= 1, 𝑎 = 1,

𝑏𝑛

𝑛+1
= 1. [Equating 

coefficients of 𝜃] 

∴ h (X) = {
1  𝑖𝑓𝑋(𝑛) < 1 
𝑛+1

𝑛
𝑋(𝑛) ≥ 1

      is UMVUE of 

𝜃. 

Q89. Let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be a random 

sample from a distribution having pdf  
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f(x; 𝒙𝟎, 𝜶)= {
𝜶𝒙𝟎

𝒙𝜶+𝟏
 𝒇𝒐𝒓 𝒙 >  𝒙𝟎,

𝟎                    𝒐𝒘
 

Where, 𝒙𝟎, > 0, 𝛼> 0. Find the maximum 

likelihood estimator of 𝛼 if 𝒙𝟎 is known. 

Solution: - Likelihood function, L (x, 𝛼) is 

given by, 

L (x, 𝛼) = 
𝛼𝑛𝑥0

𝛼𝑛

𝑥1(𝛼+1)𝑥2
(𝛼+1)…𝑥𝑛

(𝛼+1) 

⇨ log 𝐿 = 𝑛 log 𝛼 + 𝛼𝑛 log 𝑥0 − (𝛼 +

1)∑𝑥𝑖 

⇨ 
1

𝐿
.
𝜕𝐿

𝜕𝛼
= 
𝑛

𝛼
+  𝑛 log 𝑥0 −∑𝑥𝑖

𝜕𝐿

𝜕𝛼
= 0 

⇨ 
𝑛

𝛼
+n|n𝑥0 = ∑𝑥𝑖 

⇨ 𝛼−1 =
∑𝑥𝑖

𝑛
− |n𝑥0 

⇨ 𝛼= 
1

∑𝑥𝑖
𝑛
−|n𝑥0

 

Thus MLE 𝛼 is given by 𝛼= 
1

∑𝑥𝑖
𝑛
−|n𝑥0

 

Q90.  A fair coin is flipped 2n times. Find 

the probability that it comes up heads 

more often than it comes up tail. 

Solution: - P (No. of Heads > No. of Tails)+ 

P (No. of Heads= No. of Tails)+ P (No. of 

Heads < No. of Heads < No. of Tails)=1. 

Assuming you are tossing a fair coin, by 

symmetry, we also have that 

P (No. of Heads > No. of Tails) 

= P (No. of Heads < No. of Tails) 

If we want to get k heads in 2n tosses, where 

the probability of getting a head is P then the 

probability is. 

(
2𝑛

𝑘
)𝑃𝑘(1 − 𝑃)2𝑛−𝑘 

In our case, if we want the number of heads 

to be the same as number of tails then k=n 

and if we are tossing a fair coin then P =1 2⁄ . 

Hence, we get 

P (No. of Heads=No. of Tails) 

= (2𝑛
𝑛
) (1

2
)
𝑛
(1
2
)
𝑛
= 

1

22𝑛
(2𝑛
𝑛
) 

Hence, we get that P (No. of Heads > No. of 

Tails)= P (No. of Heads < No. of Tails) 

= 
1−

(2𝑛𝑛 )

22𝑛

2
=
1

2
−

(2𝑛𝑛 )

22𝑛+1
. 

 

Q91. Suppose 𝒂𝒏 ≥ 𝟎 𝒂𝒏𝒅 ∑𝒂𝒏 is 

convergent. Show that  

∑
𝟏

𝒏𝟐𝒂𝒏
 𝒊𝒔 𝒅𝒊𝒗𝒆𝒓𝒈𝒆𝒏𝒕. 

Solution:  Using CS Identity 

[(√𝑎1)
2
+ (√𝑎2)

2
+⋯+ (√𝑎𝑛)

2
] [(

1

1. √𝑎1
)
2

+ (
1

2√𝑎2
)
2

+⋯+ (
1

𝑛√𝑎𝑛
)

2

]  

≥ [
1

1
+
1

2
+
1

3
+⋯+

1

𝑛
]
2

 

RHS is divergent and ∑𝑎𝑛 is convergent. Hence  

∑
1

𝑛2𝑎𝑛
 𝑖𝑠 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡 

 

Q92. Let 𝑭 ∶  ℝ𝒏 → ℝ be defined by 

𝑭(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) = 𝐦𝐚𝐱{|𝒙𝟏|, |𝒙𝟐|, … , |𝒙𝒏|} 
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Show that F is a uniformly continuous function.  

Solution: Take  

𝑋1 = (𝑋11, 𝑋12, 𝑋13, … , 𝑋𝑛) , 𝑋2
= (𝑋21, 𝑋22, … , 𝑋2𝑛) 

|𝐹(𝑋11, 𝑋12, … , 𝑋𝑛) − 𝐹(𝑋21, 𝑋22, … , 𝑋2𝑛)|  =

max{|𝑋11|, |𝑋12|, … , |𝑋1𝑛|} –max {
|𝑋21|, |𝑋22|, … ,

 |𝑋2𝑛|
}  

≤ |max{|𝑋11 − 𝑋21|, |𝑋12 − 𝑋22|, … , |𝑋1𝑛
− 𝑋2𝑛|}| 

≤ √
(𝑋11 − 𝑋21)

2 + (𝑋12 − 𝑋22)
2 +⋯

+(𝑋1𝑛 − 𝑋2𝑛)
2   

≤ |𝑋1 − 𝑋2| 

So, for any given ∈> 0, 𝑐ℎ𝑜𝑜𝑠𝑒 𝛿 =∈

, 𝑡ℎ𝑒𝑛 |𝐹(𝑋1) − 𝐹(𝑋2)| <∈  ∀ |𝑋1 − 𝑋2| < 𝛿 

 

Q93. Let f be a continuous function on [0, 1]. 

Evaluate  

𝐥𝐢𝐦
𝒏→∞

∫𝒙𝒏𝒇(𝒙) 𝒅𝒙

𝟏

𝟎

 

Solution: Applying Mean Value theorem for 

integrals  

𝑓 ∶ [0, 1] → ℝ   𝑎𝑛𝑑    𝑔 ∶ [0, 1] → ℝ 

be two integrable functions and g(X) has the 

same sign on [0, 1]  

𝑇ℎ𝑒𝑛      ∫ 𝑓(𝑥) 𝑔(𝑥)𝑑𝑥 = 𝜇∫𝑔(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎

 

Take 𝑔(𝑥) =

𝑥𝑛 ; 𝑥𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑖𝑔𝑛 𝑜𝑛 [0, 1]  

𝐻𝑒𝑛𝑐𝑒   ∫ 𝑥𝑛𝑓(𝑥)𝑑𝑥 = 𝜇∫𝑥𝑛𝑑𝑥

1

0

1

0

 

⇒ ∫𝑥𝑛𝑓(𝑥) 𝑑𝑥 =
𝜇

𝑛 + 1

1

0

 

⇒ lim
𝑛→∞

∫𝑥𝑛𝑓(𝑥)𝑑𝑥 = lim
𝑛→∞

𝜇

𝑛 + 1
= 0

1

0

 

Q94. (a) Suppose the series  

∑𝒂𝒏

∞

𝒏=𝟏

 

is convergent (𝒂𝒏 ≥ 𝟎) 

Is it true that  

∑√𝒂𝒏𝒂𝒏 − 𝟏

∞

𝒏=𝟏

 𝒂𝒍𝒔𝒐 𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒕? 

(b) Is the converse of the statement (a) true? 

Solution: (a)   AM ≥ GM gives 

√𝑎𝑛𝑎𝑛−1 ≤
𝑎𝑛 + 𝑎𝑛−1

2
 

If  

∑𝑎𝑛

∞

𝑛=1

 

is convergent then  

∑
𝑎𝑛 + 𝑎𝑛−1

2

∞

𝑛=1

 

is also convergent.  

Therefore √𝑎𝑛𝑎𝑛−1 is convergent. 

(b) Take 𝑎𝑛 = 𝑛
2 (for odd n);  𝑎𝑛 = 𝑛

−102 (for 

even n). Then  
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∑𝑎𝑛

∞

𝑛=1

 

is divergent but  

∑√𝑎𝑛𝑎𝑛−1 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡

∞

𝑛=1

 

(By p−series) 

 

Q95. Evaluate the value of  

𝐥𝐢𝐦
𝒏→∞

∫𝒆𝒏𝒙𝒅𝒙

𝒂

𝟎

 

Solution:  

𝐼 =
𝑙𝑡

𝑛 → ∞
  ∫ 𝑒𝑛𝑥 𝑑𝑥 =

𝑙𝑡

𝑛 → ∞
 [
𝑒𝑛𝑥

𝑛
]
𝑎

0

𝑎

0

 

=
𝑙𝑡

𝑛 → ∞

1

𝑛
[𝑒𝑛𝑎 − 1] 

=
𝑙𝑡

𝑛 → ∞
 𝑎𝑒𝑛𝑎 

𝐼 = {
∞ , 𝑎 > 0
0 , 𝑎 ≤ 0

 

 

Q96. Let 𝒖, 𝒗 ∶ [𝒂, 𝒃] → ℝ be continuous. 

Define 𝒇: [𝒂, 𝒃]  → ℝ by 

𝒇(𝒙) = {
𝒖(𝒙)  𝒊𝒇 𝒙 𝒊𝒔 𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍

𝒗(𝒙) 𝒊𝒇 𝒙 𝒊𝒔 𝒊𝒓𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍
 

Show that f is Riemann integrable on [a, b] if 

and only if 𝒖(𝒙) = 𝒗(𝒙) 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒙 ∈ [𝒂, 𝒃] 

Solution:  Now pick any partition ‘P’. 

Construct two Riemann sums  

𝑆(𝑃, 𝑓, 𝜉) 𝑎𝑛𝑑 𝑆′(𝑃, 𝑓, 𝜉′) 

𝑆 → choose rationals as intermediate points. 

𝑆′ → choose irrationals as intermediate points. 

We know that  

lim
‖𝑃‖
𝑆 → 𝐵 𝑎𝑛𝑑 lim

‖𝑃‖
𝑆′ → 𝐵 

As ‘f’ is Riemann integrable 

⇒ lim
‖𝑃‖→0

𝑆 − 𝑆′ → 0 

⇒ lim
‖𝑃‖→0

𝑢(𝑥)(𝑏 − 𝑎) − 𝑣(𝑥)(𝑏 − 𝑎) → 0 

⇒ lim
‖𝑃‖→0

𝑢(𝑥) − 𝑣(𝑥) → 0 

⇒ 𝑢(𝑥) = 𝑣(𝑥) 

 If 𝑢(𝑥) = 𝑣(𝑥) 𝑓𝑜𝑟 𝑥 ∈ [𝑎, 𝑏] and given 

u is continuous function, f is integrable 

(To show). 

If ‘f’ is Riemann integrable then it satisfies the 

following property that for every partition ‘P’ 

and choice of intermediate points 𝜉,  

lim
‖𝑃‖→0

𝑆(𝑃, 𝑓) = 𝐵 ↝

𝑎 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟,𝑤ℎ𝑒𝑛 𝑆(𝑃, 𝑓, 𝜉) is the Riemann 

sum. 

Q97. Let f be a bounded twice differentiable 

real valued function on ℝ ∋ 𝒇′′(𝒙) ≥ 𝟎 for all 

x. Show that f is a constant.  

Solution:    𝑓′′ ≥ 0 ⇒ 𝑓 is convex 

𝑓(𝑥) ≥ 𝑓(𝑥0) + 𝑓
′(𝑥0)(𝑥 − 𝑥0) 

Case I: 𝑓′(𝑥0) > 0 

⟹ 𝑓(𝑥) → ∞ 𝑎𝑠 𝑥 → ∞ 

⟹ 𝑓(𝑥)𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  [∵ 𝑓 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑] 

Case II :  𝑓′(𝑥0) < 0 

⇒ 𝑓(𝑥) → ∞ 𝑎𝑠 𝑥 → −∞ 
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⇒ 𝑓(𝑥) 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑠 𝑓 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 

Case III: 𝑓′(𝑥0) = 0 

𝑓′(𝑥) = 0 ∀ 𝑥 ∈ ℝ 

⇒ 𝑓 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

Q98. Find conditions on a, b, c ∈ ℝ to ensure 

that the following system is consistent, and in 

that case, find the general solutions:  

𝒙 + 𝟑𝒚 − 𝟐𝒛 = 𝒂 

−𝒙− 𝟓𝒚 + 𝟑𝒛 = 𝒃 

𝟐𝒙 − 𝟖𝒚 + 𝟑𝒛 = 𝒄 

Solution:  

𝐴3×3 (
𝑥
𝑦
𝑧
) = (

𝑎
𝑏
𝑐
) 

𝐴 = (
1 3 −2
−1 −5 3
2 −8 3

)  𝑅′2 ⇋⏟  𝑅1

+ 𝑅2  (
1 3 −2
0 −2 1
2 −8 3

) 

𝑅′3 = 𝑅3 − 2𝑅1⏟           (
1 3 −2
0 −2 1
0 −14 7

) 

𝑅′3 = 𝑅3 − 7𝑅2⏟           (
1 3 −2
0 −2 1
0 0 0

) 

So, Rank (A) = 2 

�̅� = (
1 3 −2
−1 −5 3
2 −8 3

|
𝑎
𝑏
𝑐
) 𝑠𝑜𝑚𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠⏟              

(
1 3 −2 𝑎
0 −2 1 𝑎 + 𝑏
0 0 0 𝑐 − 9𝑎 − 7𝑏

) 

For rank(A) = 𝑟𝑎𝑛𝑘 (�̅�)  ⇒ 𝑐 − 9𝑎 − 7𝑏 = 0 ⇒

9𝑎 + 7𝑏 = 𝑐 is the required condition. 

For general solution: 

𝑥 + 3𝑦 − 2𝑧 = 𝑎
−2𝑦 + 𝑧 = 𝑎 + 𝑏

} 

Take 𝑧 = 𝑡,   

𝑦 = −(
𝑎 + 𝑏 − 𝑡

2
) ;  𝑥 =

5𝑎 + 3𝑏 + 𝑡

2
 

 

Q99. Prove or disprove:  

(a) ∃ a linear map 𝑻 ∶  ℝ𝟐 → ℝ𝟒 such that  

Range (T) = {(𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒) ∈ ℝ
𝟒 ∶  𝒙𝟏 + 𝒙𝟐 +

𝒙𝟑 + 𝒙𝟒 = 𝟎} 

(b) ∃ a linear map 𝑻 ∶  ℝ𝟐 → ℝ𝟑 ∋ 

Range (T) = { (𝒙𝟏, 𝒙𝟐, 𝒙𝟑)  ∈ ℝ
𝟑 ∶  𝒙𝟏 + 𝒙𝟐 +

𝒙𝟑 = 𝟎} 

Solution:   (a)  NO 

𝑇 ∶  ℝ2 → ℝ4 

dim(𝑅2) = dim(𝑅𝑎𝑛𝑔𝑒 (𝑇) + ker(𝑇)) 

⇒ 2 = 3 + 𝑥 

⇒ dim(𝑅𝑎𝑛𝑔𝑒 (𝑇)) = 3 

(b)dim(𝑅𝑎𝑛𝑔𝑒 (𝑇)) = 3 

dim(𝑅2) = 2 + dim(ker 𝑇) 

⇒ dim(ker 𝑇)  = 0, 

Yes, linear transformation is possible. 

𝑇 ∶  ℝ2 → ℝ3 

𝑇(𝑥1 , 𝑥2) → (𝑥1 , 𝑥2, −𝑥1 − 𝑥2) 
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Q100. Consider a circle which is tangent to the 

y−axis at 0. Show that the slope at (x, y) 

satisfies 

𝒅𝒚

𝒅𝒙
=
𝒚𝟐 − 𝒙𝟐

𝟐𝒙𝒚
 

Solution: General equation of such circle would 

be,       (𝑥 − 𝑟)2 + 𝑦2 = 𝑟2   ……… . (∗) 

⇒ 𝑥2 + 𝑦2 − 2𝑥𝑟 = 0………(1) 

Differentiating (*), 2(𝑥 − 𝑟) + 2𝑦𝑦′ = 0 

𝑦′ =
𝑟 − 𝑋

2𝑦
…… . (2) 

Eliminating ‘r’ from (1) & (2) gives  

𝑦′ =
𝑦2 − 𝑥2

2𝑥𝑦
 

 

 

MODEL TEST PAPERS WITH 
SOLUTIONS 

MODEL TEST PAPER 1 

 

Q1. Find positive numbers n and 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 

such that 𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏 =

 𝟏𝟎𝟑 𝒂𝒏𝒅 𝒂𝟏𝒂𝟐…𝒂𝒏 is as large as possible. 

 Sol.:- We are led to discover that in a max 

product (i) no 𝑎𝑖  will >4 (ii) no 𝑎𝑖will = 1, (iii) all 

𝑎𝑖′𝑠 can be taken to be 2 or 3 (As 4 = 2 × 2 and 

4 = 2+ 2), (iv) at most two 𝑎𝑖′𝑠 will equal 2 (As 

2 × 2 × 2 < 3 × 3 and 2+ 2+ 2 = 3+ 3). 

Each of this is easy to establish. Thus, when the 

parameter is 1000 as in the problem at hand, 

the maximum product must be 3332 × 22. 

 

Q2. Each of the numbers 𝒂𝟏, 𝒂𝟐… ,𝒂𝒏 is 1 on -

1. We have S = 𝒂𝟏𝒂𝟐𝒂𝟑𝒂𝟒 + 𝒂𝟐𝒂𝟑𝒂𝟒𝒂𝟓 +⋯+

 𝒂𝒏𝒂𝟏𝒂𝟐𝒂𝟑.Then show that 4/n. 

Sol. This is a number theoretic problem, but it 

can also be solved by invariance. If we no place 

any 𝑎𝑖  by - 𝑎𝑖, Then s. does not change mod 4 

since four cyclically adjacout terms change their 

sing. Indeed, if two of those terms are positive 

and two negative, nothing changes. It one or 

three have the same sing, S changes by  ±4. 

Finally, if all four are of the same sing, then S 

changes by ±8. 

Initially we have S = 0 which implies S = 0 mods. 

Now, step by step, we change each negative 

sing into a positive sing. This does not change S 

mod = 4. At the end, we still have S= 0 mod 4, 

but also S = 
𝑛𝑖.𝑠

4

𝑛
. 

 

Q3. Draw the graph │y│≤ │x│≤ 1. 

Sol. The graph of│y│≤ │x│≤1. will be   
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Q4. In a triangle ABC the bisectors AD, BE, CF 

meet at the point I. Show that 
𝟏

𝟒
<
𝑰𝑨

𝑨𝑫
.
𝑰𝑩

𝑩𝑬
.
𝑰𝑪

𝑪𝑭
=

𝟖

𝟐
. 

Sol. A bisector of a triangle divides the opposite 

side in the ratio of the other two sides. 

Hence, p = CD =
(𝑎𝑏)

(𝑏+𝑐)
 ,  q = DB = 

(𝑎𝑐)

(𝑏+𝑐)
. 

Thus we have  

𝐴𝐼

𝐼𝐷
= 𝑏; 𝑝

𝑏 + 𝑐

𝑎
,
𝐴𝐼

𝐴𝐷
=

𝐴𝐼

𝐴𝐼 + 𝐼𝐷
=

𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
 

Similarly, 

𝐵𝐼

𝐵𝐸
=

𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐
,
𝐶𝐼

𝐶𝐹
=

𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐
 

 

Applying the GM- AM inequality to the 

numerator we get  

f(a, b, c) = 
𝐴𝐼

𝐴𝐷
.
𝐵𝐼

𝐵𝐸
.
𝐶𝐼

𝐶𝐹
=
(𝑎+𝑏)(𝑏+𝑐)(𝑐+𝑎)

(𝑎+𝑏+𝑐)3
 ≤

8

(𝑎+𝑏+𝑐)3
(
𝑎+𝑏+𝑐

3
)
3
 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 

8

27 
.  

This is the right side of the inequality chain. To 

prove the left side, we use the triangle 

inequality  

(a+ b –c) (a +c –b) (b+ c –a ) >0         (2) 

For a more economical evaluation, we 

introduce the elementary symmetric functions. 

= a+ b +c, v = ab + bc + ca, w = abc   (3) 

Putting (3) into (2), we get −𝜇3 + 4𝜇𝑣 − 8𝑤 >

0   (4) 

On the other band 
1

4
< 𝑓(𝑎, 𝑏, 𝑐)    (5) 

Give −𝜇3 + 4𝜇𝑣 − 4𝑤 > 0    (6) 

Now (4) is obviously correct. Hence (6) is also 

correct. Here we profitably used the elementary 

symmetric functions. They are useful in cares 

when we are dealing with functions which are 

symmetric in their variables. 

Here is the simplest proof of (5) : set a = y+ z, b 

= z+ x, c = x+ y. with r = 
𝑥

𝑥+𝑦+𝑧
, 𝑠 =

𝑦

(𝑥+𝑦+𝑧)
, 𝑡 =

𝑧

(𝑥+𝑦+𝑧)
, 

We get 
𝐴𝐼

𝐼𝐷
=
1

2
(1 + 𝑟),  

𝐵𝐼

𝐵𝐸
=
1

2
(1 + 𝑠),

𝐶𝐼

𝐶𝐹
=
1

2
(1 + 𝑡), 𝑟 + 𝑠 + 𝑡 = 1,  

𝑓(𝑎, 𝑏, 𝑐) =
1

8
(1 + 𝑟)(1 + 𝑠)(1 + 𝑡) =

1

8
 

(1 + 1 + 𝑟𝑠 + 𝑠𝑡 + 𝑡𝑟 + 𝑟𝑠𝑡) >
1

4
. 

Q5. Suppose regular polygon of number of 

sides 𝒑𝟏, 𝒑𝟐, … , 𝒑𝒌 meet at a common verstex 
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so that no gaps is left, what is the relation 

between 𝒑𝟏, 𝒑𝟐, … , 𝒑𝒌? 

Sol.: The sum of the exterior angles of a convex 

polygon of any number of sides is 2𝜋. For a 

regular polygon of p sides, each extarias angle 

would be 
2𝜋

𝑝
 and each interior angle would be 

𝜋 −
2𝜋

𝑝
. 

If k polygons of 𝑝1, 𝑝2, … , 𝑝𝑘sides meet at a 

point and there is no gap, then since the sum 

of the angles at a point is 2II, it follows that 

𝜋 −
2𝜋

𝑝1
+ (𝜋 −

2𝜋

𝑝2
) +⋯+ (𝜋 −

2𝜋

𝑝𝑘
) =  2𝜋 

𝑜𝑟,
1

𝑝1
+
1

𝑝2
+⋯+

1

𝑝𝑘
=
𝑘

2
− 1 

 

Q6. Find the number of solutions in positive 

integers 𝒙𝟏 ≤ 𝟓, 𝒙𝟏 + 𝒙𝟐 ≤ 𝟓, 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 ≤

𝟓, 

𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 ≤ 𝟓, 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 +

𝒙𝟓 ≤ 𝟓. 

Make a conjecture about the number of 

solution on positive integers of 𝒙𝟏 + 𝒙𝟐 +⋯+

 𝒙𝒌 ≤ 𝒙, 𝒙 ≥ 𝒌. 

Sol. (i) 𝑥1 ≤ 5 ⟹ 𝑥1 = = 5 𝑜𝑟 𝑥1 = 4 𝑜𝑟 𝑥1 =

3 𝑜𝑟 𝑥1 = 2 𝑜𝑟 𝑥1 = 1 number of solution in 

positive integers is 

4𝑐0 + 4𝑐0 + 2𝑐0 + 1𝑐0 + 0𝑐0 = 5 = 5𝑐1 

(ii)𝑥1 + 𝑥2 ≤ 5⟹ 𝑥1 + 𝑥2 =

5, 4, 3, 2.  Number of solutions in 

positive integers is   

4𝑐1 + 3𝑐1 + 2𝑐1 + 1𝑐1+= 10 = 5𝑐2  

 

 (iii)  𝑥1 + 𝑥2 + 𝑥3 ≤ 5⟹ 𝑥1 + 𝑥2 + 𝑥3 =

5, 4, 3. Number of solutions in positive integers 

is  

4𝑐2 + 3𝑐2 + 2𝑐2 = 10 = 5𝑐3 

(i) 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 5⟹ 𝑥1 +

𝑥2 + 𝑥3 + 𝑥4 = 5, 4. Number of 

solutions in positive integers is 

4𝑐3 + 3𝑐3 = 5 = 5𝑐4. 

(ii) 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 ≤ 5⟹

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 5. 

Number of solutions in positive 

integers is 4𝑐4 = 5𝑐5. 

Total number of solutions in positive integer 

is 

5𝑐1 + 5𝑐2 + 5𝑐3 + 5𝑐4 = 2
5 − 1 = 31  

The conjecture is that number of solutions 

in positive integers of  

𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 ≤ 𝑥 𝑖𝑠 𝑛𝑐𝑘 .  

 

Q7. Let f and g be real valued functions defined 

for all real values of x and y and satisfying the 

equation  
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f(x+ y) + f(x –y )= 2 f(x) .g(y) ∀ x, y. Prove that if 

f(x) is not identically zero and if 1 f(x) │≤│∀x, 

then │g(y)│ ≤ 1∀y. 

Sol. Since │f (x) │ is bounded, it has a least 

upper bound M and since f is not identically 0. 

M > 0. 

MW, suppose that the inequality │g(y)│ ≤1 

does not hold fordly. Then these is a point 𝑦0 

such that │g(𝑦0)│ >1. 

Using the given equation and the triangle 

inequality. We get 2│f(x)││g(𝑦0)│= │f(x+ 

𝑦0)+ f(x -y)│≤ │1 f(x+ 𝑦0)│+│f(x -𝑦0)│≤ 

2M. 

Hence │f(x)│≤ 
𝑀

│𝑔(𝑦0)│
< 𝑀, contradicting the 

fact that M is least upper bound of │f(x)│. We 

conclude that │g(y)│≤  for all y. 

 

Q.8. Show that for any odd prime p, there 

exists a positive integers n such that 

𝒏,𝒏𝒏, 𝒏𝒏
𝒏
………..all leave the same remainder 

upon division by p where n does not leave a 

remainder of 0 or 1 upon division by p. 

Sol. We claim that n = 2p -1 will satisfy the given 

conditions. First 1n = 2p -1 is odd and n = 2p -1 

= -1 (mod p). So for any power of n, we have 

𝑛𝑛
𝑛
= (−1)𝑛

𝑛
= −1(𝑚𝑜𝑑 𝑝). 

∴ All the numbers 𝑛, 𝑛𝑛, 𝑛𝑛
𝑛
, …… leave a 

remainder of p -1 when divided by p. Finally, 

since p is an odd prime, 2p -1 cannot be 0 or 1. 

 

Q9. If a circle intersects the hyperbola 𝒚 =
𝟏

𝒙
  at 

four distinct points (𝒙𝒊, 𝒚𝒊), i = 1, 2, 3, 4, then 

show that 𝒙𝟏𝒙𝟐 = 𝒚𝟑𝒚𝟒. 

Sol. Equation of circle 𝑥2 + 𝑦2 = 𝑟2  

𝑁𝑜𝑤, 𝑦 =
1

𝑥
,⟹ 𝑥2 +

1

𝑥
=  𝑟2,

⟹ 𝑥4 − 𝑟2𝑥2 + 1 = 0, 

∴ Product of roots, i.e. 𝑥1𝑥2𝑥3𝑥4 = 1, 

= 𝑥1𝑥2 =
1

𝑥3
.
1

𝑥4
. =  𝑥1𝑥2 = 𝑦3𝑦4 

 

Q10. Prove the identity 𝒔𝒊𝒏𝟐𝒑𝒙 + 𝒔𝒊𝒏𝟐𝒑𝟐𝒙 +

𝒔𝒊𝒏𝟐𝒑𝟑𝒙 +⋯+ 𝒔𝒊𝒏𝟐𝒑𝒏𝒏 =
𝟏

𝟐
+

𝒏(
𝟏.𝟑.𝟓…(𝟐𝒑−𝟏)

𝟐.𝟒.𝟔…𝟐𝒑
) ;  if x = 

𝝅

𝟐𝒏
 𝒂𝒏𝒅 𝒑 < 2𝒏 (p is a 

positive integer). 

Sol. S = 𝑠𝑖𝑛2𝑝𝑥 + 𝑠𝑖𝑛2𝑝2𝑥 +⋯+ 𝑠𝑖𝑛2𝑝𝑛𝑥 

=∑𝑠𝑖𝑛2𝑝  × 𝑠𝑖𝑛2𝑝𝑙𝛼 =
1

2𝑝 − 1
(−1)𝑝.

𝑛

𝑙=1

 

= ∑(−1)𝑘2𝑝𝐶𝑘  𝑐𝑜𝑠2(𝑝 − 𝑘)𝑙𝛼 +
1

𝑖2𝑝
. 2𝑝𝐶𝑝 .

𝑝−1

𝑘=0

 

∴ S = 
(−1)𝑝

2𝑝−1
. ∑ (−1): 2𝑝𝐶𝑘  ∑ 𝑐𝑜𝑠2(𝑝 −𝑛𝑝−1
𝑘=0

𝑘)𝑙𝛼 +
𝑛

𝑝
. 2𝑝𝐶𝑝 .     

Put 2 (p –k )= 𝜆, then ∑ 2𝑐𝑜𝑠2(𝑝 −𝑛
𝑙=𝜆

𝑘)𝑙𝛼 = 𝑐𝑜𝑠𝜆 +⋯+ 𝑐𝑜𝑠𝑛𝜆 =
𝑠𝑖𝑛𝑛𝜆 cos

𝑛+1

2

sin
𝜆

2

 

…………….. (i) 

Case A: Equation. (i) = 0 (if k is of the same point 

y as p) (k ≡p) and 

Case B: Equation. (i) = -1(if k and p are of 

different point) k = (p +1). 

S=
(−1)𝑝

2𝑝−1
. ∑ (−1)𝑘2𝑝𝐶𝑘 + 𝑛.

1

22𝑝
.

𝑝−1
𝑘=0 2𝑝𝐶𝑝 =

1

22𝑝−1
× ∑ 2𝑝𝐶𝑘 +

𝑛

22𝑝
.

𝑝−1
𝑘=0 2𝑝𝐶𝑝 =

1

2
+

 𝑛 (
1.3.5….(2𝑝−1)

2.4.6….2𝑝
) . 
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MODEL TEST PAPER - 2 

Q1. In a city, there are m – roads from North to 

South and x−roads going from East to West, 

what is the length of the shortest path from 

North – East corner to the South-West corner 

and how many such shortest paths are there? 

What will be the lengths of other possible 

paths, if no part of a road is allowed to be 

travelled twice? 

Sol.  

 

Let F(m, n) be the number of paths for reaching 

from (1, 1) to (m, n) then are has to reach either 

(m -1, n) or (m, n -1) before reaching the vertex 

(m, n). This gives the functional equations.  

F(m, n) = F(m- n) + F(n, m- 1). Knowing that F(1, 

2) = 1, F(2, 1) = 1, we can deduce successively. 

The values of F(2, 1) , F(3, 1); …….. F(m, n). 

Alternatively we know that we have to cover m- 

1 step towards the west and n -1 steps towards 

the South out of a total of m+ n- 2 steps so that 

the number of different paths is 

 (𝑚+𝑛−2
𝑚−1

) =
(𝑚+𝑛−2)!

(𝑚−1)!(𝑛−1)!
 

The shortest path is of length m+ n- 2 and the 

longest path has the length mn if mn are both 

even  and is mn−1  if one or both are odd and 

the other lengths will be in AP with the first 

term as m+ n- 2 and common difference 2 and 

the last term as given above. 

 

Q2. Show that when 𝒑 > 1,
𝟏

𝟏𝒑
+

𝟏

𝟐𝒑
+⋯+

𝟏

𝒏𝒑
>

 ∫
𝟏

𝒙𝒑
𝒅𝒙 >  

𝟏

𝟐𝒑
+

𝟏

𝟑𝒑
…+

𝟏

𝒏𝒑
𝒙+𝟏

 

𝒐𝒓 𝑺𝟏 >
𝟏

𝒑 + 𝟏
{𝟏 −

𝟏

(𝒏 + 𝟏)𝒑 + 𝟏
}

>  𝑺𝒑 + (𝒏 + 𝟏)
𝒑 − 𝟏 

𝒐𝒓
𝟏

𝒑 + 𝟏
 {𝟏 −

𝟏

(𝒏 + 𝟏)𝒑 + 𝟏
} <  𝑺𝒑

<
𝟏

𝒑 + 𝟏
  (𝟏 −

𝟏

(𝒏 + 𝟏)𝒑+𝟏
)

+ 𝟏 −
𝟏

(𝒏 + 𝟏)𝒑
 

𝒔𝒉𝒐𝒘 𝒂𝒍𝒔𝒐 𝒕𝒉𝒂𝒕 𝒂𝒔 𝒏 → ∞ and p > 1. 

𝟏

𝒑+𝟏
≤ ∑

𝟏

𝒏𝒑
∞
𝟏 ≤ 𝟏 +

𝟏

𝒑+𝟏
  

Sol.  

 

This follows from the fact that the area under 

the curve 4 = 
1

𝑥𝑝
 between x= 1 and x = n+ 1 lies 

between the area of the horizontally shaded 

rectangles and the sum of the horizontally and 

vertically shaded rectangles. 

 

Q3. Given a parallelogram ABCD, can you 

construct a quadrilateral PQRS of which the 

middle points of the sides are the four vertices 
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A, B, C, D of the given parallelogram? How 

many such quadrilaterals 

Can be constructed? What are the maximum 

and minimum areas of the these 

quadrilaterals? What can you say about their 

perimeter? 

Sol. Given any quadrilateral PQRS we can easily 

show that if we join the middle points of its 

sides. The quadrilateral obtained will always be 

a parallelogram. Here we are concerned with 

the inverse problem. We are given the 

parallelogram and we want to reconstruct the 

quadrilateral from which the given 

parallelogram can be obtained by joining the 

middle points of the sides. 

 

Let ABCD be the parallelogram. Through A, we 

draw any line PAQ inclined at an arbitrary angle 

O to the side AB such that AP = AQ = l where l is 

any arbitrary length. 

Now join P to B and produce it to S, that PB = 

BS. Now join SC and QD and produce then to 

meet at R. 

In the triangle PQS, A and B are the middle 

points of the two sides (by our construction) 

and therefore AB is l/2 and is parallel to QS in 

the triangle RSQ, CD is parallel to QS and is 

equal to ½ of QS. Since CD is parallel and = AB, 

therefore C and D must be the middle points of 

QR and RS. As such PQRS is the required 

quadrilateral. However in this quadrilateral 

angle Q and length l are arbitrary and therefore 

in general we can obtain a double infinity set of 

quadrilaterals with their middle points of the 

sides at the vertices of the given parallelogram. 

In the given figure the area of the triangle PAB = 
1

4
. 

The area of the triangle PQS and the area of the 

triangle RQC is 
1

4
 the area of the triangle RQS, 

therefore the seem of the areas of the triangle 

APB and RCD is 
1

4
   the area of the quadrilateral 

PQRS. Similarly seem of the areas of triangles 

QAD and SBC = ¼ of the quadrilateral PQRS, 

therefore area of the quadrilateral outside the 

parallelogram= the area of parallelogram and 

therefore the area of the quadrilateral is double 

the area of parallelogram. 

But the area of parallelogram is fixed, therefore 

the area of quadrilateral is also fixed. Thus 

although we have an infinity of quadrilaterals for 

the same parallelogram and these will have 

different sides and angles, the areas of these 

quadrilaterals will be the same. The quadrilateral 

with the minimum perimeter will arise when the 

quadrilateral is a square. 

Q4. n! is defined only for n = 0 and for positive 

integral values of n. Define a function for all 

positive real values of x so that it reduces to n! 

when x is non-negative integer n. How many 

such functions can be defined? Can you define 

such a function which is both continuous and 

differentiable for all non-negative real values 

of x? 

Sol. We know that f(0) = 1, f(1) = 1, f(2) = 2, f(3) 

= 6, f(4) = 24, f(50 = 120, ……….. 
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Now join (0, 1)  to (1, 1) : (1, 1) to (2, 2) and (2, 

2) to (3, 6) and show by straight line segments 

and find equations of all the straight segments. 

Thus we find f(x) = 1, 0 ≤x ≤ 1 

= x, 1 ≤x ≤ 2. 

= 2(2x -3), 2 ≤ x ≤ 3. 

= 6(3x -8), 3 ≤ x ≤ 4. 

= ………… 

= n! [1+ n(x –n )], n ≤ x ≤ n+1. 

Thus the above function is defined for all non-

negative values of x and it reduce to n! when x 

is a non-negative integer n. The function is 

continuous at all positive integral values of n. 

 In the above discussion, we have fitted straight 

line segments. If we fit parabolic segments of 

the second degree, we can get a function which 

is both continuous and differentiable 

everywhere, but its second order derivative will 

not exist for positive integral values of x. If we 

want there to exist, we would have to fit 

parabolic segments of the third degree. 

 

 Q5. A circular disc rolls inside a circle of 

double its radius. A hole is made in the disc 

near the circumstance. A pencil is passed 

through the hole. What will be the curve 

traced by this pencil as the disc rolls. 

Sol. Let the rolling disc. Be initially at the lowest 

position and let P the point market on the disc. 

Let Q be other point on the disc, then as the 

disc rolls every point on the circumference of 

the disc between A and Q cares in contact in 

succession with points on the ring between A 

and Q arc AQ = arc AQ so that ∠𝐴𝑂𝑄 = 𝜃 = arc 

AQ’ /a = arc.  

 

AQ/a and as the disc continuous, to roll further 

the point P will come into contact with point P’ 

where AOP = d AO’P’ = 2d and OP and P’ lie on a 

straight line. Let P” be the new position of P 

then O’P” P’ is a straight line. This shows that 

locus of P is the line OP’. As the disc rolls the 

marked point moves from P to P’ along the 

diameter through O and P and this point moves 

from P’ to P, then from P to O, then from O to B 

and finally from B to the initial position of the 

marked point. Thus the locus of any point on 

the rim of the disc will be the diameter of the 

vig passing through the initial position of the 

marked point. 

Q6. a, b, c are any three digits from 0 to 9. 

Show that  
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1. abcabc is divisible by 7, 11, 13. 

2.  If abc ≤ 500 then abc (twice abc) abc is 

divisible by (𝟕 × 𝟏𝟏 × 𝟏𝟑)𝟐 

3. If abc ≤ 333 then abc (three times abc) 

(three times abc) abc is divisible by 

(𝟕 × 𝟏𝟏 × 𝟏𝟑)𝟑   

 What is the final quotient in each care? 

Sol. 7 × 11 × 13 = 1001 ⟹ (𝑎𝑏𝑐) ×

(1001) = 𝑎𝑏𝑐𝑎𝑏𝑐 

⟹ (𝑎𝑏𝑐) × (1001)2 = 𝑎𝑏𝑐 (𝑡𝑤𝑖𝑐𝑒 𝑎𝑏𝑐)𝑎𝑏𝑐  

⟹ (𝑎𝑏𝑐) × (1001)3 = 𝑎𝑏𝑐 (𝑡ℎ𝑟𝑒𝑒 𝑎𝑏𝑐)  

(𝑡ℎ𝑟𝑒𝑒 𝑎𝑏𝑐)𝑎𝑏𝑐.  

 

Q7. Let 𝛼be a fixed real number such that 0 < 𝛼 

< 𝜋 and F(𝜃) = 
𝐬𝐢𝐧𝜽+𝐬𝐢𝐧(𝜽+𝜶)

𝐜𝐨𝐬𝜽−𝐜𝐨𝐬(𝜽+𝜶)
 𝒘𝒉𝒆𝒓𝒆 𝟎 ≤  𝜽 ≤

𝝅 − 𝜶. Show that F is a constant. 

Sol. Suppose that F is a const. then F(𝜃) + F(O) ∀ 

𝜃, 0 ≤  𝜃 ≤ 𝜋 − 𝛼. That is 

sin𝜃+sin(𝜃+𝛼)

cos𝜃−cos(𝜃+𝛼)
=

𝑠𝑖𝑛𝛼

1−𝑐𝑜𝑠𝛼
 ……… (i),  

[sin𝜃 + sin(𝜃 + 𝛼)][1 − 𝑐𝑜𝑠𝛼] =  𝑠𝑖𝑛𝛼  

cos 𝜃 − cos(𝜃 + 𝛼) …………… (ii) 

sin𝜃 + sin(𝜃 + 𝛼) − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼 − sin(𝜃 +

𝛼) cos𝛼  

= 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝛼cos (𝜃 + 𝛼) ………… (iii),  

sin𝜃 + sin(𝜃 + 𝛼) − [𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼 +

𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝜃] − [sin(𝜃 + 𝛼) cos𝛼 − 𝑠𝑖𝑛𝛼𝑐𝑜𝑠(𝜃 +

𝛼)] =  𝜃 ………….. (iv) 

sin𝜃 + sin(𝜃 + 𝛼) − sin(𝜃 + 𝛼) − sin(𝜃 +

𝛼 − 𝛼) = 0…………. (v) 

The last equation is an identity. For the proof, 

we must reverse these steps. The only 

questionable step is from (e) to 1: the proof is 

valid only if we do not divide by zero in going 

from (2) to (1). Then do yourself. 

Q8. If 𝑭𝟏 denote the term in the Fibonacci 

sequence, then show that 𝑭𝒏+𝟏
𝟐 + 𝑭𝒏

𝟐 =

 𝑭𝟐𝒏+𝟏. 

Sol. The result holds for n= 1. So suppose the 

result holds for integer k, then 

 𝐹𝑘+2
2 + 𝐹𝑘+1

2 = (𝐹𝑘+1 + 𝐹𝑘)
2 + 𝐹𝑘+1

2 =

 𝐹𝑘+1
2 + 2𝐹𝑘+1𝐹𝑘 + 𝐹𝑘

2 + 𝐹𝑘+1
2 = (𝐹𝑘+1

2 +

𝐹𝑘
2) + (2𝐹𝑘+1𝐹𝑘 + 𝐹𝑘+1

2) = 𝐹2𝑘+1 +

 (2𝐹𝑘+1𝐹𝑘 + 𝐹𝑘+1
2), the last step by the 

inductive assumption.  

We should be done it we could show 

2𝐹𝑘+1𝐹𝑘 + 𝐹𝑘+1
2 = 𝐹2𝑘+1, for we could then 

continue the previous argument and then you 

do yourself. 

Q9. Show that ∫ 𝐥𝐨𝐠𝒙 𝐥𝐨𝐠(𝟏 − 𝒙)𝒅𝒙 = 𝟐 −
𝟏

𝟎

𝝅𝟐

𝟔
. 

Sol. 1 = ∫ log 𝑥 (𝑥 +
𝑥2

2
+
𝑥3

3
+⋯) 

1

0
𝑑𝑥 

= ∫ log 𝑥 
1

0

∑−𝑥𝑘 + 𝑑𝑥

∞

𝑘=1

= −∑
1

𝑘
∫ 𝑥𝑘  
1

0

𝑙𝑜𝑔𝑥𝑑𝑥

∞

𝑘=1

  

𝑁𝑜𝑤 ∫ 𝑥𝑘 
1

0

𝑑𝑥 = (
1

𝑘 + 1
) 

Differentiating centre the sign of integration 

with respect to k, we get ∫ 𝑥2 
1

0
𝑙𝑜𝑔𝑥𝑑𝑥 =

 −
1

(𝑘+1)2
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𝐼 =  ∑  

∞

𝑘=1

1

𝑘(𝑘 + 1)2
=∑  

∞

𝑘=1

 
𝑘 + 1 − 𝑘

𝑘(𝑘 + 1)2
 

=∑  

∞

𝑘=1

  (
1

𝑘(𝑘 + 1)
−

1

(𝑘 + 1)2
) 

= ∑  

∞

𝑘=1

(
1

𝑘
−

1

𝑘 + 1
) −∑

1

(𝑘 + 1)2
 

∞

𝑘=1

 

= 1 − (
𝜋2

6
− 1) = 2 −

𝜋2

6
.   

 

Q10. Let r and s be nonzero integers. Prove 

that (𝒓𝟐 − 𝒔𝟐)𝒙𝟐 − 𝟒𝒓𝒔𝒙𝒚 − (𝒓𝟐 − 𝒔𝟐)𝒚𝟐  has 

no solution in integers x, y. 

Sol. The L.H.s. can be factorized so that{(𝑟 −

𝑠)𝑥 − (𝑟 + 𝑠)𝑦} {(𝑟 + 𝑠)𝑥 − (𝑟 − 𝑠)𝑦} = 1. 

Both factors are integers. As such the only 

possibility is that (r –s )x – (r +s )y- k = 0. (r+ s)x + 

(r –s )y –k = 0,  

Where k is either 1 or -1, so that 
𝑥

𝑘𝑟
=

𝑦

−𝑘𝑠
=

1

𝑟2+𝑠2
. 

𝑥 =
𝑘𝑟

𝑟2 + 𝑠2
, 𝑦 =

𝑘𝑠

𝑟2 + 𝑠2
, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑥2 + 𝑦2

=
𝑘2

𝑟2 + 𝑠2
,  

𝑜𝑟 (𝑥2 + 𝑦2)(𝑟2 + 𝑠2) = 𝑘2 = 1,= 1 𝑟2 + 𝑠2

= 1,⟹ 𝑟 = 1, 𝑠 = 0, 𝑜𝑟 𝑟

= 0, 𝑠 = 1. 

But r and s are non-zero integers. 

 

MODEL TEST PAPER – 3 

Q1. In a round robin tournament with n- 

players 𝒑𝟏, 𝒑𝟐, … . , 𝒑𝒏 where n > 1, each player 

plays are game with each of other players and 

rules are such that no ties can occur. If 

𝑾𝒏 𝒂𝒏𝒅 𝑳𝒏 be the number of games won and 

last respectively by player 𝒑𝒏,Show that  

∑ 𝑾𝒓
𝟐𝒏

𝒓=𝟏 = ∑ 𝑳𝒓
𝟐𝒏

𝒓=𝟏 . 

Sol:  

Let ∑ 𝑊𝑟
2 = ∑ 𝐿𝑟

2 𝑡ℎ𝑒𝑛 ∑ (𝑊𝑟
2 −𝑛

𝑟=1
𝑛
𝑟=1

𝑛
𝑟=1

𝐿𝑟
2) = 0.  

 ∑ (𝑊𝑟 − 𝐿𝑟)(𝑊𝑟 + 𝐿𝑟)
𝑛
𝑟=1 = 0 𝑏𝑢𝑡 𝑊𝑟 + 𝐿𝑟 =

𝑛 − 1for each. r, so (𝑛 − 1)∑ (𝑊𝑟 − 𝐿𝑟)
𝑛
𝑟=1 =

0,  

⟹∑(𝑊𝑟 − 𝐿𝑟)

𝑛

𝑟=1

= 0,⟹∑𝑊𝑟

𝑛

𝑟=1

=∑𝐿𝑟

𝑛

𝑟=1

. 

This last equation is true, since the total 

number of games won by the players has to 

equal the total number of games lost. 

Q2. If x, y, z, are positive integers, show that 

(x, y) (x, z) (y, z) [𝒙, 𝒚, 𝒛]𝟐 =

[𝒙, 𝒚][𝒙, 𝒛][𝒚, 𝒛](𝒙, 𝒚, 𝒛)𝟐, where (a, …, g) and 

[a, …, g] denote gcd (a, …, g) and lcm (a, …, g) 

respectively. 

Sol. Because of unique factorization, if suffices 

to show that for each prime p, the power of p 

on the left side (in its prime factorization) is 

equal to the power of n on the right side. So let 

x = 𝑝𝑎𝑟, 𝑦 =  𝑝𝑏𝑠 𝑎𝑛𝑑 𝑧 =  𝑝𝑐𝑡 , for integers r, 

s, t each relatively prime to p. We may assume 

(as of symmetry and by relabeling if necessary 

that) a ≤ b≤ c. Then the power of p in the 

unique factorization of [𝑥, 𝑦, 𝑧]2 is 2c; the 

powers of p in (x, y), (x, z) and (y, z) are a, a and 

b respectively. Hence the power of p on the left 

side is 2a + b + 2c. In the same manner, the 

power of p on the R. S. is b + c + c + 2a = 2a+ b + 

2c. 
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Q3. Suppose f(x) = a, 𝐬𝐢𝐧𝒙 + 𝒂𝟐 𝐬𝐢𝐧𝟐𝒙 +⋯+

𝒂𝒏 𝐬𝐢𝐧𝒏𝒙  𝒘𝒉𝒆𝒓𝒆 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 are real 

numbers and n is a positive integer. If (𝒙)𝟏 ≤

𝐬𝐢𝐧𝒙 ∀ 𝒙, show that 𝟏𝒂,+𝟐𝒂𝟐 +⋯+ 𝒏𝒂𝒏𝟏 ≤

𝟏. 

Sol. Let we try inducting on the number of 

terms in f(x). When n= 1, f(x) = 

𝑎1 sin 𝑥  𝑎𝑛𝑑 𝑠𝑖𝑛𝑐𝑒 1 𝑓(𝑥)1 ≤∣ sin 𝑥 ∣

, 𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 ∣ 𝑎1 ∣=∣  𝑎1 sin (
𝜋

2
) ∣= ∣

𝑓 (
𝜋

2
) ∣≤ ∣ sin (

𝜋

2
) ∣= 1. 

Suppose the result holds for k and consider the 

functions f(x) = 𝑎1 sin 𝑥 + 𝑎2 sin2𝑥 +⋯+

𝑎𝑘 sin 𝑘2 + 𝑎𝑘 + 1
𝑠𝑖𝑛(𝑘 + 1)𝑥 for some choice 

of real numbers 𝑎1, 𝑎2, … , 𝑎𝑘+1 and suppose 

that if∣ 𝑓(𝑥) ∣≤∣ sin 𝑥 ∣  ∀ 𝑥. Since sin(𝑘 +

1) 𝑥 = sin𝑘𝑥  𝑐𝑜𝑠𝑥 + sin𝑥 cos 𝑥  𝑘𝑥,  we can 

coride 𝑓(𝑥) = (𝑎1 + 𝑎𝑘 + 1𝛼 sin 𝑘𝑥). We have 

now recoritten 𝑓(𝑎) as a sum of k terms, more 

or less of type from which we can apply the 

induction assumption. Then you do yourself. 

Q4. Find all functions which are everywhere 

differentiable and satisfy f(x) + f(y) = 

𝒇 (
𝒙+𝒚

𝟏−𝒙𝒚
) ∀ 𝒙, 𝒚  for which xy ≠ 1. 

 Sol. Differentiating partially with respect to x, y 

f’(x) =  𝑓′ (
𝑥+𝑦

1−𝑥𝑦
)

1+𝑦2

(1−𝑥𝑦)2
 

𝑓′(𝑦) = 𝑓
′(
𝑥+𝑦

1−𝑥𝑦
) 1−𝑦2

(1−𝑥𝑦)2
   

Dividing(1 + 𝑥2)𝑓′(𝑥) = (1 + 𝑦2)𝑓′(𝑦). 

  Since L.H.S. is a function of x only and R.H.S. is 

a function of y only, each must be a constant, so 

that  

𝑓(𝑥) =
𝐶

1 + 𝑥2
, 𝑓(𝑥) =  𝐶 tan−1 𝑥 + 𝐷. 

𝐴𝑙𝑠𝑜 𝑓(𝑥) +  𝑓(0) =  𝑓(𝑥) ⇒ 𝑓(0) = 0 ⇒ 𝐷

= 0. 

𝑓(𝑥) = 𝑐 tan−1 𝑥. 

Q5. Find two non-congruent similar triangles 

with sides of integral length having the length 

of two sides of one triangle equal to two sides 

of the other triangle. 

Sol. Let a, b, c ; b, c, d, be the lengths of the 

sides of the two triangles and let a < b. Since the 

triangles are similar. 

𝑎

𝑏
=
𝑏

𝑐
=
𝑐

𝑑
, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑐 =

𝑏2

𝑐
, 𝑑 =

𝑐2

𝑏
 but c < a+ b 

⇒ 
𝑏2

𝑎
< 𝑏 + 𝑎 ⇒

𝑏2

𝑎2
−
𝑏

𝑎
− 1 < 0. 

⇒ (
𝑏

𝑎
− 𝑟) (

𝑏

𝑎
+
1

𝑟
) < 0 𝑤ℎ𝑒𝑟𝑒 𝑟 =

𝑈𝑠+1

2
.  

= 1.618… . .⇒
𝑏

𝑎
< 𝑟.  

As such we can take 
𝑏

𝑎
 any rational number 

between 1 and 1.6. The suppose we take 
𝑏

𝑎
=
4

3
. 

∴ 𝑎 = 3𝑘, 𝑏 = 4𝑘, 𝑐 =
16𝑘

𝟑
, 𝑑 =

64𝑘

9
 

If we choose k = 9 

a = 27, b = 36, c = 48, d = 64. 

Length of all the sides are integers and  

𝑎

𝑏
=
𝑏

𝑐
=
𝑐

𝑑
 is satisfied. 

Q6. Let a, b, c be three real numbers such that 

a < b < c f(x) is continuous in [a, c] and 

differentiable in (a, c). Also f’(x) is strictly 

increasing in (a, c). Prove that (c - b) f(a) + (b - 

a) f(c) > (c - a) f (b). 

Sol. : By mean value theorem 
𝑓(𝑏)− 𝑓(𝑎)

𝒃−𝒂
=

𝑓′(𝑢), 𝑎 < 𝑢 < 𝑏  
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𝑓(𝑐)−𝑓(𝑏)

𝑐−𝑏
= 𝑓′(𝑣), 𝑏 < 𝑣 < 𝑐  

Since f’(x) is strictly increasing f’(u) < f’(v) 

𝑓(𝑏)− 𝑓(𝑎)

𝑏−𝑎
<
𝑓(𝑐)−𝑓(𝑏)

𝑐−𝑏
  

𝑜𝑟 𝑓(𝑏)(𝑐 − 𝑏 + 𝑏 − 𝑎) − 𝑓(𝑎)(𝑐 − 𝑏) −

𝑓(𝑐)(𝑏 − 𝑎) < 0.  

𝑜𝑟, (𝑐 − 𝑏)𝑓(𝑎) + (𝑎 − 𝑐)𝑓(𝑏) + (𝑏 −

𝑎)𝑓(𝑐) > 0.  

𝑜𝑟, (𝑏 − 𝑐)𝑓(𝑎) + (𝑐 − 𝑎)𝑓(𝑏) + (𝑎 −

𝑏)𝑓(𝑐) < 0.  

 

Q7. Evaluate bin 
𝟏

𝒏
∑ ∑

𝟏

𝒋𝟐+𝒌𝟐
𝒏
𝒋=𝟏

𝒏
𝒌=𝟏 . 

Sol.  

 

I= lim
𝑛→∞

∑ ∑
𝑗

𝑛
𝑗2

𝑛2
+
𝑘2

𝑛2

𝑛
𝑗=1

𝑛
𝑘=1 .

1

𝑛2
 = ∫∫

𝑥 𝑑𝑥 𝑑𝑦

𝑥2+𝑦2
=

 ∫ ∫
𝑥 𝑑𝑥 𝑑𝑦

𝑥2+𝑦2
+ 

𝐷1

𝐷1+𝐷2 ∫ ∫
𝑥 𝑑𝑥 𝑑𝑦

𝑥2+𝑦2
 

𝐷2
 

                 =  ∫ cos𝜙  𝑑𝜙

𝜋
4

0

∫ 𝑑𝑟
𝑠𝑒𝑐𝜙

+∫ cos𝜙  𝑑𝜙

𝜋
4

∫ 𝑑𝑟
𝑐𝑜𝑠𝑒𝑐𝜙

 

=
𝜋

4
+∫ cot𝜙  𝑑𝜙

𝜋
2

0

=
𝜋

4
+ [𝑙𝑜𝑔𝜋/4𝑠𝑖𝑛𝜙]

𝜋
2
𝜋
4

 

=
𝜋

4
− log

1

√2
=
𝜋

4
+
1

2
log 2. 

Q8. Find the number of points in the cartesian 

plane with integral co- ordinate satisfying the 

inequalities ∣x∣ ≤ k, ∣y∣ ≤ k, ∣x - y∣ ≤ k. 

Sol. : We must –k ≤ x ≤ k, -k ≤ y ≤ k, -k ≤ y – 

x ≤ k. 

The points are bounded by the straight lines 

x = -k , x = k 

y = -k , y = k 

y = x – k, y = x + k 

 

 

When 

x =  −k,we get y =  −k,−(k −  1), … . 0 k +  1 

x =  −(x − 1)y =  −k,……1, k + 2
……………………………………………… . .

} 

𝑥 = −1,   𝑦 =  −𝑘,…𝑘 − 1, 𝑘 + 𝑘
𝑥 = 0,   𝑦 =  −𝑘,… 𝑘, 𝑘 + 𝑘 + 1

𝑥 = 1, 𝑦 = −(𝑘 + 1),… . , 𝑘, 𝑘 + 𝑘

𝑥 = 2,   𝑦 = −(𝑘 − 2),… . , 𝑘, 𝑘 + 𝑘 − 1
……………………………………… . .
𝑥 = 𝑘        𝑦 = 0…………𝑘, 𝑘 + 1 }

 
 

 
 

  

Total number of points 

= 2 [(k +1) + …+(k +k)] + 2k +1 

= k (3k +1)+ 2k + 1 

= 3𝑘2 + 3𝑘 + 1 

= (𝑘 + 1)3 − 𝑘3.  
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Q9. Let 𝒂𝒙𝟐 + 𝒃𝒙𝒚 + 𝒄𝒚𝟐 𝒂𝒏𝒅 𝑨𝒙𝟐 +𝑩𝒙𝒚 +

𝑪𝒚𝟐 be two positive definite forms which are 

not proportional. Prove the from  

(𝒂𝑩 − 𝒃𝑨)𝒙𝟐 + 𝟐(𝒂𝑪 − 𝒄𝑨)𝒙𝒚 + (𝒃𝑪 −

𝒄𝑩)𝒚𝟐 is indefinite. 

Sol. : Since the two forms are positive definite. 

a > 0 : c > 0       𝑏2 − 4𝑎𝑐 < 0 

A > 0 : C > 0     𝐵2 −  4𝑎𝑐 < 0 

To show that the new form is indefinite, we 

have to show that its discriminant D > 0. Now 

D = 4(𝑎𝐶 − 𝑐𝐴)2 − 4(𝑎𝐵 − 𝑏𝐴)(𝑏𝐶 − 𝑐𝐵) 

𝑎2𝐷 = {2𝑎 (𝑎𝐶 − 𝑐𝐴) − 𝑏(𝑎𝐵 − 𝑏𝐴)}2 −

(𝑏2 − 4𝑎𝑐)(𝑎𝐵 − 𝑏𝐴)2  

And D would be > 0 unless 

𝑎𝐵 − 𝑏𝐴 = 0, 𝑎𝐶 − 𝑐𝐴 = 0  

i.e. unless 
𝑎

𝐴
=
𝑏

𝐵
=
𝑐

𝐶
 

Which is given to be not true. As such D > 0 and 

the given form is indefinite. 

 

Q10. Prove that there is no equilateral triangle 

all of where vertices have integral co-

ordinates. 

Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) be the vertices of the 

triangle and let a be the length of the side of 

the equilateral triangle. 

The area of the triangle = 
1

2
∣

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

∣ =

𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

By another method, area = 
1

2
𝑎2 sin60° =

√3

4
𝑎2 =

√3

4
[(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)] =
√3

4
×

𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  

And this is not an integer, since √3 is irrational. 

The contradiction in the result obtained by the 

two methods proves the required result. 

 

MODEL TEST PAPER - 4 

Q1. Solve 𝒙𝒏+𝟏 =
𝟏

𝟐
(𝒙𝒏 +

𝟏

𝒙𝒏
) , 𝒙𝟎 𝒂 𝒈𝒊𝒗𝒆𝒏 𝒄𝒐𝒎𝒑𝒍𝒆𝒙 𝒏𝒖𝒎𝒃𝒆𝒓  

𝒂𝒏𝒅 𝒇𝒊𝒏𝒅 𝐥𝐢𝐦
𝒏→∞

𝒙𝒏. 

Sol. : Substituting 𝑥𝑛 =
1+𝑧𝑛

1−𝑧𝑛
, 𝑧𝑛 =

𝑥𝑛−1

𝑥𝑛+1
 

We get, 
1+ 𝑧𝑛+1

1−𝑧𝑛+1
=
1

2
(
1−𝑧𝑛

1−𝑧𝑛
+
1−𝑧𝑛

1+𝑧𝑛
) =

1+𝑧𝑛
2

1−𝑧𝑛
2 

𝑧𝑛+1 = 𝑧𝑛
2 = 𝑧𝑛−1

4 = ⋯ = 𝑧0
2𝑛+1 ∣ 𝑧𝑛 + 1 ∣

= ∣ 𝑧0 ∣ 2
𝑛+1  

𝑜𝑟, (
𝑥𝑛−1
𝑥𝑛+1

) =  (
𝑥0+1
𝑥0+1

)
24

 

𝐴𝑙𝑠𝑜 ∣ 𝑧𝑛 ∣= ∣ 𝑧0 ∣
24 

𝐴𝑠 𝑛 → ∞, 𝑖𝑓 ∣ 𝑧0 ∣ > 1, ∣ 𝑧𝑛 ∣→ ∞ 

𝑖𝑓 ∣ 𝑧0 ∣< 1, ∣ 𝑧𝑛 ∣→ 0.  

𝐼𝑓 ∣ 𝑧0 ∣= 1, 𝑧0 =                                 𝑇ℎ𝑒𝑛 𝑧𝑛→1 

if k is of the form  

𝑎

2𝑏
, 𝑎, 𝑏 are integers and 𝑧𝑛 diverges if k is not of 

this form Thus if Re 𝑥0 > 0, 𝑡ℎ𝑒𝑛 𝑥𝑛 → 1 

Re 𝑥0 < 0, 𝑡ℎ𝑒𝑛 𝑥𝑛 → −1 

Re 𝑥0 = 0, 𝑡ℎ𝑒𝑛 𝑥𝑛𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠. 
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Q2. If 𝑪𝟎, 𝑪𝟏, 𝑪𝟐, … . . , 𝑪𝒏are real numbers 

satisfying 𝑪𝟎 + 𝑪𝟏 +⋯+𝑪𝒏 = 𝟎, Show that 

𝑪𝟎 + 𝟐𝒄, 𝒙 +⋯+ (𝒏 + 𝟏)𝑪𝒏𝒙
𝒏 = 𝟎 has at 

least one real roof. 

Sol. : If f(x)= 𝐶0 + 2𝑐, 𝑥 + ⋯+ (𝑛 + 1)𝐶𝑛𝑥
𝑛 

∫ 𝑓(𝑥)𝑑𝑥
1

0

= 𝐶0 + 𝐶1 + … . . + 𝐶𝑛 = 0 

By the mean value theorem of integral calculus, 

there exist on (0 <f < 1) such that f(f) = 0. 

So that f(x) = 0 has at least one real roof. 

 

Q3. Prove that the product of four consecutive 

positive integers cannot be a perfect square on 

a perfect cube. 

Sol. :Let the form integers be n – 1, n, n + 1, n + 

2 so that P = (𝑛 − 1)𝑛(𝑛 + 1)(𝑛 + 2) =

(𝑛2 + 𝑛 − 2)(𝑛2 + 𝑛) =  (𝑛2 + 𝑛 − 1)2 − 1. If 

P is a perfect square, then P and (𝑛2 + 𝑛 − 1) 

would be two consecutive integers., both of 

which one square, which is impossible. As such 

P cannot be a perfect square. 

 Now when n = 1, p = 0 and when n = 2, p = 24 

which are not perfect cubes. So we take n > 2. 

Again out of two integers n and n+1, only one 

can be odd cubes, case (i) Let n be odd, then n-

1, n +1, are even and so n is relatively prime to 

both n- 1 and n +1 . 

 Again it is also relatively prime to n +2. Since 

2m + 1 and 2m +3 cannot have a common 

factor because if they had it would divide their 

difference viz. 2. As such it is relatively prime to 

(n- 1) (n +1) (n +2). 

Now, P = [n] [(n- 1) (n+ 1) (n+ 2)] since the two 

factors in squares brackets are relatively prime. 

P is a perfect cube if (n- 1) (n+ 1) (n+ 2)= 𝑛3 +

2𝑥 − 𝑥 − 2 is a perfect cube, but if n > 2. 

𝑛3 < 𝑛3 + 2𝑛(𝑛 − 2) + 3𝑛 − 2  

(𝑛 + 1)3 > 𝑛3 + 2𝑛2 − 𝑛 − 2, so that we have 

a cube lying between two consecutive cubes 

which is not possible. As such when n is odd. P 

cannot be a perfect cube. 

Care (ii) let n be even so that (n+ 1) and (n- 1) 

are odd and n+ 2 is a consecutive even term so 

that if p is a perfect cube then so will be n (n -1) 

(n+ 2)= 𝑛3 + 𝑛2 and if n > 2 , 𝑛3 < 𝑛3 + 𝑛2 +

2𝑛 < (𝑛 + 1)3 

So that if p is a perfect cube., we shall again 

have a cube numbers lying between two 

consecutive cubes which is again impossible. 

Thus p cannot be a perfect cube whether n is 

even on odd. 

 

Q4. Prove that if 𝒁𝟏, 𝒁𝟐 represent two vertices 

of an equilateral triangle in the Argand plane, 

then the third vertex is given by −𝒘𝒛𝟏 −𝒘
𝟐𝒛𝟐 

where w is a cube root of unity. 

Sol. : If 𝑧1, 𝑧2, 𝑧3 are the vertices of the 

equilateral triangle, then since the sides are of 

equal length. 

∣ 𝑧3 − 𝑧1 ∣= ∣ 𝑧2 − 𝑧1 ∣= ∣ 𝑧3 − 𝑧2
∣ 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑖𝑓 𝑧2 − 𝑧1 = 𝑎𝑒

𝑖𝜃 

𝑧3 − 𝑧1 = 𝑎𝑒
𝑖𝜃±

𝜋

3 .  

So that 
𝑧3−𝑧1

𝑧3−𝑧1
= 𝑒±𝑖

𝜋

3 = 𝑘. Where k is a root of 

the equation 𝑘2 − 𝑘1 (2 cos
𝜋

3
) + 1 =

0 𝑜𝑟, 𝑘2 − 𝑘 + 1 = 0  
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So that k = -w where w is a imaginary cube root 

of unity and 1+𝜔+ 𝜔2 = 0 

𝑧3 = 𝑘𝑧2 + 𝑧1(1 − 𝑘) = 𝜔𝑧2 + 𝑧1(1 + 𝜔)

=  −𝜔𝑧2 −𝜔
2𝑧1 

Since w, 𝑤2 are two imaginary cube roots of 

unity, the third vertex is either−𝜔𝑧2 −

𝜔2𝑧, 𝑜𝑟 − 𝜔2𝑧2 −𝜔𝑧1. 

 

Q5. Find all pairs (m, n) of integer larger then > 

1 such that ∣ 𝒑𝒎 − 𝒒𝒏 ∣= 𝟏, where p and q are 

primes. 

Sol. : If is immediate that not both p and q are 

odd, for this would imply that 𝑝𝑚 − 𝑞𝑛 is even. 

So let that q =2. We will show, by using only 

algebraic identities of this section, that the only 

solution is that formal. Suppose m and n are 

larger than 1 and that ∣𝑝𝑚 − 2𝑛∣= 1. It cannot 

be the case that m and n are both even for if 

m = 2r and n = 2s, then 

1 = ∣𝑝𝑚 − 2𝑛∣= ∣𝑝2𝑟 − 22𝑠∣ = ∣𝑝𝑟 − 2𝑠∣∣𝑝𝑟 +

2𝑠∣ and this is impossible (∵𝑝𝑟 + 2𝑠> 1). 

Then you do yourself. 

 

Q6. Evaluate ∑ 𝟑𝒏−𝟏∞
𝒏=𝟏  𝒔𝒊𝒏𝟑 (

𝒙

𝟑𝒏
)  

Sol. : Using the moivre’s theorem, 

sin3𝜃 =  𝐼𝑚(𝑒
3𝑖𝜃) = 𝐼𝑚 ((𝑒

𝑖𝜃)
3
) =

 𝐼𝑚[𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃]
3 = 𝐼𝑚[𝑐𝑜𝑠

3𝜃 +

3𝑐𝑜𝑠2𝜃𝑖𝑠𝑖𝑛𝜃 + 3𝑐𝑜𝑠𝜃𝑖2𝑠𝑖𝑛2𝜃 + 𝑖3𝑠𝑖𝑛3𝜃]  

= 3𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛3𝜃 = 3[(1 −

𝑠𝑖𝑛2𝜃)𝑠𝑖𝑛𝜃] − 𝑠𝑖𝑛3𝜃  

= 3𝑠𝑖𝑛𝜃 − 4𝑠𝑖𝑛3𝜃  . It follows that 𝑠𝑖𝑛3𝜃 =
3

4
𝑠𝑖𝑛𝜃 −

1

4
𝑠𝑖𝑛3𝜃. Thus, 𝑆𝑘 =

 ∑ 3𝑛−1𝑘
𝑛=1 . 𝑠𝑖𝑛3 (

𝑥

3𝑛
) =

 ∑ 3𝑛−1𝑘
𝑛=1 [

3

4
sin (

𝑥

3𝑛
) −

1

4
sin (

𝑥

3𝑛−1
)]. Then do 

yourself. 

 

Q7. Find all positive continuous functions f(x) 

defined in [0, 1] for which ∫ 𝒇(𝒙)𝒅𝒆
𝟏

𝟎
=

𝟏, ∫ 𝒙 𝒇(𝒙)𝒅𝒙
𝟏

𝟎
= 𝒂, ∫ 𝒙𝟐𝒇(𝒙)𝒅𝒙 = 

𝟏

𝟎
𝒂𝟐. 

Sol. : Multiply these equations by 

𝑎2, −2𝑎 𝑎𝑛𝑑 1 respectively and odd we get . 

∫ (𝑎 − 𝑥)2𝑓(𝑥)
𝑎

0
𝑑𝑥 = 0 and this cannot be 

satisfied if f(x) is positive and continuous in [0, 

1].  

As such there is no positive function satisfying 

the conditions of the problem. 

Q8. Find all twice differentiable real valued 

functions with domain the set of all real 

numbers and satisfying the functional 

equation 𝒇𝟐(𝒙) − 𝒇𝟐(𝒚) = 𝒇(𝒙 + 𝒚)𝒇(𝒙 − 𝒚). 

Sol. : Putting x = 0, y = 0 we  get f(0) = 0. 

Differentiating the given equation first partially 

with respect to x and then with respect to y, we 

get 

2𝑓(𝑥)𝑓′(𝑥) = 𝑓′(𝑥 + 𝑦)𝑓(𝑥 − 𝑦) + 𝑓(𝑥 +

𝑦)𝑓′(𝑥 − 𝑦)  

0 = 𝑓′′(𝑥 + 𝑦)𝑓(𝑥 − 𝑦) − 𝑓′(𝑥 + 𝑦)𝑓′(𝑥 −

𝑦) + 𝑓′(𝑥 + 𝑦)𝑓′(𝑥 − 𝑦) − 𝑓(𝑥 − 𝑦)𝑓′′(𝑥 − 𝑦)  

= 𝑓′′(𝑥 + 𝑦)𝑓(𝑥 − 𝑦) − 𝑓′′(𝑥 − 𝑦)𝑓(𝑥 + 𝑦).  

𝐼𝑓 𝑥 + 𝑦 =  𝜇, 𝑥 − 𝑦 = 𝑣 ∶ 𝑡ℎ𝑖𝑠 𝑔𝑖𝑣𝑒𝑛   

𝑓′′(𝜇)𝑓(𝑣) − 𝑓′′(𝑣)𝑓(𝜇) = 0  

𝑜𝑟, 𝑓′′(𝜇)/𝑓(𝜇) =
𝑓′′(𝜇)

𝑓(𝑣)
𝑠𝑜 𝑡ℎ𝑎𝑡

𝑓′′(𝜇)

𝑓(𝜇)
= 𝑐.  
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Which gives a using f(0) = 0 

f(𝜇) = A sin mu,  C = 𝑚2 

        = A sin mu,   C= −𝑚2 

        = Au                C = 0 

There include the solution f(u) ≡ 0 when A ≡ 

0. 

Q9. Find the orthogonal trajectories of the 

family of curves 
𝒙𝟐

𝒂𝟐+𝝀
+

𝒚𝟐

𝒃𝟐+𝝀
− 𝟏 = 𝟎. 

Interprete your result. 

Sol. : Differentiating we get 

𝑥2

𝑎2 + 𝜆
+

𝑦𝑝

𝑏2 + 𝜆
= 0; 𝑝 =

𝑑𝑦

𝑑𝑥
. 

𝑆𝑜 𝑡ℎ𝑎𝑡 
𝑎2 + 𝜆

1
𝑝𝑦

+
𝑏2 + 𝜆

−
1
𝑥

=  −
1

𝑥𝑦(𝑥𝑝 − 𝑦)

=
𝑎2 − 𝑏2

1
𝑝𝑦
+
1
𝑥

 

So that the differentiable equation the family is 

(𝑥𝑝 − 𝑦)(𝑥 + 𝑝𝑦) = (𝑎2 − 𝑏2)𝑝𝑦  

To get the orthogonal trajectories, we replace p 

by −
1

𝑝
,  so that the differential equation of the 

family of orthogonal trajectories is 

(−
𝑥

𝑝
− 𝑦) (𝑥 −

𝑦

𝑝
) = (𝑎2 − 𝑏2) (−

𝑦

𝑝
) 

𝑜𝑟, (𝑥 + 𝑝𝑦)(𝑥𝑝 − 𝑦) = (𝑎2 − 𝑏2)𝑝𝑦 

Which is the same as the original family, so that 

the family is self-orthogonal. 

Let 𝑎2 > 𝑏2, then so long as 𝜆 > −𝑏2, the 

family represents ellipses. When 𝜆 lies between 

−𝑏2 𝑎𝑛𝑑 − 𝑎2, it represents hyperbolas with 

the same face and when 𝜆 > −𝑎2. Those 

become imaginary ellipse. Every real ellipse 

intersects every hyperbola at right angles at 

every point of intersection. 

 

Q10. Let p be a point in the interior of 𝛥ABC 

and 𝒓𝟏, 𝒓𝟐, 𝒓𝟑 denote the distance from p to 

the sides 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 of the triangle respectively. 

If R denote the circumradius of 𝛥ABC. Show 

that 

√𝒓𝟏 + √𝒓𝟐 +√𝒓𝟑 ≤
𝟏

√𝟐𝑹
(𝒂𝟏

𝟐 + 𝒂𝟐
𝟐 + 𝒂𝟑

𝟐)
𝟏

𝟐 

with equality if and only if 𝛥 ABC is equilateral 

and p is the in centre. 

Sol. : By the Cauchy-schwarz-inequality. 

√𝑟1 + √𝑟2 +√𝑟3 = √𝑎1𝑟1 √
1

𝑎1
+ √𝑎2𝑟2√

1

𝑎2
+

√𝑎3𝑟3√
1

𝑎3
≤ (𝑎1𝑟1 + 𝑎2𝑟2 + 𝑎3𝑟3)

1

2 (
1

𝑎1
+

1

𝑎2
+

1

𝑎3
)

1

2
with equality if and only if √

𝑎1𝑟1

√
1

𝑎1

= √𝑎2𝑟2

√
1

𝑎2

=

√𝑎3𝑟3

√
1

𝑎3

, or equivalently, if and only if 𝑎1
2𝑟1 =

𝑎2
2𝑟2 = 𝑎3

2𝑟3. 

√𝑟1 +√𝑟2 +√𝑟3

≤ (
𝑎1 𝑎2 𝑎3
2𝑅

) 
1
2 (
1

𝑎1
+
1

𝑎2

+
1

𝑎3
)

1
2

= (
𝑎1 𝑎2 𝑎3
2𝑅

) 
1
2

× (
𝑎2𝑎3 + 𝑎3𝑎1 + 𝑎1𝑎2

𝑎1𝑎2𝑎3
)

1
2

= 
1

√2𝑅
 

(𝑎2𝑎3 + 𝑎3𝑎1 + 𝑎1𝑎2)
1
2  

Now, again by the Cauchy-Schwarz inequality, 
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𝑎2𝑎3 + 𝑎3𝑎1 + 𝑎1𝑎2

≤ (𝑎2
2 + 𝑎3

2 + 𝑎1
2)
1
2 (𝑎3

2

+ 𝑎1
2 + 𝑎2

2)
1
2 

= (𝑎1
2 + 𝑎2

2 + 𝑎3
2)
1

2 with equality if and only 

of 
𝑎2

𝑎3
=
𝑎3

𝑎1
=
𝑎1

𝑎2
=

𝑎2+𝑎3+𝑎1

(𝑎3+𝑎1+𝑎2)
= 1  or 

equivalently if and only if 𝑎1 = 𝑎2 = 𝑎3. 

Thus, we have √𝑟1 + √𝑟2 +√𝑟3 ≤
1

√2𝑅
(𝑎1

2 +

𝑎2
2 + 𝑎3

2)
1

2 with equality if and only if 𝑎1
2𝑟1 =

𝑎2
2𝑟2 = 𝑎3

2𝑟3 and 𝑎1 = 𝑎2 = 𝑎3, i.e. 𝑎1 =

 𝑎2 = 𝑎3 and 𝑟1 = 𝑟2 = 𝑟3. 

 

MODEL TEST PAPER - 5 

Q1. Show that 𝒙𝒏 + 𝒚𝒏 = 𝒛𝒏 where n is an 

nteger >2 has no solution in integers x, y, z 

with 0 ≤ x ≤ n; 0 ≤ y ≤ n. 

Sol. : We assume that without loss of generality 

x ≤ y, then z is an integer > y so that 

𝑧𝑛 > (𝑦 + 1)𝑛 = 𝑦𝑛 + 𝑛𝑦𝑛−1 + 𝑛𝑐2𝑦
𝑛−2 +⋯

+⋯ > 𝑦𝑛 + 𝑛𝑦𝑛−1

> 𝑦𝑛 + 𝑦𝑛 𝑤ℎ𝑒𝑛 𝑛 > 𝑦. 

> 𝑥𝑛 + 𝑦𝑛. 𝑠𝑖𝑛𝑐𝑒 𝑦 > 𝑥.   

So that 𝑧𝑛 > 𝑥𝑛 + 𝑦𝑛 𝑜𝑟, 𝑧𝑛 ≠ 𝑥𝑛 + 𝑦𝑛. 

Q2. Suppose 𝒙𝟏 𝒂𝒏𝒅 𝒙𝟐 be the roots of the 

equation 

𝒙𝟐 − (𝒂 + 𝒅)𝒙 + (𝒂𝒅 − 𝒃𝒄) =

𝟎. 𝑺𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝒙𝟏
𝟑 𝒂𝒏𝒅 𝒙𝟐

𝟑 are the roots of  

𝒚𝟐 − (𝒂𝟐 + 𝒅𝟐 + 𝟑𝒂𝒃𝒄 + 𝟑𝒃𝒄𝒅)𝒚 + (𝒂𝒅 −

𝒃𝒄)𝟑 = 𝟎.  

Sol. : We know that 𝑥1 + 𝑥2 = 𝑎 + 𝑑, 𝑥1𝑥2 =

𝑎𝑑 − 𝑏𝑐 

∵ (𝑥1 + 𝑥2)
3 = 𝑥1

3 + 3𝑥1
2𝑥2 + 3𝑥1𝑥2

2 +

𝑥2
3, 𝑤𝑒 ℎ𝑎𝑣𝑒   

  

𝑥1
3 + 𝑥2

3 = (𝑥1 + 𝑥2)
3 − 3𝑥1

2𝑥2 − 3𝑥1𝑥2
2

= (𝑎 + 𝑑)3 − 3𝑥1𝑥2(𝑎1 + 𝑥2) 

= (𝑎 + 𝑑)3 − 3(𝑎𝑑 − 𝑏𝑐)(𝑎 + 𝑑)

= (𝑎 + 𝑑)(𝑎2 + 2𝑎𝑑 + 𝑑2

− 3𝑎𝑑 + 3𝑏𝑐) 

= (𝑎 + 𝑑)(𝑎2 − 𝑎𝑑 + 𝑑2 + 3𝑏𝑐)

=  𝑎3 + 𝑑3 + 3𝑎𝑏𝑐 + 3𝑏𝑐𝑑. 

Furthermore, 𝑥1
3 + 𝑥2

3 = (𝑎𝑑 − 𝑏𝑐)3, and 

that the proof is complete. 

 

Q3. Let f is a function on the positive integers 

which satisfies f(2k) = 2f(k)- 1, f(k +1) = 2f(k) + 1 

and also an arbitrary positive integer whose 

binary representation is  

𝒂 =  𝒂𝒏𝒂𝒏−𝟏…𝒂𝟐𝒂𝟏𝒂𝟎 = 𝒂𝒏𝟐
𝒏 +

𝒂𝒏−𝟏𝟐
𝒏−𝟏 +⋯+ 𝒂𝟏𝟐 +

𝒂𝟎. 𝑺𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝒇(𝒂) =  𝒃𝒏𝟐
𝒏 + 𝒃𝒏−𝟏𝟐

𝒏−𝟏 +

⋯𝒃𝟏𝟐 + 𝒃𝟎, 𝒘𝒉𝒆𝒓𝒆 𝒃𝟏 = 𝟏,𝒂𝒊 = 𝟏;=

 −𝟏, 𝒂𝒊 = 𝟎.   

Sol. : We will induct on the number of digits in 

the binary representation of a, The result is true 

for a = 1, so suppose it holds whenever a has 

lower that k +1 digits. Now consider an integer 

a with k+ 1 digits (in base 2). Say  

𝑎 =  𝑎𝑘𝑎𝑘 − 1… . 𝑎2𝑎1𝑎0. 𝐼𝑓 𝑎0 = 0, 𝑡ℎ𝑒𝑛   

𝑎 = 2(𝑎𝑘𝑎𝑘 − 1… . 𝑎1). 𝑓(𝑎) =

2𝑓(𝑎𝑘… . 𝑎1) − 1 = 2[𝑏𝑘2
𝑘−1 +⋯+ 𝑏22 +

𝑏1] − 1 =  𝑏𝑘2
𝑘 +⋯+ 𝑏22

2 + 𝑏1
2 + 𝑏0  

And the result holds. If 𝑎0 = 1, 𝑡ℎ𝑒𝑛  

𝑎 =  2(𝑎𝑘𝑎𝑘 − 1… . 𝑎1) + 1. 𝑓(𝑎) =

2𝑓(𝑎𝑘… . 𝑎1) + 1  
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2(𝑝𝑘2
𝑘−1 +⋯+ 𝑏1) + 1 =  𝑏𝑘2

𝑘 +⋯+ 𝑏1
2 +

𝑏0 and again the result holds. 

 

Q4. Let 0 < 𝒙𝒊 < 𝜋, 𝑖 = 1,… , 𝑛 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑥 =
𝟏

𝒏
(𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏). 

Prove that 
𝒏

𝜫
(
𝐬𝐢𝐧𝒙𝒊

𝒙𝒊
) ≤ (

𝐬𝐢𝐧𝒙

𝒙
)
𝒏

 

Sol. : The prob. Is equivalent to proving that  

∑log
sin𝑥𝑖
𝑥𝑖

𝑛

𝑖=1

≤ 𝑛 log
sin 𝑥

𝑥
. 

Consider the function f(t) = log
𝑆 𝑖𝑛𝑡

𝑡
. It is 

straight forward matter to show that f is 

concave (𝑓′′(𝑡) < 0)𝑜𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (0, 𝜋). 

So,  

𝑓 (
𝑥1+𝑥2

2
) ≥ {𝑓(𝑘1) + 𝑓(𝑘2)}. In a manner 

completely analogous it follows that 

𝑓 (
𝑥1+⋯ 𝑥𝑛

𝑛
) ≥

𝑓(𝑥1)+⋯ 𝑓(𝑥𝑛)

𝑛
. Direct substitution 

into this inequality completes the proof. 

log
sin𝑥

𝑥
≥
1

𝑛
(log

sin 𝑥1
𝑥1

+⋯+ log
sin𝑥𝑛
𝑥𝑛

). 

 

Q5. An m- sided polygon is inside an n-side 

polygons (n > m ). Prove that perimeter of the 

m- sided polygon is loss than the perimeter of 

the n-sided polygon. 

Sol. : Consider the fig. where the pentagon is 

inside a heptagon. 

 

𝐴1𝐶1 + 𝐶1𝐵2 +𝐵2𝐶2 > 𝐴1𝐴2 + 𝐴2𝐶2  

𝐴2𝐶2 + 𝐶2𝐵3 + 𝐵2𝐵4 + 𝐵4𝐶2 > 𝐴2𝐴2 + 𝐴2𝐶3  

𝐴3𝐶2 + 𝐶2𝐵5 + 𝐵5𝐶4 > 𝐴2𝐴4 + 𝐴4𝐶4  

𝐴4𝐶4 + 𝐶4𝐵6 + 𝐵6𝐵7 + 𝐵7𝐶5 > 𝐴4𝐴5 + 𝐴5𝐶5  

𝐴5𝐶5 + 𝐶5𝐵1 + 𝐵1𝐶5 > 𝐴5𝐴1 + 𝐴1𝐶1  

Adding, we find that the perimeter of the outer 

polygon > perimeter of the interior polygon. 

The Proof is quite general and holds in the 

general care. 

Q6. Let 𝑨𝒊(𝒙𝒊, 𝒚𝒊)(𝒊 = 𝟏, 𝟐,… , 𝒌) be the k 

points in a plane and log P(x, y) and point in 

the plane satisfying 𝑷𝑨𝟏 +𝑷𝑨𝟐 +⋯+ 𝑷𝑨𝒌 =

𝒌. Show that the equation of the locus of P is 

f(x, y) = k where f(x, y) is a convex function of x 

and y. Show also that if 𝑸𝟏, 𝑸𝟐, … . , 𝑸𝒌, one the 

angles, which   

𝑷𝑨𝟏, 𝑷𝑨𝟐, … , 𝑷𝑨𝒌 make with the normal to 

this locus at a point P, then ∑ 𝐬𝐢𝐧𝑸𝒊 = 𝟎.
𝒌
𝒊=𝟏  

Discuss the special cases when k = 1, 2,. 

Sol. : The equation of the locus is given by f(x, y) 

=∑{(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2}

𝑘

𝑖=1

 

𝑆𝑜 𝑡ℎ𝑎𝑡
𝑑𝑓

𝑑𝑥
=∑(𝑥 − 𝑥𝑖)[(𝑥 − 𝑥𝑖)

2

𝑘

𝑖=1

+ (𝑦 − 𝑦𝑖)
2] − 𝑦2 
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𝑑2𝑓

𝑑𝑥2
=∑[(𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2]−

1
2

𝑘

𝑖=1

− (𝑥 − 𝑥𝑖)
2 [(𝑥 − 𝑥𝑖)

2

+ (𝑦 − 𝑦𝑖)
2]
3
2 

=∑[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2]−
3
2

𝑘

𝑖=1

 [(𝑦 − 𝑦𝑖)
2] 

= ∑{𝐴𝑖(𝑦 − 𝑦𝑖)}
2

𝑘

𝑖=1

  

𝑎𝑛𝑑
𝑑2𝑓

𝑑𝑥𝑑𝑦
=  −∑[(𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2]
3
2

𝑘

𝑖=1

 (𝑥

− 𝑥𝑖)(𝑦 − 𝑦𝑖) 

= −∑𝐴𝑖(𝑥 − 𝑥𝑖)𝐴𝑖

𝑘

𝑖=1

(𝑦 − 𝑦𝑖). 

𝑤ℎ𝑒𝑟𝑒 𝐴𝑖 = {(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2}
3
4 

By using Cauchy-Schwarz is equality we find  

𝑑2𝑓

𝑑𝑥2
> 0,

𝑑2𝑓

𝑑𝑦2
> 0,

𝑑2𝑓

𝑑𝑥2
−
𝑑2𝑓

𝑑𝑦2
− (

𝑑2𝑓

𝑑𝑥𝑑𝑦
)

2

> 0. 

So that f(x, y) is a convex function and f(x, y) = k 

is closed convex curve.  

When k = 1, it reduces to the ordinary circle.  

When k = 2, it reduces to the ordinary ellipse 

which is defined as the locus of a point, the sum 

of whose distances from two fixed points in a 

plane (called foci is constant). 

When k is a positive integer > 2, its locus will be 

called a k-ellipse. 

Since 𝑟1 + 𝑟2 +⋯+ 𝑟𝑘 = 𝑘  

𝑑𝑟1
𝑑𝑠
+
𝑑𝑟2
𝑑𝑠
+⋯+

𝑑𝑟𝑘
𝑑𝑠
= 0. 

cos𝜙1 + cos𝜙2 +⋯+ cos𝜙𝑘 = 0 

Where 𝜙1, 𝜙2, … , 𝜙𝑘 are the angles which there 

radius vectors make with the tangent to the k-

ellipse at P. It 𝜃1, 𝜃2, … , 𝜃𝑘 are the angle which 

there radius vectors make with the normal at P, 

then we get, 

sin𝜃1 + sin 𝜃2 +⋯+ sin𝜃𝑘 = 0. 

If k = 1, it gives sin𝜃 = 0 i.e. the normal to a 

circle at every point coincides with the radius. 

If k = 2, it gives   sin 𝜃1 + sin 𝜃2 = 0 i.e. normal 

at any point of an ellipse makes equal angles 

with the lies the point to the foci. 

 

Q7. Find the point with in a triangle, the sum 

of which distances from the three vertices is 

minimum. Find also the minimum distance in 

terms of the lengths of the sides of the 

triangle. 

Sol. : (Draw the figure yourself) Suppose we put 

three small pulleys O at A, B, C and a smooth 

ring at P. A string passes through the ring and 

over pulleys and equal weights are attached at 

the ends of the strings hanging over pulleys at 

A. B. C. in the position of equilibrium, the 

potential energy is minimum so that sum of the 

lengths of the three strings within the triangle is 

minimum.  

However if the string is smooth, the tensions in 

the three string are equal and by lamis the 

orem,  sines of the three angles APB, BPC, CPA 

are equal, so that each of three angles is 120°. 

Thus the point P which is chosen such that PA + 

PB + PC is minimum is such that AB, BC, CA 

subtend equal angles of 120°   at point P. The 

point P will be called steiner’s point of the 

triangle. 
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 There are other methods of solving this 

problem, but we have given this method to 

illustrate Horos physical principles can also help 

us in solving purely mathematical problems. 

 If PA = x, PB = y, PC = z, then from the figure. 

𝑎2 = 𝑦2 + 𝑧2 + 𝑦2|⎸𝑏2 = 𝑧2 + 𝑥2 + 𝑥𝑧|⎸𝑐2

= 𝑥2 + 𝑦2 + 𝑥𝑦 

= (𝑦 +
𝑧

2
)
2
+
3𝑧2

4
| = (𝑧 +

𝑥

2
)
2
+
3𝑥2

4
| =

 (𝑥 +
𝑦

2
)
2
+
3𝑦2

4
   

Also if area of the triangle is 𝛥, then 

𝛥 =
1

2
𝑦𝑧 sin120° +

1

2
𝑧𝑥 sin120°

+
1

2
𝑥𝑦 sin 120°

= (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) ×
√3

4
 

𝑎2 + 𝑏2 + 𝑐2 = 2(𝑥2 + 𝑦2 + 𝑧2) + (𝑥𝑦 + 𝑦𝑧 +

𝑧𝑥)  

= 2 {(𝑥 + 𝑦 + 𝑧)2 − 2(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)} +

(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)  

= 2(𝑥 + 𝑦 + 𝑧)2 − 3(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)  

= 2(𝑥 + 𝑦 + 𝑧)2 − 3 ×
4𝛥

√3
  

𝑜𝑟, 2(𝑥 + 𝑦 + 𝑧)2 = 𝑎2 + 𝑏2 + 𝑐2 + 4√3𝛥    

𝐿 = 𝑥 + 𝑦 + 𝑧 =  

[
(𝑎2 + 𝑏2 + 𝑐2 + 4√3𝛥  )√𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

2
]

1
2

 

𝑤ℎ𝑒𝑟𝑒 𝑠 =
𝑎 + 𝑏 + 𝑐

2
 

Which gives the minimum sum of distance from 

A, B, C. 

 

Q8. If B(m, n) is a beta function with 

parameters m, n then Prove that 

 𝐥𝐨𝐠𝑩(𝒎,𝒏) ≤ (𝒎− 𝟏)
𝒅

𝒅𝒎
𝒊𝒏 𝑩(𝒎,𝒏) +

(𝒏 −

𝟏)
𝒅

𝒅𝒏
𝒊𝒏 𝑩(𝒎,𝒏)𝒂𝒏𝒅 𝒊𝒇 𝒎,𝒏 𝒂𝒓𝒆 𝒊𝒏𝒕𝒆𝒈𝒆𝒓𝒔. 

𝐥𝐨𝐠
(𝒎 − 𝟏)! (𝒏 − 𝟏)!

(𝒎 + 𝒏− 𝟏)!
≤  −(𝒎− 𝟏) 

[
𝟏

𝒎+ 𝒏 − 𝟏
+

𝟏

𝒎+ 𝒏 − 𝟐
+ …𝟏𝒎 ] 

−(𝒏 − 𝟏) [
𝟏

𝒎 + 𝒏 − 𝟏
+

𝟏

𝒎+ 𝒏 − 𝟐
+⋯

𝟏

𝒏
]  

Sol. : The entropy of any probability distribution 

with density function f(x) over [0, 1] is given by 

−∫ 𝑓(𝑥)
1

0

log 𝑓(𝑥) 𝑑𝑥 

The entropy is maximum for the uniform 

distribution. So that for any probability density 

function f(x). We have 

−∫ 𝑓(𝑥)
1

0

log 𝑓(𝑥) 𝑑𝑥 ≤ −∫ 1.
1

0

log 1 𝑑𝑥 

𝑜𝑟,∫ 𝑓(𝑥)
1

0

log 𝑓(𝑥) 𝑑𝑥 ≥ 0 

We can get any number of inequalities by taking 

different density functions over the interval [0, 

1). In particular if we take. 

𝑓(𝑥) =
1

𝐵(𝑚, 𝑛)
𝑥𝑚−1(1 − 𝑥)𝑛−1 

𝑤𝑒 𝑔𝑒𝑡,∫ 𝑓(𝑥)
1

0

[log
1

𝐵(𝑚, 𝑛)
+ (𝑚 − 1) log 𝑥

+ (𝑛 − 1) log(1 − 𝑥)] 
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𝑜𝑟,− log𝐵(𝑚, 𝑛)

+
𝑚 − 1

𝐵(𝑚, 𝑛)
∫ 𝑥𝑚−1(1
1

0

− 𝑥)𝑛−1 log 𝑥 𝑑𝑥

+
𝑛 − 1

𝐵(𝑚, 𝑛)
∫ 𝑥𝑚−1(1
1

0

− 𝑥)𝑛−1 log(1 − 𝑥)𝑑𝑥 ≥ 0. 

𝑁𝑜𝑤, 𝐵(𝑚, 𝑛) =  ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1
1

0

𝑑𝑥. 

Differentiating partially with respect to m, n we 

get. 

𝑑

𝑑𝑚
𝐵(𝑚, 𝑛) = ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1

1

0

log 𝑥 𝑑𝑥 

𝑑

𝑑𝑛
𝐵(𝑚, 𝑛) =  ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1

1

0

log(1

− 𝑥) 𝑑𝑥 

So that the above inequality becomes 

− log𝐵(𝑚, 𝑛) + (𝑚 − 1)
𝑑

𝑑𝑚
log𝐵(𝑚, 𝑛)

+ (𝑛 − 1)
𝑑

𝑑𝑛
log𝐵 (𝑚, 𝑛) ≥  

Which was the inequality to be proved, so that 

𝑙𝑜𝑔
𝑇(𝑚)𝑇(𝑛)

𝑇(𝑚 + 𝑛)
− (𝑚 − 1) {

𝑇′(𝑚)

𝑇(𝑚)

−
𝑇′(𝑚 + 𝑛)

𝑇(𝑚 + 𝑛)
}

− (𝑛 − 1) [
𝑇′(𝑛)

𝑇(𝑛)
−
𝑇′(𝑚 + 𝑛)

𝑇(𝑚 + 𝑛)
]

≤ 0  

𝑁𝑜𝑤 𝑇(𝑁) = (𝑁 − 1)𝑇(𝑛 − 1)  

𝑠𝑜 𝑡ℎ𝑎𝑡 
𝑇′(𝑛)

𝑇(𝑛)
=

1

𝑁 − 1
+
𝑇′(𝑁 − 1)

𝑇(𝑛 − 1)
  

𝑇ℎ𝑢𝑠,  

𝛤′(𝑚 + 𝑛)

𝛤(𝑚 + 𝑛)
−
𝛤(𝑚)

𝛤(𝑚)

=
1

𝑚 +𝑚 − 1
+

1

𝑛 +𝑚 − 2

+⋯+
1

𝑚
  

𝛤′(𝑚 + 𝑛)

𝛤(𝑚 + 𝑛)
−
𝛤(𝑛)

𝛤(𝑛)

=
1

𝑚 +𝑚 − 1
+

1

𝑛 +𝑚 − 2

+⋯+
1

𝑛
   

Substituting there values, we get the second 

inequality to be proved. 

 

Q9. Does 𝒚 = 𝒙𝒙
𝒙𝒙

represent a function of x? 

Can you find its derivative and area under this 

curve? 

Sol. : 𝑦 =  𝑥𝑥 is a function of x for all positive 

values of x. However y =𝑥𝑥
𝑥
 has two 

interpretations viz. =𝑥(𝑥)
(𝑥)

 or   (𝑥2)𝑥 and these 

are different. Similarly if x is raised to power 

which consists of n x’s, we can have 
(2𝑛−2)!

(𝑛−1)
 we 

can restore uniqueness by defining the function 

recursively by 𝑢0(𝑥) = 1, 𝑢1(𝑥) =

 𝑥  𝑢0(𝑥), 𝑢2(𝑥) =  𝑥
𝑢1(𝑥), … . 𝑢𝑛(𝑥) =

 𝑥𝑢𝑛−1(𝑥)… .. 

𝑆𝑜 𝑡ℎ𝑎𝑡 log 𝑢𝑛(𝑥) =

 𝑢𝑛−1(𝑥) log 𝑥 ; log 𝑢𝑛−1(𝑥) =  𝑢𝑛−1(𝑥) log 𝑥.  

𝑜𝑟 log
𝑢𝑛(𝑥)

𝑢𝑛−1(𝑥)
= {𝑢𝑛−1(𝑥) − 𝑢𝑛−2(𝑥)} log 𝑥 

𝐼𝑓 𝑥 > 1, 𝑢1(𝑥) > 𝑥, 𝑢2(𝑥) > 𝑢, 𝑢3(𝑥) >

 𝑢2(𝑥)…𝑢𝑛(𝑥) >  𝑢𝑛−1(𝑥)… and the sequence 

can be a  divengent sequence. If 𝑥 < 1, 𝑢0(𝑥) =

1, 𝑢1(𝑥) = 𝑥 < 1,  



Solving Mathematical Problems 

 

249 
 

log
𝑢2(𝑥)

𝑢1(𝑥)
= {𝑢1(2) − 𝑢0(𝑥)} log 𝑥

= (𝑥 − 1) log 𝑥 > 0 

𝑆𝑜 𝑡ℎ𝑎𝑡 𝑢2(𝑥) >  𝑢1(𝑥).  

𝐴𝑔𝑎𝑖𝑛 log
𝑢3(𝑥)

𝑢2(𝑥)
= {𝑢2(𝑥) − 𝑢1(𝑥)} log 𝑥 < 0. 

𝑆𝑜 𝑡ℎ𝑎𝑡 𝑢3(𝑥) <  𝑢2(𝑥).  

In general 𝑢𝑛(𝑥) ≷ 𝑢𝑛−1(𝑥) according as 

𝑢𝑛−1(𝑥) ≷  𝑢𝑛−1(𝑥).  

Here we have made use of the fact that 

log
𝑢𝑛(𝑥)

𝑢𝑛−2(𝑥)
= {𝑢𝑛−1(𝑥) − 𝑢𝑛−2(𝑥)} log 𝑥 

So that 𝑢𝑛 ≷ 𝑢𝑛−2(𝑥) according as 𝑢𝑛−1(𝑥) ≷

𝑢𝑛−1(𝑥)  

Thus the sequence {𝑢2𝑛(𝑥)} is monotonic 

decreasing and the sequence {𝑢2𝑛 − (𝑘)} is 

monotonic increasing. 

Also  
𝑢𝑛(𝑥)

𝑢𝑛−2(𝑥)
= 𝑥𝑢𝑛−1(𝑥) − 𝑢𝑛−3(𝑥) 

If the sequence {𝑢𝑛(𝑥)} convenges to y, then 

𝑦 =  𝑥𝑥⟹ log𝑦 = 𝑦 log 𝑥 ⟹
1

𝑦

𝑑𝑦

𝑑𝑥

= log 𝑥 
𝑑𝑦

𝑑𝑥
+
𝑦

𝑥
 

⟹
𝑑𝑦

𝑑𝑥
=

𝑦
𝑥

1
𝑦
− log 𝑥

=

𝑦2

𝑥
1 − 𝑦 log 𝑥

=

𝑦2

2
1 − log 𝑦

 

Lt
𝑦→0

log 𝑦

𝑦
=  −∞, Lt

𝑦→0
 𝑦
1
4 = 0. 

Lt
𝑦→∞

log 𝑦

𝑦
= Lt
𝑦→∞

 
1

𝑦
= 0 ⟹ 𝐿𝑡  𝑦

1
4 = 𝑒0 = 1 

Thus as y goes from 0 to 1 x goes from 0 to 1 

and as y goes from 1 to∞ , x goes from 1 to 𝑐
1

𝑒 

and then from 𝑐
1

𝑒 𝑡𝑜 1. 

For every value of y, there is a unique value of x, 

but for every value of x > 1, but <𝑐
1

𝑒, there are 

two values of y at one of which the derivative is 

positive and at the other the derivative is 

negative. When x = <𝑐
1

𝑒 there is only one value 

of y i.e. c and at this point the tangent is parallel 

to the axis of y. 

 

However for every value of x, between 0 and 1, 

there is only one value of y lying between 0 and 

1 and the derivative at all points is positive and 

we are concerned with only the values of y 

when x lies between 0 and 1.  

Now area under the curve up to ‘x’ < 1 is 

∫ 𝑦
𝑥

0

 𝑑𝑥 = 𝑥𝑦 − ∫ 𝑥
𝑦

0

 𝑑𝑦 = 𝑥𝑦 −∫ 𝑦 
𝑦

0

𝑑𝑦
1
𝑦 

= 𝑦
1
4
+1 −∫ 𝑦1/𝑦

𝑦

0

𝑑𝑦. 

Which can be numerically evaluated. 

 

Q10. Let E be the ellipse with centre at again O 

whose major and minor axis are 2a and 2b 

respectively. If 𝜃 be the acute angle of which E 
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is cut by a circle with centre at the origin (i.e. 𝜃 

is the acute angle of intersection). Prove that 

the maximum possible value of 𝜃 is 

𝐭𝐚𝐧(
𝒂𝟐 − 𝒃𝟐

𝟐𝒂𝒃
) . 

 

Sol : 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 ≡ 𝑥𝑥1 + 𝑦𝑦1 = 𝑟
2 

 𝑠𝑙𝑜𝑝𝑒 ≡ 𝑥1 + 𝑦1
𝑑𝑦

𝑑𝑥
= 0,⟹ 

𝑑𝑦

𝑑𝑥
= −

𝑥1

𝑦1
= 𝑚1 

𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝐸 ≡
𝑥𝑥1
𝑎2
+
𝑦𝑦1
𝑏2

= 1,⟹
𝑥1
𝑎1
+
𝑏1
𝑏2
.
𝑑𝑦

𝑑𝑥

= 0 

⟹
𝑑𝑦

𝑑𝑥
=  −

𝑥1
𝑎2
𝑦1
𝑏2
= −

𝑥1
𝑦1
.
𝑏2

𝑎1
= 𝑚2. 

Now, tan 𝜃 =  ⎸
𝑚1−𝑚2

1+𝑚1𝑚2
⎸ =  ⎸

−
𝑥1
𝑦1
+
𝑥1𝑏

2

𝑦1𝑎
2

1+
(
𝑥1
𝑦1
)𝑏2

𝑎

 ⎸  

=
|

|

𝑎2 − 𝑏2

𝑎2 + (
𝑥𝑦
𝑦1
)
2
𝑏2

− (
𝑎1
𝑦1
) |

|
   

 

Now, for max angle 
𝑥1

𝑦1
=
𝑎

𝑏
. 

∴tan𝜃 = |

𝑎2−𝑏2

𝑎2+
𝑎2

𝑏2
.𝑏2

−
𝑎

𝑏

| = |
𝑎2−𝑏2

−𝑎𝑏−𝑎𝑏
| =

𝑎2−𝑏2

2𝑎𝑏
 

∴ 𝜃 =  tan−1 (
𝑎2 − 𝑏2

2𝑎𝑏
). 

 

MODEL TEST PAPER – 6 

Q1. Find all solutions in integers of the 

equations :  𝒙𝟖 + 𝒚𝟖 = 𝟏𝟗𝟖𝟒; 𝝁𝟑 + 𝒗𝟔 +𝝎𝟖 =

𝟏𝟗𝟖𝟓 .  

Hence on otherwise find solution of 𝒂𝟑 + 𝒃𝟑 =

 𝒄𝟑 + 𝒅𝟑 with a, b, c, d as different positive 

integers. 

Sol. : 18 = 1, but 1983 is not a perfect cube. 

28 = 256 𝑎𝑛𝑑 1984 − 256 = 1728 =  123 is a 

perfect cube. 

∴Only solution in integers of the first equation 

is x = 12, y = 2. 

Next we try v= 1; 𝜔= 1; v = 1; 𝜔 = 2; v = 1; 𝜔= 3; 

v = 2; 𝜔 = 2; v = 1; 𝜔 = 2; v = 2; 𝜔 = 3. 

We find that 123 + 28 + 16 = 1985 𝑎𝑛𝑑 103 +

28 + 36 = 1985 

∴ 123 + 28 + 16 = 103 + 36 + 28 = 1985 

give the only solutions. 

From the above 123 + 16 = 103 + 36  

𝑜𝑟, 123 + 13 = 103 + 93 = 1729  

 

Q2.  For what real values of a does the 

𝒆𝒒𝒙. 𝒂𝒙𝟐𝒕   𝒙 + 𝒂 − 𝟏 = 𝟎 have two distinct 

real root 𝛼 and 𝛽. Satisfying the inequality 

⎸
𝟏

𝜶
−
𝟏

𝜷
⎸ > 1 and ‘a’ belongs the domain of 

definition of the function  



Solving Mathematical Problems 

 

251 
 

𝒇(𝒂) =
𝟏

[𝒂+
𝟏

𝟐
]
+ √𝒂 −

𝟏𝟏

𝟏𝟎
, ∣. ∣ being the greatest 

integer. 

Sol. : 𝐷 > 0; 1 − 4𝑎 (𝑎 − 1) > 0,⟹ 1 − 4𝑎2 +

4𝑎 > 0. 

⟹ 4𝑎2 − 4𝑎 − 1 < 0,
1−√2

2
< 𝛼 <

1+√2

2
  

⎸ |
1

𝛼
−
1

𝛽
⎸| > 1.⟹ ∣ 𝛽 − 𝛼 ∣> ∣ 𝛼𝛽 ∣,⟹

(𝛼 + 𝛽)2 − 4𝛼𝛽 > 𝛼2𝛽2  

∴ 0 < a < 615 for f(a) to be defined 0 ≤ a+  ½ ≮1.  

∴ reqd. value of a, a [
11

10
,
6

5
]. 

 

Q3. In a club of 80 numbers, 10 members play 

name of Tennis, Badminton and Cricket, 30 

members play exactly one of these three 

games and 30 members play exactly two of 

these games. 45 members play at least one of 

the games among Tennis and Badminton, 

whereas 18 members play both Tennis and 

Badminton. Determine the number of Cricket 

playing members. 

Sol. : Members playing either Tennis (T) or 

Cricket (C) or Badminton (B). Winner , no. of 

members playing exactly one of these three 

games = 𝑡1 + 𝑏1 + 𝑐1 = 30.No. of members 

playing exactly two of there three games = tb 

+bc +ct = 30 and no. of members playing 

three games = tbc = 70 – 30- 30 = 10.   

 ∵ 45 members are playing at least Tennis and 

Badminton.  

𝐶1 = 70 − 45 = 25 𝑎𝑛𝑑 𝑏𝑐 + 𝑡𝑐 = 30 − 𝑡𝑏 =

30 − 18 = 12  

[∵ 𝑡𝑏 = 18(𝑤𝑖𝑛𝑛𝑒𝑟)]  

∴ No. of member playing Cricket = 𝐶1 + 𝑡𝑐 +

𝑡𝑏𝑐 + 𝑏 = 25 + 12 + 10 = 47.  

 

Q4. Let 𝑷𝒏(𝒙) be the polynomial𝑷𝒏(𝒙) = 𝟏 +

𝟐𝒙 + 𝟑𝒙𝟐 +⋯+ (𝒙 + 𝟏)𝒙𝒏. Show that 𝑷𝒏(𝒙), 

has no real zero if n is even and exactly one 

real zero if m is odd and this zero lies between 

-1 and 0. 

Sol. : When x > 0, 𝑃𝑛(𝑥) > 0 𝑎𝑛𝑑 𝑠𝑜 𝑃𝑛(𝑥) = 0 

can have no positive real root. 

Now, 𝑃𝑛(𝑥) = 1 + 2𝑥 + 3𝑥
2 +⋯+ (𝑥 + 1)𝑥𝑛 

𝑥𝑃𝑛(𝑥) = 𝑥 + 2𝑥
2 + 3𝑥3 +⋯+ 𝑛𝑥𝑛 +

(𝑛 + 2)𝑥𝑛+1  

(1 − 𝑥)𝑃𝑛(𝑥) = 1 + 𝑥 + 𝑥
2 +⋯+ 𝑥𝑛 − (𝑛 +

1)𝑥𝑛+1  

𝑃𝑛(𝑥) =
1 − (𝑛 + 2)𝑥𝑛+1 + (𝑛 + 1)𝑥𝑛+2

(1 − 𝑥)2
 

For negative values of x, 𝑃𝑛(𝑥) will vanish 

whenever  

𝑓(𝑥) ≡ 1 − (𝑛 + 2)𝑥𝑛+1 + (𝑛 + 1)𝑥𝑛+2 = 0.  

𝑓(𝑥) ≡ 1 − (𝑛 − 2)(−1)𝑛+1𝑥𝑛+1 + (𝑛 +

1)(−1)𝑛+2𝑥𝑛+2  

If n is even, there is no changes of sing in this 

expression and so there is no negative real root 

also. If n is odd , there is one change of sign 

there can be one negative real root.  
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In this care f(-1) = 1 – (n +2) - (n+ 1) = -2n – 2 <0, 

f(0) = 1 >0. As such when n is odd, the real root 

lies between 0 and -1. 

 

Q5. Show that the set S= {. 𝟐, 𝟐𝟑, 𝟐𝟓, …… } is 

such that sum of any subset of element cannot 

be a perfect square. 

Sol. : Let N = 2𝑠1 + 2𝑠2 +⋯+ 2𝑠𝑘 = 2𝑠1(1 +

2𝑠1−𝑠2 +⋯+ 2𝑠𝑘−𝑠1)  

Without loss of generality, we can assume 𝑆1 <

𝑆2 < 𝑆3… < 𝑆𝑘, so that the expression within 

breaketer is an odd number which may or may 

not be a perfect square.  

 

Q6.   Decide whether the following statements 

are true or false. There exist number 

𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 such that 𝒇(𝒙) ≡ 𝒂, 𝐜𝐨𝐬 𝒙 +

𝒂𝟐 𝐜𝐨𝐬𝟐𝒙 + …+ 𝒂𝒏 𝐜𝐨𝐬𝒏𝒙 > 0 for all x. 

Sol. : Suppose the statement is true, then  

∫ (𝑎1 cos 𝑥 + 𝑎2 cos 2𝑥 +⋯+ 𝑎𝑛 cos 𝑛𝑥)𝑑𝑥
2𝛱

0

> 0. 

𝑜𝑟, [𝑎1 sin 𝑥 + 𝑎2
sin 2𝑥

2
+⋯

+ 𝑎𝑛
sin𝑛𝑥

𝑛
]
2𝛱

0
> 0. 

But L.H.S. = 0, so that there is a contradiction 

and the given statement is false. 

 

Q7. Let f (x, y) be a function satisfying the 

functional equation f(x, y) = f(2x+ 2y; 2- 2x).For 

all real numbers x, y. Define g(x) by g(x) = 

f(𝟐𝒙, 𝟎). Prove that g(X) is a periodic function 

with period 12, i.e. show that g(x +12) = g(x). 

Sol. : Using the functional equation again and 

again  

𝑔(𝑥) = 𝑓(2𝑥 , 0) = 𝑓(2𝑥+1, −2𝑥+1) =

𝑓(0,−2𝑥+3)  

= 𝑓(−2𝑥+4, −2𝑥+4) = 𝑓(−2𝑥+4, 0) =

𝑓(−2𝑥+7, 2𝑥+7) = 𝑓(0, 2𝑥+9) =

𝑓(2𝑥+10, 2𝑥+10) 

= 𝑓(2𝑥+12, 0) = 𝑔(𝑥 + 12) . So that g(x) is a 

periodic function with period 12.  

Q8. If a(x), b(x), c(x) and d(x) are polynomials is 

x, show that 

∫ 𝒂(𝒙)
𝒙

𝟏

 𝒄(𝒙)𝒅𝒙   ∫ 𝒃(𝒙)
𝒙

𝟏

 𝒅(𝒙)𝒅𝒙

− ∫ 𝒂(𝒙)𝒅(𝒙)
𝒙

𝟏

𝒅𝒙 ∫ 𝒃(𝒙)
𝒙

𝟏

𝒄(𝒙)𝒅𝒙 𝒊𝒔 𝒅𝒊𝒗𝒊𝒔𝒊𝒃𝒍𝒆 𝒃𝒚 (𝒙

− 𝟏)𝟒. 

Sol. : Denote the expression in  question by F(x). 

Notice that F(x) is a polynomial in x. Also notice 

that F(1) = 0 and therefore (x- 1) is a factor of 

F(x).  

Because F is a polynomial, we know that 

(𝑥 − 1)4 is a root of F(x) = 0 if and only if F(t)= 

0. We can compute fundamental theorem. 

𝐹′(𝑥) = 𝑎𝑐 ∫ 𝑏𝑑 + 𝑏𝑑 
𝑥

1

∫ 𝑎𝑐 − 𝑎𝑑
𝑥

1

∫ 𝑏𝑐
𝑥

1

− 𝑏𝑐∫ 𝑎𝑑
𝑥

1

. 

(Note that F’(x) = 0 and hence (𝑥 − 1)2 is a root 

of F(x) = 0) the derivative F’’ and F’’’ are done in 

a similar manner; it turns out that  

F’’’ (1) = [(𝑎𝑐)1𝑏𝑑 + (𝑏𝑑)1𝑎𝑐 − (𝑎𝑑)1𝑏𝑐 −

(𝑏𝑐)1𝑎𝑑]𝑥=1 = 0 

This completes the proof. 
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Q9. The medians of two sides of a triangle 

meet at right angle. The two sides have lengths 

a and b units. Find condition on a and b for this 

to be possible and express that length of the 

third side is terms of a  and b.  

Sol. : Let G be the centroid of the triangle since 

it trisects the medians. 

AG = 2x, GD = x 

BG = 2y, GE = y 

Then using Pythagorean theorem, we get from 

the figure. 

 

4(𝑥2 + 𝑦2) = 𝑐2  

4𝑥2 + 𝑦2 =
𝑏2

4
, 4𝑦2 + 𝑥2 =

𝑎2

4
  

Eliminating 𝑥2, 𝑦2 we get,  

𝑐2 =  4
𝑎2 + 𝑏2

20
=
𝑎2 + 𝑏2

5
. 

It is also clear that 𝑐2 < 𝑏2, 𝑐2 < 𝑎2 so that c is 

the smallest side and 
𝑎2+𝑏2

5
< 𝑎2,

𝑎2+𝑏2

5
< 𝑏2 ,

𝑜𝑟, 𝑏2 < 4𝑎2, 𝑎2 < 4𝑏2,  

𝑏

𝑎
< 2,

𝑎

𝑏
< 2,

1

2
<
𝑏

𝑎
< 2. 

 

Q10. A number of elliptic curves are drawn in 

the planes any two of them intersecting in 4 

points and no three of the curves are 

concurrent. Into how many regions would the 

plane be divided, if n elliptic curves are drawn? 

Sol. : One curve divides the plane into two 

regions. Two curves divide the plane into 6 

region and three curves into 14 region, so that if 

(R (n) is the number of regions, then R(1) = 2, 

R(2) = 6, R(3) = 14. 

Now, suppose n curves have already drawn and 

(x +1) curves is now drawn. It cuts each of the 

previous n curves in 4 distinct points and there 

4n points divide its perimeter into 4n across. 

 

Each of these cuts across one of the earthier 𝑅𝑛 

region resulting from the previous n curves 

dividing into two pieces gives rise to 4𝑛 new 

regions so that. 

   𝑅𝑛+1 = 𝑅𝑛 + 4𝑛 

𝑜𝑟, 𝑅𝑛 = 𝑅𝑛−1 + 4(𝑛 − 1) =  𝑅𝑛−2 + 4(𝑛 −

2) + 4(𝑛 − 1) = ⋯  

= 𝑅2 + 4(2 + 3 +⋯+ 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ ) =  𝑅1 +

4(1 + 2 +⋯+ 𝑛 − 1)  

= 2 + 4(
(𝑛 − 1)𝑛

2
) =  2𝑛2 − 2𝑛 + 2. 

 

MODEL TEST PAPER - 7 

Q1. The real number 𝜇, 𝜈, 𝜔 satisfy 0 <𝜇 <1; 0 

<𝜈 < 1; 0 <𝜔 <1 prove that at least one of the 
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3 numbers 𝝁(𝟏 − 𝝂), 𝝂(𝟏 − 𝝎),𝝎(𝟏 −

𝝁) 𝒊𝒔 ≤
𝟏

𝟒
.  

Sol. : Let 𝑃 = 𝜇(1 − 𝜈), 𝑄 =  𝜈(1 − 𝜔), 𝑅 =

  𝜔(1 − 𝜇) 

𝑇ℎ𝑒𝑛 𝑃𝑄𝑅 = 𝜇(1 − 𝜇)𝜈(1 − 𝜈)𝜔(1 − 𝜔)  

𝑏𝑢𝑡𝜇(1 − 𝜇) ≤
1

4
, 𝜈(1 − 𝜈) ≤

1

4
, 𝜔(1 − 𝜔) ≤

1

4
  

𝑆𝑜 𝑡ℎ𝑎𝑡 𝑃𝑄𝑅 ≤  (
1

4
)
3

.   

And that one of P, Q, R ≤ 
1

4
. 

 

Q2. Find a six digits number which is multiplied 

by the factor 6, if the final 3 digit are removed 

and placed (without changing their order) at 

the beginning. 

So. : Let N be the number, A be the number 

consisting of the first 3 digits and B be the 

number consisting of last 3 digits. 

Then N = 1000A+ B and 6N = 1000B + A 

So that 1000B + A = 6(1000A+ B) 

Or, 994B = 5999A  

Or, 142B = 857A 

We can chose B = 857, A = 142, since there are 

co-prime integers N = 142, 857. 

 

Q3. The numerical sequence 𝒙𝟏, 𝒙𝟐 satisfies 

𝒙𝟏 =
𝟏

𝟐
, 𝒙𝒌+𝟏 = 𝒙𝒌

𝟐 + 𝒙𝒌 for all natural 

number k. Find the integer part of the sum 
𝟏

𝒙𝟏+𝟏
+

𝟏

𝒙𝟐+𝟏
+⋯+

𝟏

𝒙𝟏𝟎𝟎𝟎+𝟏
 

Sol. : 
1

𝑥𝑘+1
=

1

𝑥𝑘(𝑥𝑘+1)
=

1

𝑥𝑘
−

1

𝑥𝑘+1
  

1

𝑥𝑘 + 1
=
1

𝑥𝑘
−

1

𝑥𝑘+1
 

∑
1

𝑥𝑘+1

1000

𝑘=1

= ∑ (
1

𝑥𝑘
−

1

𝑥𝑘+1
)

1000

𝑘=1

=
1

𝑥1
−

1

𝑥1001
 

Now 𝑥𝑘+1. > 𝑥𝑘 > 𝑥𝑘(𝑥𝑘) is a positive 

monotonic increasing sequence and {
1

𝑥𝑘
} is a 

positive monotonic decreasing sequence. 

𝑥1 =
1

2
, 𝑥2 =

3

4
, 𝑥3 =

21

16
, 𝑥𝑘 > 1,𝑤ℎ𝑒𝑛 𝑘 > 2 

∴ 0 <
1

𝑥1001
< 1,

1

𝑥1
= 2. 

Integral part of 
1

𝑥1
=

1

𝑥1001
 is unity. 

In fact the integral part of 
1

𝑥1
=

1

𝑥𝑘
 is unity for all 

k > 2. 

 

Q4.  Prove that in an acute angled 

triangle𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑩 𝐜𝐨𝐬𝑪 ≤
𝟏

𝟖
. Deduce that 

𝟏 + 𝐜𝐨𝐬𝑨 + 𝐜𝐨𝐬𝑩 + 𝐜𝐨𝐬𝑪

𝟐 𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑩𝐜𝐨𝐬 𝑪
≥ 𝟏𝟎. 

Sol. : Let y = log 𝑐𝑜𝑠 𝑥 , 𝑜 < 𝑥 <
𝛱

2
 

𝑑𝑦

𝑑𝑥
=  − tan 𝑥 ,

𝑑2𝑦

𝑑𝑥2
= −𝑠𝑒𝑐2𝑥 < 0 

⟹ y is a concave function. 

log cos𝐴 cos𝐵 cos𝐶 is also a concvave function 

and its maximum value subject to A + B + C = 𝜋 

arises when 𝐴 = 𝐵 = 𝐶 =
𝜋

3
. 

cos𝐴 cos𝐵 cos𝐶 has its maximum value when 

𝐴 = 𝐵 = 𝐶 =
𝜋

3
. 

∴cos𝐴 cos𝐵 cos𝐶 ≤
1

8
. 
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And the equality sign holds only for the case 

of the equilateral triangle. 

1 + cos𝐴 + cos𝐵 + cos𝐶

cos𝐴 cos𝐵 cos𝐶

=
1

cos𝐴 cos𝐵 cos𝐶

+
sec𝐵 sec𝐶 + sec𝐶

sec𝐴 + sec𝐴 sec𝐵
 

Using the above inequality and the arithmetic 

geometric mean inequality. 

1 + cos𝐴 + cos𝐵 + cos𝐶

cos𝐴 cos𝐵 cos𝐶

≥ 8 + 3√𝑠𝑒𝑐2𝐵 𝑠𝑒𝑐2𝐶 𝑠𝑒𝑐2𝐴
3

 

= 8 + 3
1

(cos𝐴 cos𝐵 cos𝐶)
2
3

≥ 8 + 3. (8)
2
3

= 20. 

   
1+cos𝐴+cos𝐵+cos𝐶

2 cos𝐴 cos𝐵 cos𝐶
≥ 0 

And the equality sign holds only for the 

equilateral triangle. 

 

Q5. Prove that if ABCDEF is a hexagon (not 

necessarily convex) such that AB ∥DE, BC ∥ EF 

and CD∥ FA, then area of triangle ACE = area of 

triangle BDF, where signed areas are used. 

Sol. : BC ∥ EF⟹ area of 𝛥CER = area of 𝛥BRF 

CD ∥ FA ⟹ area of 𝛥 CQA = area of 𝛥FQD 

AB ∥ DE ⟹ area of 𝛥 ADE = area of 𝛥 DPB  

 

∆𝐴𝐷𝐸 = 𝑎𝑟𝑒𝑎 𝑜𝑓 ∆𝐷𝑃𝐵  

If we add there three equalities and at 𝛥PQR 

to both sides, we get 𝛥ACE = 𝛥BDF. 

 

Q6. Suppose f(x) be differentiable on [0, 1] 

with f(0)= 0 and f(1)= 1. For each positive 

integer n, so that there exist distinct points  

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 in [0, 1] such that  

∑
𝟏

𝒇′(𝒙𝟏)

𝒏

𝒊=𝟏

= 𝒏. 

Sol. : To help generate ideas, consider the 

case n = 1, we wish to find 𝑥1 in [0, 1] such 

that 

 
1

𝑓′(𝑥1)
= 1. 

This is possible by the mean value theorem 

since on the interval [0, 1] there is a point 𝑥1 

such that 𝑓′(𝑥1). 

Consider the case n = 2. Consider the 

subintervals [0, x] and [x, 1] where x is save 

number between 0 and 1 yet to be determine. 

By the mean value theorem, there is on 𝑥1 in 

(0, x) and 𝑥2 𝑖𝑛 (𝑥, 1) such that  
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𝑓′(𝑥1) =
𝑓(𝑥) −  𝑓(0)

𝑥 − 0
 𝑎𝑛𝑑 𝑓′(𝑥2)

=
𝑓(1) − 𝑓(𝑥)

1 − 𝑥
 

𝑇ℎ𝑢𝑠
1

𝑓′(𝑥1)
+

1

𝑓′(𝑥2)
= 2 

𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 
𝑥

𝑓(𝑥)
+ 

1 − 𝑥

1 − 𝑓(𝑥)
= 2, 

𝑥(1 − 𝑓(𝑥)) + (1 − 𝑥)𝑓(𝑥) = 2𝑓(𝑥) −

2(𝑓(𝑥))
2
,  

𝑥 − 𝑥𝑓(𝑥) +  𝑓(𝑥) − 𝑥𝑓(𝑥) − 2𝑓(𝑥) +

2(𝑓(𝑥))
2
= 0  

𝑥 − 2𝑥 𝑓(𝑥) − 𝑓(𝑥) + 2(𝑓(𝑥))
2
= 0  

𝑥(1 − 2𝑓(𝑥)) − 𝑓(𝑥)(1 − 2𝑓(𝑥)) = 0  

[𝑥 − 𝑓(𝑥)][1 − 2𝑓(𝑥)] = 0.  

Now had we chosen x in (0, 1) so that 𝑓(𝑥) =
1

2
 (this could be done by intermediate value 

theorem), the proof would be complete upon 

reversing the previous steps. With this 

background we can consider the care to an 

arbitrary positive integer x, let 𝑐𝑖 be the 

smallest number in [0, 1] such that f(𝑐𝑖) =
𝑖

𝑛
 

(the existence of this number is a 

consequence of the intermediate value 

theorem together with the assumption of 

continuity). Then 

0 < 𝑐1 < 𝑐2 < ⋯ < 𝑐𝑛−1 < 1.𝐷𝑒𝑓𝑖𝑛𝑒 𝑐0 =

0 𝑎𝑛𝑑 𝑐𝑛 = 1 and for each internal (𝑐1 −

1, 𝑐𝑖)𝑖 = 1, 2, … , 𝑛. chose 𝑥𝑖such that 𝑓′(𝑥1) =
𝑓(𝑐𝑖)−𝑓(𝑐𝑖−1) 

𝑐1−𝑐𝑖−1
 

(This can be done by the I mean-value 

theorem). Then 

𝑓′(𝑥𝑖) =
1

𝑛
−
𝑖−1

𝑛

𝑐𝑖−𝑐𝑖−1
=

1

𝑛(𝑐𝑖−𝑐𝑖−1)
 𝑠𝑜 𝑡ℎ𝑎𝑡 ∑

1

𝑓′(𝑥𝑖)
𝑛
𝑖=1 = ∑ 𝑛(𝑐𝑖 −

𝑛
𝑖=1

𝑐𝑖−1) = 𝑛.   

 

Q7. Let f(x) be a polynomial with integer co-

efficients it is known that f(b) – f(a) = 1 (whose 

a and b are integers.) Prove that a and b differ 

by unity. 

Sol. : 𝐿𝑒𝑡 𝑓(𝑥) =  𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 +⋯+ 𝑐𝑛𝑥

𝑛 

𝑇ℎ𝑒𝑛 𝑓(𝑏) − 𝑓(𝑎) =  𝑐1(𝑏 − 𝑎) + 𝑐2(𝑏
2 −

𝑎2) + ⋯+ 𝑐𝑛(𝑏
𝑛 − 𝑎𝑛)  

= (𝑏 − 𝑎)[𝑐1 + 𝑐2(𝑏 + 𝑎) +⋯+ 𝑐𝑛(𝑏
𝑛−1 +

𝑏𝑛−2𝑎 +⋯+ 𝑎𝑛)]  

= (𝑏 − 𝑎)𝐼  

Where I is an integer. 

Since (b - a)I = 1, b - a  can be ≠ 1. So that a and 

b differ by unity. 

 

Q8. Prove that the ellipse 
𝒙𝟐

𝒂𝟐
+
𝒚𝟐

𝒃𝟐
= 𝟏,  the 

distance between the centre and any normal 

does not exceed ∣ a- b∣. Find a point on the 

ellipse normal at which is at a distance of ∣a -b∣ 

from center. 

Sol. : Let 𝑃(𝑎 cos 𝜃 , 𝑏 sin 𝜃) represents any pt. 

at on the given ellipse and the slope of the 

tangent at this pt is 
𝑑𝑦

𝑑𝑥
= −

𝑏2𝑥

𝑎𝑦
= −

𝑏 cot𝜃

𝑎
 at 

P. So, the slope of the normal at the pt. P is 
𝑎

𝑏
tan 𝜃, so that the equation of the normal is    

𝑦 − 𝑏 sin𝜃 =
𝑎 tan 𝜃

𝑏
(𝑛. 𝑎 cos 𝜃),

⟹ (−
 𝑎 tan 𝜃

𝑏
) 
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𝑥 + 𝑦 + (−𝑏 sin𝜃 + 𝑎2 sin𝜃) = 0 ……………….(i) 

The distance from (0, 0) to the line (i) is 

𝐷 = ||⎸
𝑏 sin 𝜃 −

𝑎 sin𝜃
𝑏

√𝑎
2 + 𝑎2𝜃
𝑏2

+ 1

⎸||

= |⎸
(𝑏2 − 𝑎) sin𝜃

√𝑏2 + 𝑎2𝑡𝑎𝑛2 𝜃
⎸| 

= ⎸ |
𝑏2 − 𝑎2

√𝑏2 𝑐𝑜𝑠𝑒𝑐2𝜃 + 𝑎 𝑛 𝑠𝑒𝑐2𝜃
⎸| 

For fixed a and b, D is max. when S = 

𝑏2𝑐𝑜𝑠𝑒𝑐2𝜃 + 𝑎2 𝑠𝑒𝑐2𝜃 is min. This happens 

when 
𝑑𝑠

𝑑𝜃
= −2𝑏2 × 𝑐𝑜𝑠𝑒𝑐 𝜃(𝑐𝑜𝑠𝑒𝑐𝜃 𝑐𝑜𝑡𝜃) +

2𝑎2 sec 𝜃 (𝑠𝑒𝑐𝜃 𝑡𝑎𝑛𝜃) 

= −
2𝑏2𝑐𝑜𝑠𝜃

𝑠𝑖𝑛3𝜃
+
2𝑎2 sin𝜃

𝑐𝑜𝑠3𝜃

=  −
2(𝑏2𝑐𝑜𝑠4𝜃 − 𝑎2 𝑠𝑖𝑛4𝜃)

𝑠𝑖𝑛3𝜃 𝑐𝑜𝑠3𝜃
= 0,  

i.e.,  when 𝑡𝑎𝑛2𝜃 =
𝑏

𝑎
. 

∴
𝑑2𝑠

𝑑𝜃2
=
2𝑏2 sin 𝜃

𝑠𝑖𝑛3𝜃
+
6𝑏2𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛4𝜃
+
2𝑎2𝑐𝑜𝑠𝜃

𝑐𝑜𝑠3𝜃

+
𝑏𝑎2𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠4𝜃
 

=
2𝑏2

𝑠𝑖𝑛2𝜃
+
6𝑏2𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛4𝜃
+
2𝑎2

𝑐𝑜𝑠2𝜃
+
6𝑎2𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠4𝜃
> 0. ∀ 𝜃.  

∴ 𝑡𝑎𝑛2𝜃 =
𝑏

𝑎
 corresponds to the men of S given 

by 

S min = |⎸𝑏2(1 + 𝑐𝑜𝑠2𝜃) + 𝑎2 (1 + 𝑎2𝜃)| ⎸ +

𝑎2𝜃 =
𝑏

𝑎
 

= 𝑏2 (1 +
𝑎

𝑏
) + 𝑎2 (1 +

𝑏

𝑎
) =  (𝑎 + 𝑏)2 

Hence the max. value of the reqd. distance is  

𝐷𝑚𝑎𝑥 =  ⎸
𝑏2 − 𝑎2

𝑎 + 𝑏
⎸

=  ⎸𝑏 − 𝑎⎸ 𝑃𝑟𝑜𝑣𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝐷

≤  ⎸𝑏 − 𝑎⎸ 

Equality occurs when +𝑎2𝜃 =
𝑏

𝑎
  𝑜𝑛𝑒 𝑠𝑢𝑐ℎ 𝜃 =

 tan−1
√𝑏

√𝑎
,⟹ sin 𝜃 =

√𝑏

𝑎+𝑏
. cos 𝜃 =

√𝑎

𝑎+𝑏
 ,  

⟹𝑃 ≡ (𝑎 
√𝑎

𝑎 + 𝑏
, 𝑏 

√𝑏

𝑎 + 𝑏
). 

 

Q9. Let y = f(x) = [x] + √𝒙 − [𝒙] be defined for 

all real members x where [x] denote the 

greatest integer of x. Sketch f(x) is the range -5 

≤ x ≤ 5. Also show that given any real number 

𝒚𝟎 there is a real number  𝒙𝟎 such that 𝒚𝟎 =

𝒇(𝒙𝟎). 

Sol. :𝑦 = 𝑓(𝑥) = [𝑥] + √𝑛 − [𝑥] = [𝑥] + √{𝑥} 

where {x} = fractional part of x(i) we know, 0 ≤ 

{x} < 1, 

⟹√{𝑥} ≥ {𝑥},⟹ [𝑥] + √{𝑥} ≥ [𝑥] + {𝑥} 

⟹ 𝑓(𝑥) ≥

𝑥 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ℎ𝑜𝑙𝑑𝑠 𝑤ℎ𝑒𝑛 𝑥 𝑡𝑎𝑥𝑒𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑣𝑎𝑙𝑢𝑒.  

 

∴ The graph of f(x) will be: (ii) again,  

y = f(x) = [x] + √{𝑥}. 
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As 0 ≤ {x} < 1, hence √{𝑥} is always real,  

⟹ f(x) is always real, ⟹ there is  𝑎 𝑥0, ∀ 𝑦0 ∊

𝑅 𝑎𝑛𝑑 𝑥0 𝑎𝑙𝑠𝑜 ∊ 𝑅, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦0 = 𝑓(𝑥0). 

 

Q10. On [0, 1], let f have a continuous 

derivative satisfying 0 < f1 (t) ≤ 1 also f(0) = 0, 

then show that 

[∫ 𝒇(𝒕)
𝒕

𝟎
𝒅𝒕]

𝟐
≤ ∫ [𝒇(𝒕)]𝟑

𝒕

𝟎
𝒅𝒕.  

Sol. : For 0 ≤ 𝑥 ≤ 1,  

Let F(x) ≡[∫ 𝑓(𝑡)
𝑥

0
𝑑𝑡]

2
− ∫ (𝑓(𝑡))

3𝑥

0
𝑑𝑡. 

𝑡ℎ𝑒𝑛 𝐹(0) = 0 𝑎𝑛𝑑 𝐹′(𝑥) = 2  

[∫ 𝑓(𝑡)
𝑥

0

𝑑𝑡] 𝑓(𝑥) − [𝑓(𝑥)]3 

= 𝑓(𝑥) [2∫ 𝑓(𝑡)
𝑥

0

𝑑𝑡 − [𝑓(𝑥)]2]   

We do know that f(x) ≥ 0 for 0 < x < 1 (since 

we are given f(0) = 0 and f(x) > 0) however, 

it is not clear that the second factor in the last 

expression for  F’ is nonnegative therefore, let  

𝐺(𝑥) = 2∫ 𝑓(𝑡)𝑑𝑡 − [𝑓(𝑥)]2
𝑥

0
, 0 ≤ 𝑥 ≤ 1  

𝑡ℎ𝑒𝑛 𝐺(0) = 0, 𝑎𝑛𝑑 𝐺′(𝑥) = 2𝑓(𝑥) −

2𝑓(𝑥)𝑓′(𝑥)  

= 2𝑓(𝑥)[1 − 𝑓′(𝑥)] ≥ 0.  

(The last inequality holds because f(x) ≥ 0 

and by hypothesis 1- f’(x) ≥ 0). It follows 

from their arguments that F(x) ≥ 0 for all x, 

0≤ x ≤ 1; in particular, F(1) ≥ 0 and the proof 

is complete).  

 

 

MODEL TEST PAPER – 8 

Q1. Let 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 are real (n > 1) and 𝑨 +

 ∑ 𝒂𝒊
𝟐𝒏

𝒊=𝟏 <
𝟏

𝒏−𝟏
(∑ 𝒂𝒊
𝒏
𝒊=𝟏 )𝟐, 𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝑨 <

2𝒂𝒊 𝒂𝒋 𝒇𝒐𝒓 𝟏 ≤ 𝒊 ≤ 𝒋 ≤ 𝒖 

 Sol. : By the Cauchy-Schwarz  inequality 

(∑𝑎𝑖

𝑛

𝑖=1

)

2

= [(𝑎1 + 𝑎2) + ⋯+ 𝑎𝑛]
2

< (1 +⋯+ 1)[(𝑎1 + 𝑎1)
2 +⋯

+ 𝑎𝑛
2] 

= (𝑛 − 1) [∑𝑎𝑖
2

𝑛

𝑖=1

+ 2𝑎1𝑎2] 

This together with the given inequality, implies 

that  

𝐴 <  −(∑𝑎𝑖
2

𝑛

𝑖=1

) −
1

𝑛 − 1
(∑𝑎𝑖

𝑛

𝑖=1

)

2

 

< −(∑𝑎𝑖
2

𝑛

𝑖=1

) −
1

𝑛 − 1
[(𝑛 − 1) [∑𝑎𝑖

2

𝑛

𝑖=1

+ 2𝑎1𝑎2]] 

= 2𝑎1𝑎2.  

In a similar manner, 𝐴 < 2𝑎𝑖 𝑎𝑗 𝑓𝑜𝑟 1 ≤ 𝑖 ≤

𝑗 ≤ 𝑛. 

 

Q2. Let m be an integer >1 and define the 

numbers 𝒎𝟏,𝒎𝟐… by postulating 𝒎𝟏 =

𝒎,𝒎𝒊+𝟏 = 𝒎𝒊
𝟐 −𝒎𝒊+𝟏, 𝒊 = 𝟏, 𝟐, 𝟑, …. Show 

that none of the numbers 𝒎𝟐,𝒎𝟑,𝒎𝟒 is 

divisible by m. 
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Sol. : 𝑚2 = 𝑚
2 −𝑚 + 1 = 𝑚(𝑚 − 1) + 1 =

 𝑚2 + 1 where 𝑞2 is an integer. As such 𝑚1 is 

not divisible by m. 

Now we assume 𝑚𝑘 = 𝑚𝑞𝑘 + 1,𝑤ℎ𝑒𝑛 𝑞𝑘 is an 

integer and prove that 𝑚𝑘 + 1 = 𝑚𝑞𝑘+1 + 1, 

when 𝑞𝑘+1 is also an integer. 

𝑚𝑘 + 1 =  𝑚𝑘(𝑚𝑘−1) + 1 = (𝑚𝑞𝑘 + 1)𝑚𝑞𝑘 +

1 = 𝑚𝑞𝑘+1 + 1  

𝑤ℎ𝑜𝑠𝑒 𝑞𝑘+1 = 𝑞𝑘(𝑚𝑞𝑘+1).  

 

Q3. Consider the Fibonacci sequence 0, 1, 2, 3, 

5, 8, 13, 21, 34, 55, 89, 144, ….. in which every 

terms beginning from the third awards is the 

sum of two proceeding terms. Show that there 

exists a number terminating with 4 zeroes in 

the first 100, 000, 001 terms. 

Sol. : Suppose we divide by 7, the sequence of 

remainders is 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 

6, 0, 1, 1……similarly if we divide by any positive 

integer n, we shall get a sequence of 

remainders.  

Since, the original sequence is determined by 

two consecutive terms, this sequence of 

remainders is also determined by two 

consecutive remainders. Since the sequence 

starts with 0 and since there are only n possible 

different remainder and 𝑛2 possible pairs of 

remainder i.e. pair (0, 1) will occur in every 

block of 𝑛2 terms. If we choose n = 104, there 

will be a remainder 0 in every block of 108 

terms and the corresponding member in the 

original sequence will be divisible by 104 and so 

will terminate in 4 zeroes. 

Q4.  n letters 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 are written and 

have to be placed in corresponding envelopes 

marked 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏. The letters are placed at 

random in there envelopes. Find the number 

of ways in which every latter goes in a wrong 

envelopes. 

Sol. : Let 𝑢𝑛 be the required number of ways 

consider two letters 𝑎1, 𝑎2 and corresponding 

envelops 𝐴1, 𝐴2 then for all the letters to be in 

wrong envelops, two mutually exclusive 

possibilities arise. 

(i) 𝑎𝑖  goes into 𝐴2 𝑎𝑛𝑑 𝑎2 goes into 𝐴1 

and the remaining (n -2) 

letters are placed wrongly into the other (n-2) 

envelops. The number of ways for this is 𝑢𝑛+2. 

(ii) 𝑎𝑖  goes into A2 but a2 does not go 

into A1. In this case (n −1) letters go 

wrongly into (n−1) enevlops. This 

can be done in 𝑢𝑛−1 ways. 

Thus the number of ways in which 𝑎1 goes into 

𝐴2 𝑎𝑛𝑑  all the letters are in the wrong 

envelops is 𝑢𝑛−1 + 𝑢𝑛−2. We get the same 

number of ways in which 𝑎1 goes into 

𝐴3, 𝐴4, … , 𝐴𝑛 so that the total number of ways 

is (𝑛 − 1)(𝑢𝑛−1 + 𝑢𝑛−2), but those must be 

same as 𝑢𝑛, so that 𝑢𝑛 = (𝑛 − 1)(𝑢𝑛−1 +

𝑢𝑛−2). 

This is a difference equation of the second 

order. To solve this, we write it as 

𝑢𝑛 − 𝑛𝑢𝑛−1 = −(𝑢𝑛−1 − 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ 𝑢𝑛−2) 

𝑢𝑛 − 𝑛 − 1 ̅̅ ̅̅ ̅̅ ̅̅ 𝑢𝑛−1 = −(𝑢𝑛−2 − 𝑛 − 2̅̅ ̅̅ ̅̅ ̅ 𝑢𝑛−2) 

                                                   

………………………………………………………………………. 

𝑢3 − 3𝑢2 = −(𝑢2 − 2𝑢1). 

Multiplying there equations, we get, 

𝑢𝑛 − 𝑛𝑢𝑛−1 = (−1)
𝑛−2 (𝑢2 − 2𝑢1). 
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Now 𝑢1 = 0, since if there is only one letter and 

one envelope there is no way of the latter going 

into the wrong envelope. Also 𝑢2 = 1, since if 

there are only two letters and two envelopes, 

there is one way of putting letters  in the wrong 

envelope and one way of putting there in the 

right envelope, so that 

𝑢𝑛 + 𝑛𝑢𝑛−1 = (−1)
𝑛−2 

Dividing this equation by n we get, 

𝑢𝑛
𝑛!
−

𝑢𝑛−1
(𝑛 − 1)!

=
(−1)𝑛−2

𝑛!
 

𝑠𝑜 𝑡ℎ𝑎𝑡
𝑢𝑛−1
(𝑛 − 1)

−
𝑢𝑛−2
(𝑛 − 2)!

=
(−1)𝑛−2

(𝑛 − 1)!
 

𝑢2
2!
−
𝑢1
1!
=
(−1)

2!
 

Adding there together we get 

𝑢𝑛
𝑛!
−
𝑢1
1!
=
1

2!
−
1

3!
+
1

4!
… .+

(−1)𝑛−2

𝑛!
 

𝑢𝑛 = 𝑛! [
1

2!
−
1

3!
+ ⋯+

(−1)𝑛

𝑛!
] 

 

Q5. Find the number of real roots of the 

equation 𝐜𝐨𝐬 𝒙 =
𝒙

𝟓𝟎
. 

Sol. : Let 𝑓(𝑥) = cos 𝑥 =
𝑥

50
. 

We have to find the points of intersection 𝑦 =

cos 𝑥  𝑎𝑛𝑑 𝑦 =
𝑥

50
 since −1 ≤ cos 𝑥 ≤ 1,  the 

roots lie between -50 and 50. We also find that 

𝑓(14𝜋) > 0, 𝑓 (
29𝜋

2
) < 0, 𝑓(15𝜋) < 0 

𝑓 (−
29𝜋

2
) > 0, 𝑓(−15𝜋) < 0, 𝑓 (−

31𝜋

2
)

> 0, 𝑓(16𝜋) > 0. 

Using similar results, we find that one root lies 

between 0 𝑎𝑛𝑑
𝜋

2
 and two roots each lie 

between  

3𝜋

2
,
5𝜋

2
,
7𝜋

2
,
9𝜋

2
,
11𝜋

2
,
13𝜋

2
,
15𝜋

2
,
17𝜋

2
,
19𝜋

2
, 

21𝜋

2
,
23𝜋

2
,
25𝜋

2
,
27𝜋

2
,
29𝜋

2
,−
31𝜋

2
, 𝑡𝑜𝑡𝑎𝑙 16 𝑟𝑜𝑜𝑡𝑠. 

Thus total number of real roots is 31. 

 

Q6. ABCD is a cyclic quadrilateral and M, N, P, Q 

are the mid point of the sides CD, DA, AB, BC 

respectively. MS, NT, PN, QV are perpendicular 

to AB, BC, CD, DA respectively. Prove that they 

MN and PQ are each parallel to AC and each 

equal to 
𝟏

𝟐
 AC so that MNPQ is a parallelogram. 

 

Middle point of MP coincides with the middle 

point of NQ. Let 0 be the centre of the 

circumcircle of ABCD and let PV and intersect at 

X. 

MP ⊥AB, MS ⊥ AB 

∴ OP ∥ MS 

Similarly since OM ⊥ CD, PV ⊥ CD 

∴ ON ∥ PX 

OPVXM is a parallelogram. 
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∴ They middle point of OX coincides with the 

middle point of MP. Similarly y be the point of 

intersecting of perpendiculars drawn from N 

and Q of opposite sides, then by the same 

argument the middle point of NQ coincides with 

the middle point of OY.  

However, the middle points MP and NQ 

coincide. Therefore, the middle point of OX and 

OY coincide, therefore X and Y coincide.  

As such perpendiculars from P, Q, M, N on 

opposite sides are concurrent. 

 

Q7.  Let P be a point outside a square ABCD. 

Find the focus of P if the shortest angle 

between two rays starting from P and 

including the whole square between them is 𝜃. 

Show that the locus is a closed curve consisting 

of eight circular arcs. Find the perimeter of this 

curve and also the area enclosed by it. 

Sol. : The symmetries  of the square will also  be 

the symmetries of the desired locus, so that the 

desired locus will be symmetrical about the two 

right bisectors of the two pairs of opposite 

parallel sides as well as about the two 

diagonals. It will also by unchanged if the 

square is rotated about the centre through a 

right angle on two right angles or three rt. 

Angles. 

 

 

Case A. P is a in region 1: The square is 

obviously contained between the rays PC and 

PD and so ∠CPD = 𝜃 is the smallest angle 

between the rays for which the rays can 

include the square. Since ∠CPD is const., the 

locus of P is in region I is obviously the one of 

segment of a circle (fig. I). 

Now three cases arise:  

(i) 𝜃 =
𝜋

2
. In this case the locus of P is 

obviously the semicircle with CD as 

diameter for convenience we shall 

take the side of the square as of 

unit length. The locus in this case is 

given by four semi-circle areas (fig. 

2). The total areas enclosed = 1 +

4.
𝜋

2
(
1

2
)
2
= 1 +

𝜋

2
 and the perimeter 
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of the fig (2) locus is 1 + 4 × 𝜋
1

2
=

2𝜋.  

(ii) 𝜃 >
𝜋

2
.In this case we shall get fig (3) 

and the centre of the circular are 

will be written the square. If O is 

the centre of the circle ∠COD = 2𝜋 - 

2𝜃. If r is the radius of the circle 

2𝑟 sin(𝜋 − 𝜃) = 1 𝑜𝑟 𝑟 =
1

2
sin 𝜃. 

Area enclosed by arc CPD and the 

st. line CD = area of sec OCPD − area 

of 𝛥 COD =
1

2
𝑟2(2𝜋 − 2𝜃) −

1

2
𝑟2 sin(2𝜋 − 2𝜃) =  𝑟2 

(𝜋 − 𝜃 −
1

2
sin 2𝜃) =

1

85𝑖𝑟2𝜃
 

(2𝜋 − 2𝜃 − sin 2𝜃). Thus total area 

enclosed by the locus when 𝜃 >
𝜋

2
 is 

given by 𝐴(𝜃) =
1

25𝑖𝑛2𝜃
(2𝜋 − 2𝜃 −

sin2𝜃) + 1. Now Lt 𝐴(𝜃) = 1 +
𝜋

2
 

as expected. Also Lt
0→𝜋

1

2𝑠𝑖𝑛2𝜃
(2𝜋 −

2𝜃 − sin 2𝜃)  

   = Lt
0→𝜋

 
−2−2cos2𝜃

4 sin𝜃 cos𝜃
=

 Lt
0→𝜋

  
4 sin2𝜃

4(𝑐𝑜𝑠2𝜃−𝑠𝑖𝑛2𝜃)
= 0,  

So that Lt
0→𝜋
  [𝐴(𝜃)] =  1. 

This is also obvious since in this case the locus 

of P coincides with the four sides of the square 

itself. Again if P(𝜃) is the length of the perimeter 

𝑃(𝜃) = 4𝑟 (2𝜋 − 2𝜃) =
4(𝜋−𝜃)

sin𝜃
. 

This approaches 2𝜋 as 𝜃→
𝜋

2
 as expected. If also 

approaches Lt
0→𝜋

 
4(𝜋−𝜃)

sin𝜃
= Lt

0→𝜋
 
−4

cos𝜃
= 4, again 

as expected. Thus we get the results A𝜃 = 1 +
2

2𝑠𝑖𝑛2𝜃
(2𝜋 − 2𝜃 − sin 2𝜃); 𝑃(𝜃) =

4(𝜋−𝜃)

sin𝜃
;  𝜃 ≥

𝜋

2
. 

(iii) When 𝜃 ≤
1

2
. In this case the locus 

in region I is an arc of circle fig. 

(4) and the area enclosed under it 

in region 1 = area of segment + 

area of rectangle =
1

2
𝑟22𝜃 +

1

2
1. 𝑥 =  𝑟2𝜃 +

1

2
cot 𝜃 =

4

4𝑠𝑖𝑛2𝜃
+

1

2
.
cos𝜃

sin𝜃
  

Which approaches 𝜋 as 𝜃 → 
𝜋

2
 and →∞ 𝑎𝑠 𝜃 →

0. Also length of the circular arc = r.2.𝜃 = 
2𝜋

2 sin𝜃
=

𝜃

sin𝜃
. 

Case B. P. lies in region II : The locus in this 

region on is still the arc QR  of a circle whose 

centre will be within the square if 𝜃 >
𝜋

4
 and 

fig (5) and outside the square if 𝜃 >
𝜋

4
. The 

square is contained bet can be rays PA and PC 

so that  ∠ APC= 𝜃, ∠AQC = 𝜃, ∠ARC = 𝜃. 

∴∠ QCD = 
𝜋

2
− 𝜃, ∠𝐴𝑂′𝐶 = 2𝜃, ∠𝑄𝑂′𝑅 =

2∠𝑄𝐶𝑅 = 2∠𝑄𝐶𝐷 = 𝜋 − 2𝜃 

∴ ∠QO’C +∠RO’A 

= 2𝜋 - 2𝜃- (𝜋- 20) = 𝜋 but by symmetry there 

angles are equal, so that 

∠QO’C = ∠RO’A =  
𝜋

2
. Area of RPQDR = Area 

of sec. 

QO’R  - 2 areas 4QDO’ = 
1

2
𝑟′2 

(𝜋 − 2𝜃) − 2.
1

2
𝑟′𝑥𝑠𝑖𝑛 (𝜃 −

𝜋

4
)

=
1

2
.

1

2𝑠𝑖𝑛2𝜃
 (𝜋 − 2𝜃)

−
1

√2 sin𝜃
cot 𝜃 (sin 𝜃

1

√2

− cos 𝜃
1

√2
 ) =

1

4𝑠𝑖𝑛2𝜃
 

(𝜋 − 2𝜃) −
1

2

cos 𝜃

𝑠𝑖𝑛2𝜃
(sin 𝜃 − cos 𝜃) 
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It can be shown that the same results holds 

when 𝜃 <
𝜋

2
, the locus is given in fig (4) and A(𝜃) 

= 4× 𝑎𝑟𝑒𝑎 𝐴1 + 4 area 𝐴2 + 𝐴3𝑖 𝐴(𝜃) =
4

𝑠𝑖𝑛2𝜃
+
2 cos𝜃

𝑠𝑖𝑛𝜃
+
𝜋−2𝜃

𝑠𝑖𝑛2𝜃
−
2 cos𝜃

𝑠𝑖𝑛2𝜃
(sin𝜃 − cos 𝜃) +

 10 ≤
𝜋

2
, then you do yourself. 

 

Q8. Consider the function f(x) = 𝐬𝐢𝐧{
𝝅

𝟒
(𝒙 −

[𝒙])} if [x] is odd, x ≥0 = 𝒄𝒐𝒔 {
𝝅

𝟒
(𝟏 − 𝒙 +

[𝒙]}𝒊𝒇 [𝒙] is even x ≥ 0, where [x] denote the 

greatest integer ≤ x, sketch the graph of the 

function f(x) determine the points of 

discontinuities of f(x) and the points where 

f(x) is not differentiable. 

Sol. : Let 2𝑥 > 𝑥 > 2𝑚 − 1, we can write, x = 

(2m- 1)+ 8, where 1 > 8 ≥ 0 

∴ [x] = (2m- 1) which is odd. 

∴ f(x) = sin (
𝜋

4
(𝑥 − [𝑥]) ) = sin [

𝜋

4
{(2𝑚 −

1) + 𝛿 − (2𝑚 − 1)}] = sin
𝜋

4
𝛿,𝑤ℎ𝑒𝑟𝑒 1 > 𝛿 ≥

0. 

Let, 2m +1 > x ≥ 2m. 

 

∴ x = 2m + 𝛿’ 

Where 1 > 𝛿’ ≥ 0. 

[x] = 2m, which is even. 

∴ 𝑓(𝑥) = cos [
𝜋

4
{1 − 𝑥 + [𝑥]}] = cos [

𝜋

4
{1 −

(2𝑚 + 𝛿1) + 2𝑚}] = cos {
𝜋

4
(1 − 𝛿1)} 

Let us examine the case when m = 1, [x] = 

odd. 

2 >x ≥ 1.  

∴ x = 1+ 𝛿, where 0 ≤ 𝛿 <1. 𝛿 = 0, x = 4, 𝛿 → 

1, x → 2. f(a) = sin
𝜋

4
 𝛿[𝑥] = 𝑒𝑣𝑒𝑛. 

2 ≤ x < 3, x = 2 + 𝛿’ where 0 ≤ 𝛿’ < 1, 𝛿’ = 0, 

x = 2. 

𝛿’ → 1, x → 3, f(x) = cos {
𝜋

4
(1 − 𝛿1)}. From the 

curve we can safely conclude that f(x) is 

discontinuous for every odd integral value of 

x, hence it is also not differentiable. 

 

Q9. Let {𝑪𝒏} be an infinite sequence of circles 

lying in the positive quadrant of the xy-plane, 

with strictly decreasing radii and satisfying the 

following conditions. Each  𝑪𝒏 touches both 

the X-axis and Y-axis. Further for all n ≥ 1, the 

circle 𝑪𝒏+𝟏 touches the circle 𝑪𝒏 externally. If 

𝑪𝟏 has radius 10 cm, then show that sum of 

the areas of all these circle is 
𝟐𝟓𝝅

𝟑√𝟐−𝟒
𝒄𝒎𝟐. 

Sol. : O𝑂1 = 𝑅1√2. 

∴ 𝑂𝑃 = 𝑅1√2 − 𝑅1  

∴ 𝑂𝑄 = 𝑅1√2 + 𝑅1 = 𝑅1(√2 + 1).  

∴ 𝑅1 =
𝑂𝑄

√2+1
.  

𝑁𝑜𝑤,𝑂𝑃 =  𝑅2(√2 + 1), 𝑅2 =
𝑂𝑃

√2 + 1

= 𝑅1
√2 − 1

√2 + 1
.  
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∴ 𝑅3 = 𝑅2.
√2 − 1

√2 + 1
= 𝑅1 (

√2 − 1

√2 + 1
. ) 

 

∴ 𝐴𝑟𝑒𝑎 =  𝜋(𝑅1
2 + 𝑅2

2 +⋯+∞)  

= 𝜋 {𝑅1
2 + 𝑅2

2 (
√2 − 1

√2 + 1
) + 𝑅1

2 (
√2 − 1

√2 + 1
)

4

+⋯+∞} 

=  𝜋𝑅1
2 {1 + (

√2 − 1

√2 + 1
)

2

+ (
√2 − 1

√2 + 1
)

4

+⋯∞} 

=  𝜋𝑅1
2

{
 
 

 
 

1

1 − (
√2 − 1

√2 + 1
)

2

}
 
 

 
 

=  𝜋𝑅1
2 3 + 2√2

4√2
 

= 𝜋𝑅1
2 3√2 + 4

8
=
𝜋

8
. 𝑅1

2 18 − 16

3√2 − 4

=
𝜋

4
. 100.

1

3√2 − 9
 

(∵ 𝑅1 = 10 𝑐𝑚) =
25𝜋

(3√2 − 4)
𝑠𝑞. 𝑐𝑚.  

 

Q10. Prove that for 𝟎 ≤ 𝒂 < 𝑏 <
𝝅

𝟐
,
𝒃−𝒂

𝒄𝒐𝒔𝟐𝒂
<

𝐭𝐚𝐧𝒃 − 𝐭𝐚𝐧𝒂 <
𝒃−𝒂

𝒄𝒐𝒔𝟐𝒃
. 

Sol. : Consider the function f(x) is tan x on [a, 

b]. According to the mean value theorem 

there is a point c on (a, b) such that 
𝑓(𝑏)− 𝑓(𝑎)

𝑏−𝑎
= 𝑓′(𝑐) 

In this case, this means that 

tan𝑏−tan𝑎

𝑏−𝑎
= 𝑠𝑒𝑐2𝑐 - for same c in (a, b). 

𝑠𝑒𝑐2𝑎 < 𝑠𝑒𝑐2𝑐 < 𝑠𝑒𝑐2𝑒 𝑓𝑜𝑟 …0 < 𝑎 < 𝑏 <
𝜋

2
 

Let 𝑓′′ 𝑅 → 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓′′(𝑥) ≥ 0, then 

𝑓 
𝑥 + 𝑦

2
≤
𝑓(𝑥) + 𝑓(𝑦)

2
 

And if 𝑓′′(𝑥) ≤ 0, 𝑡ℎ𝑒𝑛 𝑓 (
𝑥+𝑦

2
) >

𝑓(𝑥)+𝑓(𝑦)

2
 

For example, for real number a and b, 

𝑓 (
𝑥 + 𝑦

2
)
2

<
𝑥2 + 𝑦2

2
. 

Because f(x) = 𝑥2 is a convex function. As 

another example if 0 < x, y < 𝜋 

sin (
𝑥 + 𝑦

2
) ≥

sin 𝑥 + sin 𝑦

2
 

Because f(x) = sin x is a concave function on 

(0, 𝜋). 

 

MODEL TEST PAPER 9 

Q1. If n arithmetic means 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏 and n 

geometric means 𝑮𝟏, 𝑮𝟐, … , 𝑮𝒏 we inscribed 

between two positive numbers a and b, show 

that 
𝟏

𝒙
(𝑨𝟏 + 𝑨𝟐 +⋯𝑨𝒏) ≥  √𝑮𝟏, 𝑮𝟐, …𝑮𝒏

𝒏   

Sol. : If d is the common difference of the A.P 

and r is the common ratio of G.P., then 

𝑎 + (𝑛 + 1)𝑑 = 𝑏, 𝑎𝑟𝑛+1 = 𝑏,   
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𝑠𝑜 𝑡ℎ𝑎𝑡 𝐴𝑖 + 𝑎 + 𝑖𝑑 = 𝑎 + 𝑖
𝑏 − 𝑎

𝑛 + 1

=
𝑛 + 1 − 𝑖

𝑛 + 1
𝑎 +

𝑖

𝑛 + 1
𝑏  

𝑎𝑛𝑑 𝐺𝑖 = 𝑎𝑟𝑖 =  𝑎 (
𝑎

𝑏
)

𝑖

𝑛 + 1

= 𝑎 
𝑛 + 1 − 𝑖

𝑛 + 1
.

𝑖

𝑏𝑛 + 1
.  

So that Ai and Gi are the weighted arithmetic 

and  geometric mean between the two 

numbers a and b, when the weights one 
(𝑛+1−𝑖)

(𝑛+1)
 𝑎𝑛𝑑

𝑖

(𝑛+1)
 but the weighted arithmetic 

mean of two positive numbers ≥ weighted 

geometric means. If the weights are the same 

and the equality sign holds only when the two 

numbers are equal so that. 

𝐴𝑖 ≥ 𝐺𝑖 𝑎𝑛𝑑 𝐴𝑖 = 𝐺𝑖 , 𝑖𝑓 𝑎 = 𝑏, 𝑖 = 1, 2, … 𝑛 

then each arithmetic mean ≥ corresponding 

geometric mean. Again since, we get 
𝐴1+𝐴2+⋯+𝐴𝑛 

𝑛
≥ √𝐴1, 𝐴2, …𝐴𝑛

𝑛 ≥ √𝐺1, 𝐺2, …𝐺𝑛
𝑛    

and the equality sign holds if a = b. 

 

Q2. Let [m] denote the largest integer ≤ m, 

such that the equation [𝒙] + [𝟐𝒙] + [𝟒𝒙] +

[𝟖𝒙] + [𝟏𝟔𝒙] + [𝟑𝟐𝒙]= M has no real so has 

no real solution unless M is of the form 63k or 

63k +1 or 63k + 7 or 63k + 15 or 63k+ 31 

where, k is any positive integer, negative or 

zero. 

Sol. : Let 𝑓(𝑥) = [𝑥] + [2𝑥] + [4𝑥] + [8𝑥] +

[16𝑥] + [32𝑥] 

Then f(x) = 63k when 𝑘 ≤ 𝑥 < 𝑘 +
1

32
. 

= 63𝑘 + 1 𝑤ℎ𝑒𝑛 𝑘 +
1

32
≤ 𝑥 < 𝑘 +

1

16
 

= 63𝑘 + 3 𝑤ℎ𝑒𝑛 𝑘 +
1

16
≤ 𝑥 < 𝑘 +

1

8
 

= 63𝑘 + 7 𝑤ℎ𝑒𝑛 𝑘 +
1

8
≤ 𝑥 < 𝑘 +

1

4
 

= 63𝑘 + 15 𝑤ℎ𝑒𝑛 𝑘 +
1

4
≤ 𝑥 < 𝑘 +

1

2
 

= 63𝑘 + 31 𝑤ℎ𝑒𝑛 𝑘 +
1

2
≤ 𝑥 < 𝑘 + 1 

So that f(x) can take only when six sets of 

values and f(x) = M has no real solution when 

M is different from these value. 

 

Q3. If a, b, c are the roots of 𝒙𝟑 − 𝒙𝟐 − 𝒙 − 𝟏 =

𝟎, so that (i) a, b, c are distinct; (ii) 
𝒂𝟏𝟗𝟗𝟐−𝒃𝟏𝟗𝟗𝟐

𝒂−𝒃
+
𝒃𝟏𝟗𝟗𝟐−𝒄𝟏𝟗𝟗𝟐

𝒃−𝒄
+
𝒄𝟏𝟗𝟗𝟐−𝒂𝟏𝟗𝟗𝟐

𝒄−𝒂
 is an 

integer. 

Sol. : The polynomial f(x) =𝑥3 − 𝑥2 − 𝑥 − 1 

has only are change of sign but f(-x) =−𝑥3 −

𝑥2 + 𝑥 − 1 has two change of sign. As such by 

Descartes rules of signs f(x) = 0 can have at 

the positive real root and at most two 

negative real roots and all the roots can be 

real. Now 𝑓(−∞) =  −∞ < 0, 𝑓(0) =

−1, 𝑓(1) =  −2 < 0, 𝑓(2) = 1 > 0, 𝑓(∞ =

 ∞ > 0).  Thus as x goes from −∞ to 0, f(x) 

goes −∞ 𝑡𝑜 − 1 and as x goes from 0 to ∞,  

f(x) goes −1 𝑡𝑜 ∞. 

Again, f’(x)= 3𝑥2 − 2𝑥 − 1 

𝑓′(𝑥) = 0 ⟹ 𝑥 = 1 𝑜𝑟, 𝑥 =  −
1

3
 

𝑎𝑛𝑑 𝑓 (
1

3
) =  −

1

27
−
1

9
+
1

3
− 1 =

32

27
< 0 

𝑓′′(1) = 4 > 0. 𝑓′′ (−
1

2
) =  −9 < 0. 

Thus f(x) has a local maximum at x = −
1

3
 

when the local maximum value is −
22

27
 and 

has a local minimum at 2 = 1 



Solving Mathematical Problems 

 

266 
 

Where the local maximum value is -2. 

Then f(x) = 0 has three roots one real and 

positive lying between 1 and 2 and the other 

two are complex in the negative real part. All 

the three roots are distinct. 

For the second part, 

Let 𝑥𝑛 =
𝑎𝑛−𝑏𝑛

𝑎−𝑏
, 𝑦𝑛

𝑏𝑛−𝑐𝑛

𝑏−𝑐
, 𝑧𝑛

𝑐𝑛−𝑎𝑛

𝑐−𝑎
,  

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑥𝑛+3 =
𝑎𝑛+3 − 𝑏𝑛+3

𝑎 − 𝑏

=
𝑎𝑛(𝑎2 + 𝑎 + 1) − 𝑏𝑛(𝑏2 + 𝑏 + 1)

𝑎 − 𝑏
 

=
𝑎𝑛+2 − 𝑏𝑛+2

𝑎 − 𝑏
+
𝑎𝑛+1 − 𝑏𝑛+1

𝑎 − 𝑏
+
𝑎𝑛 − 𝑏𝑛

𝑎 − 𝑏
 

= 𝑥𝑛+2 + 𝑥𝑛+1 + 𝑥𝑛.  

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑦𝑛+3 = 𝑦𝑛+2 + 𝑦𝑛+1 + 𝑦𝑛  

  𝑧𝑛+3 = 𝑧𝑛+2 + 𝑧𝑛+1 + 𝑧𝑛. 

So that (𝑥𝑛+3 + 𝑦𝑛+3 + 𝑧𝑛+3) = (𝑥𝑛+2 +

𝑦𝑛+2 + 𝑧𝑛+2) + (𝑥𝑛+1 + 𝑦𝑛+1 + 𝑧𝑛+1) +

 (𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛) 

𝑙𝑒𝑡 𝑢𝑛 = 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛.  

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑢𝑛+3 = 𝑢𝑛+2 + 𝑢𝑛+1 + 𝑢𝑛  

So that if 𝑢𝑛, 𝑢𝑛+1, 𝑢𝑛+2 one integers, then 

𝑢𝑛+1 ℎ𝑎𝑠 𝑎𝑙𝑠𝑜 𝑏𝑒 𝑐𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟. 

Now 𝑢1 = 3, 𝑢2 = 2(𝑎 + 𝑏 + 𝑐) = 2, 𝑢3 =

2(𝑎2 + 𝑏2 + 𝑐2) + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 2[1 + 2] −

1= 5. 

So that 𝑢1, 𝑢2, 𝑢3 are integers, then applying 

the result proved earlier in succession are we 

get 𝑢4, 𝑢5, 𝑢6 are all integers. In fact we get 

the sequence 3, 2, 5, 10, 17, 32, 59, 108, 199, 

366, …. 

 

Q4. Given any 13 real numbers, show that 

there are two of those 𝒂𝒊, 𝒂𝒋 such that 𝟎 ≤

𝒂𝒊−𝒂𝒋

𝟏+𝒂𝒊 𝒂𝒋
≤
√𝟑−𝟏

√𝟑+𝟏
. 

Sol. : Consider the function y = tan x, then as x 

goes from –
𝜋

2
 𝑡𝑜

𝜋

2
 y goes from −∞ 𝑡𝑜 ∞. 

Divide the interval –
𝜋

2
 𝑡𝑜

𝜋

2
 into 12 equal parts 

each of length 
𝜋

12
. If 𝐶1, 𝐶2, … . 𝐶12 are given 

real numbers then 

tan−1 𝐶1 tan
−1 𝐶2… . tan

−1 𝐶12  lie between 

–
𝜋

2
 ,
𝜋

2
 but by the pigon hole principle all the 

thirteen cannot be in 12 distinct intervals 

unless at least two of there are in the same 

interval. Let tan−1 𝑒𝑖 and tan−1 𝑒𝑗 be in the 

same interval, then 

0 ≤ 𝑐𝑖 − 𝑐𝑗 ≤ 15°  

0 ≤  tan−1(𝑐𝑖 − 𝑐𝑗) ≤  tan
−1 15°  

0 ≤
tan−1 𝑐𝑖 − tan

−1 𝑐𝑗

1 + tan−1 𝑐𝑖 tan
−1 𝑐𝑗

≤
√3 − 1

√3 + 1
.  

 

Q5. If 𝒙𝟏, 𝒙𝟐 are positive and 𝒙𝒏+𝟏 =
𝟏

𝟐
(𝒙𝒏 +

𝒙𝒏−𝟏). Show that the sequences, 𝒙𝟏, 𝒙𝟑, 𝒙𝟓…. 

and 𝒙𝟐, 𝒙𝟒, 𝒙𝟔… .. are the one increasing and 

the other decreasing and both approach to a 

common limit 
𝟏

𝟐
(𝒙𝟏 + 𝟐𝒙𝟐). 

Sol. : 𝑥𝑛+1 =
1

2
(𝑥𝑛 + 𝑥𝑛−1) 

𝑥𝑛−1 − 𝑥𝑛 =
1

2
(𝑥𝑛−1 − 𝑥𝑛) =  −

1

2
(𝑥𝑛 − 𝑥𝑛−1) 

As such 𝑥𝑛 − 𝑥𝑛−1 and 𝑥𝑛+1 − 𝑥𝑛 have 

opposite signs and if 𝑥𝑛 > 𝑥𝑛−1 𝑡ℎ𝑎𝑛 𝑥𝑛+1 <

𝑥𝑛. 

Also 𝑥𝑛 =
1

2
(𝑥𝑛−1 + 𝑥𝑛−2), 𝑥𝑛−1 =

1

2
(𝑥𝑛−2 +

𝑥𝑛−3) 
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So that 𝑥𝑛+1 =
1

2
[
1

2
𝑥𝑛+1 +

1

2
𝑥𝑛−2 + 𝑥𝑛−1] =

1

2
[
−3

2
𝑥𝑛−1 +

1

2
(2𝑥𝑛−1 − 𝑥𝑛−2)] 

=
1

4
[5𝑥𝑛−1 − 𝑥𝑛−3]. 

⟹ 𝑥𝑛+1 − 𝑥𝑛−1 =
1

4
[𝑥𝑛−1 − 𝑥𝑛−3] 

So that 𝑥𝑛−1 − 𝑥𝑛−1 has the same sign as 

𝑥𝑛−1 − 𝑥𝑛−3 

So that 𝑥𝑛+1 − 𝑥𝑛−1 = (
1

4
)
2
(𝑥𝑛−3 − 𝑥𝑛−5) =

 (
1

4
)
 3 
(𝑥𝑛−5 − 𝑥𝑛−7) 

𝑥2𝑛+1 − 𝑥2𝑛+1 = (
1

2
)
2𝑛−2

(𝑥3 − 𝑥1)

=  (
1

2
)
2𝑛−1

(𝑥2 − 𝑥1) 

In the same way,  

𝑥2𝑛 − 𝑥2𝑛−2 = (
1

2
)
2𝑛−4

(𝑥1 − 𝑥2)

=  (
1

2
)
2𝑛−4

 
1

2
(𝑥3 − 𝑥2) 

= (
1

2
)
2𝑛−2

(𝑥1 − 𝑥1) 

Then if 𝑥1 > 𝑥2, 𝑥2 < 𝑥4 < 𝑥6 < 𝑥8… < 𝑥𝑛 < 

and the sequence {𝑥2𝑛} is a monotonic 

decreasing sequence. Also, 𝑥1 > 𝑥3 > 𝑥5 >

𝑥7… > 𝑥2𝑛−1 > ⋯ and the sequence {𝑥2𝑛+1} 

is monotonic decreasing sequence.  

Similarly, if 𝑥1 < 𝑥2, the sequence {𝑥2𝑛} is 

monotonic decreasing and the sequence 

{𝑥2𝑛+1} is monotonic increasing. 

In either case, out of the sequences 

{𝑥2𝑛−1}𝑎𝑛𝑑{𝑥2𝑛}, one is increasing and the 

other is decreasing. 

Also Lt
𝑛→∞

(𝑥2𝑛 + 2 − 𝑥2𝑛) = 0, Lt
𝑛→0
 (𝑥2𝑛+1 +

2 − 𝑥2𝑛−1) = 0.  

So that both the odd and even numbered 

sequences are convergent. If 𝑥2𝑛 → 𝑎, 𝑥2𝑛−1 →

𝑏, 𝑡ℎ𝑒𝑛 𝑏 =
1

2
(𝑎 + 𝑏)𝑎, 𝑏 = 𝑎. 

Thus both sequences approach a common 

limit. 

Q6. Let f; R→ R satisfies 𝒇 (
𝒙+𝒚

𝟐
) <

𝒇(𝒙)+𝒇(𝒚)

𝟐
 ∀𝒙, 𝒚 in an interval (a, b) x ≠ y, show 

that 𝒇 {
𝟏

𝒏
(𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏)} <

𝟏

𝒏
 

{𝒇(𝒙𝟏) + 𝒇(𝒙𝟐) + ⋯+ 𝒇(𝒙𝒏)} whenever the 

𝒙𝒊′𝒔 are in (a, b) with 𝒙𝒊 ≠ 𝒙𝒋 for at least are 

pair (i, j). 

Sol. : Assume the result holds for n = 𝑚𝑖 we 

will show if holds also for n = 2m. We have  

𝑓 (
𝑥1 + … .+ 𝑥2𝑚

2𝑚
) 

= 𝑓 {
1

2
(
𝑥1 +⋯+ 𝑥𝑚

𝑚
+
𝑥𝑚+1 +⋯+ 𝑥2𝑚

2𝑚
)}

≤
1

2
[𝑓 (

𝑥1 +⋯+ 𝑥𝑚
𝑚

)

+  𝑓 (
𝑥𝑚+1 +⋯+ 𝑥2𝑚

𝑚
)]

<
1

2
 {𝑓 

(𝑥1) + ⋯+ 𝑓(𝑥𝑚)

𝑚

+  𝑓 (
𝑥𝑚+1 +⋯+ 𝑥2𝑚

𝑚
)} 

=
𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥2𝑚)

2𝑚
 

Thus, by induction, the result holds for 4 all 

powers of 2. Now suppose that n >2 and n is 

not a power of 2; i.e. let   

2𝑚−1 < 𝑛 < 2𝑚 for some integer m. Let k = 

2𝑚 − 𝑛 and set 𝑦𝑖 =
(𝑥1+⋯+𝑥𝑛)

𝑛
 for i = 1, 2, …, 

k. Then 𝑥1 , 𝑥2, … . , 𝑘𝑛, 𝑦1, … , 𝑦𝑘 are 2𝑚 
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numbers in the interval (a, b) and so our 

preceding argument implies that 

𝑓 
(𝑥1 +⋯+ 𝑥𝑛 + 𝑦1 +⋯+ 𝑦𝑘)

2𝑚

<
𝑓(𝑥1 ) + ⋯+ 𝑓(𝑦𝑘)

2𝑚
. 

But note that 𝑓 
(𝑥1 +⋯+𝑥𝑛+𝑦1 +⋯+𝑦𝑘)

2𝑚
 

= 𝑓
𝑥1 +⋯+ 𝑥𝑛 + 𝑘(𝑥1 +⋯+ 𝑥𝑛)

2𝑚
 

= 𝑓 (
𝑛(𝑥1 +⋯+ 𝑥𝑛) + (2

𝑚 − 𝑛)(𝑥1 +⋯+ 𝑥𝑛)

𝑛 × 2𝑚
) 

= 𝑓
(𝑥1 +⋯+ 𝑥𝑛)

𝑛
. 

Making this substitution into the last 

inequality, 

𝑓 
(𝑥1 +⋯+ 𝑥𝑛)

𝑛

<
𝑓(𝑥1 ) + ⋯+ 𝑓(𝑥𝑛) + 𝑓(𝑦1 ) + ⋯+ 𝑓(𝑦𝑛)

2𝑚
 

=
𝑓(𝑥1 ) +⋯+ 𝑓(𝑥1𝑛) + 𝑘𝑓(𝑥1 +⋯𝑥𝑛)/𝑛

2𝑚
 

Multiplying each side by 2𝑚 yields 2𝑚 

𝑓 (
𝑥1 +⋯+𝑥𝑛

𝑛
) <  𝑓(𝑎1 ) + ⋯+ 𝑓(𝑥𝑛 ) +

(2𝑚 − 𝑛)𝑓 (
𝑥1 +⋯+𝑥𝑛 

𝑛
) <

𝑓(𝑥1 )+⋯+𝑓(𝑥𝑛 )

𝑛
. 

 

Q7. Among all triangular having a fixed LA and 

an inscribed circle of fixed radius r, determine 

the triangle has the least perimeter. 

Sol. : Perimeter 2S = a + b+ c 

= 𝑟 [cot
𝐵

2
+ cot

𝐶

2
] + 𝑟 [cot

𝐶

2
+ cot

𝐴

2
]

+ 𝑟 [cot
𝐴

2
+ cot

𝐵

2
] 

= 2𝑟 [cot
𝐴

2
+ cot

𝐵

2
+ cot

𝐶

2
]  

Since A and r are fixed, the perimeter is 

minimum, when  

cot
𝐵

2
+ cot

𝐶

2
=

sin
𝐵+𝐶

2

sin
𝐵

2
sin

𝐶

2

=
cos

𝐴

2

sin
𝐵

2
sin

𝐶

2

 is minimum 

when sin
𝐵

2
sin

𝐶

2
 

=
1

2
[cos

𝐵−𝐶

2
− cos

𝐵+2

2
] =

1

2
[cos

𝐵−𝐶

2
− sin

𝐴

2
] is 

maximum i.e. when cos
𝐵−𝐶

2
 is maximum i.e. 

when B = C i.e. when the triangle is isosceles. 

 

Q8. Suppose f(x) is a real valued differentiable 

function defined a [1, ∞) with f(1) = 1. Also 

f(x) satisfies  

𝒇′(𝒙) =
𝟏

𝒙𝟐 + 𝒇𝟐(𝒙)
. 

𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝐋𝐢𝐦
𝒙→∞

𝒇(𝒙)  𝒆𝒙𝒊𝒔𝒕𝒔 𝒂𝒏𝒅 𝒊𝒔 𝒍𝒆𝒔𝒔 𝒕𝒉𝒂𝒏 𝟏

+
𝟏

𝟒
𝝅. 

Sol. : By the fundamental theorem of calculus  

𝑓(𝑥) −  𝑓(1) =  ∫ 𝑓′(𝑥)
𝑥

1

𝑑𝑥 

Observe that f(x) is increasing, moreover, f(x) 

> 1 for all x > 1. 

Since f(1) = 1 and f’(x)>0. Therefore 

𝑓(𝑥) − 𝑓(1) =  ∫
𝑑𝑥

𝑥2 + 𝑓2(𝑥)
<  ∫

𝑑𝑥

1 + 𝑥2

𝑥𝑥

1

 

= [tan−1 𝑥]
𝑥

1
=  tan−1 𝑥 −

𝜋

4
<
𝜋

2
−
𝜋

4
<
𝜋

4
. 

Thus f(x) is increasing and bounded above by 

1 +
1

4
𝜋, and consequently, Lim

𝑥→∞
𝑓(𝑥) exists 

and is less than 1 +
1

4
𝜋. 
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Q9. A rabbit runs round a circular path with a 

certain uniform speed v. A dog follows it from 

the origin in such a way that the origin, dog, 

rabbit are always on the same straight line and 

the dog runs with the same speed v. Show that 

the dog will catch the rabbit  when it has run 

round a quarter of the circle. 

Sol. : Consider the semi-circle with centre at 

(0,
𝑎

2
)  𝑎𝑛𝑑 𝑟𝑎𝑑𝑖𝑢𝑠

𝑎

2
 and let D be the position 

of the dog on the semicircle and R be the 

position of the rabbit on the circle, so that 

ODR is a straight line .If ∠AOD = 𝜃, ∠ OCD= 

2𝜃  and arc OD = arc AR, since the distance 

moved by the dog = distance moved by the 

rabbit. The semicircle and the circle meet at B 

and the dog catches the rabbit here. 

 

Q10. Draw the graph of y = [sin x]+ sin x, 

where [x] denotes the greatest integer 

function. 

Sol. : -1 ≤ sin x ≤ 1. ∴ 0 ≤ |sin x| ≤ 0 and [sin 

x] = -1, 0, 1, then -1 ≤ [sin x] + |sin x|≤ 2. 

 

 

MODEL TEST PAPER - 10 

Q1.  Let 𝒙𝒊 >0 for i = 1, 2, …, n. For each non-

negative integer k, Prove that 
𝟏

𝒏
(𝒙𝟏

𝟐 +⋯+

𝒙𝒏
𝟐) ≤

𝒙𝟏
𝒌+𝟏+⋯+𝒙𝒏

𝒌+𝟏

𝒙𝟏+⋯+𝒙𝒏
 

Sol. : Let 𝑥1 + …+ 𝑥𝑛 = 1, for if not, replace 

𝑥𝑖 by 𝑥𝑖 =
𝑥𝑖

(𝑥1+⋯+𝑥𝑛)
. 

The results holds when k = 0. Let the result 

holds for all non-negative integer < k. By 

Cauchy Schwarz. Inequality. 

∑ 𝑥𝑖
𝑘𝑛

𝑖=1

𝑛
=  ∑𝑥𝑖

(𝑘+1)/2

𝑛

𝑖=1

𝑥𝑖
(𝑘−1)/2

𝑛

≤ (∑𝑥𝑖
𝑘+1

𝑛

𝑖=1

)

1/2

(∑
𝑥𝑖
𝑘−1

𝑛

𝑛

𝑖=1

)

1/2

 

By the inductive assumption, ∑
𝑥𝑖
𝑘−1

𝑛
𝑛
𝑖=1 ≤

 ∑ 𝑥𝑖
𝑘𝑛

𝑖=1  and so continuing from last in 

equation, we have 

(∑𝑥𝑖
𝑘+1

𝑛

𝑖=1

)

1
2

(∑
𝑥𝑖
𝑘−1

𝑛2

𝑛

𝑖=1

)

1
2

≤ (∑𝑥𝑖
𝑘+1

𝑛

𝑖=1

)

1
2

(∑
𝑥𝑖
𝑘

𝑛

𝑛

𝑖=1

)

1
2

 



Solving Mathematical Problems 

 

270 
 

𝑡ℎ𝑢𝑠 ∑
𝑥𝑖
𝑘

𝑛

𝑛

𝑖=1

≤ (∑𝑥𝑖
𝑘+1

𝑛

𝑖=1

)

1
2

(∑
𝑥𝑖
𝑘

𝑛

𝑛

𝑖=1

)

1
2

, 

⟹ (∑
𝑥𝑖
𝑘

𝑛

𝑛

𝑖=1

)

1
2

≤ (∑𝑥𝑖
𝑘+1

𝑛

𝑖=1

)

1
2

, 

Then you do yourself. 

 

Q2. Find all positive integer x, y, z, 𝜔 which 

satisfy 𝜔! = x!+ y! + z!. 

Sol. : Without less of generality. We can 

assume x ≤ y ≤ z. 

It is obvious that 𝜔 ≥ z +1, so that 

(z+ 1)! 𝜔! = x! + y! +z! ≤ 3z! 

So that z +1 ≤3 a, z ≤ 2 and x ≤ 2, y ≤ 2 

calculations show that x = y = z = 2 and 𝜔 = 

3 give the only solution. 

Q3. n elements 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 are permuted 

among themselves so that the total number of 

permutations is n! Let 𝒇𝒏 denotes the number 

of permutations in which no element remain 

fixed i.e. every element changes its position 

and let 𝒈𝒏denote the number of permutations 

where only one element remains fixed and the 

(n−1) remaining elements change their 

position. Show that 𝒇𝒏
𝟐𝒈𝒏 = 𝟏. 

Sol. : By a transformation let 𝑎𝑖  go into 𝑎𝑗. 

Now there are two posibilities either 𝑎𝑗 goes 

into a, or 𝑎𝑗 does not go into 𝑎𝑖. 

In the first case n -2 elements change their 

positions and there are 𝑓𝑛−2 permutations of 

this type corresponding to each j = 1, 2, 3, …, 

n so that this give (n -1) 𝑓𝑛−2 permutations. 

In the second case there are 𝑓𝑛−1 

permutations corresponding to each f so that 

there are (n- 1) 𝑓𝑛−1 permutations of this 

type. Thus the total number of permutations 

in which no elements changes is (n -1) 

(𝑓𝑛−2 + 𝑓𝑛−1) and this would be sane as 𝑓𝑛 so 

that 

𝑓𝑛 = (𝑛 − 1)(𝑓𝑛−1 + 𝑓𝑛−2) Also be definition 

𝑔𝑛 = 𝑛𝑓𝑛−1. 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑓𝑛−1 = 𝑛𝑓𝑛 +

𝑛𝑓𝑛−1, 𝑔𝑛−1 = (𝑛 + 1)𝑓𝑛 

∴ 𝑓𝑛+1 − 𝑔𝑛+1 = 𝑛𝑓𝑛−1 − 𝑓𝑛 = 𝑔𝑛 − 𝑓𝑛 =

 −(𝑓𝑛 − 𝑔𝑛)  

= (−1)2(𝑓𝑛−1 − 𝑔𝑛−1) =  (−1)
3(𝑓𝑛−2 −

𝑔𝑛−2)  

= (−1)𝑛(𝑓1 − 𝑔1) =  (−1)
𝑛+1, 𝑠𝑖𝑛𝑐𝑒 𝑓1 =

0, 𝑔1 = 1  

∴|𝑓𝑛 − 𝑔𝑛| = 1 or, 𝑓𝑛 − 𝑔𝑛 = 1. 

 

Q4. Let 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 be n real numbers 

between o and 1. Find the greatest and 

smallest values of  

𝛿 = ∑ |𝒙𝒊 − 𝒙𝒋|𝟏≤𝒊𝒋≤𝒏  

Sol. : Since we can choose 𝑥1, 𝑥2, … , 𝑥𝑛 all 

equal, the minimum value of S is zero. For 

finding the largest value, we assume without 

loss of generality that 

0 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝑥3 ≤ ⋯ ≤ 𝑥𝑛−1 ≤ 𝑥𝑛 ≤ 1 

Then S = (𝑥2 − 𝑥1) + [(𝑥3 − 𝑥1) + (𝑥3 −

𝑥2)] + [(𝑥4 − 𝑥1) + (𝑥4 − 𝑥2) + (𝑥4 − 𝑥3)] +

[(𝑥𝑛 − 𝑥1) + ⋯+ (𝑥𝑛 − 𝑥𝑛−1)] 

On the R.H.S., 𝑥1 occurs (n -1) lines with a 

negative sign giving a total of – (n- 1) x. Also 

𝑥2 occurs (n-2) lines with a negative sign and 

once with a positive sign giving a total of – (n- 

3) 𝑥2. 
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Proceeding in this way we get 𝑥𝑘 occurs (n -

k) lines with a negative sign and k -1 line with 

a positive sign. 

So that S = ∑ [(𝑘 − 1) − (𝑛 − 𝑘)]𝑥𝑘
𝑛
𝑘=1 =

 ∑ (2𝑘 − 𝑛 − 1)𝑥𝑘
𝑛
𝑘=1  

Case (i) n is even say n = 2m, then S = 

∑ (2𝑘 − 2𝑚 − 1)𝑥𝑘
2𝑚
𝑘=1   

If k = 1, 2, …, m the coefficients are negative 

and since we want to maximize S, we choose 

𝑥1 = 𝑥2 = ⋯ = 𝑥2𝑚 = 1 

So that S = 1+ 3+ …+ (2𝑚−1)= 𝑚2 =
𝑛2

4
 

Case (ii) n is odd say n = 2m +1, then 

S= ∑ (2𝑘 − 2𝑚 − 2)
2𝑚+1
𝑘=1 𝑥𝑘 

If k = 1, 2, …, m, the coefficient are negative 

and in order to maximize S, we choose 

𝑥1 = 𝑥2… = 𝑥𝑚 = 0, 

If k = m +1, co-efficient of 𝑥𝑚 + 1is zero and 

we can give any value to 𝑥𝑚 + 1. 

If k=m +2, …, 2𝑚 + 1 the coefficients are 

positive and in order to maximize S, we 

choose 

𝑥𝑚+2 = 𝑥𝑚+3 = ⋯𝑥2𝑚+1 = 1 

So that S = (2+ 4+ …+ 2m)= m(m+ 1) = 
𝑛−1

𝟐
 
𝒏+𝟏

𝟐
=
𝒏𝟐−1

4
. Thus when n is even S= 

𝑛2

4
 

and when n is odd S = 
(𝑛2−1)

4
 so that we can say 

that S= [
𝑛2

4
]. 

 

Q5. Given that the polynomial f(x) = 𝒙𝒏 +

𝒂𝟏𝒙
𝒏−𝟏 +⋯+ 𝒂𝒏 with integral coefficients is 

equal to 5 for 4 distinct integers a, b, c, d. Show 

that there is no integer k such that f(k) = 7. 

Sol: f(x) ≡ (𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)(𝑥 −

𝑑)𝜙(𝑥) + 5 𝑤ℎ𝑒𝑟𝑒 𝜙(x) is a polynomial with 

integral coefficients of (n−4)th degree. If f(k) =7, 

then  

(k -a) (k -b) (k -c) (k -d) 𝜙(k) = 2 

Now, four distinct integral factors of 2 are 1, -1, 

2, -2 since (k -a), (k -b), (k -c), (k -d) are distinct, 

their product cannot be 2. 

 

Q6. Let 𝒙𝟏 = 𝐭𝐚𝐧
−𝟏 𝟐 > 𝒙𝟐 > 𝒙𝟑 > ⋯ are 

positive real numbers satisfying 𝐬𝐢𝐧(𝒙𝒏−𝟏 −

𝒙𝒏) + 𝟐
−𝒏+𝟏 𝐬𝐢𝐧𝒙𝒏+𝟏 = 𝟎 for n ≥ 1. Find 

𝐜𝐨𝐭 𝒙𝒏and also show that 𝐥𝐢𝐦
𝒙→∞

𝝅

𝟒
. 

Sol. : By the problem sin 𝑥𝑛+1 cos 𝑥𝑛 −

cos 𝑥𝑛+1 sin 𝑥𝑛 + 2
−(𝑛+1) sin 𝑥𝑛 sin 𝑥𝑛+1 =

0,⟹ sin 𝑥𝑛+1 

{cos 𝑥𝑛+2 − (𝑛 − 1) × sin𝑥𝑛}

= cos 𝑥𝑛+1 sin 𝑥,  

⟹ cot𝑥𝑛+1 = cot 𝑥𝑛+2
− (𝑛

+ 1)(𝑑𝑖𝑣𝑖𝑑𝑖𝑛𝑔 sin 𝑥𝑛+1 sin 𝑥𝑛) 

cot 𝑥𝑛 = cot 𝑥𝑛−1 + 2
−𝑛

= cot 𝑥𝑛−2 + 2
−(𝑛+1) + 2−𝑥 

= cot 𝑥𝑛−3 + 2
−(𝑛−2) + 2−(𝑛−1) + 2−𝑛 = ⋯ =

cot 𝑥1 + 2
−2 + 2−3 +⋯+ 2𝑛 = 2−1 + 2 +

2 +⋯+ 2−𝑛(∵ tan−1 2 =  𝑥1)  

=
1

2
[
1 − (

1
2)
𝑛

1 − (
1
2)
] =  1 − (

1

2
)
𝑛

∴ cot 𝑥𝑛

= 1 − (
1

2
)
𝑛

. 

𝑁𝑜𝑤, Lt
𝑛→𝑥

cot 𝑥𝑛 = Lt
𝑛→𝑥
  1 − (

1

2
)
𝑛

= 1,

⟹ cot ( Lt
𝑛→𝑥
𝑥𝑛) = 1,  
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⟹ Lt
𝑛→𝑥
𝑥𝑛

=
𝜋

4
[cot 𝑥  𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓

𝜋

4
].  

 

Q7. A hexagon is inscribed in a circle. Show 

that its shortest side cannot be less than the 

radius. What is the length of the largest side? 

Sol. : If n is the radius of the circle, the length of 

the circumference is 2𝜋r. This is divided into six 

area by the six vertices of the hexagon. All there 

cannot be greater than 
2𝜋𝑟

6
. As such the length 

of shortest one has to ≤
𝜋𝑟

3
 and angle 𝜃 

subtended by it at the centre ≤ 
𝜋

3
 radius. The 

length of the shortest side ≤ 2𝑟 sin
𝜋

6
= 𝑟 ≤

  radius of the circle and it will actually by equal 

to r if the hexagon is regular. 

The length of the largest side can of course 

equal to 2r. 

 

Q8. In a rectangle ABCD, AB = 240 a, BC = a. 

The side AB is divided into 240 parts by 239 

points 𝑶𝟏, 𝑶𝟐… .𝑶𝟐𝟑𝟗. The point C is joined to 

𝑶𝟏, 𝑶𝟐𝟑𝟓 and 𝑶𝟐𝟑𝟗 to give angles 𝛼, 𝛽, 𝛾. Show 

that 4𝛽 – 𝛼 = 𝛾. 

Sol. : tan 𝛼 =
𝑎

239𝑎
=

1

239
tan 𝛽 =

𝑎

5𝑎
=

1

5
, tan 𝛾 =

𝑎

𝑎
= 1 

tan 2𝛽 =
2 tan 𝛽

1 − 𝑡𝑎𝑛2𝛽
=

2
5

1 −
1
25

=
5

12
tan4𝛽

=
2 tan2𝛽

1 − 𝑡𝑎𝑛22𝛽
 

=

5
6

1 −
25
144

=
120

119
 

tan(4𝛽 − 𝛼) =
tan 4𝛽 − tan𝛼

1 + tan 4𝛽 tan𝛼

=

120
119

−
1
239

1 +
120
119

×
1
239

 

=
120 × 239 − 119

119 × 239 + 120
=
119 × 239 + 120

119 × 239 + 120
= 1

= tan∞ 

∴ 4𝛽 − 𝛼 = 𝛾  

 

Q9. If 𝜶𝟏, 𝜶𝟐, 𝜶𝟑, … , 𝜶𝒏 are the roots of the 

equation 𝒙𝒏 − 𝒏𝒂𝒙 − 𝒃 = 𝟎 𝒂𝒏𝒅(𝜶𝟏 −

𝜶𝟐). (𝜶𝟏 − 𝜶𝟑)… (𝜶𝟏 − 𝜶𝒏) = 𝑨, then find the 

value of 𝑨 − 𝒏𝜶𝟏
𝒏−𝟏. 

Sol. : 𝑥𝑛 − 𝑛𝑎𝑥 − 𝑏 = (𝑥 − 𝛼1 )(𝑥 − 𝛼2)(𝑥 −

𝛼3)… (𝑥 − 𝛼𝑛) ⟹
𝑥𝑛−𝑛𝑎𝑥−𝑏

(𝑥−𝛼1 )
= (𝑥 − 𝛼2)(𝑥 −

𝛼3)… (𝑥 − 𝛼𝑛), 

Lt
𝑥→𝑎

𝑥𝑛 − 𝑛𝑎𝑥 − 𝑏

(𝑥 − 𝛼1 )

= Lt
𝑥→𝛼1

 (𝑥 − 𝛼2)(𝑥 − 𝛼3)… (𝑥

− 𝛼𝑛),  

⟹ Lt
𝑥→𝛼1

𝑛𝑥𝑛−1 − 𝑛𝑎

1
=  Lt

𝑥→𝛼1
 (𝑥 − 𝛼2)(𝑥 − 𝛼3)… (𝑥

− 𝛼𝑛),  

⟹ 𝑥𝛼1
𝑛−1 − 𝑛𝑎

= (𝛼1 − 𝛼2)(𝛼1 − 𝛼3)(𝛼1
− 𝛼4)… (𝛼1 − 𝛼𝑛),  

⟹ 𝑛𝛼1
𝑛−1 − 𝑛𝑎 = 𝐴. ∴ 𝐴 − 𝑛𝛼1

𝑛−1 = −𝑛𝑎. 

 

Q10. Draw the graph of 𝒇(𝒙) =  𝒙𝟐 + 𝒙 +
𝟏

𝒙
+

𝟏

𝒙𝟐
 for x ≠0. Show that the function f(x) defined 

for positive real numbers attains a unique 
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minimum. What is the minimum value of the 

function? What is the value of x of which the 

minimum is attained? 

Sol. : 𝑦 =  𝑥2 +  𝑥 +
1

𝑥
+

1

𝑥2
; 𝑥 ≠ 0 

∴
𝑑𝑦

𝑑𝑥
= 2𝑥 + 1 −

1

𝑥2
−
2

𝑥3
=  0,⟹ 𝑥 ≠ 1 

𝑑2𝑦

𝑑𝑥2
= 2 +

2

𝑥3
+
6

𝑥4
. 

∴ [
𝑑𝑦

𝑑𝑥2
]
𝑥=≠1

= 2 ≠ 2 + 6 

= 𝑦 ≠ 2 > 0(min𝑝𝑡).  

𝑥 = 1, 𝑦 = 4  

𝑥 = −1, 𝑦 = 0  

𝑥 → +∞, 𝑦 → +∞  

𝑥 → −∞, 𝑦 → +∞  

𝑏𝑢𝑡 𝑥 > 0, 𝑠𝑜  𝑚𝑖𝑛. 𝑝𝑡.→ (1, 4)(𝑢𝑛𝑖𝑞𝑢𝑒)   

 

 

 

 

 

 

MODEL TEST PAPER - 11 

Q1. Given that m and n are relatively prime 

positive integers greater than one, show that 
𝒍𝒐𝒈𝟏𝟎𝒎

𝒍𝒐𝒈𝟏𝟎𝒏
 is not a rational number. 

Sol. : If possible, let   
𝑙𝑜𝑔10𝑚

𝑙𝑜𝑔10𝑛
=
𝑎

𝑏
 where a, b are 

positives integers with no common factor so 

that 𝑎 𝑙𝑜𝑔10𝑛 = 𝑎 𝑙𝑜𝑔10𝑚  𝑜𝑟 log 𝑛10
𝑎 =

log𝑚10
𝑏 , 𝑜𝑟 𝑛𝑎 = 𝑚𝑏, but this cannot be true 

since a and b are integers and n and m are 

relatively prime i.e. here no common factor 

accept 1.  

 

Q2. Prove that if the coefficients of the 

quadratic equation  𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 are odd 

integers, then the roots of the equations 

cannot be rational numbers. 

Sol. : Let 𝑎 = 2𝑚 + 1, 𝑏 = 2𝑛 + 1, 𝑐 = 2𝑘 + 1, 

then the roots will be rational if (2𝑛 + 1)2 −

4(2𝑚 + 1)(2𝑘 + 1) is a perfect square. 

Since the number is odd, if can be only the 

square of an odd number, so that(2𝑛 + 1)2 −

4(2𝑚 + 1)(2𝑘 + 1) =  (21 + 1)2, 

 𝑜𝑟 (2𝑛 + 1)2 − (21 + 1)2 = 4(2𝑚 + 1)(2𝑘 +

1),   

𝑜𝑟 (2𝑛 + 21 + 2)(2𝑛 − 21) = 4(2𝑚 +

1)(2𝑘 + 1)𝑜𝑟 (𝑛 + 𝑙 + 1)(𝑛 − 𝑙)  

= (2𝑚 + 1)(2𝑘 + 1)  

Now n and l cannot be both even or odd, since 

then L.H.S will be even and the R. H. S. would be 

odd. If one of them is even and the other is odd, 

the first factor is again even and this again gives 

a contradiction.  
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Q3. Suppose 𝒏(𝒏 + 𝟏)𝒂𝒏+𝟏 = 𝒏(𝒏 − 𝟏)𝒂𝒏 −

(𝒏 − 𝟐)𝒂𝒏−𝟏 for every positive n ≥1. Given 

that 𝒂𝟎 = 𝟏, 𝒂𝟏 = 𝟐 . Find 
𝒂𝟎

𝒂𝟏
+
𝒂𝟏

𝒂𝟐
+
𝒂𝟐

𝒂𝟑
+⋯+

𝒂𝟏𝟎𝟎

𝒂𝟏𝟎𝟏
. 

Sol. : If 𝑎0 = 1, 𝑎1 = 2, the given equation gives 

2𝑎2 = 𝑎0 = 1,⟹ 𝑎2 =
1

2
=
1

21
 

6𝑎3 = 2𝑎2 − 0𝑎1 = 1,⟹ 𝑎3 =
1

6
=
1

31
 

12𝑎4 = 6𝑎3 − 2 = 1 −
1

2
,⟹ 𝑎4 =

1

24
=
1

41
. 

The suggests 𝑎𝑘 =
1

𝑘1
. Suppose this is true for 

𝑎1, 𝑎2, … , 𝑎𝑘 ,  then 

𝑘(𝑘 + 1)𝑎𝑘+1 = 𝑘(𝑘 − 1)𝑎𝑘 − (𝑘 − 2)𝑎𝑘−1 

=
𝑘(𝑘 − 1)

𝑘!
−
𝑘 − 2

(𝑘 − 1)!

=
0

(𝑘 − 2)!
−

1

(𝑘 − 2)!

+
1

(𝑘 − 1)!
 

∴  𝑎𝑘+1 =
1

(𝑘 + 1)!
 

This shows by mathematical induction that 

𝑎𝑘 =
1

𝑘𝑖
 for all positive values of k. 

Now 
𝑎0

𝑎1
+
𝑎1

𝑎2
+
𝑎2

𝑎3
+⋯+

𝑎110

𝑎101
=
1

2
+
2
1

2
!
+

1

2
!

1

3
!
+

⋯+
1

100
!

1

101
!
=
1

2
+  4 + 3 + 4 + 5 +⋯+ 101 

=
3

2
+ 1 + 2 + 3 +⋯+ 101 =

3

2
+
101 − 102

2
 

= 5151 + 1 
1

2
= 5152 

1

2
. 

Q4. Show that it is possible to put pair wise 

distinct positive integers less than 100 in the 

cells of a 4× 𝟒 table so that the product of all 

the numbers in every row and every column 

are row equal to each other. 

 Sol. : This can be achieved by using orthogonal 

latin squares. 

  

A B C D 

B A D C 

C D A B 

D C B A 

(1)                          

   (2) 

     

 

 (3) 

Fig (1) gives a Latin square since in it each of the 

letters A, B, C, D occurs once in every row and 

a b c d 

d c b a 

b a d c 

c d a b 

Aa Bb Cc Dd 

Bd Ac Db Ca 

Cb Da Ad Bc 

Dc Cd Ba Ab 
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once in every column. Similarly the (2) fig. 

represents another latin square in which each 

of the letters a, b, c, d occurs once in every row 

and once in every column. The 3rd fig. is 

obtained by superposing there so that each of 

the four letters A, B, C, d are each of the four 

letter a, b, c, d occurs in every row and column 

and each of the sixteen pairs of these elements 

occurs once only. If A, B, C, D, a, b, c, d 

represents numbers and Aa stands for A× 𝑎 etc. 

then it is easily seen that the product of 

elements is every row and every column  is 

ABCD abcd and so is the same for every row and 

column. We choose there as prime numbers i.e. 

we take A = 1, B = 2, C = 3, D = 5, a = 7, b = 11, c 

= 13, d = 17 to get the result for fig (3). 

7 22 39 85 

34 13 15 21 

33 35 17 26 

65 51 14 11 

  

The const. is 1 × 2 × 3 × 5 × 7 × 11 × 13 ×

17 = 510510 

 

Q5.  A sequence [𝒂𝒏] is determine by the rule 

𝒂𝟎 = 𝟗 and for any positive r, 𝒂𝒏+𝟏 = 𝟑𝒂
𝟒𝒏 +

𝟒𝒂𝟑𝒏. Prove that 𝒂𝒏 = −𝟏(𝒎𝒐𝒅 𝟏𝟎
𝟐𝒏). 

Sol. : 𝑎0 = −1(𝑚𝑜𝑑 10). Suppose the result is 

true for some n, then  𝑎𝑛 =  𝑏𝑛 10
2𝑛−1, 𝑡ℎ𝑒𝑛  

𝑎𝑛 + 1 = 3( 𝑏𝑛10
3𝑛 − 1)

4
+ 4(𝑏𝑛10

2𝑛 − 1)
3

= (102
𝑛
𝑏𝑛 − 1)

3
(3 × 102

𝑛
𝑏𝑛

+ 1)

= (103 × 2𝑛𝑏𝑛
3 − 3

× 102.2
𝑛
𝑏𝑛
2 + 3. 102

𝑛
𝑏𝑛

− 1)(3. 102
𝑛
𝑏𝑛 + 1) 

= (3. 102
𝑛
𝑏𝑛 − 1)(3 × 10

2𝑛

− 1)(𝑚𝑜𝑑 102𝑛+1) 

= −1(𝑚𝑜𝑑 102𝑛+1), so that by induction our 

result follows. 

 

Q6. Prove that (𝒂𝟏𝒃𝟏 + 𝒂𝟐𝒃𝟐 +⋯+ 𝒂𝒏𝒃𝒏)
𝟐 ≤

(𝒂𝟏
𝟐 + 𝒂𝟐

𝟐 +⋯+ 𝒂𝒏
𝟐)(𝒃𝟏

𝟐 + 𝒃𝟐
𝟐 +⋯+

𝒃𝒏
𝟐) and the equality sign holds, only when 

𝒂𝟏

𝒃𝟏
=
𝒂𝟐

𝒃𝟐
= ⋯ =

𝒂𝒏

𝒃𝒏
. 

Deduce that the root mean square ≥ 

arithmetic mean.  

Sol. :  Consider the quadratic equation.  

(𝑎1𝑥 − 𝑏1)
2 + (𝑎2𝑥 − 𝑏2)

2 +⋯+ (𝑎𝑛𝑥 −

𝑏𝑛)
2 = 0. This can have real roots only if  

𝑎1

𝑏1
=

𝑎2

𝑏2
= ⋯ =

𝑎𝑛

𝑏𝑛
=
𝑎

𝑏
 (say) and in this case the two 

real roots councicle and each is equal to 
𝑎

𝑏
. 

In all other cases, the roots are complex and the 

discriminate of the quadratic equation is 

negative. The quadratic equation is 

𝑥2(𝑎1
2 + 𝑎2

2 +⋯+ 𝑎𝑛
2) − 2𝑥  

(𝑎1𝑏1 + 𝑎2𝑏2 +⋯+ 𝑎𝑛𝑏𝑛) − (𝑏1
2 + 𝑏2

2 +

⋯+ 𝑏𝑛
2) = 0  

Since its discriminant ≤ 0, we get 
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(𝑎1𝑏1 + 𝑎2𝑏2 +⋯+ 𝑎𝑛𝑏𝑛)
2 ≤ (𝑎1

2 + 𝑎2
2 +

⋯+ 𝑎𝑛
2)(𝑏1

2 + 𝑏2
2 +⋯+ 𝑏𝑛

2) and the 

equality sign holds only if 
𝑎1

𝑏1
=
𝑎2

𝑏2
= ⋯ =

𝑎𝑛

𝑏𝑛
. 

Putting   𝑏1 = 𝑏2 = ⋯𝑏𝑛 = 1, we get 

(𝑎1 + 𝑎2 +⋯+ 𝑎𝑛)
2 ≤ 𝑛(𝑎1

2 + 𝑎2
2 +⋯+

𝑎𝑛
2).  

⟹ (
𝑎1 + 𝑎2 +⋯+ 𝑎𝑛

𝑛
)
2

≤
𝑎1
2 + 𝑎2

2 +⋯+ 𝑎𝑛
2

𝑛
  

𝑜𝑟, 𝐴.𝑀.≤ 𝑅.𝑀. 𝑆.  

 

Q7. If A and B are fixed points on a given circle 

not collinear with centre O of the circle and if 

XY is a variable diameter, find the locus of P 

(the intersection of the line through A and X 

and the line through B and Y). 

Sol. :  

 

∠XBY =90°(angle in a semi-circle) ∠ A× 𝐵 =

 𝛼(const. angle subtended by given are AB at 

any point on the circle) 

∠XPB = 90° − 𝛼 and ∠APB = 90° + 𝛼 = const. so 

that the arc of AB subtends a const. 

angle 90° + 𝛼 at P.  

∴ Locus of P is the arc of a circle passing 

through A and B and subtending a const. angle 

90° + 𝛼 at all points on this arc in fig.(2), the 

locus is again the arc of a circle passing through 

A and B with angle 90°𝑋. 

 

Q8.  Find the max. and min. values of sin x sin 

2x and draw its graph. 

Sol. : Let 𝑧 = sin 𝑥 sin 2𝑥 =
1

2
[cos 𝑥 −

cos 3𝑥] =
1

2
 

[cos 𝑥 − 4𝑐𝑜𝑠3𝑥 + 3 cos 𝑥]

= 2 cos 𝑥 (1 − 𝑐𝑜𝑠2𝑥)

= 2(𝑦 − 𝑦3),  

𝑦 = cos 𝑥 , 𝑠𝑜 𝑡ℎ𝑎𝑡
𝑑𝑧

𝑑𝑦

= 2(1 − 3𝑦𝑒),
𝑑2𝑧

𝑑𝑦2
− 12𝑦,

𝑑𝑧

𝑑𝑦

= 0,⟹ 𝑦 =≠
1

√3
,
𝑑2𝑦

𝑑𝑧2

< 0,𝑤ℎ𝑒𝑛  

𝑦 =
1

√3
  and it is > 0 when 𝑦 = −

1

√3
 there is a 

max. value when cos𝑥 =  
1

√3
 and a min. value 

when cos 𝑥 =  −
1

√3
. The max. value is 2 

1

√3
(1 −

1

3
) =

4

3√3
= .7698, 𝑥 =  .3041𝜋 >

𝜋

4
. 

The main value is −2.
1

√3
(1 −

1

3
) =  −

4

3+3
=

 −7698, 𝑥 =  .6959𝜋 <
3𝜋

4
. 

Now 
𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
.
𝑑𝑦

𝑑𝑥
= −

𝑑𝑧

𝑑𝑦
sin 𝑥 , 𝑠𝑜 𝑡ℎ𝑎𝑡

𝑑𝑧

𝑑𝑥
 also 

vanishes when sin 𝑥 = 0. cos 𝑥 =≠ 1, 𝑧 = 0 

𝐿𝑒𝑡 cos 𝛼 =
1

√3
, 0 < 𝛼 <

𝜋

2
, then the given 

function has max value of .7698 at ≠ 𝛼, ≠ 𝛼≠ 

2𝜋, ≠𝛼≠ 4𝜋, …, ≠  

(𝜋 − 𝛼) ≠ 2𝑘𝜋, 𝑘 = 0, 1, 2, 3,… ..  

It has also min. and min. value at x = x𝜋, when n 

is an integer, positive, negative on zero. 

The graph is, therefore, as shown below. 
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Q9. Let f be a real function with a continuous 

third derivative such that 𝒇(𝒙), 𝒇𝒏(𝒙), 𝒇𝒎(𝒙) 

are positive for all real x suppose that 𝒇𝒎(𝒙) ≤

𝒇(𝒙)∀𝒙. 

Show that 𝒇′(𝒙) < 2𝒇(𝒙)∀ 𝒙. 

Sol. : If f is a differentiable function on all of R 

lim
𝑛→∞

𝑓(𝑥) ≥ 0 𝑎𝑛𝑑 𝑓′(𝑥) > 0∀ 𝑥 ∈ 𝑅, then  

𝑓(𝑥) > 0∀𝑥 ∈ 𝑅. If f(y) <0 for some x, then f(x) 

< f(y) ∀ x< y.  

∵ f’ > 0but then lt
𝑛→∞

𝑓(𝑥) ≤ 𝑓(𝑦) < 0 from 

the inequality 𝑓′′′(𝑥) ≤ 𝑓(𝑥). We obtain 

𝑓′′𝑓′′(𝑥) ≤ 𝑓′′(𝑥). 𝑓(𝑥)

< 𝑓′′(𝛼). 𝑓(𝑥) + 𝑓′2(𝑥). 

∴ 𝑓′(𝑥) is positive.  

∴ 
1

2
(𝑓′′(𝑥))2 < 𝑓(𝑥). 𝑓′(𝑥) …………. (1) 

∵f(x) and f’’’(x) are both positive for all x we 

have 2𝑓′(𝑥). 𝑓′′(𝑥) < 2𝑓(𝑥). 𝑓′′′(𝑥) 

……………..(2) 

From (1) and (2), 
1

2
{
𝑓′(𝑥)

2

2𝑓(𝑥)
} <

1

2
(𝑓′′(𝑥))

2
<

𝑓(𝑥). 𝑓′(𝑥),⟹ (𝑓′(𝑥))
3
< (𝑓(𝑥))

3
. 

∴ 𝑓′(𝑥) <  2𝑓(𝑥).  

 

Q10. M is an interior pt. of a rectangle ABCD 

and S is its area prove that S ≤AM. CM + BN 

.DM. 

Sol. : Let G, F, GH be the middle points of the 

AB, BC, CD, DA.  

𝑆1= area of rectangle AHME + area of rectangle 

BFME + area of rectangle CGMF + area of 

rectangle GDHM = 𝑏𝑑 cos𝛽 sin 𝛾 𝑠 +

𝑎𝑐 cos𝛼 sin𝛾 +  𝑏𝑑 cos 𝛿 sin𝛽 +

 𝑎𝑐 cos 𝛾 sin𝛼 = 𝑏𝑑 (cos 𝛽 sin 𝛿 +

cos 𝛿 sin𝛽) +  𝑎𝑐(cos 𝛼 sin𝛾 + sin𝛼 sin 𝛾) =

𝑏𝑑 cos(𝛽 + 𝛿) + 𝑎𝑐 sin(𝛼 + 𝛾) ≤ 𝑏𝑑 + 𝑎𝑐 =

𝐵𝑀.𝑀𝐷 + 𝐴𝑀.𝐴𝐶.  

 

 

MODEL TEST PAPER -  12 

Q1. Show that the equation 𝒙𝒏 − 𝒙𝒏−𝟏 −

𝒙… . 𝟏 = 𝟎 has only one positive real root 

which lines between 1 and 2 and this root 

aproaches 2 as n→∞. 

Sol. : Let 𝑓(𝑥) =  𝑥𝑛 − 𝑥𝑛−1 − 𝑥𝑛−2… .−1. 

Since there is only one change of sign in f(x) 

by Descartes rule of signs, these cannot be 

more than one positive real root of f(x) = 0. 

Also f(0) = -1, f(1) = -(x- 1)<0, f(2) = 

2𝑛  
2𝑛−1

2−1
= 1 > 0. 
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So that f(x) changes sign as x goes from 1 to 2. 

As such f(x) = 0 has exactly one root lying 

between 1 and 2. 

Let this root by 2- y, then (2 − 𝑦)𝑛+1 −

2(2 − 𝑦)𝑛 + 1 = 0,  

⟹ 2𝑛+1 (1 − 𝑛 + 1
𝑦

2
+
(𝑥 + 1)𝑛

2
.
𝑦2

4
… . . )

− 2𝑛+1 (1 − 𝑛.
𝑦

2

+
𝑥(𝑛 − 1)

2
.
𝑦2

4
… . . ) + 1 = 0, 

⟹ 1− 2𝑛𝑦 + 2𝑛−1𝑦2𝑛 +⋯ =

0 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑎𝑠 ℎ → ∞, y → 0 and the root of the 

equation approaches 2. 

 

Q2. Let n be a number consisting of 1991 one’s 

i.e. 𝒏 = 𝟏𝟏𝟏… . 𝟏…𝟏⏟        
𝟏𝟗𝟗𝟏

 show that n is not a 

prime number. 

Sol. : Since 1991 = 11× 181; we can write  

𝑛 =  11…1⏟  
11

111…1⏟    
11

…111… .1⏟    
11⏟                

181

 so that 𝑛 =

𝑎(101980 + 101959 + 101958 +⋯+ 1011 + 1) 

𝑎 =  11…1⏟  
𝑛

 so that n is not a prime number. 

 

Q3. Find 

∑ 𝐦𝐢𝐧 ({
𝐫

𝟑𝐍
} , {

𝐫

𝟔𝐍
}) ,𝟔𝑵−𝟏

𝒓=𝟏  𝒘𝒉𝒆𝒓𝒆 {𝒂} =

𝐦𝐢𝐧(𝒂 − [𝒂], [𝒂] − 𝒂 + 𝟏)  the distance to the 

nearest integer ([a] represents G.I.F). 

Sol. : Middle term of the sequence is {
3𝑁

3𝑁
} =  0 

and {
6𝑁−𝑟

3𝑁
} = {

𝑟

3𝑁
} , {

6𝑁−𝑟

6𝑁
} = {

𝑟

6𝑁
} 

Reqd. sum = 2∑ min({
𝑟

3𝑁
} , {

𝑟

6𝑁
})3𝑁−1

𝑟=1 =

2∑ {
𝑟

6𝑤
}2𝑁

𝑟=1 + 2∑ {
𝑟

3𝑁
}3𝑁−1

2𝑁+1  

= 2∑
𝑟

6𝑁

2𝑁

𝑟=1

+ 2∑
(𝑁 − 1)𝑁

2

𝑁−1

𝑟=1

= 𝑁.  

 

Q4. Show that if there are 𝒏𝒌 + 𝟏 pigeons and 

only n holds for them, then one of the holes 

has to have k+1 on more pigeons. 

Sol. : This is obvious since if all the holes have  k 

or fewer pigeons. Thus the total number of 

pigeons would be less than or equal to 𝑛𝑘 and 

cannot be 𝑛𝑘 + 1. This principle is known as the 

pigeon-hole principle. 

Q5. Prove that if 𝒏𝟏, 𝒏𝟐, … , 𝒏𝒌 are any integers 

and a is any number, they  

[
𝒏𝟏+𝒏𝟐+⋯+𝒏𝑲

𝒂
] ≥ [

𝒏𝟏

𝒂
] + [

𝒏𝟐

𝒂
] + ⋯+ [

𝒏𝒌

𝒂
],  where 

[x] denotes the integral part of x. Deduce that 

the high e = t power of a prime p contained in 

n! is [
𝒏

𝒑
] + [

𝒏

𝒑𝟐
] + [

𝒏

𝒑𝟑
] + ⋯ 

Sol. : Let 𝑛1 = 𝑎𝑞1 + 𝑟1, 𝑛2 = 𝑎𝑞2 + 𝑟2, … 𝑛𝑘 =

𝑎𝑞𝑘 + 𝑟𝑘  𝑠𝑜 𝑡ℎ𝑎𝑡
𝑛1+𝑛2+⋯+𝑛𝑘

𝑎
=
𝑟1+𝑟2+⋯+𝑟𝑘

𝑎
,  

⟹ [
𝑛1 + 𝑛2 +⋯+ 𝑛𝑘

𝑎
] ≥  𝑞1 + 𝑞2 +⋯+ 𝑞𝑘 

=  [
𝑛1
𝑎
] + [

𝑛2
𝑎
] + ⋯+ [

𝑛𝑘
𝑎
]. 

Now out of the numbers 1, 2, …., n. [
𝑛

𝑝
] are 

divisible by r, [
𝑛

𝑝2
] are divisible by 𝑝2 [

𝑛

𝑝3
] are 

divisible by 𝑝3 and so on, so that the highest 

power of the prime r contained in n! is [
𝑛

𝑝
] +

 [
𝑛

𝑝2
] + [

𝑛

𝑝3
] + ⋯  
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Q6. For a cyclic quadrilateral ABCD inscribed in 

a circle, we have BC = CD. Prove that area of 

the quadrilateral 
𝟏

𝟐
(𝑨𝑪)𝟐 𝐬𝐢𝐧𝑨. 

Sol. : In the quadrilateral ∠DAC = ∠DBC (angles 

in the same segment), ∠DBC = ∠BDC (∵ BD = 

CD),  

∠BCD = ∠CAB (angles in the same segment),  

∠DCA = ∠DBA (angles in the same segment) . 

∴𝛥’s ABE and ACD are similar, so that 

𝐵𝐸

𝐴𝐶
=
𝐴𝐸

𝐴𝐷
=
𝐴𝐵

𝐴𝐶
. Similarly since 𝛥’s CED and CAD 

are similar, we get  

𝐶𝐸

𝐶𝐷
=
𝐷𝐸

𝐷𝐴
=
𝐶𝐷

𝐴𝐶
.  

Now area of ABCD = area of 𝛥ABD + Area of 𝛥 

BCD = 
1

2
𝐴𝐵 × 𝐴𝐷 𝑆𝑖𝑛 𝐴 +

1

2
𝐵𝐶 × 𝐶𝐷 sin(𝜋 −

𝐴) =
1

2
sin𝐴 [𝐴𝐵 × 𝐴𝐷 + 𝐵𝐶 × 𝐵𝐷] =

1

2
sin𝐴 [𝐴𝐶 × 𝐴𝐸 + 𝐴𝐶 × 𝐶𝐸]  

=
1

2
sin𝐴 . 𝐴𝐶(𝐴𝐸 + 𝐸𝐶) =

1

2
sin𝐴 (𝐴𝐶)2.   

Q7. Is it possible to divide the plane into 

polygons so that each polygon is transformed 

into itself under same rotation by 
𝟐𝝅

𝟕
 about 

same pt.? All sides of there polygon must be 

greater than 1 cm. (A polygon is the part of a 

plane bounded by one non-self intersecting 

closed broken line, not necessary convex)? 

Sol. :  Try yourself. 

 Q8. Compute the area of the shaded fig. 

knowing that all areas come from circles with 

radius R and knowing that A and B are 

mutually perpendicular axes of symmetry. 

Sol. : Since  OD = R, OE =R, ED = R, 𝛥OED is an 

equilateral triangle and ∠DOE= 60°, ∠DOF = 

30°. 

Area of shaded strip = 
𝐴𝑅2

6
−
1

2
𝑅. 𝑅 cos 30° =

 𝑅2 

(
𝜋

6
−
√3

4
) . 𝐴𝑟𝑒𝑎 𝑜𝑓 ℎ𝑎𝑙𝑓 𝑡ℎ𝑖𝑠 𝑠𝑡𝑟𝑖𝑝

=
𝑅2

2
(
𝜋

6
−
√3

4
) = 𝑎𝑟𝑒𝑎 𝐼. 

Area of   II = 𝑅2 (
𝜋

6
−
√3

4
). 

Area of sector ODF = 
𝜋𝑅2

12
. 

1

8
𝑜𝑓 𝑟𝑒𝑞𝑑. 𝑎𝑟𝑒𝑎 =

𝜋𝑅2

12
−
3𝑅2

2
(
𝜋

6
−
√3

4
). 

∴ Reqd. area =8𝑅2 (
𝜋

12
−
3𝜋

12
+
3√3

4
) −

𝑅2 (6√3 −
4𝜋

3
). 

 

Q9. Find all solutions (𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓) of the 

system of inequalities 

(𝒙𝟏
𝟐 − 𝒙𝟑𝒙𝟓)(𝒙𝟐

𝟐 − 𝒙𝟑𝒙𝟓) ≤ 𝟎;  

(𝒙𝟐
𝟐 − 𝒙𝟒𝒙𝟏)(𝒙𝟑

𝟐 − 𝒙𝟒𝒙𝟏) ≤ 𝟎;  

(𝒙𝟑
𝟐 − 𝒙𝟓𝒙𝟐)(𝒙𝟒

𝟐 − 𝒙𝟓𝒙𝟐) ≤ 𝟎;  

(𝒙𝟒
𝟐 − 𝒙𝟏𝒙𝟑)(𝒙𝟓

𝟐 − 𝒙𝟏𝒙𝟑) ≤ 𝟎 𝒂𝒏𝒅  

(𝒙𝟓
𝟐 − 𝒙𝟐𝒙𝟒)(𝒙𝟏

𝟏 − 𝒙𝟐𝒙𝟒) ≤

𝟎,𝒘𝒉𝒆𝒓𝒆 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓 are positive real 

numbers. 

Sol. : Each inequality is of the form  (𝑥𝑖
2 −

𝑥𝑖+2𝑥𝑖 + 4)(𝑥𝑖+1
2 − 𝑥𝑖+2𝑥𝑖 + 4) ≤ 0, where 
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the idices are read modulo 5, i.e. 𝑥𝑗 + 5 = 𝑥𝑗. If 

we multiply out each expression on the left and 

then odd all the inequalities, we find that all (5) 

= 10 terms of the from  𝑥𝑖
2𝑥𝑗

2(𝑖 ≠ 𝑗) appear 

the sum, as well as ten cross terms, five of the 

form −𝑥1
2𝑥1 + 1𝑥1 + 3 and five of the form 

−𝑥1
2𝑥1 + 2𝑥1 + 4. This suggests a sum of 

squares of the form 
1

2
(𝑦1

2 + 𝑦2
2 +⋯+ 𝑦10

2), 

where to each cross terms, we associate ay, for 

example, to the cross term 𝑥2
2 − 𝑥3𝑥5, we 

associate 𝑦1 = 𝑥2𝑥3 − 𝑥2𝑥5, knowing that the 

terms 𝑥2
2𝑥3

2, 𝑥2
2𝑥5

2 appearing in 𝑦1
2 also 

appear in our sum. Thus we arrive at the 

following representation of the sum of the 

given inequalities. 

0 ≥  ∑(𝑥𝑖
2 − 𝑥𝑖+2𝑥𝑖 + 4)(𝑥𝑖+1

2

5

𝑖=1

− 𝑥𝑖+2𝑥𝑖𝑥𝑖+4)

=
1

2
∑{(𝑥𝑖𝑥𝑖+1 − 𝑥𝑖𝑥𝑖+3)

2

5

𝑖=1

+ (𝑥𝑖−1𝑥𝑖+1 − 𝑥𝑖−1𝑥𝑖+3)
2} 

Since this sum of squares cannot be negative. 

We conclude that it is zero, which means that 

each term vanishes. This implies that 𝑥1 =

 𝑥2 = 𝑥3 = 𝑥4 = 𝑥5. Every set of five equal 

positive numbers is a solution of the given 

system of inequalities.  

Q10. Draw the graph of y = 
(𝒙−𝟏)

⎸|𝒙|⎸−𝟏
+
⎸|𝒙+𝟏|⎸

(𝒙+𝟏)
+
𝟏

𝒙
. 

Sol. :  

It is clear y is not 

defined at x = 0, ≠ 1. 

 

MODEL TEST PAPER – 13 

Q1. If p(x), Q(x), R(x), S(x) are polynomials so 

that 

 𝑷(𝒙𝟓) + 𝒙𝑸(𝒙𝟓) + 𝒙𝟐𝑲(𝒙𝟓)(𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 +

𝒙 + 𝟏)S(x) …… (i), then show that x- 1 is a 

factor of P(x). 

Sol. : 𝜆 Let 𝜔 = 𝑒2𝜋𝑖/5, so that 𝜔5 = 1. We see 

for x in (1), 𝜔, 𝜔2, 𝜔3, 𝜔4  successively and get 

the following equations. 

𝑃(1) + 𝜔𝑄(1) + 𝜔2. 𝑅(1) = 0. 

𝑃(1) + 𝜔2𝑄(1) + 𝜔4𝑅(1) = 0. 

= 2∫ 𝑥
𝑓(𝑏)

𝑓(𝑎)

[𝑏 −∫ (𝑥)
1

] 𝑑𝑥,  

𝑃(1) + 𝜔4𝑄(1) + 𝜔3𝑅(1) = 0,  

−𝜔 𝑃(1) − 𝜔2𝑄(1) − 𝜔3𝑅(1) = 0,  

−𝜔2𝑃(1) − 𝜔4𝑄(1) − 𝜔𝑅(1) = 0,  

−𝜔3𝑃(1) − 𝜔𝑄(1) − 𝜔4𝑅(1) = 0,  

−𝜔4𝑃(1) − 𝜔3𝑄(1) − 𝜔2𝑅(1) = 0. 

Using 1+𝜔 +𝜔2 + 𝜔3 +𝜔4 = 0, we get the 

see m 5P(1)= 0, i.e. 
(𝑥−1)

𝑃(𝑥)
. 
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Q2. Find x in 88 ….. 8x 999….9 (there are 50 

eights and 50 mines) so that the number is 

divisible by 7. 

Sol. : If the number is divisible by 7, then so is 

11….1x 22……2. 

No 111111 is divisible by 7, so that we can 

remove 48 one’s from the left hand side and 

48 two’s from the R.H.s. if the number 

without affecting divisibility, so that the given 

number is divisible by 7 if 11x 22 is divisible 

by 7. 

The requires 2 + 3 × 2 + 2 × 𝑥 + 6 × 1 + 4 ×

1 ≡ 0(𝑚𝑜𝑑 7),  

⟹ 2𝑥 + 4 ≡ 0 (𝑚𝑜𝑑 7),⟹ 𝑥 = 5.  

Q3. Prove that the equation 𝒙𝟑 + 𝟏𝟏𝟑 = 𝒚𝟑 

has no solution for positive integers x and y. 

Sol. : 113 = 𝑦3 − 𝑥3 = (𝑦 − 𝑥)(𝑦2 + 𝑥2 + 𝑥𝑦) 

∵ 𝑦 − 𝑥 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 113, we have the following 

possibilities.  

     𝑦 − 𝑥 = 1,                      𝑦2 + 𝑥2 = 𝑥𝑦 = 113 

    𝑦 − 𝑥 = 11,                       𝑦2 + 𝑥𝑦 + 𝑥2 = 112 

 𝑦 − 𝑥 =  112,                  𝑦2 + 𝑥𝑦 + 𝑥2 = 11 

𝑦 − 𝑥 = 113,                    𝑦2 + 𝑥𝑦 + 𝑥2 = 1 

In the last three cases y >11 and so 𝑦2 + 𝑥𝑦 +

𝑥2 > 112 and so no solution is possible. In the 

first case, we get 

(𝑥 + 1)2 + 𝑥2 + 𝑥(𝑥 + 1) = 1331,⟹ 3𝑥2 +

3𝑥 − 1330 = 0, but 1330 is not divisible by 3, 

so no solution in integers is possible in this case 

also. 

 

Q4. Show that if in a party there are 6 persons 

then there must be of least 3 persons who are 

either mutual acquaintances or mutual 

strangers. 

Sol. : We represents the 6 persons by the 6 

vertices 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6  of a hexagon so 

that no 3 of those points are collinear and we 

can draw 6𝑐2 = 15 lines joining pair of those 6 

points. This gives us 6 edges of a hexagon 

𝐴1𝐴2𝐴3𝐴4𝐴5𝐴6 and 9 diagonals of this 

hexagon. We draw is of these 15 lines either in 

red or blue. We draw a red or blue line joining 

pts. 𝐴𝑖, 𝐴𝑗  according as 𝐴𝑖, 𝐴𝑗  are acquaintances 

or strangers. Some of the 15 lines will be red 

and some will be blue. If we get a triangle all of 

whose sides are red, we get 3 mutual 

acquaintances and if we get a triangle all of 

whose sides are blue, we shall have 3 persons 

who are mutual strangers. Thus we have to 

show that in the complete graph of 6 vertices 

and 15 lines, these must be either one blue 

triangle or one red, i.e. there must be a 

monochromatic triangle, whatever be the way 

in which we colour 15 lines as red or blue. 

From the vertex, 𝐴𝑖 , 5 edges emerge, some of 

which are red and some of which blue, by 

pigeon hole principle at least 3 of these must be 

of the same colour. For definiteness, let us take 

there as red. Then the 3 other vertices of their 3 

edges will from a triangle with 3 edges of its 

own. If one of their 3 edges is red, we get a red 

triangle with 3 red edges and out result is 

proved. 

 However if none of their 3 edges is red, we get 

a blue triangle will all its sides blue. In either 

case, we get either a red triangle or a blue 

triangle and our result is proved. The result 

does not hold if there are only 5 persons in the 

party since then we shall have a complete graph 
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of 5 edges and 5 diagonals of a pentagon and 

we can have a graph of the type shown in the 

following fig 1 where all the sides have been 

coloured blue. 

  

Q5. Prove that 𝑨𝟏, 𝑨𝟐, 𝑨𝟑, 𝑨𝟒 are the angles of 

a convex quadrilateral, then 𝐬𝐢𝐧
𝑨𝟏

𝟐
+ 𝐬𝐢𝐧

𝑨𝟐

𝟐
+

𝐬𝐢𝐧
𝑨𝟑

𝟐
+ 𝐬𝐢𝐧

𝑨𝟒

𝟐
≤ 𝟒𝐬𝐢𝐧

𝝅

𝟒
. 

Sol. : Let 𝐴1, 𝐴2, … . , 𝐴𝑛 be the angles of n-sided 

convex polygon, then 𝐴1 + 𝐴2 +⋯𝐴𝑛 =

(𝑛 − 2)𝜋,
𝐴1

𝑛−2
+

𝐴2

𝑛−2
+⋯+

𝐴𝑛

𝑛−2
=  𝜋, so that 

each of the angles  
𝐴1

𝑛−2
,
𝐴2

𝑛−2
, … ,

𝐴𝑛

𝑛−2
 is less than 

𝜋. Now if f(x) = sin x, f’(x) = cos 𝑥 , 𝑓′′(𝑥) =

 − sin𝑥, 

So that if x is between 0 and 𝜋, f(a) is a concave 

function. 

Thus sin
𝐴1

𝑛−2
, sin

𝐴2

𝑛−2
, … , sin

𝐴𝑛

𝑛−2
 are all concave 

functions and therefore their sum is also a 

concave function of max. value subjected to 
𝐴1

𝑛−2
+

𝐴2

𝑛−2
+⋯+

𝐴𝑛

𝑛−2
=  𝜋 arise when A : = 

𝜋(𝑛−2)

𝑛
 for each i, so that the max. value of 

sin
𝐴1

𝑛−2
+ sin

𝐴2

𝑛−2
+⋯+ sin

𝐴𝑛

𝑛−2
=

𝑛. sin
𝜋

𝑛
, 𝑠𝑜 𝑡ℎ𝑎𝑡 sin

𝐴1

𝑛−2
+ sin

𝐴2

𝑛−2
+⋯+

sin
𝐴𝑛

𝑛−2
≤ 𝑛 sin

𝜋

𝑛
. 

Q6. Find the condition that in a triangle of 

lengths of sides a, b, c you can draw one or 

more st. lines each of which simultaneously 

bisects the perimeter and the area of the 

triangle. 

Sol. : If possible let PQ be such a line, then since 

it bisects the perimeter 𝑥 + 𝑦 =
1

2
(𝑎 + 𝑏 + 𝑐) 

and since the area 
1

2
𝑥𝑦 sin𝐴 =

1

2
(
1

2
𝑏𝑐. sin𝐴), 

⟹ 𝑥𝑦 =
1

2
𝑏𝑐, 𝑠𝑜 𝑡ℎ𝑎𝑡 (𝑥 − 𝑦)2

= (
𝑎 + 𝑏 + 𝑐

2
)
2

− 2𝑏𝑐. 

𝑥, 𝑦 =
1

2
[
𝑎 + 𝑏 + 𝑐

2
≠ √(

𝑎 + 𝑏 + 𝑐

2
)
2

− 2𝑏𝑐]. 

For the line PQ with the reqd. properties to 

exist, if is necessary that  

(i) (𝑎 + 𝑏 + 𝑐)2 ≥ 8𝑏𝑐, 

(ii) 𝑥 ≤ 𝑐, 𝑦 = 𝑏 𝑜𝑟 𝑥 ≤ 𝑏, 𝑦 ≤ 𝑐. 

 

Similarly, the condition that a line exists 

intersecting AB and BC and also bisecting 

perimeter and area simultaneously are (i) (𝑎 +

𝑏 + 𝑐)2 ≥ 8𝑏𝑐,  

(ii)It is possible to cut off lengths  
1

2
[
𝑎+𝑏+𝑐

2
±

√(
𝑎+𝑏+𝑐

2
)
2
− 2𝑏𝑐] from the sides AB and BC. 

A similar set of conditions can be written down 

for a line to exist intersecting AC and BC and 

simultaneously bisecting the perimeter and 

area of the triangles. 
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Q7. Check whether the function defined by 

𝒇(𝒙 + 𝝀) =  𝝀 + √𝟐𝒇(𝒙) − 𝒇𝟐(𝒙) ∀𝒙 ∊ 𝑹, is 

periodic on not, if periodic, then find its 

period. 

Sol. : The given function is true if 2𝑓(𝑥) −

𝑓2(𝑥) ≥ 0,  

⟹ 𝑓(𝑥)[𝑓(𝑥) − 2] ≤ 0,⟹ 0 ≤ 𝑓(𝑥) ≤

2… . (𝑖).  

Also from the given function, it is clear that 

𝑓(𝑥 + 𝜆) ≥ 1,⟹ 𝑓(𝑥) ≥ 1…… . (𝑖𝑖) 

From (i) and (ii), we conclude that 1 ≤ 𝑓(𝑥) ≤

2. 

Again, we have {𝑓(𝑥 + 𝜆) − 1}2 = 2𝑓(𝑥) −

𝑓2(𝑎)1 

⟹ {𝑓(𝑥 + 𝜆) − 1}2 = −{𝑓(𝑥) − 1}2 +

1………(𝑖𝑖𝑖)  

Replacing x by x + 𝜆 in above equation, we get 

{𝑓(𝑥 + 𝜆) − 1}2  − {𝑓(𝑥) − 1}2 + 1………(𝑖𝑣)  

From (iv) –(iii), we get 

{𝑓(𝑥 + 2𝜆) − 1}2 = {𝑓(𝑥 + 𝜆) − 1}2,⟹

𝑓(𝑥 + 2𝜆) = 𝑓(𝑥),⟹ 𝑓 is a periodic function 

with period 2𝜆. 

 

Q8. f : R→ [0, ∞) be a function satisfying 

𝒇(𝒙 + 𝒚) − 𝒇(𝒙 − 𝒚) = 𝒇(𝒙)[𝒇(𝒚) −

𝒇(−𝒚)],  𝒇′(𝟎) = 𝐥𝐨𝐠𝒂 , 𝒇(𝟎) = 𝟏 (for all 

values of a except 1), then solve the 

differential 
𝒅𝒚

𝒅𝒙
=

{𝐥𝐨𝐠𝒂(𝒇(𝒙)𝒇(𝒚)}𝟐

(𝐥𝐨𝐠𝒂 𝒇(𝒙)+𝟐)(𝐥𝐨𝐠𝒂 𝒇(𝒚)−𝟐)
. 

Sol. : Given that 𝑓(𝑥 + 𝑦) − 𝑓(𝑥 − 𝑦) =

 𝑓(𝑥)[𝑓(𝑦) − 𝑓(−𝑦)]  ∴ 𝑓′(0) =  Lt
𝑛→0

𝑓(𝑛)−𝑓(0)

𝑛
 

= Lt
𝑛→0

𝑓(𝑛) − 1

𝑛
= log 𝑎 … . . (𝑖)𝑎𝑛𝑑 

𝑓′(𝑥) =  Lt
𝑛→0

𝑓(𝑥 + 𝑛) − 𝑓(𝑥 − 𝑛)

2𝑛

=  Lt
𝑛→0

𝑓(𝑥)[𝑓(𝑛) − 𝑓(−𝑛)]

2𝑛
 

⟹ 𝑓′(𝑥) =
𝑓(𝑥)

2
Lt
𝑛→0

 [
𝑓(𝑛) − 1

𝑛
+
𝑓(−𝑛) − 1

−𝑛
] 

=
𝑓(𝑥)

2
2 log 𝑎 ,⟹

𝑓′(𝑥)

𝑓(𝑥)
= log 𝑎 ,⟹ log 𝑓(𝑎) 

= 𝑥 log 𝑎 + log 𝑐  (𝑤ℎ𝑒𝑟𝑒 𝑐 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡. ),⟹

log 𝑓(𝑥)  

= log(𝑎𝑥𝑐) ,⟹ 𝑓(𝑥) = 𝑎𝑥𝑐 …… . . (𝑖𝑖)   

Putting x = 0 in (ii), we get f(0) = c, ⟹ c = 1. 

∴ f(x) = 𝑎𝑥… . (𝑖𝑖𝑖) 

∴ Given differential equation 
𝑑𝑦

𝑑𝑥
=

{log𝑎(𝑓(𝑥)𝑓(𝑦)}2

(log𝑎 𝑓(𝑥)+2)(log𝑎 𝑓(𝑦)−2)
 𝑏𝑒𝑐𝑜𝑚𝑒𝑠

𝑑𝑦

𝑑𝑥
=

(𝑥+𝑦)2

(𝑎+2)(𝑦−2)
 (∵ 𝑓(𝑥) = 𝑎𝑥 ,⟹ log 𝑎  𝑓(𝑥) = 𝑥),  

⟹
𝑑𝑦

𝑑𝑥
=
(𝑥 + 2 + 𝑦 − 2)2

(𝑥 + 2)(𝑦 − 2)
,⟹

𝑑𝑦

𝑑𝑥
=
(𝑥 + 𝑦)2

𝑥𝑦
  

(Putting x + y = x, y – 2 = y) …….. (iv) 

Putting y = +x, so that 
𝑑𝑦

𝑑𝑥
= 𝑡 + 𝑥

𝑑𝑡

𝑑𝑥
 

∴ Equation (iv) becomes ⟹ 𝑡 + 𝑥
𝑑𝑦

𝑑𝑥
=

(1+𝑡)2

𝑡
⟹ 𝑡 + 𝑥

𝑑𝑡

𝑑𝑥
=
1

𝑡
+ 𝑡 + 2,⟹ 𝑥

𝑑𝑡

𝑑𝑥
=

1+2𝑡

𝑡
,⟹

𝑡𝑑𝑡

1+2𝑡
=
𝑑𝑥

𝑥
,  

⟹
1

2
∫
(2𝑡 + 1 − 1)

(2𝑡 + 1)
=  ∫

𝑑𝑥

𝑥
,

⟹ 𝑡 −
1

2
log| ⎸(1 + 2𝑡)⎸|  

= 2 log 𝑥 + 𝑐,⟹ (
𝑦 − 2

𝑥 + 2
)

−
1

2
log ⎸1 + 2 (

𝑦 − 2

𝑥 + 2
) ⎸ 
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= 2 log(𝑥 + 2) + 𝑐.  

 

Q9. If f(x) is monotonic and differentiable to 

real valued f function and a, b are two real 

numbers, show that  

∫ [𝒇(𝒙) + 𝒇(𝒂)]
𝒃

𝒂

[𝒇(𝒙) − 𝒇(𝒂)]𝒅𝒙  

= 𝟐 ∫ 𝒙 [𝒃 − ∫ (𝒙)
𝟏

]
𝒇(𝒃)

𝒇(𝒂)

𝒅𝒙. 

Sol. : To prove that   

∫ 𝑥[𝑓(𝑥) + 𝑓(𝑎)]
𝑏

𝑎
[𝑓(𝑥) − 𝑓(𝑎)]𝑑𝑥  =

2 ∫ 𝑥 [𝑏 − 𝑓−1(𝑥)]
𝑓(𝑏)

𝑓(𝑎)
𝑑𝑥….. (i) 

We know that a differentiable function is also 

continuous, so if f is differentiable if will be 

continuous, f is also monotonous (given). So f is 

bijective and its inverse also exists. Now, let 

𝑓−1(𝑥) = 𝑦; ⟹ 𝑥 = 𝑓(𝑥),⟹ 𝑑𝑥 =

𝑓(𝑦)𝑓′(𝑦)𝑑𝑦, 

2∫ 𝑥 [𝑏 − 𝑓−1(𝑥)]
𝑓(𝑏)

𝑓(𝑎)

𝑑𝑥

=  ∫ 2𝑓(𝑦)(𝑏
𝑏

𝑎

− 𝑦)𝑓′(𝑦)𝑑𝑦   (𝐿. 𝐻. 𝑆. 𝑜𝑓 (𝑖)) 

∫ 2𝑥𝑓(𝑦)
𝑏

𝑎

(𝑏 − 𝑦)𝑑𝑦

= [(𝑏 − 𝑦)𝑓2(𝑦)]
𝑏

𝑎

+ ∫ 𝑓2(𝑦)
𝑏

𝑎

𝑑𝑦

=  −(𝑏 − 𝑎)𝑓2(𝑎)

+ ∫ 𝑓2(𝑦)
𝑏

𝑎

𝑑𝑦 

= ∫ [𝑓2(𝑦) − 𝑓2(𝑎)]
𝑏

𝑎

𝑑𝑦

=  ∫ [𝑓2(𝑥) − 𝑓2(𝑎)]
𝑏

𝑎

𝑑𝑥 

= ∫ [𝑓(𝑥) + 𝑓(𝑎)]
𝑏

𝑎

 [𝑓(𝑎) − 𝑓(𝑎)]𝑑𝑥 

= 𝑅.𝐻. 𝑆. 𝑜𝑓 (𝑖)𝑝𝑟𝑜𝑣𝑒𝑑.  

Q10. Draw the graph of y = 
𝟏

𝟐
(𝐭𝐚𝐧𝒙 + 𝐜𝐨𝐭 𝒙) +

 |⎸
𝟏

𝟐
(𝐭𝐚𝐧𝒙 − 𝐜𝐨𝐭 𝒙)⎸|. 

Sol. : If tan 𝑥 ≥ cot 𝑥 , 𝑡ℎ𝑒𝑛 𝑦 =

tan 𝑥 𝑎𝑛𝑑 𝑖𝑓 tan 𝑥 ≤ cot 𝑥 , 𝑡ℎ𝑒𝑛 𝑦 = cot 𝑥. 

 

 

MODEL TEST PAPER - 14 

Q1. Show that A = 10101…… 101 is not a prime 

number, unless A = 101. 

Sol. : 𝐴 = 102𝑛 + 102𝑛+2 +⋯+ 102 + 1 

⟹ 100𝐴 = 102𝑛+2 + 102𝑛 + 106 + 104 +

102  

∴→ 9𝐴 = 102𝑛+2 − 1 = (10𝑛+1 + 1)(10𝑛+1 −

1)  

When n >1, 10𝑛+1 − 1 = 9999 or 999999, or …. 

And the 2nd factor is divisible by 99. Except 

when n = 1. 
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The quotient is x1 and A has two proper factors. 

If n is even 10𝑛+1 + 1 = 1001, 100001,…. and 

all there are divisible by 11. Thus A is nonprime 

except when it is 101. 

 

Q2. Let a, b, c, d be any four positive integers. 

Let 𝒂𝟏, 𝒃𝟏, 𝒄𝟏, 𝒅𝟏 be the differences |⎸𝒂 −

𝒃|⎸, | ⎸𝒃 − 𝒄|  ⎸, | ⎸𝒄 − 𝒅| ⎸, |⎸𝒅 − 𝒂| ⎸. In the 

same way define 𝒂𝒏+𝟏 =  ⎸|𝒂𝒏 −

𝒃𝒏|  ⎸, | ⎸𝒃𝒏 + 𝟏| ⎸, |⎸𝒃𝒏 − 𝒄𝒏|⎸, 𝒄𝒏 + 𝟏= |𝒄𝒏 −

𝒅𝒏| , 𝒅𝒏 + 𝟏 = | ⎸𝒅𝒏 − 𝒂𝒏| ⎸, show that 

whatever be the four numbers we start with 

ultimately four zerox must be obtained. 

Sol. : We easily note the following properties: 

(i) max (𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛] ≤

max(𝑎𝑛−1, 𝑏𝑛−1𝑐𝑛−1. 𝑑𝑛−1) for all 

𝑛 ≥ 1. 

(ii) If ultimately zeros are obtained 

when we start with kn, kb, kc, kd 

we shall also obtain zeros when we 

start with a, b, c, d where k is any 

positive integers. 

(iii) After at most 4 stages, 4 even 

number are obtained. If we denote 

by 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 the four numbers 

after n stages of the process and 

after cancelling out any common 

factors we  

(iv) max(𝐴𝑛 + 4, 𝐵𝑛 + 4, 𝐶𝑛 + 4,𝐷𝑛 +

4) ≤ max(𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛) 

(v) max(𝐴4𝑘 , 𝐵4𝑘 , 𝐶4𝑘, 𝐷4𝑘) ≤
1

2𝑘
max(𝐴0, 𝐵0, 𝐶0, 𝐷0)  

Hence we must have   

max(𝐴4𝑘 , 𝐵4𝑘 , 𝐶4𝑘, 𝐷4𝑘) = 0 for sufficiently 

large k and the destined result is established. 

 

Q3. The real numbers 𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏, … satisfy 

the condition: 1 = 𝒂𝟎 ≤ 𝒂𝟏 ≤ 𝒂𝟐 ≤ ⋯ ≤ 𝒂𝒏 ≤

⋯ the numbers 𝒃𝟏, 𝒃𝟐, … , 𝒃𝒏, …. are defined by 

𝒃𝒏 = ∑(𝟏 −
𝒂𝒌 − 𝟏

𝒂𝒌
)

𝒏

𝒌=𝟏

𝟏

√𝒂𝒌
. 

(a) Prove that 𝟎 ≤ 𝒃𝒏 < 2 ∀ 𝑛. 

(b) Given C with 𝟎 ≤ 𝒄 < 2, prove that 

there exist numbers 𝒂𝟎, 𝒂𝟏, … with the 

above properties such that 𝒃𝒏 > 𝑐 for 

large enough n. 

Sol. :  

(a)  We note that 
𝑎𝑘−1

𝑎𝑘
≤ 1, 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑏𝑛 ≥ 0 

for all n denote √𝑎𝑘  𝑏𝑦 𝑎𝑘. Then K th  

term of the sum 𝑏𝑛 is  

(1 −
𝑎𝑘
2 − 1

𝑎𝑘
2 )

1

𝑎𝑘

=
𝑎𝑘
2 − 1

𝑎𝑘
(
1

𝛼𝑘−1
2
−
1

𝑎𝑘
2

=
𝑎𝑘
2 − 1

𝛼𝑘
)

× (
1

𝛼𝑘−1
+
1

𝛼𝑘
) (

1

𝛼𝑘−1
−
1

𝛼𝑘
)

=
𝛼𝑘−1
𝛼𝑘

(1 +
𝛼𝑘−1
𝛼𝑘

)

× (
1

𝛼𝑘−1
−
1

𝛼𝑘
)

≤ 2 (
1

𝛼𝑘−1
−
1

𝛼𝑘
).  

Adding there inequalities for k = 1, 2, …, n. We 

observe that the right side from a telescoping 

sum, and we get 0 ≤ 𝑏𝑛 < 2(
1

𝛼0
−

1

𝛼𝑛
) =

 2 (
1

√𝛼0
−

1

√𝛼𝑛
) =  2 (1 −

1

√𝛼𝑛
) < 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. 

(b) Winners,  0 ≤ 𝑐 < 2,  we shall establish 

the existence of the appropriate 𝑎𝑖  by 
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constructing them as terms of a 

geometric series. 

Set 
1

√𝑎𝑘
= 𝑑𝑘 , 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑘 −

𝑡ℎ 𝑡𝑒𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑏𝑛 𝑖𝑠 (1 −
𝑑−2(𝑘−1)

𝑑−2𝑘
)𝑑𝑘 =

(1 − 𝑑2)𝑑𝑘 . 

Hence  𝑏𝑛 = ∑ (1 − 𝑑2)𝑑𝑘 = 𝑛
𝑘=1 (1 −

𝑑2)∑ 𝑑𝑘  𝑛
𝑘=1 = (1 − 𝑑2) ×

𝑑−𝑑𝑛+1

1−𝑑
= 𝑑(1 +

𝑑)(1 − 𝑑𝑛) we must pick d between 0 and 1 so 

that 𝑏𝑛 = 𝑑(1 + 𝑑)(1 − 𝑑
𝑛) > 𝑐 for large 

enough n. We containly need to have d(1 +d) 

>c. 

This can be achieved for any c <2. Since d (1+ d) 

approaches 2 as d tends to 1. 

(In fact the reader can easily verify that d(1+ d) 

>c if d = 
2

√
𝑐

2

). Now since d <1, we see that 1 − 𝑑𝑛 

is as close to 1 as we please for all sufficiently 

larger. In particular, 1 − 𝑑ℎ >
𝑐

𝑑
(1 +

𝑑), 𝑖. 𝑒. 𝑑(1 + 𝑑)(1 − 𝑑ℎ) > 𝑐 for all sufficiently 

large n. we suggest that the reader find a 

number N depending on the given C such that 

𝑏𝑛 > 𝑐 for all n > N.)  

 

Q4. Let G be the centroid of the 𝚫 ABC. Under 

rotation by 𝟏𝟐𝟎° about the point G, the pt. B is 

taken to the pt. P and under n rotation by 

𝟐𝟒𝟎° about G, the pt. C is taken to the pt. Q. 

Prove that either APQ is an equilattienal 

triangle on the points A, P, Q. Coincide. 

Sol. :  

Let G be the original and let A, B, C. be 

represented by complex number a, b, c then 

after rotation B goes to P is represented by 
𝑏𝑒2𝜋𝑖

3
 

and C goes to Q represented by 
𝐶𝑒4𝜋𝑖

3
. Also since 

G is the origin a + b + c = 0, so that points A, P, Q 

are –(b + c), 
𝑏𝑒2𝜋𝑖

3
,
𝐶𝑒4𝜋𝑖

3
, 𝑜𝑟 − (𝑏 +

𝑐), 𝑏𝑤2, 𝐶𝑤4, when w = 
𝑒2𝜋𝑖

6
, so that 𝑤2 −𝑤 +

1 = 0,𝑤3 = −1. 

Then A, P, Q are –(b + c), b𝑤2, −𝑐𝑤. If A and P 

coincide the 𝑛 − 𝑏 − 𝑐 − 𝑏𝑤2 = 0 𝑜𝑛 − 𝑐 −

𝑏𝑤 = 0, 𝑜𝑟 𝑐 + 𝑏𝑤 = 0, 𝑜𝑟 𝑏𝑤2 = −𝑐𝑤 =

𝑐𝑤4. So that P and Q also coincide. If A and P do 

not coincide, then 𝑃 − 𝑎 = 𝑏𝑛2 − 𝑎 = (𝑏 +

𝑎)𝜔2 − 𝑎(1 + 𝜔2) =  −𝑐𝜔2 − 𝑎𝜔 = 𝑐𝜔5 −

𝑎𝜔 = 𝑞𝜔 − 𝑎𝜔 = (𝑞 − 𝑎)𝜔 = (𝑞 − 𝑎)𝑒𝑖𝜋/6 

∴ ∠PAQ = 60°. Also 𝑝 − 𝑞 =  
𝑏𝑒2𝜋𝑖

3
− 

𝐶𝑒4𝜋𝑖

3
=

𝑏𝜔2 − 𝑐𝜔4 = 𝜔2 − (−𝑎 − 𝑏)𝜔4 

= 𝑏𝜔2 + (𝑎 + 𝑏)𝜔4 = 𝑏𝜔2 − (𝑎 + 𝑏)𝜔

= −𝑏 − 𝑎𝜔 = 𝑏𝜔3 − 𝑎𝜔

= (𝑏𝜔2 − 𝑎)𝜔 = (𝑏 − 𝑎)𝜔. 

∴ ∠QPA  = 60°, so that the 𝛥APQ is equilateral. 

 

Q5. Let f(x) be a continuous function is [-1, 1] 

and satisfies 𝒇(𝟐𝒙𝟐 − 𝟏) = 𝟐𝒙𝒇(𝒙)∀ 𝒙 ∊

[−𝟏, 𝟏].Prove that f(x) is identically zero for all 

x ∊ [-1, 1]. 

Sol. : We have 𝑓(2𝑥2 − 1) = 2𝑥𝑓(𝑥)∀𝑥 ∊

[−1, 1] ……. (i) 

Replacing x → -x, we get 𝑓(2𝑥2 − 1) =

 −2𝑥𝑓(𝑥) ……. (ii) 

From equation (i) and (ii), we get 2xf(x) = -2xf(-

x), on f(x) = -f (−x) ∀ 𝑥 ∊ [−1, 1] ……. (iii) 

Hence f(x) is an odd function. Now putting x = 0 

in equation (iii), we have f(0) = -f(0), ⟹f(0) = 0 

…..(iv). 
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Putting 𝑥 = cos 𝜃 in equation (i), we get 

𝑓(cos 2𝜃) = 2 cos 𝜃 . 𝑓(cos 2𝜃) =

2 cos 𝜃 . 𝑓 (2𝑐𝑜𝑠2
𝜃

2
− 1) 

= 2cos 𝜃 . 2 cos
𝜃

2
𝑓 (cos

𝜃

2
)

=  2𝑛+1. cos 𝜃 . cos
𝜃

2
  

cos
𝜃

2𝑛 − 1
. cos

𝜃

2𝑛
 𝑓 (cos

𝜃

2𝑛

= sin2𝜃 . 𝑓 (cos
𝜃

2𝑛
)) / sin

𝜃

2𝑛
 

Taking limit on the both sides as n → ∞, we get  

Lt
𝑛→∞

𝑓(cos 2𝜃) = sin2𝜃 Lt
𝑛→∞

𝑓 {cos (
𝜃
2𝑛)}

sin (
𝜃
2𝑛)

, 

 ⟹ 𝑓(cos 2𝜃)

= sin2𝜃 , lt
𝑛→∞

𝑓 (2𝑐𝑜𝑠2
𝜃
2𝑛+1

− 1)

2 sin
𝜃
2𝑛+1

cos
𝜃
2𝑛+1

= sin 2𝜃. 

lt
𝑛→∞

𝑓 (2𝑠𝑖𝑛2
𝜃
2𝑛+1

− 1)

2 sin
𝜃
2𝑛+1

cos
𝜃
2𝑛+1

(∵ 𝑓(𝑥)𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

= −sin2𝜃 { lt
𝑛→∞

2 sin
𝜃

2𝑛 + 1𝑓 (sin
𝜃

2𝑛 + 1)

2 sin
𝜃

2𝑛 + 1cos
𝜃

2𝑛 + 1

}

=  0 

= sin2𝜃 . {
𝑓(0)

1
} =  0,⟹ 𝑓(cos 2𝜃) =  0 ∀ 0

∊ 𝑅,⟹ 𝑓(𝑥) = 0∀ 𝑥 ∊ [−1, 1]. 

 

Q6. Let 𝒇 (
𝒙𝟏+𝒙𝟐+⋯+𝒙𝒏

𝒏
) =

𝒇(𝒙𝟏)+𝒇(𝒙𝟐)+⋯+𝒇(𝒙𝒏)

𝒏
 

where 𝒙𝒊𝝐𝑹 𝒂𝒏𝒅 𝒏𝝐𝑵. If f(x) is differentiable 

and f’(0)=a, f(0) = 𝒃. Evaluate 
𝒅𝒌𝒇(𝒙)

𝒅(𝒙𝒌)
(𝒌 ≥ 𝟒).  

Sol: Given  

𝑓 (
𝑥1 + 𝑥2 +⋯+ 𝑥𝑛

𝑛
)

=
𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛)

𝑛
 

Taking n = 2, we have 𝑓 (
𝑥1+𝑥2

2
) =

1

2
{𝑓(𝑥1) +

𝑓(𝑥2)} 

(Where 𝑥1 𝑎𝑛𝑑 𝑥2 are independent variables) 

…. (iii). Now differentiating (ii) w. r. t. 𝑥1, we get 

𝑓′ (
𝑥1+𝑥2

2
)
1

2
 (1 +

𝑑𝑥2

𝑑𝑥1
) =

1

2
{𝑓′(𝑥1) +

𝑓′(𝑥2)
𝑑𝑥2

𝑑𝑥1
}….. (iii) . Since 𝑥2 is independent f𝑥1 

so 
𝑑𝑥2

𝑑𝑥1
= 0 

∴ (iii) ⟹ 
1

2
𝑓′ (

𝑥1+𝑥2

2
) =

1

2
𝑓′(𝑥1). 

Putting 𝑥1 = 0 𝑎𝑛𝑑 𝑥2 = 𝑥
′,  we get 

1

2
𝑓′ (

0 + 𝑥′

2
) =

1

2
𝑓′(0),⟹ 𝑓′ (

𝑥′

2
) = 𝑎,

⟹ 𝑓′(𝑥) = 𝑎 

(Putting x’/2 = x). Integrating above equation. 

W. r. t. x, we get f(x) = ax + c. 

Putting x = 0, we get f(0) = 0+ c, ⟹ c = b 

 ∴ f(x) = ax + b.   ∴ 𝑓′(𝑥) =  𝑎, 𝑓′′(𝑥) =

0, 𝑓′′′(𝑥) =  0,
𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
= 0. 

Q7. If f(x) is an increasing function from R →R 

such that 𝒇′′(𝒙) > 0, 𝑓(𝒙) ≠ 𝟎 𝒂𝒏𝒅 𝒇−𝟏 exists, 

then show that 
𝒅𝟐{𝒇−𝟏(𝒙)}

𝒅𝒙𝟐
< 0. 

Sol. : Let f be an increasing function ⟹ 𝑓′(𝑎) >

0′𝑎𝑛𝑑 𝑓′′(𝑥) > 0 …..(i) (given).  

Let 𝑔(𝑥) = 𝑓−1(𝑥) …… (ii), then f{g(x)} = x, 

⟹𝑓′{𝑔(𝑥)}. 𝑔′(𝑥) ≡ 1,⟹ 𝑔′(𝑥) =
1

𝑓′{𝑔(𝑥)}
 …… 

(iii). 



Solving Mathematical Problems 

 

288 
 

Again differentiating both sides w. r. t. x, we get 

𝑔′′(𝑥) =  −1
1

{𝑓(𝑔(𝑥))}
𝑓′′{𝑔(𝑥)}𝑔′(𝑥) …. (iv). 

Let g(x) = 𝑓−1(𝑥) = 𝑦,⟹ 𝑥 = 𝑓(𝑦),⟹ 1 

= 𝑓′(𝑦)
𝑑𝑦

𝑑𝑥
,⟹

𝑑𝑦

𝑑𝑥
=

1

𝑓′(𝑦)
> 0,⟹ 𝑔′(𝑥) > 0 

∴ From equation (iv), we have 
𝑑2

𝑑𝑥2
{𝑔(𝑥)} < 0 

(∵ f’(g(x))>0), ⟹
𝑑2{𝑓−1(𝑥)}

𝑑𝑥2
< 0 

[∵ 𝑔(𝑥) =  𝑓−1(𝑥)] . 

 

Q8. Let 𝒂𝟏, 𝒂𝟐… be a non-decreasing sequence 

of positive integers. For m ≥1, define 𝒃𝒎 =

𝐦𝐢𝐧{𝒏:𝒂𝒏 ≥ 𝒎} , 𝒊. 𝒆. 𝒃𝒎 is the minimum 

value of n such that 𝒂𝟏 ≥ 𝒎. If 𝒂𝟏𝟗 = 𝟖𝟓, 

determine the maximum value of 𝒂𝟏 + 𝒂𝟐 +

⋯+ 𝒂𝟏𝟗 + 𝒃𝟏 + 𝒃𝟐 +⋯+ 𝒃𝟖𝟓. 

Sol. : We will show that if 𝑎𝑞 = 𝑝, then 𝑆𝑝𝑞 =

 𝑎1 + 𝑎2 +⋯+ 𝑎𝑞 + 𝑏1 + 𝑏2 + 𝑏𝑝 = 𝑝(𝑞 + 1). 

In particular, for the case q = 19, p = 85, we 

have the sum 𝑝(𝑞 + 1) = 1700. 

If 𝑎𝑖 = 𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑞, 𝑡ℎ𝑒𝑛 𝑏𝑗 =

1 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑗 ≤ 𝑝. 

Hence, 𝑠𝑝𝑞 = 𝑝𝑞 + 𝑝 as reqd. If not, let t be the 

largest index such that 𝑎𝑖 < 𝑝. 𝐿𝑒𝑡 𝑎𝑖 = 𝑢. 𝐼𝑓 𝑎𝑖  

is increased by 1, then all the 𝑏𝑗 remain 

unchanged except for 𝑏𝑛+1 which decreases by 

1. Hence the value of the desired sum is 

unchanged. By repeating this increment process 

(in decreasing order of the subscript so as to 

maintain a non-decreasing sequence) as long as 

necessary, we will eventually arrive at the 

const. sequence which gives the desired result. 

Q9. Find out the area bounded by the curve y =  

∫ (𝐬𝐢𝐧−𝟏√𝒕)
𝒔𝒊𝒏𝟐𝒙

𝟏/𝟖

𝒅𝒕

+ ∫ (𝐜𝐨𝐬−𝟏√𝒕)
𝒄𝒐𝒔𝟐𝒙

𝟏/𝟖

𝒅𝒕 (𝟎 ≤ 𝒙

≤ 𝝅 𝟏𝟐) 

And the curve satisfying the differential 

equation 𝒚(𝒙 + 𝒚𝟑)𝒅𝒙 = 𝒙(𝒚𝟑 − 𝒙)𝒅𝒚 

passing through (𝟒,−𝟏𝟐). 

Sol. : Given differential equation is 𝑥(𝑦𝑑𝑥 +

𝑥𝑑𝑦) = 𝑦3(𝑥𝑑𝑦 − 𝑦𝑑𝑥).⟹

𝑥𝑑(𝑥𝑦)𝑦3𝑥2 (
𝑥𝑑𝑦−𝑦𝑑𝑥

𝑥2
). 

⟹ 𝑥𝑑(𝑥𝑦) =  𝑥2𝑦3𝑑 (
𝑦

𝑥
) ,⟹

𝑑(𝑥𝑦)

(𝑥𝑦)2

=
𝑦

𝑥
. 𝑑 (

𝑦

𝑥
).  

On integrating, 

−
1

𝑥𝑦
=
1

2
(
𝑦

𝑥
)
2
+ 𝑐…….. (i) 

 

Curve (i) passes through 

(4, −2),⟹
1

8
=
1

8
+ 𝑐 ⟹ 𝑐 = 0. 

Hence curve (i) becomes 
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𝑦3 + 2𝑥 = 0,  ⟹ 𝑦 = (−2𝑥)1/3,⟹ 𝑓(𝑥) =

 (−2𝑥)1/3 

The second equation is  

𝑦 =  ∫ sin−1 √𝑡
𝑠𝑖𝑛2𝑥

1/8
𝑑𝑡 + ∫ cos−1 √𝑡

𝑐𝑜𝑠2𝑥

1/8
 𝑑𝑡 

………. (ii) 

⟹ 𝑦′ = 𝑥. 2 sin 𝑥 cos 𝑥 + 𝑥. 2 cos𝑥 (− sin𝑥) =

0 

⟹ 𝑦 = 𝑐1(𝑐𝑜𝑛𝑠𝑡. ). 𝑁𝑜𝑤 𝑝𝑢𝑡𝑡𝑖𝑛𝑔 sin𝑥 =

cos 𝑥 =
1

√2
 is equation (ii), we get y = 

∫ (sin−1 √𝑡 + cos−1√𝑡)
1/2

1/8
𝑑𝑡 =  ∫ (

𝜋

2
)

1/2

1/8
𝑑𝑡 =

3𝜋

16
……….. (iii) 

Now reqd. area 

= ∫ 𝑥𝑑𝑦
3𝜋/16

0

= |⎸(∫ (−
𝑦3

2
)

3𝜋
16

0

𝑑𝑦)| ⎸

=
1

8
(
3𝜋

16
)
4

. 

 

Q10. If 𝛹is the difference of eccentric angles of 

two points on an ellipse, the tangents of which 

are at right angles. Prove that 𝒂𝒃 𝐬𝐢𝐧𝜳 =

 𝒅𝟏𝒅𝟐,  where 𝒅𝟏, 𝒅𝟐, are the semi-diameters 

parallel to the tangents at the points and a, b, 

are semi-axes of the ellipse. 

Sol. : Let the given ellipse be 
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 …… (i). 

Let P(𝛼) and Q(𝛽) be two pts. On (i) such that 

𝛹= 𝛼 –𝛽…… (iii). Given that tangents at P and 

Q are at right angles. 

∴(−
𝑏

𝑎
cot 𝛼) (−

𝑏

𝑎
cot 𝛽) =  −1,⟹

𝑎2 sin𝛼 sin𝛽 + 𝑏2 

cos 𝛼 cos𝛽 = 0 …… (iii). But the diameter 

parallel to the tangent at P(x) will be conjugate 

to the diameter CP then its extremities will be. 

(– 𝑎 𝑠𝑖𝑛 𝛼, 𝑏 cos 𝛼).  

∴ 𝑑1
2 = 𝑎2 𝑠𝑖𝑛2𝛼 + 𝑏2𝑐𝑜𝑠2𝛼.  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑑2
2 = 𝑎2 𝑠𝑖𝑛2𝛽 + 𝑏2𝑐𝑜𝑠2𝛽,⟹

𝑑1
2𝑑2

2  

= (𝑎2 𝑠𝑖𝑛2𝛼 + 𝑏2𝑐𝑜𝑠2𝛼)(𝑎2 𝑠𝑖𝑛2𝛽 +

𝑏2𝑐𝑜𝑠2𝛽)  

= (𝑎2 𝑠𝑖𝑛𝛼 sin𝛽 + 𝑏2 cos𝛼 cos 𝛽)2 +

𝑎2𝑏2(𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛽 − 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛽)2 = 0 +

𝑎2𝑏2𝑠𝑖𝑛2(𝛼 − 𝛽)  

[𝑓𝑟𝑜𝑚 (𝛽)] =  𝑎2𝑏2𝑠𝑖𝑛2𝛹 [𝑓𝑟𝑜𝑚 (2)]. ∴

sin𝛹 =  𝑑1𝑑2.  

 

MODEL TEST PAPER - 15 

Q1. Let 𝑮𝒏 = 𝒙
𝒏 𝐬𝐢𝐧𝒏𝑨 + 𝒚𝒏 𝐬𝐢𝐧𝒏𝑩 +

𝒛𝒏 𝐬𝐢𝐧𝒏𝑪, where x, y, z, A, B, C are real and A + 

B+ C is an integral multiple of 𝜋. Prove that if 

𝑮𝟏 = 𝑮𝟐 = 𝟎, 𝒕𝒉𝒆𝒏 𝑮𝒏 = 𝟎 for all positive 

integral n. 

Sol. : A standard trick is to recognize that 𝐺𝑛 

is the imaginary part of the expression 𝐻𝑛 =

 𝑥𝑛𝑒𝑖𝑛𝐴 + 𝑦𝑛𝑒𝑖𝑛𝐵 + 𝑧𝑛𝑒𝑖𝑛𝐶 . 

Suppose that 𝐻𝑛 is real for n = 0, 1 , …. , k and 

consider 𝐻𝑘+1. We have 

 𝐻1𝐻𝑘 = 𝐻𝑘+1 +𝐻,𝑤ℎ𝑒𝑟𝑒 𝐻 = 𝑥𝑒
𝑖𝐴𝑦𝑘𝑒𝑖𝑘𝐵 +

𝑥𝑒𝑖𝐴 𝑧𝑘 𝑒𝑖𝑘𝐶 + 𝑦𝑒𝑖𝐵 𝑥𝑘 𝑒𝑖𝑘𝐴 + 𝑦𝑒𝑖𝑘𝐵 = 𝑒𝑖𝑘𝐶 +

𝑧𝑒𝑖𝐶  𝑥𝑘 𝑒𝑖𝑘𝐴 + 𝑧 𝑒𝑖𝐶  𝑦𝑘 𝑒𝑖𝑘𝐵 =

𝑥𝑦𝑒𝑖(𝐴+𝐵)[𝑦𝑘−1𝑒𝑖(𝑘−1)𝐵 + 𝑥𝑘−1𝑒𝑖(𝑘−1)𝐴] +

𝑥𝑧𝑒𝑖(𝐴+𝐶)[𝑧𝑘−1𝑒𝑖(𝑘−1)𝐶 + 𝑥𝑘−1𝑒𝑖(𝑘−1)𝐴] +

𝑦𝑧𝑒𝑖(𝐵+𝐶)[𝑦𝑘−1𝑒𝑖(𝑘−1)𝐵 + 𝑧𝑘−1𝑒𝑖(𝑘−1)𝐶] =

 𝑥𝑦 𝑒𝑖(𝐴+𝐵) × [𝐻𝑘−1 − 𝑧
𝑘−1𝑒𝑖(𝑘−1)𝐶] +

𝑥𝑧𝑒𝑖(𝐴+𝐶)[𝐻𝑘−1 − 𝑦
𝑘−1𝑒𝑖(𝑘−1)𝐵] +

 𝑦𝑧𝑒𝑖(𝐵+𝐶)[𝐻𝑘−1 − 𝑥
𝑘−1𝑒𝑖(𝑘−1)𝐴] =
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𝐻𝑘−1[𝑥𝑦𝑒
𝑖(𝐴+𝐵) + 𝑥𝑧𝑒𝑖(𝐴+𝐶) + 𝑦𝑧𝑒𝑖(𝐵+𝐶)] −

𝑥𝑦𝑧𝑒𝑖(𝐴+𝐵+𝐶)𝐻𝑘−2 

= 𝐻𝑘−1𝑘 − 𝑥𝑦𝑧𝑒
𝑖(𝐴+𝐵+𝐶)𝐻𝑘−2, 𝑤ℎ𝑒𝑟𝑒 𝑘 =

  𝑥𝑦𝑒𝑖(𝐴+𝐵) + 𝑥𝑧𝑒𝑖(𝐴+𝐶) + 𝑦𝑧𝑒𝑖(𝐵+𝐶)  

Observe that 𝐻2 = 𝐻1
2 + 2𝑘 and since 

𝐻1 𝑎𝑛𝑑 𝐻2 are real, by hypothesis, if must be 

the case that k is real also, by the inductive 

assumption, 𝐻𝑘−1 𝑎𝑛𝑑 𝐻𝑘−2 are real. 

Because A + B + C is a multiple of 𝜋, 𝑒𝑖(𝐴 + 𝐵 +

𝐶) is real. Putting there facts together, the 

formula of the last paragraph show that it is 

real. Now since 𝐻𝑘 is real, by the inductive 

assumption and since 𝐻𝑘+1 = 𝐻1𝐻𝑘−1,  it 

follows that 𝐻𝑘+1 is real. Thus, the result of the 

prob. follows by mathematical induction. 

 

Q2. Let {𝒙𝒏}𝒂𝒏𝒅 {𝒚𝒏} denote two sequences 

of integers defined as follows: 

𝒙𝟎 = 𝟏, 𝒙𝟏 = 𝟏, 𝒙𝒏−𝟏 = 𝒙𝒏 + 𝟐𝒙𝒏−𝟏(𝒏 =

𝟏, 𝟐, 𝟑, … . )  

𝒚𝟎 = 𝟏, 𝒚𝟏 = 𝟕, 𝒚𝒏+𝟏 = 𝟐𝒚𝒏 + 𝟑𝒚𝒏−𝟏(𝒏 =

𝟏, 𝟐, 𝟑, … . )  

Thus the first few terms of the sequences are: 

X: 1, 1, 3, 5, 11, 21, …. 

Y: 1, 7, 17, 55, 161, 487 ……. 

Prove that, except for the ‘1’, there is no term 

which occurs both sequences. 

Sol. : Mod 8, the first few terms of the two 

sequences are X: 1, 2, 3, 5, 3, 5 and Y: 1, 7, 1, 7, 

1, 7, …… An easy induction shows that this 

alternate periodic behavior persists. Thus 1 is 

the only common term of the two sequences. If 

a, b, 𝑥0, 𝑥1 are given numbers and 𝑥2, 𝑥3, … are 

determined recursively by means of 𝑥𝑛+1 =

𝑎𝑥𝑛 + 𝑏𝑥𝑛−1, 𝑛 = 1, 2, 3,… and if 𝑎2 + 4𝑏 ≠ 0, 

then 𝑥𝑛 can be expressed in terms of a, b, 𝑥0, 𝑥1 

by the formula 

𝑥𝑛 =
(𝑥1−𝑘1𝑥1)𝑘2

𝑛−(𝑥1−𝑘2𝑥1)𝑘1
𝑛

𝑘2−𝑘1
 where 𝑘1, 𝑘2 are 

the roots of 𝑘2 − 𝑎𝑘 − 𝑏 = 0(𝑖𝑓 𝑎2 + 4𝑏 =

0, 𝑘1 =

𝑘2 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑓𝑜𝑟 𝑥𝑛 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡). 

 

1st case: We have 𝑥0 = 1, 𝑥1 = 1, 𝑎 = 1, 𝑏 =

2  and find 𝑘2 = 2, 𝑘1 = −1(or vice-ressa), we 

get 𝑥𝑛 =
1

3
[2𝑛+1 + (−1)𝑛] for the 2nd 

sequence, we find 𝑦𝑛 = 2. 3
𝑛 −

(−1)𝑛. 𝑇𝑜 𝑔𝑒𝑡 𝑥𝑛 = 𝑦𝑚, we must have 3𝑚+1 −

2𝑛 =
1

2
[3 − (−1)𝑚 + (−1)𝑛]. If n = 0 or 1, we 

see that m = 0 is the only solution. Hence forth, 

take n ≥ 2. If m and n are both even or odd, the 

right member of take this equation is even, but 

the left member is odd. If m and n are of 

opposite parity, the equation is invalid mod 4. 

 

Q3. An integer n will be called good if we can 

write 𝒏 = 𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒌, where 

𝒂𝟏, 𝒂𝟐, 𝒂𝒌 are positive integers (not necessarily 

distinct) satisfying 
𝟏

𝒂𝟏
+

𝟏

𝒂𝟐
+⋯+

𝟏

𝒂𝒌
=  𝟏. Given 

the information that the integers 33 through 

73 are good, prove that every integer ≥ 33 is 

good. 

  Sol. : From n good integer n, we produce the 

two larger good integers 2n + 8 and 2n + 9 as 

follows: let (𝑎1, 𝑎2, … , 𝑎𝑘) be a partition of n 

which is good, then 
1

2𝑎1
+

1

2𝑎2
+⋯+

1

2𝑎𝑘
=

1

2
. 𝑆𝑖𝑛𝑐𝑒

1

2
=
1

4
+
1

4
=
1

3
+
1

6
, it follows that the 

two partitions 
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(4, 4, 2𝑎1, 2𝑎2, … , 2𝑎𝑘)𝑎𝑛𝑑 (3, 6, 2𝑎1, 2𝑎2, … , 2𝑎𝑘)

 also have the prop that the sum of the 

reciprocals is 1. 

There are partitions of the integers 2n + 8 and 

2n + 9 respectively. So (i) if n is good, so also 2n 

+8 and 2n +9. So “33 is good” implies that 74, 

75 are good. We use the hypothesis to fill the 

gate between n = 33 and 2n +8 = 74: let 𝑠𝑛 

denote the statement “all the integers n, n+ 1, 

…., 2n +7 are good”. We begin an induction with 

the given information that 𝑆33 is valid. By (i) we 

conclude that 𝑆𝑛 → 𝑆𝑛−1. Hence by induction, 

𝑆𝑛 is valid for all n ≥ 33, giving the desired 

result. 

Q4. Show that (𝒏
𝟏
) −

𝟏

𝟐
(𝒏
𝟐
) +

𝟏

𝟑
(𝒏
𝟑
)…+

(−𝟏)𝒏+𝟏.
𝟏

𝒏
(𝒏
𝒏
) = 𝟏 +

𝟏

𝟐
+⋯+

𝟏

𝒏
. 

Sol. : The left side of the identity looks like the 

definite integral of a binomial series and this 

provides the idea for the following argument. 

(1 − 𝑥)𝑛 = (
𝑛

0
) − (

𝑛

1
) 𝑥 + (

𝑛

2
)𝑥2… 

1 − (1 − 𝑥)𝑛 (
𝑛

1
)𝑥 − (

𝑛

2
)𝑥2 + (

𝑛

3
)𝑥3…, 

1 − (1 − 𝑥)𝑛

𝑥
=  (

𝑛

1
) − (

𝑛

2
) 𝑥 + (

𝑛

3
)𝑥2… 

We are now set up to integrate each side from 

0 to 1 and we get;  

∫
1 − (1 − 𝑥)𝑛

𝑥

1

0

𝑑𝑥 = (
𝑛

1
) −

1

2
(
𝑛

2
) +

1

3
(
𝑛

3
)…  

To finish the prob., we must show the integral 

on the left is equal to 1 +
1

2
+
1

3
+⋯+

1

𝑛
. Let y = 

1 –x , then   

∫
1−(1−𝑥)𝑛

𝑥

1

0
𝑑𝑥 =  ∫

1−𝑦𝑛

1−𝑦

1

0
𝑑𝑦 =  ∫ (1 + 𝑦 +

1

0

𝑦2 +⋯+ 𝑦𝑛−1) 𝑑𝑦 = [𝑦 +
1

2
𝑦 +⋯+

1

𝑛
𝑦𝑛] 1

0
=

1 +
1

2
+⋯+

1

𝑛
.  

 

Q5. 9 Mathematicians meet at an international 

conference and discover that among any 3 of 

them, at least 2 speak a common language. If 

each of the mathematicians can speak at most 

3 languages. Prove that there are at least 3 of 

mathematicians who can speak the same 

language.  

Sol. : We assume that at most 2 mathematicians 

speak a common language. Each mathematician 

can speak to at most 3 others, one for each 

language he or she knows. Suppose 

mathematician M, can only speak with 

𝑀2,𝑀3,𝑀4. Now mathematicians 𝑀5 can speak 

with at most three of 𝑀2,𝑀3,𝑀4 or at most 3 of 

𝑀6,𝑀7,𝑀8,𝑀9. This leaves one of the last 4 

who cannot speak with 𝑀1 𝑜𝑟 𝑀5 giving the 

desired contradiction. 

 

Q6. Two pts. P and Q lie in the interior of a 

regular tetrahedron ABCD. Prove that ∠APQ = 

∠60°. 

Sol. : We can assume without loss of generally 

that each edge of ABCD= 1, that P an Q lie in the 

interior of 𝛥BCD and that line PQ intersects BC 

in R and CD in S as in fig. Then ∠PAQ ∠RAS. We 

now show that RS is the shortest side of 𝛥ARS 

and this implies that ∠RDS ∠60° . Thus RD > RS. 

Since AR = RD (from congruent triangles BDR 

and BAR), AR >RS. Similarly, AS > RS. Hence RS is 

the shortest side of 𝛥ARS. 
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Q7. Let 𝑨𝟎 denotes the area bounded by 

𝒇𝒏(𝒙) = |
𝐬𝐢𝐧𝟖𝒏𝒙+𝐜𝐨𝐬𝟖𝒏𝒙

𝒙
| , 𝒙 − 𝒂𝒙𝒊𝒔, 𝒚 −

𝒂𝒙𝒊𝒔 𝒂𝒏𝒅 𝒍𝒊𝒏𝒆 𝒙 =
𝝅

𝟖
. Then prove that 𝑨𝒏 >

𝟐√𝟐

𝝅
[𝟏 +

𝟏

𝟐
+⋯+

𝟏

𝒏
] (𝒏 ∊ 𝑵). 

Sol. : 𝑓𝑛(𝑥) ≥ 0,  so reqd. area, 

𝐴𝑛 = ∫ |
sin 8𝑛𝑥 + cos 8𝑛𝑥

𝑥
|

𝜋
8

0

𝑑𝑥. 𝑃𝑢𝑡 8𝑛𝑥 = 𝑡,

⟹ 𝑑𝑥 =
𝑑𝑡

8𝑛
. 

⟹𝐴𝑛 = ∫ |
sin 𝑡 + cos 𝑡

𝑡
|

𝑛𝜋

0

𝑑𝑡

= ∫ |
sin 𝑡 + cos 𝑡

𝑡
|

𝜋

(𝑛−1)𝜋

𝑑𝑡  

Now, 𝑡 ∊ (0, 𝜋)∫ |
sin 𝑡+cos 𝑡

𝜋
|

𝜋

0
< ∫ |

sin 𝑡+cos 𝑡

𝜋
|

𝜋

0
 

𝑡 ∊ (𝜋, 2𝜋)∫ |
sin 𝑡 + cos 𝑡

𝑡
|

2𝜋

0

< ∫ |
sin 𝑡 + cos 𝑡

2𝜋
|

2𝜋

𝜋

 

𝑡

∊ {(𝑛

− 1)𝜋, 𝑛𝜋}∫ |
sin 𝑡 + cos 𝑡

𝑡
|

𝑛𝜋

(𝑛−1)𝜋

∫ |
sin 𝑡 + cos 𝑡

𝑛𝜋
|

𝑛𝜋

(𝑛−1)𝜋

 

So, 𝐴𝑛 =>
1

𝜋
[∫ |sin 𝑡 + cos 𝑡|
𝜋

0
𝑑𝑡 +

1

2
∫ |sin 𝑡 + cos 𝑡|
2𝜋

𝜋
𝑑𝑡 … ] 

∵|sin 𝑡 + cos 𝑡| is periodic with period 𝜋. 

⟹  ∫ |sin 𝑡 + cos 𝑡|
𝜋

0
𝑑𝑡 = ∫ |sin 𝑡 +

2𝜋

𝜋

cos 𝑡| 𝑑𝑡 … 

= ∫ |sin 𝑡 + cos 𝑡|
𝑛𝜋

(𝑛−1)𝜋

𝑑𝑡 

Now, ∫ │ sin 𝑡 + cos 𝑡 │
𝜋

0
𝑑𝑡 = ∫ │ sin 𝑡 +

2𝜋/4

𝜋

cos 𝑡 │ 𝑑𝑡 − ∫ │ sin 𝑡 + cos 𝑡 │
3𝜋/4

3𝜋/4
𝑑𝑡 = 0 

∴𝐴𝑛 >
1

𝑛
[2√2 +

2√2

2
+
2√2

3
+⋯+

2√2

𝑛
] 

∴ 𝐴𝑛 >
2√2

𝜋
[1 +

1

2
+
1

3
+⋯+

1

𝑛
]. 

 

Q8. Two given circles intersect in two pts. P 

and Q. Show how to construct a segment AB 

passing through P and terminating on the two 

circles such that AP.PB is a maximum. 

Sol. : Since AP = 2 sin𝛼  𝑎𝑛𝑑 𝐵𝑃 = 2 sin𝛽, we 

want to maximize sin 𝛼 sin𝛽. We note that 

since ∠𝑂1𝑃𝑂2 is fixed, so also is the sum 𝛼 + 

𝛽. Now 2 sin𝛼 sin𝛽 = cos(𝛼 − 𝛽) − cos(𝛼 +

𝛽), and since cosine is a decreasing function, 

the max. occurs when 𝛼= 𝛽. This implies that 

𝐴𝑂1 ∥ 𝑃𝑂2 𝑎𝑛𝑑 𝐵𝑂2 ∥ 𝑃𝑂2 and the rest 

follows as before. 

 

Q9. Find the area enclosed by the curve 𝒚 =

 𝟐𝒙 𝒂𝒏𝒅𝐦𝐚𝐱{│𝒙│, │𝒚│} = 𝟏. 
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Sol. : Given max{│𝑥│,│𝑦│} = 1 …. (i) This 

curve represents four lines. 

Case I: If │𝑥│ >  │𝑦│,⟹ │𝑥│ = 1 ∴ 𝑥 =≠ 1. 

Case II: If │𝑥│ <  │𝑦│,⟹ │𝑦│ = 1, ∴ 𝑦 =≠ 1. 

Hence the curve (i) represents a sequence. 

The shaded area represents the reqd. area 

enclosed by the given curves. 

∴ Reqd. area A= 3 × area of (OTMP + OPQS) 

= 3 × (1 × 1) + ∫ 2𝑥
0

−1

𝑑𝑥 = 3 +
1

2
log𝑒 2. 

 

Q10. Sol. : 
𝒅𝒚

𝒅𝒙
=

 √
𝟏

𝟐
+ ∫

√𝒇(𝒎)

√𝒇(𝐜𝐨𝐬𝟐𝒛−𝒎)+√𝒇(𝒎)

𝒔𝒊𝒏𝟒𝒛

𝒄𝒐𝒔𝟒𝒛
𝒅𝒎,  

𝒘𝒉𝒆𝒓𝒆 𝒛 = 𝒙 + 𝒚 𝒂𝒏𝒅
𝝅

𝟐
< (𝒙 + 𝒚) <

𝟑𝝅

𝟒
. 

Sol.: Given that 

𝑑𝑦

𝑑𝑥

=  √
1

2
+ ∫

√𝑓(𝑚)

√𝑓(cos 2𝑧 − 𝑚) + √𝑓(𝑚)

𝑠𝑖𝑛4𝑧

𝑐𝑜𝑠4𝑧

𝑑𝑚… . . (𝑖) 

Let I = ∫
√𝑓(𝑚)

√𝑓(cos2𝑧−𝑚)+√𝑓(𝑚)

𝑠𝑖𝑛4𝑧

𝑐𝑜𝑠4𝑧
𝑑𝑚 …… (ii) 

⟹I 

=∫
√𝑓(cos2𝑧−𝑚)

√𝑓(𝑚)+ √𝑓(cos2𝑧−𝑚)

𝑠𝑖𝑛4𝑧

𝑐𝑜𝑠4𝑧
𝑑𝑚 (𝑢𝑠𝑖𝑛𝑔 𝑝𝑟𝑜𝑝. )

……. (iii) 

Adding (ii) and (iii), we get 

2I = ∫
√𝑓(𝑚)+√𝑓(cos2𝑧−𝑚)

√𝑓(𝑚)+ √𝑓(cos2𝑧−𝑚)

𝑠𝑖𝑛4𝑧

𝑐𝑜𝑠4𝑧
𝑑𝑚 =

∫ 𝑑𝑚
𝑠𝑖𝑛4𝑧

𝑐𝑜𝑠4𝑧
= −[𝑠𝑖𝑛4𝑧 + 𝑐𝑜𝑠4𝑧],   

∴ 1 =  −
1

2
[𝑠𝑖𝑛4𝑧 + 𝑐𝑜𝑠4𝑧] =  −

1

2
+
1

4
𝑠𝑖𝑛22𝑧 

Hence, differential equation (i) becomes 

𝑑𝑦

𝑑𝑥
=  √

1

2
−
1

2
+
1

4
 𝑠𝑖𝑛22𝑧

=
1

2
|sin 2𝑧|, |

1

2
𝑠𝑖𝑛2(𝑥 + 𝑦)| 

⟹
𝑑𝑦

𝑑𝑥
=  −

1

2
𝑠𝑖𝑛2(𝑥 + 𝑦)… . . (𝑖𝑣) [

𝜋

2
< 𝑥 + 𝑦

<
3𝜋

4
] 

Given that 𝑥 + 𝑦 = 𝑧,⟹ 1 +
𝑑𝑦

𝑑𝑥
=
𝑑𝑧

𝑑𝑥
 

So, equation (iv) becomes 
𝑑𝑧

𝑑𝑥
= 1 −

1

2
sin2𝑧,  

⟹
𝑑𝑧

1 − sin 𝑧 cos 𝑧
= 𝑑𝑥,⟹ ∫

𝑑𝑧

1 − sin 𝑧 cos 𝑧

=  ∫𝑑𝑥 

⟹∫
sec2 𝑧𝑑𝑡

sec2 𝑧 − tan 𝑧
=  ∫𝑑𝑥,  ⟹ ∫

𝑑𝑟

1 + 𝑟2 − 𝑟

= ∫𝑑𝑥 

(Putting tan z = r, so thatsec2 𝑧𝑑𝑡 = 𝑑𝑟 ), 

⟹∫
𝑑𝑟

(𝑟−
1

2
)+(

√3

2
)
2 = ∫𝑑𝑥, ⟹

2

√3
tan−1 (

2𝑟−1

√3
) =

𝑐 + 𝑥 
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⟹
2𝑟 − 1

√3
= tan 𝑥 (

√3

2
(𝑥 + 𝑐)), 

 ⟹
2 tan(𝑥 + 𝑦) − 1

√3
= tan {

√3

2
(𝑥 + 𝑐)} 

∴ 2 tan(𝑥 + 𝑦) =  √3 tan {
√3

2
(𝑥 + 𝑐)} + 1. 

 

 

PROBLEMS WITH SOLUTIONS FOR 

I.S.I. MSQE. MSQMS, MTECH 

ENTRANCE TESTS 

 

1. Prove that for all natural numbers n ≥ 3 

there exist odd natural numbers 𝒙𝒏, 𝒚𝒏 

such that 𝟕𝒙𝒏
𝟐 + 𝒚𝒏

𝟐 = 𝟐𝒏. 

Sol: For n = 3, we have 𝑥3 = 𝑦3 = 1. Now 

suppose that for a given natural number n we 

have odd natural numbers 𝑥𝑛, 𝑦𝑛 such that 

7𝑥𝑛
2 + 𝑦𝑛

2  = 2𝑛 we shall exhibit a pair (X, Y) 

such that 7𝑋2 + 𝑌2 = 2𝑛 we shall exhibit a pair 

(X, Y) such that 7𝑥𝑛
2 + 𝑦𝑛

2 = 2𝑛+1. In fact, 

7 (
𝑥𝑛 ± 𝑦𝑛
2

)
2

+ (
7𝑥𝑛 ± 𝑦𝑛

2
)
2

=  2(7𝑥𝑛
2 + 𝑦𝑛

2)

=  2𝑛+1 

One of 
(𝑥𝑛+ 𝑦𝑛)

2
 𝑎𝑛𝑑

│𝑥𝑛−𝑦𝑛│

2
 is odd (as their 

sum is the larger of 𝑥𝑛 𝑎𝑛𝑑 𝑦𝑛 which is odd), 

giving the desired pair. 

2. Let a, b, c be real numbers and let M be 

the maximum of the function 𝒚 =  │𝟒𝒙𝟑 +

𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄│ in the interval │-1, 1│. 

Show that M ≥ 1 and find all cases where 

equality occurs. 

Sol.: a = 0, b = -3, c = 0, where M = 1, with the 

maximum achieved at -1, -1/2, ½ , 1. On the 

other hand, if M < 1 for some choice of a, b, c, 

then 

(4𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐) − (4𝑥3 + 3𝑥) 

Must be positive at -1, negative -1/2, positive at 

½, and negative at 1, which is impossible for a 

quadratic function. Thus M ≥ 1, and the same 

argument shows that equality only occurs for 

(a, b, c) = (0, -3, 0). (Note: this is a particular 

case of the minimum deviation property of 

Chebyshev polynomials).  

 

3. The real numbers 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏(𝒏 ≥ 𝟑) 

from an arithmetic progression. There 

exists a permutation 

𝒂𝒊𝟏, 𝒂𝒊𝟐, … , 𝒂𝒊𝒏 𝒐𝒇 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 which is a 

geometric progression. Find the numbers 

𝒂𝟏, 𝒂𝟐, … 𝒂𝒏 if they are all different and the 

largest of them as equal to 1996. 

Sol.:  Let 𝑎1 < 𝑎2 < −< 𝑎𝑛 = 1996 and let q 

be the ratio of the geometric progression 

𝑎𝑖1………𝑎𝑖𝑛 ; clearly q≠ 0 ± 1. By reversing 

the geometric progression if needed, we may 

assume |q| > 1, and so |𝑎𝑖1|< |𝑎𝑖2| < −|𝑎𝑖𝑛|. 

Note that either all of the terms are positive, or 

they alternate in sign; in the latter case, the 

terms of either sign form a geometric 

progression by themselves. 

There cannot be three positive terms, or else 

we would have a three term geometric 

progression a, b, c which is also an arithmetic 

progression, violating the AM –GM inequality. 
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Similarly, there cannot be three negative terms, 

so there are at most two terms of each sign and 

n ≤4. 

If n = 4, we have 𝑎1 < 𝑎2 < 0 < 𝑎3 <

𝑎4𝑎𝑛𝑑 2𝑎2 = 𝑎2 + 𝑎3, 2𝑎3 = 𝑎2 + 𝑎4. In this 

case, q < -1 and the geometric progression is 

either 𝑎3, 𝑎2, 𝑎4, 𝑎1 𝑜𝑟 𝑎2, 𝑎3, 𝑎1, 𝑎4. Suppose 

the former occurs (the argument in similar in 

the latter case): then 

2𝑎3𝑞 =  𝑎3𝑞
3 + 𝑎3 𝑎𝑛𝑑 2𝑎3 + 𝑎3𝑞

3 + 𝑎3𝑞
2, 

giving q =1, a contradiction. 

We deduce n = 3 and consider two possibilities. 

If 𝑎1 < 𝑎2 < 0 < 𝑎3 = 1996, 𝑡ℎ𝑒𝑛 2𝑎2 =

𝑎2𝑞
2 + 𝑎2𝑞,  so 𝑞2 + 𝑞 − 2 = 0 𝑎𝑛𝑑 𝑞 =  −2, 

yielding (𝑎1, 𝑎2, 𝑎3) = (−3992,−998, 1996). If 

𝑎1 < 0 < 𝑎2 < 𝑎3 = 1996, then  

2𝑎2 = 𝑎2𝑞 + 𝑎2𝑞
2, so again q = -2, yielding  

(𝑎1, 𝑎2, 𝑎3) = (−998, 499, 1996). 

 

4. Find all prime numbers p, q for which pq 

divides (𝟓𝒑 − 𝟐𝒑)(𝟓𝒒 − 𝟐𝒒). 

Sol.: If p│5𝑝 − 2𝑝, 𝑡ℎ𝑒𝑛𝑝│5 -2 by Fermat’s 

theorem, 

So p = 3, suppose p, q ≠3; then p│5𝑞 − 2𝑞 

and q│5𝑝 − 2𝑝. Without lose of generality 

assume p >q, so that (p, q -1) = 1. Then if a is 

an integer such that 2a ≡5 (mod q), then the 

order of a mod q divides p as well as q -1, a 

contradiction. 

Hence one of p, q is equal to 3. If q ≠ 3, then 

q│53 − 23 = 9.13. so q = 13, and similarly p 

∊(3, 13). 

Thus the solutions are (p, q) = (3, 3), (3, 13), 

(13, 3). 

 

5. If 𝛼, 𝛽, 𝛾 are the roots of 𝒙𝟑 − 𝒙 − 𝟏 = 𝟎, 

compute 
𝟏−𝜶

𝟏+𝜶
+
𝟏−𝜷

𝟏+𝜷
+
𝟏−𝜸

𝟏+𝜸
. 

Sol.: The given quantity equals 

2 (
1

𝛼 + 1
+

1

𝛽 + 1
+

1

𝛾 + 1
) − 3. 

Since 𝑃(𝑥) = 𝑥3 − 𝑥 − 1 has roots 𝛼, 𝛽, 𝛾, the 

polynomial 𝑃(𝑥 − 1) =  𝑥3 − 3𝑥2 + 2𝑥 − 1 

has roots 𝛼+1, 𝛽+1, 𝛾+1. 

By a standard formula, the sum of the 

reciprocals of the roots of 𝑥3 + 𝑐2𝑥
2 + 𝑐1𝑥 +

𝑐0 𝑖𝑠 − 𝑐1/𝑐0, so the given expression equals 

2(2)-3= 1. 

6. Find all real solution to the following 

system of equations: 

𝟒𝒙𝟐

𝟏 + 𝟒𝒙𝟐
= 𝒚

𝟒𝒚𝟐

𝟏 + 𝟒𝒚𝟐
= 𝒛

𝟒𝒛𝟐

𝟏 + 𝟒𝒛𝟐
= 𝒙.

 

Sol.: Define 𝑓(𝑥) =
4𝑥2

(1+4𝑥2)
 ; the range of f is [0, 

1), so x, y, z must lie in that interval. If one of x, 

y, z is zero, then all three are, so assume they 

are nonzero. Then 
𝑓(𝑥)

𝑥
=

4𝑥

(1+4𝑥2)
 is at least 1 

but the AM –GM inequality, with equality for x 

= ½ . Therefore x ≤y ≤ z ≤ x, and so equality 

holds everywhere, implying x = y = z = ½ . Thus 

the solutions are (x, y, z) = (0, 0, 0), (½ , ½ , ½ ). 

 

7. Let f(n) be the number of permutations 

𝒂𝟏, … , 𝒂𝒏 of the integers 1, …, n such that 

(i) 𝒂𝟏 = 𝟏; 

(ii) │𝒂𝒊 − 𝒂𝒊+𝟏│ ≤ 𝟐, 𝒊 = 𝟏,… , 𝒏 − 𝟏. 

Determine whether f(1996) is divisible by 3. 
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Sol.: Let g(n) be the number of permutations of 

the desired form with 𝑎𝑛 = 𝑛. Then either 

𝑎𝑛−1 = 𝑛 − 1 𝑜𝑟 𝑎𝑛−1 = 𝑛 − 2; in the latter 

case we must have 𝑎𝑛−2 = 𝑛 − 1 𝑎𝑛𝑑 𝑎𝑛−3 =

𝑛 − 3. Hence g(n) = g(n-1) + g(n -3) for n ≥4. In 

particular, the values of g(n) modulo 3 are g(1) = 

1, 1, 1, 2, 0, 1, 0, 0….. repeating with period 8. 

Now let h(n) = f(n) – g(n); h(n) counts 

permutations of the desired from where n 

occurs in the middle, sandwiched between n-1 

and n -2. Removing n leaves an acceptable 

permutation, and any acceptable permutation 

on n -1 symbols can be so produced except 

those ending in n -4, n -2, n -3, n -1. Hence h(n) 

= h(n -1)+ g(n -1) –g(n -4) = h(n -1)+ g(n -2); one 

checks that h(n) modulo 3 repeats with period 

24. 

Since 1996 ≡ 4 (mod 24), we have f(1996) ≡ 

f(4) = 4(mod 3), so f(1996) is not divisible by 3. 

 

8. Let ∆ABC be an isosceles triangles with AB 

= AC. Suppose that the angle bisector of 

∠B meets AC at D and that BC = BD + AD. 

Determine ∠A. 

Sol.: Let 𝛼 =∠A, 𝛽=
(𝜋−𝛼)

4
 and assume AB = 1. 

Then by the Law of Sines, 

𝐵𝐶 =
sin𝛼

sin2𝛽
, 𝐵𝐷 =

sin𝛼

sin 3𝛽
, 𝐴𝐷 =

sin𝛽

sin3𝛽
. 

Thus we are seeking a solution to the equation 

sin(𝜋 − 4𝛽) sin3𝛽 = (sin(𝜋 − 4𝛽) +

sin𝛽) sin2𝛽. 

Using the sum-to-product formula, we rewrite 

this as  

cos𝛽 − cos 7𝛽 = cos2𝛽 − cos6𝛽 + cos𝛽

− cos 3𝛽. 

Cancelling cos𝛽, we have cos 3𝛽 − cos 7𝛽 =

cos 2𝛽 − cos 6𝛽, which implies 

sin2𝛽 sin 5𝛽 = sin 2𝛽 sin4𝛽. 

Now sin5𝛽 = sin 4𝛽 , 𝑠𝑜 9𝛽 =  𝜋 𝑎𝑛𝑑 𝛽 =
𝜋

9
. 

 

9. Let 𝒓𝟏, 𝒓𝟐, … , 𝒓𝒎 be a given set of positive 

rational numbers whose sum is 1. Define 

the function f by 𝒇(𝒏) = 𝒏 −

∑ ⎿⌊𝒓𝒌𝒏⌋⏌
𝒎
𝒌=𝟏  for each positive integer n. 

Determine the minimum and 

maximum values of f(n). 

Sol.: Of course ⎿⌊𝑟𝑘𝑛⌋⏌ ≤ 𝑟𝑘𝑛, 𝑠𝑜 𝑓(𝑛) ≥ 0, 

with equality for n = 0, so 0 is the minimum 

value. On the other hand, we have 𝑟𝑘𝑛 −

⎿⌊𝑟𝑘𝑛⌋⏌ < 1, 𝑠𝑜 𝑓(𝑛) ≤ 𝑚 − 1. 

Here equality holds for n = t- 1 if t is the least 

common denominator of the 𝑟𝑘 . 

 

10. Find the smallest positive integer K such 

that every K-element subset of (1, 2, …, 50) 

contains two distinct elements a, b such 

that a+b divides ab.  

Sol.: The minimal value is k = 39. Suppose a, b∊S 

are such that a + b divides ab. Let c = gcd (a, b) 

and put a = c𝑎1, 𝑏 = 𝑐𝑏1, so that 𝑎1 𝑎𝑛𝑑 𝑏1are 

relatively prime.  Then c(𝑎1 +

𝑏1)𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑐
2𝑎1𝑏1, 𝑠𝑜 𝑎1 + 𝑏1 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑐𝑎1𝑏1. 

Since 𝑎1 𝑎𝑛𝑑 𝑏1 have no common factor, 

neither do 𝑎1 𝑎𝑛𝑑 𝑎1 + 𝑏1, 𝑜𝑟 𝑏1𝑎𝑛𝑑 𝑎1 + 𝑏1.In 

short, 𝑎1 + 𝑏1 divides c. 

Since S ⊆ {1,… , 50}, we have a +b ≤99, so 

c(𝑎1 + 𝑏1) ≤ 99, which implies 𝑎1 + 𝑏1 ≤ 9, on 

the other hand, of course 𝑎1 + 𝑏1 ≥ 3. An 
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exhaustive search produces 23 pairs, a, b 

satisfying the conditions. 

𝑎1 + 𝑏1 = 3   (6, 3), (12, 6), (18, 9), (24, 12), (30, 

15), (36, 18), (42, 21), (48, 24) 

𝑎1 + 𝑏1 = 4   (12, 4), (24, 8), (36, 12), (48, 16) 

𝑎1 + 𝑏1 = 5   (20, 5), (40, 10), (15, 10), (30, 20), 

(45, 30) 

𝑎1 + 𝑏1 = 6   (30, 6) 

𝑎1 + 𝑏1 = 7   (42, 7), (35, 14), (28, 21) 

𝑎1 + 𝑏1 = 8  (40, 24) 

𝑎1 + 𝑏1 = 9   (45, 36) 

Let M = {6, 12, 15, 18, 20, 21, 24, 35, 40, 42, 45, 

48} and T = {1, …, 50} –M. Since each pair listed 

above contains an element of M, T does not 

have the desire property. Hence we must take k 

≥│T│+1 = 39. On the other hand, from the 

23 pairs mentioned above we can select 12 

pairs which are mutually disjoint: 

(6, 3), (12, 4), (20, 5), (42, 7), (24, 8), (18, 9), 

(40, 10), (35, 14), (30, 15), (48, 16), (28, 21), 

(45, 36). 

Any 39-element subset must contain both 

elements of one of these pairs. We conclude 

the desired minimal number is k = 39. 

 

11. Eight singers participate in an art festival 

where m songs are performed. Each song is 

performed by 4 singers, and each pair of 

singers performs together in the same 

number of songs. Find the smallest m for 

which this is possible. 

Sol.: Let r be the number of songs each pair of 

singers performs together, so that 

𝑚(
4

2
) = 𝑟 (

8

2
) 

And so m = 
14𝑟

3
; in particular, m ≥14. However, 

m = 14 is indeed possible, using the 

arrangement 

{1, 2, 3, 4}  {5, 6, 7, 8}  {1, 2, 5, 6}  {3, 4, 7, 8} 

{3, 4, 5, 6}  {1, 3, 5, 7}  {2, 4, 6, 8}  {1, 3, 6, 8} 

{2, 4, 5, 7}  {1, 4, 5, 8}  {2, 3, 6, 7}  {1, 4, 6, 7} 

{1, 2, 7, 8}  {2, 3, 5, 8} 

12. In triangle ABC, ∠𝑪 = 𝟗𝟎°, ∠𝑨 =

𝟑𝟎° 𝒂𝒏𝒅 𝑩𝑪 = 𝟏.Find the minimum of the 

length of the longest side of a triangle 

inscribed in ABC (that is, one such that 

each side of ABC contains a different 

vertex of the triangle).  

Sol.: We first find the minimum side length of 

an equilateral triangle inscribed in ABC. Let D be 

a point on BC and put x = BD. Then take points 

E, F on CA, AB, respectively, such that CE = 

√3𝑥

2
 𝑎𝑛𝑑 𝐵𝐹 = 1 −

𝑥

2
. A calculation using the 

Law of Cosines shows that 

𝐷𝐹2 = 𝐷𝐸2 = 𝐸𝐹2 =
7

4
𝑥2 − 2𝑥 + 1

=
7

4
(𝑥 −

4

7
)
2

+
3

7
 

Hence the triangle DEF is equilateral, and its 

minimum possible side length is √
3

7
. 

We know argue that the minimum possible 

longest side must occur for some equilateral 

triangle. Starting with an arbitrary triangle, first 

suppose it is not isosceles. Then we can side 

one of the endpoints of the longest side so as to 

decrease its length; we do so until there are two 

longest sides, say DE and EF. We now fix D, 



Solving Mathematical Problems 

 

298 
 

move E so as to decrease DE and move F at the 

same time so as to decrease EF; we do so until 

all three sides become equal in length. (It is fine 

if the vertices move onto the extensions of the 

sides, since the bound above applies in that 

case as well.) 

Hence the minimum is indeed √
3

7
, as desired. 

13. Prove that if a sequence {𝑮(𝒏)}𝒏=𝟎
∞  of 

integers satisfies 

G(0) = 0,  

G(n) = 𝒏 − 𝑮{𝑮(𝒏)}           (n= 1, 2, 3, 

….)  

then  

(a) 𝑮(𝒌) ≥ 𝑮(𝒌 − 𝟏) for any positive 

integer k; 

(b) No integer k exists such that G(k -

1) = G(k) = G(k +1). 

Sol.:  

(a) We show by induction that 𝐺(𝑛) −

𝐺(𝑛 − 1) ∊ {0, 1} for all n. If this holds 

up to n, then 

𝐺(𝑛 + 1) − 𝐺(𝑛)

= 1 + 𝐺(𝐺(𝑛 − 1))

− 𝐺(𝐺(𝑛)). 

𝐼𝑓 𝐺(𝑛 − 1) =  𝐺(𝑛), 𝑡ℎ𝑒𝑛 𝐺(𝑛 + 1) −

𝐺(𝑛) = 1; otherwise, 𝐺(𝑛 −

1)𝑎𝑛𝑑 𝐺(𝑛) are consecutive integers 

not greater than n, so 𝐺(𝐺(𝑛)) −

𝐺(𝐺(𝑛 − 1)) ∊ {0, 1}, again completing 

the induction. 

(b) Suppose that G(k -1)= G(k) = G(k+1)+A 

for some k, A. Then 

A= G(k+ 1)= k +1 –G(g(k))= k+1-G(A) 

And similarly A = k –G(A) (replacing k +1 

with k above), a contradiction. 

Note: It can be shown that G(n) = ⌊𝑛𝜔⌋ 

for 𝜔 = 
(√5−1)

2
. 

14. For which integers k does there exist a 

function f : N →Z such that 

(a) f(1995) = 1996, and 

(b) f(xy) = f(x) + f(y) + kf(gcd(x, y))for 

all x, y ∊ N? 

Sol.: Such f exists for k = 0 and k = -1. First 

take x = y in (b) to get 𝑓(𝑥2) = (𝑘 + 2)𝑓(𝑥). 

Applying this twice, we get 

𝑓(𝑥4) = (𝑘 + 2)𝑓(𝑥2) = (𝑘 + 2)2𝑓(𝑥). 

On the other hand, 

𝑓(𝑥4) = 𝑓(𝑥) + 𝑓(𝑥3) + 𝑘𝑓(𝑥)

= (𝑘 + 1)𝑓(𝑥) + 𝑓(𝑥3) 

= (𝑘 + 1)𝑓(𝑥) + 𝑓(𝑥) + 𝑓(𝑥2) + 𝑘𝑓(𝑥) 

= (2𝑘 + 2)𝑓(𝑥) + 𝑓(𝑥2) = (3𝑘 + 4)𝑓(𝑥). 

Setting x = 1995 so that f(x) ≠ 0, we deduce 

(𝑘 + 2)2 = 3𝑘 + 4, which has roots k = 0, -1. 

For k = 0, an example is given by 

𝑓(𝑝1
𝑒1 …𝑝𝑛

𝑒𝑛) =  𝑒1𝑔(𝑝1) +⋯+ 𝑒𝑛𝑔(𝑝𝑛). 

Where g(5) = 1996 and g(p) = 0 for all 

primes p ≠5 for k = 1, as example is given by 

𝑓(𝑝1
𝑒1 …𝑝𝑛

𝑒𝑛) =  𝑔(𝑝1) + ⋯+ 𝑔(𝑝𝑛) 

 

15. A triangle ABC and points K, L, M on the 

sides AB, BC, CA respectively, are given 

such that 
𝑨𝑲

𝑨𝑩
=
𝑩𝑳

𝑩𝑪
=
𝑪𝑴

𝑪𝑨
=
𝟏

𝟑
 

Show that if the circumcircles of the 

triangles of the triangles AKM, BLK, 

CML are congruent, then so are the in 

circles of these triangles. 

Sol.: We will show that ABC is equilateral, so 

that AKM, BLK, CML are congruent and hence 

have the same in radius. 
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Let R be the common circumradius;  then 

KL = 2R sin A, LM = 2R sin B, MK = 2R sin C, 

So the triangles KLM and ABC are similar. 

Now we compare areas: 

[AKM] = [BLK] = [CLM] = 
2

9
[ABC], 

So, [KLM] = 
1

3
[ABC] and the coefficient of 

similarity between KLM and ABC must be √
1

3
. 

By the law of cosines applied to ABC and 

AKM. 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos𝐴 

1

3
𝑎2 = (

2𝑝

3
)
2

+ (
𝑐

3
)
2

− 2
2𝑏

3

𝑐

3
cos𝐴. 

From these we deduce 𝑎2 = 2𝑏2 − 𝑐2, and 

similarly 𝑏2 = 2𝑐2 − 𝑎2, 𝑎2 = 2𝑎2 − 𝑏2. 

Combining these gives 𝑎2 =  𝑏2 = 𝑐2, so ABC 

is equilateral, as desired. 

 

16. Let ABC be a triangle and construct 

squares ABED, BCGF, ACHI externally on 

the sides of ABC. Show that the points D, E, 

F, G, H, I are concyclic if and only if ABC is 

equilateral or isosceles right. 

Sol.: Suppose D, E, F, G, H, I are concyclic; the 

perpendicular bisectors of DE, FG, HI coincide 

with those of AB, BC, CA respectively, so the 

center of the circle must be the circumcenter 

O of ABC. By equating the distances OD and 

OF, we find 

(cos𝐵 + 2 sin𝐵)2 + 𝑠𝑖𝑛2𝐵

= (cos𝐶 + 2 sin𝐶)2 = 𝑠𝑖𝑛2𝐶 

Expanding this end cancelling like terms, we 

determine 𝑠𝑖𝑛2𝐵 + sin𝐵 cos𝐵 =  𝑠𝑖𝑛2𝐶 +

sin𝐶 cos𝐶. 

Now note that 

2(𝑠𝑖𝑛2𝜃 + sin 𝜃 cos 𝜃) = 1 − cos 2𝜃 + sin 𝜃 

= 1 + √2 sin (2𝜃 −
𝜋

4
). 

Thus we either have B = C or 2𝐵 −
𝜋

4
+ 2𝐶 −

𝜋

4
 

= 𝜋, 𝑜𝑟 𝐵 + 𝐶 =
3𝜋

4
. 

In particular, two of the angles must be equal, 

say A and B, and we either have A = B = C, so 

the triangle is equilateral, or 𝐵 + (𝜋 − 2𝐵) =
3𝜋

4
, in which case A = B = 

𝜋

4
 and the triangle is 

isosceles right. 

17. Let a, b be positive integers with a odd. 

Define the sequence {𝒖𝒏} as follows: 𝒖𝟎 =

𝒃 & n ∊ ℕ. 

𝒖𝒏+𝟏 = {

𝟏

𝟐
𝒖𝒏        𝒊𝒇 𝒖𝒏 𝒊𝒔 𝒆𝒗𝒆𝒏

𝒖𝒏 + 𝒂                    𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

(a) Show that 𝒖𝒏 ≤ 𝒂 for some n ∊ℕ. 

(b) Show that the sequence {𝒖𝒏} is 

periodic from some point onwards. 

Sol:  

(a) Suppose 𝑢𝑛 > 𝑎, if 𝑢𝑛 is even, 𝑢𝑛+1 =
𝑢𝑛

2
< 𝑢𝑛; if 𝑢𝑛is odd, 𝑢𝑛+2 =

(𝑢𝑛+𝑎)

2
<

𝑢𝑛. Hence for each term greater than 

a, there is a smaller subsequent term. 

These form a decreasing subsequence 

which must eventually terminate, 

which only occurs once 𝑢𝑛 ≤ 𝑎. 

(b) If 𝑢𝑚 ≤ 𝑎, then for all n ≥ m, either 

𝑢𝑛 ≤ 𝑎, 𝑜𝑟, 𝑢𝑛 is even and 𝑢𝑛 ≤ 2𝑎, by 

induction on n. In particular, 𝑢𝑛 ≤

2𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 𝑛, and so some value 

of 𝑢𝑛 eventually repeats, leading to a 

periodic sequence. 
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18. (a) Find the minimum value of 𝒙𝒙 for x a 

positive real number. 

(b) If x and y are positive real numbers, 

show that 𝒙𝒙 + 𝒚𝒙 > 1. 

Sol.:  

(a) Since 𝑥𝑥 = 𝑒𝑥𝑙𝑜𝑔 𝑥 𝑎𝑛𝑑 𝑒𝑥 is an 

increasing function of x, it suffices to 

determine the minimum of x log x. 

This is easily done by setting its 

derivative 1+ log x to zero, yielding 

 𝑥 =
1

𝑒
. The second derivative 

1

𝑥
 is 

positive for x > 0, so the function is 

everywhere convex, and the unique 

extremum is needed a global 

minimum. Hence 𝑥𝑥 has minimum 

value 𝑒−1/𝑒. 

(b) If x ≥ 1, then 𝑥𝑦 ≥ 1 for y > 0, so we 

may assume 0< x, y<1. Without loss 

of generality, assume x ≤y; now note 

that the function 𝑓(𝑥) =  𝑥𝑥 + 𝑦𝑥 has 

derivative 𝑓′(𝑥) =  𝑥𝑥 log 𝑥 + 𝑦𝑥−1. 

Since 𝑦𝑥 ≥ 𝑥𝑥 ≥ 𝑥𝑦 𝑓𝑜𝑟 𝑥 ≤

𝑦 𝑎𝑛𝑑
1

𝑥
≥ − log 𝑥, we see that 

𝑓′(𝑥) > 0 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝑦 and so the 

minimum of f occurs with x = 0, in 

which case f(x) = 1; since x > 0, we 

have strict inequality. 

 

19. Starting at (1, 1), a stone is moved in the 

coordinate plane according to the 

following rules: 

(i) From any point (a, b), the stone 

can move to (2a, b) or (a, 2b). 

(ii) From any point (a, b), the stone 

can move to (a –b, b) if a > b, or to 

(a, b –a) if a < b. 

For which positive integers x, y can 

the stone be moved to (x, y)? 

Sol.: It is necessary and sufficient that gcd(x, 

y) = 2𝑥 for some nonnegative integer s. We 

show necessity by nothing that gcd(p, q) = 

gcd(p, q –p), so an odd common divisor can 

never be introduced, and nothing that initially 

gcd(1, 1)= 1. 

As for sufficiency, suppose gcd(x, y) = 2𝑥. Of 

those pairs (p, q) from which (x, y) can be 

reached, choose one to minimize p +q. 

Neither p and q can be even, else one of 

(
𝑝

2
, 𝑞)  𝑜𝑟 (𝑝,

𝑞

2
) is an admissible pair. If p > q, 

then (p, q) is reachable from (
(𝑝+𝑞)

2
, 𝑞), a 

contradiction; similarly p < q is impossible. 

Hence p = q, but gcd(p, q) is a power of 2 and 

neither p nor q is even. We conclude p =q = 

1, and so (x, y) is indeed reachable. 

 

20. Prove that every integer k > 1 has a 

multiple less than 𝒌𝟒 whose decimal 

expansion has at most four distinct digits. 

Sol.: Let n be the integer such that 2𝑛−1 ≤ 𝑘 ≤

2𝑛. For n ≤6 the result is immediate, so 

assume n > 6. 

Let S be the set of nonnegative integers less 

than 10𝑛 whose decimal digits are all 0s or 1s. 

Since │S│ = 2𝑛 > 𝑘, we can find two 

elements a < b of S which are congruent 

modulo, k, and b − a only has the digits 8, 9, 0, 

1 in its decimal representation. On the other 

hand, 

𝑏 − 𝑎 ≤ 𝑏 ≤ 1 + 10 +⋯+ 10𝑛−1 < 10𝑛

< 16𝑛−1 ≤ 𝑘4, 

Hence b – a is the desired multiple. 
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21. Given 81 natural numbers whose prime 

divisors belong to the set {2, 3, 5}, prove 

there exist 4 numbers whose product is 

the fourth power of an integer. 

Sol.: It suffices to take 25 such numbers. To 

each number, associate the triple (𝑥2, 𝑥3, 𝑥5) 

recording the parity of the exponents of 2, 3 

and 5 in its prime factorization. Two numbers 

have the same triple if and only if their 

product is a perfect square. As long as there 

are 9 numbers left, we can select two whose 

product is a square, in so doing, we obtain 9 

such pairs. Repeating the process with the 

square roots of the products of the pairs, we 

obtain four numbers whose product is a 

fourth power.  

22. Prove the following inequality for positive 

real numbers x, y, z: 

(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) (
𝟏

(𝒙 + 𝒚)𝟐
+

𝟏

(𝒚 + 𝒛)𝟐

+
𝟏

(𝒛 + 𝒙)𝟐
) ≥

𝟗

𝟒
. 

Sol.: After clearing denominators, the given 

inequality becomes 

∑4𝑥5𝑦 − 𝑥4𝑦2 − 3𝑥3𝑦3 + 𝑥4𝑦𝑧 − 2𝑥3𝑦2𝑧

𝑠𝑦𝑚

+ 𝑥2𝑦2𝑧2 ≥ 0 

Where the symmetric sum runs over all six 

permutations of x, y, z. (In particular, this 

means the coefficient of 𝑥3𝑦3 in the final 

expression is -6, and that 𝑥2𝑦2𝑧2 is 6.) 

Recall the inequality: 

𝑥(𝑥 − 𝑦)(𝑥 − 𝑧) + 𝑦(𝑦 − 𝑧)(𝑦 − 𝑥)

+ 𝑧(𝑧 − 𝑥)(𝑧 − 𝑦) ≥ 0 

Multiplying by 2xyz and collecting symmetric 

terms, we get 

∑𝑥4𝑦𝑧 − 2𝑥3𝑦2𝑧

𝑠𝑦𝑚

+ 𝑥2𝑦2𝑧2 ≥ 0 

On the other hand, 

∑(𝑥5𝑦 − 𝑥4𝑦2) + 3(𝑥5 − 𝑥3𝑦3)

𝑠𝑦𝑚

≥ 0 

By two applications of AM-GM; combining the 

last two displayed inequalities gives the 

desired result. 

 

23. Prove that for every pair m, k of natural 

numbers, m has a unique representation in 

the from 

𝒎 = (
𝒂𝒌
𝒌
) + (

𝒂𝒌−𝟏
𝒌 − 𝟏

) +⋯+ (
𝒂𝒕
𝒕
) 

                                                                                                  

where 𝒂𝒌 > 𝒂𝒌−𝟏 > ⋯ > 𝒂𝒕 ≥ 𝒕 ≥ 𝟏. 

Sol.: We first show uniqueness. Suppose m is 

represented by two sequences 𝑎𝑘 , … , 𝑎𝑡 and 

𝑏𝑘 , … . , 𝑏𝑡. Find the first position in which they 

differ, without loss of generally, assume this 

position is k and that 𝑎𝑘 > 𝑏𝑘. Then 

𝑚 ≤ (
𝑏𝑘
𝑘
) + (

𝑏𝑘−1
𝑘 − 1

) +⋯+ (
𝑏𝑘 − 𝑘 + 1

1
) <

(
𝑏𝑘 + 1
1

) ≤ 𝑚, a contradiction. 

To show existence, apply the greedy 

algorithm: find the largest 𝑎𝑘 such that 

(
𝑎𝑘
𝑚
) ≤ 𝑚, and apply the same algorithm with 

m and k replaced by 𝑚− (𝑎𝑘
𝑘
) 𝑎𝑛𝑑 𝑘 − 1. 

We need only make sure that the sequence 

obtained is indeed decreasing, but this 

follows because by assumption, 𝑚 <

(𝑎𝑘+1
𝑚
), 𝑎𝑛𝑑 𝑠𝑜 𝑚 − (𝑎𝑘

𝑘
) < ( 𝑎𝑘

𝑘−1
). 
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24. The top and bottom edges of a chessboard 

are identified together, as are the left and 

right edges, yielding a torus. Find the 

maximum number of knights which can be 

placed so that no two attack each other. 

Sol.: The maximum is 32 knights; if the 

chessboard is alternately colored black and 

white in the usual fashion, an optimal 

arrangement puts a knight on each black 

square. To see that this cannot be improved, 

suppose that k knights are placed. Each 

knight attack 8 squares, but no unoccupied 

square can be attacked by more than 8 

knights. Therefore 8k ≤ 8(64 –k), where k ≤ 

32. 

 

25. Let P(x) be a polynomial with rational 

coefficients such that 𝑷−𝟏(𝑸) ⊆ 𝑸. Show 

that P is linear. 

Sol: By a suitable variable substitution and 

constant factor, we may assume P(x) is monic 

and has integer coefficients; let P(0)= 𝑐0. If p 

is a sufficiently large prime, the equation 

P(x)= p +𝑐0 has a single real root, which by 

assumption is rational and which we may also 

assume is positive (since P has positive 

leading coefficient). However, by the rational 

root theorem, the only rational roots of P(x) –

p - 𝑐0 can be ±1 𝑎𝑛𝑑 ± 𝑝. Since the root must 

be positive and cannot be 1 for large p, we 

have P(p) –p -𝑐0 = 0 for infinitely many p, so 

P(x) = x +𝑐0 is linear. 

 

26. For each positive integer n, find the 

greatest common divisor of n! +1 and 

(n+1)!. 

Sol: If n + 1 is composite, then each prime 

divisor of (n+ 1)! is a prime less than n, 

which also divides n! and so does not divide 

n! +1. Hence f(n) = 1. If n +1 is prime, the 

same argument shows that f(n) is a power of 

n +1, and in fact n +1 │n! +1 by Wilson’s 

theorem. However, (𝑛 + 1)2 does not divide 

(n +1)!, and thus f(n) = n +1. 

 

27. For each positive integer n, let S(n) be the 

sum of the digits in the decimal expansion 

of n. Prove that for all n,  

𝑺(𝟐𝒏) ≤ 𝟐𝑺(𝒏) ≤ 𝟏𝟎𝑺(𝟐𝒏) & show 

that there exists n such that S(n) = 

1996S(3n). 

Solution: It is clear that S(a +b) ≤ S(a) + 

S(b), with equality if and only if there are no 

carries in the addition of a and b. Therefore 

S(2n) ≤ 2S(n). Similarly S(2n) ≤ 5S(10n) = 

5S(n). An example with S(n) = 1996S(3n) is 

133 … 35 (with 5968 threes). 

28. Let 𝑭𝒏 denote the Fibonacci sequence, so 

that 𝑭𝟎 = 𝑭𝟏 = 𝟏 and 𝑭𝒏+𝟐 = 𝑭𝒏+𝟏 + 𝑭𝒏 

for n ≥0. Prove that  

(i) The statement “𝑭𝒏+𝒌 − 𝑭𝒏 is 

divisible by 10 for all positive 

integers n” is true if k = 60 and 

false or any positive integer k 

< 60; 

(ii) The statement “𝑭𝒏+𝒕 − 𝑭𝒏 is 

divisible by 100 for all positive 

integers n” is true if t = 300 

and false or any positive 

integer t<300. 

Solution: A direct computation shows that the 

Fibonacci sequence has period 3 modulo 2 

and 20 modulo 5(compute terms until the 

initial terms 0, 1 repeat, at which time the 

entire sequence repeats), yielding (a). As for 

(b), one computes that the period mod 4 is 6. 

The period mod 25 turns out to be 100, which 

is awfully many terms to compute by hand, 
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but knowing that the period must be a 

multiple of 20 helps, and verifying the 

recurrence 𝐹𝑛+8 = 𝑡𝐹𝑛+4 + 𝐹𝑛, where t is an 

integer congruent to 2 modulo 5, shows that 

the period divides 100, finally, an explicit 

computation shows that the period is not 20. 

 

29. Prove that for all positive integers n, 

𝟐𝟏/𝟐. 𝟒𝟏/𝟒… . (𝟐𝒏)𝟏/𝟐
𝒏
< 4. 

Solution: It is sufficient to show  

∑
𝑛

2𝑛

𝑥

𝑛=1

= 2; 

∑
𝑛

2𝑛

𝑥

𝑛=1

= ∑∑
1

2𝑘

𝑥

𝑛=1

𝑥

𝑛=1

= ∑
1

2𝑛−1

𝑥

𝑛=1

= 2. 

 

30. Let p be a prime number and a, n positive 

integers. 

Prove that if 𝟐𝒑 + 𝟑𝒑 = 𝒂𝒏, then n = 

1. 

Solution: If p = 2, we have 22 + 32 = 13  and 

n = 1. If p > 2, then p is odd, so 5 divides 2𝑝 +

3𝑝 and so 5 divides a. Now if n > 1, then 25 

divides 𝑎𝑛 and 5 divides 
2𝑝+3𝑝

2+3
= 2𝑝−1 −

2𝑝−2. 3 +⋯+ 3𝑝−1 ≡ 𝑝2𝑝−1 (mod 5), a 

contradiction if p ≠ 5. Finally, if p = 5, then 

25 + 35 = 753 is not a perfect power, so n = 1 

again. 

 

31. Prove that the equation 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐 + 𝟑 

has infinitely many integer solutions (a, b, 

c). 

Sol.: let a be any odd number, let b = 
(𝑎2−5)

2
 𝑎𝑛𝑑 𝑐 =

(𝑎2−1)

2
. Then 

𝑐2 − 𝑏2 = (𝑐 + 𝑏)(𝑐 − 𝑏) =  𝑎2 − 3. 

 

32. Let A and B be opposite vertices of a cube 

of edge length 1. Find the radius of the 

sphere with center interior to the cube, 

tangent to the three faces meeting at A and 

tangent to the three edges meeting at B. 

Solution: Introduce coordinates so that A = 

(0, 0, 0), B = (1, 1, 1) and the edges are 

parallel to the coordinate axes. If r is the 

radius of the sphere, then (r, r, r) is its center, 

and (r, 1, 1) is the point of tangency of one of 

the edges at B. Therefore 𝑟2 = 2(1 −

𝑟)2, 𝑔𝑖𝑣𝑖𝑛𝑔 𝑟2 − 4𝑟 + 2 = 0 and so r = 2 − √2 

(the other root puts the center outside of the 

cube). 

 

33. Given an alphabet with three letters a, b, c 

find the number of words of n letters 

which contain an even number of a’s. 

Solution: If there are 2k occurrences of a, 

these can occur in ( 𝑛
2𝑘
) places, and the 

remaining positions can be filled in 2𝑛−2𝑘 

ways. So the answer is  

∑(
𝑛

2𝑘
)2𝑛−2𝑘

𝑘

. 

To compute this, note that 

(1 + 𝑥)𝑛 + (1 − 𝑥)𝑛 = 2∑(
𝑛

2𝑘
) 𝑥2𝑘

𝑘

. 

So the answer is  

1

2
2𝑛 [(1 +

1

2
)
𝑛

+ (1 −
1

2
)
𝑛

] =
1

2
(3𝑛 + 1). 
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34. What is the minimum number of squares 

that one needs to draw on a white sheet in 

order to obtain a complete grid with n 

squares on a side? 

Solution: It suffices to draw 2n -1 squares: 

in terms of coordinates, we draw a square 

with opposite corners (0, 0) and (i, i) for 

1 ≤ i ≤ n and a square with opposite 

corners (i, i) and (n, n) for 1 ≤ i≤ n -1. 

To show this many squares are necessary, 

note that the segments from (0, i) to (1, i) 

and from (n -1, i) to (n, i) for 0 < i < n all 

must lie on different squares, so surely 2n 

-2 squares are needed. If it were possible 

to obtain the complete grid with 2n -2 

squares, each of these segments would lie 

on one of the squares, and the same 

would hold for the segments from (i, 0) to 

(i, 1) and from (i, n-1) to (i, n) for 0 < I < 

n. Each of the aforementioned horizontal 

segments shares a square with only two 

of the vertical segments, so the only 

possible arrangements are the one we 

gave above without the square with 

corners (0, 0) and (n, n), and the 90° 

rotation of this arrangement, both of 

which are insufficient. Hence 2n -1 

squares are necessary. 

35. Consider a triangulation of the plane, i.e. a 

covering of the plane with triangles such 

that no two triangles have overlapping 

interiors, and no vertex lies in the interior 

of an edge of another triangle. Let A, B, C 

be three vertices of the triangulation and 

let 𝜽 be the smallest angle of the triangle 

∆ABC. Suppose no vertices of the 

triangulation lie inside the circumcircle of 

∆ABC. Prove there is a triangle 𝜎 in the 

triangulation such that 𝜎 ∩ ∆ABC ≠ 𝜃 and 

every angle of 𝜎 is greater than 𝜃. 

Sol.: We may assume 𝜃 = ∠A. The case where 

ABC belongs to the triangulation is easy, so 

assume this is not the case. If BC is an edge of 

the triangulation, one of the two triangles 

bounded by BC has common interior points 

with ABC, and this triangle satisfies the 

desired condition. Otherwise, there is a 

triangle BEF in the triangulation whose 

interior intersects BC. Since EF crosses BC at 

an interior point, ∠BEF < ∠BAF < ∠BAC, so 

triangle BEF satisfies the desired condition. 

36. Let m and n be positive integers with 

gcd(m, n) = 1. Compute gcd(𝟓𝒎 +

𝟕𝒎, 𝟓𝒏 + 𝟕𝒏). 

Sol.: Let 𝑠𝑛 = 5
𝑛 + 7𝑛. 𝐼𝑓 𝑛 ≥ 2𝑚 , note that 

𝑠𝑛 = 𝑠𝑚𝑠𝑛−𝑚 − 5
𝑚7𝑚𝑠𝑛−2𝑚, 

So gcd(𝑠𝑚, 𝑠𝑛) = gcd(𝑠𝑚, 𝑠𝑛−2𝑚)… similarly, 

if m < n < 2m, we have gcd(𝑠𝑚, 𝑠𝑛)= 

gcd(𝑠𝑚, 𝑠𝑛−2𝑚). Thus by the Euclidean 

algorithm, we conclude that if m + n is even, 

then gcd(𝑠𝑚, 𝑠𝑛) = gcd(𝑠1, 𝑠2) = 12, and if m 

+ n is odd, then gcd(𝑠𝑚, 𝑠𝑛) = gcd(𝑠0, 𝑠1) = 2. 

 

37. Let x > 1 be a real number which is not an 

integer. For n = 1, 2, 3, …., let 𝒂𝒏 =

 ⎿⌊𝒙𝒏+𝟏⌋⏌ − 𝒙⎿⌊𝒙𝒏⌋. Prove that the 

sequence {𝒂𝒏} is not periodic. 

Solution: Assume, on the contrary, that there 

exist p > 0 such that 𝑎𝑝+𝑛 = 𝑎𝑛 for every n. 

Since ⌊𝑥𝑛⌋ ⟶ ∞ 𝑎𝑠 𝑛 → ∞,we have 

⎿⌊𝑥𝑛+𝑝⌋⏌ −⎿⌊𝑥𝑛⌋⏌ > 0 for some n; then 

setting 𝑎𝑛+𝑝 = 𝑎𝑛 and solving for x, we get  

𝑥 =
⌊𝑥𝑛+𝑝+1⌋  − ⌊𝑥𝑛+1⌋

⌊𝑥𝑛+𝑝⌋  − ⌊𝑥𝑛⌋
 

And so x is rational. 

Put y = 𝑥𝑝 and  
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𝑏𝑚 = ∑𝑥𝑝−𝑘−1𝑎𝑚𝑝+𝑘

𝑝−1

𝑘=0

= ⎿⌊𝑥𝑚+𝑝⌋ − 𝑥𝑝⎿⌊𝑥𝑚𝑟⌋⏌

=  ⎿⌊𝑦𝑚+1⌋ − 𝑦⎿⌊𝑦𝑚⌋⏌.  

Since 𝑎𝑝+𝑛 = 𝑎𝑝, we have 𝑏𝑚+1 = 𝑏𝑚, and y 

is also rational number which is not an 

integer. Now put 𝑐𝑚 =  ⎿⌊𝑦
𝑚+1 −

𝑦𝑚⌋⏌; 𝑡ℎ𝑒𝑛 𝑐𝑚+1 = 𝑦𝑐𝑚 =  𝑦
𝑚𝑐1. This means 

𝑐𝑚 cannot be an integer for large m, a 

contradiction. 

38. Let 𝜃 be the maximum of the six angles 

between the edges of a regular 

tetrahedron and a given plane. Find the 

minimum value of 𝜃 over all positions of 

the plane. 

Sol.: Assume the edges of the tetrahedron 𝛤  

= ABCD have length l. If we place the 

tetrahedron so that AC and BC are parallel to 

the horizontal plane H. We obtain 𝜃 = 45°, 

and we shall show this is the minimum angle. 

Let a, b, c, d be the projections of A, B, C, D to 

the horizontal plane H, and 𝑙1, … , 𝑙6 the 

projection of the edges 𝐿1, … , 𝐿6. Since the 

angle between 𝐿1 and H has cosine l, it 

suffices to consider the shortest 𝑙𝑖. 

If a, b, c, d from a convex quadrilateral with 

largest angle at a, then one of ab or ad is at 

most 
1

√2
 since bd ≤ 1. Otherwise, it is easily 

shown that one of the 𝑙1 originating from the 

vertex inside the convex hull has length at 

most  
1

√3
. 

 

39. Find all pairs (n, r), with n a positive 

integer and r a real number, for which the 

polynomial (𝒙 + 𝟏)𝒏 − 𝒓 is divisible by 

𝟐𝒙𝟐 + 𝟐𝒙 + 𝟏. 

Sol.: Let t = 
(−1+𝑖)

2
 be one of the roots of 2𝑥2 +

2𝑥 + 1; then (𝑥 + 1)𝑛 − 𝑟 is divisible by 

2𝑥2 + 2𝑥 + 1 for r real if and only if (𝑡 +

1)𝑛 = 𝑟. Since the argument of t + 1 is 
𝜋

4
, this 

is possible if and only if n = 4m, in which case 

(𝑡 + 1)4𝑚 = (−4)4. Hence (4𝑚, (−4)𝑚) are 

the only solutions. 

 

40. For a natural number k, let p(k) denote the 

smallest prime number which does not 

divide k. If p(k) > 2, define q(k) to be the 

product of all primes less than p(k), 

otherwise let q(k)= 1. Consider the 

sequence. 𝒙𝟎 = 𝟏,    𝒙𝒏+𝟏 =
𝒙𝒏𝒑(𝒙𝒏)

𝒒(𝒙𝒏)
;    𝒏 =

𝟎, 𝟏, 𝟐, … 

Determine all natural numbers n such that 

𝒙𝒏 = 𝟏𝟏𝟏𝟏𝟏𝟏. 

Sol.: An easy induction shows that if 

𝑝0, 𝑝1, …, are the primes in increasing order 

an n has base 2 representations  𝑐0 + 2𝑐1 +

4𝑐2 +⋯, then 𝑥𝑛 = 𝑝0
𝑐0𝑝1

𝑐1 … in particular, 

111111 = 3.7.11.13.37 = 

𝑝1𝑝3𝑝4𝑝5𝑝10, 𝑠𝑜 𝑥𝑛 = 111111 if and only if n 

= 210 + 25 + 24 + 23 + 21 = 1082. 

 

41. Find the greatest positive integer n for 

which there exist n nonnegative integers 

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏, not all zero, such that for any 

sequence 𝝐𝟏, 𝝐𝟐, … , 𝝐𝒏, of elements of {-1, 

0, 1}, not all zero, 𝒏𝟑 does not divide 

𝝐𝟏𝒙𝟏 + 𝝐𝟐𝒙𝟐 +⋯+ 𝝐𝒏𝒙𝒏. 

Solution: The statement holds for n = 9 by 

choosing 1, 2, 22, … , 28, since in that case 

│𝜖1 +⋯+ 𝜖𝑔2
8│ ≤ 1 + 2 +⋯+ 28 < 93. 

However, if n = 10, then 210 > 103, so by the 

pigeonhole principle, there are two subsets A 
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and B of {𝑥1, … , 𝑥10} whose sums are 

congruent modulo 103. Let 𝜖1 = 1 if 𝑥𝑖 occurs 

in A but not in B, -1 if 𝑥𝑖 occurs in B but not in 

A, and 0 otherwise; then ∑𝜖𝑖𝑥𝑖 is divisible by 

𝑛3. 

 

42. Let x, y be real numbers. Show that if the 

set  

{𝐜𝐨𝐬(𝒏𝝅𝒙) + 𝐜𝐨𝐬(𝒏𝝅𝒚)│𝒏 ∈ 𝑵} 

Is finite, then x, y ∈ Q. 

Sol.: Let 𝑎𝑛 = cos𝑛𝜋𝑥  𝑎𝑛𝑑 𝑏𝑛 = sin𝑛𝜋𝑥. 

Then  

(𝑎𝑛 + 𝑏𝑛)
2 + (𝑎𝑛 − 𝑏𝑛)

2 = 2(𝑎𝑛
2 + 𝑏𝑛

2)

=  2 + (𝑎2𝑛 + 𝑏2𝑛). 

If {𝑎𝑛 + 𝑏𝑛} is finite, it follows that {𝑎𝑛 − 𝑏𝑛} 

is also a finite set, and hence that {𝑎𝑛} is 

finite, since  

𝑎𝑛 =
1

2
[(𝑎𝑛 + 𝑏𝑛)(𝑎𝑛 − 𝑏𝑛)]. 

And similarly {𝑏𝑛} is finite. In particular, 

𝑎𝑚 = 𝑎𝑛 for some m < n, and so (n –m)𝜋x is 

an integral multiple of 𝜋. We conclude x and y 

are both rational.  

 

43. Let n ≥ 3 be an integer and 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏−𝟏 

nonnegative integers such that  

𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏−𝟏 = 𝒏 

𝒙𝟏 + 𝟐𝒙𝟐 +⋯+ (𝒏 − 𝟏)𝒙𝒏−𝟏
= 𝟐𝒏 − 𝟐. 

Find the minimum of the sum 

𝑭(𝒙𝟏, … , 𝒙𝒏−𝟏) =  ∑𝒌𝒙𝒌

𝒏−𝟏

𝒌=𝟏

(𝟐𝒏 − 𝒌). 

Sol.: The desired sum can be written as  

2𝑛(2𝑛 − 2) −∑𝑘2𝑥𝑘

𝑛−1

𝑘=1

. 

Now note  

∑𝑘2𝑥𝑘

𝑛−1

𝑘=1

= ∑ 𝑥𝑘

𝑛−1

𝑘=1

+ (𝑘 − 1)(𝑘 + 1)𝑥𝑘

≤ 𝑛 + 𝑛 

∑𝑛− 1

𝑘=1

(𝑘 − 1)𝑥𝑘 = 𝑛 + 𝑛(2𝑛 − 2 − 𝑛)

=  𝑛2 − 𝑛. 

Hence the quantity in question is at most  

2𝑛(2𝑛 − 2) − (𝑛2 − 𝑛) = 3𝑛2 − 3𝑛, with 

equality for 𝑥1 = 𝑛 − 1, 𝑥2 = ⋯ = 𝑥𝑛−2 =

0, 𝑥𝑛−1 = 1. 

 

 

44. Find all prime numbers p, q for which the 

congruence 𝜶𝟑𝒑𝒒 ≡ 𝜶(𝒎𝒐𝒅 𝟑𝒑𝒒) holds 

for all integers 𝛼. 

Sol.: Without loss of generality assume p ≤ q; 

the unique solution will be (11, 17), for which 

one many check the congruence using the 

Chinese Remainder Theorem. 

We first have 23𝑝𝑞 ≡ 2(𝑚𝑜𝑑 3), which means 

p and q are odd. In addition, if 𝛼 is a primitive 

root mod p, then 𝛼3𝑝𝑞−1 ≡ 1 (𝑚𝑜𝑑 𝑝) implies 

that p -1 divides 3pq -1 as well as 3pq -1- 

3q(p -1) = 3q -1, and conversely that q -1 

divides 3p -1. If p = q, we now deduce p = q = 

3, but 427 ≡ 1(mod 27), so this fails. Hence p 

< q. 

Since p and q are odd primes, q ≥ p +2, so 
(3𝑝−1)

(𝑞−1)
< 3. Since this quantity is an integer, 

and it is clearly greater than 1, it must be 2. 

That is, 2q = 3p +1. On the other hand, p -1 
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divides 3q -1= 
(9𝑝+1)

2
 as well as (9p +1) –(9p 

-9) = 10. Hence p = 11, q = 17. 

 

45. Let n ≥ 3 be an integer and p ≥ 2n -3 a 

prime. Let M be a set of n points in the 

plane, no three collinear, and let f: M ⟶{0, 

1, …, p -1} be a function such that: 

(i) Only one point of M maps to 0, 

and 

(ii) If A, B, C are distinct points in 

M and k is the circumcircle of 

the triangle ABC, then 

∑ 𝒇(𝑷)

𝑷 ∈𝑴∩𝒌

≡ 𝟎(𝒎𝒐𝒅 𝑷). 

Show that all of the points of M lie on a 

circle. 

Solution: Let X be the point mapping to 0. We 

first show that if every circle through X and 

two points of M contains a third point of M, 

then all of the points of M lie on a circle. 

Indeed, consider an inversion with center at X. 

Then the image of M – {X} has the property 

that the line through any two of its points 

contains a third point; it is a standard result 

that this means the points are collinear. 

(Otherwise, find a triangle ABC minimizing the 

length of the altitude AH; there is another 

point N on BC, but then either ABN OR CAN has 

a shorter altitude than AH, contradiction). 

Now suppose the points of M do not lie on a 

circle. By the above, there exists a circle 

passing through M and only two points A, B of 

M. Let f(A) = i, so that by the hypothesis, f(B) 

= p –i. Let a be the number so circles passing 

through X, A and at least one other point of M, 

let b be the number of circles passing through 

X, B and at least one other point of M, and let S 

be the sum of f(P) over all P in M. By adding 

the relations obtained from the circles through 

X and A, we get S + (a -1) i ≡ 0 (mod p), and 

similarly, S + (b -1) (p –i) ≡ 0 (mod p). 

Therefore a + b -2 ≡ 0 (mod p) ; since a + b 

≤2n +4 < p, we have a + b = 2 and so a = b = 

1, contradicting the assumption that the points 

do not all lie on a circle. 

 

46. Let x, y, z be real numbers. Prove that the 

following conditions are equivalent. 

(i) x, y, z > 0 and 
𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
≤ 𝟏. 

(ii) For every quadrilateral with 

sides a, b, c, d, 𝒂𝟐𝒙 + 𝒃𝟐𝒚 +

𝒄𝟐𝒛 > 𝒅𝟐. 

Sol.: To show (i) implies (ii), note that  

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧

≥ (𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧) (
1

𝑥
+
1

𝑦

+
1

𝑧
) ≥  (𝑎 + 𝑏 + 𝑐)2 > 𝑑2. 

Using Cauchy-Schwarz after the first 

inequality.  

To show (i) implies (ii), first note that if x ≤ 0, 

we may take a quadrilateral of sides a = n, b 

= 1, c = 1, d = n and get y + z >𝑛2(1 − 𝑥), a 

contradiction for large n. Thus x > 0 and 

similarly y > 0, z > 0. Now use a quadrilateral 

of sides 
1

𝑥
,
1

𝑦
,
1

𝑧
 𝑎𝑛𝑑

1

𝑥
+
1

𝑦
+
1

𝑧
−
1

𝑛
, where n is 

large. We then get 
𝑥

𝑥2
+

𝑦

𝑦2
+

𝑧

𝑧2
> (

1

𝑥
+
1

𝑦
+
1

𝑧
−

1

𝑛
)
2

 

Since this holds for all n, we may take the 

limit as n⟶∞ and get 

1

𝑥
+
1

𝑦
+
1

𝑧
≥ (
1

𝑥
+
1

𝑦
+
1

𝑧
−
1

𝑛
)
2

 

And hence 
1

𝑥
+
1

𝑦
+
1

𝑧
≤ 1. 
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47. Let n be a positive integer and D a set of n 

concentric circles in the plane. Prove that 

if the function f : D ⟶D satisfies 

d(f(A), f(B)) ≥ d(A, B) for all A, B, 𝜖, D, 

then d(f(A), f(B)) = d(A, B) for every 

A, B, 𝜖D. 

Sol.: Label the circles 𝐷1, … , 𝐷𝑛 in increasing 

order of radius, and let 𝑟1 denote the radius 

𝐷𝑖. Clearly the maximum of d(A, B) occurs 

when A and B are antipodal points on D. Let 

ABCD be the vertices of a square inscribed in 

𝐷𝑛; then f(A) and f(C) are antipodal, as are 

f(B) and f(D). In addition, each of the minor 

arcs f(A) f(B) and f(B) f(C) must be at least a 

quarter arc, thus f(B) bisects one of the 

semicircles bounded by f(A) and f(C), and 

f(D) bisects the other. Now if P is any point on 

the minor arc AB, then the arcs f(P) f(A) and 

f(P) f(B), which are at least as long as the arc 

PA and PB, and up to the quarter arc f(P) f(B). 

We conclude f is isometric on 𝐷𝑛. 

Since f is clearly injective and is now bijective 

on 𝐷𝑛𝑓 maps 𝐷1𝑈… .𝑈𝐷𝑛−1 into itself. Thus 

we many repeat the argument to show that f 

is isometric on each 𝐷𝑖. To conclude, it 

suffices to show that distances between 

adjacent circles, say 𝐷1 and 𝐷2, are preserved. 

This is easy; choose a square ABCD on 𝐷1 and 

A’, B’, C’, D’ be the points on 𝐷2 closet to A, B, 

C, D, respectively. Then A’B’C’D’ also from a 

square, and the distance from A to C’ is the 

maximum between any point on 𝐷1 and any 

point on 𝐷3. Hence the eight points maintain 

their relative position under f, which suffices 

to prove isometry.  

48. Let n ≥ 3 be an integer and X ⊆ {1, 2, …, 

𝒏𝟑} a set of 3𝒏𝟐 elements. Prove that one 

can find the distinct numbers 𝒂𝟏, … , 𝒂𝟗 in 

X such that the system 

𝒂𝟏𝒙 + 𝒂𝟐𝒚 + 𝒂𝟑𝒛 = 𝟎 

𝒂𝟒𝒙 + 𝒂𝟓𝒚 + 𝒂𝟔𝒛 = 𝟎 

𝒂𝟕𝒙 + 𝒂𝟖𝒚 + 𝒂𝟗𝒛 = 𝟎 

Has a solution (𝒙𝟎, 𝒚𝟎, 𝒛𝟎) in nonzero 

integers. 

Sol.: Label the elements of X in increasing 

order 𝑥1 < ⋯ < 𝑎3𝑛2 ,  and put 

𝑋1 = {𝑥1, … , 𝑥𝑛2}, 𝑋2 = {𝑥𝑛2+1, … . , 𝑥2𝑛2}, 𝑋3
= {𝑥𝑛2+1, … , 𝑥3𝑛2},  

Define the function f: 𝑋1 × 𝑋2 × 𝑋3 → 𝑋 × 𝑋 

as follows: f(a, b, c) = (b –a, c –b). 

The domain of f contains 𝑛6 elements. The 

range of f, on the other hand, is contained in 

the subset of X × 𝑋 of pairs whose sum is at 

most 𝑛3, a set of cardinality. 

∑ 𝑘

𝑛3−1

𝑘=1

=
𝑛3(𝑛3 − 1)

2
<
𝑛6

2
. 

By the pigeonhole principle, some three 

triples (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) (i = 1, 2, 3) map to the same 

pair, in which case x =𝑏1 − 𝑐1, 𝑦 =  𝑐1 −

𝑎1, 𝑧 =  𝑎1 − 𝑏1 is a solution in nonzero 

integers. Note that 𝑎𝑖 , cannot equal 𝑏𝑗 since 𝑋1 

and 𝑋2 and so on, and that 𝑎1 = 𝑎2 implies 

that the triple (𝑎1, 𝑏1, 𝑐1) and (𝑎2, 𝑏2, 𝑐2) are 

identical, a contradiction. Hence the nine 

numbers chosen are indeed distinct. 

 

49. Which are there more of among the 

natural numbers from 1 to 1000000, 

inclusive: numbers that can be 

represented as the sum of a perfect square 

and a (positive) perfect cube, 

or numbers that cannot be? 

Sol.:   There are more numbers that not of this 

form. Let n = 𝑘2 +𝑚3, where k, m, n ∈ N and 

n ≤ 1000000. Clearly k ≤ 1000 and m ≤ 100. 
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Therefore there cannot be more numbers in 

the desired from than the 1000000 pairs (k, 

m). 

 

50. Let x, y, p, n, k be natural numbers such 

that 

𝒙𝒏 + 𝒚𝒏 = 𝒑𝒌. 

Prove that if n > 1 is odd, and p is an odd 

prime, then n is a power of p. 

Sol.: Let m = gcd(x, y). Then x = m𝑥1, 𝑦 =

𝑚𝑦1 and by virtue of the given equation, 

𝑚𝑛(𝑥1
𝑛 + 𝑦1

𝑛) = 𝑝𝑘, and so m = 𝑝𝛼 for some 

nonnegative integer 𝛼. It follows that 𝑥1
𝑛 +

𝑦1
𝑛 = 𝑝𝑘−𝑛

𝛼
.          (1) 

Since n is odd, 

𝑥1
𝑛 + 𝑦1

𝑛

𝑥1 + 𝑦1
= 𝑥1

𝑛−1 − 𝑥1
𝑛−2𝑦1

+ 𝑥1
𝑛−3𝑦1

2 −⋯

− 𝑥1𝑦1
𝑛−2 + 𝑦1

𝑛−1,  

Let A denote the right side of the equation. By 

the condition p > 2, it follows that at least one 

of 𝑥1, 𝑦1 is greater than 1, so since n > 1. A > 

1. 

From (1) it follows that A(𝑥1 + 𝑦1) =  𝑝
𝑘−𝑛𝛼, 

so since 𝑥1 + 𝑦1 > 1, A >1, both of these 

numbers are divisible by p, moreover, 𝑥1 +

𝑦1 = 𝑝
𝛽 for some natural number 𝛽.  

Thus  

𝐴 = 𝑥1
𝑛−1 − 𝑥1

𝑛−2(𝑝𝛽 − 𝑥1) + ⋯

− 𝑥1(𝑝
𝛽 − 𝑥1)

𝑛−2

+ (𝑝𝛽 − 𝑥1)
𝑛−1

= 𝑛𝑥1
𝑛−1 +𝐵𝑝. 

Since A is divisible by p and 𝑥1 is relatively 

prime to p, it follows that n is divisible by p. 

Let n = pq. Then 𝑥𝑝𝑞 + 𝑦𝑝𝑞 = 𝑝𝑘  𝑜𝑟 (𝑥𝑝)𝑞 +

(𝑦𝑝)𝑞 = 𝑝𝑘. If q > 1, then by the same 

argument, p divides q. If q =1, then n = p. 

Repeating this argument, we deduce that n = 

𝑝𝑙  for some natural number l. 

 

 

51. In the Duma there are 1600 delegates, who 

have formed 16000 committees of 80 

persons each. Prove that one can find two 

committees having no fewer than four 

common members. 

Solution: Suppose any two committees have 

at most three common members. Have two 

deputies count the possible ways to choose a 

chairman for each of three sessions of the 

Duma. The first deputy assumes that any 

deputy can chair any session, and so gets 

16003 possible choices. The second deputy 

makes the additional restriction that all of the 

chairmen belong to a single committee. Each 

of the 16000 committees yields 803 choices, 

but this is an over count; each of the 16000 
(16000−1)

2
 pairs of committees give at most 33 

overlapping choices. Since the first deputy 

counts no fewer possibilities than the second, 

we have the inequality 

16003 ≥ 16000. 803 −
16000.15999

2
33. 

However, 

1600. 803 −
16000.15999

2
33

> 16000. 803

−
16000.15999

2

42

2
 

=
16000. 43

4
+ 213. 106 − 212. 106 > 212. 106

= 16003. 



Solving Mathematical Problems 

 

310 
 

We have a contradiction. 

 

52. Show that in the arithmetic progression 

with first term 1 and ratio 729, there are 

infinitely many powers of 10. 

Sol.: We will show that for all natural 

numbers n, 1081𝑛 − 1 is divisible by 729. In 

fact, 1081𝑛 − 1 = (1081)𝑛 − 1𝑛 = (1081 −

1). 𝐴, 𝑎𝑛𝑑  

1081𝑛 − 1 = 9…9⏟  
81

 

= 9…9⏟  
9

… 10…01⏟    
8

10…01⏟    
8

… 10…01⏟    
8

 

= 91…9⏟  
9

…10…01⏟    
8

10…01⏟    
8

…10…01⏟    
8

 

The second and third factors are composed of 

9 units, so the sum of their digits is divisible 

by 9, that is, each is a multiple of 9. Hence 

1081𝑛 − 1 is divisible by 93 = 729, as is 

1081𝑛 − 1 for any n. 

 

53. Two piles of coins lie on a table. It is 

known that the sum of the weights of the 

coins in the two piles are equal, and for 

any natural number k, not exceeding the 

number of coins in either pile, the sum of 

the weights of the k heaviest coins in the 

first pile is not more than that of the 

second pile. Show that for any natural 

number x, if each coin (in either pile) of 

weight not less than x is replaced by a coin 

of weight x, the first pile will not be lighter 

than the second. 

Sol.: Let the first pile have n coins of weights   

𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛, and let the second pile 

have m coins of weights 𝑦1 ≥ 𝑦2 ≥ ⋯ ≥

 𝑦𝑚, 𝑤ℎ𝑒𝑟𝑒 𝑥1 ≥ ⋯ ≥ 𝑥𝑠 ≥ 𝑥 ≥ 𝑥𝑠+1 k and 

𝑦1 ≥ ⋯ ≥ 𝑦𝑡 ≥ 𝑥 ≥ 𝑦𝑡+1 ≥ ⋯ ≥ 𝑦𝑚. (If there 

are no coins of weight greater than x, the 

result is clear). We need to show that 𝑥𝑠 +

𝑥𝑠+1 +⋯+ 𝑥𝑛 ≥ 𝑥𝑡 + 𝑦𝑡+1 +⋯+ 𝑦𝑚. Since 

𝑥1 +⋯+ 𝑥𝑛 = 𝑦1 +⋯+ 𝑦𝑚 = 𝐴, this 

inequality can be equivalently written 𝑥𝑠 +

(𝐴 − 𝑥1 −⋯− 𝑥𝑚) ≥ 𝑥𝑡 + (𝐴 − 𝑦1 −⋯− 𝑦𝑡), 

which in turn can be rewritten  

𝑥1 +⋯+ 𝑥𝑠 + 𝑥(𝑡 − 𝑠) ≤ 𝑦1 +⋯+ 𝑦𝑡 , 

This is what we will prove, 

If t ≥ s, then 

𝑥1 +⋯+ 𝑥𝑠 + 𝑥(𝑡 − 𝑠)

= (𝑥1 +⋯+ 𝑥𝑠)

+ (𝑥 +⋯+ 𝑥)⏟        
𝑡−𝑠

≤ (𝑦1 +⋯+ 𝑦𝑠)

+ (𝑦𝑠+1 +⋯+ 𝑦𝑡), 

Since 𝑥1 +⋯+ 𝑥𝑠 ≤ 𝑦1 +⋯+ 𝑦𝑠 (from the 

given condition) and 𝑦𝑠+1 ≥ ⋯ ≥ 𝑦𝑡 ≥ 𝑥. 

If t < s, then 𝑥1 + …+ 𝑥𝑠 + 𝑥(𝑡 − 𝑠) ≤  𝑦1 +

⋯+ 𝑦𝑡 is equivalent to  

𝑥1 +⋯+ 𝑥𝑠 ≤ 𝑦1 +⋯+ 𝑦𝑡 + (𝑥 +⋯+ 𝑥)⏟        
𝑡−𝑠

 

The latter inequality follows from the fact 

that  

𝑥1 +⋯+ 𝑥𝑠 ≤ 𝑦1 +⋯+ 𝑦𝑠
= (𝑦1 +⋯+ 𝑦𝑡)

+ (𝑦𝑡+1 +⋯+ 𝑦𝑠)𝑎𝑛𝑑 𝑦𝑠 ≤ ⋯

≤ 𝑦𝑡+1 ≤ 𝑥. 

 

 

 

54. Can a 𝟓 × 𝟕 checkerboard be covered by 

L’s (figures formed from a 𝟐 × 𝟐 square by 

removing one of its four 𝟏 × 𝟏 corners), 
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not crossing its borders, in several layers 

so that each square of the board is covered 

by the same number of L’s? 

Solution: Color the cells of the checkerboard 

alternately black and white, so that the 

corners are all black. In each black square we 

write the number -2, and in each white 

square 1. Note that the sum of the numbers in 

the cells covered by each L is non-negative, 

and consequently if we are given a covering 

of the board in k layers, the sum over each L 

of the numbers covered by that L is 

nonnegative. But if this number is S and s is 

the sum of the numbers on the board, then 

S = ks = k (-2.12+23.1)= -k <0.  We have a 

contradiction. 

 

55. Find all natural numbers n, such that there 

exist relatively prime integers x and y and 

an integer k >1 satisfying the equation 

𝟑𝒏 = 𝒙𝒌 + 𝒚𝒌. 

 

Sol.: The only solution is n = 2. 

Let 3𝑛 = 𝑥𝑘 + 𝑦𝑘, where x, y are relatively 

prime integers with x > y, k > 1, and n a 

natural number. Clearly neither x nor y is a 

multiple of 3. Therefore, if k is even𝑥𝑘𝑎𝑛𝑑 𝑦𝑘 

are congruent to 1 mod 3, so their sum is 

congruent to 2 mod 3, and so is not a power 

of 3. 

If k is odd and k > 1, then 3𝑛 = (𝑥 +

𝑦)(𝑥𝑘−1 −⋯+ 𝑦𝑘−1). Thus x + y = 3𝑚 for 

some m ≥ 1. We will show that n ≥ 2m. Since 
3

𝑘
 (see the solution to Russia 3), by putting 

𝑥1 = 𝑥
𝑘/3 𝑎𝑛𝑑 𝑦1 = 𝑦

𝑘/3 we may assume k = 

3. 

Then 𝑥3 + 𝑦3 = 3𝑚 and x + y = 3𝑛. To prove 

the inequality n ≥ 2m, it suffices to show that 

𝑥3 + 𝑦3 ≥ (𝑥 + 𝑦)2, or 𝑥2 − 𝑥𝑦 + 𝑦2 ≥ 𝑥 +

𝑦. Since x ≥ y +1, 𝑥2 − 𝑥 = 𝑥(𝑥 − 1) ≥

𝑥𝑦, 𝑎𝑛𝑑 (𝑥2 − 𝑥 + 𝑥𝑦) + (𝑦2 − 𝑦) ≥ 𝑦(𝑦 −

1) ≥ 0, and the inequality n ≥ 2m follows. 

From the identity (𝑥 + 𝑦)3 − (𝑥3 + 𝑦3) =

3𝑥𝑦(𝑥 + 𝑦) it follows that 32𝑚−1 − 3𝑛−𝑚−1 =

𝑥𝑦. 

But 2m -1 ≥ 1, and n –m -1 ≥n -2m ≥0. If 

strict inequality occurs in either place in the 

last inequality, then 32𝑚−1 − 3𝑛−𝑚−1 is 

divisible by 3 while xy is not. Hence n –m -1 = 

n -2m = 0, and so m = 1, n = 2 and 32 = 23 +

13. 

Note: The inequality 𝑥2 − 𝑥𝑦 + 𝑦2 ≥ 𝑥 + 𝑦 

can alternatively be shown by nothing that 

𝑥2 − 𝑥𝑦 + 𝑦2 − 𝑥 − 𝑦 = (𝑥 − 𝑦)2 + (𝑥 −

1)(𝑦 − 1) − 1 ≥ 0,  

Since (𝑥 − 𝑦)2 ≥ 1. 

 

56. Show that if the integers 𝒂𝟏, … , 𝒂𝒎 are 

nonzero and for each k = 0, 1, …, m(n < m 

-1),  

𝒂𝟏 + 𝒂𝟐𝟐
𝒌 + 𝒂𝟑𝟑

𝒌 +⋯+ 𝒂𝒎𝒎
𝒌 = 𝟎, 

Then the sequences 𝒂𝟏, … , 𝒂𝒎 contains at least 

n + 1 pairs of consecutive terms having 

opposite sings. 

Solution: We many assume 𝑎𝑚 > 0, since 

otherwise we may multiply each of the 

numbers by -1. Consider the sequence 

𝑏1, … , 𝑏𝑚, where 𝑏𝑖 = ∑ 𝑐𝑗𝑖
𝑗𝑛

𝑗=0  for an 

arbitrary sequence of real numbers 𝑐0, … , 𝑐𝑛. 

From the given condition, 
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∑𝑎𝑖𝑏𝑖

𝑚

𝑖=1

= ∑𝑎𝑖

𝑚

𝑖=1

∑𝑐𝑗𝑖
𝑗

𝑛

𝑗=0

= ∑𝑐𝑖

𝑛

𝑗=0

∑𝑎𝑖𝑖
𝑗

𝑛

𝑗=1

= 0. 

Suppose now that the sequence 𝑎1, … , 𝑎𝑚 has 

k pairs of neighbors that differ in sign, where 

k < n +1, and let 𝑖1, … , 𝑖𝑘 be the indices of the 

first members of these pairs. 

Let 𝑏𝑖 = 𝑓(𝑖) = (𝑖 − 𝑥1)(𝑖 − 𝑥2)… (𝑖 − 𝑥𝑘), 

where 𝑥𝑘 = 𝑖𝑘 +
1

2
(𝑖 = 1, 2, … , 𝑘). The 

function f changes sign only at the points 

𝑥1, … , 𝑥𝑘, and so 𝑏1 𝑎𝑛𝑑 𝑏𝑖+1 have different 

signs if and only one of the 𝑥𝑙 falls between 

them, which means i = 𝑖𝑙 . We deduce that the 

sequences 𝑎1, … , 𝑎𝑚 𝑎𝑛𝑑 𝑏1, … , 𝑏𝑚 have the 

same pairs of neighbors of opposite sign. 

Since 𝑎𝑚 𝑎𝑛𝑑 𝑏𝑚 are positive, we have that 

𝑎𝑖  𝑎𝑛𝑑 𝑏𝑖 have the same sign for i = 1, …., m, 

so ∑ 𝑎𝑖𝑏𝑖
𝑚
𝑖=1 >0, a contradiction. 

 

57. At the vertices of a cube are written eight 

pair wise district natural numbers, and on 

each of its edges is written the greatest 

common divisor of the numbers at the end 

points of the edge. Can the sum of the 

numbers written at the vertices be the 

same as the sum of the numbers written at 

the edges? 

Sol.: This is not possible. Note that if a and b 

are natural numbers with a > b, then gcd(a, 

b) ≤ b and gcd(a, b) ≤
𝑎

2
.It follows that if a ≠ b, 

then gcd(a, b)≤
(𝑎+𝑏)

3
 . Adding 12 such 

inequalities, corresponding to the 12 edges, 

we find that the desired condition is only 

possible if gcd(a, b) = 
(𝑎+𝑏)

3
 in each case. But 

in this case the larger of a and b is twice the 

smaller; suppose a = 2b. Consider the 

numbers c and d assigned to the vertices of 

the other end points of the other two edges 

coming out of the vertex labeled a. Each of 

these is either half of or twice a. If at least one 

is less a, it equals b; otherwise, both are equal. 

Either option contradicts the assumption that 

the numbers are distinct. 

 

58. Can the number obtained by written the 

numbers from 1 to n in order (n >1) be 

the same when read left-to-right and right-

to left? 

Sol.: This is not possible. Suppose N = 123 

…321 is an m digit symmetric number, 

formed by writing the numbers from 1 to n in 

succession. Clearly m >18. Also let A and B be 

the numbers formed from the first and last k 

digits, respectively, of N, where k = ⌊𝑚/2⌋⎿ . 

Then if 10𝑝 is the largest power of 10 dividing 

A, then n> 2. 10𝑝+1, that is, n has at most p 

+2 digits. Moreover, A and B must contain the 

fragments 

99…9⏟  
𝑝

100…01⏟      
𝑝

 𝑎𝑛𝑑 100…0⏟    
𝑝

199…9⏟    
𝑝

 

Respectively, which is impossible. 

 

59. Do there exist three natural numbers 

greater than 1, such that the square of 

each, minus one, is divisible by each of the 

others? 

Sol.: Such integers do not exist. Suppose a ≥ b 

≥ c satisfy the desired condition. Since 𝑎2 −

1is divisible by b, the numbers a and b are 

relatively prime. Hence the number 𝑐2 − 1, 

which is divisible by a and b, must be a 

multiple of ab, so in particular 𝑐2 − 1 ≥

𝑎𝑏. 𝐵𝑢𝑡 𝑎 ≥ 𝑐 𝑎𝑛𝑑 𝑏 ≥ 𝑐, 𝑠𝑜 𝑎𝑏 ≥  𝑐2, a 

contradiction. 
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60. Does there exist a finite set M of nonzero 

real numbers, such that for any natural 

number n a polynomial of degree no less 

than n with coefficients in M, all of whose 

roots are real and belong M? 

Solution: Such a set does not exist. Suppose 

on the contrary that M = {𝑎1, 𝑎1, … , 𝑎𝑛} 

satisfies the desired property. Let m = min 

{│𝑎1│, …,  │𝑎𝑛│} and M = max {│𝑎1│, …,  

│𝑎𝑛│}; the condition implies M ≥ m > 0. 

Consider the polynomial P(x) = 𝑏𝑘𝑥
𝑘 +⋯+

𝑏1𝑥 + b0 all of whose coefficients b0, … , bk are 

roots x1, … . , xk lie in M. By Vieta’s theorem. 

−
𝑏𝑘−1
bk

= 𝑥1 +⋯𝑥𝑘 

𝑥1𝑥2 + 𝑥1𝑥3 +⋯+ 𝑥𝑘−1𝑥𝑘 =
𝑏𝑘−2
𝑏𝑘

 

And so  

𝑥1
2 +⋯+ 𝑥𝑘

2 =
𝑏𝑘−1

2

𝑏𝑘
2 − 2

𝑏𝑘−2
𝑏𝑘
. 

It follows that 

𝑘𝑚2 ≤ 𝑥1
2 +⋯+ 𝑥𝑘

2 =  
𝑏𝑘−1

2

𝑏𝑘
2 − 2

𝑏𝑘−2
𝑏𝑘

≤
𝑀2

𝑚2
+ 2

𝑀

𝑚
. 

Hence 𝑘 ≤
𝑀2

𝑚4
+
2𝑀

𝑚3
, contradiction the fact that 

P may have arbitrarily large degree. 

 

61. The natural numbers a and b are such that 
𝒂+𝟏

𝒃
+
𝒃+𝟏

𝒂
 

is an integer. Show that the greatest common 

divisor of a and b is not greater than √𝒂 + 𝒃. 

Solution: Let d = gcd(a, b) and put  a = 

md and b = nd.  Then we have 
(𝑚𝑑+1)

𝑛𝑑
+

(𝑛𝑑+1)

𝑚𝑑
=
(𝑚2𝑑+𝑚+𝑛2𝑑+𝑛)

𝑚𝑛𝑑
 is an integer, so 

that in particular, d divides 𝑚2𝑑 +𝑚 +

𝑛2𝑑 + 𝑛 and also m + n. However, this 

means d ≤ m + n, and so d ≤ 

√𝑑(𝑚 + 𝑛) =  √𝑎 + 𝑏 . 

 

62. Let G be the centroid of the triangle ABC. 

Prove that if AB + GC = AC + GB, then ABC 

is isosceles. 

Sol.: Let a, b, c, be the lengths of sides BC, CA, 

AB, respectively. By Stewart’s theorem and 

the fact that G trisects each median (on the 

side further from the vertex), we deduce 

9𝐺𝐵2 = 2𝑎2 + 2𝑐2 − 𝑏2, 9𝐺𝐶2

=  2𝑎2 + 2𝑏2 − 𝑐2. 

Now assume b > c. Assuming AB + GC = AC + 

GB, we have 

3(𝑏 − 𝑐) =  √2𝑎2 + 2𝑏2 − 𝑐2

−√2𝑎2 + 2𝑐2 − 𝑏2 

=
3(𝑏2 − 𝑐2)

√2𝑎2 + 2𝑏2 − 𝑐2 + √2𝑎2 + 2𝑐2 − 𝑏2
 

<
3(𝑏2 − 𝑐2)

√2 (𝑏 − 𝑐)2 + 2𝑏2 − 𝑐2 + √2 (𝑏 − 𝑐)2 + 2𝑐2 − 𝑏2
 

Since 𝑎2 > (𝑏 − 𝑐)2 by the triangle inequality. 

However,  

2 (𝑏 − 𝑐)2 + 2𝑏2 − 𝑐2 = (2𝑏 − 𝑐)2, so we 

have  

3(𝑏 − 𝑐) <
3(𝑏2−𝑐2)

2𝑏−𝑐+│2𝑐−𝑏│
.  

If b ≤2c then the two sides are equal, a 

contradiction. If b ≤ 2c we get 9(𝑏 − 𝑐)2 <
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3(𝑏2 − 𝑐2); upon dividing off 3(b –c) and 

rearranging, we get 2b < 4c, again a 

contradiction. Thus we cannot have b > c or 

similarly b < c, so b = c. 

 

63. Find all real solutions of the equation 

√𝒙𝟐 − 𝒑 + 𝟐√𝒙𝟐 − 𝟏 = 𝒙 

For each real value of p. 

Sol.: Squaring both sides, we get  

𝑥2 = 5𝑥2 − 4 − 𝑝 + 4√(𝑥2 − 𝑝)(𝑥2 − 1  

Isolating the radical and squaring again, we 

get 

16(𝑥2 − 𝑝)(𝑥2 − 1) =  (4𝑥2 − 𝑝 − 4)2,  

Which reduces to (16 − 8𝑝)𝑥2 = 𝑝2 − 8𝑝 +

16. Since x ≥ 0(it is the sum of two square 

roots), we have x = 
│𝑝−4│

√16−8𝑝
  

If a solution exists. We need only determine 

when this value actually satisfies. Certainly 

we need p ≤ 2. In that case plugging in our 

claimed value of x and multiplying through by 

√16 − 8𝑝 gives │3p -4│+2│p│ = 4 –p. 

If p ≥ 
4

3
 this becomes 6p = 8, or p = 

4

3
; if 0 ≤ p 

≤ 
4

3
 this holds identically; if p ≤ 0 this 

becomes 4p = 0, or p = 0. We conclude there 

exists a solution if and only if 0≤ 𝑝 ≤ 4/3, in 

which case it is the solution given above. 

 

64. Let  ∏ (𝟏 + 𝒏𝒙𝟑
𝒏
)𝟏𝟗𝟗𝟔

𝒏=𝟏 = 𝟏 + 𝒂𝟏𝒙
𝒌𝟏 +

𝒂𝟐𝒙
𝒌𝟐 +⋯+ 𝒂𝒎𝒙

𝒌𝒎 ,  

where 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒎 are nonzero and 𝒌𝟏 <

𝒌𝟐 < ⋯ < 𝒌𝒎. Find 𝒂𝟏𝟗𝟗𝟔. 

Sol.: Note that 𝑘𝑖 is the number obtained by 

writing i in base 2 and reading the result as a 

number in base 3, and 𝑎𝑖  is the sum of the 

exponents of the powers of 3 used. In 

particular, 1996 = 210 + 29 + 28 + 27 + 26 +

23 + 22, 𝑠𝑜 𝑎1996 = 10 + 9 + 8 + 6 + 6 + 3 +

2 = 45. 

 

65. In a parallelogram ABCD with ∠A <𝟗𝟎°, 

the circle with diameter AC meets the lines 

CB and CD again at E and F, respectively, 

and the tangent to this circle at A meets BD 

at P. Show that P, F, E are collinear. 

Sol.: Without loss of generality, suppose B, D, 

P occur in that order along BD. Let G and H be 

the second intersection of AD and AB with the 

circle. By Menelaus' theorem, it suffices to 

show that 

𝐶𝐸. 𝐵𝑃. 𝐷𝐹

𝐸𝐵. 𝑃𝐷. 𝐹𝐶
= 1 

Find note that 

𝐵𝑃

𝐴𝐵

𝐴𝐷

𝐷𝑃
=
sin∠𝐵𝐴𝑃 sin∠𝐴𝑃𝐷

sin∠𝐴𝑃𝐵 sin∠𝐷𝐴𝑃
=
sin∠𝐵𝐴𝑃

sin∠𝐷𝐴𝑃
  

Since AP is tangent to the circle, ∠BAP = 

∠HAP  

= 𝜋 - ∠HCA = 𝜋 -∠FCA; similarly, ∠DAP = 

∠GCA = ∠EAC. We conclude 

𝐵𝑃

𝐴𝐵

𝐴𝐷

𝐷𝑃
=
sin∠𝐹𝐴𝐶

sin∠𝐸𝐴𝐶
=
𝐹𝐶

𝐸𝐶
  

Finally we note that 
𝐷𝐹

𝐵𝐸
=
𝐷𝐴

𝐴𝐵
 because the right 

triangles AFD and AED have the same angles 

at B and D and are thus similar. This prove 

the claim. 

66. Given  real numbers 0 =  𝒙𝟏 < 𝒙𝟐 < ⋯ <

𝒙𝟐𝒏 < 𝒙𝟐𝒏+𝟏 = 𝟏 with 𝒙𝒊+𝟏 − 𝒙𝒊 ≤ 𝒉 for 1 
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≤ i ≤ 2n, show that 
𝟏−𝒉

𝟐
<

∑ 𝒙𝟐𝒊
𝒏
𝒊=𝟏 (𝒙𝟐𝒊+𝟏 − 𝒙𝟐𝒊−𝟏) <

𝟏+𝒉

𝟐
. 

Sol.: The different between the middle 

quantity and 
1

2
 is the difference between the 

sum of the areas of the rectangles bounded by 

the lines x = 𝑥2𝑖−1, 𝑥 =  𝑥2𝑖+1, 𝑦 = 0, 𝑦 =  𝑥2𝑖 

and the triangle bounded by the lines y = 0, x 

= 1, x = y. The area contained in the 

rectangles but not the triangle is a union of 

triangles of total base less than 1 and height 

at most h, as is the area contained in the 

triangle but not the rectangles. Hence the sum 

differs from 
1

2
 but at most 

ℎ

2
, as desired. 

67. Find the maximum number of pair wise 

disjoint sets of the from 𝑺𝒂,𝒃 = {𝒏
𝟐 +

𝒂𝒏 + 𝒃: 𝒏 ∈ 𝒁}𝒘𝒊𝒕𝒉 𝒂, 𝒃 ∈ 𝒁. 

Solution: Only two such sets are possible, for 

example, with (a, b) = (0, 0) and (0, 2) (since 

2 is not a difference of squares). There is no 

loss of generality in assuming a ∈ {0, 1} by a 

suitable shift of n, and the sets generated by 

(0, a) and (1, b) have the common value 

(𝑎 − 𝑏)2 + 𝑎 =  (𝑎 − 𝑏)2 + (𝑎 − 𝑏) + 𝑏.Thus 

we have a = 0 or a = 1 universally. 

First suppose a = 0. If b –c ≠ 2 (mod 4), then 

(0, b) and (0, c) gives a common value 

because b –c is a difference of squares, clearly 

this precludes having three disjoint sets. Now 

suppose a = 1. If b –c is even, we can find x, y 

such that b –c = (x +y +1) (x –y), and so 𝑥2 +

𝑥 + 𝑏 = 𝑦2 + 𝑦 + 𝑐, again, this precludes 

having three disjoint sets. 

 

68. For which ordered pairs of positive real 

numbers (a, b) is the limit of every 

sequence {𝒙𝒏} satisfying the condition. 

𝐥𝐢𝐦
𝒏 →𝜶

(𝒂𝒙𝒏+𝟏 − 𝒃𝒙𝒏) = 𝟎 

Sol.: The holds if and only if b < a, if b > a, the 

sequence 𝑥𝑛 = (
𝑏

𝑎
)
𝑛

 satisfies the condition 

but does not go to zero, if b = a, the sequence 

𝑥𝑛 = 1 +
1

2
+⋯+

1

𝑛
 does likewise. Now 

suppose b < a. If L and M are the limit inferior 

and limit superior of the given sequence, the 

condition implies M ≤ (
𝑏

𝑎
)  𝐿; since L ≤ M, we 

have M ≤ (
𝑏

𝑎
)  𝑀, and so L, M ≥ 0. Similarly, 

the condition implies L ≥ (
𝑏

𝑎
)𝑀, and since M 

≥ L, we have L ≥ (
𝑏

𝑎
)  𝐿, so L, M ≤ 0; therefore 

L = M = 0 and the sequence converges to 0. 

69. Consider the pair of four –digit positive 

integers (M, N) = (3600, 2500). Notice 

that M and N are both perfect squares, 

with equal digits in two places, and 

differing digits in the remaining two 

places. Moreover, when the digits differ, 

the digit in M is exactly one greater than 

the corresponding digit in N. Find all pairs 

of four –digit positive integers (M, N) with 

these properties. 

Sol.: If M = 𝑚2 𝑎𝑛𝑑 𝑁 =  𝑛2, then (m+ n) 

(m –n) ∈{11, 101, 110, 1001, 1010, 1100}. 

Since M and N are four-digit numbers, we 

must have 32 ≤ n <m ≤ 99, and so 65 ≤ 

m +n ≤ 197. Moreover, m +n and m –n 

are both odd or both even, so 11, 110 and 

1010 lead to no solutions. From this we 

get exactly five acceptable factorizations. 

101 = (m+ n) (m –n) = 101 × 1 

1001 = (m +n) (m –n) = 143 × 7 

1001 = (m +n) (m –n) = 91 × 11 

1001 = (m+ n) (m –n) = 77 × 13 

1100 = (m+ n) (m –n) = 110 × 10 



Solving Mathematical Problems 

 

316 
 

Giving the solutions (M, N) = (2601, 

2500), (5625, 4624), (2601, 1600), 

(2025, 1024), (3600, 2500). 

 

70. A function f defined on the positive 

integers satisfies f(1) = 1996 and 

𝒇(𝟏) + 𝒇(𝟐) +⋯+ 𝒇(𝒏) =

𝒏𝟐𝒇(𝒏)(𝒏 > 1).  

Sol.: An easy induction will show that 

𝑓(𝑛) =
2 × 1996

𝑛(𝑛 + 1)
 

Namely, 

𝑓(𝑛) =
1

𝑛2−1
(
3992

1.2
+⋯+

3992

(𝑛−1)𝑛
)  

=
3992

𝑛2−1
(1 −

1

2
+
1

2
−
1

3
+⋯+

1

𝑛−1
−
1

𝑛
)  

=
3992

(𝑛+1)(𝑛−1)
(1 −

1

𝑛
)  

=
3992

(𝑛+1)(𝑛−1)

𝑛−1

𝑛
=

3992

𝑛(𝑛+1)
  

In particular, f(1996) = 
2

1997
 

 

71. Define 𝒒(𝒏) =  ⎿ ⌊
𝒏

⌊√𝒏⌋
⌋ (𝒏 = 𝟏, 𝟐,… ). 

Determine all positive integers n for which 

q(n) > q(n +1). 

Sol.: We have q(n) > q(n+1) if and only if n 

+1 is a perfect square. Indeed, if n +1 = 𝑚2, 

then 

𝑞(𝑛) =  ⎣
𝑚2 − 1

𝑚 − 1
⎦ = 𝑚 + 1, 𝑞(𝑛 + 1) =  ⎣

𝑚2

𝑚
⎦

= 𝑚 

On the other hand, for n = 𝑚2 + 𝑑 with 0 ≤ 

d≤ 2m, 𝑞(𝑛) = ⎣
𝑚2+𝑑

𝑚
⎦ = 𝑚 +  ⎣

𝑑

𝑚
⎦ 

Which is non-decreasing. 

 

72. Let a, b, c be positive real numbers. 

(a) Prove that 𝟒(𝒂𝟑 + 𝒃𝟑) ≥ (𝒂 + 𝒃)𝟑 

(b)  Prove that 𝟗(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) ≥

 (𝒂 + 𝒃 + 𝒄)𝟑 

Sol.: Both parts follow from the Power Mean 

inequality: for r > 1 and 𝑥1, … , 𝑥𝑛 positive, 

(
𝑥1
𝑟 +⋯+ 𝑥𝑛

𝑟

𝑛
)

1/𝑟

≥
𝑥1 +⋯+ 𝑥𝑛

𝑛
, 

Which in turn follows from Jensen’s 

inequality applied to convex function 𝑥𝑟.  

 

73. Find all Solutions in non-negative integers 

x, y, z of the equation. 

𝟐𝒙 + 𝟑𝒚 = 𝒛𝟐 

Sol.: If y = 0, then 2𝑥 = 𝑧2 − 1 = (𝑧 + 1)(𝑧 −

1), so z +1 and z -1 are powers of 2. The only 

powers  of 2 which differ by 2 are 4 and 2, so 

(x, y, z) = (3, 0, 3). 

If y > 0, then 2𝑥 is a quadratic residue modulo 

3, hence x is even. Now we have 3𝑦 = 𝑧2 −

2𝑥 = (𝑧 + 2
𝑥

2) (𝑧 − 2
𝑥

2). The factors are 

powers of 3, say z+2𝑥/2 = 3𝑚 and z −2𝑥/2 =

3𝑛, but then 3𝑚 − 3𝑛 = 2
𝑥

2
+1. Since the right 

side is not divisible by 3, we must have n = 0 

and 3𝑚 − 1 = 2
𝑥

2
+1. 

If x = 0, we have m = 1, yielding (x, y, z) = (0, 

1, 2). Otherwise, 3𝑚 − 1 is divisible by 4, so m 

is even and 2
𝑥

2
+1 = (3

𝑚

2 + 1) (3
𝑚

2 − 1). The 

two factors on the right are powers of 2 

differing by 2, so they are 2 and 4, giving x = 

4 and (x, y, z) = (4, 2, 5). 
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74. The sides a, b, c and u, v, w of two triangles 

ABC and UVW are related by the 

equations. 

𝒖(𝒗 + 𝒘− 𝒖) =  𝒂𝟐, 

𝒗(𝒘 + 𝒖− 𝒗) =  𝒃𝟐, 

𝒘(𝒖 + 𝒗 −𝒘) = 𝒄𝟐. 

Prove that ABC is acute, and express the angles 

U, V, W in terms of A, B, C. 

Sol.: Note that 𝑎2 + 𝑏2 − 𝑐2 = 𝑤2 − 𝑢2 −

𝑣2 + 2𝑢𝑣 = (𝑤 + 𝑢 − 𝑣)(𝑤 − 𝑢 + 𝑣) > 0 by 

the triangle inequality, so cos𝐶 > 0. By this 

reasoning, all of the angles of triangle ABC are 

acute. Moreover, 

cos 𝐶 =
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
 

= √
(𝑤 + 𝑢 − 𝑣)(𝑤 − 𝑢 + 𝑣)

4𝑢𝑣
 

= √
𝑤2 − 𝑢2 − 𝑣2 + 2𝑢𝑣

4𝑢𝑣
=
1

√2
√1 − cos𝑈 

From which we deduce U = 1 − 2𝑐𝑜𝑠2𝐴 =

cos(𝜋 − 2𝐴). 

Therefore U = 𝜋 -2A, and similarly V = 𝜋- 2B, 

W = 𝜋- 2C. 

75. Find all solutions in positive real numbers 

a, b, c, d to the following system of 

equations:  

a + b+ c + d = 12 

abcd = 27 +ab +ac +ad +bc +bd +cd.   

Sol.: The first equation implies abcd = ≤ 81 by 

the arithmetic geometric mean inequality, 

with equality holding for a = b = c = d = 3. 

Again by AM-GM, 

 abcd ≥ 27 +6 (𝑎𝑏𝑐𝑑)1/2 

However, 𝑥2 − 6𝑥 − 27 ≥ 0 𝑓𝑜𝑟 𝑥 ≤

−3 𝑜𝑟 𝑥 ≥ 9, so (𝑎𝑏𝑐𝑑)1/2 ≥ 9,  hence abcd ≥ 

81. We conclude abcd = 81, and hence a = b= 

c= d= 3. 

 

76. Prove that the average of numbers n 

𝐬𝐢𝐧𝒏° (𝒏 = 𝟐, 𝟒, 𝟔, … , 𝟏𝟖𝟎)𝒊𝒔 𝐜𝐨𝐭 𝟏°. 

Solution: All arguments of trigonometric 

functions will be in degrees. We need to prove 

2 sin2 + 4 sin4 +⋯+ 178 sin 178

= 90 cot 1         (2) 

Which is equivalent to  

2 sin 2 sin1 + 2(2 sin4 . sin 1) + …+ 89 

(2 sin 178 . sin 1) = 90 cos1.                        (3) 

Using the identity 2 sin 𝑎 . sin 𝑏 = cos(𝑎 − 𝑏) −

cos(𝑎 + 𝑏), we find 

2 sin2 . sin 1 + 2(2 sin 4 . sin 1) + ⋯+ 89  

(2 sin178 . sin1)                                        

= (cos 1 − cos3) + 2(cos 3 − cos 5) + ⋯+

89(cos177 − cos 179)  

= cos 1 + cos3 + cos 5 +⋯+ cos175 

cos 177 − 89 cos 179 

= cos 1 + (cos3 + cos 177) +⋯

+ (cos 89 + cos 91)

− 89 cos179 

= cos 1 + 89 cos 1 = 90 cos 1, 

So (1) is true. 

Note: An alternate solution involves complex 

numbers. One expresses sin n as  
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(𝑒
𝜋𝑖𝑛
180−𝑒

−𝜋𝑖𝑛
180 )

(2𝑖)
 𝑎𝑛𝑑 𝑢𝑠𝑒𝑠 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡 𝑡ℎ𝑎𝑡  

𝑥 + 2𝑥2 +⋯+ 𝑛𝑥𝑛 = (𝑥 +⋯+ 𝑥𝑛) +

(𝑥2 +⋯+ 𝑥𝑛) +⋯+ 𝑥𝑛  

=
1

𝑥−1
[(𝑥𝑛+1 − 𝑥) + (𝑥𝑛+1 − 𝑥2) + ⋯+

(𝑥𝑛−1 − 𝑥𝑛)]  

=
𝑛𝑥𝑛+1

𝑥−1
−
𝑥𝑛+1−𝑥

(𝑥−1)2
.  

 

77. For any nonempty set S of real numbers, 

let 𝜎(S) denote the sum of the elements of 

S. Given a set A of n positive integers, 

consider the collection of all distinct sums 

𝜎(S) as S ranges over the nonempty 

subsets of A. Prove that this collection of 

sums can be partitioned into n classes so 

that in each classes, the ratio of the largest 

sum of the smallest sum does not exceed 

2. 

Sol.: Let A = {𝑎1, 𝑎2, … , 𝑎𝑛} where 𝑎1 < 𝑎2 <

⋯ < 𝑎𝑛. For i = 1, 2, …, n let 𝑠𝑖 = 𝑎1 + 𝑎2 +

⋯+ 𝑎𝑖 𝑎𝑛𝑑 𝑡𝑎𝑘𝑒 𝑠0 = 0. All the sums is 

question are less than or equal to 𝑠𝑛, and if 𝜎 is 

one of them, we have 

𝑠𝑖−1 < 𝜎 < 𝑠𝑖            (1) 

For an appropriate i. Divide the sums into n 

classes by letting 𝐶𝑖 denote the class of sums 

satisfying (1). We claim that these classes have 

the desired property. To establish this, it 

suffices to show that (1) implies. 

1

2
𝑠𝑖 <  𝜎 < 𝑠𝑖          (2) 

Suppose (1) holds. The inequality 𝑎1 + 𝑎2 +

⋯+ 𝑎𝑖−1 = 𝑠𝑖−1 <  𝜎 shows that the sum 𝜎 

contains at least one addend 𝑎𝑘  𝑤𝑖𝑡ℎ 𝑘 ≥ 𝑖. 

Then since then 𝑎𝑘 ≥ 𝑎𝑖, we have  

𝑠𝑖 − 𝜎 < 𝑠𝑖 − 𝑠𝑖−1 = 𝑎𝑖 ≤ 𝑎𝑘 ≤  𝜎,  which 

together with 𝜎≤ 𝑠𝑖 implies (2). 

Note: The result does not hold if 2 is replaced 

by any smaller constant c. To see this, choose n 

such that 𝑐 < 2 − 2−(𝑛−1) and consider the set 

{1,… , 2𝑛−1}. If this set is divided into n subsets, 

two of 1,……, 2𝑛−1, 1 + …….+ 2𝑛−1 must lie in 

the subset, and their ratio is at least (1+…..+ 

2𝑛−1)/(2𝑛−1) = 2 − 2(𝑛−1) > c.  

 

78. An n –term sequence {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} in 

which each term is either 0 or 1 is called a 

binary sequence of length n. Let an be the 

number of binary sequences of length n 

containing no three consecutive terms 

equal to 0, 1, 0 in that order. Let 𝒃𝒏 be the 

number of binary sequences of length n 

that contain no four consecutive terms 

equal to 0, 0, 1, 1 or 1, 1, 0, 0 in that order. 

Prove that 𝒃𝒏+𝟏 = 𝟐𝒂𝒏 for all positive 

integers n. 

Sol.: We refer to the binary sequences counted 

by (𝑎𝑛) and (𝑏𝑛) as “type A” and “type B”, 

respectively. For each binary sequence 

(𝑥1, 𝑥2, … , 𝑥𝑛) there is a corresponding binary 

sequence (𝑦0, 𝑦1, … , 𝑦𝑛) obtained by setting  

𝑦0 = 0 𝑎𝑛𝑑 𝑦1 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑖 mod 2, i = 

1, 2, …, n. (2) 

(Addition mod 2 is defined as follows: 0 +0 = 1 

+1 = 0 and 0 + 1 = 1 +0 = 1.) Then 

𝑥𝑖 = 𝑦𝑖 + 𝑦𝑖−1 𝑚𝑜𝑑 2, 𝑖 = 1, 2, … , 𝑛,  

And it is easily seen that (1) provides a one-to –

one correspondence between the set of all 

binary sequences of length n and the set of 
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binary sequences of length n +1 in which the 

first term is 0. Moreover, the binary sequence 

(𝑥1, 𝑥2, … , 𝑥𝑛) has three consecutive terms 

equal 0, 1, 0 in that order if and only if the 

corresponding sequence (𝑦0, 𝑦1, … , 𝑦𝑛) has four 

consecutive terms equal to 0, 0, 1, 1 or 1, 1, 0, 0 

in that order, so the first is of type A if and only 

if the second is of type B. The set of Type B 

sequences of length n +1 in which the first term 

is 0 is exactly half the total number of such 

sequences, as can be seen by means of the 

mapping in which 0’s and 1’s are interchanged. 

 

79. Solve the system of equations: 

√𝟑𝒙(𝟏 +
𝟏

𝒙+𝒚
) =  𝟐  

√𝟕𝒚 (𝟏 −
𝟏

𝒙+𝒚
) =  𝟒√𝟐  

Sol.: Let u =√𝑥, 𝑦 =  √𝑦, so the system 

becomes  

𝑢 +
𝑢

𝑢2 + 𝑣2
=
2

√3
 

𝑣 −
𝑣

𝑢2 + 𝑣2
=
4√2

√7
. 

Now let z = u +vi; the system then reduces to 

the single equation 

𝑧 +
1

𝑧
= 2(

1

√3
+
2√2

√7
𝑖). 

Let t denote the quantity inside the 

parentheses; then 

 𝑧 = 𝑡 ± √𝑡2 − 1 

=
1

√3
+
2√2

√7
𝑖 ± (

2

√21
+ √21)  

From which we deduce 

𝑢 =  (
1

√3
±
2

√21
)
2

, 𝑣 =  (
2√2

√7
± √2)

2

. 

 

80. Determine, as a function of n, the number 

of permutations of the set  

{1, 2, …, n} such that no three of 1, 2, 3, 4 

appear consecutively. 

Sol.: There are n! permutations in all. Of those, 

we exclude (n -2)! Permutations for each 

arrangement of 1, 2, 3, 4 into an ordered triple 

and one remaining element, or 24(n -2)! in all. 

However, we have twice excluded each of the 

24(n-3)! Permutations in which all four of 1, 2, 

3, 4 occur in a block. Thus the number of 

permutations of the desired from is n! -24 (n -

2)! + 24(n -3)! 

 

81. Determine all function f: ℕ ⟶ℕ satisfying 

(for all n ∈ℕ) 

𝒇(𝒏) + 𝒇(𝒏 + 𝟏)

= 𝒇(𝒏 + 𝟐)𝒇(𝒏 + 𝟑)

− 𝟏𝟗𝟗𝟔. 

Sol.: From the given equation, we deduce 

𝑓(𝑛) − 𝑓(𝑛 + 2)

= 𝑓(𝑛 + 3)[𝑓(𝑛 + 2)

− 𝑓(𝑛 + 4)] 

If f(1) > f(3), then by induction, f(2m -1) > f(2m 

+1) for all m > 0, giving an infinite decreasing 

sequence f(1), f(3), …. Of positive integers, a 

contradiction. Hence f(1) ≤ f(3), and similarly 

f(n) ≤ f(n +2) for all n. 

Now note that 
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0 = 1996 + 𝑓(𝑛) + 𝑓(𝑛 + 1) − 𝑓(𝑛

+ 2)𝑓(𝑛 + 3)

≤ 1996 + 𝑓(𝑛 + 2)

+ 𝑓(𝑛 + 3)

− 𝑓(𝑛 + 2)𝑓(𝑛 + 3) 

= 1997 − [𝑓(𝑛 + 2) − 1][𝑓(𝑛 + 3) − 1]. 

In particular, either f(n +2) = 1 or f(n +3) ≤ 

1997, and vice versa. The numbers f(2m+1) –

f(2m-1) are either all zero or all positive, and 

similarly for the numbers f(2m+ 2) –f(2m). If 

they are both positive, eventually f(n +2) and 

f(n+3) both exceed 1997, a contradiction. 

We now split into three cases. If f(2m) and f(2m 

+1) are both constant, we have [f(2m) -

1][f(2m+1)-1] = 1997 and so either f(2m) = 1 

and f(2m +1) = 1997 or vice versa. If f(2m +1) is 

constant but f(2m) is not, then 𝑓(2𝑚 + 1) = 1 

for all m and 𝑓(2𝑚 + 2) = 𝑓(2𝑚) +

1997, 𝑠𝑜 𝑓(2𝑚) = 1997(𝑚 − 1) + 𝑓(2). 

Similarly, if f(2m) is not constant, then f(2m)= 1 

and f(2m +1) = 1997m + f(1). 

 

82. Let a, b, c, d be four nonnegative real 

numbers satisfying the condition 

𝟐(𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅 + 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅)

+ 𝒂𝒃𝒄 + 𝒂𝒃𝒅 + 𝒂𝒄𝒅

+ 𝒃𝒄𝒅 = 𝟏𝟔 

Prove that 

𝒂 + 𝒃 + 𝒄 + 𝒅 ≥
𝟐

𝟑
(𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅

+ 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅) 

And determine when equality occurs. 

Sol.: For i = 1, 2, 3, define 𝑠𝑖 as the average of 

the products of the i-element subsets of {a, b, c, 

d}. Then we must show 

3𝑠2 + 𝑠3 = 4 ⇒ 𝑠1 ≥ 𝑠2. 

It suffices to prove the (unconstrained) 

homogeneous inequality 

3𝑠2
2𝑠1

2 + 𝑠3𝑠1
3 ≥ 4𝑠2

3, 

As then 3𝑠2 + 𝑠3 = 4 will imply 

(𝑠1 − 𝑠2)
3 + 3(𝑠1

3 − 𝑠2
3) ≥ 0. 

We now recall two basic inequalities about 

symmetric means of nonnegative real numbers. 

The first is Schur’s inequality: 

 3𝑠1
3 + 𝑠3 ≥ 4𝑠1𝑠2. 

While the second, 

𝑠1
2 ≥ 𝑠2 

Is a case of Maclaurin's inequality 𝑠𝑖
𝑖+1 ≥

𝑠𝑖+1
𝑖.These combine to prove the claim: 

3𝑠2
2𝑠1

2 + 𝑠3𝑠1
3 ≥ 3𝑠2

2𝑠1
2 +

𝑠2
2𝑠3
𝑠1

≥ 4𝑠2
3. 

Finally, for those who have only seen Schur’s 

inequality in three variables, note that in 

general any inequality involving 𝑠1, … , 𝑠𝑘 which 

holds for n ≥ k variables also holds for n +1 

variables, by replacing the variables 𝑥1, … , 𝑥𝑛+1 

by the roots of the derivative of the polynomial 

(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛−1). 

 

 

83. Let m and n be positive integers such that 

n ≤ m. Prove that  

𝟐𝒏𝒏! ≤
(𝒎 + 𝒏)!

(𝒎 − 𝒏)!
≤  (𝒎𝟐 +𝒎)𝒏. 

Sol.: The quantity in the middle is (𝑚 + 𝑛)(𝑚 +

𝑛 − 1)… (𝑚 − 𝑛 + 1). If we pair off terms of 

the form (𝑚 + 𝑥)𝑎𝑛𝑑 (𝑚 + 1 − 𝑥), we get 
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products which do not exceed 𝑚(𝑚 + 1),  since 

the function 𝑓(𝑥) = (𝑚 + 𝑥)(𝑚 + 1 − 𝑥) is a 

concave parabola with maximum at 𝑥 =
1

2
. From 

this the right inequality follows. For the left, we 

need only show (𝑚 + 𝑥)(𝑚 + 1 − 𝑥) ≥ 2𝑥 for 

x ≤n; this rearranges to (𝑚 − 𝑥)(𝑚 + 1 + 𝑥) ≥

0, which holds because 𝑚 ≥ 𝑛 ≥ 𝑥.  

 

84. Let a, b and c be the lengths of the sides of 

a triangle. Prove that 

√𝒂 + 𝒃 − 𝒄 + √𝒃 + 𝒄 − 𝒂

+ √𝒄 + 𝒂 − 𝒃

≤ √𝒂 + √𝒃 + √𝒄 

And determine when equality occurs. 

Sol.: By the triangle inequality, 𝑏 + 𝑐 −

𝑎 𝑎𝑛𝑑 𝑐 + 𝑎 − 𝑏 𝑎𝑏𝑐 positive. For any positive 

x, y, we have 

2(𝑥 + 𝑦) ≥ 𝑥 + 𝑦 + 2√𝑥𝑦 =  (√𝑥 + √𝑦)
2

 

By the AM-GM inequality, with equality for x = 

y. Substituting 𝑥 = 𝑎 + 𝑏 − 𝑐, 𝑦 = 𝑏 + 𝑐 − 𝑎 we 

get 

√𝑎 + 𝑏 − 𝑐 + √𝑏 + 𝑐 − 𝑎 ≤ 2√𝑎,  

Which added to the two analogous inequalities 

yields the desired result. Inequality holds for 

𝑎 + 𝑏 − 𝑐 = 𝑏 + 𝑐 − 𝑎 = 𝑐 + 𝑎 − 𝑏, 𝑖. 𝑒. 𝑎 =

𝑏 = 𝑐. 

 

85. Let k ≥1 be an integer. Show that there are 

exactly 𝟑𝒌−𝟏 positive integers n with the 

following properties: 

(a) The decimal representation of n 

consists of exactly k digits. 

(b) All digits of k are odd. 

(c) The number n is divisible by 5. 

(d) The number m = 
𝒏

𝟓
 has k odd 

(decimal) digits. 

Sol.: The multiplication in each place must 

produce an even number of carries, since these 

will be added to 5 in the next place and an odd 

digit must result. Hence all of the digits of m 

must be 1, 5 or 9 and the first digit must be1, 

since m and n have the same number of 

decimal digits. Hence there are 3𝑘−1 choices for 

m and hence for n. 

 

86. The polynomials 𝑷𝒏(𝒙) are defined by 

𝑷𝟎(𝒙) = 𝟎, 𝑷𝟏(𝒙) = 𝒙 and 𝑷𝒏(𝒙) =

𝒙𝑷𝒏−𝟏(𝒙) + (𝟏 − 𝒙)𝑷𝒏−𝟐(𝒙)  𝒏 ≥ 𝟐. 

For every natural number n ≥ 1, find 

all real numbers x satisfying the 

equation 𝑷𝒏(𝒙) =  𝟎. 

Sol.: One shows by induction that 

𝑃𝑛(𝑥) =
𝑥

𝑥 − 2
[(𝑥 − 1)𝑛 − 1] 

Hence 𝑃𝑛(𝑥) = 0 if and only if x = 0 or 𝑥 = 1 +

𝑒2𝜋𝑖𝑘/𝑛 for some k ∈ {1, …, n -1}. 

 

87. The real numbers x, y, z, t satisfy the 

equalities 𝒙 + 𝒚 + 𝒛 + 𝒕 = 𝟎 𝒂𝒏𝒅 𝒙𝟐 +

𝒚𝟐 + 𝒛𝟐 + 𝒕𝟐 = 𝟏. Prove that  

−𝟏 ≤ 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒕 + 𝒕𝒙 ≤ 𝟎.  

Sol.: The inner expression is (𝑥 + 𝑧)(𝑦 + 𝑡) =

 −(𝑥 + 𝑧)2, so the second inequality is obvious. 

As for the 

first, note that 

1 = (𝑥2 + 𝑧2) + (𝑦2 + 𝑡2) ≥
1

2
[(𝑥 + 𝑧)2 +

(𝑦 + 𝑡)2] ≥ [(𝑥 + 𝑧)(𝑦 + 𝑡)]  
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By two applications of the power mean 

inequality. 

 

88. Natural numbers k, n are given such that 1 

< k < n. Solve the system of n equations. 

𝒙𝒊
𝟑(𝒙𝒊

𝟐 +⋯+ 𝒙𝒊+𝒌−𝟏
𝟐) =  𝒙𝒊−𝟏

𝟐 𝟏 ≤

𝒊 ≤ 𝒏  

in n real unknowns 𝒙𝟏, … , 𝒙𝒏. (Note: 

𝒙𝟎 = 𝒙𝒏, 𝒙𝟏 = 𝒙𝒏+𝟏, 𝒆𝒕𝒄.) 

Sol.: The only solution is 𝑥1 = ⋯𝑥𝑛 = 𝑘
−1/3. 

Let L and M be the smallest and largest of the 

𝑥𝑖, respectively. If M = 𝑥𝑖, then 

𝑘𝑀3𝐿2 ≤ 𝑥𝑖
3(𝑥𝑖

2 +⋯+ 𝑥𝑖+𝑘−1
2) =  𝑥𝑖−1

2

≤ 𝑀2 

And so M ≤
1

(𝑘𝐿2)
. Similarly, if L = 𝑥𝑗, then  

𝑘𝐿3𝑀3 ≥ 𝑥1
3(𝑥𝑖

2 +⋯+ 𝑥𝑖−𝑘+1
2) = 𝑥𝑖−1

2

≥ 𝐿2 

 and so 𝐿 ≥
1

(𝑘𝑀2)
. Putting this together, we get  

𝐿 ≥
1

𝑘𝑀2
≥ 𝑘𝐿4  

And so 𝐿 ≥ 𝑘−1/3; 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,𝑀 ≥  𝑘−1/3. 

Obviously L ≤ M, so we have L = M = 

𝑘−1/3 𝑎𝑛𝑑 𝑥1 = ⋯ = 𝑥𝑛 =  𝑘
−1/3. 

 

89. Shows that there do not exist nonnegative 

integers k and m such that k! +48 = 48 

(𝒌 + 𝟏)𝒎. 

Sol.: Suppose such k, m exist. We must have 

48│k!, so k ≥ 6; one checks that k = 6 does not 

yield a solution, so k ≥ 7. In that case k! is 

divisible by 32 and by 9, so that 
(𝑘!+48)

48
 is 

relatively prime to 6, as then is k +1. 

If k +1 is not prime, it has a prime divisor 

greater than 3, but this prime divides k! and not 

k! +48. Hence k +1 is prime, and by Wilson’s 

theorem k! +1 is a multiple of k +1. Since k! +48 

is as well, we find k +1 = 47, and we need only 

check that 
46!

48+1
 is not a power of 47. We check 

that 
46!

48+1
= 29(𝑚𝑜𝑑 53) (by cancelling as many 

terms as possible in 46! Before multiplying), but 

that 47 has order 13 modulo 53 and that none 

of its powers is congruent to 29 modulo 53. 

 

 

90. Let O and G be the circumcenter and 

centroid, respectively, of triangle ABC, If R 

is the circumradius and r the inradius of 

ABC, show that  

𝑶𝑮 ≤  √𝑹(𝑹 − 𝟐𝒓).  

Sol.: Using vectors with original at O, we note 

that 𝑂𝐺2 =
1

9
(𝐴 + 𝐵 + 𝐶)2 =

1

3
𝑅2 +

2

9
𝑅2(cos 2𝐴 + cos 2𝐵 + cos 2𝐶). 

Hence 𝑅2 − 𝑂𝐺2 =
(𝑎2+𝑏2+𝑐2)

9
. On the other 

hand, by the standard area formula K = 𝑟𝑠 =
𝑎𝑏𝑐

4𝑅
, we have 2𝑟𝑅 =

𝑎𝑏𝑐

(𝑎+𝑏+𝑐)
. We now note that 

(𝑎2 + 𝑏2 + 𝑐2)(𝑎 + 𝑏 + 𝑐) ≥ 9𝑎𝑏𝑐 

By two applications of the AM-GM inequality, 

so 2𝑟𝑅 ≤ 𝑅2 − 𝑂𝐺2,  proving the claim. 

 

 

91. Show that there exists a subset A of the set 

{1, 2, …, 1996} having the following 

properties: 

(a) 1, 𝟐𝟏𝟗𝟗𝟔 − 𝟏 ∈ 𝑨; 
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(b) Every element of A, except 1, is the 

sum of two (not necessarily 

distinct) elements of A; 

(c) A contains at most 2012 elements. 

Sol.: We state the problem a bit differently: we 

want to write down at most 2012 numbers, 

starting with 1 and ending with 21996 − 1, such 

that every number written is the sum of two 

numbers previously written. If 2𝑛 − 1 has been 

written, then 2𝑛(2𝑛−1) can be obtained by n 

doublings, and 2𝑛 − 1 can be obtained in one 

more step. 

Hence we can obtain 22 − 1, 24 − 1,… , 2256 −

1 𝑖𝑛 (1 + 1) + (2 + 1) +⋯+ (128 + 1) =

263  steps. In 243 steps, we turn 2256 −

1 𝑖𝑛𝑡𝑜 2499 − 2243. Now notice that the 

numbers 2243 − 2115, 2115 − 251, 251 −

219, 219 − 23, 23 − 21, 21 − 1 have all be 

written down; in 6 steps, we now obtain 2499 −

1. We make this into 2998 − 1 in 500 steps, and 

make 21996 − 1 in 999 steps. Adding 1 for the 

initial 1, we count 

1 + 263 + 243 + 6 + 500 + 999 = 2012 

Numbers written down, as desired. 

 

92. Let ℤ+ denote the set of nonzero integers. 

Show that an integer p > 3 is prime if an 

only if for any a, b ∈ ℤ+, exactly one of the 

numbers 

𝑵𝟏 = 𝒂 + 𝒃 − 𝟔𝒂𝒃 +
𝒑 − 𝟏

𝟔
, 

𝑵𝟐 = 𝒂 + 𝒃 + 𝟔𝒂𝒃 +
𝒑 + 𝟏

𝟔
 

belongs to ℤ+. 

Sol.: If 𝑁1 = 0, then 𝑝 = (6𝑎 − 1)(6𝑏 − 1) is 

composite; similarly, 𝑁2 = 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑝 =

 −(6𝑎 + 1)(6𝑏 + 1) is composite. Conversely, 

suppose that p is composite. If p ≡ 0, 2, 3 or 4 

(mod 6), then 𝑁1 𝑎𝑛𝑑 𝑁2 are not integers. 

Otherwise, all divisors of p are congruent to ±1 

(mod 6). So there exist natural numbers c, d 

such that 

𝑝 = (6𝑐 + 1)(6𝑑 + 1)𝑜𝑟(6𝑐 − 1)(6𝑑

− 1)𝑜𝑟(6𝑐 + 1)(6𝑑 − 1). 

In the first case, 𝑁2 is not an integer and 𝑁1 = 0 

for 𝑎 =  −𝑐, 𝑏 =  −𝑑. 

In the second case, 𝑁2 is not an integer and 

𝑁1 = 0 for 𝑎 = 𝑐, 𝑏 = 𝑑. 

In the third case, 𝑁1 is not an integer and 𝑁2= 0 

for 𝑎 = 𝑐, 𝑏 =  −𝑑. 

93. Let M be a nonempty set and *a binary 

operation on M. That is, to each pair (a, b) 

∈𝑴×𝑴 one assigns an element a * b. 

Suppose further that for any a, b ∈M, 

(a* b)*b = a and a*(a* b) = b. 

(a) Show that a *b = b *a for all a, b 

∈M. 

(b) For which finite sets M does such a 

binary operation exist? 

Sol.:  

(a) First note that [a* (a* b)] *(a* b) = a by 

the first rule. By the second rule, we 

may rewrite the left side as b* (a *b), so 

b* (a *b) = a and so b *a = b*[b* (a* b)]. 

b* a = b*[b*(a* b)]. By the second rule 

this equals a *b, so a* b = b* a. 

(b) Such sets exist for all finite sets M. 

Identify M with {1, …, n} and define 

a* b = c ⟺a + b+ c = 0 (mod n). 

It is immediate that the axioms are 

satisfied. 

 

94. Determine whether there exist a function 

f: ℤ⟶ℤ such that for each k = 0, 1, …, 1996 



Solving Mathematical Problems 

 

324 
 

and for each m ∈ℤ the equation 𝒇(𝒙) +

𝒃𝒙 = 𝒎 has at least one solution x ∈ℤ. 

Sol.: Each integer y can written uniquely as 

1997m +k with m ∈ℤ and k ∈ {0, …, 1996}. 

Define the function f by 𝑓(𝑦) =  𝑚 − 𝑘𝑦; then 

𝑓(𝑥) + 𝑘𝑥 = 𝑚 has the solution 𝑥 = 1997𝑚 +

𝑘, so the condition satisfied. 

 

95. Two sets of intervals A, B on a line are 

given. The set A contains 𝟐𝒎− 𝟏 intervals, 

every two of which have a common 

interior point. Moreover, each interval in A 

contains at least disjoint intervals of B. 

Show that there exists an interval in B 

which belongs to at least m intervals from 

A. 

Sol.: Let 𝛼1 = [𝑎𝑖 , 𝑏𝑖](𝑖 = 1,… , 2𝑚 − 1) be the 

intervals, indexed so that 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤

𝑎2𝑚−1. Choose k ∈{𝑚,… , 2𝑚 − 1} to minimize 

𝑏𝑘. By assumption, the interval 𝛼𝑘 contains two 

disjoint intervals from B, say 𝛽1 =

[𝑐1, 𝑑1] 𝑎𝑛𝑑 𝛽2 = [𝑐2, 𝑑2]. Without loss of 

generality, assume 

𝑎𝑘 ≤ 𝑐1 < 𝑑1 < 𝑐2 < 𝑑2 ≤ 𝑏𝑘. 

If 𝑑1 ≤ 𝑏𝑖 for i = 1, 2, …, m, then 𝛽1 ⊂ 𝛼1 for i = 

1, 2, …, m, so 𝛽1 satisfies the desired property. 

Otherwise, 𝑑1 > 𝑏𝑥 for some s ∈ {1, 2, …, m}. By 

assumption, 𝑐2 > 𝑑1 > 𝑏8. Since no two of the 

𝛼 are disjoint, we have 𝑏8 ≥ 𝑎𝑖 for all i, so 𝑐2 >

𝑎𝑖. On the other hand, by the choice of 𝑘, 𝑏𝑘 <

𝑏1 for i = m, …, 2𝑚1. Therefore 𝑎𝑖 < 𝑐2 < 𝑑2 ≤

 𝑏𝑘 ≤ 𝑏𝑖 for each 𝑖 ∈ {𝑚,𝑚 + 1,… , 2𝑚 −

1}, 𝑎𝑛𝑑 𝑠𝑜 𝛽2 has the desired property. 

 

96. Let n be a natural number. A cube of side 

length n can be divided into 1996 cubes 

whose side lengths are also natural 

numbers. Determine the smallest possible 

value of n. 

Sol.: Since 1996 >123, we must have  n ≥ 13, 

and we now show n = 13 suffices, Inside a cube 

of edge 13, we place one cube of edge 5, one 

cube length 4, and 2 of length 2, and fill the 

remainder with cubes of edge 1. The number of 

cubes used is 

133 − (53 − 1) − (43 − 1) − 2(23 − 1) =

2197 − 124 − 63 − 2(7) = 1996, as desired. 

 

97. Find all positive integers n such that 

𝟑𝒏−𝟏 + 𝟓𝒏−𝟏 𝒅𝒊𝒗𝒊𝒅𝒆𝒔 𝟑𝒏 + 𝟓𝒏. 

Sol.: This only occurs for n = 1. Let 𝑠𝑛 = 3
𝑛 + 5𝑛 

and note that 

𝑠𝑛 = (3 + 5)𝑠𝑛−1 − 3.5. 𝑠𝑛−2 

So 𝑠𝑛−1 must also divide 3.5. 𝑠𝑛−2. If n >1, then 

𝑠𝑛−1 is coprime to 3 and 5, so 𝑠𝑛−1 must divide 

𝑠𝑛−2, which is impossible since 𝑠𝑛−1 > 𝑠𝑛−2. 

 

98. Prove that for every polynomial 𝒙𝟐 + 𝒑𝒙 +

𝒒 with integer coefficients, there exists a 

polynomial 𝟐𝒙𝟐 + 𝒓𝒙 + 𝒔 with integer 

coefficients such that the sets of values of 

the two polynomials on the integers are 

disjoint. 

Sol.: If p is odd, then 𝑥2 + 𝑝𝑥 + 𝑞 has the same 

parity as q for all integers x, and it suffices to 

choose r even and s of the opposite parity as q. 

If p = 2m is even, then 𝑥2 + 𝑝𝑥 + 𝑞 = (𝑥 +

𝑚)2 + (𝑞 −𝑚)2 which is congruent to 𝑞 −

𝑚2 𝑜𝑟 𝑞 − 𝑚2 + 1 modulo 4. Now it suffices to 

choose r even and s congruent to 𝑞 −𝑚2 + 2 

modulo 4. 
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99. Sergey found 11 different solutions to the 

equation 𝒇 (𝟏𝟗𝒙 −
𝟗𝟔

𝒙
) = 𝟎. Prove that if 

he had tried harder, he could have found 

at least one more solution. 

Sol.: The equations 19𝑥 −
96

𝑥
= 𝑡 can be 

rewritten 19𝑥2 − 𝑡𝑥 − 96 = 0; 𝑠𝑖𝑛𝑐𝑒 𝑡2 +

19.96 > 0, it always has two real roots. 

Therefore the number of zeroes of f (if finite) is 

an even integer, so Sergey can find at least one 

more zero. 

 

100. There are 2000 towns in a country, 

each pair of which is linked by a road. The 

Ministry of Reconstruction proposed all of 

the possible assignments of one way traffic 

to each road. The ministry of 

Transportation rejected each assignment 

that did not allow travel from any town to 

any other town. Prove that more of half of 

the assignments remained. 

Sol.: We will prove the same statement for n ≥ 

6 towns. First suppose n = 6. In this case there 

are 215 assignments, and an assignment is 

rejected only if either one town has road to all 

of the others in the same direction, or if there 

are two sets of three towns, such that within 

each town the roads point in a circle, but all of 

the roads from one set to the other point in the 

same direction. There are 5.211 had 

assignments of the first kind and 20.8 of the 

second kind, so the fraction of good 

assignments is at least 
5

8
. 

For n ≥ 6, we claim that the fraction of good 

assignments is at least 

5

8
∏(1 −

1

2𝑖−1
)

𝑛−𝑖

𝑖=6

. 

We show this by induction on a good 

assignment or r h -1 vertices can be extended to 

a good assignment on vertices simply by 

avoiding having all edges from the last vertex 

pointing in the same direction, which occurs in 

2 cases out of 2𝑛−1. 

Now it suffices to show that the above 

expression is more than 
1

2
. 

In fact, 

∏(1−
1

2
)
−1∞

𝑖=5

≤ 1 +∑
𝑖 − 4

2𝑖

∞

𝑖=5

 

= 1 +
1

25
∑
𝑖 + 1

2𝑖

∞

𝑖=0

 

= 1 +
1

25
∑∑

1

2𝑖

∞

𝑘=𝑖

∞

𝑖=0

 

= 1 +
1

25
∑

1

2𝑖 − 1

∞

𝑖=0

 

= 1 +
4

25
=
9

8
 

Thus the fraction of good assignments is at least 

(
5

8
) (

8

9
) =

5

9
>
1

2
. 

 

 


