

Multivariate analysis
Multivariate Data:- Investigators seeking to understand social or physical phenomena generally to collect simultaneous measurements on many variables (characters) for each distinct individual, because social on physical phenomena are complex in nature. The measurements are all recorded for each distinct individual. For example, the data may relate to the scores obtained by each of a number of students in three subjects: Math, physics and statistics. Another example, the data consists of rating over a course of treatment for patients undergoing radiotheraphy; variables rated include sore throat, sleep, food consumption, appetite, skin-reactior Data of this type are called multivariate data because they are simultaneous measurements on many variables. Like bivariate case, multivariate data may also be arranged into a frearency distribution For p variables $x_{1}, x_{2}, \ldots, x_{p}$ with $k_{1}, k_{2}, \ldots, k_{p}$ classes, respectively, The joint frequency distribution coll have $k_{1} \times k_{2} \times \ldots \ldots \times k p$ cell frequency; the frequency in a cell being the number of individuals belonging simultaneously to the corresponding x_{1}-class, x_{2}-class,, x_{p}-class. From this joint distr. of p-variables, we can obtain the marginal distr. of any p_{1} variables $\left(1 \leq p_{1} \leq p-1\right)$ and the conditional distribution of any p_{1} variables for given values p_{2} of the other variables $\left\{\left(p_{1}, p_{2} \geq 1\right)\right.$ and $\left.\left(p_{1}+p_{2}\right) \leq p\right\}$. These marginal and conditional distr. s can be obtained in a way similar to that in the bivariate case.
suppose $x_{i \alpha}$ denotes the value of the variable x_{i} on the individual $\alpha,[=1,2, \ldots, p, \alpha=1,2 \ldots \ldots n$. These n mettivaniate observations can be displayed as a data matrix X of p rows and n columns, ire. $x=((x i \alpha))$ pan.
The useful descriptive statistics measuring location, dispersion and correlation are:

$$
\begin{aligned}
\bar{x}_{i} & =\frac{1}{n} \sum_{\alpha=1}^{n} x_{i \alpha}, \\
s_{i j} & =\left\{\begin{array}{l}
\frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right) \text { for } i \neq j \\
\frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{i \alpha}-\bar{x}_{i}\right)^{2} \text { for } i=\dot{j}
\end{array}\right. \\
& =\left\{\begin{array}{l}
\operatorname{cov}\left(x_{i}, x_{j}\right) f_{\text {or }} i \neq j \\
\operatorname{Var}\left(x_{i}\right) \operatorname{for} i=j
\end{array}\right. \\
r_{i j} & =\frac{\operatorname{sij}}{\sqrt{\operatorname{sii} s_{j j}}}=\frac{\operatorname{cov}\left(x_{i}, x_{j}\right)}{\operatorname{s.d\cdot (} \cdot\left(x_{i}\right) \operatorname{sid} \cdot\left(x_{j}\right)}
\end{aligned}
$$

We can represent the statistics as:

$$
\begin{gathered}
\bar{x}=\left(\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\vdots \\
\bar{x}_{p}
\end{array}\right), \quad s_{p \times p}=\left(\begin{array}{ccccc}
s_{11} & s_{12} & s_{13} & \cdots & \cdots \\
s_{21} & s_{22} & s_{23} & \cdots \cdots & s_{2 p} \\
\vdots & \vdots & \vdots & & \vdots \\
s_{p 1} & s_{p 2} & s_{p 3} & \cdots \cdots & s_{p p} \\
R_{p x p} & =\left(\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 p} \\
r_{21} & r_{22} & \cdots \cdots & r_{2 p} \\
r_{31} & r_{32} & \cdots \cdots & r_{3 p} \\
\vdots & \vdots & & \vdots \\
r_{p i} & r_{p 2} & \cdots \cdots & r_{p p}
\end{array}\right) .
\end{array} . .\right.
\end{gathered}
$$

$\bar{x}_{p \times 1}, S S_{p x p}$ and $R_{p x p}$ are called mean vector, variance-covariance (dispersion) matrix and correlation matrix, respectively, of the variables $x_{1}, x_{2}, \ldots, x_{p}$.
Result:- A variance -covariance matrix is non-negative definite.
Proof:- Let $S_{p x p}=((S i j))$ be the variance-covariance matrix of the variables $x_{1}, x_{2}, \ldots, x_{p}$ with the mean vector $\bar{\sim}=\binom{\bar{x}_{1}}{\vdots}$. To prove that $s p x p$ is.
 vector $\quad l=\left(\begin{array}{c}l_{1} \\ \vdots \\ l_{p}\end{array}\right)$.
Now,

$$
\begin{aligned}
\ell_{\sim}^{\prime} S \ell & =\sum_{i=1}^{p} \sum_{j=1}^{p} s_{i j} l_{i} l_{j} \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p} l_{i} l_{j} \cdot \frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right) \\
& =\frac{1}{n} \sum_{\alpha=1}^{n} \sum_{i=1}^{p} \sum_{j=1}^{p} l_{i} l_{j}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right) \\
& =\frac{1}{n} \sum_{\alpha=1}^{n}\left(\sum_{i=1}^{p} l_{i}\left(x_{i \alpha}-\bar{x}_{i}\right)\right)\left(\sum_{j=1}^{p}\left(x_{j \alpha}-\bar{x}_{j}\right)\right) \\
& =\frac{1}{n} \sum_{\alpha=1}^{n}\left(\sum_{i=1}^{p} l_{i}\left(x_{i \alpha}-\overline{x_{i}}\right)\right)^{2}=\frac{1}{n} \sum_{\alpha=1}^{n}\left(l^{\prime}\left(x_{\alpha}-\bar{x}\right)\right), \alpha=1(1) n, \\
& =\frac{1}{n} \sum_{\alpha=1}^{n} z_{\alpha}^{2}, \\
& \geqslant 0 \text { for every } \ell \ldots
\end{aligned}
$$

Now from (1),
$l_{\sim}^{\prime} S_{Z}=0$ for some $\underset{\sim}{l} \neq 0$
if $l^{\prime}\left({\underset{\sim}{x}}_{\alpha}-\bar{x}\right)=0$ for some ${\underset{\sim}{x}}^{\sim} \neq 0$ and $\forall \alpha=1(1) n$.
i.e.iff $\left(x_{\alpha}-\bar{x}_{\sim}^{x}\right)^{\prime} \underset{\sim}{l}=0$ for some $\underset{\sim}{l} \neq 0$ and $\forall \alpha=1(1) n$.
ie. iff $\left(\begin{array}{ccccc}x_{11}-\bar{x}_{1} & x_{21}-\bar{x}_{2} & x_{31}-\bar{x}_{3} & \cdots \cdots & x_{p 1}-\bar{x}_{p} \\ x_{12}-\bar{x}_{1} & x_{22}-\bar{x}_{2} & x_{32}-\bar{x}_{3} & \cdots \cdots & x_{p 2}-\bar{x}_{p} \\ \vdots & & & & \\ \alpha_{1 n}-\bar{x}_{1} & x_{2 n}-\bar{x}_{2} & x_{3 n}-\bar{x}_{3} & \cdots \cdots & x_{p n}-\bar{x}_{p}\end{array}\right)\left(\begin{array}{c}l_{1} \\ l_{2} \\ \vdots \\ l_{p}\end{array}\right)=\underset{\sim}{0}$ for some $\quad \underset{\sim}{l} \neq \underset{\sim}{0}$.
i.e. if The columns of the matrix $\left(\left(x_{i \alpha}-\bar{x}_{i}\right)\right)$ are linearly dependent.
i.e. If \exists some deviation $\left(x_{i \alpha}-\bar{x}_{i}\right)$ cohich is a linear combination of the other ($p-1$) deviations (over the n observations).
i.e. if \exists some variable cohich is a exact linear function of the other $(p-1)$ variables x_{i} over the n observations $\left\{x_{\alpha} ; \alpha=1(1) n\right\}$.
Fact:- A covariance matrix is positive semidefinite.
Proof:- Let \sum be the covariance matrix of a random vector X with mean vector μ. Then $\sum=E\left[(x-\mu)(x-\mu)^{\prime}\right]$

Now, let $\underset{\sim}{X}$ be any vector. We have to show that $V_{\sim}^{\prime} \sum \underset{\sim}{v} \geqslant 0$.
But

$$
\begin{aligned}
{\underset{\sim}{v}}^{\prime} \sum \underset{\sim}{v} & =v_{\sim}^{\prime} E\left[(\underset{\sim}{x}-\mu \sim)(\underset{\sim}{x}-\mu \sim)^{\prime}\right] \underset{\sim}{v} \\
& =E\left[{\underset{\sim}{v}}^{\prime}(\underset{\sim}{x}-\mu)(\underset{\sim}{x}-\mu \sim)^{\prime} \underset{\sim}{v}\right]=E\left[Y^{2}\right] \geqslant 0
\end{aligned}
$$

cohere, $Y={\underset{\sim}{v}}^{\prime}(\underset{\sim}{x}-\underset{\sim}{\mu})$.
'-'holds iff $Y^{2}=0$ with probability 1.
ins. Af ${\underset{\sim}{v}}^{\prime}(\underset{\sim}{x}-\mu)=0$, ore $\underset{\sim}{v}{\underset{\sim}{x}}_{\sim}^{x}=v_{\sim}^{\prime} / \underset{\sim}{\mu}$.
i.e. if \exists a linear combination of the elements of $\underset{\sim}{x}$ conch is equal to its mean with probability 1,
i.e. if there is a variate cohich is degenerate in this sense of being a constant random variable.
Exempt when this happens, the covariance matrix is positive definite, not just positive semidefinite.

Multivariate frequency distribution
Multivariate Data: - In some investigations, data may be collected for the given set of individuals, on a no. of variables at the same time. suppose we have ' p ' variables $x_{1}, x_{2}, \ldots, x_{p}$. The values of the variables for the α th individual may be denoted by $x_{1 \alpha}, x_{2 \alpha}, \ldots \ldots$, $x_{p \alpha}, \alpha=1(1)^{n}$.
Notations:- Let the vector variable be

$$
\underset{\sim}{x}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{\prime}
$$

Then, $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{p}\right)^{\prime}$ is called the mean vector of x_{n} and $\bar{x}_{i}=\frac{1}{n} \sum_{\alpha=1}^{n} x_{i \alpha}$.
Define, $\quad s_{i j}=\sum_{\alpha=1}^{n}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right)$
and $S_{i j}=\frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right)$

$$
= \begin{cases}\operatorname{cov}\left(x_{i}, x_{j}\right), & i \neq j \\ \operatorname{var}\left(x_{i}\right), & i=j \\ \text { is called the 'x } x\end{cases}
$$

Then $S=((s i j))_{p x p}$ is called the 'variance-corariance matrix of x ' or 'dispersion matrix of x^{\prime} '. The matrix $n S=((S$ ii $)) p \times p$ is called The SSSP matrix (sum of squares and sum of product matrix).
Theorem 1:- Every dispersion matrix is non-negative definite.
Proof:- Note that, $\frac{1}{n} \sum_{\alpha=1}^{n}\left\{a_{1}\left(x_{1 \alpha}-\bar{x}_{1}\right)+a_{2}\left(x_{2 \alpha}-\bar{x}_{2}\right)+\cdots \cdots \ldots+\right.$ $\left.\left.p^{p} a^{2} \sum^{n}\left(x_{\alpha}-\bar{x}\right)^{2}\right\} p^{p} \quad a_{p}\left(x_{p \alpha}-\bar{x}_{p}\right)\right\}^{2} \geqslant 0$, for all ai $(i=1(1) p)$

$$
\Rightarrow \sum_{i=1}^{p}\left\{\frac{1}{n} a_{i} \sum_{\alpha=1}^{n}\left(x_{i \alpha}-\bar{x}_{i}\right)^{2}\right\}+\sum_{i \neq j=1}^{p} a_{i} a_{j}\left\{\frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right)\right\} \geqslant 0 \forall a_{i}
$$

$$
\Rightarrow \sum_{i=1}^{p} a i^{2} \cdot 8 i i+\sum_{i \neq j=1}^{p} a_{i} a_{j} \cdot 8 i j \geqslant 0 \forall a_{i}
$$

$\Rightarrow a_{\sim}^{\prime} s a \geqslant 0 \quad \forall a$, cohere $a=\left(a_{1}, a_{2}, \ldots, a_{p}\right)^{\prime}$
and $S=((8 i j))_{p x p}$ is the dispersion matrix.
$\therefore S$ is n.n.d.

Corollary:-
(1) When s is p.s.d., then \exists a non-null $\underset{\sim}{a} \rightarrow a^{\prime} s \underset{\sim}{a}=0$
\Leftrightarrow for some $a \neq 0$,

$$
\begin{aligned}
& \Leftrightarrow \text { for some } a \neq 0, \\
& a_{1}\left(x_{1 \alpha}-\bar{x}_{1}\right)+a_{2}\left(x_{2 \alpha}-\bar{x}_{2}\right)+\cdots \cdots+a_{p}\left(x_{p \alpha}-\bar{x}_{p}\right)=0 \quad \forall \alpha=1(1) n .
\end{aligned}
$$

\Leftrightarrow for some $a^{\prime}=\left(a_{1}, a_{2}, \ldots, a_{p}\right) \neq 0^{\prime}, \sum_{i=1}^{p} a_{i}\left(x_{i \alpha}-\bar{x}_{i}\right)=0, \alpha=1(1) \beta$.
\Leftrightarrow variables are linearly related. [Here, $r(s)<p$]

(2) When s isp.d., then \nexists a non null $\underset{\sim}{p} \ni \quad \underset{\sim}{a} s \underset{\sim}{a}=0$

$$
\begin{aligned}
& \nexists a \neq 0 \quad \sum_{i=1}^{\tilde{p}} a_{i}\left(x_{i} \alpha-\overline{x_{i}}\right)=0, \alpha=1(1) n \text {. } \\
& \left.\Leftrightarrow \nexists a \neq 0, \quad b \neq 0(a \text { constant }) \Rightarrow \sum_{i=1}^{p} a_{i} x_{i \alpha}=b, \alpha=1(1),\right) \text {. } \\
& \text { [Here } r(S)=p \text {.] }
\end{aligned}
$$

(3) Consider the matrix $\left(\left(x_{i \alpha}\right)\right)_{i=1,2, \ldots, p}$. Define

$$
\bar{x}_{i}=\frac{1}{n} \sum_{\alpha=1}^{n} x_{i} \alpha \text { and } 8 i j=\frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right) \text {. Then the } p \times p
$$

$\operatorname{matmx}((s i j))$ is:
(i) p.d. when the rank $\left(\left(x_{i \alpha}-\bar{x}_{i}\right)\right)=p$.
(ii) p.s.d. When the rank $\left(\left(x_{i \alpha}-\bar{x}_{i}\right)\right)<p$, in cohich case \exists constants

$$
a_{1}, a_{2}, \ldots, a_{p} \ni \sum_{i=1}^{p} a_{i}\left(x_{i \alpha}-\bar{x}_{i}\right)=0, \alpha=1(1) n \text {. }
$$

Multiple Regression: The theory of regression is concerned coith the prediction of one or mare variables ($y_{1}, y_{2}, \ldots, y q$) on the basis of information provided by either measurements or concomitant variables $\left(x_{1}, x_{2}, \ldots, x_{p}\right)=x^{\prime}$. It is customary to call the latter independent on predictor variables and the formar dependent or o criterion variables. Prediction is needed in several practical situations. A meterologist counts to forecast weather several hours ahead on the basis of suitable atmosphere. measurements taken at a point in time.

In all these situations, the criteria are some variables in the future which woe sought to be predicted by the available measurements for taking divisions. How should the predictors be chosen?

In probabilistic approach, the conditional mean of y given $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ is called the negress ion equation.
Notations:- Let,

$$
\text { ions:- Let, } \begin{aligned}
\underset{\sim}{x} & =\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{\prime} \\
& =\left(x_{(1)}, x^{(2)}\right)^{\prime} \\
\text { and mean vector } \underset{\sim}{x} & =\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{p}\right)^{\prime} \\
& =\left(\bar{x}_{1}, \bar{x}^{(2)}\right)^{\prime}
\end{aligned}
$$

The dispersion matrix is

$$
\begin{aligned}
& \text { dispersion matrix is } \\
& \left.S=\left(\begin{array}{c:ccc}
s_{11} & s_{12} & \cdots \ldots . . s_{1 p} \\
\hdashline s_{21} & s_{22} & \cdots . . . & s_{2 p} \\
s_{31} & s_{32} & \cdots . . . & s_{3 p} \\
\vdots & \vdots & \vdots \\
s_{p 1} & s_{p 2} & \cdots \cdots . . s_{p p}
\end{array}\right) \quad \text { where, } s_{i j}=s_{j i} \forall i, j\right]
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
s_{11} & s^{\prime}(1) \\
s_{(1)} & s_{2}
\end{array}\right)
$$

clearly, S_{2} is the dispersion mix of $\left(x_{2}, x_{3}, \ldots, x_{p}\right)$ and it is assumed to be non-singular (p.d.).
The correlation matrix is

$$
\begin{aligned}
& \text { ar }(p \cdot d \cdot) \cdot\left(\begin{array}{cccc}
1 & r_{12} & \cdots & r_{1 p} \\
r_{12} & 1 & \cdots & \cdots \\
r_{2 p} \\
\vdots & \vdots & & \vdots \\
r_{1 p} & r_{2 p} & \cdots & \cdots
\end{array}\right)
\end{aligned}
$$

Note that both the matrices S and R are symmetric.
Note that $R=D S \Delta$, cohere $D=\operatorname{diag}\left(\frac{1}{\sqrt{8_{11}}}, \frac{1}{\sqrt{8_{22}}}, \ldots, \ldots, \frac{1}{\sqrt{S P P_{P}}}\right)$

$$
\Rightarrow|S|=s_{11} s_{22} \cdots \cdot s_{p p} \cdot|R|
$$

cohen the regression function is linear. in predictor variables, it has been studied extensively.

$$
\begin{aligned}
& =\left(\begin{array}{ccccc}
\frac{1}{\sqrt{s_{11}}} & 0 & \cdots & \cdots & 0 \\
0 & \frac{1}{\sqrt{8_{22}}} & \cdots & & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \frac{1}{\sqrt{s_{p p}}}
\end{array}\right)\left(\begin{array}{cccc}
s_{11} & s_{12} & \cdots & s_{1 p} \\
s_{21} & s_{22} & \cdots & s_{2 p} \\
\vdots & \vdots & & \vdots \\
s_{p 1} & s_{p 2} & \cdots & s_{p p}
\end{array}\right)\left(\begin{array}{cccc}
\frac{1}{\sqrt{s_{11}}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sqrt{8_{22}}} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \frac{1}{\sqrt{s_{p q}}}
\end{array}\right. \\
& \therefore|R|=|D||S||D|=|D|^{2}|S|
\end{aligned}
$$

[In probabilistic approach, $E\left(X_{1} \mid x_{\sim}^{(2)}\right)=M\left(\underset{\sim}{x}{ }^{(2)}\right)$, is called The conditional mean of x_{1} given $x^{(2)}$, is also called the regression function. The regression is said to be linear on non-linear according as the function $M(\cdot)$ is linear or non-linear.]
Let us assume that the regression of x_{1} on $x_{2}, x_{3}, \ldots, x_{p}$ is linear conether the true regression is linear or not, i.e., assuming the regression equation as:

$$
f\left(x^{(2)}\right)=a+b_{2} x_{2}+b_{3} x_{3}+\cdots \cdots+b_{p} x_{p}
$$

Since the MSE is minimum, ie.,
$\sum_{\alpha=1}^{n}\left\{x_{1 \alpha}-f\left(x_{2 \alpha}, x_{3 \alpha}, \ldots ., x_{p \alpha}\right)\right\}^{2}$ is minimum cohen $f\left({\underset{\sim}{x}}^{(2)}\right)$ is
the regression function, hence the constants a, b_{2}, \ldots, b_{p} are determined by minimising

$$
\begin{aligned}
& s^{2}=\sum_{\alpha=1}^{n}\left(x_{1 \alpha}-a-b_{2} x_{2 a} \ldots \cdots-b_{p} x_{p \alpha}\right)^{2} \text { wist. } a, b_{2}, b_{3}, \ldots, b_{p} \text {) } \\
& \text { mined minimising }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Normal equations are: } \\
& 0=\frac{\partial S^{2}}{\partial a}=(-2) \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-a-b_{2} x_{2 \alpha} \cdots \cdots . b_{p} x_{p \alpha}\right) \text {. } \\
& \left.0=\frac{\partial s^{2}}{\partial b_{i}}=(-2) \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-a-b_{2} x_{2 \alpha}-\cdots . .-b_{p} x_{p \alpha}\right) x_{i \alpha}, i=2^{\prime}\right)_{i} \\
& \Rightarrow\left\{\begin{array}{l}
\sum_{\alpha=1}^{n}\left(x_{1 \alpha}-a-b_{2} x_{2 \alpha} \ldots . b_{p} x_{p \alpha}\right)=0 \\
\sum_{\alpha=1}^{n}\left(x_{1 \alpha}-a-b_{2} x_{2 \alpha} \ldots . . b_{p} x_{p \alpha}\right) x_{i \alpha}=0 \quad \forall p=2(1) p .
\end{array}\right. \\
& \Rightarrow \quad\left\{\begin{aligned}
& \overline{x_{1}}=a+b_{2} \bar{x}_{2}+\cdots \cdot+b_{p} \bar{x}_{p} \\
& \Leftrightarrow a=\bar{x}_{1}-\left(b_{2} \bar{x}_{2}+b_{3} \bar{x}_{3}+\cdots \cdot+b_{p} \bar{x}_{p}\right)
\end{aligned}\right. \\
& =\bar{x}_{1}-{\underset{\sim}{c}}^{\prime} \bar{x}^{(2)} \text {, where }{\underset{\sim}{b}}^{\prime}=\left(b_{2}, b_{3}, \ldots, b_{p}\right) \\
& \left.\sum_{\alpha} x_{1 \alpha} x_{i \alpha}=a \sum_{\alpha} x_{i \alpha}+b \sum_{\alpha} x_{2 \alpha} x_{i \alpha}+\cdots \cdot+b i \sum_{\alpha} x_{i \alpha}^{2}+\cdots .\right) \\
& \ldots+b p \sum_{\alpha}^{x} p_{\alpha} x_{i \alpha}, \forall i=2(1) p .
\end{aligned}
$$

$$
\Leftrightarrow{\underset{\sim}{x}}_{(1)}=s_{2} \stackrel{b}{\sim}
$$

or, $\underset{\sim}{b}=s_{2}^{-1} \underset{\sim}{s}(1)$, since s_{2}^{\prime} is assumed to be non-singular.
Hence, $f\left({\underset{\sim}{x}}^{(2)}\right)=a+{\underset{\sim}{b}}^{\prime} x_{\sim}^{(2)}$, where $a=\bar{x}_{1}-{\underset{\sim}{b}}^{\prime} \bar{x}^{(2)}$ and $b=S_{2}^{-1} \cdot R_{r}(1)$ is the multiple linear regression of x_{1} on ${\underset{\sim}{x}}^{(2)}=\left(x_{2}, \ldots, x_{p}\right)$

Define, $X_{1.23} \cdots p=a+b_{\sim}^{\prime} \underset{\sim}{x}$
$=a+b_{2} x_{2}+\cdots .+b_{p} x_{p}$, as the part of x_{1} explained by the multiple linear regression of x_{1} on $\left(x_{2}, x_{3}, \ldots, x_{p}\right)$.
Then we corine $x_{1}=x_{1.23} \ldots p+e_{1.23 \ldots p} \ldots$ where
$e_{1.23} \ldots p$ is the residual part of x_{1} corresponding to its multiple linear regression.
For the α th individual,

$$
x_{1 \alpha}=x_{1.23 \ldots, p, \alpha}+e_{1.23 \ldots p, \alpha}
$$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
\bar{x}_{1}=a+b_{2} \bar{x}_{2}+\cdots+b_{p} \bar{x}_{p} \\
\sum_{\alpha} x_{1 \alpha} x_{i \alpha}=\left\{\bar{x}_{1}-\left(b_{2} \bar{x}_{2}+\cdots+b_{p} \bar{x}_{p}\right)\right\} \sum_{\alpha} x_{i \alpha}+b_{2} \sum_{\alpha} x_{2 \alpha} x_{i \alpha}
\end{array}\right. \\
& +\cdots \cdot+b_{p} \sum_{\alpha} x_{p \alpha} x i \alpha, \forall i=2(1) p \text {. } \\
& \Rightarrow \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-\bar{x}_{1}\right)\left(x_{i \alpha}-\overline{x_{i}}\right)=b_{2} \sum_{\alpha}\left(x_{2 \alpha}-\bar{x}_{2}\right)\left(x_{i \alpha}-\bar{x}_{i}\right)+\cdots \cdots \cdot \\
& +b_{p} \sum_{\alpha}\left(x_{p \alpha}-\bar{x}_{p}\right)\left(x_{i \alpha}-\bar{x}_{i}\right) \forall i=2(1,) p \\
& \Rightarrow s_{1 i}=b_{2} s_{2 i}+b_{3} s_{3 i}+\cdots \cdot+b_{p} s_{p i}, v_{i}=2(1) p . \\
& \Leftrightarrow s_{12}=b_{2} s_{22}+b_{3} s_{32}+\cdots \cdot+b_{p} s_{p_{2}} \\
& s_{13}=b_{2} s_{23}+b_{3} s_{33}+\cdots \cdot \cdot+b_{p} s_{p 3} \\
& s_{1 p}=b_{2} s_{2 p}+b_{3} s_{3 p}+\cdots \ldots .+b_{p} s_{p p} \\
& \Leftrightarrow S_{\sim}(1)=\left(\begin{array}{cccc}
s_{22} & s_{32} & \cdots & \ldots \\
s_{23} & s_{33} & \cdots & s_{p 3} \\
\vdots & \vdots & & \vdots \\
s_{2 p} & s_{3 p} & \cdots & s_{p p}
\end{array}\right)\left(\begin{array}{c}
b_{2} \\
b_{3} \\
\vdots \\
\vdots \\
b_{p}
\end{array}\right)
\end{aligned}
$$

Theorem 1:- $\sum_{\alpha=1}^{n} e_{1.23 \ldots . .}, \alpha=0$ and $e_{1.23 \ldots p}$ is uncorrelated with $\sum_{\alpha=1} e_{1.23} \ldots . . p, \alpha=$ and hence with multiple linear regression
every predictor variable and
equation.
Proof:- Note that, $e_{1.23 \ldots p}=x_{1 \alpha}-X_{1.23 \ldots, p, \alpha}$

$$
\begin{aligned}
& =x_{1 \alpha}-\lambda_{123} \cdots p, \alpha \\
& =x_{1 \alpha}-\left(a+b_{2} x_{2 \alpha}+\cdots+b_{p} x_{p \alpha}\right)
\end{aligned}
$$

From the 1 St Normal equation, we have,

$$
\begin{aligned}
& \sum_{\alpha}\left(x_{1 \alpha}-a-b_{2} x_{2 \alpha}-\cdots \cdot b_{p} x_{p \alpha}\right)=0 \\
\Rightarrow & \sum_{\alpha} e_{1 \cdot 23} \cdots p=0 .
\end{aligned}
$$

from the other normal equations,

$$
\begin{aligned}
& \sum_{\alpha=1}^{n} e_{1.123 \ldots p, \alpha} x_{i \alpha}=0, \forall i=2(1) p \\
\Rightarrow & \sum_{\alpha=1}^{n} e_{1.23} \ldots \ldots, \alpha\left(x_{i \alpha}-\bar{x}_{i}\right)=0 \forall i=2(1) p \\
\Rightarrow & \sum_{\alpha=1}^{n}\left(e_{1.23 \ldots \ldots, \alpha}-\bar{e}_{1.23} \ldots p\right)\left(x_{i \alpha}-\bar{x}_{i}\right)=0 \vee i=2(1) p \\
\Rightarrow & \operatorname{cov}\left(e_{1.23} \ldots p, x_{i}\right)=0 \quad \forall i=2(1) p
\end{aligned}
$$

Again, $\operatorname{cov}\left(e_{1.23} \ldots p, X_{1.23} \ldots p\right)$

$$
\begin{aligned}
& =\operatorname{cov}\left(e_{1.23} \ldots p, a+\sum_{i=2}^{p} b_{i} x_{i}\right) \\
& =0+\operatorname{Cov}\left(e_{1.23} \ldots p, \sum_{i=2}^{p} b_{i} x_{i}\right) \\
& =\sum_{i=2}^{p} b_{i} \cdot \operatorname{Cov}\left(e_{1 \cdot 23} \ldots p, x_{i}\right) \\
& =0 .
\end{aligned}
$$

Fence the residual is uncorrelated with the multiple linear regression.

Theorem 2. Variance $\left(e_{1.23} \ldots p\right)=s_{11}-\delta_{\sim}^{\prime}(1) S_{2}^{-1} S_{\sim}^{(1)}$

$$
=\frac{\mid s_{1}}{\left|s_{2}\right|}=\frac{1}{s^{\prime \prime}}=\frac{|R|}{R_{11}} s_{11}=\frac{s_{11}}{r_{11}}
$$

cohere $s^{-1}=\left(\left(s^{\ddot{y}}\right)\right) ; R_{11}=$ cofactor of r_{11} in R;

$$
R^{-1}=((r \ddot{y}))
$$

[The symbols have their usual meaning]
Proof:-

$$
\begin{aligned}
& \operatorname{Var}\left(e_{1.23} \ldots . p^{p}\right) \\
& =\operatorname{cov}\left(e_{1.23 \ldots p}, e_{1.23} \ldots p\right) \\
& =\operatorname{cov}\left(e_{1.23} \ldots p, x_{1}-x_{1.23 \ldots p}\right) \\
& =\operatorname{cov}\left(e_{1.23} \ldots p, x_{1}\right) \text {, since } \operatorname{cov}\left(e_{1.23 \ldots p}, x_{1.23 \ldots p}\right)=0 \text {. } \\
& =\operatorname{cov}\left(x_{1}-x_{1,23} \ldots p, x_{1}\right) \\
& =\operatorname{cov}\left(x_{1}, x_{1}\right)-\operatorname{cov}\left(x_{1}, x_{1.23} \ldots p\right) \\
& =\operatorname{var}\left(x_{1}\right)-\operatorname{cov}\left(x_{1}, a+\sum_{i=2}^{p} b_{i} x_{i}\right) \\
& =s_{11}-\sum_{i=2}^{p} b_{i} \cdot \operatorname{cov}\left(x_{1}, x_{i}\right) \\
& =s_{11}-\sum_{i=2}^{p} b_{i} \cdot s_{1} \\
& =811-\underset{\sim}{b} \underset{\sim}{8}(1)
\end{aligned}
$$

$=S_{11}-8_{\sim}^{\prime}(1) S_{2}^{-1} \underset{\sim}{8}(1)$, since we have from normal equations $S_{2} \underset{\sim}{b}=S_{\sim}(1)$ and s_{2} being symmetric, $\left(s_{2}^{-1}\right)^{\prime}=s_{2}{ }^{-1}$.
Note that, $\quad S=\left(\begin{array}{cc}S_{11} & S_{S^{\prime}}^{\prime}(1) \\ {\underset{\sim}{2}}^{(1)} & S_{2}\end{array}\right)$
and $|S|=\left|s_{2}\right|\left(s_{11}-\delta_{(1)}^{\prime} s_{2}^{-1} \underset{\sim}{\delta}(1)\right)$, since we have assumed that S_{2}

$$
\begin{aligned}
& \Rightarrow|s|=\left|s_{2}\right| \cdot \operatorname{Var}\left(e_{1.23 \ldots p} \ldots p\right) \\
& \Rightarrow \operatorname{Var}\left(e_{1.23 \ldots p}\right)=\frac{|s|}{\left|s_{2}\right|} \\
&=\frac{|s|}{\text { cofactor of } s_{11} \text { ins }}=\frac{1}{s^{11}},
\end{aligned}
$$

where $s^{-1}=\left(\left(\frac{\text { cofactor of } s_{j i}}{|s|}\right)\right)$

$$
=\left(\left(s^{\ddot{y}}\right)\right), \text { say. }
$$

We have $|S|=s_{11} s_{22} \cdots s_{p p}|R|$; Again $\left|S_{2}\right|=s_{22} s_{33} \cdots s_{p p}$. R11, where R_{11} is the cofactor of r_{11} in R.

$$
\begin{aligned}
\therefore \operatorname{var}\left(e_{1}, 23 \ldots p\right) & =\frac{\mid s_{1}}{\left|s_{2}\right|} \\
& =\frac{s_{11} s_{22} \cdots s_{p p}}{s_{22} s_{33} \ldots s_{p p}} \cdot \frac{|R|}{R_{11}} \\
& =\frac{s_{11}|R|}{R_{11}}=\frac{s_{11}}{R_{11} /|R|} \\
& =\frac{s_{11}}{r_{11}}, \text { where } R^{-1}=\left(\left(r \ddot{y}_{j}\right)\right), s a y .
\end{aligned}
$$

Problems:-
(1) If $x_{1}, x_{2}, \ldots, x_{p}$ are p variables θ the correlation coefficient between each pairs of components is r. S.T. $-\frac{1}{p-1} \leq r \leq 1$.
ANS:- The correlation matrix is

$$
R=\left(\begin{array}{cccccc}
1 & r & r & \cdots & \cdots & r \\
r & 1 & r & \cdots & \cdots & r \\
\vdots & \vdots & \vdots & & \vdots \\
i & i & r & \cdots & 1
\end{array}\right) \text { pep }
$$

clearly, R is n.n.d.

$$
\left[\begin{array}{l}
\operatorname{var}\left(\sum_{i=1}^{0} a_{i} x_{i}\right) \geqslant 0 \quad \forall a=\left(a_{1}, a_{2}, \ldots, a_{p}\right) \\
\Leftrightarrow \sum_{i} \sum_{j} a_{i} a_{j} \operatorname{Cov}\left(x_{i}, x_{j}\right) \geqslant 0 \\
\Leftrightarrow \sum_{i} \sum_{j} a_{i} a_{j} r \ddot{j} \sqrt{8 i i} \sqrt{8_{j j}} \geqslant 0 \\
\Leftrightarrow \sum_{i} \sum_{j} r_{i j} u_{i} u_{j} \geqslant 0, \text { where } u_{i}=a_{i} \sqrt{8 i i}, u_{j}=a_{j} \sqrt{8_{j j}} \\
\Leftrightarrow u^{\prime} R u \geqslant 0 \quad \forall u \\
\Leftrightarrow R i s n \cdot n \cdot d .]
\end{array}\right.
$$

\therefore All principle minors are $\geqslant 0$

Now, $\left|\begin{array}{cc}1 & r \\ r & 1\end{array}\right| \geqslant 0 \Rightarrow 1-r^{2} \geqslant 0$

$$
\Rightarrow r^{2} \leq 1
$$

$$
\Rightarrow-1 \leq r \leq 1
$$

$$
\begin{aligned}
& \left.\Rightarrow(1-r)^{p-1}[1+(p-1) r] \geqslant 0\right) \\
& \Rightarrow 1+(p-1) r \geqslant 0 \quad[\because(1-r) \geqslant 0) \\
& \Rightarrow-\frac{1}{p-1} \leq r
\end{aligned}
$$

$$
\therefore-\frac{1}{p-1} \leq r \leq 1 \text {, (Proved) }
$$

Problem (2):- If $R=((r \dot{y}))$ is the correlation matrix of $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$, ST. $|R| \leqslant 1$.
Ans:- The correlation mix is

$$
R=\left(\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 p} \\
r_{21} & r_{22} & \cdots & r_{2 p} \\
\vdots & \vdots & & \vdots \\
r_{p 1} & r_{p 2} & \cdots & r_{p p}
\end{array}\right)=\left(\begin{array}{cccc}
1 & r_{12} & \cdots & r_{1 p} \\
r_{21} & 1 & \cdots & r_{2 p} \\
\vdots & \vdots & & \vdots \\
r_{p 1} & r_{p 2} & \cdots & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & r_{1}^{\prime}(1) \\
r_{(1)} & R_{2}
\end{array}\right)
$$

$$
\therefore|R|=\left|R_{2}\right|\left(1-R_{(1)}^{1} R_{2}^{-1} \underset{\sim}{r}(1)\right)
$$

$$
\leq\left|R_{2}\right| \text {, since } R \text { is pod. }
$$

$\Rightarrow R_{2}$ is pod.
$\Rightarrow R_{2}{ }^{-1}$ is pod.

$$
\Rightarrow \underset{\sim}{r}(1) \cdot R_{2}^{-1} \cdot \underset{\sim}{r}(1) \geqslant 0 \quad \forall \underset{\sim}{r}(1)
$$

$$
\begin{aligned}
\Rightarrow|R| \leq\left|R_{2}\right| & =\left|\begin{array}{cc}
1 & r_{(2)}^{\prime} \\
r(2) & R_{3}
\end{array}\right| \\
& \leq\left|R_{3}\right| \ldots \ldots \leq\left|\begin{array}{cc}
1 & r \\
r & 1
\end{array}\right|=1-r^{2} \leq 1
\end{aligned}
$$

on, $|R| \leq 1$ (Proved)
Remark- It can be shocon that $|S| \leq s_{11} s_{22} \cdots s_{p p}$

$$
\left[\because|R|=\frac{|s|}{s_{11} s_{22} \cdots s_{p p}} \text { and }|R| \leq 1 .\right]
$$

Problem (3):- Each of the variables x, y, z has mean 0 , variance 1 chile $a x+b y+c z=0$. Show that $a^{4}+b^{4}+c^{4} \leq 2\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)$
Also obtain the dispersion matrix.
Solution:- We have $a x+b y+c z=0$

$$
\begin{aligned}
& \Rightarrow a x+b y=-c z \\
& \Rightarrow \operatorname{var}(a x+b y)=\operatorname{Var}(-c z) \\
& \quad \Rightarrow a^{2} \cdot \operatorname{var}(x)+b^{2} \operatorname{var}(y)+2 a b \quad \operatorname{cov}(x, y)=c^{2} \cdot \operatorname{Var}\left(z^{2}\right) \\
& \quad \Rightarrow a^{2}+b^{2}+2 a b r x y=c^{2} \\
& \quad \Rightarrow \frac{c^{2}-\left(a^{2}+b^{2}\right)}{2 a b}=r x y \\
& \quad \Rightarrow\left[\frac{c^{2}-\left(a^{2}+b^{2}\right)}{2 a b}\right]^{2}=b^{2} x y \leq 1 . \\
& \Rightarrow c^{4}+\left(a^{2}+b^{2}\right)^{2}-2 a^{2}\left(a^{2}+b^{2}\right) \leq 4 a^{2} b^{2} \\
& \Rightarrow c^{4}+a^{4}+b^{4}+2 a^{2} b^{2}-2 c^{2} a^{2}-2 a^{2} b^{2} \leq 4 a^{2} b^{2} \\
& \Rightarrow a^{4}+b^{4}+c^{4} \leqslant 2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)
\end{aligned}
$$

(Proved)

Multiple Regression: - In many practical cases, predicted values o response (dependent) variable obtained from a single predictor (independent) variable, via a regression model, are too imprecise to be useful. The main reason is that the single predictor (independent) variable is one of the many potential predictor variables offering the response variable in important ways. In such a situation, a model containing important predictor variables will be more useful because it will predict the values of the response variable more precisely. For example, in predicting the rainfall at a place in a year, it is appropriate to include three or four things as the predictor variables.
suppose one of the p variables, $x_{1}, x_{2}, \ldots, x_{p}$;
say, x_{1}, is the response variable of interest and the others are the predictor variables. We are to predict a value of x_{1} for given values
of $x_{2}, x_{3}, \ldots, x_{p}$ via a regression model. We assume that of $x_{2}, x_{3}, \ldots, x_{p}$ via a regression model. We assume that the relationship betcoeen x_{1} and the set $\left\{x_{2}, \ldots, x_{p}\right\}$ is, at least in an approximate sense, represented by a linear equation of the form

$$
\begin{equation*}
x_{1}=a+b_{2} x_{2}+b_{3} x_{3}+\cdots+b_{p} x_{p} \tag{1}
\end{equation*}
$$

where, a and bi's are unknown coefficients. We determine the unknowns $a, b_{2}, b_{3}, \ldots, b_{p}$ on the basis of the n multivariate observations $\left(x_{1 \alpha}, x_{2 \alpha}, \ldots, x_{p \alpha}\right) ; \alpha=1(1) n$, by the method of least squares. In this method, $a, b_{2}, \ldots, b p$ are determined so that the error sum of squares

$$
s^{2}\left(a, b_{2}, \ldots, b_{p}\right)=\sum_{\alpha=1}^{n}\left(x_{1 \alpha}-a-b_{2} x_{2 \alpha}-\cdots-b_{p} x_{p \alpha}\right)^{2} \text { is minimum } .
$$

The normal equations, obtained by equating the partial derivatives of $s^{2}\left(a, b_{2}, \ldots, b_{p}\right)$ with respect to a, b_{2}, \ldots, b_{p} to zero, are

$$
\begin{aligned}
& \sum_{\alpha} x_{1 \alpha}=n a+b_{2} \sum_{\alpha} x_{2 \alpha}+b_{3} \sum_{\alpha} x_{3 \alpha}+\cdots \cdot+b p \sum_{\alpha} x_{p \alpha}, \\
& \sum_{\alpha} x_{2 \alpha} x_{1 \alpha}=a \sum_{\alpha} x_{2 \alpha}+b_{2} \sum_{\alpha} x_{2 \alpha}^{2}+b_{3} \sum_{\alpha} x_{2 \alpha} x_{3 \alpha}+\cdots+b_{p} \sum_{\alpha} x_{2 \alpha} x_{p \alpha},
\end{aligned}
$$

$$
\begin{equation*}
\sum_{\alpha} x_{3 \alpha} x_{1 \alpha}=a \sum_{\alpha} x_{3 \alpha}+b_{2} \sum_{\alpha} x_{3 \alpha} x_{2 \alpha}+b_{3} \sum_{\alpha} x_{3 \alpha}^{2}+\cdots+b p \sum_{\alpha} x_{3 \alpha} x_{p \alpha} \tag{2}
\end{equation*}
$$

The first equation gives, on being divided by n,

$$
\begin{equation*}
\bar{x}_{1}=a+b_{2} \bar{x}_{2}+b_{3} \bar{x}_{3}+\cdots+b_{p} \bar{x}_{p}, \tag{3}
\end{equation*}
$$

cohich shows incidentally that the mean point $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{p}\right)$ necessarily satisfies the prediction equation.
Multiplying (3) by $n \bar{x}_{2}, n \bar{x}_{3}, \ldots, n \overline{x_{p}}$ and subtracting the result from the second, third,.... pith equation, respectively, of the system (2), we have $(p-1)$ equations determining the b 's, viz.

$$
\left.\begin{array}{c}
s_{21}=b_{2} s_{22}+b_{3} s_{23}+\cdots \cdot+b_{p} s_{2 p}, \tag{4}\\
s_{31}=b_{2} s_{32}+b_{3} s_{33}+\cdots+b_{p} s_{3 p}, \\
\vdots \\
\vdots \\
s_{p 1}=b_{2} s_{p 2}+b_{3} s_{p 3}+\cdots \cdot+b_{p} s_{p p},
\end{array}\right\}
$$

cohere, $\quad S_{i j}=\sum_{\alpha} x_{i \alpha} x_{j \alpha}-n \bar{x}_{i} \bar{x}_{j}=\sum_{\alpha}\left(x_{i \alpha}-\bar{x}_{i}\right)\left(x_{j \alpha}-\bar{x}_{j}\right)$.
Taking $s_{i j}=\frac{1}{n} \times s_{i j}= \begin{cases}\operatorname{cov}\left(x_{i}, x_{j}\right) & \forall i \neq j \\ \operatorname{xar}\left(x_{i}\right) & \forall i=j\end{cases}$
Then (4) reduces to,

$$
\left.\left(\begin{array}{c}
s_{21} \\
s_{31} \\
\vdots \\
s_{p 1}
\end{array}\right)=\left(\begin{array}{cccc}
s_{22} & s_{23} & \cdots \cdots & s_{2 p} \\
s_{32} & s_{33} & \cdots & s_{3 p} \\
\vdots & \vdots & \vdots \\
s_{p 2} & s_{p 3} & \cdots & s_{p p}
\end{array}\right)\left(\begin{array}{c}
b_{2} \\
b_{3} \\
\vdots \\
b_{p}
\end{array}\right)\right\} \text { (5) }
$$

The pxpmatrix $S=\left(\begin{array}{llll}s_{22} & s_{23} & \cdots s_{2 p} \\ s_{32} & s_{33} & \cdots & s_{3 p}\end{array}\right)$ is non-singular $(i, e$. is of rank p ins. full tank)
and $S=(s i j)$ is called variance-covariance (or, dispersion) matrix of $x_{1} \ldots, x_{p}$. This non-singularity of the dispersion matrix implies that the system of equation (5) has the unique solution

$$
\left(\begin{array}{c}
b_{2} \tag{6}\\
b_{3} \\
\vdots \\
b_{p}
\end{array}\right)=\left(\begin{array}{cccc}
s_{22} & s_{23} & \cdots & \cdots \\
s_{2 p} \\
s_{32} & s_{33} & \cdots & s_{3 p} \\
\vdots & \vdots & & \vdots \\
s_{p 2} & s_{p 3} & \cdots & s_{p p}
\end{array}\right)^{-1}\left(\begin{array}{c}
s_{21} \\
s_{31} \\
\vdots \\
s_{p 1}
\end{array}\right)
$$

or that $b j=s_{21} s^{j 2}+s_{31} s^{j^{3}}+\cdots+s_{p 1} 8^{j p}$

Alternatively, io e can conte (for $j=2,3, \ldots, p$)

$$
\text { as } s_{i j}=r_{i j} \text {. sis; } s_{i}, s_{j} \text { being the sid. s of } x_{i} \text { and }
$$

$$
\begin{aligned}
& x_{j} \text { respectively and rip being } \\
& \text { nt of } x_{i} \text { and } x_{j} \text {. }
\end{aligned}
$$

$$
\text { correlation coefficient of } x_{i} \text { and } x_{j} \text {. }
$$

$$
=(-1)^{j-2} \cdot \frac{s_{1}}{s_{j}} \times \frac{(-1)^{j+1} R_{1 j}}{R_{11}}=(-1)^{2 j-1} \times \frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}}
$$

$$
=-\frac{R_{1 j}}{R_{11}} \times \frac{s_{1}}{s_{j}} \text { for } j=2,3, \ldots, p, ;
$$

cohere, $R i j$ is the co-factory of $r i j$ in the correlation matrix $R=(r i j)$ pap of the p-values x_{1}, \ldots, x_{p}.

$$
\begin{aligned}
& \begin{array}{l}
\text { [putting the column }\left(\begin{array}{l}
\delta_{21} \\
s_{31} \\
\dot{s}_{12}
\end{array}\right) \text { in the } 1 \text { st place introduces } \\
\text { or removes }(j-2) \text { inventions }]
\end{array}
\end{aligned}
$$

We see that the determent in the numerator of (*) is the minor of $r_{1 j}$ in $R=\left(\begin{array}{cccc}r_{11} & r_{12} & \ldots . r_{1 p} \\ r_{21} & r_{22} & \ldots . & r_{2 p}\end{array}\right)$ and hence is $(-1)^{1+j} \times$ co-factor of
$r_{1 j}$, while the determinant in the denominator is the minor of r_{11}.
Putting these bi values in (3), we get,

$$
a=\overline{x_{1}}+\sum_{j=2}^{p}\left(\frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}}\right) \bar{x}_{j}
$$

Thess the prediction equation (called the multiple regression eareation of x_{1} on $x_{2}, x_{3}, \ldots, x_{p}$) becomes

$$
\begin{align*}
x_{1 \cdot 23 \ldots p} & =\bar{x}_{1}+\sum_{j=2}^{p}\left(\frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}}\right) \bar{x}_{j}-\sum_{j=2}^{p}\left(\frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}}\right) x_{j} \\
& =\bar{x}_{1}-\sum_{j=2}^{p}\left(\frac{s_{1}}{\delta_{j}} \times \frac{R_{1 j}}{R_{11}}\right)\left(x_{j}-\overline{x_{j}}\right) \ldots . . .
\end{align*}
$$

The co-efficient $b_{j}=-\frac{s_{1}}{S_{j}} \times \frac{R_{1 j}}{R_{11}}$ in (7) gives the amount by cohich the predicted value $X_{1.23 \ldots p}$ increases when x_{j} is incoleased by a unit amount, the other independent variable being kept fixed. The coefficient bi' is called the partial regression coefficient of x_{1} on x_{j}, and usually coritten as $b_{1 j} \cdot 23 \ldots \overline{j-1} \overline{j+1} \ldots p$.
Some ceseful Results:-
(1) $\bar{x}_{1.23 \ldots p}=\bar{x}_{1}$, where $\bar{x}_{1.23 \ldots p}=\frac{1}{n} \sum_{\alpha=1}^{n} x_{1.23 \ldots p \alpha}$ being the sample mean of the predicted values of x_{1}.
Proof:- We have

$$
X_{1.23 \ldots p}^{\text {We have }}=\bar{x}_{1}-\sum_{j=2}^{p}\left(\frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}}\right)_{n}\left(x_{j}-\bar{x}_{j}\right)
$$

giving $\bar{X}_{1.23 \ldots p}=\frac{1}{n} \sum_{\alpha=1}^{n} x_{1.23 \ldots p \alpha}=\frac{1}{n} \sum_{\alpha=1}^{n}\left[\bar{x}_{1}-\sum_{j=2}^{p} \frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}}\left(x_{j \alpha}-\bar{x}_{j}\right)\right]$

$$
=\bar{x}_{1}-\frac{1}{n} \sum_{j=2}^{p} \frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}} \sum_{\alpha=1}^{n}\left(x_{j \alpha}-\bar{x}_{j}\right)
$$

$=\bar{x}_{1}$, because $\sum_{\alpha=1}^{n}\left(x_{j} \alpha-\bar{x}_{j}\right)=0 \quad \forall j=2(1) p$.

Cor.: \rightarrow This result implies that the means of the residual term $x_{1.23 \ldots p}=x_{1}-x_{1.23 \ldots p}$ is $\bar{x}_{1.23 \ldots p}=\bar{x}_{1}-\bar{x}_{1.23 \ldots p}=0$.
(2) $\operatorname{Var}\left(X_{1.23} \ldots p\right)=S_{1}^{2}\left(1-\frac{|R|}{R_{11}}\right)$

Proof:-

$$
\begin{aligned}
& \operatorname{Cov}\left(x_{1}, x_{1.23 \ldots p}\right) \\
& =\operatorname{Cov}\left(x_{1.23 \ldots p}+x_{1.23 \ldots p}, x_{1.23 \ldots p}\right) \\
& =\operatorname{Var}\left(x_{1.23 \ldots p}\right)+\operatorname{cov}\left(x_{1.23 \ldots p}, x_{1.23 \ldots p}\right) \\
& =\operatorname{Var}\left(x_{1.23 \ldots p}\right) ; \text { because }
\end{aligned}
$$

$$
n \operatorname{cov}\left(x_{1.23 \ldots p}, x_{1.23 \ldots p}\right)
$$

$$
=\sum_{\alpha=1}^{n}\left(x_{1,23 \ldots p \alpha}\left(x_{1.23 \ldots p \alpha}-\bar{x}_{1.23 \ldots p}\right)\right.
$$

$$
=\sum_{\alpha=1}^{n} x_{1,23 \ldots p \alpha} x_{1,23 \ldots p \alpha}-\sum_{\alpha=1}^{n} \bar{x}_{1,23 \ldots p} x_{1,23 \ldots p \alpha}
$$

$$
=\sum_{\alpha=1}^{n} x_{1.23 \ldots p \alpha} x_{1.23 \ldots p q} \text {, because } \bar{x}_{1.23 \ldots p}=0 \text {. }
$$

$$
=\sum_{\alpha=1}^{n}\left(a+b_{2} x_{2 \alpha}+\cdots+b_{p} x_{p \alpha}\right)\left(x_{1 \alpha}-a-b_{2} x_{2 \alpha}-\cdots-b_{p} x_{p \alpha}\right)
$$

$$
\begin{gathered}
=a \sum_{\alpha}\left(x_{1 \alpha}-a-b_{2} x_{2 \alpha} \cdots-b_{p} x_{p \alpha}\right)+b_{2}\left(\sum _ { \alpha } x _ { 2 \alpha } \left(a_{1 \alpha}-a-b_{2} x_{2 \alpha} \cdots\right.\right. \\
\left.-b_{p} x_{p \alpha}\right) \\
+\cdots+b_{p} \sum_{\alpha} x_{p \alpha}\left(x_{1 \alpha}-a-b x_{2 \alpha} \cdots-b_{p} x_{p \alpha}\right)
\end{gathered}
$$

$=0$, as the ith term in the sum is zero for the th normal equation $\forall i=2^{\prime}, 3, \ldots, p$.
Now, $\operatorname{Cov}\left(x_{1}, x_{1.23 \ldots p}\right)=\frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-\bar{x}_{1}\right)\left(x_{1.23 \ldots p \alpha}-\bar{x}_{1}\right)$ as

$$
\begin{aligned}
& =\frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-\bar{x}_{1}\right)\left\{(-1) \sum_{j=2}^{p=1} \frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}}\left(x_{j \alpha}-\bar{x}_{j}\right)\right\} \\
& =(-1) \sum_{j=2}^{p} \frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}} \times \frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-\bar{x}_{1}\right)\left(x_{j \alpha}-\bar{x}_{j}\right) \\
& =(-1) \sum_{j=2}^{p} \frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}} \cdot s_{1 j} \quad\left[\because s_{1 j}=r_{1 j} \cdot s_{1} s_{j}^{\prime}\right] \\
& =(-1) \sum_{j=2}^{p} \frac{s_{1}}{s_{j}} \times \frac{R_{1 j}}{R_{11}} \cdot r_{1 j} \cdot s_{1} s_{j}=(-1) \frac{s_{1}^{2}}{R_{11}} \sum_{j=2}^{p} R_{1 j} h_{1 j} \\
& =(-1) \frac{s_{1}^{2}}{R_{11}}\left(|R|-r_{11} R_{11}\right) \quad\left[\because|R|=\sum_{j=1}^{p} R_{1 j} r_{1 j}\right] \\
& =s_{1}^{2}\left(1-\frac{|R|}{R 11}\right) \quad\left[\because r_{11}=1\right]
\end{aligned}
$$

Best Linear Predictor:
Theorem: The multiple linear regression of x_{1} on $x^{(2)}$ is the linear function having maximum correlation with x_{1} among all the linear functions of $x^{(2)}$.
Proof: Leet us consider a class of linear functions of $x^{(2)}$ as:

$$
\left\{L\left(x^{(2)}\right): L\left(x^{(2)}\right)=l_{0}+l^{\prime} x^{(2)}=l_{0}+\sum_{i=2}^{p} l_{i} x_{i}\right\}
$$

Now,

Note that, S_{2} is pud. matrix.
Thus, for some non-singular matrix P, we can corrite $S_{2}=P P^{\top}$.

$$
\therefore\left(l^{\prime} S_{2} \underset{\sim}{b}\right)^{2}=\left({\underset{\sim}{l}}^{\prime} P p^{\prime} \underset{\sim}{b}\right)^{2}=\left({\underset{\sim}{u}}^{\prime} \underset{\sim}{v}\right)^{2}, \text { where e } \begin{aligned}
& \underset{\sim}{u}=P^{\prime} l \\
& \underset{\sim}{v}=P^{\prime} \underset{\sim}{b} .
\end{aligned}
$$

$\leqslant\left(u^{\prime} u \sim\right)\left(u^{\prime} v \underset{\sim}{v}\right)$ [from Cauchy. Schwarz inequality $]$

$$
\begin{aligned}
\Rightarrow \quad\left({\underset{\sim}{~}}^{\prime} s_{2} \underset{\sim}{b}\right)^{2} & \leq\left({\underset{\sim}{~}}^{\prime} p p^{\prime} \stackrel{\sim}{\sim}\right)\left({\underset{\sim}{r}}^{\prime} p p^{\prime} \underset{\sim}{b}\right) \\
& =\left({\underset{\sim}{l}}^{\prime} s_{2} l \underset{\sim}{l}\right)\left({\underset{\sim}{b}}^{\prime} s_{2} \underset{\sim}{b}\right)
\end{aligned}
$$

From(1), we can corrite $r^{2}\left(x_{1}, L\left({\underset{\sim}{z}}^{(2)}\right)\right) \leq \frac{{\underset{\sim}{b}}^{\prime} S_{2} \stackrel{b}{\sim}}{S_{11}}$

Note that,

$$
\begin{aligned}
& r^{2}\left(x_{1}, M\left({\underset{\sim}{x}}^{(2)}\right)\right)=r^{2}\left(x_{1}, a+\underset{\sim}{b}{\underset{\sim}{x}}^{(2)}\right) \text {, where } \\
& M\left({\underset{\sim}{x}}^{(2)}\right)=a+\underset{p^{\prime}}{{\underset{p}{x}}^{\prime}}{ }^{(2)} \\
& =a+\sum_{i=2}^{p} b_{i} x_{i} \\
& \text { is the multiple linear } \\
& =\frac{\left({\underset{\sim}{b}}^{\prime} S_{2} \underset{\sim}{b}\right)^{2}}{s_{11} \cdot\left({\underset{\sim}{b}}_{\sim}^{\prime} S_{2} \underset{\sim}{b}\right)} \\
& =\frac{\stackrel{b}{\sim}^{1} S_{2} \stackrel{b}{\sim}}{s_{11}} \quad[\text { prom (1) }]
\end{aligned}
$$

From (2),

$$
r^{2}\left(x_{1}, L\left(x^{(2)}\right)\right) \leqslant r^{2}\left(x_{1}, M\left(x^{(2)}\right)\right) .
$$

Hence, the multiple linear regremion eaceation $M\left({\underset{\sim}{x}}^{(2)}\right)$ has the maximum coroclation with x_{1}.

Multiple correlation coefficient: the maximum corelation coefficient between any linear function of x_{1} and $x^{(2)}$ is known as the multiple correlation coefficient between x_{1} and $x^{(2)}$ and is denoted by

$$
r_{1,23 \cdots p}=+\sqrt{r^{2}\left(x_{1} M\left(x^{(2)}\right)\right)}
$$

Now, $r_{1.23 \ldots p}=+\sqrt{r^{2}\left(x_{1}, M\left({\underset{\sim}{x}}^{(2)}\right)\right)}$

$$
\begin{aligned}
& =+\sqrt{\frac{{\underset{m}{ }}^{\prime} S_{2} \underset{\sim}{b}}{s_{11}}} \\
& =+\sqrt{\frac{\operatorname{Var}\left(M\left(x^{(2)}\right)\right.}{\operatorname{Var}\left(x_{1}\right)}} \\
& =\frac{s \cdot d \cdot\left(M\left({\underset{\sim}{x}}^{(2)}\right)\right)}{\operatorname{s.d} \cdot\left(x_{1}\right)} \\
& =\frac{s \cdot d \cdot\left(x_{1.2} \cdot \cdots p\right)}{\operatorname{s.d.(x_{1})}} \geqslant 0
\end{aligned}
$$

Cleanly, $0 \leqslant r, 23 \ldots p \leqslant 1$, since $r^{2} 1.23 \ldots p$ is nothing but the product moment correlation coefficient between x_{1} and $M\left({\underset{x}{ }}^{(2)}\right)$, hence $r_{1.23 \ldots p}^{2} \leq 1$.

Theorem: Define $\operatorname{Var}\left(e_{1.23 \ldots p}\right)=s_{1.23 \ldots p}^{2}$. Then,

$$
r_{1.23 \ldots p}^{2}=1-\frac{s_{1.23}^{2} \cdots p}{s_{11}}
$$

[Since $e_{1.23} \ldots p$ is uncorrelated with the multiple linear regremion equation $\left.x_{1.23 \cdots} \cdot\right\}$

$$
=\frac{\operatorname{var}\left(x_{1}\right)+\operatorname{var}\left(e_{1.23} \ldots p\right)-2 \cdot \operatorname{cov}\left(e_{\left.1.23 \ldots p, e_{1.23} \ldots p\right)}^{\operatorname{var}\left(x_{1}\right)}\right.}{\frac{1.23 \ldots p}{p}}
$$

$$
=\frac{\operatorname{var}\left(x_{1}\right)-\operatorname{var}\left(R_{1.23} \cdot . p\right)}{\operatorname{var}\left(x_{1}\right)}
$$

$$
=1-\frac{s_{1.23}^{2} \cdots p}{s}
$$

$$
\begin{aligned}
& \text { Proof: } \\
& r_{1.23}^{2} \ldots p=r^{2}\left(x_{1}, M\left(x^{(2)}\right)\right) \\
& =\frac{\operatorname{Var}\left(x_{1.23 \cdots p}\right)}{\operatorname{Var}\left(x_{1}\right)} \\
& =\frac{\operatorname{Var}\left(x_{1}-e_{1.23 \ldots p}\right)}{\operatorname{Var}\left(x_{1}\right)} \\
& =\frac{\operatorname{var}\left(x_{1}\right)+\operatorname{var}\left(e_{1}, 23 \cdots p\right)-2 \operatorname{cov}\left(x_{1}, e_{1} \cdot 23 \cdots \cdot p\right)}{\operatorname{Var}\left(x_{1}\right)}
\end{aligned}
$$

Remark: 1. $s_{1.23 \ldots p}^{2}=s_{11}-s^{\prime}(1) S_{2}^{-1} \underset{\sim}{s}(1)$, then

$$
\begin{aligned}
r_{1 \cdot 23}^{2} \ldots \ldots p & =1-\frac{s_{11}-s_{1}^{\prime}(1) s_{2}^{-1} s(1)}{s_{11}} \\
& =\frac{\overbrace{\sim}^{\prime}(1) s_{2}^{-1} \stackrel{s}{\sim}(1)}{s_{11}} \\
& =1-\frac{1}{r^{11}}
\end{aligned}
$$

2. $s_{1.23 \ldots p}^{2}=s_{11}\left(1-r_{1.23 \ldots p}^{2}\right)$
3. $\quad r_{1.23}^{2} \ldots p=1 \quad$ if $\quad s_{1.23 \ldots p}^{2}=0$
ie, if $\operatorname{var}\left(e_{1} .23 \ldots, p\right)=0$
ie., x_{1} is totally explained by the multiple linear regremion equation
and, $r_{1.23 \ldots p}^{2}=0$ if $\frac{\stackrel{b}{d}^{\prime} s_{2} b}{s_{11}}=0$
i.e., if $k=\stackrel{0}{\sim}$
i.e., the multiple linear regression equation fails to predict $x_{1} \cdot\left[M\left({\underset{\sim}{x}}^{(2)}\right)=a+o_{o^{\prime}}^{x^{(2)}}=a\right]$

Note that, $r_{1.23 \ldots p}^{2}=\frac{\operatorname{var}\left(x_{1,23} \ldots p\right)}{\operatorname{Van}\left(x_{1}\right)}$ is the proportion of variability of x_{1} explained by the multiple linear regression of x_{1} on $x^{\text {(2). }}$.

Multiple Correlation:- Having a fitted multiple regression equation of the response variation x_{1} on the predictor variables x_{2}, x_{3}, \ldots, p we may be interested in studying the precision of the predicted? values of x_{1}. Common sense indicates that the smaller the prediction errors, the higher the correlation between, the observed-; and predicted values of x_{1} and vice versa. It is to be noted that higher joint influence of x_{2}, \ldots, x_{p} on x_{1}, means smaller prediction errors. So, we may consider the product moment correlation coefficient between x_{1} and $x_{1,23 \ldots p}$ as a measure? of the joint influence of $x_{2}, x_{3}, \ldots, x_{p}$ on x_{1} via linear regression,? This measure is called the multiple correlation coefficient of x_{1} on $x_{2}, x_{3}, \ldots, x_{p}$ and is denoted by $r_{1,23} \ldots p$, giving

$$
\begin{aligned}
r_{1.23 \ldots p} & \left.=\frac{\operatorname{Cov}\left(x_{1}, x_{1 \cdot 23 \cdots p}\right)}{\sqrt{\operatorname{Var}\left(x_{1}\right)} \sqrt{\operatorname{Var}\left(x_{1.23 \cdots p}\right)}}\right) \\
& =\frac{\operatorname{Var}\left(x_{1} \cdot 23 \cdots p\right)}{\sqrt{\operatorname{Var}\left(x_{1}\right)} \sqrt{\operatorname{Var}\left(x_{1.23 \cdots p}\right)}} \\
& =\sqrt{\operatorname{Var}\left(x_{1.23 \cdots p}\right) / \operatorname{Var(x_{1})}} \\
& =s_{1}\left(1-\frac{|R|}{R_{11}}\right)^{1 / 2} \cdot \frac{1}{s_{1}}, \operatorname{as} \operatorname{xar}\left(x_{1.23 \cdots p)}\right) \\
& =\left(1-\frac{|R|}{R_{11}}\right)^{1 / 2}\left(1-\frac{|R|}{R_{11}}\right)
\end{aligned}
$$

Some Useful Results:-
(1) $0 \leq r_{1.23 \ldots p} \leq 1$.

Proof:- The coefficient $r_{1.23 \ldots p \text {, being the product moment }}$ corovelation coefficient between x_{1} and $x_{1.23 \ldots p}$, must lies between -1 and +1 . But the covariance between x_{1} and $x_{1,23 \ldots p}$ is equal to the variance of $x_{1}, 23 \ldots p$, giving that the covariance $\left(x_{1}, x_{1}, 23 \ldots p\right)$ is a non-negative quantity. Hence, we always have

$$
0 \leq p_{1.23 \ldots p} \leq 1
$$

(2)
$\operatorname{Cov}\left(x_{i}, x_{1,23} \ldots p\right)=0$ for $i=2,3, \ldots, p$, giving that

$$
\operatorname{Cov}\left(x_{1.23} \ldots p, x_{1.23} \ldots p\right)=0
$$

Proof:- Consider

$$
\begin{aligned}
& n \operatorname{Cov}\left(x_{2}, x_{1 \cdot 23} \cdots p\right)=\sum_{\alpha=1}^{n} x_{2 \alpha} \cdot x_{1 \cdot 23} \cdots p \alpha \text { as } \bar{x}_{1 \cdot 23} \cdots p=0 \\
&=\sum_{\alpha=1}^{n} x_{2 \alpha}\left(x_{1 \alpha}-x_{1 \cdot 23} \cdot p \alpha\right) \\
&=\sum_{\alpha} x_{2 \alpha}\left\{x_{1 \alpha}-\left(a+b_{2} x_{2 \alpha}+b_{3} x_{3 \alpha}+\cdots+b_{p} x_{p \alpha}\right)\right\},
\end{aligned}
$$

a and $b i$ are the solutions of the normal equation in (2).

$$
=\sum_{\alpha} x_{2 \alpha} x_{1 \alpha}-\left[a \sum_{\alpha} x_{2 \alpha}+b_{2} \sum_{\alpha} x_{2 \alpha}^{2}+b 3 \sum_{\alpha} x_{2 \alpha} x_{3 \alpha}+\cdots\right.
$$

$=0$, because of the ind normal equation in (2).
similarly, for other $i=3, \ldots, p$, giving that the residual part $x_{1.23 \ldots p}$ is uncorrelated with each of the predictors variables $x_{i}, i=2,3, \ldots, p$. So, $x_{1,23 \ldots p \text { being a linear function of }}$ $x_{2}, x_{3}, \ldots, x_{p}$, itself is uncorrelated with $x_{1,23} \ldots p$.
(3) $S_{1.23 \ldots p}^{2}=\left(1-r_{1.23 \ldots p}^{2}\right) s_{1}^{2}$, cohere $s_{1.23 \ldots p}^{2}=\operatorname{Var}\left(x_{1,23 \ldots p}\right)$.

Proff:-We have $x_{1}=x_{1.23} \ldots p+x_{1.23 \cdots p, ~ g i v i n g ~}^{\text {, }}$

$$
\operatorname{var}\left(x_{1}\right)=\operatorname{var}\left(x_{1.23 \cdots p}\right)+\operatorname{var}\left(x_{1.23} \cdots p\right) ; \text { because }
$$

$x_{1.23} \ldots p$ and $x_{1} \cdot 23 \ldots p$ are uncorrelated
or, $s_{1}^{2}=s_{1}^{2}\left(1-\frac{|R|}{R_{11}}\right)+8_{1 \cdot 23 \ldots p}^{2}$.

$$
\text { or, } \begin{aligned}
s_{1.23 \ldots p}^{2} & =\frac{|R|}{R_{11}} s_{1}^{2} \\
& =\left(1-r_{1.23 \ldots p}^{2}\right) s_{1}^{2}
\end{aligned} \quad\left[\because r_{1.23 \ldots p}=\left(1-\frac{|R|}{R_{11}}\right)^{1 / 2}\right]
$$

The equation indicates that the residual variance S1.23..p is a strictly decreasing function of the multiple correlation coefficient $r_{1.23 \ldots p}$ that ranges from 0 to 1 .

When $r_{1.23 \ldots p}=1, \delta_{1.23 \ldots p}^{2}=0$, implying that $x_{1 \alpha}=X_{1.23 \ldots p \alpha \text { foreach. }}$ and in this case the multiple regression equation may be viewed as a perfect predicting formula.
When $r_{1.23 \ldots p}=0$, then $\delta_{1.23 \ldots p}^{2}=s_{1}^{2}$, given g that $\operatorname{var}\left(x_{1.23 \ldots p}\right)=0$, which indicates that $X_{1.23 \ldots p \alpha}=\bar{x}_{1}$ for each α, an equation independent ${ }_{r}$, of $x_{2}, x_{3}, \ldots, x_{p}$ and hence the equation foils completely as a predicting formula.
conclusion:- So, $r_{1,23 \ldots p}$ may be used as a measure of the efficiency of The multiple regression equation in predicting x_{1}. The quantity $r_{1.23 \ldots p}^{2}$, which is called the corefficient of determination for the regression equation, may also be taken as such a measure.
(4) $r_{1.23 \ldots p}^{2}=1-\frac{\operatorname{Var}\left(x_{1,23}, \ldots\right)}{\operatorname{Var}\left(x_{1}\right)}$.

Proof: - We have already proved that $\operatorname{Cov}\left(x_{1}, x_{1}, 23 \ldots p\right)=\operatorname{Var}\left(x_{1}, 23 \ldots\right.$; which gives that

$$
\begin{aligned}
p_{1 \cdot 23 \ldots p}^{2} & =\frac{\operatorname{Var}\left(x_{1} \cdot 23 \cdots p\right)}{\operatorname{Var}\left(x_{1}\right)} \\
& =\frac{\operatorname{Var}\left(x_{1}\right)-\operatorname{Var}\left(x_{1} \cdot 23 \cdots p\right)}{\operatorname{Var}\left(x_{1}\right)} \\
& =1-\frac{\operatorname{Var}\left(x_{1} \cdot 23 \cdots p\right)}{\operatorname{Var}\left(x_{1}\right)}
\end{aligned}
$$

Partial Correlation:-

Sometimes two variables x_{1} and x_{2} are correlated dee to the effect of a 3 nd variable x_{3} on either or both x_{1} and x_{2}. In these cases, to study the relationship between x_{1} and x_{2}, it may be desirable) to calculate the correlation between, x_{1}, and x_{2} after eliminating ; (or partialling out) the effect of the third variable x_{3}. This correlation is called 'Partial Corpelation'.(on, net correlation)) between x_{1} and x_{2} eleminating the effect of x_{3}. As an example, to understand cohetter the relationship between sales and advertising-expenditure is strong or not, one may calculate the) partial correlation between sales and adventising-expenditure eliminating the effect of price. We generalise this notion for p variables, and consider that. x_{1} and x_{2} are correlated due to the, influence of a group of $(p-2)$ variables $x_{3}, x_{4}, \ldots, x_{p}$, on both x_{1} and x_{2}. And study the partial correlation between x_{1} and x_{2}, eliminating the effects $x_{3}, x_{4}, \ldots, x_{p}$.

Considering the teast-sauare regression equation of x_{1}, on $x_{3}, x_{4}, \ldots, x_{p}$ and that of x_{2} on $x_{3}, x_{4}, \ldots, x_{p}$; we may corite: ?

$$
x_{1}=x_{1.34 \cdots p}+x_{1.34 \cdots p}
$$

and, $x_{2}=X_{2.34 \ldots \ldots}+x_{2.34 \ldots p}$
Here, $X_{1.34 \ldots p}$ and $X_{2.34 \ldots p}$ are predicted values and $x_{1,34 \ldots p}$ and, $x_{2.34 \ldots p}$ are errors in prediction. As both $x_{1.34 \ldots p}$ and $x_{2.34 \ldots p}$, are uncorrelated with the predictor variables $x_{3}, x_{4}, \ldots, x_{p}$; These errors may be looked upon as the party of x_{1} and x_{2}, respectively, which are free from the influence of the group of $]$ variables x_{3}, \ldots, x_{p}. Hence the simple correlation coefficient between $x_{1} .34 \ldots p$ and $x_{2.34 \ldots p}$ may be considered as a measure of partial correlation between x_{1} and x_{2}, eliminating the effect of $x_{3}, x_{4}, \ldots, x_{p}$, It is known as partial Correlation coefficient and is denoted by, $r_{12} \cdot 34 \cdots p$.

Thus, assuming $\operatorname{Var}\left(x_{1}, 34 \ldots p\right)>0$ and $\operatorname{Var}\left(x_{2 \cdot 34}, \ldots p\right)>0$, so that R_{11} and R_{22} are both positive definite, we have

$$
\begin{equation*}
r_{12.34 \cdots p}=\frac{\operatorname{Cov}\left(x_{1.34 \ldots p,} x_{2.34 \ldots p}\right)}{\sqrt{\operatorname{Var}\left(x_{1.34 \ldots p}\right) \operatorname{Var}\left(x_{2.34} \cdots p\right)}} \tag{1}
\end{equation*}
$$

According to our notation,

$$
x_{1.34 \ldots p}=x_{1}-x_{1.34 \ldots p}=\left(x_{1}-\bar{x}_{1}\right)+\sum_{j=3}^{p} \frac{8_{1}}{s_{j}} \times \frac{R_{1 j}{ }^{(2)}}{R_{11}^{(2)}}\left(x_{j}-\bar{x}_{j}\right) ;
$$

cohere, $R i^{(2)}$ is the co-factor of r if in $R^{(2)}$, the determinant obtained from R by dele ting the $2 n d$ row and the $2 n d$ column.

$$
\begin{align*}
& \therefore \operatorname{Cov}\left(x_{1 \cdot 34} \ldots p, x_{2} \cdot 34 \ldots p\right) \\
& =\operatorname{Cov}\left(x_{1}, x_{2} \cdot 34 \ldots p\right)+0 a_{s} \operatorname{Cov}\left(x_{j}, x_{2} \cdot 34 \cdots p\right)=0 \text { for } j=3,4, \ldots, p . \\
& =\operatorname{cov}\left(x_{1}, x_{2}\right)+\sum_{j=3}^{p} \frac{s_{2}}{s_{j}} \times \frac{R_{2 j}^{(1)}}{R_{22}^{(1)}} \cdot \operatorname{cov}\left(x_{1}, x_{j}\right) \\
& =r_{12} s_{1} s_{2}+\sum_{j=3}^{p} \frac{s_{2}}{s_{j}} \times \frac{R_{2 j}^{(1)}}{R_{22}^{(1)}} \times r_{1 j} \cdot s_{1} s_{j} \\
& =s_{1} s_{2}\left(r_{12}+\sum_{j=3}^{p} r_{1 j} \cdot \frac{R_{2 j}^{(1)}}{R_{22}^{(1)}}\right) \\
& =\frac{s_{1} s_{2}}{R_{22}^{(1)}}\left(\sum_{j=2}^{p} r_{1 j} R_{2 j}^{(1)}\right) \\
& =-s_{1} s_{2} \frac{R_{12}}{(1)} ; \tag{2}\\
& R_{22}
\end{align*}
$$

because, $\sum_{j=2}^{p} r_{1 j} R_{2 j}{ }^{(1)}=$ determinant of the matrix obtained from $R^{(1)}$ by replacing its first row by $\left(r_{12}, r_{13}, \ldots, r_{1 \beta}\right)$

$$
\begin{aligned}
& =\left|\begin{array}{cccc}
r_{12} & r_{13} & \cdots & r_{1 p} \\
r_{32} & r_{33} & \cdots & r_{3 p} \\
\vdots & \vdots & & \vdots \\
r_{p 2} & r_{p 3} & \cdots & r_{p p}
\end{array}\right| \\
& =\text { Minor of } r_{21} \text { in } R \\
& =\text { Minor of } r_{12} \text { in } R \\
& =-R_{12}
\end{aligned}
$$

Further, similar to the result
we have,

$$
\operatorname{Var}\left(x_{1 \cdot 2}, \cdots p\right)=\frac{|R|}{R_{11}} \cdot s_{1}^{2},
$$

$$
\left.\begin{array}{l}
\operatorname{var}\left(x_{1.34 \cdots p)}=\frac{\left|R^{(2)}\right|}{R_{11}^{(2)}} \cdot s_{1}^{2}\right. \text { and } \tag{3}\\
\operatorname{var}\left(x_{2.34} \cdots p\right)=\frac{\left|R^{(1)}\right|}{R_{22}^{(1)}} \cdot s_{2}^{2}
\end{array}\right\}
$$

From (1), (2), (3); we get

$$
\begin{aligned}
r_{12} \cdot 34 \cdot \ldots p & =-s_{1} s_{2} \frac{R_{12}}{R_{22}^{(1)}} \times\left(\frac{R_{11}^{(2)} R_{22}^{(1)}}{\left|R^{(2)}\right|\left|R^{(1)}\right|}\right)^{1 / 2} \cdot \frac{1}{s_{1} s_{2}} \\
& =-\frac{R_{12}}{R_{22}^{(1)}} \times\left(\frac{R_{22}^{(1)} R_{22}^{(1)}}{R_{11} R_{22}}\right)^{1 / 2} \\
& =-\frac{R_{12}}{\sqrt{R_{11} R_{22}}}
\end{aligned}
$$

$$
\text { as }\left|R^{(1)}\right|=R_{11},\left|R^{(2)}\right|=R_{22}, R_{11}^{(2)}=R_{22}^{(1)} \text {. }
$$

Unlike the multiple correlation coefficient $r_{1.23} \ldots p$, the partial correlation coefficient $r_{12,34 \ldots p}$ lies in $[-1,1]$.
Particular Case:- $\quad(p=3)$
For 3 variables,

$$
\begin{aligned}
& R_{3 \times 3}=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right) \text {, which gives } \\
& -R_{12}=\left|\begin{array}{ll}
r_{21} & r_{23} \\
r_{31} & r_{33}
\end{array}\right|=r_{12}-r_{13} r_{23}, \\
& R_{11}=r_{22}-r_{23}^{2}=1-r_{23}^{2}
\end{aligned}
$$

and, $R_{22}=1-r_{13}^{2}$
So,

$$
r_{12 \cdot 3}=\frac{r_{12}-r_{13} r_{23}}{\sqrt{1-r_{13}^{2} \sqrt{1-r_{23}^{2}}}}
$$

Some Useful Results:-
(a) $b_{12.34 \ldots p}=r_{12.34 \cdots p} \cdot \frac{s_{1.23 \ldots p}}{s_{2.134 \ldots p}}$,

Proof:- We know that

$$
\begin{aligned}
b_{12} \cdot 34 \cdots p & =-\frac{R_{12}}{R_{11}} \times \frac{s_{1}}{R_{2}} \\
r_{12.34} \cdots p & =\frac{R_{12}}{\sqrt{R_{11} R_{22}}} \\
8_{1.234 \cdots p}^{2} & =\frac{|R|}{R_{11}} \cdot s_{1}^{2} \\
s_{2.134 \cdots p}^{2} & =\frac{\mid R 1}{R_{22}} \cdot s_{2}^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
r_{12.34 \ldots p} \cdot \frac{s_{1.23} \cdots p}{s_{2.13} \ldots p} & =-\frac{R_{12}}{\sqrt{R_{11} R_{22}}} \times \frac{|R|^{1 / 2} s_{1}}{R_{11}^{1 / 2}} \times \frac{R_{22}^{1 / 2}}{|R|^{1 / 2} s_{2}} \\
& =-\frac{R_{12}}{R_{11}} \times \frac{s_{1}}{s_{2}}=b_{12.34 \cdots p}
\end{aligned}
$$

(b) $b_{12.34 \ldots p}=r_{12.34 \ldots p} \times \frac{S_{1.34 \ldots p}}{S_{2} \cdot 34 \ldots p}$
[It is a relation of the same form as $b_{12}=b_{12} \cdot \frac{s_{1}}{s_{2}} \cdot$]
Proof:- $A s$

$$
\begin{aligned}
& \delta_{1.34 \cdots p}^{2}=\frac{\left|R^{(2)}\right|}{R_{11}^{(2)}} s_{1}^{2} \text { and } \\
& s_{2.34 \cdots p}^{2}=\frac{\left|R_{(1)}^{(1)}\right|}{R_{22}^{(1)}} s_{2}^{2},
\end{aligned}
$$

$$
\begin{aligned}
r_{12.34 \cdots p} & \times \frac{s_{1.34 \cdots p}^{s_{2.3} \ldots p}}{}=-\frac{R_{12}}{\sqrt{R_{11} R_{22}}} \times \frac{\left|R^{(2)}\right|^{1 / 2}}{\left(R_{11}^{(2)}\right)^{1 / 2}} \cdot s_{1} \times \\
& =-\frac{\left(R_{22}^{(1)}\right)^{1 / 2}}{\left|R_{1}(1)\right|^{1 / 2} s_{2}}
\end{aligned}
$$

because, $\left|R^{(1)}\right|=R_{11},\left|R^{(2)}\right|=R_{22}, R_{11}^{(2)}=R_{22}^{(1)}$
Note:- This result may be expressed as

$$
\begin{aligned}
b_{12.34 \cdots p} & =p_{12.34 \cdots p} \frac{s_{1.34 \cdots p}}{s_{2.34 \cdots p}} \\
& =\frac{\operatorname{cov}\left(x_{1,34 \cdots p}, x_{2.34 \cdots p}\right)}{8_{1.34 \cdots p} \cdot s_{2.34 \cdots p}} \times \frac{\delta_{1.34 \cdots p}}{s_{2.34 \cdots p}} \\
& =\frac{\operatorname{Cov}\left(x_{1.34 \cdots \cdots p}, x_{2.34 \cdots p}\right)}{\delta_{2.34 \cdots p}^{2}}
\end{aligned}
$$

or, $\operatorname{cov}\left(x_{1.34} \ldots p, x_{2.34} \ldots p\right)=s_{2.34 \ldots p}^{2}, b_{12.34 \ldots p}$
(c) $b_{12.34 \ldots p}, b_{21.34 \ldots p}=r_{12.34 \ldots p}^{2}$, similar to the result, $b_{12} b_{21}=r_{12}^{2}$.

Proof:-

$$
b_{12 \cdot 34 \cdots p}=r_{12 \cdot 34 \cdots p} \cdot \frac{8_{1 \cdot 34 \cdots p}}{8_{2 \cdot 34 \cdots \cdots}}
$$

This implies, $b_{21.34 \ldots p}=r_{12.34 \ldots p} \cdot \frac{\delta_{2.34 \cdots p}}{\delta_{1.34 \cdots p}}$
Thess,

$$
b_{12.34, \cdots p} b_{21.34, \cdots p}=r_{12.34 \cdots p}^{2}
$$

(d) (i) $s_{1.23 \ldots p}^{2}=\left(1-r_{1 p, 23 \ldots \cdot p-1}^{2}\right) \cdot s_{1.23 \ldots \cdot p-1}^{2}$
(ii) $r_{1.23 \ldots p} \geqslant r_{1.23} \ldots \overline{p-1}$
(iii) $1-r_{1.23 \ldots p}^{2}=\left(1-r_{12}^{2}\right)\left(1-r_{13.2}^{2}\right) \cdots \cdots\left(1-r_{1 p .23 \cdots \cdot \overline{p-1}}^{2}\right)$

Proof:- $\operatorname{Var}\left(x_{1.23 \ldots p}\right)=\operatorname{Cov}\left(x_{1.23 \ldots p}, x_{1.23 \ldots p}\right)$

$$
=\operatorname{Cov}\left[x_{1.23 \ldots p-1}-\sum_{j=2}^{p} C_{j}\left(x_{j}-\bar{x}_{j}\right)-b_{1 \cdot p \cdot 23 \ldots \cdot \overline{p-1}}\left(x_{p}-\bar{x}_{p}\right),\right.
$$

cohere, $C_{j}=b_{1 j} \cdot 23 \ldots \overline{j-1} \overline{j+1} \cdot p-b_{i j \cdot 23 \ldots \overline{j-1} \overline{j+1} \ldots \overline{p-1}}$.

$$
\begin{align*}
& =\operatorname{Cov}\left(x_{1.23 \ldots p-1}, x_{1.23 \ldots p}\right) \text { as } \operatorname{Cov}\left(x_{1.23 \ldots p}, x_{j}\right)=0 \forall j=2(1) p \text {. } \\
& =\operatorname{Cov}\left(x_{1.23} \ldots \overline{p-1}, x_{1.23} \ldots \overline{p-1}\right)-b / p .23 \ldots \overline{p-1} \operatorname{Cov}\left(x_{1.23 \ldots \overline{p-1}}, x_{p}\right) \\
& \text { as } \operatorname{Cov}\left(x_{1.23} \ldots \overline{p-1}, x_{j}\right)=0 \quad \forall j=2(1) \overline{p-1} \text {. } \\
& =\operatorname{Var}\left(x_{1} \cdot 23 \ldots \overline{p-1}\right)-b_{1 p .23 \ldots \overline{p-1}} \operatorname{Cov}\left(x_{p-1} \cdot 23 \ldots \overline{p-1}, x_{p .23} \ldots p-1\right) \text {, } \\
& \text { as } x_{p, 23 \ldots \overline{p-1}}=\left(x_{p}-\bar{x}_{p}\right)+\sum_{j=2}^{p-1} b_{p j \cdot 23} \cdot \overline{j-1} \overline{j+1} \cdots \overline{p-1}\left(x_{j}-\bar{x}_{j}\right) \\
& \text { giving } \operatorname{Cov}\left(x_{1.23 \ldots \overline{p-1}}, x_{p .23 \ldots \overline{p-1}}\right)=\operatorname{Cov}\left(x_{1.23 \ldots \overline{p-1}}, x_{p}\right) \\
& =\operatorname{var}\left(x_{1.23} \ldots \overline{p-1}\right)=b_{1 p .23 \ldots \overline{p-1}} b_{p 1.23 \ldots \overline{p-1}} \cdot s_{1 \cdot 23 \ldots \overline{p-1}}^{2} \\
& \therefore s_{1.23 \ldots p}^{2}=s_{1.23 \ldots p-1}^{2}-r_{1 p \cdot 23 \cdots p-1}^{2} \cdot s_{1 \cdot 23 \ldots p-1}^{2} \\
& =\left(1-r_{1 p \cdot 23}^{2} \cdots \overline{p-1}\right) s_{1 \cdot 23 \cdots \overline{p-1}}^{2} \tag{1}
\end{align*}
$$

Hence (i) is proved.

Equation (1) gives: -
$s_{1.23 \cdots p}^{2} \leq s_{1 \cdot 23 \cdots p-1}^{2} 5$, because $0 \leq r_{\mid p \cdot 23 \cdots p-1}^{2} \leq 1$.
or, $\left(1-r_{1.23 \cdots p}^{2}\right) s_{1}^{2} \leq\left(1-r_{1 \cdot 23}^{2} \cdots p^{p-1}\right) s_{1}^{2}$, because
or, $r_{1.23 \ldots p}^{2} \geqslant r_{1.23 \cdots \overline{p-1}}^{2}$

$$
s_{1.23}^{2} \ldots p=\left(1-r_{1.23 \cdots p}^{2}\right) s_{1}^{2}
$$

or, $r_{1.23 \ldots p} \geqslant r_{1.23, \ldots \overline{p-1}}$ because $0 \leq r_{1.23 \ldots p} \leq 1$

Note:- Inequalities (2) \& (3) indicate that by introducing an addition predictor variable in the multiple regression equation, one may expect to improve its usefulness as a predicting formula.

Applying (1) successively to $s_{1 \cdot 23 \ldots \overline{p-1}}^{2}, s_{1 \cdot 23 \ldots \overline{p-2}}^{2}, \ldots, s_{1 \cdot 2}^{2}$; we get

$$
\begin{aligned}
8_{1 \cdot 23 \ldots p}^{2} & =\left(1-r_{1 p \cdot 23 \ldots \overline{p-1}}^{2}\right) s_{1 \cdot 23 \ldots \cdot \overline{p-1}}^{2} \\
& =\left(1-r_{1 p \cdot 23 \ldots \overline{p-1}}^{2}\right)\left(1-r_{1 \overline{p-1} \cdot 23 \ldots \overline{p-2}}^{2}\right) s_{1 \cdot 23 \ldots \overline{p-2}}^{2} \\
& \vdots \\
& =\left(1-r_{1 p \cdot 23 \ldots p-1}^{2}\right)\left(1-r_{1 \mid p-1 \cdot 23 \ldots \overline{p-2}}^{2}\right) \cdots\left(1-r_{13 \cdot 2}^{2}\right) s_{1 \cdot 2}^{2} \\
& =\left(1-r_{1 p \cdot 23 \ldots \overline{p-1}}^{2}\right)\left(1-r_{1 \overline{p-1} \cdot 23 \cdots \cdot \overline{p-2}}^{2}\right) \cdots\left(1-r_{13.2}^{2}\right)\left(1-r_{12}^{2}\right) s_{1}^{2}
\end{aligned}
$$

or, $\left(1-r_{1.23 \cdots p}^{2}\right)=\left(1-r_{12}^{2}\right)\left(1-r_{13.2}^{2}\right) \cdots\left(1-r_{1 p-1 \cdot 23 \cdots \cdot \overline{p-2}}^{2}\right)\left(1-r_{1 p \cdot 23 \cdots \cdot \overline{p-1}}^{2}\right)$
Hence (iii) is proved.
(e) If $a_{1} x_{1}+a_{2} x_{2}+\cdots \cdots+a_{p} x_{p}=k$, then cohat will be the partial correlation coefficient of $(p-2)$ orders? What will be the multiple correlation coefficient ri.23...p?
[The variables, being linearly related, s is singular (p.s.d.)
i.e. $|s|=0$.

$$
\begin{aligned}
& \text { i.e. }|s|=0 \text {. } \\
& \Rightarrow \left\lvert\, s_{1.23 \ldots p}=1-\frac{|s|}{\left|s_{2}\right|}=1\right. \text {.] }
\end{aligned}
$$

Partial correlation: In multivariate data analysis, the study of the degree to which two variables, say x_{1} and x_{2}, m ay be related when the influence of the other variables, $x_{3}, x_{4}, \ldots, x_{p}$ is eliminated from both of them is of interest. Though the study is concerned about two primary vamables x_{1} and x_{2} but the other $k-2$ variables are also taken into comideration because of their possible relations if with x_{1} and x_{2}. In practice, we usually eliminate the linear effect of $\left(x_{3}, x_{4}, \ldots, x_{p}\right)$ from x_{1} and x_{2}.

Let us define, $X_{1,34 \ldots p}$ be the part of x_{1} explained by the multiple linear regression of x_{1} on $\left(x_{3}, x_{4}, \ldots, x_{p}\right)$ and $x_{2,34 \ldots p}$ be the part of x_{2} explained by the multiple linear regremion of x_{2} on $\left(x_{3}, x_{4}, \ldots, x_{p}\right)$, We' dante ${\underset{\sim}{x}}^{{\underset{\sim}{p x 1}}^{x}}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{\prime}=\left(x_{1}, x_{2}, x^{(3)}\right)^{\prime}$, and $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}^{(3)}\right)^{\prime}$,
Dispersion matrix $(s)=\left(\begin{array}{ccc}s_{11} & s_{12} & s^{\prime}(13) \\ s_{12} & s_{22} & s^{\prime}(23) \\ s^{\prime}(13) & s_{23}^{\prime} & s_{3}\end{array}\right)$
Again, let $X_{1.34} \ldots p=a+{\underset{\sim}{b}}^{\prime} \underset{\sim}{x}$ (3); where $a=\bar{x}_{1}-{\underset{\sim}{b}}^{\prime} \bar{x}^{(3)}$, $b=S_{3}^{-1} \stackrel{(13)}{\prime}$
also ret $x_{2.34} \ldots p=a^{*}+\underset{\sim}{b^{* \prime}} \underset{\sim}{x}$ (3); where $a^{*}=\bar{x}_{2}-\underset{\sim}{b^{*}} \underset{\sim}{x}{\underset{\sim}{x}}^{(3)}$,

$$
b^{*}=s_{3}^{-1} \stackrel{s}{\sim}(23)
$$

It may be noted that the residuals $e_{1} \cdot 34 \ldots p=x_{1}-X_{1} \cdot 34 \ldots p$ and $e_{2.34 \ldots p}=x_{2}-X_{2.34 \ldots p}$ may be regarded as the parts of x_{1} and x_{2} uninfleenerd by $x^{(3)}$. The reason is:

$$
\begin{array}{ll}
\operatorname{cov}\left(e_{1} .34 \cdots p, x_{j}\right)=0 & \forall j=3(1) p \\
\operatorname{cov}\left(e_{2} .34 \ldots p, x j\right)=0 & \forall j=3(1) p .
\end{array}
$$

Definition: The product moment correlation coefficient between $e_{1.34 \ldots p}$ and $e_{2} .34 \ldots p$ is called the partial correlation coefficient of x_{1} and x_{2}, eliminating the linear effect of $\underset{\sim}{x}$ (3) from both of them and denoted by $r 12.34 \ldots p$.
Thus, be definition, $r_{12.34 \ldots p}=\frac{\operatorname{cov}\left(e_{1.34 \ldots p}, e_{2.34 \ldots p}\right)}{\sqrt{\operatorname{Var}\left(e_{1.34 \ldots p)} \sqrt{\operatorname{Var}\left(e_{2.34 \ldots p)}\right.}\right.}}$
We note that $\operatorname{Var}\left(e_{1} \cdot 34 \ldots p\right)=\left|\begin{array}{cc}s_{11} & s^{\prime}(13) \\ \underset{\sim}{s}(13) & s_{3}\end{array}\right| /\left|s_{3}\right|$

$$
=\frac{\text { co-factor of } s_{22} \text { in } S}{\left|s_{3}\right|}
$$

and, $\quad \operatorname{var}\left(s_{2} \cdot 34 \ldots p\right)=\left|\begin{array}{cc}s_{22} & s_{(23)}^{\prime} \\ s_{23} & s_{3}\end{array}\right| /\left|s_{3}\right|$

$$
=\frac{\text { corfactor of sin in } S}{\left|s_{3}\right|}
$$

Now, $\quad \operatorname{cov}\left(e_{1.34 \ldots p}, e_{2.34 \ldots p}\right)=\operatorname{cov}\left(e_{1.34 \ldots p}, x_{2}-x_{2.34 \ldots p}\right)$

$$
\begin{aligned}
& =\operatorname{cov}\left(e_{1}, 34 \ldots p, x_{2}\right)=\operatorname{cov}\left(x_{1}-x_{1} \cdot 34 \ldots p, x_{2}\right) \\
& =\operatorname{cov}\left(x_{1}, x_{2}\right)-\operatorname{cov}\left(x_{2}, x_{1.34} \ldots p\right) \\
& =\operatorname{cov}\left(x_{1}, x_{2}\right)-\operatorname{cov}\left(x_{2}, a+b_{\sim}^{\prime} x^{(3)}\right) \\
& =s_{12}-\sum_{i=3}^{p} b_{i} \cdot \operatorname{cov}\left(x_{i}, x_{2}\right) \\
& =s_{12}-\sum_{i=3}^{p} b_{i} s_{i 2} \\
& =\sin _{12}^{b^{\prime}} \underset{\sim}{s}(23)=s_{12}-{\underset{\sim}{s}}_{(13)}^{\prime} s_{3}^{-1} \underset{\sim}{s}(23) \\
& \left.=\frac{s_{12}^{\prime}(23) \mid}{s_{3}} \right\rvert\, \\
& =(-1)^{2+1} \cdot \frac{\text { cofactor of } s_{31} \text { in } s}{\left|s_{3}\right|}
\end{aligned}
$$

$$
\therefore r_{12.34 \cdots p}=\frac{\text {-cofactors of } s_{21} \text { in } S}{\sqrt{\left(\text { cofactor of } s_{22} \text { in } S\right) \cdot\left(\text { cofactor of } s_{11} \text { in } S\right)}}
$$

$$
=\frac{-S_{21}}{\square} \text {, where } S_{i j} \text { is the cofactor }
$$

$$
=\frac{-S_{21}}{\sqrt{S_{11} \cdot S_{22}}} \text {, where } S_{i j} \text { is the coff }{ }^{\text {of }} \text { si in } S \text {. }
$$

$$
=-\frac{s_{21} / \mid s^{\prime}}{\sqrt{\frac{s_{11}}{\mid s_{1}} \cdot \frac{s_{22}}{\mid s^{\prime}}}}
$$

$$
=-\frac{s^{21}}{\sqrt{s^{11}, s^{22}}}, \text { where } \begin{aligned}
s^{-1} & =\left(\left(s^{i j}\right)\right) \\
& =\left(\left(\frac{s_{i j}}{|s|}\right)\right)
\end{aligned}
$$

Problem: Let x be a vector vamible with mean \bar{x} and dispersion matrix S,

$$
S=s^{2}\left(\begin{array}{ccccc}
1 & r & r & \cdots & \cdots \\
r & 1 & r & \cdots & r \\
\vdots & \vdots & \vdots & & \vdots \\
r & r & n & \cdots & 1
\end{array}\right)_{p \times p}
$$

Show that for any $\left(\beta, \beta_{2}, \ldots, \beta_{p}\right)$,

$$
\frac{1}{n} \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-\beta_{1}-\beta_{2} x_{2 \alpha}-\cdots \cdot \beta_{p} x_{p \alpha}\right)^{2} \geqslant s^{2}\left[1-\frac{r^{2}(p-1)}{1+(p-2) r}\right]
$$

Solution: $\operatorname{var}\left(e_{1.23} \ldots p\right)=s_{1.23 \ldots p}^{2}=\frac{|s|}{\left|s_{2}\right|}$
and $|s|=\left(s^{2}\right)^{p}(1-r)^{p-1}\{1+(p-1) r\}$

$$
S_{2}=s^{2}\left(\begin{array}{cccc}
1 & r & r \ldots . r \\
r & 1 & n & r \\
\vdots & \vdots & \vdots & \vdots \\
r & r & r & 1
\end{array}\right)_{\overline{p-1} \times \overline{p-1}} \quad \therefore\left|s_{2}\right|=\left(s^{2}\right)^{p-1}(1-r)^{p-2} \times
$$

By definition of multiple linear regression,

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left(x_{1 \alpha}-\beta_{1}-\beta_{2} x_{2 \alpha} \cdots-\beta_{p} x^{p \alpha}\right)^{2} \geqslant s_{1}^{2} 23 \ldots p \\
& \geqslant \frac{s^{2}(1-r)\{1+(p-1) r\}}{\{1+(p-2) r\}}
\end{aligned}
$$

Problem: Let $x^{p \times 1}$ be a vectors variable with mean vector $\bar{\sim}$ and correlation matrix R. Then how that for any $\left(b_{1}, b_{2}, \ldots, b p\right)$,

$$
\sum_{\alpha=1}^{n}\left(x_{1 \alpha}-b_{1}-b_{2} x_{2 \alpha}-\cdots-b_{p} x_{p \alpha}\right)^{2} \geqslant \frac{\sum_{i=1}^{n}\left(x_{1 \alpha}-\bar{x}_{1}\right)^{2}}{r^{\prime \prime}}
$$

where $r^{\prime \prime}$ is the $(1,1)^{\text {th }}$ element of R^{-1} (see next page).
Hints: comides any linear function $L\left({\underset{\sim}{x}}^{(3)}\right)=b_{1}+b_{2} x_{2}+\cdots+b_{p} x_{p}$, $b_{i} \in \mathbb{R} \forall i$,
Note that, the multiple linear regrumion of x_{1} on $x^{(3)}$ is obtained by minimizing

$$
\begin{aligned}
& \sum_{\alpha=1}^{n}\left\{x_{1 \alpha}-L\left(x_{2 \alpha}, x_{3 \alpha} \ldots ., x_{p \alpha}\right)\right\}^{2} \\
= & \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-b_{1}-b_{2} x_{2 \alpha} \cdots \cdot-b_{p} x_{p \alpha}\right)^{2}
\end{aligned}
$$

By definition of multiple linear regression,

$$
\begin{aligned}
& \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-b_{1}-b_{2} x_{2 \alpha} \cdots \cdots-b_{p} x_{p \alpha}\right)^{2} \\
& \geqslant \sum_{\alpha=1}^{n}\left(x_{1 \alpha}-x_{1.23 \ldots p, \alpha}\right)^{2} \\
& =n \cdot \operatorname{Var}\left(e_{1.23} \ldots p\right) \\
& =n \cdot s_{1.23 \ldots p}^{2} \\
& =n \cdot \frac{s_{11}}{r^{11}}
\end{aligned}
$$

Problem: Find the value of $r_{1.2} \ldots \ldots$ if the independent variables are pairwise uncorrelated.
Solution:-- Here, the independent variables are $x_{2}, x_{3}, \ldots, x_{p}$. Since $x_{2}, x_{3}, \ldots, x_{p}$ are e pairwise uncorrelated then

$$
r_{i j}=0 \quad \forall \quad i \neq j=2(1) p \text {. }
$$

The correlation matrix is given by

$$
\begin{aligned}
& R=\left(\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \cdots . r_{1 p} \\
r_{12} & r_{22} & r_{23} & \cdots & r_{2 p} \\
\vdots & \vdots & \vdots & & \vdots \\
r_{1 p} & r_{2 p} & r_{3 p} \cdots \cdots & r_{p p}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
1 & r_{12} & r_{13} & \cdots \cdots & r_{1 p} \\
\hdashline r_{12} & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
r_{1 p} & 0 & 0 & \cdots \cdots & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & r_{r}^{\prime}(1) \\
r(1) & I_{(p-1)}
\end{array}\right) \text {, where } \underset{\sim}{r}(1)=\left(r_{12}, r_{13} \ldots, r_{1 p}\right) \\
& \therefore|R|=|I|\left|1-\underset{r}{r}(1) \cdot I^{-1} \underset{r}{r}(1)\right| \\
& =1-r^{\prime}(1)^{r}(1) \\
& =1-\sum_{i=2}^{p} r_{1 i}^{2} \\
& \therefore r^{2} 1.23 \ldots p=1-\frac{1}{\frac{R_{11}}{|R|}} \\
& =1-\frac{1}{1 /\left[1-\sum_{i=2}^{p} r_{i i}^{2}\right]} \\
& \text { on, } r_{1.23 \ldots p}=\sqrt{\sum_{i=2}^{p} r_{i i}^{2}}
\end{aligned}
$$

Partial Regression Coefficient:- If the multiple negremion equation of x_{1} on $x_{2}, x_{3}, \ldots, x_{p}$ is $x_{1,23 \ldots p}=a+b_{2} x_{2}+\cdots+b_{p} x_{p}$,
 when ${\underset{\sim}{x}}^{(2)}=\underset{\sim}{0}$ and $b j$ is the amount by which $x_{1.23 \ldots p}$ increases for a unit increment in the value of x_{j}, the ottar variables $x_{2}, \ldots, x_{j-1}, x_{j+1} \ldots, x_{p}$ being kept fixed; by is called the partial regremion coefficient of x_{1} on x_{j} for fixed $x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{p}$.

$$
\left[\begin{array}{rl}
x_{1.23} \ldots p & =a \text {, when } \underset{\sim}{x^{(2)}}=0 \\
& \left.=a+b j, \text { when } \underset{\sim}{x^{(2)}}=\left(x_{2}, \ldots, x_{j}, \ldots, x_{p}\right)=(0,0, \ldots, 1,0, \ldots, 0)\right]
\end{array}\right.
$$

Notation: ' b_{j} ' is often corritten more explicitly as $b_{1 j} \cdot 23 \cdots(j-1)(j+1) \cdots p$
Formula for by: Normal equation: $S_{2} \underset{\sim}{b}=\stackrel{\&}{\sim}(1)$

$$
\Rightarrow\left(\begin{array}{cccc}
s_{22} & s_{23} & \cdots & s_{2 p} \tag{1}\\
s_{32} & s_{33} & \cdots & s_{3 p} \\
\vdots & \vdots & & \vdots \\
s_{p 2} & s_{p 3} & \cdots & s_{p p}
\end{array}\right)\left(\begin{array}{c}
b_{2} \\
b_{3} \\
\vdots \\
b_{p}
\end{array}\right)=\left(\begin{array}{c}
s_{12} \\
s_{13} \\
\vdots \\
s_{1 p}
\end{array}\right)
$$

We have $b_{2} s_{j 2}+b_{3} s_{j_{3}}+\cdots+b_{p} s_{j}=s 1 j \quad \forall j=2(1) p$

Note that,

$$
\begin{array}{r}
S_{11} s_{j 1}+s_{12} s_{j 2}+s_{13} s_{j 3}+\cdots+S_{1 p} s_{j p}=0, j=2(1) p, \\
\text { where } s_{i j} \text { is the cofacton of sip in } s, \\
\text { ie., }\left(-\frac{s_{12}}{s_{11}}\right) s_{j 2}+\left(-\frac{s_{13}}{s_{11}}\right) s_{j 3}+\cdots+\left(-\frac{s_{1 p}}{s_{11}}\right) s_{j p}=s_{1 j}
\end{array}
$$

Combining (1) and (2), we get,

$$
\begin{aligned}
& b_{j}=-\frac{s_{1 j}}{s_{11}} \\
&=\frac{-\sqrt{s_{11}} s_{22} \cdots s_{(j-1)(j-1)} \sqrt{s_{j j}} s_{(j+1)(j+1) \cdots \cdots s_{p p}}^{s_{22} \cdots s_{j j} \cdots s_{p p} \cdot R_{11}} R_{1 j}}{} \\
&=-\frac{R_{1 j}}{R_{11}} \cdot \sqrt{\frac{s_{11}}{s_{j j}}}
\end{aligned}
$$

Result 1. Show that $b_{12.34 \ldots p}=r_{12.34 \ldots p} \cdot \frac{s_{1} \cdot 234 \ldots p}{s_{2.134 \ldots p}}$.
Profit $b_{12.34, \ldots p}=-\frac{S_{12}}{\sqrt{S_{11} S_{22}}} \cdot \sqrt{\frac{S_{22}}{S_{11}}}$

$$
\begin{aligned}
& =r_{12.34 \ldots p} \sqrt{\frac{s_{22} /|s|}{s_{11} /|s|}} \\
& =r_{12.34 \ldots p}^{\frac{|s| / s_{11}}{|s| / s_{22}}} \\
& =r_{12.34 \ldots p}^{\frac{s_{12}}{s_{2} .134 \ldots p}}
\end{aligned}
$$

Result 2. Show that $b_{12.34 \ldots p}=r_{12.34 \ldots p} \cdot \frac{s_{1.3} 4 \ldots p}{s_{2.34} \ldots p}$. Prof: Try yourself.

Problem:- Show that r_{12}, r_{23}, r_{13} must satisfy the inequality

$$
r_{12}^{2}+r_{13}^{2}+r_{23}^{2}-2 r_{12} r_{13} r_{23} \leq 1 .
$$

Solutions-
We know that $|R| \geqslant 0$

$$
\begin{aligned}
& L\left|\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right| \geqslant 0 \\
& \Rightarrow\left|\begin{array}{ccc}
1 & r_{12} & r_{13} \\
r_{12} & 1 & r_{23} \\
r_{13} & r_{23} & 1
\end{array}\right| \geqslant 0 \\
& \Rightarrow 1\left(1-r_{23}^{2}\right)-r_{12}\left(r_{12}-r_{13} r_{23}\right)+r_{13}\left(r_{12} r_{23}-r_{13}\right) \geqslant 0 \\
& \Rightarrow 1-r_{23}^{2}-r_{12}^{2}+r_{12} r_{13} r_{23}+r_{12} r_{13} r_{23}-r_{13}^{2} \geqslant 0 \\
& \Rightarrow r_{12}^{2}+r_{13}^{2}+r_{23}^{2}-2 r_{12} r_{23} r_{13} \leqslant 1 . ~(\text { Proved })
\end{aligned}
$$

Problem:- Suppose x_{1}, x_{2}, x_{3} satisfy the relation

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=k
$$

State cohat partial correlation coefficient will be?
Solution:-

$$
\text { Let } \operatorname{var}(x i)=8 i^{2}, i=1,2,3 \text {. }
$$

Now $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=$.

$$
\text { or, } a_{1} x_{1}+a_{2} x_{2}=k-a_{3} x_{3}
$$

on, $\operatorname{var}\left(a_{1} x_{1}+a_{2} x_{2}\right)=\operatorname{Var}\left(k-a_{3} x_{3}\right)$

$$
\begin{aligned}
& \Rightarrow a_{1} s_{1}^{2}+a_{2} s_{2}^{2}+2 a_{1} s_{2} \cdot r_{12} s_{1} s_{2}=a_{3}^{2} s_{3}^{2} \\
& \Rightarrow r_{12}=\frac{a_{3}^{2} s_{3}^{2}-a_{1}^{2} s_{1}^{2}-a_{2}^{2} s_{2}^{2}}{2 a_{1} a_{2} s_{1} s_{2}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& r_{13}=\frac{a_{2}^{2} s_{2}^{2}-a_{1}^{2} s_{1}^{2}-a_{3}^{2} s_{3}^{2}}{2 a_{1} a_{3} s_{1} s_{3}} \\
& r_{23}=\frac{a_{1}^{2} s_{1}^{2}-a_{2}^{2} s_{2}^{2}-a_{3}^{2} s_{3}^{2}}{2 a_{2} a_{3} s_{2} s_{3}}
\end{aligned}
$$

moment correlation coefficient
Now $r_{12.3}=$ the product between x_{1} and x_{2} often eliminating the linear effect of x_{3} from both of x_{1} and x_{2}.
$=$ the product moment correlation coefficient between the x_{1} and x_{2} where x_{3} is fixed and $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=k$.

$$
\begin{aligned}
& =\frac{\operatorname{Cov}\left(x_{1}, x_{2}\right)}{\sqrt{\operatorname{var}\left(x_{1}\right)} \sqrt{\operatorname{Var}\left(x_{2}\right)}}, \begin{array}{c}
\text { cohere } a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=k \\
\Rightarrow a_{1} x_{1}+a_{2} x_{2}=k-a_{3} x_{3}
\end{array} \\
& \Rightarrow a_{1} x_{1}+a_{2} x_{2}=k-a_{3} x_{3} \\
& \Rightarrow a_{1} x_{1}+a_{2} x_{2}=k^{*} \text { (say) } \\
& =\frac{\operatorname{Cov}\left(x_{1}, \frac{k^{*}}{a_{2}}-\frac{a_{1}}{a_{2}} x_{1}\right)}{\sqrt{\operatorname{Var}\left(x_{1}\right)} \sqrt{\operatorname{Var}\left(\frac{k^{*}}{a_{2}}-\frac{a_{1}}{a_{2}} x_{1}\right)}} \\
& =\frac{-\left(\frac{a_{1}}{a_{2}}\right) \operatorname{Var}\left(x_{1}\right)}{\left|\frac{a_{1}}{a_{2}}\right| \operatorname{Var}\left(x_{1}\right)} \\
& = \begin{cases}-1 & \text { if } a_{1}, a_{2} \text { are of same sign. } \\
+1 & \text { if } a_{1}, a_{2} \text { are of opposite sign. }\end{cases}
\end{aligned}
$$

\therefore Partial correlation coefficient are -1 if a_{1}, a_{2}, a_{3} are of the same sign.

Multi-variate Analysis.
Multivariate analysis is a branch of Statistics where we study several variables simeltaneorshy.

Notions of Multivariate distr.s.
Here, a p-dimensional random variable x is a vector: $\quad \underset{\sim}{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ \dot{x}_{p}\end{array}\right)$
whose elements are midimensional $r . v$.'s and $\underset{\sim}{x}$, a realization of $\underset{\sim}{x}, \underset{\sim}{x} \in R^{p}$.
Here $\underset{\sim}{x}$ is discrete, continuous or mixed.
(i) If $\underset{\sim}{x}$ is discrete, the $j \underset{t}{t}$ mf of x_{1}, \ldots, x_{p} is given by

$$
\begin{array}{r}
P\left(x_{1}=x_{1}, \ldots, x_{p}=x_{p}\right)=p\left(x_{1}, \ldots, x_{p}\right) \text { or } \\
p(x) \text {. say }
\end{array}
$$ $\phi(x)$, say.

A function $p(x)$ satisfying the conditions
a) $p(x) \geqslant 0 \quad \forall x \in R^{p}$.
b) $\quad \sum_{x} p(x)=1$.
is called the prof of x.
The marginal prof of $\left(x, \ldots, x_{p}\right)$,
$p_{1}<p$ is

$$
q\left(x_{1}, \ldots, x_{p_{1}}\right)=\sum p\left(x_{1}, \ldots, x_{p_{1}}, x_{\left.p_{1}+1, \ldots, x_{p}\right)}\right.
$$

where the sum is taken overall possible values of $x_{p_{1}+1}, \ldots, x_{p}$.

The conditional pref of $\left(x_{1}, \ldots, x_{p_{1}}\right)$ given

$$
\begin{aligned}
& X_{p_{1}+1}=x_{p_{1}+1}, \ldots, x_{p} \neq p_{p}, X_{p}=x_{p}, \text { is } . \\
& p\left(X_{1}=x_{1}, \ldots, x_{p_{1}}=x_{p_{1}} \mid X_{p_{1}+1}=x_{p_{1}+1}, \ldots, X_{p}=x_{p}\right) \\
& \quad=\frac{p\left(x_{1}, \ldots, x_{p_{1}}, x_{p_{1}+1}, \ldots, x_{p}\right)}{q\left(x_{p_{1}+1}, \ldots, x_{p}\right)} \\
& \quad=l\left(x_{1}, \ldots, x_{p_{1}} \mid x_{p_{1}+1}, \ldots, x_{p}\right) .
\end{aligned}
$$

(ii) If $\underset{\sim}{x}$ is contimuons, then the joint pal f of x_{1}, \ldots, x_{p} is $f\left(x_{1}, \ldots, x_{p}\right)$ say, which satisfies
a) $f(x) \geqslant 0 \quad \forall x \in R^{p}$
b) $\int_{R^{P}} f(x) d x=1$.

The marginal pdf of $\left(x_{1}, \ldots, x_{p_{1}}\right), p_{1}<p$,
is $g\left(x_{1}, \ldots, x_{p_{1}}\right)=\int_{x_{p_{1}+1}=-\infty}^{\infty} \cdots \int_{x_{p}=-\infty}^{\infty} f(x) d x_{p_{1}+1} \cdots d x_{p}$.
The conditional pelf- of $\left(x_{1}, \ldots, x_{p_{1}}\right)$
Given $X_{p_{1}+1}=x_{p_{1}+1}, \ldots, X_{p}=x_{p}$ is

$$
h\left(x_{1}, \ldots, x_{p_{1}} \mid x_{p_{1}+1}, \ldots, x_{p}\right)=\frac{f(x)}{g\left(x_{1}+1, \ldots, x_{p}\right)}
$$

(iii) The ed of a random vector $\underset{\sim}{x}$ is

$$
F\left(x_{1}, \ldots, x_{p}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{p} \leq x_{p}\right) .
$$

$$
=\left\{\begin{array}{l}
\sum_{t_{1}=-\infty}^{x_{1}} \ldots \sum_{t_{p}=-\infty}^{x_{p}} p\left(t_{1}, \ldots, t_{p}\right) \quad \text { if } x \text { is discrete. } \\
\int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{p}} f\left(t_{1}, \ldots, t_{p}\right) d t_{p} \ldots d t_{1} \text { if } x \text { is continuous }
\end{array}\right.
$$

The marginal ed of $\left(x_{1}, \ldots, x_{p_{1}}\right), p_{1}<p$
is

$$
\begin{aligned}
G & \left(x_{1}, \ldots, x_{p_{1}}\right) \\
& =\operatorname{lup}_{p_{p}} \\
& =\lim _{x_{p}+1+\infty} \ldots \lim _{x_{p} \rightarrow+\infty} F\left(x_{1}, \ldots, x_{p_{1}}, x_{p},+1, \ldots, x_{p}\right) . \\
& =F\left(x_{1}, \ldots, x_{p_{1}}, \infty, \ldots \infty\right) .
\end{aligned}
$$

If $\underset{\sim}{x}$ is alsoketery continuous then.

$$
\frac{\partial^{p} f\left(x_{1}, \ldots, x_{p}\right)}{\partial x_{1} \partial x_{2} \ldots \partial x_{p}}=f\left(x_{1}, \ldots, x_{p}\right) \begin{aligned}
& \text { if } F(x) \text { is } \\
& \text { continuous } \\
& \text { calmost everyone }
\end{aligned}
$$

(iv) The set of variables $\left(x_{1}, \ldots, x_{p_{1}}\right)$ is $i n d e p t$ to the set $\left(x_{p_{1}+1}, \ldots, x_{p}\right)$ jiff

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{p_{1}}, x_{p_{1}+1}, \ldots, x_{p}\right) \\
= & F\left(x_{1}, \ldots, x_{p_{1}}, \infty, \infty, \ldots, \infty\right) F\left(\infty, \ldots, \infty, x_{p_{1}+1}, x_{p}\right)
\end{aligned}
$$

Moments of multidimensional variate Expectation:
Let ${\underset{\sim}{x}}^{p x 1}$ denote a column vector of random components $x_{i}, i=1(1) p$. Then the expectation of $\underset{\sim}{x}$ is defined as.

$$
E(\underset{\sim}{x})=E\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)=\left(\begin{array}{c}
E\left(x_{1}\right) \\
\vdots \\
E\left(x_{p}\right)
\end{array}\right)=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{p}
\end{array}\right)=\mu_{4} \text { say. }
$$

Variance-corariance:-
Define $\operatorname{cov}\left(x_{i}, x_{j}\right)=E\left[\left(x_{i}-E\left(x_{i}\right)\right)\left(x_{j}-E\left(x_{j}\right)\right)\right]$

$$
\text { If } i=j \quad \sigma_{i i}=(i) v \quad=\sigma_{i j} \text {, say. }
$$

We extend the variance notion to the p-dimensional random vector e x by the following matrix :

$$
\begin{aligned}
& E\left[(\underset{\sim}{x}-E(\underset{\sim}{x}))(\underset{\sim}{x}-E(x))^{r}\right] \\
= & E\left[(\underset{\sim}{x}-\underset{\sim}{\mu})(\underset{\sim}{x}-\mu)^{\top}\right] \\
= & E\left[\left(\begin{array}{c}
x_{1}-\mu, \\
\vdots \\
x_{p}-\mu_{p}
\end{array}\right)\left(x_{1}-\mu_{1}, \ldots, x_{p}-\mu_{p}\right)\right] \\
= & \left(\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{p} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 p} \\
\vdots & & & \\
\sigma_{p 1} & \sigma_{p 2} & \cdots & \sigma_{p p}
\end{array}\right)=\Sigma, \text { say. }
\end{aligned}
$$

Here, we assume $E\left(\left(v_{i j}\right)\right)=\left(\left(E v_{i j}\right)\right)$
The symmetric matrix Σ is called the voriance-covariance matrix or dispersion.
matrix of $\underset{\sim}{x}$.
Moments:
We define

$$
E\left(h\left(x_{1}, \ldots, x_{p}\right)\right)=\left\{\begin{aligned}
& \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h\left(x_{1}, \cdots, x_{p}\right) f\left(x_{1}, \cdots, x_{p}\right) d x_{1} \ldots d x_{p} \\
& \ddots j x \text { is continuant } \\
& \sum_{x_{1}} \cdots \sum_{x_{p}} h\left(x_{1}, \cdots, x_{p}\right) p\left(x_{1}, \cdots, x_{p}\right) \\
& \text { if } x \text { is cliserete }
\end{aligned}\right.
$$

() Now, we find the mean λ variance of a linear combination of $x_{1}, \ldots, x_{p}-$ ${\underset{\sim}{a}}^{\prime} \underset{\sim}{x}=\sum_{1}^{b} a_{i} x_{i}$ is a linear combination of x_{1}, \cdots, x_{p}.
Now, $E\left(a^{\prime} \underset{\sim}{x}\right)$

$$
\begin{aligned}
& =E\left(\sum_{1}^{p} a_{i} x_{i}\right) \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left(\sum_{1}^{p} a_{i} x_{i}\right) f\left(x_{1}, \cdots, x_{p}\right) d x_{1} \cdots d x_{p}
\end{aligned}
$$

[assuming $\underset{\sim}{x}$ is continuous]

$$
\begin{aligned}
& =\sum_{i}^{b} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} a_{i} x_{i} f\left(x_{1}, \ldots, x_{p}\right) d x_{1} \ldots d x_{p} \\
& =\sum_{1}^{p} a_{i} E\left(x_{i}\right) \\
& =\sum_{1}^{p} a_{i} \mu_{i}
\end{aligned}
$$

$$
={\underset{\sim}{2}}^{\prime} \mu
$$

[prof of the cliscrete case is similar]

$$
\text { Yow, } \begin{aligned}
& V\left(a^{\prime} x\right) \\
= & E\left(a^{\prime} \underset{\sim}{x}-a^{\prime} \mu\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=E\left(\begin{array}{l}
p \\
2_{i} \\
1
\end{array} x_{i}-\mu_{i}\right)\right)^{2} \\
& =E\left\{\sum_{1}^{p} \sum_{1}^{p} a_{i} a_{j}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right\} \\
& =\sum_{1}^{p} \sum_{1}^{p} a_{i} a_{j} E\left\{\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right\} \\
& =\sum_{1}^{p} \sum_{1}^{p} a_{i} a_{j} \sigma_{i j} \\
& =a^{\prime} \sum a
\end{aligned}
$$

Remarks:
(1) The covariance beth $a^{\prime} \underset{\sim}{x}$ \& ${\underset{\sim}{b}}^{\prime} x$ is

$$
\begin{aligned}
& \operatorname{Cov}\left({\underset{\sim}{a}}^{\prime} \underset{\sim}{x}, \underset{\sim}{b^{\prime}} \underset{\sim}{x}\right)=\operatorname{Cov}\left(\sum a_{i} x_{i}, \sum b_{i} x_{i}\right) \\
& =\sum_{i} \sum_{j} a_{i} b_{j} \nabla_{i j}=a_{\sim}^{\prime} \sum \underset{\sim}{b}
\end{aligned}
$$

(2) Consider the transformations

$$
\begin{aligned}
& \underset{\sim}{y}=A_{\sim}^{x \times k}{\underset{\sim}{p x 1}}^{p}, \dot{Z}=B_{B}^{x \times p}{\underset{\sim}{p x \mid}}^{p \times 1} \\
& \operatorname{Disp}(\underset{\sim}{y})=\operatorname{cov}(\underset{\sim}{y}, \underset{\sim}{y})=E\left\{(\underset{\sim}{y}-E(x))(\underset{\sim}{x}-E(z))^{\prime}\right\} \\
& =E\left\{(A \underset{\sim}{x}-A \mu)(A \underset{\sim}{x}-A \mu)^{\prime}\right\} \\
& \text { [Where } E(x) \\
& =E(A X) \\
& =E\left[A(\underset{\sim}{x}-\mu)(\underset{\sim}{\sim}-\mu)^{\prime} A^{\prime}\right] \\
& =A \mu \text { (proveit) }] \\
& =A E\left[(\underset{\sim}{x}-\underset{\sim}{\mu})(\underset{\sim}{x}-\underset{\sim}{\mu})^{\prime}\right] A^{\prime} \\
& =A \sum A^{\prime}
\end{aligned}
$$

Similarly, $\operatorname{Disp}(Z)=\operatorname{cov}(Z, Z)=B \sum B^{\prime}$
$\operatorname{Cov}(\underset{\sim}{y}, \underset{\sim}{z})$
$=A \sum B^{\prime}$ (prove it)

Correlation matrix:
Define $p_{i j}=\frac{\operatorname{cov}\left(x_{i}, x_{j}\right)}{\sqrt{V\left(x_{i}\right) V\left(x_{j}\right)}}$
Then the matrix of correlation wefts is

$$
\begin{aligned}
R & =\left(\begin{array}{cccc}
1 & \rho_{12} & \cdots & \rho_{1 p} \\
\rho_{21} & 1 & \cdots & \rho_{2 p} \\
\vdots & \vdots & & \vdots \\
\rho_{p 1} & \rho_{p 2} & \cdots & 1
\end{array}\right) \\
& =D\left(\frac{1}{\sqrt{\sigma_{i i}}}\right) \sum D\left(\frac{1}{\sqrt{\sigma_{i i}}}\right)
\end{aligned}
$$

Where $\quad D\left(\frac{1}{\sqrt{\nabla_{i i}}}\right)=\left(\begin{array}{cccc}\frac{1}{\sqrt{V_{1 i}}} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sqrt{T_{22}}} & \cdots & 0 \\ 0 & \vdots & \cdots & \vdots \\ 0 & 0 & & \frac{1}{\sqrt{r_{p p}}}\end{array}\right)$

Theorem 1:
Any variance-covariance matrix is n.n.d, and every n.n.d matrix is the variance covariance matrix of some random vector. [cu]
proof: First part:
Let $\sum^{p \times k}\left(\sigma_{i j}\right)$ be $e^{\text {the }}$ Variance-covariance matrix of a random vector $x^{p \times 1}$.

Note that $v\left({\underset{\sim}{a}}^{\prime} \underset{\sim}{x}\right) \geqslant 0 \quad \forall \underset{\sim}{a}$

$$
\begin{aligned}
& \Leftrightarrow \quad \sum_{i} \sum_{j} a_{i} a_{j} \sigma_{i j} \geqslant 0 \quad \forall a \\
& \Leftrightarrow \quad a^{\prime} \sum a \geqslant 0 \forall a \\
& \Rightarrow \quad \sum \text { is n.n.d. }
\end{aligned}
$$

Remark: (1) Σ is pod.
$\Leftrightarrow \quad a^{\prime} \Sigma a=0$ for some $a \neq 0$
$\Leftrightarrow \operatorname{Var}\left(\underline{a}^{\prime} \underset{\sim}{x}\right)=0$ for some $a \neq 0$
$\Leftrightarrow \quad{\underset{\sim}{a}}^{\prime} \underset{\sim}{x}=0$ for some $a \neq 0$, withe
$\Leftrightarrow \quad a^{\prime}(\underset{\sim}{x}-\underset{\sim}{\mu})=0$ for some $a \neq i_{i}$, ", "

$$
\left[\because c=E\left(a^{\prime} x\right)=a_{\sim}^{\prime} / \sim\right]
$$

If Σ is p.d. then there do not exist $a \neq \circ$ \& c such that $\underset{\sim}{a} \underset{\sim}{x}=c$.
(2) If $\underset{\sim}{a} \underset{\sim}{x}=c$ for some $\underset{\sim}{a} \neq 0$

Then Σ is p.s.d $\Rightarrow|\Sigma|=0$ and the distr o is caned a singular dish as (in that case $P\left(A^{A}\right)<p$).

If $|\Sigma| \neq 0$, the dish is known as nowsingular clistr.

2 nd part: Let $\sum^{p \times p}$ be an n.n.d matrix.
Then-ineir exists a matrix $B^{k \times p} \quad(k \leqslant p)$ such that $\quad \Sigma=B^{T} B$
Consider a R.V. ${\underset{\sim}{z}}^{k x_{i}}$ with $E(\underset{\sim}{y})=0$ \& $\operatorname{disp}(\underset{\sim}{\sim})=I_{k}$.

Then, ${\underset{\sim}{x}}^{p \times 1}={\underset{\sim}{r}}^{p \times 1}+B^{T} \underset{\sim}{y}$ has the mean vector as

$$
E(\underset{\sim}{x})=\underset{\sim}{\mu}+B^{\top} E(\underset{\sim}{\sim})=\mu \sim \sim
$$

A the dispersion matrix

$$
\left[\begin{array}{l}
x \mu \text { is unnecessary } \\
\text { son the pros ed }
\end{array}\right]
$$

So r the prod]

$$
\begin{aligned}
& \operatorname{Disp}(\underset{\sim}{x})=\operatorname{Disp}\left(\underset{\sim}{\mu}+B^{\top}{\underset{\sim}{x}}^{\dot{\prime}}\right) \cdot \\
&=\operatorname{Disp}\left(B^{\top} \underset{\sim}{y}\right) \quad[\because \text { dispersion } \\
& \text { o is indept } \\
&=B^{\top} \operatorname{Disp}(\underset{\sim}{y}) B \quad \begin{array}{l}
\text { of origin }]
\end{array} \\
&=B^{\top} I_{k} B \\
&=B^{T} B \\
&=\Sigma
\end{aligned}
$$

Result (1):
Let $\underset{\sim}{x}$ be a R. \dot{v}. with mean $\underset{\sim}{\mu}$ \& dispersion matrix I; A is a real matrix, then show that

$$
E\left({\underset{\sim}{x}}^{\prime} A \underset{\sim}{x}\right)=\operatorname{tr}(A \Sigma)+{\underset{\sim}{\mu}}^{\prime} A \underset{\sim}{\mu}
$$

proof:

$$
\begin{aligned}
& E\left(\underset{\sim}{x}{\underset{\sim}{\prime}}^{\prime} A \underset{\sim}{x}\right)=E\left(\operatorname{tr}\left(x^{\prime} A \underset{\sim}{x}\right)\right) \\
& =E\left(\operatorname{tr}\left(A x x^{\prime}\right)\right) \quad[\because \operatorname{tr}(A B) \\
& =\operatorname{tr}\left[A E\left(\sim_{\sim}^{x} x^{\prime}\right)\right] \\
& =\operatorname{tr}\left[A\left(\Sigma+\mu \mu^{\prime}\right)\right] \\
& {[\because E=E(x-\mu)(x-\beta)} \\
& =E\left(x x^{\prime}\right)-\mu \mu \nu \\
& =\operatorname{tr}(A \Sigma)+\operatorname{tr}(A \mu \mu \sim) \\
& =\operatorname{tr}(A \Sigma)+\operatorname{tr}\left(\mathcal{M}^{\prime} A \mu\right) \\
& =\operatorname{tr}(A \Sigma)+\underset{\sim}{m} A \mu
\end{aligned}
$$

$$
\begin{aligned}
& E\left((\underset{\sim}{x}-\mu)^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\mu)\right) \\
& =E\left(\operatorname{tr}\left\{(\underset{\sim}{x}-\mu)^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\mu)\right\}\right) \\
& =\operatorname{tr}\left[\Sigma^{-1} E\left\{(\underset{\sim}{x}-\underset{\sim}{\mu})(\underset{\sim}{x}-\mu \sim \sim)^{\prime}\right\}\right] \\
& =\operatorname{tr}\left[\Sigma^{-1} \Sigma\right]=\operatorname{tr} I_{p}=p
\end{aligned}
$$

Problem:
(1) S.T. an the characteristic roots of a dispersion. matrix of a Riv. are nonnegative.
(2) S.T. any chispersion matrix I can be Written as $B B$ where B is nad.
Hint: \exists an orthogonal matrix $P \ni$

$$
\begin{aligned}
& P^{\prime} \Sigma P=\left(\begin{array}{ccc}
d_{1} & d_{2} & 0 \\
0 & \ddots & d_{n}
\end{array}\right) . \begin{array}{r}
\text { Here } d_{i} \geqslant 0 \times i \\
\\
\\
\\
\\
\\
\text { is end }
\end{array} \\
& \Rightarrow \quad \Sigma=p\left(\begin{array}{ccc}
\sqrt{a_{1}} & & 0 \\
0 & \sqrt{a_{2}} & 0 \\
0 & \ddots & \sqrt{\sigma_{n}} n
\end{array}\right) p^{\prime} p\left(\begin{array}{cccc}
\sqrt{a_{1}} & & 0 \\
0 & \sqrt{a_{2}} & & \\
0 & & \ddots & p_{n}
\end{array} p^{\prime}\right. \\
& =B B
\end{aligned}
$$

where $\quad B=P\left(\begin{array}{cccc}\sqrt{d_{1}} & & 0 \\ & \sqrt{d_{2}} & 0 \\ 0 & & \ddots & \\ & & & \sqrt{d_{x}}\end{array}\right) P^{\prime}$ (3) is in.n.d. since P is n.s. \& $\sqrt{d_{i}^{i}} \geqslant 0 \forall \hat{c}=1 i()^{\prime}$

Regression theory:
General concept of regression:
The concept of regression is concerned with the prediction of one or more variables $\left(y_{1}, \ldots, y_{q}\right)$ on the basis of the information provided by other measurements or concomitant variables $\left(x_{1}, \ldots, x_{p}\right)$. It is customary to call the latter as incept or predictor variables \& the former as. dept or criterion variables.

We are naturany interested in the question "how should the predictors be chosen?"

Consider a single criterion variable x_{1} \& $p-1$ incept variables $\left(x_{2}, \ldots, x_{p}\right)^{\prime}={\underset{\sim}{x}}^{(2)}$ Let $f\left({\underset{\sim}{x}}^{(2)}\right)=f\left(x_{2}, \ldots, x_{p}\right)$ be a predictor of X_{1}.
(i) Minimum MSE predictor: (Theorem 2)

Let $M\left(\underset{\sim}{x^{(2)}}\right)=E\left(x_{1} \mid{\underset{\sim}{x}}^{(2)}\right)$
Then $E\left(x_{1}-f\left(x_{\sim}^{(2)}\right)\right)^{2}$ is minimized when

$$
f\left({\underset{\sim}{x}}^{(2)}\right)=M\left({\underset{\sim}{x}}^{(2)}\right)
$$

proof: $\left.E\left(x_{1}-f \sim_{\sim}^{(2)}\right)\right)^{2}$

$$
\begin{aligned}
& =E\left(X_{1}-M\left(x^{(2)}\right)\right)^{2}+E\left(M\left({\underset{\sim}{x}}^{(2)}\right)-f\left({\underset{\sim}{x}}^{(2)}\right)\right)^{2} \\
& +2 E\left\{\left(x_{1}-M\left(x^{(2)}\right)\right)\left(M\left(x^{x}(2)\right)-f\left(x^{(2)}\right)\right)\right\} \\
& \text { - Now, } \\
& E\left\{\left(x_{1}-M\left(\underset{\sim}{x}{ }^{(2)}\right)\left(M\left({\underset{\sim}{x}}^{(2)}\right)-f\left({\underset{\sim}{x}}^{(2)}\right)\right)\right\}\right. \\
& =E_{{\underset{\sim}{x}}^{(2)}} E_{x_{1} \mid{\underset{\sim}{x}}_{(2)}}\left\{\left(x_{1}-M\left({\underset{\sim}{x}}_{(2)}\right)\right)\left(M\left(x^{(2)}\right)-f\left(x_{\sim}^{(2)}\right)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =E_{\underset{\sim}{x}(2)}\left[\left(M\left({\underset{x}{ }}_{(2)}^{(2)}-f\left({\underset{\sim}{x}}^{(2)}\right)\right) E_{x_{1} \mid x^{(2)}}\left(x_{1}-M(\underset{\sim}{x}(2))\right)\right]\right. \\
& =E \underset{\sim}{\underset{\sim}{x}}{ }^{(2)}[(M(\underset{\sim}{x}{\underset{\sim}{(2)}}^{(2)}-J\left(\underset{\sim}{\left.{\underset{\sim}{2}}^{(2)}\right)}\right)\{\underbrace{E\left(x_{1} \mid{\underset{\sim}{x}}^{(2)}\right)-M(\underset{\sim}{x}(2)}_{0})] \\
& =0 \\
& \therefore \quad E\left(x_{1}-f\left(x^{(2)}\right)\right)^{2} \\
& =E\left(X_{1}-M(\underset{\sim}{x}(2))\right)^{2}+E\left(M\left({\underset{\sim}{x}}^{(2)}\right)-f\left({\underset{\sim}{x}}^{(2)}\right)\right)^{2} \\
& \geqslant E\left(X_{1}-M\left(X_{2}^{(2)}\right)\right)^{2}
\end{aligned}
$$

(${ }^{\prime}$ The lower bound of $E\left(x_{1}-f\left(x_{2}^{(2)}\right)\right)^{2}$ is attained when $f(\underset{\sim}{x}(2))=M(\underset{\sim}{x}(2))$, so the best choice of the predictor which minimizes the MSE is $M(\underset{\sim}{x}(2))$, the conditional mean of x_{1} given ${\underset{\sim 1}{(2)}}_{(\text {is called the regression of }}$ x_{1} on $x^{(2)}$.
(ii) Predictor having maximum correlation with the criterion (Theorem 3):
Let $M\left({\underset{\sim}{x}}^{(2)}\right)=E\left(x_{1} \mid X^{x}{\underset{\sim}{(2)}}^{(2)}\right.$.
Then $P\left(X_{1}, M\left(x^{(2)}\right)\right)$ is non-negative \& $P\left(x_{1}, M\left(x^{(2)}\right)\right) \geqslant\left|P\left(x_{1}, f\left(x^{(2)}\right)\right)\right|$ for any f^{n} $f\left(x^{(2)}\right) \cdot$
proof: For any $f^{n} f\left(x^{(2)}\right)$,

$$
\operatorname{cov}\left(x_{1}, f\left(x^{(2)}\right)\right.
$$

$$
\begin{aligned}
& =E\left[\left(x_{1}-E\left(x_{1}\right)\right)\left(f\left(x^{(2)}\right)-E\left(f\left(x^{(2)}\right)\right)\right)\right] \\
& =E\left[\left\{f\left({\underset{\sim}{x}}^{(2)}\right)-E\left(f\left(\underline{x}^{(2)}\right)\right)\right\} x_{1}\right] \\
& =E_{x_{\sim}^{(2)}}\left[E_{x_{1 \mid} \mid \sim_{\sim}^{(2)}}\left[\left\{f\left(x^{(2)}\right)-E\left(f\left(x^{(2)}\right)^{0}\right)\right\} x_{1}\right]\right] \\
& =E_{\underset{\sim}{x}(2)}[\left\{f\left({\underset{\sim}{x}}^{(2)}\right)-E\left(f\left(x^{(2)}\right)\right)\right\} E_{x_{1} \mid \underbrace{x(2)}_{\sim}}\left(x_{1}\right)] \\
& =E \underset{\sim}{\underset{\sim}{x}} \underset{(2)}{ }\left[\left\{f\left({\underset{\sim}{x}}^{(2)}\right)-E\left(f\left({\underset{\sim}{x}}^{(2)}\right)\right)\right\} M\left({\underset{\sim}{x}}^{(2)}\right)\right] \\
& =\operatorname{cov}\left(f\left({\underset{N}{x}}^{(2)}\right), M\left(x^{(2)}\right)\right) \text {. }
\end{aligned}
$$

When $f\left({\underset{\sim}{x}}_{(2)}^{(2)}=M\left({\underset{\sim}{x}}^{(2)}\right)\right.$,

$$
\begin{aligned}
\operatorname{cov}\left(x_{1}, M\left(x^{(2)}\right)\right) & =\operatorname{cov}\left(M\left(x^{(2)}\right), M\left(x^{(2)}\right)\right) \\
& =\operatorname{Var}\left(M\left(x^{(2)}\right)\right) \\
& =\nabla_{M}^{2} \quad(\text { say }) .
\end{aligned}
$$

Now, $\quad \rho\left(x_{1}, M\left(x^{(2)}\right)\right)$

$$
=\frac{\operatorname{cov}\left(x_{1}, M(\underset{\sim}{x}(0))\right)}{\nabla_{x_{1}} \nabla_{M}}=\frac{\nabla_{M}^{2}}{\sigma_{x_{1}} \sigma_{M}}=\frac{\nabla_{M}}{\nabla_{x_{1}}} \geqslant 0 .
$$

Again, $\rho^{2}\left(x_{1}, f\left(x^{(2)}\right)\right)$

$$
=\frac{\operatorname{cov}^{2}\left(x_{1}, f\left(x^{(2)}\right)\right)}{\sigma_{x_{1}}^{2} \sigma_{f}^{2}}
$$

$$
\begin{aligned}
& =\frac{\operatorname{cov}^{2}\left(f\left(x^{(2)}\right), M\left(x^{(2)}\right)\right)}{\sigma_{j}^{2} \sigma_{M}^{2}} \cdot \frac{\sigma_{M}^{2}}{\sigma_{x_{1}}^{2}} \\
& =P^{2}\left(f\left(x^{(2)}\right), M\left(x^{(2)}\right)\right) \cdot \rho^{2}\left(x_{1}, M\left(x^{(2)}\right)\right) \\
& \left.\leqslant \rho^{2}\left(x_{1}, M\left(x_{\sim}^{(2)}\right)\right) \quad\left[\because \rho^{2}(f, M) \leq 1\right]\right] \\
& \Leftrightarrow\left|P\left(x_{1}, f\left(x_{\sim}^{(2)}\right)\right)\right| \leq \rho\left(x_{1}, M\left(x_{\sim}^{(2)}\right)\right)
\end{aligned}
$$

Equality holds if $p^{2}(f, M)=1$, ie if $f(\underset{\sim}{x(2)})$ is a linear f^{n} of $M\left({\underset{\sim}{(2)}}_{(2)}\right.$
Again, the regression of x_{1} on ${\underset{\sim}{x}}^{(2)}$ is the answer.

The maximum correlation of $P\left(x_{1}, f\left(x^{(2)}\right)\right)$, ie $P\left(x_{1}, M\left(x^{(2)}\right)\right)$ is called the correlation ratio $\&$ it is denoted by $\eta_{x_{1}} \cdot x_{\sim}^{(2)}$. We define clearly $\eta_{x_{1} \cdot \sim_{\sim}^{(2)}} \leq 1$. $\eta_{\left.x_{1}-x_{2}()^{2}\right)}=\frac{\sigma_{\mu}}{\sigma_{x_{1}}{ }^{2}}$ os the correlation ratio.
We observe that

$$
\begin{aligned}
\sigma_{x_{1}}^{2} & =E\left(x_{1}-E\left(x_{1}\right)\right)^{2} \\
& =E\left(x_{1}-M\left(x_{x}^{(2)}\right)\right)^{2}+E\left(M\left(x_{\sim}^{(2)}\right)-E\left(x_{1}\right)\right)^{2} \\
& =\sigma_{1 \cdot 23 \ldots p}^{\cdot 2} p+\sigma_{M}^{2} \\
\Rightarrow \quad \eta_{x_{1}}^{2} \cdot x_{\sim}^{(2)} & =1-\frac{\sigma_{1 \cdot 23}^{2} \ldots p}{\sigma_{x_{1}}^{2}} \leq 1
\end{aligned}
$$

clearly. $\eta_{x_{1} \cdot x^{(2)}}^{2} \rightarrow 1$ as $\nabla_{1 \cdot 23 \ldots p}^{2} \rightarrow 0$
(ie error variance $\rightarrow 0$).
\& $\eta_{x_{1} \cdot{\underset{x}{2}}_{(2)}^{2}}^{2}=0$, when $\sigma_{1.23 \ldots p}^{2}=\sigma_{x_{1}}^{2}$, ie When there is no reduction in error clue to the use of $M\left(x^{(2)}\right)$ as a predicting formula.

The conditional mean of x_{1} given ${\underset{\sim}{x}}^{(2)}$ is called the regression of x_{1} on $x_{m}^{(2)}$. The regerression is called linear or non linear according as the $\mathrm{f}^{n} M\left({\underset{\sim}{x}}^{(2)}\right)=E\left(x_{1} \mid{\underset{\sim}{x}}^{(2)}\right)$ is linear or not.

Linear Regression:
Let ${\underset{\sim}{x \times 1}}^{p \times e}$ a R.v. Which is partitioned as $\quad \underset{\sim}{x}=\binom{x_{1}}{\underset{\sim}{x}}$ with mean $E(\underset{\sim}{x})=\binom{\mu_{1}}{\mu_{\sim}^{(2)}}$ \& $\operatorname{Disp}(\underset{\sim}{x})=\left(\begin{array}{c:ccc}\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 p} \\ \hdashline \sigma_{12} & \sigma_{22} & \cdots & \sigma_{2 p} \\ \vdots & \vdots & \vdots \\ \sigma_{1 p} & \sigma_{2 p} & \cdots & \sigma_{p p}\end{array}\right)=\left(\begin{array}{cc}\sigma_{11} & \sigma_{\sim}^{\prime} \\ \sigma_{(1)} & \Sigma_{2}\end{array}\right)$

Assuming that distr of ${\underset{\sim}{x}}^{(2)}$ is nonsingula. ie $\operatorname{Disp}\left({\underset{\sim}{2}}_{(2)}\right)=I_{2}$ is p.d.
We approximate the regression of x_{1} on $x^{(2)}$ as a linear f^{n} assuming regression is linear whether the regression $E\left(x_{1} \mid x^{(2)}\right)$ is cucturl.

Since $E\left(x_{1}-f\left({\underset{\sim}{x}}^{(2)}\right)\right)^{2}$ is minimum when $f\left({\underset{\sim}{x}}^{(2)}\right)=M\left(x^{(2)}\right)$, the regression of x_{1} on $x_{\sim}^{(2)}$, we can comider an arbitrary tu $\alpha+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}=\alpha+\beta_{\sim}^{\prime}{\underset{\sim}{x}}^{(2)}$ where $\underline{\beta}^{\prime}=\left(\beta_{2}, \ldots, \beta_{p}\right)$; and determine the constants $\alpha \& \underset{\sim}{\sim}$ by minimizing $E\left(x_{1}-\alpha-\beta_{2} x_{2}-\cdots-\beta_{p} x_{p}\right)^{2}$

$$
\begin{aligned}
& =s^{2}, \text { say. } \\
& \therefore \frac{\partial s^{2}}{\partial \alpha}=0 \Leftrightarrow E\left(x_{1}-\alpha-\beta_{2} x_{2}-\cdots-\beta_{p} x_{p}\right)=0 \\
& \\
& \quad \Leftrightarrow \mu_{1}-\alpha-\beta_{2} \alpha_{2}-\cdots-\beta_{p} \mu_{p}=0 \\
&
\end{aligned} \begin{aligned}
& \Leftrightarrow \alpha=\mu_{1}-\beta_{\sim}^{\prime} \mu^{(2)} .
\end{aligned}
$$

\& $\frac{\partial s^{2}}{\partial \beta_{j}} \Leftrightarrow E\left\{\left(x_{1}-\alpha-\beta_{2} x_{2}-\cdots-\beta_{p} x_{p}\right) x_{j}^{o}\right\}=0$

$$
\Leftrightarrow E\left(x_{1} x_{j}\right)=\alpha E\left(x_{j}\right)+\sum_{i=2}^{\infty} \beta_{1} E\left(x_{i} x_{j}\right)
$$

$$
\Leftrightarrow \quad \nabla_{i j}+\mu_{1} \mu_{j}=\left(\mu_{p}-\beta_{\sim}^{\prime}{\underset{\sim}{2}}^{(2)}\right) \mu_{j}
$$

$$
+\sum_{i=2}^{p} \beta_{i} \cdot\left(\nabla_{i j}+\mu_{i} \mu_{j}\right)
$$

$$
\begin{aligned}
& \Leftrightarrow \quad \nabla_{i j}=\sum_{i=2}^{p} \beta_{i} \sigma_{i j}, j=2(1) p \\
& \therefore \quad\left(\begin{array}{c}
\nabla_{12} \\
\sigma_{13} \\
\vdots \\
\sigma_{1 p}
\end{array}\right)=\left(\begin{array}{cccc}
\nabla_{22} & \nabla_{32} & \cdots & \sigma_{p 2} \\
\sigma_{23} & \sigma_{33} & \cdots & \sigma_{p 3} \\
\vdots & \vdots & & \vdots \\
\sigma_{2 p} & \sigma_{3 p} & \cdots & \sigma_{i p}
\end{array}\right)\left(\begin{array}{c}
\beta_{p} \\
\beta_{y} \\
\vdots \\
\beta_{p}
\end{array}\right)
\end{aligned}
$$

$$
\Leftrightarrow \quad \underset{\sim}{\sim}(1)=\Sigma_{2} \beta
$$

$$
\Leftrightarrow \quad \underset{\sim}{\beta}=\Sigma_{2}^{-1}{\underset{\sim}{V}}^{(1)} \quad\left[\because \Sigma_{2} \text { is pd }\right]
$$

Hence $\hat{\alpha}+\hat{\beta}_{\sim}^{\prime}{\underset{\sim}{x}}^{(2)}=x_{1.23 \ldots p}$, say; where

$$
\alpha=\mu-\beta^{\prime} \mu_{\sim}^{(2)},
$$

$\underset{\sim}{\beta}=\sum_{2}^{-1} \underset{\sim}{\sigma}(1)$, is the multiple linear regression.

Here $x_{1.23 \ldots p}$ is the part of x_{1} explained by the multiple linear regression of x_{1} on $\underset{\sim}{x(2)}$, we com define

$$
x_{1}=x_{1.23 \ldots p}+e_{1.23 \ldots p}
$$

Where $e_{1.23 \cdots p}$ is the part of x_{1} remaining unexplained by the multiple linear regression.

Theorem 3':
$E\left(e_{1.23 \ldots p}\right)=0$ \& error is uncorrelated with the predictor variable \& hence with the multiple linear regression.
proof: From list $^{\text {normal } e q^{m} \text {, }}$

$$
\begin{aligned}
& E\left(x_{1}-\alpha-\beta_{2} x_{2}-\cdots-\beta_{p} x_{0}\right)=0 \\
\Leftrightarrow & E\left(x_{1}-x_{1} \cdot 23 \cdots p\right)=0 \\
\Leftrightarrow & E\left(e_{1.23 \cdots p}\right)=0
\end{aligned}
$$

Now, $\operatorname{cov}\left(e_{1.23 \ldots p}, x_{j}\right)=E\left(e_{1.23 \ldots p} x_{j}\right) \quad j=2(1) p$

$$
\begin{aligned}
& =E\left[\left(x_{1}-\alpha-\beta_{2} x_{2}-\cdots-\beta_{p} x_{p}\right) x_{j}\right] \\
& =0, \text { by normal } 29^{\bar{m}_{s}}
\end{aligned}
$$

Again, $\operatorname{cov}\left(e_{1.23 \ldots p}, x_{1.23} \ldots p\right)$

$$
=\operatorname{cov}\left(e_{1.23} \cdot p, \alpha+\sum_{j=2}^{p} \beta_{j} x_{j}\right)
$$

$$
=\beta_{j} \operatorname{cov}\left(e_{1.23 \ldots}, x_{j}\right)=0 .
$$

Theorem: 4:

$$
\begin{aligned}
\left.\overline{\operatorname{Var}\left(e_{1 \cdot 23} \ldots p\right)}\right) & =\sigma_{11}-\sigma_{(1)}^{\prime} \Sigma_{2}^{-1} \sigma_{\sim}(1) \\
& =\frac{|\Sigma|}{\left|\Sigma_{2}\right|}=\frac{1}{\sigma^{11}}=\frac{\sigma_{11}|R|}{R_{11}}=\frac{\sigma_{11}}{\rho^{\prime \prime}}
\end{aligned}
$$

(The symbols have usual meanings)
proof: $\operatorname{Var}\left(e_{1.23 \ldots p}\right)=\operatorname{cov}\left(e_{1.23 \ldots p}, e_{1.23 \ldots p}\right)$

$$
\begin{aligned}
& =\operatorname{cov}\left(x_{1}-x_{1.23 \ldots p}, e_{1.23 \ldots p}\right) \\
& =\operatorname{cov}\left(x_{i}, e_{1.23 \ldots p}\right)-\operatorname{cov}\left(x_{1 \cdot 23 \ldots,}, e_{1.23}\right)
\end{aligned}
$$

$$
=\operatorname{cov}\left(x_{1}, e_{1,23 \ldots p} \quad[\because \text { errors }\right.
$$

uncorrelated with multiple regression]

$$
=\operatorname{cov}\left(x_{1}, x_{1}-x_{1,23 \cdots p}\right)
$$

$$
=\operatorname{Var}\left(x_{1}\right)-\operatorname{cov}\left(x_{1,} x_{1.23 \ldots p}\right)
$$

$$
=\sigma_{11}-\operatorname{cov}\left(x_{1}, \alpha+\sum_{j=2}^{b} \beta_{j} x_{j}\right)
$$

$$
=\sigma_{1 \mid}-\sum_{j=2}^{p} \beta_{j} \operatorname{cov}\left(x_{1}, x_{j}\right)
$$

$$
=\sigma_{11}-\sum_{j=2}^{k} \beta_{j} \nabla_{i j}
$$

$$
=\sigma_{11}-\underset{\sim}{\sigma}(1) \beta
$$

$$
=\sigma_{11}-\sigma_{(1)}^{\prime} \Sigma_{2}^{-1} \sigma_{(1)}
$$

Note -hat $\Sigma=\left(\begin{array}{cc}\sigma_{11} & \nabla_{(1)}^{\prime} \\ \nabla_{(1)} & \Sigma_{2}\end{array}\right)$

$$
\Rightarrow \quad|\Sigma|=\left|\Sigma_{2}\right|\left(\sigma_{11}-\sigma_{\sim}^{\prime}\left(1 \Sigma_{2}^{-1} \sigma_{(1)}\right)\right.
$$

$$
\begin{aligned}
& \Rightarrow \quad \sigma_{11}-\sigma_{(1)}^{\prime} \Sigma_{2}^{-1}{\underset{\sim}{(1)}}^{\sigma}=\frac{|\Sigma|}{\left|\Sigma_{2}\right|} \\
& \Rightarrow \quad \operatorname{var}\left(e_{1 \cdot 23 \ldots p}\right)=\frac{|\Sigma|}{\left|\Sigma_{2}\right|}
\end{aligned}
$$

Define $\Sigma^{-1}=\left(\left(\frac{z_{i j}}{[I I .}\right)\right)[$ where $\Sigma_{i j}$ is the cofactor of $\sigma_{i j}$ in $\dot{\Sigma}$

$$
\left.=\left(\left(\sigma_{i j}^{i j}\right)\right) \quad \& \quad \begin{array}{lll}
& \Sigma_{i j} \\
& =\Sigma_{j i}
\end{array}\right]
$$

Here $\sigma^{\prime \prime}=\frac{\Sigma_{11}}{|\Sigma|}=\frac{\left|\Sigma_{2}\right|}{|\Sigma|}$

$$
\cdots \quad V\left(e_{1.23 \ldots p}\right)=\frac{\left|\Sigma_{a}\right|}{\left|\Sigma_{l}\right|}=\frac{1}{\sigma^{\prime \prime}}
$$

Note that

$$
\begin{aligned}
& \Rightarrow|R|=\left|D D^{2}\right| Z \mid \\
& \Leftrightarrow|Z|=\sigma_{11} \cdots \sigma_{\text {pp }}|R|
\end{aligned}
$$

Now, $R_{2}=D^{*} \Sigma_{2} D^{*}$ where $D^{*}=\operatorname{diag}\left(\frac{1}{\sqrt{\sigma_{22}}} \cdots \frac{1}{\sqrt{\sigma_{T P}}}\right)$ $\Leftrightarrow\left|\Sigma_{2}\right|=\sigma_{22} \cdots \sigma_{k p}\left|R_{2}\right|$ where $R=\left(\begin{array}{ll}1 & x_{i}^{\prime} \\ x_{1} & R_{2}\end{array}\right)$.

$$
\begin{aligned}
\therefore \quad V\left(\ell_{1 \cdot 23 \ldots p}\right)=\frac{|\Sigma|}{\left|\Sigma_{2}\right|} & =\frac{\sigma_{11}|R|}{\left|R_{2}\right|} \\
& =\frac{\sigma_{1 \mid}|R|}{R_{11}} \\
\text { Define } R^{-1}=\left(\left(\frac{R_{i j}}{\left|R_{1}\right|}\right)\right. & =((p i g)) \text {, say. }
\end{aligned}
$$

Then, $p^{\prime \prime}=\frac{R_{11}}{|R|}$

$$
\therefore V\left(e_{1.23 \ldots p}\right)=\frac{\sigma_{11}}{\rho_{11}}
$$

element in R]

Theorem 5:
The correlation coeff bet ${ }^{n} x_{1}$ \& the multiple
 is the maximum among all linear jus of. $\underset{\sim}{x}{ }^{(2)}$ like $L\left({\underset{\sim}{x}}^{(2)}\right)=l_{0}+l_{2} x_{2}+\cdots+l_{p} x_{p}$.
proof: $p^{2}\left(x_{1}, L\left({\underset{\sim}{(2)}}^{(2)}\right)\right.$

$$
\begin{align*}
& =\frac{\operatorname{cov}^{2}\left[x_{1},_{1} l_{0}+\sum_{j=2}^{p} j_{j} x_{j}\right]}{\operatorname{var}\left(x_{1}\right) \operatorname{Var}\left(l_{0}+\sum_{j} l_{j} x_{j}\right)} \\
& =\frac{\left\{\sum_{j=2}^{p} l_{j} \operatorname{cov}\left(x_{1}, x_{j}\right)\right\}^{2}}{\sigma_{11} \cdot{\underset{\sim}{l}}^{\prime} \Sigma_{2} \underset{\sim}{l}} \\
& =\frac{\left\{\sum_{j=2}^{p} L_{j} \sigma_{1 j}\right\}^{2}}{\sigma_{11}\left(\ell^{\prime} \Sigma_{2} \underset{\sim}{l}\right)} \\
& {\left[\underset{\sim}{l}{ }^{l}=\left(l_{2}, \ldots, l_{p}\right)\right]} \\
& =\frac{\left(\mathfrak{l}^{\prime} \underset{\sim}{\nabla_{(1)}}\right)^{2}}{\nabla_{11}\left(\mathfrak{L}^{\prime} \Sigma_{2} \ell\right)} \\
& =\frac{\left({\underset{\sim}{\ell}}^{\prime} \Sigma_{2} \underset{\sim}{\beta}\right)^{2}}{\sigma_{11}\left(\ell_{\sim}^{\prime} \Sigma_{2} \underset{\sim}{L}\right)} \\
& =\frac{\left.\left({\underset{\sim}{l}}^{\prime} p^{\prime} p\right)^{\beta}\right)^{2}}{\sigma_{11}\left(l_{\sim}^{\prime} \Sigma_{2} l\right)} \quad\left[\because \Sigma_{2} \text { is } p d\right] \\
& =\frac{\dot{\left\{(P \ell)^{\prime}(P \beta)\right\}^{2}}}{\sigma_{11}\left(\alpha^{\prime} \Sigma_{2} \ell\right)} \\
& \leq \frac{\left[(P \ell)^{\prime}(P \ell)\right]\left[(P \beta)^{\prime}(P \beta)\right]}{\nabla_{\|}\left(\ell^{\prime} \Sigma_{2} \ell\right)} \\
& \text { [By che iris } x \text {) } \\
& 19 \cdot 6 \mid \leq 1912!\}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{\left\{\ell^{\prime}\left(P^{\prime} P\right) \underset{\sim}{l}\right\}\left\{\underset{\sim}{\beta^{\prime}}\left(P^{\prime} P\right) \beta\right\}}{\sigma_{11}\left(l^{\prime} \Sigma_{2} \ell\right)} \\
& =\frac{\left(\ell_{\sim}^{\prime} \Sigma_{2} \ell\right)\left(\beta_{\sim}^{\prime} \Sigma_{2} \beta\right)}{\nabla_{11}\left(\ell_{\sim}^{\prime} \Sigma_{2} \ell\right)} \\
& =\frac{\beta_{\sim}^{\prime} \Sigma_{2} \beta}{\sigma_{11}}
\end{aligned}
$$

From * ,

$$
\begin{aligned}
& \beta^{2}\left(x_{1}, x_{1,23 \ldots p}\right) \\
= & \rho^{2}\left(x_{1}, \alpha+\beta_{\sim}^{\prime}{\underset{\sim}{x}}^{(2)}\right) \\
= & \frac{\beta^{\prime} \Sigma_{2} \beta}{\sigma_{1}} \geqslant \rho^{2}\left(x_{1}, L\left(x^{(2)}\right)\right)
\end{aligned}
$$

Multiple correlation coeft:
The maximum correlation woe bet $^{\text {" }} x_{1}$ 2. any linear j^{n} of ${\underset{\sim}{(2)}}^{(2}$ is defined as multiple correlation weft beth $x_{1} \& x^{(2)}$ and denoted by $P_{1.23 \ldots p}$ \& it is given by

$$
\rho_{1.23 \cdots p}=\sqrt{\frac{\beta^{\prime} \Sigma_{2} \beta}{\sigma_{1}}}=\frac{S D\left(x_{1.23 \cdots p)}^{S D\left(x_{1}\right)}\right.}{\text { 和 }}
$$

Where $x_{1.23 \ldots p}=\alpha+\underset{\sim}{\beta}{\underset{\sim}{x}}^{(2)}$ is the multiple regression (linear) of \tilde{x}_{1} on $x_{2}^{(2)}$.

Clearly $0 \leqslant P_{1.23 \ldots p} \leqslant 1$.

Theorem 6:

$$
\rho_{1.23 \ldots p}^{2}=1-\frac{\sigma_{1.23 \ldots p}^{2}}{\sigma_{11}} \text {, where } \sigma_{1.23 \ldots p}^{2}=v\left(e_{1.23 \ldots p}\right)
$$

proof: $\quad x_{1}=x_{1: 23 \ldots p}+e_{1.23 \ldots p}$

$$
\begin{aligned}
& \therefore V\left(x_{1}\right)=V\left(x_{1.23 \cdots p}\right)+v\left(e_{1.23 \ldots p}\right) \\
& {\left[\because \operatorname{cov}\left(e_{1.23 \cdots p}, x_{1.23 \ldots p}\right)=0\right] } \\
& \therefore p_{1.23 \cdots p}^{2}=\frac{V\left(x_{1.23 \cdots p}\right)}{V\left(x_{1}\right)} \\
&=1-\frac{V\left(e_{1.23 \cdots p)}\right.}{V\left(x_{1}\right)} \\
&=1-\frac{\nabla_{1.23 \cdots p}^{2}}{V_{11}}
\end{aligned}
$$

Remark: (1) We can write

$$
\begin{array}{rlrl}
P_{1.23 \ldots p}^{2} & =1-\frac{|\Sigma|}{\left|\Sigma_{2}\right| \sigma_{11}} & \quad \text { A measure of usefulness } \\
& =\frac{\nabla_{(1)} \Sigma_{2}^{-1} \tau_{(1)}}{\sigma_{11}} \quad \text { regression of } x_{1} \text { on } x^{(2)} \\
& =1-\frac{1}{\nabla^{11} \sigma_{11}} \quad \text { is } \quad \rho_{1 \cdot 23 \cdots p}^{2}=\frac{V\left(x_{(-23-p)}\right.}{V\left(x_{1}\right)} \\
& =1-\frac{|R|}{R 11}=1-\frac{1}{\rho_{11}}
\end{array}
$$

(2)

$$
\begin{aligned}
\rho_{1.23 \ldots p}^{2}=1 & \Leftrightarrow \nabla_{1.23 \ldots p}^{2}=0 \\
& \Leftrightarrow \operatorname{Var}\left(x_{1.23 \cdots p}\right)=\operatorname{Var}\left(x_{1}\right)
\end{aligned}
$$

\Leftrightarrow The variability of x_{1} is completely. explained by the multiple hinearregression of x, on ${\underset{\sim}{x}}^{(2)}$.

$$
\begin{align*}
& \quad \Leftrightarrow \beta^{\prime} \Sigma_{2} \beta=0 \tag{12}\\
& \beta_{1.23 \ldots p}^{2}=0 \Leftrightarrow \beta=0, \text { since } \Sigma_{2} \text { is } p d .
\end{align*}
$$

\Leftrightarrow The multiple regression fails to predict x_{1}

Partial correlation coefficient:
Let

$$
\underset{\sim}{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
{\underset{\sim}{x}}_{(3)}^{2}
\end{array}\right), \underset{\sim}{\mu}=\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu^{(3)}
\end{array}\right), \sum=\left(\begin{array}{cc:c}
\sigma_{11} & \sigma_{12} ; \nabla_{(3)}^{\prime} \\
\sigma_{21} & \sigma_{22} & \sigma_{(23)} \\
\hdashline \sigma_{(3)} & \sigma_{(23)} & \Sigma_{3}
\end{array}\right)
$$

Suppose, we wish to know the correlation beth $x_{1} \& x_{2}$, after eliminating the effect of $\underset{\sim}{\sim}{ }^{(3)}$. In practice, we eliminate the linear affect of $x^{(3)}$ from both of them.

Define $x_{1.34 \cdots p}=$ the part of x_{1} explained by the multiple linear regression of $x_{1}{\underset{\sim}{x}}^{(3)}$.
\& $x_{2.34 \cdots p}=$-the part of x_{2} explained by the multiple linear regression of x_{2} on $x^{(3)}$.
Then,

$$
\begin{aligned}
e_{1.34 \cdots p} & =x_{1}-x_{1.34 \cdots p} \\
& =\text { part of } x_{1} \text { uninfluenced by }{\underset{\sim}{x}}^{(3)} \\
e_{2.34 \cdots p} & =x_{2}-x_{2.34 \cdots p} \\
& =p \text { part of } x_{2} \text { uninfluenced by }{\underset{\sim}{x}}^{(3)} .
\end{aligned}
$$

Now, we define the partial correlation coeft beth $x_{1} \& x_{2}$ after eliminating the near effect of $x^{(3)}$ from both of them as
the correlation coeff beth $e_{1.34 \cdots p} \&$ $e_{2.34 \ldots p}$, ie

$$
P_{12.34 \ldots p}=\frac{\operatorname{cov}\left(e_{1.34 \ldots p}, e_{2.34 \ldots p}\right)}{\sqrt{\operatorname{Var}\left(e_{1.34 \ldots p}\right) \operatorname{Var}\left(k_{2.34 \ldots p}\right)}}
$$

is the partial correlin weft beth $x_{1} \& x_{2}$. after eliminating the (linear) effect of ${\underset{\sim}{x}}^{(3)}$.

Let $x_{1.34 \ldots p}=\alpha+\beta_{\sim}^{\prime}{\underset{\sim}{x}}^{(3)}$ where $\alpha=\mu_{\mu-\sim_{\sim}^{\prime}}^{\prime} \sim_{\sim}^{(3)}$

$$
\& \underset{\sim}{\sigma(3)}=\sum_{3} \underset{\sim}{\beta}
$$

\& $x_{2 \cdot 34 \cdots p}=\alpha^{*}+\beta^{*^{\prime}}{\underset{\sim}{x}}^{(3)}$ where $\alpha^{*}=\mu_{2}-\beta^{*^{*}} \mu_{\sim}^{(3)}$ \& $\sigma_{(23)}=\Sigma_{3} \beta_{\sim}^{*}$

Now,
$2 \operatorname{Var}\left(e_{2 \cdot 34 \cdots p}\right)=\nabla_{22}-\nabla_{(23)}^{\prime} \sum_{3}^{-1} \nabla_{\sim(23)}=\frac{\sum_{11}}{\left|I_{3}\right|}$

$$
\begin{aligned}
& \operatorname{Cov}\left(e_{1.34 \cdots p}, e_{2.34 \cdots p}\right) \\
& =\operatorname{cov}\left(\dot{x}_{1}-x_{1.34 \cdots p}, e_{2.34 \cdots p}\right)
\end{aligned}
$$

$=\operatorname{cov}\left(X_{1}: e_{2.34 \ldots p}\right) \quad[\because$ error is uncorrelated with the multiple linear regression?

$$
\begin{aligned}
& =\operatorname{cov}\left(x_{1}, x_{2} \cdots x_{2.34} \cdots p\right) \\
& =\nabla_{12}-\operatorname{cov}\left(x_{1}, \alpha^{*}+{\underset{\sim}{\beta}}^{*}{\underset{\sim}{x}}^{(3)}\right) \\
& =\sigma_{12}-\beta^{*} \sim_{(13)}^{\prime} \\
& =\nabla_{12}-\nabla_{\sim}^{\prime}(23) \Sigma_{3}^{-1} \sim_{\sim}^{(13)} . \\
& =-\frac{\sum_{12}}{\left|\Sigma_{3}\right|}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\rho_{12 \cdot 34 \cdots p} & =-\frac{\Sigma_{12}}{\sqrt{\Sigma_{11} \Sigma_{22}}} \\
& =-\frac{\nabla^{12}}{\sqrt{\nabla^{11} \nabla^{22}}} \\
& =-\frac{R_{12}}{\sqrt{R_{11} R_{22}}} \\
& =-\frac{\rho^{12}}{\sqrt{\rho^{11} \rho^{22}}}
\end{aligned}
$$

In general,

Partial regression coett:
If the multiple regression eqts of x_{1} on ${\underset{\sim}{x}}^{(2)}$ 9
$E\left(x_{1} \mid x^{(2)}\right)=\alpha+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}$, a linear fr of ${\underset{\sim}{(2)} \text {, then }}^{(2)}$

$$
\begin{gathered}
\alpha=E\left(x_{1} \mid \underset{\sim}{x} \stackrel{(2 j}{\sim}\right) \\
\alpha+\beta_{j} \\
\alpha=E\left(x_{1} \mid{\underset{\sim}{x}}^{(2)}=\underset{\sim}{e} j\right),
\end{gathered}
$$

ie β_{j} is the amount by which the conditional mean increases for a mit increment in x_{j}, keeping the other variables fixed.

Bi, written move explicitly

$$
\beta_{1 j \cdot 23 \cdots j=1} j+1 \cdots p
$$

is called the partial regression coeff of X_{1} on X_{j}, keeping the other variables fixed.

Then, the multiple linear regression of x_{1} on ${\underset{\sim}{x}}^{(2)}$ is

$$
X_{1 \cdot 23 \cdots p}=\alpha+{\underset{\sim}{\sim}}^{\prime}{\underset{\sim}{\alpha}}^{(2)}
$$

where. $\underset{\sim}{\sigma_{(1)}}=\Sigma_{2} \underset{\sim}{\beta}$
and $\alpha=\mu-\rho_{\sim}^{\prime}{\underset{\sim}{r}}^{(2)}$

Note that

$$
\begin{aligned}
\nabla_{\sim}(1) & =\sum_{2} \stackrel{\beta}{\sim} \\
\Leftrightarrow & \nabla_{y i}=\beta_{2} \nabla_{2 i}+\beta_{3} \nabla_{3 i}+\cdots+\beta_{p} \nabla_{p i} ; \quad i=2(1) p
\end{aligned}
$$

Again,

$$
\begin{aligned}
& \nabla_{i i} \Sigma_{11}+\sigma_{2 i} \Sigma_{2 i}+\nabla_{31} \Sigma_{31}+\cdots+\nabla_{p i} \Sigma_{p 1}=0 \\
\Leftrightarrow & \forall i=2(1) p \\
\Leftrightarrow & \nabla_{1 i}=\left(-\frac{\Sigma_{21}}{\Sigma_{11}}\right) \sigma_{2 i}+\left(-\frac{\Sigma_{31}}{\Sigma_{11}}\right) \sigma_{3 i}+\cdots+\left(-\frac{\Sigma_{p 1}}{\Sigma_{11}}\right) \sigma_{p i}
\end{aligned}
$$

Comparing, we get

$$
\begin{aligned}
\beta_{j} & =-\frac{\sum_{j i}}{\sum_{11}}, j=2(1) p \\
& =-\frac{\sum_{i j}}{\sum_{i j}} \\
& =-\frac{R_{i j} / \sqrt{\sigma_{11} \sigma_{j j}}}{R_{11} / \sigma_{11}} \\
& =-\frac{R_{1 j}}{R_{11}} \sqrt{\frac{\sigma_{i j}}{\sigma_{i j}}}
\end{aligned}
$$

Hence, the multiple linear regression of x_{1} on ${\underset{\sim}{x}}^{(2)}$ is

$$
x_{1 \cdot 23 \ldots p}^{\sim}=\mu_{1}-\sum_{j=2}^{p} \frac{R_{1 j} \sqrt{\sigma_{11}}}{R_{i 1} \sqrt{\sigma_{j j}}}\left(x_{j}-\mu_{j}\right) .
$$

Result (3):

$$
\begin{aligned}
\beta_{12.34 \cdots p} & =\rho_{12.34 \cdots p} \cdot \frac{\sigma_{1.34 \cdots p}}{\nabla_{2.34 \cdots p}} \\
& =\rho_{12.34 \cdots p} \cdot \frac{\nabla_{1.234 \cdots p}}{\nabla_{2.134 \ldots p}}
\end{aligned}
$$

Result (4):

$$
\beta_{12 \cdot 34 \cdots p} \cdot \beta_{21 \cdot 34 \cdots p}=\rho_{12 \cdot 34 \cdots p}^{2}
$$

Rel ship beth multiple correlation waif \& partial correlation coeffs of different orders:

$$
\begin{aligned}
\left(1-\rho_{1 \cdot 23 \cdots p}^{2}\right) & =\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13 \cdot 2}^{2}\right) \cdots\left(1-\rho_{1 p \cdot 24 \cdots 1-1}^{2}\right) \\
& =\left(1-\rho_{1 p}\right)\left(1-\rho_{1 k-1}\right) \cdots\left(1-\rho_{12 \cdot 34 \cdots p}^{2}\right) \\
& V / \rho
\end{aligned}
$$

prog: $V\left(e_{1.23 \ldots p}\right)=\operatorname{cov}\left(e_{1.23 \ldots p}, e_{123 \cdots p}\right)$

$$
\begin{aligned}
& =\operatorname{cov}\left(x_{1}, e_{1.23 \ldots p}\right) \\
& =\operatorname{cov}\left(x_{1}-x_{1.23 \ldots p=1}, e_{1.23 \ldots p}\right) \\
& =\operatorname{cov}\left(e_{1 \cdot 23 \cdots \overline{p-1}},\left(x_{1}-\mu_{1}\right)-\beta_{12.34 \cdot p}\left(x_{2}-\mu_{2}\right)-\cdots-\beta_{1 p \cdot 34.55_{i}}\left(x_{1} x_{1}\right)\right. \\
& =\operatorname{cov}\left(e_{1 \cdot 23 \ldots p-1}, x_{1}\right)-\beta_{1 p \cdot 34 \ldots p-1} \operatorname{cov}\left(e_{1 \cdot 23 \ldots p-1}, x_{p}\right) \\
& =\nabla_{1 \cdot 23 \cdots \overline{p-1}}^{2}-\rho_{1 p \cdot 23 \cdots \overline{p-1}} \frac{\sigma_{1 \cdot 23 \cdots p-1}}{\sigma_{b \cdot 23 \cdot p-1}} \rho_{1 p \cdot 2 \cdots \overline{p-1}} \sigma_{12 j \ldots p-1} \sigma_{p \cdot 2 \cdot-\bar{i}} \\
& =\sigma_{1.23 \cdots p-1}^{2}-\rho_{1 p \cdot 23 \cdots \overline{p-1}}^{2} \sigma_{1 \cdot 23 \cdots \overline{p-1}}^{2} \\
& =\left(1-\rho_{1 p \cdot 23 \cdots F}^{2}\right) \sigma_{1 \cdot 23 \cdots p_{p-1}^{2}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \left(1-\rho_{1 \cdot 23 \ldots p}^{2}\right) \sigma_{11} \\
& =\left(1-\rho_{1 \cdot 23 \ldots p_{1}}^{2}\right) \sigma_{11}\left(1-\rho_{1 p \cdot 23 \ldots \overline{p-1}}^{2}\right) \\
\Rightarrow & \left(1-\rho_{1 \cdot 23 \ldots p}^{2}\right)=\left(1-p_{1 p \cdot 23 \ldots-\overline{1}}^{2}\right)\left(1-\rho_{1 \cdot 23 \ldots p-1}^{2}\right)
\end{aligned}
$$

Using this repeatedly, we get the result:

$$
\left(1-p_{1 \cdot 23 \cdots p}^{2}\right)=\left(1-P_{12}^{2}\right)\left(1-p_{i 3 \cdot 2}^{2}\right) \cdots\left(1-p_{1 p \cdot 234 \cdots p_{-1}^{2}}^{2}\right)
$$

Problems:
(1) Let $\underset{\sim}{x}$ bo a random vector with mean μ I dispersion matrix Σ. ST.
[CU] $P\left[(\underset{\sim}{x}-\mu)^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\mu)>\lambda\right]<\frac{p}{\lambda}$ for $\lambda>0$
Sorn: By Markov's inequality,

$$
\begin{aligned}
& P\left[(\underset{\sim}{x}-\mu)^{\prime} \Sigma^{-1}(x-\mu)>\lambda\right] \\
< & \frac{E\left[(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right]}{\lambda} \\
= & \frac{E\left[\operatorname{tr}\left\{(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right\}\right]}{\lambda} \\
= & \frac{E\left[\operatorname{tr}\left\{\Sigma^{-1}(x-\mu)(x-\mu)^{\prime}\right\}\right]}{\lambda} \\
= & \frac{\operatorname{tr}\left[\Sigma^{-1} E\left\{(x-\mu)(x-\mu)^{\prime}\right\}\right]}{\lambda} \\
= & \frac{\operatorname{tr}\left[\Sigma^{-1} \Sigma\right]}{\lambda}=\frac{p}{\lambda}
\end{aligned}
$$

Alternative: $\sum^{p x p}$ is pd $\Rightarrow \exists n-s B \quad \sum=B B^{\top}$.
Define $\quad \underset{\sim}{y}=B^{-1}(\underset{\sim}{x}-\mu)$

$$
\begin{aligned}
E(y)=0, \operatorname{Dixp}(y) & =B^{-1} I\left(B^{-1}\right)^{\top} \\
& =B^{-1} B B^{\top}\left(B^{-1}\right)^{\top} \\
& =I_{p}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& P\left[(\underset{\sim}{x}-\mu)^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\mu)>\lambda\right] \\
= & P\left[{\underset{\sim}{2}}^{\prime} \underset{\sim}{y}>\lambda\right] \\
< & \frac{E\left(z^{\prime} z\right)}{\lambda} \\
= & E\left(\sum_{i=1}^{p} y_{0}^{2}\right) \\
\lambda & =\frac{f}{\lambda}
\end{aligned}
$$

(2) Let $\left(y_{0} x_{1}, \ldots, x_{p}\right)^{\prime}$ be any pets colupinete random vector slow, making suitable... assumption that

$$
i F_{y \cdot 123 \ldots p}^{2} \geqslant 1-\frac{1}{\sigma_{\gamma}^{2}} E\left(y-l_{0}-\sum_{1}^{p} l i x_{1}\right) \geq
$$

ii) $p^{2} y_{1212} \geqslant p^{2} y \cdot 23 \ldots p$

In each of the above cases comment on the case of equality

Hint: (9) Consider an arbitrary linear fin $l_{0}+l_{1} x_{1}+\cdots+l_{p} x_{p}$ as a predictor of y.
Now, consider the problem of minimization of the MSE

$$
E\left(y-l_{0}-\frac{p}{1} i_{i} x_{i}\right)^{2}
$$

We know: that the linear fy

$$
\left(B_{0}+B_{\sim}^{\prime} \underset{\sim}{x}=x_{y \cdot 12 \cdots p}\right.
$$

obtained by minimizing the MSE, is the multiple linear regression of y on $\underset{\sim}{x}$.

$$
\begin{aligned}
E\left(y-l_{0}-\frac{p}{2} l_{1} x_{i}\right)^{2} & \geqslant E\left(y-\beta_{0}-\beta_{\sim}^{\prime} x\right)^{2} \\
& =\nabla_{y, 123 \ldots p}^{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\rho_{y \cdot 123 \cdots p}^{2} & =1-\frac{\nabla_{y \cdot 12 \cdots p}^{2}}{\nabla_{y}^{2}} \quad \text { (prov ert) } \\
& \geqslant 1-\frac{1}{\sigma_{y}^{2}} E\left(y-l_{0}-\sum_{1}^{p} L_{i} x_{i}\right)^{2}
\end{aligned}
$$

(i)

$$
\begin{aligned}
\left(1-\rho_{y_{\cdot 2} \cdots p}^{2}\right) & =\left(1-p_{1 y \cdot 23 \cdots p}^{2}\right)\left(1-p^{2} \cdot \cdot 23 \cdots p\right) \\
& \leq\left(1-p_{y}^{2} \cdot 23 \cdots p\right) \text { since } 0 \leq 1-p_{1 y \cdot 23 \cdots p}^{2}
\end{aligned}
$$

Hence the proof.
\because case: 品) \because " if $\rho_{1 y \cdot 23 \ldots p}^{2}=0$
\Rightarrow There is no use. of x_{1}, in the prediction of y.
(3) If $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{p} x_{p}=k(\operatorname{Cowstan} x)$, then. find $p_{12.34 \cdots p} \& p_{1.23 \cdots p}$.
Soln:

$$
\begin{aligned}
& E\left(x_{1} \mid x_{2}=x_{2}, \cdots, x_{p}=x_{p}\right) \\
= & \frac{1}{a_{1}}\left[k-a_{2} x_{2}-\cdots-a_{p} x_{p}\right]
\end{aligned}
$$

So, the regression is linear.
Thus, the multiple linear ${ }_{n}$ regression of x_{1} on $x_{2}, \cdots \cdots x_{1}$ will also be

$$
x_{1.23 \cdots p}=\frac{1}{a_{1}}\left[k-a_{2} x_{2}-\cdots-a_{p} x_{p}\right]
$$

So, $\quad e_{1 \cdot 23 \cdots p}=x_{1}-x_{1 \cdot 23 \cdots p}=0$

$$
\Rightarrow \quad V\left(e_{1.23 \ldots p}\right)=0 \quad \Rightarrow p_{1.23 \ldots p}=1
$$

Since it is a case of 'near regression, So partial correl beth x_{1} \& x_{2} eliminating the offer: $x_{3}, x_{4}, \ldots, x_{p}$ is equivalent to beth $x_{1} \& x_{2}$ Keeping $x_{3}, x_{4}, \cdots, x_{p}$ fixed, ie correlate beth $x_{1} \& x_{2}$ with

$$
a_{1} x_{1}+a_{2} x_{2}=\text { constant }
$$

So, this partial correlates will be +1 or -1 according as a_{1} \& a_{2} are of opposite sign or same sign.
Alternatively:

$$
\beta_{12.34 \cdots p}=-\frac{O_{2}}{a_{1}} \quad[\text { From }\langle 1\rangle]
$$

similarly $\beta_{21.34 \cdots p}^{*}=-\frac{a_{1}}{a_{2}}$
$\Rightarrow P_{12.34 \cdots p}=1$ or -1 according as
$o_{1} \& a_{2}$ are of opposite assign. or same sign

$$
\left[\because \rho_{12.34 \cdots p}^{2}=\beta_{12.34 \cdots p} \cdot \beta_{21.34 \cdots p} \text { \& sigh of as that of } \rho_{1212.34 \cdots]}\right.
$$

Multivariate Normal Dis:
The pdf of a mavariate normal is in the from.

$$
\begin{aligned}
f(x) & =k e^{-\frac{1}{2} a(x-6)^{2}} \\
& =k e^{-\frac{1}{2}(x-c) a(x-b)} \quad \text { if } x \in k
\end{aligned}
$$

Where $L \in \mathbb{R}, a>0$ \& $k>0$
Generalizing concept, the pay of a multivariate normal is taken as

$$
\left.f(\underset{\sim}{x})=k e^{-\frac{1}{2}(x-l}\right)^{\prime} A(\underset{\sim}{x}-l) \quad, \forall x<x^{!}
$$

Where $\underset{\sim}{\ell} \in \mathbb{R}^{p}$, A is a pod. matrix $\& ~ k>$;
Our object is to find +1 constant L \& A in terms of the nones of the multivariate normal distr. Let $\underset{\sim}{x}$ be a multivariate normal variate with the pdf

$$
\left.f(\underset{\sim}{x})=k e^{-\frac{1}{2}(\underset{\sim}{x}-l}\right)^{\prime} A(\underset{\sim}{x}-l), \quad x \leqslant s
$$

Now, $\int_{\mathbb{R}^{p}} f(x) d x=1$

$$
\begin{aligned}
& \Rightarrow \quad k \int_{R R} e^{-\frac{1}{2}(\underset{\sim}{x}-l)^{\prime} A(z-l)} d x=1 \\
& \Rightarrow K \int_{\mathbb{R}^{1}} e^{-\frac{1}{2} y^{\prime} y} \begin{array}{l}
-\frac{1}{1 J \mid} d y-1
\end{array} \begin{array}{l}
\because A \text { is Pd } \exists \text { a-R.S } \\
P \exists P P^{r}=\Sigma \\
\text { Let } y
\end{array} \\
& \text { Let } y p^{t}(x=6) \\
& \text { Then }\left|J\left(\frac{y}{x}\right)\right| \\
& \Rightarrow \frac{k}{\sqrt{|A|}} \int_{\mathbb{R}^{p}} e^{-\frac{1}{2} y^{\prime} y} d y=1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{k}{\sqrt{|A|}} \int_{-\infty}^{\omega} \cdots \int_{-\infty}^{\infty} e^{-\frac{1}{2} \sum_{1} y_{i}} d y_{1} \cdots d p_{p}=1 \\
& \Rightarrow \frac{k}{\sqrt{|\Lambda|}} \prod_{i=1}^{p}\left\{\int_{-\infty}^{\infty} e^{-\frac{1}{2} y_{i}^{2}} \log _{i}\right\}=1 \\
& \Rightarrow \quad \frac{k}{\sqrt{|A|}}(\sqrt{2 \pi})^{p}=1 \\
& \Rightarrow \quad k=\frac{\sqrt{|A|}}{(\sqrt{2 \pi})^{p}}
\end{aligned}
$$

Now, the pdf of $\underset{\sim}{y}$ is

$$
g_{\underset{\sim}{y}}(\underset{\sim}{y})=\frac{1}{(\sqrt{2 \pi}) p} e^{-\frac{1}{2} y_{\sim}^{\prime} y}, \quad{\underset{\sim}{v}}^{y} \in \mathbb{R}^{p}
$$

Here,

$$
\begin{aligned}
& \begin{array}{l}
\text { Here, } \\
E\left(y_{i}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} y_{i}\left(\frac{1}{\sqrt{2 \pi}}\right)^{p} e^{-\frac{1}{2} \sum_{1}^{p} y_{i}^{2}} d y_{1} \cdots c y_{p}
\end{array} \\
& =\left(\int_{-\infty}^{\infty} y_{i}\left(\frac{1}{\sqrt{2 \pi}}\right) e^{-\frac{1}{2} y_{i}^{2}} d y_{i}\right) \cdot \prod_{j \neq i}\left\{\int_{-\infty}^{\infty} \frac{\left.e^{-\frac{1}{2} y_{j}^{2}} d y_{i}\right\}}{(\sqrt{2 \pi})}\right\} \\
& =0 \forall i \\
& \operatorname{cov}\left(y_{i}, y_{j}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} y_{i} y_{j}\left(\frac{1}{\sqrt{2 \pi}}\right)^{p} e^{-\frac{1}{2} \sum_{i}^{p} y_{i}^{2}} d y_{1} \cdots d y_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { if icj }
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
& \therefore E(y)=\underset{\sim}{0} \quad \text { \& } \operatorname{Disp}(y)=I_{p} .
\end{aligned}
$$

Now, $E(X)=\Omega$

$$
\begin{aligned}
& \Rightarrow p^{\prime}(E(x)-\underset{\sim}{l})=\underset{\sim}{0} \\
& \Rightarrow \quad t=H(x)=\mu \text {, say } \quad\left[\because p^{\prime} \text { is } n \cdot s\right] \\
& D(\underset{\sim}{x})=I_{p} \\
& \Rightarrow \quad P^{\prime} D(\underset{\sim}{x}) P=I_{p} \\
& \Rightarrow \quad D(\underset{\sim}{x})=\left(P^{\prime}\right)^{-1} P^{-1}=\left(P^{\prime \prime} P^{\prime}\right)^{-1}=A^{-1} \\
& \Rightarrow \quad A=\Sigma^{-1} \text { where } \Sigma=D(x) \text {. }
\end{aligned}
$$

Hence, $k=\frac{1}{(\sqrt{\pi})^{5}}$

Defter:
A random vector ${ }^{p x}$ is said to have a multivariate normal cist with mean vector $E(\underset{\sim}{x})=\mu$ \& dispersion matrix Σ, if the pity of x is

$$
\underset{\sim}{x}(x)=\frac{1}{(2 \pi)^{p / 2} \sqrt{|\Sigma|}} e^{-\frac{1}{2}(\underset{\sim}{x}-\mu)^{\prime} I^{-1}(\underset{\sim}{x}-\mu)}, \underset{\sim}{x} \in \mathbb{R}^{k}
$$

We write $\underset{\sim}{\sim} \sim N_{p}(\mu, \Sigma)$.
Remarks:
(1) The pdf $f_{x}(x)$ is maximum e if the exponent is minimum, ie $(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)$ is minimum.

Note that

$$
\begin{aligned}
(\underset{\sim}{x}-\mu)^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\mu) & >0 & \text { if } \underset{\sim}{x} \neq \mu \\
& =0 & \text { if } \underset{\sim}{x}=\mu
\end{aligned}
$$

since Σ^{-1} is pod.
Hence $\underset{\sim}{x}=\mu$ is the mode of the distr.

$$
\text { Let } Q(x)=\left(x^{x}-\mu\right)^{\prime} \Sigma^{-1}(x-\mu)
$$

Then, $\frac{\partial Q(\underset{\sim}{x})}{\partial(\underset{\sim}{x})}=\underset{\sim}{0}$ at $\underset{\sim}{x}=\underset{\sim}{\mu}$
(2) Note that the exponent

$$
\begin{aligned}
Q(\underset{\sim}{x})= & (\underset{\sim}{x}-\underset{\sim}{\mu})^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\underset{\sim}{x}) \\
= & {\underset{\sim}{x}}^{\prime} \Sigma^{-1} \underset{\sim}{x}-{\underset{\sim}{x}}^{\prime} \Sigma^{-1} \underset{\sim}{\mu}-{\underset{\sim}{\mu}}^{\prime} \Sigma^{-1} \underset{\sim}{x} \\
& \quad+{\underset{\sim}{\mu}}^{\prime} \Sigma^{-1} \underset{\sim}{\sim} \\
= & x^{\prime} \Sigma^{-1} \underset{\sim}{x}-2{\underset{\sim}{x}}^{\prime} \Sigma^{-1} \mu+\mu_{\sim}^{\prime} \Sigma^{-1} \underset{\sim}{\mu}
\end{aligned}
$$

Let $Q^{*}(\underset{\sim}{x})$

$$
=\sum_{i=1}^{p} \sum_{j=1}^{p} a_{i j} x_{i} x_{j}+\sum_{i=1}^{p} l_{i} x_{i}+c
$$

be the exponent of a multivariate. normal dist's pdt.
Note that

$$
Q^{*}(\underset{\sim}{x})={\underset{\sim}{x}}^{\prime} A{\underset{\sim}{x}}^{x}+{\underset{\sim}{x}}^{\prime} \ell+C
$$

Comparing; we get,

$$
A=I^{-1} \Rightarrow I=A^{-1}
$$

Theorem 7 :
If $x^{p \times 1} \sim N_{p}(\mu, I)$, then for a nos matrix p pop,

$$
P_{\sim}^{\prime} \times H^{\prime} p\left(P^{\prime} \underset{\sim}{c} p^{\prime} \Sigma P\right)
$$

proof: The port of x is..

$$
\begin{aligned}
f(x)=\frac{1}{(2 \pi)^{1 / 2} \sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)} \\
, x \in \mathbb{R}^{p} .
\end{aligned}
$$

Let $\underset{\sim}{y}=p^{\prime} \underset{\sim}{x}$.
Now, $\left|J\left(\frac{y}{\underline{x}}\right)\right|=||p||=\sqrt{\left|p^{\prime} p\right|}$
The pod of z is

$$
\begin{aligned}
& \left.g(\underset{\sim}{y})=\frac{1}{(\sqrt{2 \pi})^{\beta} \sqrt{|\Sigma|}} e^{-\frac{1}{2}\left\{\left(p^{\prime}\right)^{-1} y\right.}-\mu\right\}^{1} \Sigma^{-1}\left\{\left(p^{\prime}\right)^{-1} g-\mu\right\} \frac{1}{\sqrt{\mid P^{\prime} p}} \\
& =\frac{1}{(\sqrt{2 \pi})^{p} \sqrt{\left|p^{\prime} \Sigma P\right|}} e^{-\frac{1}{2}\left(y-p^{\prime} / 2\right)^{\prime} p^{-1} \Sigma^{-1}\left(p^{\prime}\right)^{-1}\left(y-P^{\prime} / \bar{s}\right) .} \\
& =\frac{1}{(\sqrt{2 \pi})^{p} \sqrt{\left|p^{\prime} \Sigma p\right|}} e^{-\frac{1}{2}\left(z-p^{\prime} \mu\right)^{\prime}\left(p^{\prime} \Sigma p\right)^{-1}\left(y-p^{\prime} \mu\right)} \\
& \therefore \quad \underset{\sim}{y} \sim N p\left(P^{\prime} \underset{\sim}{\sim}, P^{\prime} \Sigma P\right) .
\end{aligned}
$$

Moment generating function:
The mit of a pdimensional R.V. $\underset{\sim}{x}$ is defined as

$$
M_{\underset{\sim}{x}}(\underset{\sim}{t})=E\left(e^{t^{\prime} x}\right),
$$

provided it exists, where $\tilde{\sim}$ belongs' to a region containing the origin as an interior point.

Theorem 8:
If $\underset{\sim}{\sim} N_{p}(\underset{\sim}{\mu}, \Sigma)$, then the mot of $\underset{\sim}{x}$ is $M_{\sim}(\underset{\sim}{t})=e^{t^{\prime} \mu}+\frac{1}{2} t^{\prime} \Sigma_{\sim}^{t}$, where $\underset{\sim}{t}$ belongs to a region containing, the origin as an interior point.
proof: $M_{x}(t)=E\left(e^{t^{\prime} x}\right)$

$$
\begin{aligned}
& =\int_{R^{p}} e^{t^{\prime} x} \frac{1}{(2 \pi)^{1 / 2 / 2} \sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)} d x \\
& =\frac{1}{(2 \pi)^{\beta / 2} \sqrt{|\overline{1}|}} \int_{R^{k}} e^{-\frac{1}{2}\left\{x^{\prime} \Sigma^{-1} x-2 x^{\prime} \Sigma^{-1} \mu \sim \mu_{\sim}^{\prime} \Sigma^{-1} \mu-2 \tau_{\sim}^{t} x\right\}} d x \\
& =\frac{1}{(2 \pi)^{p / 2} \sqrt{|\Sigma|}} \int_{\mathbb{R} b} e^{-\frac{1}{2}\left\{x^{\prime} \Sigma^{-1} \underset{\sim}{x}-2 x^{\prime}\left(z^{-1}(\underline{c}+\Sigma t)+\mu^{\prime} \Sigma^{-1} \sim \sim\right\}\right.} d x \\
& =\frac{1}{(2 \pi)^{p / 2} \sqrt{|\Sigma|}} \int_{\mathbb{R}^{b}} e^{-\frac{1}{2}\left(\underset{\sim}{x}-\mu-\sum t\right)^{\prime} I^{-1}\left(x-\mu-\sum t\right)+t^{\prime}\left(\sim+1+\frac{t^{\prime} \tau}{2} \tau\right.} d x
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\because x^{\prime} \Sigma^{-1} \underset{\sim}{x}-2 \underset{\sim}{x} \Sigma^{-1}(\underset{\sim}{\mu}+\Sigma t)+{\underset{\sim}{n}}^{\prime} I^{-1} \mu\right.} \\
& ={\underset{\sim}{x}}^{\prime} \Sigma^{-1} x-2 \underset{\sim}{x} \Sigma^{-1}(\underline{\sim}+\Sigma t)+\left(\mu \sim \sim \sum t\right)^{\prime} \Sigma^{-1}(\underset{\sim}{\mu}+\Sigma t) \\
& +\mu^{\prime} \Sigma^{-1} \mu-(\mu+\Sigma t)^{\prime} \cdot \Sigma^{-1}(\mu+\Sigma t) \\
& =(\underset{\sim}{x}-\mu-\Sigma t)^{\prime} \Sigma^{-1}(x-\mu \sim \Sigma t)-\mu \Sigma^{-1} \Sigma t \\
& -t_{\sim}^{\prime} \Sigma \Sigma^{-1} \mu-t^{\prime} \Sigma \Sigma^{-1} \Sigma t
\end{aligned}
$$

$$
\begin{aligned}
& =e^{t^{\prime} \mu} \sim \frac{1}{2} t^{\prime} \Sigma t \underset{\sim}{\sim} \int_{\mathbb{R}} n_{p}(\underset{\sim}{x} \mid \underset{\sim}{\mu}+\Sigma \underset{\sim}{t}, \Sigma) d \underset{\sim}{x} \\
& \text { [where } \\
& =a^{t^{\prime} \mu+\frac{1}{2} t^{\prime} \Sigma t} \\
& x_{p}(x) \text { 公 } \\
& \text { 的ther 时 时 } \\
& \text { Np(} 2, ~ I)]
\end{aligned}
$$

Example 1：
Prove theorem 7 using mgf technique．
Hint：$M_{y}(t)=E\left(e^{t^{\prime} x}\right)$

$$
\begin{aligned}
& =E\left(e^{(P \stackrel{a}{\sim})^{\prime} \underset{\sim}{x}}\right) \\
& =E\left(e^{u^{\prime} \ddot{\approx}}\right) \quad, u=\rho \underset{\sim}{t} \\
& \because e^{t+u^{\prime} \mu}+\frac{1}{2}{\underset{\sim}{c}}^{\prime} \Sigma \underset{\sim}{u} \\
& \left.=e^{\stackrel{t^{\prime}}{\sim}\left(P^{\prime} \mu \sim\right.}\right)+\frac{1}{2} t_{\sim}^{\prime}\left(P^{\prime} \Sigma P\right) t
\end{aligned}
$$

Which is the mg ff of $N_{p}\left(P^{\prime} \mu, P^{\prime} \Sigma P\right)$ ．

Theorem 9:
Let $x^{p \times 1} \sim N_{p}(\mu, \Sigma)$ \& $B^{q \times p}(q \leq p)$ be a matrix of rank q.
Then, ${\underset{\sim}{y}}^{q \times 1}=B \underset{\sim}{x} \sim N q\left(B \underset{\sim}{\mu}, B \sum B^{T}\right)$
proof: $M_{z}\left(\frac{t}{\sim}\right)$.

$$
\begin{aligned}
& =E\left(e^{t^{\prime} x}\right) \\
& =E\left(e^{t^{\prime} E x}\right) \\
& =E\left(e^{\left(B_{\sim}^{\prime} t\right)^{\prime} x}\right) \\
& =E\left(e^{u^{\prime} \underline{\sim}}\right) \quad{\underset{\sim}{u}}^{p \times 1}={\underset{\sim}{B}}^{\prime} \underset{\sim}{t} \\
& =e^{u^{\prime} / \mu+\frac{1}{2} u^{\prime} \Sigma u} \\
& =e^{\left(B_{\tau}^{\prime}\right)^{\prime} \mu+\frac{1}{2}\left(B^{\prime} t\right)^{\prime} \Sigma\left(B_{\sim}^{\prime}\right)} \\
& \begin{array}{r}
=e^{t^{\prime}(B \mu)+\frac{1}{2} \underset{\sim}{t^{\prime}}\left(B \sum B^{\prime}\right) \frac{t}{\tau}} \text {, Which is the } \\
\text { mgr of } \left.N_{q}(8, \mu, 6 \Sigma)^{\prime \prime}\right)
\end{array}
\end{aligned}
$$

Hence by uniqueness of mat,

$$
\underset{\sim}{y} \sim N q\left(B \mu \mu, B \Sigma B^{T}\right) .
$$

Theorem 10:
If ${\underset{\sim}{\mu}}^{p \times 1} \sim N_{p}(\mu, \Sigma)$, then we can write $\underset{\sim}{x}=\underset{\sim}{\mu}+P \underline{\sim}$, where $P P^{-}=\sum \& \underset{\sim}{y}=\sim N_{p}\left(0, I_{p}\right)$.
proof: The pdf of x is

$$
f_{\underset{\sim}{x}}(\underset{\sim}{x})=\frac{1}{(2 \pi)^{1 / 2} \sqrt{|\Sigma|}} e^{-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\mu)}, x \in x^{x}
$$

Since \sum is pod., there exists a n.s. P semen that $P F^{\top}=\Sigma$.

Let $\quad \underset{\sim}{y}=P^{-1}(\underset{\sim}{x}-\underset{\sim}{\mu})$.
Note that $\left|J\left(\frac{x}{x}\right)\right|=\left|\left|P^{-1}\right|\right|=\sqrt{\left|\left(\rho^{-1}\right)^{\top}\right|\left|P^{-1}\right|}$

$$
\begin{aligned}
& =\sqrt{\left|\left(P p^{\top}\right)^{-1}\right|} \\
& =\sqrt{\left|\Sigma^{-1}\right|} \\
& =\frac{1}{\sqrt{|\Sigma|}} .
\end{aligned}
$$

The pdf of z is

Corollary:
If ${\underset{\sim}{x}}^{p \times 1} \sim N p(\mu, \Sigma)$, then

$$
(\underset{\sim}{x}-\underset{\sim}{\mu})^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\underset{\sim}{\mu}) \sim x_{p}^{2}
$$

proof: If $\underset{\sim}{\sim} \sim N_{p}(\mu, \Sigma)$ then we have $\underset{\sim}{x}-\mu=\underset{\sim}{P} \underset{\sim}{y}$ where $P P^{\prime}=\Sigma$

$$
\& \quad / \sim=\sim N_{p}\left(0, I_{p}\right)
$$

\therefore pot of y is

$$
\begin{aligned}
& \text { pdf of } \underset{\sim}{y} \text { is } \\
& g_{\underset{y}{y}}(\underset{\sim}{y})=\frac{1}{(2 \pi)^{p / 2}} e^{-\frac{1}{2} y_{2}^{\prime} y}=\frac{1}{(2 \pi)^{p / 2}} e^{-\frac{1}{2} \sum_{1}^{p} y_{i}^{2}}
\end{aligned}
$$

$$
\Leftrightarrow \quad y_{i} \stackrel{i i d}{\sim} N(0,1), i=1(1) p
$$

$$
\begin{aligned}
& \underset{\sim}{\underset{\sim}{y}}(\underset{\sim}{y})=\frac{1}{(2 \pi)^{p / 2} \sqrt{|\Sigma|}} e^{-\frac{1}{2}{\underset{\sim}{y}}^{\prime} p^{\prime}\left(p p^{\prime}\right)^{-1} p \underset{y}{x}} \cdot \sqrt{|\Sigma|} \\
& =\frac{1}{(2 \pi)^{\beta / 2}} e^{-\frac{1}{2} y_{\sim}^{\prime} y} \\
& \therefore \quad Z \sim N_{p}\left(\underset{\sim}{\sim}, I_{p}\right) \text {, where } \underset{\sim}{x}=\underset{\sim}{\mu}+P \underset{\sim}{y} \\
& \text { \& } \bar{L}=F F^{\top} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& (\underset{\sim}{x}-\mu)^{\prime} z^{-1}(\underset{\sim}{x}-\mu \sim) \\
= & {\underset{\sim}{y}}_{\prime}^{y} \\
= & \sum_{1}^{p} y_{i}^{2} \\
\sim & x^{2} p
\end{aligned}
$$

Let $\underset{\sim}{x} \sim N_{p}(\mu, \Sigma)$.
Consider the fo lowing partition

$$
{\underset{\sim}{x}}^{p \times 1}=\binom{{\underset{\sim}{x}}^{(1)^{p, x 1}}}{{\underset{\sim}{x}}^{(2)}},{\underset{\sim}{r}}^{p \times 1}=\binom{{\underset{\sim}{r}}^{(1)}}{{\underset{\sim}{r}}^{(2)}}
$$

$$
\text { \& } \begin{aligned}
\operatorname{Disp}(\underset{\sim}{x})=\Sigma^{p x p} & =\left(\begin{array}{ll}
\Sigma_{11}^{p 1 p_{1}} & \Sigma_{12} \\
\Sigma_{21}\left(=\Sigma_{12}^{\prime}\right) & \Sigma_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\operatorname{cov}\left(x_{\sim}^{(1)},{\underset{\sim}{x}}^{(1)}\right) & \operatorname{cov}\left({\underset{\sim}{x}}^{(1)},{\underset{\sim}{x}}^{(2)}\right) \\
\operatorname{cov}\left({\underset{\sim}{x}}^{(2)},{\underset{\sim}{x}}^{(1)}\right) & \operatorname{cov}\left(x_{i}^{(2)}, x^{(2)}\right)
\end{array}\right)
\end{aligned}
$$

Now, consider the following theorems-

Theorem 11:
If $\underset{\sim}{x} \sim N_{p}(\mu, \Sigma)$, then the necessary \& sufficient condition for ${\underset{\sim}{x}}^{(1)} \&{\underset{\sim}{x}}^{(2)}$ to be incept is that $\Sigma_{12}=0$.
proof: Let $\Sigma_{12}=\operatorname{cov}\left(x^{(1)},{\underset{\sim}{x}}^{(2)}\right)=0$
Then the pdf of ${\underset{\sim}{x}}^{p x)}$ is

$$
\begin{aligned}
& n_{p}(\underset{\sim}{x} \downarrow \mu, \Sigma) \\
= & \frac{1}{(2 \pi)^{p / 2} \sqrt{|\Sigma|}} e^{-\frac{1}{2}(\underset{\sim}{x}-\mu)^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\mu)}, \quad \underset{\sim}{x} \in \mathbb{R}^{p}
\end{aligned}
$$

Now, $\Sigma=\left(\begin{array}{cc}\Sigma_{11} & 0 \\ 0^{\top} & \Sigma_{22}\end{array}\right)$
Hence $|\Sigma|=\left|\Sigma_{11}\right|\left|\Sigma_{22}\right|$
\& $\Sigma^{-1}=\left(\begin{array}{cc}\Sigma_{11}^{-1} & 0 \\ 0 & \Sigma_{22}^{-1}\end{array}\right)$
vow, the exponent becomes

$$
\begin{aligned}
& (\underset{\sim}{x}-\mu)^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\mu) \\
& =\binom{{\underset{\sim}{x}}^{(1)}-\mu_{\sim}^{(1)}}{{\underset{\sim}{x}}^{(2)}-\mu_{\sim}^{(2)}}^{\prime}\left(\begin{array}{cc}
\Sigma_{11}^{-1} & 0 \\
0 & \Sigma_{22}^{-1}
\end{array}\right)\binom{{\underset{\sim}{x}}^{(1)}-\mu_{\sim}^{(1)}}{{\underset{\sim}{x}}^{(0)}-\mu_{\sim}^{(2)}} \\
& =\left({\underset{\sim}{x}}^{(1)}-\mu_{\sim}^{(1)}\right)^{1} \Sigma_{11}^{-1}\left({\underset{\sim}{x}}_{(1)}^{\left(\mu_{\sim}^{(1)}\right.}\right)+\left({\underset{\sim}{x}}^{(2)}-\mu_{n}^{(2)}\right)^{\prime} \Sigma_{22}^{-1}\left({\underset{\sim}{x}}^{(2)}-\mu_{n}^{(2)}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& n(x \mid \mu \sim, \Sigma)=\frac{1}{(2 \pi)^{b / 2} \sqrt{\left|\Sigma_{i 1}\right|}} e^{-\frac{1}{2}\left(x^{(1)}-\mu_{n}^{(1)}\right)^{\prime} z_{11}^{-1}\left(x_{\sim}^{(1)}-\mu_{\sim}^{(1)}\right)} \\
& \times \frac{1}{(2 \pi)^{\frac{k-p}{2}} \cdot \sqrt{1 \Gamma_{\mu 1}}} e^{-\frac{1}{2}\left(x_{\sim}^{(2)}-\mu_{2}^{(2)}\right)^{\prime} \Sigma_{22}^{-1}\left({\underset{\sim}{2}}_{(2)}-\mu_{2}^{(2)}\right)}
\end{aligned}
$$

Hence ${\underset{\sim}{x}}^{(1)},{\underset{\sim}{(2)}}^{(a r e}$ incept
Note that ${\underset{\sim}{x}}^{(1)} \sim N_{p_{1}}\left(\right.$ 四 $\left.\mu_{\sim}^{(1)}, \Sigma_{11}\right)$

$$
\&{\underset{\sim}{(2)}}_{\sim}^{\sim} N_{p-p_{1}}\left(\mu_{\sim}^{(2)}, \Sigma_{22}\right)
$$

Let ${\underset{\sim}{x}}^{(1)} \&{\underset{\sim}{x}}^{(2)}$ are incept
$\left[\Leftrightarrow x_{i} \& x_{j}\right.$ are incept, $\left.i=\mid(1) p_{1}, j=p_{1+1}(1) p.\right] ?$

$$
\begin{aligned}
& \operatorname{Cov}\left(x_{i}, x_{j}\right)=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right] \quad, \quad, i=1\left(n_{p}\right) \\
& =\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) f\left(x_{1}, \ldots, x_{p}\right) d x_{1} \ldots d x_{p} \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) f_{1}\left(x_{1}, \cdots, x_{p}\right) f_{2}\left(x_{p_{1}+1}, \cdots, x_{p}\right) d x_{1} \cdots d x_{p} \\
& =\left\{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left(x_{i}-\mu_{i}\right) f_{1}\left(x_{1}, \ldots, x_{p_{1}}\right) d x_{1} \cdots d x_{p_{1}}\right\} \\
& \times\left\{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{a}\left(x_{j}-l_{j}\right) f_{2}\left(x_{p_{1}+1} \cdots, x_{p}\right) d x_{h+1} \cdots d x_{p}\right\} \\
& =\left\{E\left(x_{i}\right)-\mu_{i}\right\}\left\{E\left(x_{j}\right)-\mu_{j}\right\} \\
& =0 \\
& \left.\therefore \sigma_{i j}=0 \quad \forall i=1(1) p_{1}\right) j=\bar{p}_{i+1}(1) p . \\
& \Rightarrow \Sigma_{12}=\Sigma_{21}^{\top}=10 \text {. }
\end{aligned}
$$

Theorem 12:
If ${\underset{\sim}{x}}^{p \times 1} \sim N_{p}(\underset{\sim}{\mu}, \Sigma)$, then any subvectas is abo a multivariate normal with mean vector \& chispersion matrix obtained by taking the corresponding components
of $\mu \& \sum$. In particular,

$$
{\underset{\sim}{x}}^{(2)} \sim N_{p-p_{1}}\left(\mu^{(2)} \Sigma_{22}\right) .
$$

proof: [From -the previous theorem, we have following facts:
If $\underset{\sim}{\sim} \sim N_{p}(\underset{\sim}{\mu}, \Sigma)$, then.

$$
{\underset{\sim}{x}}_{\sim}^{(1)} \sim N_{1}\left(\mu_{\sim}^{(1)}, \Sigma_{11}\right)
$$

又 $\quad{\underset{\sim}{x}}^{(2)} \sim N p_{1}\left({\underset{\sim}{\mu}}^{(2)}, \Sigma_{22}\right) \quad$ if $\left.\Sigma_{12}=0\right]$
Consider the tramformation

$$
\begin{aligned}
& {\underset{\sim}{ }}^{(1)}={\underset{\sim}{x}}^{(1)}+M{\underset{\sim}{x}}^{(2)} \\
& {\underset{\sim}{y}}^{(2)}={\underset{\sim}{x}}^{(2)}
\end{aligned}
$$

Where M is such that

$$
\begin{aligned}
& \operatorname{cov}\left(x^{(1)}, y^{(2)}\right)=0 \text {. } \\
& \Rightarrow \quad E\left[{\underset{\sim}{y}}^{(1)}-E\left(y^{(1)}\right)\right]\left[{\underset{\sim}{2}}^{(2)}-E\left(y^{(2)}\right)\right]^{i}=0 \\
& \Rightarrow E\left[\left({\underset{\sim}{x}}^{(1)}-\mu_{\sim}^{(1)}\right)+M\left({\underset{\sim}{x}}^{(2)}-\mu_{\sim}^{(2)}\right)\right]\left[{\underset{\sim}{x}}^{(2)}-\mu_{\sim}^{(2)}\right]^{\prime}=0 \\
& \Rightarrow E\left[{\underset{\sim}{x}}^{(1)}-{\underset{\sim}{r}}^{(1)}\right]\left[{\underset{\sim}{x}}^{(2)}-\mu_{\sim}^{(2)}\right]^{\prime} \\
& +M E\left[x^{(2)}-\mu^{(2)}\right]\left[x^{(2)}-\mu^{(2)}\right]^{\prime}=0 \\
& \Rightarrow \quad \operatorname{cov}\left({\underset{i}{x}}_{(1)}^{x} \cdot{\underset{\sim}{x}}_{(2)}\right)+M \operatorname{cov}\left(x_{i}^{(2)},{\underset{\sim}{x}}^{(2)}\right)=0 \\
& \Rightarrow \quad \sum_{12}+M I_{22}=0 \\
& \Rightarrow \quad M=-\Sigma_{12} \Sigma_{22}^{-1}
\end{aligned}
$$

Hence the trans formation becomes

$$
\begin{aligned}
& {\underset{\sim}{y}}^{(1)}={\underset{\sim}{x}}^{(1)}-\sum_{12} \Sigma_{22}^{-1}{\underset{\sim}{x}}^{(2)} \\
& {\underset{\sim}{y}}^{(2)}={\underset{\sim}{x}}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \underset{\sim}{y}=\left(\begin{array}{c}
{\underset{y}{1}}_{(1)}^{\underset{\sim}{y}}
\end{array}\right)=\left(\begin{array}{cc}
I_{p_{1}} & -\Sigma_{12} \Sigma_{22}^{-1} \\
0 & I_{p-p_{1}}
\end{array}\right)\binom{{\underset{\sim}{x}}^{(1)}}{\sim_{\sim}^{(2)}} \\
& \Leftrightarrow \underset{\sim}{y}=P \underset{\sim}{x} \text {, say, where } P=\left(\begin{array}{cc}
I_{p} & -\Sigma_{12} \Sigma_{22}^{-1} \\
0 & I_{p-p_{1}}
\end{array}\right) \text { is. }
\end{aligned}
$$

Hence by theorem 7,

$$
\left.{\underset{\sim}{p x \mid}}_{p=p \underset{\sim}{x} \sim N_{p}\left(P \mu, P \Sigma p^{\prime}\right)}\right)
$$

$$
\begin{aligned}
& \text { Note that } \\
& P \mu \sim=\left(\begin{array}{cc}
I_{p 1} & -\Sigma_{12} \Sigma_{22}^{-1} \\
0 & I_{p-p_{1}}
\end{array}\right)\binom{\underset{\sim}{\mu}}{\underset{\sim}{\mu}(2)}=\binom{\underset{\sim}{\mu}-\Sigma_{12} \Sigma_{22}^{-1}{\underset{\sim}{r}}^{(2)}}{{\underset{\sim}{\mu}}^{(2)}} \\
& \text { \&. } P \Sigma P^{\prime}=\left(\begin{array}{cc}
I_{p} & -\Sigma_{12} \Sigma_{22}^{-1} \\
0 & I_{p-h}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\left(\begin{array}{cc}
I_{p} & -\Sigma_{12} \Sigma_{22}^{-1} \\
0 & I_{p-p_{1}}
\end{array}\right)^{\prime} \\
& =\left(\begin{array}{cc}
\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{22} & 0 \\
0 & \Sigma_{22}
\end{array}\right)
\end{aligned}
$$

Hence, $\binom{\chi^{(1)}}{{\underset{\sim}{2}}_{(2)}^{2}} \sim N_{p}\left(\binom{\mu_{\sim}^{(1)}-\Sigma_{12} \Sigma_{22}^{-1} \mu_{\sim}^{(2)}}{\mu_{\sim}^{(2)}},\left(\begin{array}{cc}\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} & 0 \\ 0 & \Sigma_{22}\end{array}\right)\right.$
Here, $\operatorname{cov}\left({\underset{\sim}{y}}^{(1)},{\underset{\sim}{y}}^{(2)}\right)=0$
Hence, we have

$$
{\underset{\sim}{y}}^{(2)}={\underset{\sim}{x}}^{(2)} \sim N_{p-p_{1}}\left({\underset{\sim}{\mu}}^{(2)}, \Sigma_{22}\right) .
$$

Conchitional disks:
Theorem 13:
If $X \sim N_{p}(\underset{\sim}{\sim}, \Sigma)$, then the conditional distr of $x^{(1)}$ given $x_{\sim}^{(2)}=x_{x}^{(2)}$ is

$$
N_{p_{1}}\left(\mu_{\sim}^{(j)}+\Sigma_{12 \cdot} \Sigma_{22}^{-1}\left({\underset{\sim}{(2)}}_{\left(\mu_{\sim}^{(2 j}\right)}, \Sigma_{1 \mid \cdot 2}\right)\right.
$$

Where $\Sigma_{11 \cdot 2}-\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$
proof: Consider the following transformation-

$$
\begin{aligned}
& z^{(1)}={\underset{\sim}{x}}^{(1)}-\Sigma_{12} \Sigma_{22}^{-1}{\underset{\sim}{x}}^{(2)} \\
& {\underset{z}{ }}_{(2)}={\underset{\sim}{x}}^{(2)}
\end{aligned}
$$

Then $\binom{\underset{\sim}{y^{(1)}}}{\underset{\sim}{y}(2)}=\sim N_{p}\left[\binom{{\underset{\sim}{\mu}}_{(1)} \Sigma_{12} \Sigma_{22}^{-1} \tilde{\sim}^{(2)}}{{\underset{\sim}{2}}^{(2)}},\left(\begin{array}{cc}\Sigma_{11 \cdot 2} & 0 \\ 0 & \Sigma_{22}\end{array}\right)\right]$
Hence the pdf of $\binom{y^{(1)}}{y^{(2)}}$ is

$$
\begin{aligned}
& n\left(y^{(1)}, y^{(2)}\right) \\
& =n\left(y^{(1)} \mid{\underset{\sim}{\mu}}^{(1)} \Sigma_{12} \Sigma_{22}^{-1} \mu_{\sim}^{(2)}, \Sigma_{11 \cdot 2}\right) n\left(\underset{\sim}{y}(2) \mid \mu_{\sim}^{(2)}, \Sigma_{22}\right) \\
& {\left[\because \mathcal{z}^{(1)} \sim N_{p_{1}}\left(\mu_{\sim}^{(1)}-\Sigma_{12} \Sigma_{22}^{-1}{\underset{\sim}{\mu}}^{(2)}, \Sigma_{11 \cdot 2}\right)\right.} \\
& \text { \& } \underset{\sim}{y}(2) \sim N p-p_{1}\left({\underset{\sim}{n}}^{(2)}, \Sigma_{22}\right) \text { ineptly, } \\
& \text { as } \left.\operatorname{cov}\left(y^{(1)},{\underset{\sim}{c}}^{(2)}\right)=0\right]
\end{aligned}
$$

The pdf of $\left(\begin{array}{l}{\underset{x}{1}}_{(1)}^{{\underset{\sim}{2}}^{(2)}}\end{array}\right)$ will be obtained from (*) by replacing $y^{(1)}$ by $x^{(1)}-\sum_{12} \Sigma_{22}^{-1} x^{(2)} \&$ $y^{(2)}$ by $x^{(2)}$ since the Jacobian of the tromatormation is unity. $\left[J\left(\frac{y}{x}\right)\left|=\| \begin{array}{cc}I_{p_{1}} & -\Sigma_{12} \Sigma_{22}^{-1} \\ 0 & I_{p-p_{1}}\end{array}\right|\right.$ $=1]$.

Hence the pat f of $\binom{x^{(1)}}{x^{(2)}}$ is

$$
\begin{aligned}
& n\left({\underset{\sim}{x}}^{(1)},{\underset{\sim}{x}}^{(2)}\right) \\
= & n\left({\underset{\sim}{x}}^{(1)}-\Sigma_{12} \Sigma_{22}^{-1}{\underset{\sim}{x}}^{(2)} \mid{\underset{\sim}{p}}_{\sim}^{(1)}-\Sigma_{12} \Sigma_{22}^{-1}{\underset{\sim}{r}}^{(2)}, \Sigma_{11 \cdot 2}\right) \\
\times & n\left({\underset{\sim}{x}}^{(2)} \mid{\underset{\sim}{r}}^{(2)}, \Sigma_{22}\right) .
\end{aligned}
$$

Hence the conditional pdf of $x^{(1)}$ given $x^{(2)}=x^{(2)}$ is

$$
\begin{aligned}
& f_{\underset{\sim}{(1)} \mid{\underset{\sim}{x}}_{(1)}={\underset{\sim}{x}}^{(2)}\left({\underset{\sim}{x}}^{(1)}\right), ~\left(x^{(1)} x^{(2)}\right)} \\
& \left.=\frac{n\left({\underset{\sim}{x}}^{(1)},{\underset{\sim}{x}}^{(2)}\right)}{n\left({\underset{\sim}{x}}^{(2)} \mid \sim_{\sim}^{r}\right.}{ }^{(2)}, \Sigma_{22}\right) \\
& =n\left({\underset{\sim}{x}}^{(1)}-\Sigma_{12} \Sigma_{22}^{-1}{\underset{\sim}{x}}^{(2)} \mid{\underset{\sim}{\mu}}^{(2)}-\Sigma_{12} \Sigma_{22}^{-1} \tilde{v}^{(2)}, \Sigma_{11 \cdot 2}\right)
\end{aligned}
$$

Hence,

$$
{\underset{\sim}{x}}^{(1)} \mid{\underset{\sim}{x}}^{(2)}={\underset{\sim}{x}}^{(2)} \sim N_{p}\left({\underset{\sim}{r}}_{(1)}^{(1)}+\Sigma_{12} \Sigma_{22}^{-1}\left({\underset{\sim}{x}}_{\sim}^{(2)}-\mu^{(2)}\right), \sum_{11 \cdot 2}\right)
$$

Remarks:
(i) Note that

$$
E\left({\underset{\sim}{x}}^{(1)} \mid \underset{\sim}{x}{\underset{\sim}{(2)}}_{x}^{x}(2)\right)={\underset{\sim}{r}}^{(1)}+\Sigma_{12} \Sigma_{22}^{-1}\left({\underset{\sim}{x}}^{(2)}-\mu_{\sim}^{(2)}\right), a
$$

linear fo of $x^{(2)}$.
Hence the regression of ${\underset{\sim}{x}}^{(1)}$ on $x_{x^{(2)}}$ is in gar.
Also, the dispersion matrix of $\underset{\sim}{x}{ }^{(1)}$ given $\underset{\sim}{x^{(2)}}=\underset{\sim}{x^{(2)}}$ is $\Sigma_{11 \cdot 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$ which is

Incept of $x^{(2)}$.
Hence the conditional distr of $x_{\sim}^{(1)}$ given $\underset{\sim}{x}(2)$ is homoscedastic.
Problems:
(4) Suppose $\underset{\sim}{x}=\left(x_{1}, x_{2}, x_{3}\right) \sim N_{3}(0, \Sigma)$.
$\left[\begin{array}{l}1993 \\ 39 \\ 39\end{array}\right.$ Where $\Sigma=\left(\begin{array}{ccc}1 & p & \rho^{2} \\ \rho & 1 & \rho \\ \rho^{2} & p & 1\end{array}\right)$
S.T for any $c>0$,

$$
\begin{aligned}
& P\left[\left(x_{2}^{2}+c\right) p^{2}-2\left(x_{1} x_{2}+x_{2} x_{3}\right) \rho+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-c \leqslant 0\right] \\
= & \int_{0}^{c} \frac{1}{\sqrt{2 \pi}} e^{-y / 2} y^{1 / 2} d y
\end{aligned}
$$

Son: Since $\underset{\sim}{x} \sim N_{3}(0, I)$,

$$
(x-\underset{\sim}{x})^{\prime} \Sigma^{-1}(\underset{\sim}{x}-\underset{\sim}{x}) \sim x_{3}^{2} .
$$

Hence $P\left[x^{\prime} \Sigma^{-1} \gtrsim \leq c\right]=\int_{0}^{c} f_{x_{3}^{2}}(y) d y$

$$
\begin{aligned}
& \text { Now, }{\underset{\sim}{x}}^{\prime} \Sigma^{-1} \underset{\sim}{x} \leq c \quad=\int_{0}^{0} \frac{1}{\sqrt{2 \pi}} e^{-y / 2} y^{1 / 2} d y \\
& \Leftrightarrow\left(x_{2}^{2}+c\right) p^{2}-2\left(x_{1} x_{2}+x_{2} x_{3}\right) p+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-c
\end{aligned}
$$ $\leqslant 0$.

(5) Suppose $\left(x_{1}, \cdots, x_{p}\right)^{\top} \sim N_{p}(\mu, I)$, where

$$
\underset{\sim}{\mu}=(1,1, \ldots, 1)^{\top}, \Sigma=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 2 & 2 & 2 & \cdots & 2 & 2 \\
1 & 2 & 3 & 3 & \cdots & 3 & 3 \\
1 & 2 & 3 & 4 & \cdots & 4 & 4 \\
\vdots & \vdots & \vdots & & \cdots & \vdots \\
1 & 2 & 3 & 4 & \cdots & p-1 & p
\end{array}\right)
$$

Themes s.t. $\quad Q=\left(x_{2}-x_{1}\right)^{2}+\left(x_{3}-x_{2}\right)^{2}+\cdots+\left(x_{p}-x_{p-1}\right)^{2}$ has a chi-square chis.
Sol: Let $y_{i}=x_{i}-x_{i-1}, i=2(1) p$.

$$
\begin{aligned}
\therefore{\underset{\sim}{y}}^{p-1 \times 1} & =\left(\begin{array}{c}
y_{2} \\
y_{3} \\
\vdots \\
y_{p}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
-1 & 1 & 0 & 0 & \cdots & 0 \\
0 \\
0 & -1 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
\vdots \\
0 & 0 & 0 & 0 & \cdots & -1 \\
1
\end{array}\right)^{p-1 \times p}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{p}
\end{array}\right) \\
& =B^{\overrightarrow{p-1} \times p}{\underset{\sim}{x}}^{p \times 1}, \text { say. }
\end{aligned}
$$

Note that $P\left(B \beta^{[-1 \times p}\right)=p-1 \quad[P(A): \operatorname{rank} \underset{\text { of } A]}{ }$
Hence,

$$
\left.\underset{\sim}{y}=B \underset{\sim}{x} \sim N_{p-1}\left(B \mu, B \sum B^{T}\right) \quad \text { [Theorem } 9\right]
$$

It can be shown that

$$
\begin{aligned}
& B \mu=\underset{\sim}{\sim} \\
& B \Sigma B^{T}=I_{p-1}
\end{aligned}
$$

Hence, $y \sim N_{p-1}\left(0, I_{p-1}\right)$
\Rightarrow. $Y_{q}, y_{3}, \ldots, y_{p \in ⿴}$ are lid $N_{1}(0,1)$

$$
\Rightarrow \quad Q=\sum_{i=2}^{p} y_{i}^{2} \sim x^{2} p-1
$$

Theorem 14:

$$
{\underset{\sim}{x}}^{p \times 1} \sim N_{p}(\mu, \Sigma) \text { if }{\underset{\sim}{r}}_{\sim}^{\prime} \underset{\sim}{x} \sim N_{1}\left(l_{\sim}^{\prime} \mu \mu, l_{\sim}^{\prime} \Sigma{\underset{\sim}{x}}_{\sim}^{l}\right) \forall \ell_{\sim}^{p \times 1} \in \mathbb{R}^{p}
$$

proof: If: Let $\underset{\sim}{l^{\prime} x} \sim N_{1}\left(l_{\sim}^{\prime} / \underset{\sim}{\sim}, \ell_{\sim}^{\prime} \Sigma l\right)$
Then the mod of $\ell_{\sim}^{\prime} \underset{\sim}{x}$ is

$$
\begin{aligned}
& E\left(e^{t\left(l^{\prime} x\right)}\right) \\
= & e^{t\left(l_{\sim}^{\prime} \mu\right)+\frac{1}{2} t^{2}\left(l^{\prime} \Sigma l\right)}
\end{aligned}
$$

Putting $t=1$,

$$
E\left(e^{l^{\prime} x}\right)=e^{\ell^{\prime} / \frac{h}{2}+\frac{1}{2}\left(l^{\prime} \Sigma l\right)} \forall \underset{\sim}{l} .
$$

\Leftrightarrow The maJ of $\underset{\sim}{x}$

$$
\begin{aligned}
& =e^{\frac{l}{\sim} \tilde{r}+\frac{1}{2} \ell^{\prime} \Sigma l} \\
& =m g d \text { of } N_{p}(\mu, \Sigma) .
\end{aligned}
$$

By uniqueness property of mot,

$$
\underset{\sim}{x} \sim N_{p}(\mu, \Sigma)
$$

Only y: Let $\underset{\sim}{\sim} \sim N_{p}(\mu, \Sigma)$.
Consider a vector $k \underset{\sim}{t}$. Where k is a constant.
The mg y of $\underset{\sim}{x}$ is

$$
\begin{aligned}
& E\left(e^{(k t)^{\prime} x}\right) \\
& =e^{(k t)^{\prime} \mu} \sim \frac{1}{2}(k \underset{\sim}{t})^{\prime} \Sigma(k t) \quad \forall \underset{\sim}{t} \in \mathbb{R}^{p} . \\
& \left.E\left(e^{k\left(t^{\prime} x\right)}\right)=e^{k\left(t^{\prime} / \sim\right.}\right)+\frac{1}{2} k^{2}\left(t_{\sim}^{\prime} \sum t\right) \\
& \Leftrightarrow \text { maJ of } \underset{\sim}{t^{\prime}} \underset{\sim}{x}=e^{k\left(t_{\sim}^{\prime}(\underset{\sim}{r})+\frac{1}{2} k^{2}\left({\underset{\sim}{v}}^{\prime} \Sigma t\right)\right.} \forall \underset{\sim}{t} \in R^{p} \\
& =m g f \text { of } N_{1}\left({\underset{\sim}{c}}^{\prime} \mu, t^{\prime} \Sigma t\right)
\end{aligned}
$$

Hence $\underset{\sim}{t^{\prime}} \underset{\sim}{x} \sim N_{1}\left(t_{\sim}^{\prime} \sim \sim, t_{\sim}^{\prime} \Sigma t\right) \quad v t \in \mathbb{R}^{p}$.

Multiple \& Partial Correl "m Coeffs:
The regression of $x^{(1)}{ }_{n}^{\text {on }} x^{(2)}$ is

$$
\begin{aligned}
& E\left({\underset{\sim}{x}}^{(1)} \mid{\underset{\sim}{(2)}}_{(22}^{\sim}\right. \\
= & \mu_{\sim}^{(1)}+\sum_{12} \sum_{22}^{-1}\left({\underset{\sim}{x}}_{(2)}-\mu_{\sim}^{(2)}\right)
\end{aligned}
$$

Define the residual variables by

$$
x_{\sim} \cdot 2=x^{(1)} A{\underset{\sim}{x}}^{(1)}-\mu_{\sim}^{(1)}-\Sigma_{12} \Sigma_{22}^{-1}\left({\underset{\sim}{x}}^{(2)}-\mu_{\sim}^{(2)}\right)
$$

Note that $E\left(X_{1} \cdot 2\right)=\underset{\sim}{0}$ \&

$$
\begin{aligned}
& E\left[\left(x_{\sim}^{(2)}-\mu_{\sim}^{(2)}\right){\underset{\sim}{x}}_{1.2}^{\prime}\right] \\
= & E\left[\left({\underset{\sim}{x}}^{(2)}-\mu_{\sim}^{(2)}\right)\left\{\left(x^{(1)}-\mu_{\sim}^{(1)}\right)-\Sigma_{12} \Sigma_{22}^{-1}\left(\sim_{\sim}^{(2)}-\mu_{\sim}^{(2)}\right)\right\}^{\top}\right] \\
= & \Sigma_{21}-\Sigma_{22} \Sigma_{22}^{-1} \Sigma_{21}=0
\end{aligned}
$$

ie the residual variables are uncorrelated with the fixed set variables.
Again, the covariance matrix of $\underset{\sim}{x_{1.2}}$ is

$$
\begin{aligned}
& E\left(\underset{1 \cdot 2}{x_{1}}{\underset{\sim}{1} \cdot 2}_{\prime}^{\prime}\right) \\
= & E\left[\left\{x^{(1)}-\mu_{\sim}^{(1)}-\Sigma_{12} \Sigma_{22}^{-1}\left({\underset{\sim}{x}}_{\sim}^{(2)}-{\underset{\sim}{\mu}}^{(2)}\right)\right\} \underset{\sim}{x} \cdot 1 \cdot 2\right]
\end{aligned}
$$

$=E\left[\left({\underset{\sim}{x}}^{(1)}-\mu_{n}^{(1)}\right){\underset{\sim}{1}}_{1.2}^{\top}\right]$ since the resichat. are uncorrelated with ${\underset{\sim}{(2)}}^{(2)}$.

$$
=E\left[\left({\underset{\sim}{x}}^{(1)}-{\underset{\sim}{\mu}}^{(1)}\right)\left\{{\underset{\sim}{x}}^{(1)}-\mu_{\sim}^{(1)}-\sum_{12} \Sigma_{22}^{-1}\left({\underset{\sim}{x}}^{(2)}-{\underset{\sim}{\mu}}^{(2)}\right)\right\}\right]
$$

$$
=\Sigma_{11}-\dot{\Sigma}_{12} \Sigma_{22}^{-1} \Sigma_{21}=\Sigma_{11 \cdot 2}
$$

= covariance matrix of the conditional clishi of $x^{(1)}$ given $x^{(2)}$.
Hence the elements of the covariance matrix of the of the conditional dist
of ${\underset{\sim}{x}}^{(1)}$ given ${\underset{\sim}{x}}^{(2)}$ are the partial variances \& covariances.
Let the $(i, j)^{\text {th }}$ element of

$$
\Sigma_{11 \cdot 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
$$

be denoted by $\sigma_{i j} \cdot p_{1+1} \cdots p$.
Then the partial correl coif bet ${ }^{n} x_{i} \& x_{j}$ with all the members of the $2^{\text {nd }}$ set held constant is

$$
\rho_{i j} \cdot p_{1}+\cdots p=\frac{\sigma_{i j \cdot} \cdot p_{i+1} \cdots p}{\sqrt{\sigma_{i i \cdot} \cdot p_{i j 1} \cdots p} \sqrt{\sigma_{i j} \cdot p_{1+1} \cdots p}}, \quad i, j=1(11 p,
$$

Note that $E\left(x^{(1)} \mid \underset{\sim}{x}{ }^{(2)}={\underset{\sim}{x}}^{(2)}\right)$

$$
=\mu_{n}^{(i)}+\Sigma_{12} \Sigma_{22}^{-1}\left({\underset{\sim}{x}}^{(2)}-\mu_{\sim}^{(2)}\right)
$$

Consider the component $x_{i}, i \in\{1,2, \cdots \beta\}$,

$$
E\left(x_{i} \mid{\underset{\sim}{x}}^{(2)}={\underset{\sim}{x}}^{(2)}\right)=\alpha+\underset{\sim}{\beta}{\underset{\sim}{x}}^{(2)}
$$

where
$\beta_{\sim}^{\prime}=\sigma_{(i)}^{\prime} \Sigma_{22}^{-1}$ where $\nabla_{i)}^{\prime}$ is the it row of Σ_{12}

$$
\text { Z } \alpha=\mu_{i}-\beta^{\prime} \mu_{\sim}^{(2)}
$$

The multiple comet corf

$$
\begin{aligned}
& \rho_{i} \cdot p_{1 i+1}^{-1} \cdots p=\sqrt{\frac{\beta^{\prime} \Sigma_{22,} \beta_{\sim}}{\sigma_{i i}}}=\sqrt{\frac{\nabla^{\prime}(i) \Sigma_{22}^{-1} \sigma_{(i)}}{\sigma_{i i}}} \\
& \Rightarrow 1-\rho_{i \cdot-\overline{p i+1} \ldots p}^{2}=\frac{\sigma_{i j}-\sigma_{-(i)}^{\prime} \sum_{22}^{-1} \sigma_{(i)}}{\sigma_{i i}} \\
& =\frac{\left|\Sigma^{*}\right|}{\nabla_{i i}\left|\Sigma_{22}\right|}
\end{aligned}
$$

where $\Sigma^{*}=\left(\begin{array}{ll}\sigma_{i i} & {\underset{\sim}{\sigma}}_{\prime}^{\prime} \\ \sigma_{i j} & \Sigma_{2}\end{array}\right)$

Problems
(6) Let $\underset{\sim}{\sim} N_{p}\left(0, \sigma^{2} I_{p}\right)$ and $p_{1}^{m \times p}$ is a matrix such that $P_{1} P_{1}^{\top}=I_{m}$, then show that $\underset{\sim}{y}=P_{1} \underset{\sim}{x} \sim N_{m}\left(0, \sigma^{2} I_{m}\right)$ is indeptly chistd with $\frac{1}{\sigma^{2}}\left({\underset{\sim}{x}}^{\prime} \underset{\sim}{x}-x^{\prime} \underset{\sim}{y}\right) \sim x_{p-m}^{2}$.
Soln: Note that
$P_{1} P_{1}{ }^{\top}=I_{m}$, here $P_{1}^{m \times p}$ is a semi--orthogonal matrix.
Hence we can find $P_{2}^{p-m \times p}$ such that $P P^{T}=I p$ where $p p \times p=\binom{P_{1}}{P_{2}}$
Let $\underset{\sim}{z}=P \underset{\sim}{x}=\binom{P_{1}}{P_{2}} \underset{\sim}{x}=\binom{P_{1} \underset{\sim}{x}}{P_{2} \underset{\sim}{x}}=\binom{\underset{\sim}{w}}{\underset{\sim}{w}} \cdot \underset{\sim}{\underset{\sim}{p}}$. $=\stackrel{W}{P_{2}} \underset{\sim}{x}$.

Since P is $n \cdot s$,

$$
\begin{aligned}
& \underset{\sim}{z}=P \underset{\sim}{x} \sim N_{p}\left(\underset{\sim}{0}, \sigma^{2} I_{p}\right) \\
\text { le } & \left(\begin{array}{l}
\underset{\sim}{\underset{\sim}{\sim}}
\end{array}\right) \sim N_{p}\left(\underset{\sim}{0}, \sigma^{2} I_{p}\right) \\
\Rightarrow & {\underset{\sim}{y}}^{m \times 1} \sim N_{m}\left(\underset{\sim}{0}, \sigma^{2} I_{m}\right)
\end{aligned}
$$

\& $\underset{\sim}{\underset{\sim}{\sim}} \sim N_{p-m}\left(0 ; \sigma^{2} I_{p-m}\right)$ indeptly.
Now, ${\underset{\sim}{z}}^{\prime} \underset{\sim}{x}={\underset{\sim}{x}}^{x^{\prime} p} \underset{\sim}{x}={\underset{\sim}{x}}^{\prime} \underset{\sim}{x}$

$$
\left.\left.\begin{array}{rl}
\Rightarrow{\underset{\sim}{x}}^{\prime} \underset{\sim}{x}=z^{\prime} z & =\binom{\underset{\sim}{w}}{\sim}^{\prime}(\underset{\sim}{\underset{\sim}{w}}
\end{array}\right) \quad \begin{array}{rl}
y^{\prime} & {\underset{\sim}{w}}^{\prime}
\end{array}\right)\binom{\underset{\sim}{w}}{\underset{\sim}{w}} .
$$

Since $\quad \underset{\sim}{\sim} \sim N_{p-m}\left(\underset{\sim}{0}, \dot{j}^{2} I_{p-m}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{w^{\prime} w}{\sigma^{2}} \sim x_{p-m}^{2} \\
& \Rightarrow \frac{1}{\sigma^{2}}\left(x_{\sim}^{\prime} x-y^{\prime} x\right)=\frac{w^{\prime} y}{\sigma^{2}} \sim x^{2}
\end{aligned}
$$

Which is ineptly chistd with

$$
\underline{y} \sim N_{m}\left(0, \nabla^{2} I m\right)
$$

(7) Let $Y_{\alpha} \sim N p\left(a_{\alpha} \mu, \Sigma\right), \alpha=1(1) n$ indeptly. ST. $Q=\sum_{\alpha=1}^{n}{\underset{\sim}{\alpha}}_{\alpha}^{y_{\alpha}^{\prime}}-{\underset{\sim}{z}}^{\prime} z_{\sim}^{\prime} \cdot \& \quad \underset{\sim}{z} z^{\prime}$ are indeptly distd where $z=\sum_{\alpha=1}^{n}\left(\frac{a_{\alpha}}{\sqrt{\sum_{1}^{n} a_{\alpha}^{2}}}\right) y_{\alpha}$

Soln: Let $z_{\sim}=\sum_{\beta=1}^{n} b_{\alpha_{\beta}} y_{\sim} \quad \alpha=111 n n$. orthogonal

$$
\begin{aligned}
& \text { Yow, } \sum_{\alpha=1}^{n} z_{\alpha} z_{\alpha}^{\prime} \\
& \Rightarrow \sum_{\alpha=1}^{n}\left(\sum_{\beta=1}^{n} b_{\alpha_{\beta}} y_{\beta}\right)\left(\sum_{\delta=1}^{n} b_{\alpha 8} y_{\gamma}^{\prime}\right) \\
&=\sum_{\beta} \sum_{8} \sum_{\alpha=1}^{n}\left(b_{\alpha \beta} b_{\alpha 8}\right) y_{\beta} y_{\alpha}^{\prime} \\
&=\sum_{\beta} \sum_{8} \delta_{\beta 8} y_{\beta} y_{\sim}^{y_{\gamma}^{\prime}} \quad \text { since } \quad B^{\top} B=I_{n}
\end{aligned}
$$

[The $(B, 8)^{\text {th }}$ element of $B^{\top} B$ is

$$
\begin{aligned}
c_{\beta 8} & =\sum_{\alpha=1}^{n} b_{\beta \alpha}^{1} b_{\alpha 8} & & B^{\top} B_{2}=I_{n} \\
& =\sum_{\alpha=1}^{n} b_{\alpha \beta} b_{\alpha 8} & \ddots B^{n} & \Rightarrow \sum_{\alpha=1}^{n} b_{\alpha \beta} b_{\alpha 8}=\delta_{\beta 8}
\end{aligned}
$$

$$
=\sum_{\beta} y_{\beta} y_{\sim \beta}^{\prime} \quad \text { since } \delta_{\beta 8}= \begin{cases}1 & \text { if } \beta=8 \\ 0 & \text { if } \beta \neq \beta\end{cases}
$$

Note that

$$
\begin{aligned}
z_{n} & =\sum_{\beta=1}^{n}\left(\frac{a_{\beta}}{\sqrt{\sum_{1}^{n} a_{\alpha}^{2}}}\right) y_{\beta} \\
& =\underset{\sim}{z}
\end{aligned}
$$

Since $z_{\alpha}^{\prime} s$ are the linear combination

- of $Y_{\alpha}{ }^{\prime} s$, the set $\left\{z_{\alpha}\right\}$ have a gt normalibs'.

Now,

$$
\begin{aligned}
& \operatorname{cov}\left(z_{\alpha}, z_{8}\right) \\
& =\operatorname{cov}\left(\sum_{\beta=1}^{n} b_{\alpha \beta}{\underset{\sim}{\gamma}}^{y}, \sum_{\epsilon=1}^{n} b_{8 \in} \underset{\sim}{y} \epsilon\right) \\
& =\sum_{\beta} \sum_{\epsilon} b_{\alpha_{\beta}} b_{\delta \epsilon} \operatorname{cov}\left(y_{\beta}, y_{\epsilon}\right) \\
& =\sum_{\beta} \sum_{\epsilon} b_{\alpha \beta} b_{\beta \epsilon}\left(\delta_{\beta \epsilon} \cdot \Sigma\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\delta_{\alpha 8} \Sigma
\end{aligned}
$$

For $\alpha \neq 8, \operatorname{cov}\left(\underset{\sim}{z}, \underset{\sim}{z} 8^{8}\right)=0$, ie $\underset{\sim}{z} \alpha^{\prime}$ s are $\begin{gathered}\text { incept }\end{gathered}$ incept.
Now,

$$
\begin{aligned}
& Q=\sum_{\alpha=1}^{n} \dot{y}_{\alpha} y_{\alpha}^{\prime}-z_{\sim} z_{\sim}^{\prime} \\
& =\sum_{\alpha=1}^{n} z_{\alpha} z_{\alpha}{ }^{\prime}-{\underset{\sim}{n}}_{n} z_{n}{ }^{\prime} \\
& =\sum_{\alpha=1}^{n-1}{\underset{\sim}{\alpha}}_{\alpha} z_{\alpha}{ }^{\prime}
\end{aligned}
$$

$Z_{n} Z_{n}^{\prime}=Z_{n} Z_{n}^{\prime}$ are indeptly chita.

Multinomial dis ${ }^{n}$:
Let $x_{1}, x_{2}, \ldots, x_{k}$ be gating dis th d with put
where the parameters p_{i} are such that

$$
\begin{aligned}
& \quad p_{i}>0 \quad \forall i=1(1) K \\
& \& \quad \sum_{i}^{k} p_{i}=1
\end{aligned}
$$

Then $\left(x_{1}, \ldots, x_{k}\right)$ is said to fonow a multinomial dis.

The mg t of x is

$$
\begin{aligned}
M_{\sim}^{x}(\underset{\sim}{t}) & =E\left(e^{\sum_{i}^{k} t_{i} x_{i}}\right) \\
& =\sum_{x_{1}, \ldots, x_{k}} e^{\sum_{i}^{k} t_{i} x_{i}} \frac{m!}{\prod_{i}^{k} x_{i!}} \prod_{1}^{k} p_{i} x_{i} \\
& =\sum_{x_{1} \cdots, x_{k}} \frac{m!}{\prod_{1}^{k} x_{i}!} \prod_{1}^{k}\left(p_{i} e^{t_{i}}\right)^{x_{i}} \\
& =\left(\sum_{1}^{k} p_{i} e^{t_{i}}\right)^{m}
\end{aligned}
$$

Note that,

$$
\begin{aligned}
& \frac{\partial M_{x}(t)}{\partial t_{i}}=m\left(p_{1} e^{t_{1}}+\cdots+p_{i} e^{t_{i}}+\cdots+p_{k} e^{t_{k}}\right)^{m-1} p_{i} e^{t_{i}} \\
& \frac{\partial^{2} M_{x}(t)}{\partial t^{2}}=m(m-1)\left(p_{1} e^{t_{1}}+\cdots+p_{k} e^{t_{k}}\right)^{m-2}\left\{p_{i} e^{t_{i}}\right\}^{2}
\end{aligned}
$$

$$
\begin{gathered}
+m p_{i}\left(p_{1} e^{t_{1}}+\cdots+p_{k} e^{t_{k}}\right)^{m-1} t_{i} \\
\frac{\partial^{2} M_{x}\left(t_{\tau}\right)}{\partial t_{i} \partial t_{j}}=m p_{i} e^{t_{i}}(m-1)\left(p_{1} e^{t_{1}}+\cdots+p_{x} e^{t_{k}}\right)^{k_{n-2}} p_{j} e^{t_{j}} \\
{[i \neq j]}
\end{gathered}
$$

Evaluating the derivatives at $t=0$, we get

$$
\begin{aligned}
& E\left(x_{i}\right)=m_{i} p_{i} \\
& E\left(x_{i}^{2}\right)=m_{n}(m-1) p_{i}^{2}+m p_{i} \\
\Rightarrow & V\left(x_{i}\right)=m p_{i}\left(1-p_{i}\right) \\
& \left.E\left(x_{i} x_{j}\right)=m i m-i\right) p_{i} j_{j} \\
\Rightarrow & \operatorname{cov}\left(x_{i}, x_{j}\right)=-m p_{i} p_{j}, i \neq j \\
\therefore & f_{x_{i}, x_{j}}=-\sqrt{\left(1-p_{i}\right)\left(1-p_{j}\right)}
\end{aligned}
$$

The dispersion matrix of $x=\left(x_{1}, \ldots, x_{k}\right)$

$$
I=\left\{\left.\begin{array}{ccc}
m p_{1}\left(1-p_{1}\right)^{i} & -m_{1} p_{2} & \cdots \\
\left.-m p_{2} p_{1}, m_{1} p_{2} f_{1} p_{2}\right) & -m p_{2} p_{k}
\end{array} \right\rvert\,\right.
$$

Non

$$
\left|z^{2}\right|=m^{k} \left\lvert\, \begin{array}{cccc}
p_{1}\left(1-p_{1}\right) & -p_{1} p_{2} & \cdots & -p_{1} p_{k} \\
-p_{2} p_{1} & p_{2}\left(-p_{2}\right) & \cdots & -p_{k} \\
\vdots & & \\
& -p_{k} p_{1} & \cdots & \\
k_{k} p_{2} & \cdots & p_{k}\left(1-p_{k}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& =m^{k}\left|\begin{array}{cccc}
0 & -p_{1} p_{2} & \cdots & -p_{1} p_{k} \\
0 & p_{2}\left(1-p_{2}\right) & \cdots & -p_{2} p_{k} \\
\vdots & \vdots & & \vdots \\
0 & -p_{k} p_{2} & \cdots & p_{k}\left(1-p_{k}\right)
\end{array}\right| \quad\left[\begin{array}{c}
B y \\
\left.e_{1}^{\prime} \rightarrow \sum_{1}^{k} C_{1}\right]
\end{array}\right] \\
& =0 \\
& {\left[\because \sum_{1}^{k} p_{i}=1\right]}
\end{aligned}
$$

Hence, in the above form of the dis \bar{m} is singular since $\left|\Sigma^{k \times k}\right|=0$. In fact $\operatorname{rank}\left(\Sigma^{k \times k}\right)=k-1$. To avoid the difficulties associated with singularity, we consider the gt disc of $k-1$ r v.s, say, x_{1}, \ldots, x_{k-1} with pm

Then, the dist of $\left(x_{1}, x_{2}, \ldots, x_{k-1}\right)$ is said to follow a multinomial chism with parameters $m, p_{1}, \ldots, p_{k-1}$, such that $p_{i}>0 \forall i$

$$
\& \sum_{1}^{k-1} p_{i}<1
$$

The mat of the above multinomial dist is

$$
\begin{aligned}
& M_{x_{1}, \cdots, x_{k-1}}\left(t_{1}, \ldots, t_{k-1}\right) \\
= & E\left(e^{\sum_{i}^{k-1} t_{i} x_{i}}\right) \\
= & \sum_{x_{1}, \ldots, x_{k-1}} e^{\sum_{i}^{k-1} t_{i} x_{i}} \frac{m!}{\prod_{1}^{k-1} x_{i}!\left(m-\frac{\sum_{1}}{k-1} x_{i}\right)!} \prod_{1}^{k-1} p_{i} x_{i}\left(1-\sum_{1}^{k-1} p_{i}\right)^{m-\sum_{1}^{k-1} x_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x_{1} \cdots, \alpha_{k-1}} \frac{m!}{\prod_{1}^{k-1} x_{i}!\left(m-\sum_{1}^{k-x_{i}}\right)!} \prod_{1}^{k-1}\left(p_{i} e^{t_{i}}\right)^{x_{i}}\left(1-\sum_{i}^{k-1} p_{i}\right)^{m-\sum_{1} x_{i}} \\
& =\sum_{1}^{k-1} x_{i} \leq m \\
& =\left(p_{1} e^{t_{1}}+\cdots+p_{k-1} e^{t_{k-1}}+1-p_{1}-\cdots-p_{k-1}\right)^{m}
\end{aligned}
$$

The marginal $m g f$ of X_{i} is

$$
\begin{aligned}
M_{x_{i}}\left(t_{i}\right) & =M_{x_{1}, \ldots, x_{x+1}}\left(0,0, \ldots, 0, t_{i}, 0, \ldots, 0\right) \\
& =\left(p_{i} e^{t_{i}}+1-p_{i}\right)^{m} \\
& =m g d \text { of } \operatorname{Bin}\left(m, p_{i}\right)
\end{aligned}
$$

By uniqueness property of $m g t$;

$$
X_{i} \sim \operatorname{Bin}\left(m, p_{i}\right), i=1(1) \overline{k-1}
$$

The mat of the marginal dist of any subset of q r.v.s, say, $x_{1, \ldots}, x_{q}, q<k-1$, is

$$
\begin{aligned}
& M_{x_{1}, \ldots, x_{q},}^{\ldots, x_{k-1}}\left(t_{1}, \ldots, t q, 0, \cdots, 0\right) \\
& =\left(p_{1} e^{t_{1}}+\cdots+p_{q} e^{t_{q}}+1-p_{1}-\cdots-p_{q}\right)^{m}
\end{aligned}
$$

Which the mag of muitinomial dish with parameters $m_{2}, p_{1}, \ldots, p_{q}$.
Hence any subset of a multinomial r.v's is arp a multinomial random vector.

Conditional dis $\overline{\text { n }}$
The conditional disks of x_{1}, \ldots, x_{q} given a set of values of x_{q+1}, \ldots, x_{k-1}, say, $x_{q+1}=x_{q+1}$, $\ldots, x_{k-1}=x_{k-1}$, is given by the conditional ping

$$
\begin{aligned}
& f_{x_{1}, \ldots, x_{q} \mid x_{q+1}, \ldots, x_{k-1}}\left(x_{1}, \ldots, x_{q} \mid x_{q+1}, \ldots, x_{k-1}\right) \\
& =\frac{f_{x_{1}}, \ldots, x_{k-1}\left(x_{1}, \ldots, x_{k-1}\right)}{f_{x_{q+1}, \ldots, x_{k-1}}\left(x_{q+1}, \ldots, x_{k-1}\right)} \\
& =\frac{\frac{m!}{x_{!}!\cdots x_{q}!x_{q+1}!\cdots x_{k-1}!\left(m-\sum_{i}^{k-1} x_{i}\right)!} p_{1}^{x_{1}} \cdots p_{q}^{x_{q}} \cdots p_{k-1}^{x_{k-1}}\left(1-\sum_{1}^{k-1} p_{i}\right)^{m-\sum_{1}^{k-1} x_{i}}}{\frac{m!}{x_{q+1}!x^{2} \cdots x_{k+1}!\left(m-\sum_{q+1}^{k-1} x_{i}\right)!} p_{q+1}^{x_{k-1}} \cdots p_{k-1}\left(1-\sum_{q+1}^{k-1} p_{i}\right)^{m-\sum_{q+1}^{k-1} x_{i}}} \\
& =\frac{\left(m-\sum_{q+1}^{k-1} x_{i}\right)!}{x_{1}!\cdots x_{q}!\left(m-\sum_{1}^{k-1} x_{i}\right)!}\left(\frac{p_{1}}{Q}\right)^{x_{1}} \cdots\left(\frac{p_{q}}{q}\right)^{x_{q}}\left(1-\sum_{i}^{q}\left(\frac{p_{i}}{q}\right)\right)^{\left(m-\sum_{1}^{k-1} x_{i}\right)} \\
& \text { where } Q=1-\sum_{q+1}^{k-1} p_{i} \\
& {\left[1-\sum_{i}^{k-1} p_{i}=\left(1-\sum_{q+1}^{k-1} p_{i}-\sum_{1}^{q} p_{i}\right)\right.} \\
& \left.=\left(Q-\sum_{i}^{q} p_{i}\right)\right]
\end{aligned}
$$

Which is the pm-j of a mutinomial dish With parameters $m-\sum_{q+1}^{k-1} x_{i}, \frac{p_{1}}{q}, \cdots, \frac{p q}{Q}$ where $Q=1-\sum_{q+1}^{k-1} p_{i}$.

Hence the conditional diss of x_{1} given $x_{2}=x_{2}, \ldots, x_{k-1}=x_{k-1}$ is binomial dis with parameters $n 1-\sum_{2}^{k-1} x_{i} \& \frac{p_{1}}{1-\frac{k-1}{2} p_{i}}$

Hence,

$$
\begin{aligned}
& E\left(x_{1} \mid x_{2}=x_{2}, \ldots, x_{k-1}=x_{k-1}\right) \\
= & \left(m-\frac{k}{2} x_{i}-1\right)\left(\frac{p_{1}}{1-\frac{k-1}{2} p_{i}}\right)
\end{aligned}
$$

 set up]
and $V\left(x_{1} \mid x_{2}=x_{2}, \ldots, x_{k-1}=x_{k-1}\right)$

$$
=\left(m-\sum_{2}^{k-1} x_{i}\right)\left(\frac{p_{1}}{1-\frac{k-1}{2} p_{i}}\right)\left(1-\frac{p_{1}}{1-\frac{k-1}{2} p_{i}}\right)
$$

Problems:
(8) Suppose $\left(x_{1}, \cdots, x_{k}\right)$ follows a multinomial dist with parameters m \& $p_{1} \ldots, p_{k}$, such that $\sum_{i}^{k} x_{i}=m$ \& $\sum_{1}^{k} p_{i}=1$.S.T. the square of the multiple correl coif of x_{1} on x_{2}, \ldots, x_{k-1} is

$$
p_{1.23 \cdots \overline{k-1}}^{2}=\frac{p_{1}\left(p_{2}+p_{3}+\cdots+p_{k-1}\right)}{\left(1-p_{1}\right)\left(1-p_{2}-p_{3}-\cdots-p_{k-1}\right)} \quad \text { Also }^{\rho_{1.23} \cdots k}
$$

Hint: Find Σ.

$$
\rho_{1.23 \cdots k-1}^{2}=1-\frac{|\Sigma|}{\nabla_{11}\left|\Sigma_{2}\right|}
$$

(9) Suppose $\left(x_{1}, \ldots, x k\right)$ follows a muitinomial distr with parameters m \& $p_{1}, \ldots p_{k}$ wen that $\sum_{i}^{k} x_{i}=m \quad \& \sum_{1}^{k} p_{i}=1 . S . T$ the partial correl coeft bet $x_{1} \& x_{2}$ when the variables x_{3}, \ldots, x_{q} ave held fixed
is

$$
\begin{array}{r}
p_{12.34 \cdots q}=-\sqrt{\frac{p_{1} p_{2}}{\left(1-p_{2}-\cdots-p_{q}\right)\left(1-p_{1}-p_{3}-\cdots-p_{q}\right)}} \\
2 q=3(1) k-1
\end{array}
$$

Soln: Here the dost of $\left(x_{1}, \ldots, x_{k}\right)$ is singular.
Then the disks of $\left(x_{1}, \cdots, x_{k-1}\right)$, 'where $\sum_{1}^{k-1} x_{i} \leq m \quad \& \quad \sum_{1}^{\frac{k-1}{1}} p_{i}<1$, is nonsingular. The marginal dish of $\left(x_{1}, \ldots, x_{q}\right)$ is a multinomial with parameters m, p_{1}, \cdots, p_{q}, $q \leq k-1$.

Note that

$$
\begin{aligned}
& E\left(x_{1} \mid x_{2}=x_{2}, \cdots, x_{q}=x_{q}\right) \\
= & \left(m-x_{2}-x_{3}-\cdots-x_{q}\right) \cdot \frac{p_{1}}{1-\sum_{i}^{1-q_{1}} p_{i}}
\end{aligned}
$$

Again, since. the regression is linear,

$$
\begin{aligned}
& E\left(x_{1} \mid x_{2}=x_{2}, \cdots, x_{q}=x_{q}\right) \\
= & \alpha+\beta^{\prime} x_{0}(2) \\
= & \alpha+\sum_{j=2}^{q} \beta_{j j} \cdot 2 \ldots j-1-1+q \cdot x_{j j} \\
\therefore \beta_{12 \cdot 34} \cdots q= & \frac{p_{i}}{1-p_{2}-p_{3}-\cdots-p_{q}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\beta_{21.34 \cdots q} & =-\frac{p_{2}}{1-p_{1}-p_{3} \cdots-p_{q}} \\
\therefore p_{12.34 \cdots q} & =-\sqrt{\beta_{12.34 \cdots q} \cdot \beta_{21.34} \cdots q} \\
& =-\sqrt{\frac{p_{1} p_{2}}{\left(1-p_{2}-\cdots-p_{q}\right)\left(1-p_{1}-p_{3} \cdots-p_{q}\right)}}
\end{aligned}
$$

Scanned by CamScanner

Since $\beta_{12.34 \ldots q}, \beta_{21.34 \ldots q} \& \rho_{12.34 \ldots q}$
have the same sign.
Alt: Use $\rho_{12.34 \ldots q}=-\frac{\Sigma_{12}}{\sqrt{\Sigma_{11} \Sigma_{22}}}$
Where $\Sigma_{i j}$ is the cofactor of $(i j)^{\text {th }}$ element of dispersion matrix of $\left(x_{1}, \ldots, x_{q}\right)$
${ }^{W}$ Ellipsoid of concentration:
Let ${\underset{\sim}{x x 1}}^{p e}$ a random vector with mean $\underset{\sim}{\mu}$ \& dispersion matrix Σ. Our problem is to compare the variability of $x^{p \times 1}$ with another random vector $z^{p \times 1}$ with the moon $\underset{\sim}{\mu}$ \& dispersion matrix \sum^{\prime} !

Case I: Let x be a riv. with mean μ \& variance ∇^{2}. Let U be a $\gamma \cdot v$. uniformly chistd in the interval ($\mu-k \sigma, \mu+k \nabla)$ such that U has the same mean \& variance as that of x.

Note that $E(u)=\mu=E(x)$

$$
\text { \& } V(u)=\frac{k^{2} \sigma^{2}}{3}
$$

But . $V(u)=V(x)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{k^{2} \nabla^{2}}{3}=\nabla^{2} \\
& \Rightarrow \quad k=\sqrt{3} .
\end{aligned}
$$

Clearly, the interval $(\mu-\sqrt{3} \sigma, \mu+\sqrt{3} \sigma)$ can be interpreted as the geometrical
representation of concentration of x. Let $L=\{u: \mu-\sqrt{3} \sigma<u<\mu+\sqrt{3} \sigma\}$, the interval L is called the line of concentration of x with mean μ \& variance ∇^{2}. Another riv. y with mean. \& \& variance $\sigma^{\prime 2}$ has the line of concentration.

$$
L^{\prime}=\left\{u_{1}: \mu-\sqrt{3} \sigma^{\prime}<u<\mu+\sqrt{3} \sigma^{\prime}\right\}
$$

If $\sigma \geqslant \sigma^{\prime}$, then accordingly, $L \supset L^{\prime}$ or LCL' and we soy that y has greater or smaller concentration than that of x.

Case II: Ellipsoid: $p \geqslant 2$
The above ideas man be generalized to the case of a randomvector of order $p \times 1$, $p \geqslant 2$. Let the variables x_{1}, \ldots, x_{p} have a gt dist with mean vector $\mu \sim$ \& dispersion matrix $\sum=\binom{$ oi j }{$i j}$ which is pd.

Let X be a . V.v. distd uniformly over a closed region, say, the region $S^{A}=\left\{\underset{\sim}{u}:(\underset{\sim}{u}-\mu)^{\prime} A(\underset{\sim}{u}-\underset{\sim}{\mu})<1\right\}$, where A is pit, such that $\underset{\sim}{u}$ has the same mean $\underset{\sim}{\sim}$ \& dispersion matrix \sum as that of ${\underset{\sim}{x}}^{p \times 1}$. The pdt of U is

$$
f(\underset{\sim}{u})= \begin{cases}k & \text { if } \underset{\sim}{u} \in S \\ 0 \quad, 0 . \omega ; & \text { where } k \text { is a co } \\ & \text { swed that } \\ & \quad \int_{S} \underset{\sim}{f(u)} \underset{\sim}{u}=1\end{cases}
$$

Scanned by CamScanner

Since A is $p d, \exists$ a his. $P \rightarrow P P^{\prime}=A$
Consider the transformation,

Now, $1=\int_{S} f(u) d x$

$$
\Rightarrow \quad k=\sqrt{|A|} \frac{\sqrt{(B / 2+1)}}{\pi^{B / 2 .}}
$$

Hence the pdf of $\underset{\sim}{v}$ is

$$
g(v)=\left\{\begin{array}{l}
\frac{[(b / 2+1)}{\pi^{1 / 2}}, \text { if } v^{\prime} v<1 . \\
0,0 . \omega .
\end{array}\right.
$$

Note that

$$
\begin{aligned}
E\left(V_{i}\right) & =0 \quad \forall i \\
\& \quad E\left(\dot{y}_{i}^{2}\right) & =\int v_{i}^{2} g(v) d \underline{v} \\
& \sim v^{v} v<1 \\
& =\frac{\sqrt{\left(p / p^{2+1}\right)}}{\pi^{p / 2}} \frac{\pi^{p / 2}}{2 \sqrt{(p / 2+2)}} \\
& =\frac{1}{p+2} \quad \forall i .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k}{\sqrt{\sqrt{1 a}} \int d \theta} \\
& \sim_{\sim}^{v} \underset{\sim}{v}<1 \\
& =\frac{k}{\sqrt{|A|}} \cdot \frac{\pi^{k / 2}}{\sqrt{(p / 2+1)}}
\end{aligned}
$$

\& $\operatorname{cov}\left(V_{g}, v_{j}\right)=0 \quad \forall i \neq j$
Thus, $\operatorname{Disp}(\underset{\sim}{\sim})=\frac{1}{p+2} I_{p} . \& \quad E(\underset{\sim}{v})=\underset{\sim}{\sim}$

$$
\begin{aligned}
& \therefore \quad E(\underset{\sim}{u})=\mu \\
& \text { \& } \operatorname{Disp}(\underset{\sim}{u})=\left(p^{\prime}\right)^{-1} \frac{1}{p+2} I_{p}\left(p^{\prime}\right)^{-1} \\
&=\frac{1}{p+2}\left(p p^{\prime}\right)^{-1} \\
&=\frac{1}{p+2} A^{-1}
\end{aligned}
$$

By construction,

$$
\begin{aligned}
& \operatorname{Disp}(\underset{\sim}{x})=\operatorname{Disp}(\underset{\sim}{u}) \\
\Rightarrow \quad & A=\frac{\sum_{-}^{-1}}{p+2}
\end{aligned}
$$

Hence the region s is

$$
\left\{u:(\underset{\sim}{u}-\beta)^{\prime} \sum^{-1}(\underset{\sim}{u}-\underset{\sim}{u})<10+2\right\}
$$

that is $\underset{\sim}{\sim}$ is uniformly distr over the region $s=\left\{\underset{\sim}{u}:(\underset{\sim}{u}-\mu)!\Sigma^{-1}(\underset{\sim}{u}-\mu)<p+2\right\}$
having some mean μ \& dispersion matrix I as of $\underset{\sim}{x} p \times 1$. Hence the region s will serve as a geometrical representation of the mode of concentration of the distr of x about the mean $\underset{\sim}{\sim}$.

If the ellipsoid of concentration of a romdom vector ypal with the same mean μ_{\sim} as $x_{i}^{p \times 1}$, is enclosed entirely Within the ellipsoid of concentration of $\underset{\sim}{x} \times 1$ then $z^{p \times 1}$ has greater concentration (or smaller dispersion) than that of $x p \times 1$.

Note witt
${\underset{\sim}{y}}^{p \times 1}$ has greater concentration than.
$x^{p \times 1}$ if $s \supset s^{\prime}$ where

$$
\begin{aligned}
& S=\left\{\underset{\sim}{u}:(u-\mu)^{\prime} \Sigma^{-1}(u-\mu)<p+2\right\} \\
& S^{\prime}=\left\{\underset{\sim}{u}:(\underline{\sim}-\mu)^{\prime} \Sigma^{*-1}(y-\mu)<p+2\right\}, \\
& \quad \Sigma^{*}=\operatorname{dip}(z) .
\end{aligned}
$$

ie If $(\underset{\sim}{u}-\mu) \sum^{*-1}(\underset{\sim}{u}-\mu)-(\tilde{\sim}-\mu)^{\prime} \sum^{-1}(\underline{\sim} \underset{\sim}{u}-\mu)$

$$
\geqslant 0 \forall \underset{\sim}{u}
$$

and strictly move them 0 for at least one $\underset{\sim}{u}$.
ie if $(\underset{\sim}{u}-\mu)^{\prime}\left(\Sigma^{*-1}-\Sigma^{-1}\right)(\underset{\sim}{u}-\mu) \geqslant 0 \forall u$ \& $\exists \underset{\sim}{q} \ni$ it is >0.
ie if $\left(\Sigma^{*}-\Sigma^{-1}\right)$ is nun. $\Leftrightarrow\left(\Sigma-\Sigma^{*}\right)$ is and Alternatively, we can compare the areas of $s \& s^{\prime}$. The smaller the area, the greater the concentration.

Problem:
(10) Suppose the gt pdf of $\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ is $f\left(x_{1}, \ldots ; x_{n}\right)=\left\{\begin{array}{l}\text { constant if } x_{1}^{2}+\cdots+x_{n}^{2}<r^{2} \\ 0 \quad 0 . \omega\end{array}\right.$

Find the correlation coesf beth x_{1} a x_{2}. Are $x_{1} \& x_{2}$ incept? Justify

Hint: Let

$$
\begin{aligned}
& x_{1}=R \text { R } \cos \theta_{1} \\
& x_{2}=R \sin \theta_{1} \cos \theta_{2} \\
& x_{3}=R \sin \theta_{1} \sin \theta_{2} \cos \theta_{3}
\end{aligned}
$$

$$
\begin{aligned}
x_{n}=R \sin \theta_{1} \sin \theta_{2} \cdots \cdot & \left.\sin \theta_{n-1}\right) \\
& 0 \leq \theta_{i}<\pi, \\
i & =1(1) \overline{n-2} \\
0 & \leq \theta_{n-1}<2 \pi \\
0 & <R<\gamma .
\end{aligned}
$$

$$
|J|=R^{n-1}\left(\sin \theta_{1}\right)^{n-2}\left(\sin \theta_{2}\right)^{n-3} \cdots \sin \theta_{n-2}
$$

Now,

$$
\begin{aligned}
& E\left(x_{1}\right)=\int x_{1} f^{\prime}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& \text { इ } i_{i}^{2}<\gamma^{2} \\
& =k \int_{\theta_{1}=0}^{\pi} \cdots \int_{\theta_{n-2}=0}^{\pi} \int_{\theta_{n-1}=0}^{2 \pi} \int_{0}^{\gamma}\left(R \cos \theta_{1}\right) R^{n-1}(\sin \theta)^{n-2} \cdots \sin \theta_{n-2} \\
& \left.=k_{i}^{i} \int_{0}^{\pi} \cos \theta_{1}\left(\sin \theta_{1}\right)^{2-2} d \theta_{1}\right\}\left\{\int_{0}^{\pi}\left(\sin \theta_{2}\right)^{n \cdot 3} d \theta_{2}\right\} \\
& \cdots\left\{\begin{array}{l}
2 \pi \\
v_{0} d_{n-1}
\end{array}\right\}\left\{\int_{0}^{\gamma} R^{n} d R\right\} \\
& =0 \quad\left[\text { Let } g(\theta)=\cos \theta_{1}\left(\sin \theta_{1}\right)^{n-2}\right. \\
& g\left(\pi-\theta_{1}\right)=-\cos \theta_{1}\left(\sin \theta_{1}\right)^{n-2} \\
& \left.\therefore \int_{0}^{\pi} \cos \theta_{1}\left(\sin \theta_{1}\right)^{n-2} d \theta_{1}=0\right]
\end{aligned}
$$

Here $E\left(x_{1}\right)=0$, since the pdf or dist is symmetric w.y.t the r.v.s xis.

Mow,

$$
\begin{aligned}
& \operatorname{cov}\left(x_{1}, x_{2}\right)=E\left(x_{1} x_{2}\right) \\
&= \int_{1} x_{2}-J\left(x_{1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{n} \\
&= K x_{i}^{2}<r_{2} \\
& \cdots\left.\cos \theta_{1}\left(\sin \theta_{1}\right)^{n-1} d \theta_{1}\right\}\left\{\int_{0}^{\pi} \cos \theta_{2}\left(\sin \theta_{2}\right)^{n-3} d \theta_{2}\right\} \\
& \cdots\left\{\int_{0}^{2 \pi} d \theta_{n-1}\right\}\left\{\int_{0}^{R} R^{n+1} d R\right\}=0
\end{aligned}
$$

Hence, $P\left(x_{1}, x_{2}\right)=0$.
But variables are related \& they are not incept.

To retegrate $\int_{s_{k}} y_{1}^{v_{1}-1} y_{2}^{v_{2}-1} \ldots y_{k}^{v_{k}-1}\left(1-y_{1}-\cdots-y_{k}\right)^{v_{k+1}-1} d y_{1} \cdots d y_{k}$, use transform ${ }^{\text {as }}$:

$$
\begin{array}{l|l}
y_{1}=x_{1}-x_{1} x_{2}=x_{1}\left(x_{1}-x_{2}\right) & x_{1}=\sum_{i}^{n} y_{i} \\
y_{2}=x_{1} x_{2}\left(1-x_{3}\right) & \begin{array}{l}
x_{1} x_{2}=\sum_{2}^{n} y_{i} \\
\vdots \\
y_{n-1}=x_{1} x_{2} \cdots x_{n-1}\left(1-x_{n}\right) \\
x_{1} x_{2} x_{3}=\sum_{3}^{n} y_{i} \\
\mid J x_{2} \cdots x_{n} \\
|J|=x_{1}^{k-1} x_{2}^{k-2} \cdots x_{k-2}^{2} x_{k-1}
\end{array}
\end{array}
$$

Dirichlet diseur:
A random vector ${\underset{\sim}{x}}^{k}=\left(x_{1}, \ldots, x_{k}\right)^{\prime}$ is said to have a Dirichlet disk if its pdf is

$$
\begin{aligned}
& \text { Check thesis } \\
& \text { a pub, see } \\
& \text { Malix-Arora] } \\
& \begin{array}{l}
\text { if } \underset{\sim}{x} \in s_{k}=\left\{\begin{aligned}
& x: 0<x_{i}<1 \\
& i=1(1) k \& \sum_{k}^{k} x_{i} \\
&<1
\end{aligned}\right\}
\end{array}
\end{aligned}
$$

Where $v_{i}>0, \forall i=1(1) \overline{k+1}$ are the parameters.
Then, we write

$$
\left(x_{1}, \ldots, x_{k}\right) \sim D\left(v_{1}, \ldots, v_{k} ; v_{k+1}\right)
$$

Moments:

$$
\begin{aligned}
& \mu_{1, \gamma_{2}, \ldots, \gamma_{k}}^{\prime}=E\left(x_{1}^{\gamma_{1}} x_{2}^{\gamma_{2}} \cdots x_{k}^{\gamma_{k}}\right) \\
& =\int_{S_{k} .} x_{1} x_{2}^{\gamma_{2}} \ldots x_{k}^{\gamma_{k}} f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k} \\
& =\frac{\Gamma\left(v_{1}+\cdots+v_{k+1}\right)}{\sqrt[\left(v_{1}\right)]{)} \cdot \sqrt{\left(v_{k+1}\right)}} \int_{s_{k}} x_{1}^{v_{1}+\gamma_{1}-1} \cdots x_{k}^{v_{k}+\gamma_{k-1}}\left(1-x_{1}-\cdots-x_{k}\right)^{v_{k+1}-1} d x_{1} \cdots d x_{k} \\
& =\frac{\Gamma\left(v_{t} \cdots+v_{k+1}\right)}{\sqrt{\left(v_{1}\right)} \cdots \sqrt{\left(v_{k+1}\right)}} \cdot \frac{\sqrt{\left(v_{1}+\gamma_{1}\right)} \cdots \sqrt{\left(v_{k}+\gamma_{k}\right)} \Gamma\left(v_{k+1}\right)}{\Gamma\left(v_{1}+\cdots+v_{k+1}+\gamma_{1}+\cdots+\gamma_{k}\right)} \\
& =\frac{\Gamma\left(v_{1}+\cdots+v_{k+1}\right)}{\Gamma\left(v_{i}\right) \cdots \sqrt{\left(v_{k i}\right)}} \cdot \frac{\Gamma\left(v_{1}+\gamma_{1}\right) \cdots \sqrt{\left(v_{k}+\gamma_{k}\right)}}{\Gamma\left(v_{1}+\cdots+v_{k+1}+\gamma_{1}+\cdots+r_{k}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& E\left(x_{i}\right)=\frac{v_{i}}{v_{1}+\cdots+v_{k+1}}, i=1(1) k \\
& {\left[\because E\left(x_{i}\right)=\frac{\Gamma\left(v_{1}+\cdots+v_{k+1}\right) \Gamma\left(v_{i+1}\right)}{\sqrt{\left(v_{i}\right)} \Gamma\left(v_{1}+\cdots+v_{k+1}+1\right)}\right.} \\
& \& \quad v\left(x_{i}\right) \\
& =E\left(x_{i}^{2}\right)-E^{2}\left(x_{i}\right) \\
& =\frac{\left(v_{i}+1\right) v_{i}}{\left(v_{1}+\cdots+v_{k+1}+1\right)\left(v_{1}+\cdots+v_{k+1}\right.}-\left(\frac{v_{i}}{v_{1}+\cdots+v_{k+1}}\right)^{2} \\
& {\left[\because E\left(x_{i}^{2}\right)=\frac{\sqrt{\left(v_{1}+\cdots+v_{k+1}\right)} \sqrt{\left.\left(v_{i}\right) \Gamma v_{1}+2\right)}}{\Gamma\left(v_{1}+\cdots+v_{k+1}+2\right)}\right]} \\
& =\frac{v_{i}\left(v_{1}+\cdots+v_{k+1}-v_{i}\right)}{\left(v_{i}+\cdots+v_{k+1}^{2}\right)^{2}\left(v_{i}+\cdots+v_{k+1}+j\right.} \\
& \operatorname{Cov}\left(x_{i}, x_{j}\right)=E\left(x_{i} x_{j}\right)-E\left(x_{i}\right) E\left(x_{j}\right) \\
& =\frac{v_{i} v_{j}}{\left(v_{1}+\cdots+v_{k+1}\right)\left(v_{1}+\cdots+v_{k+1}+1\right)}-\frac{v_{i} v_{j}}{\left(v_{1}+\cdots+v_{k+1}\right)^{2}} \\
& =-\frac{v_{i} v_{j}}{\left(v_{1}+\cdots+v_{k+1}\right)^{2}\left(v_{1}+\cdots+v_{k+1}+1\right)}
\end{aligned}
$$

Marginal dis ${ }^{\text {n in }}$:
Theorem 15: If x is a bounded $r . v$, the nits coff $F($.$) , ie its dish is uniquely$ determined by the sequence $\left\{\mu_{\gamma}^{\prime}\right\}$ of moments.

Poof: Since x is bounded, there exists two finite numbers a \& b such that

$$
P(a<x<b)=1
$$

Let $M=\operatorname{Mona}\{|a|,|1| i\}$, timer $P(|x|<M)=1$.
you,

$$
\begin{aligned}
\left|\mu_{i}^{\prime}\right| & =\left|\int_{a}^{r} x^{r} d F(x)\right| . \\
& \leqslant \int_{a}^{b}|x|^{r} d F(x) \\
& \leqslant M^{r} \int_{a}^{b} d F(x) \\
& =M^{r}, r=0,1,2, \ldots .
\end{aligned}
$$

Note that

$$
\left|\sum_{\gamma=0}^{\infty} \frac{\mu_{\gamma}^{\gamma} t^{\gamma}}{\gamma!}\right| \leqslant \sum_{\gamma=0}^{\infty}\left|\mu_{\gamma}\right| \frac{\left|t^{-\gamma}\right|}{\gamma!} \leqslant \sum_{\gamma=0}^{\infty} \frac{M^{\gamma}|t|^{\gamma}}{\gamma!}=e^{M|t|},
$$

Whicin is finite for aMt.
Hance the mag of x exists \& the cot $F($.$) is uniquelng determined by the$ sequence $\left\{\mu^{\prime} \gamma^{\prime}\right\}$ of moments.

The multivariate version of the-lheovem is also true.

Note that,

$$
\begin{aligned}
& n_{1}^{\prime} \gamma_{1}, \cdots, \gamma_{k_{1}} ; 0_{1}, 0, \cdots \cdot c \\
= & E\left(x_{1}^{\prime \gamma_{i}} \cdots x_{k_{1}}^{\gamma_{k}}\right) \\
= & \frac{\Gamma\left(v_{1}+\cdots+v_{k+1}\right)}{\sqrt{\left(v_{1}\right)} \cdots \sqrt{\left(v_{k_{1}}\right)}} \cdot \frac{\Gamma\left(v_{1}+\gamma_{1}\right) \cdots \Gamma\left(v_{k_{1}}+k_{1}\right.}{\sqrt{\left(v_{1}+\cdots+v_{k+1}+\gamma_{1}+\cdots+\gamma_{k_{1}}\right)} \quad, k_{1}<k} \quad l
\end{aligned}
$$

Thus, we see that the general moment $\mu_{r_{1}, \ldots, \gamma_{k}}^{\prime}$ of the marginal dist of $\left(x_{1}, \ldots, x_{k_{1}}\right), k_{1}<k$, of k-variate Dirichlet distr $D\left(v_{1}, \ldots, v_{k} ; v_{k+1}\right)$, has the value Which is the general moment of $D\left(v_{1}, v_{2}, \ldots, v_{k_{1}} ; v_{k_{1}+1}+\cdots+v_{k+1}\right)$, a k_{1}-variate. Dirichlet dis ${ }^{\pi}$.

Since $x_{i}^{\prime \prime}$ s are bounded, ie.

$$
P\left(0<x_{i}<1\right]=1,
$$

the distr of $\left(x_{1}, \ldots, x_{k_{1}}\right), k_{1}<k$, is uniquely determined by its moments.
Hence,

$$
\left(x_{1}, \ldots, x_{k_{1}}\right) \sim D\left(v_{1}, \cdots, v_{k_{1}} ; v_{K_{1}+1}+\cdots+v_{k+1}\right)
$$

Conditional distr $\&$ the regression of x_{k} on $\left(x_{1}, \ldots, x_{k-1}\right)$:

$$
\begin{aligned}
& f\left(x_{k} \mid x_{1}, \cdots, x_{k-1}\right) \\
&= \frac{f\left(x_{1}, x_{2}, \cdots, x_{k}\right)}{f_{1}\left(x_{1}, \cdots, x_{k-1}\right)} \\
&= \frac{\Gamma\left(v_{1}+\cdots+v_{k+1}\right)}{\sqrt{\left(v_{1}\right) \sqrt{\left(v_{2}\right)} \cdots \sqrt{\left(v_{k+1}\right)}} \cdot x_{1}^{v_{1}-1} \cdots x_{k}} \frac{\left.\Gamma\left(1-x_{1}-\cdots-x_{k}\right)^{v_{k}}+\cdots+v_{k+1}\right)}{\sqrt{\left(v_{1}\right)} \cdots \sqrt{\left(v_{k-1}\right) \Gamma\left(v_{k}+v_{k+1}\right)}} x_{1}^{v_{1-1}} \cdots x_{k-1} \\
& v_{k-1}-1 \\
&\left(1-x_{1}, \cdots-x_{k-1}\right)^{v_{k}+v_{k+1}-1}
\end{aligned}
$$

$$
\begin{array}{r}
=\frac{\Gamma\left(v_{k}+v_{k+1}\right)}{\Gamma\left(v_{k}\right) \sqrt{\left(v_{k+1}\right)}}\left(\frac{x_{k}}{1-x_{1}-\cdots-x_{k-1}}\right)^{v_{k-1}}\left(1-\frac{x_{k}}{1-x_{1}-\cdots-x_{k-1}}\right)^{v_{k+1}-1} \cdot\left(\frac{1}{1-x_{1}-\cdots x_{k-1}}\right) \\
\text {, } 0<x_{k}<\left(1-x_{1}-\cdots x_{1}-x_{k-1}\right)
\end{array}
$$

\therefore Tue conditional distr

$$
\left.\frac{x_{k}}{1-x_{1}-\cdots-x_{k-1}} \text { (} x_{1}, \cdots, x_{k-1}\right) \quad \text { is } \quad \text { B }\left(v_{k}, v_{k+1}\right) \text { dis }^{\bar{m}}
$$

[Tva inform ${ }^{\text {n }}$:

$$
\begin{array}{r}
\left.y=\frac{x_{k}}{1-\sum_{i-1}^{k-1} x_{i}}\right] \\
{\left[x_{\sim}^{x} \rightarrow\left(x_{1}, x_{2}, \cdots, x_{k-1}, y\right)\right]}
\end{array}
$$

Note that

$$
\begin{aligned}
& E\left(x_{k} \mid x_{1}=x_{1}, \ldots, x_{k-1}=x_{k-1}\right) \\
& \cdots \int_{0}^{1-\frac{k}{2} x_{i}} x_{k} f\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right) d x_{k} \\
& =\int_{0}^{1-\frac{k-1}{2} x_{i}} x_{k} \frac{1}{B\left(v_{k}, v_{k+1}\right)}\left(\frac{x_{k}}{1-\sum_{1}^{k-1} x_{i}}\right)^{v_{x}-1}\left(1-\frac{x_{k}}{1-\sum_{i}^{k-1} x_{i}}\right)^{v_{k+1}-1} \cdot \frac{1}{1-\sum_{1}^{k-1} x_{i}} d x_{k} \\
& =\int_{0}^{1} \frac{y^{v_{k}}(1-y)^{v_{k+1}^{-1}}\left(1-\sum^{k-1} x_{i} j d y\right.}{B\left(v_{k}, v_{k+1}\right)} \\
& =\frac{B\left(v_{k+1}+v_{k+1}\right)\left(1-\sum_{1}^{k+1} x_{i}\right)}{B\left(v_{k} \cdot v_{k+1}\right)} \\
& =\frac{v_{k}}{v_{k}+v_{k+1}}\left(1-\sum_{i}^{k-1} x_{i}\right)
\end{aligned}
$$

Hence the regression $E\left(x_{k} \mid x_{1}, \cdots, x_{k-1}\right)$ is linear.

SAlt. Since $\frac{x_{k}}{1-\sum_{1}^{k} x_{i}} \sim B\left(v_{k}, v_{k+1}\right)$

$$
\begin{aligned}
& \Rightarrow E\left(\left.\frac{x_{k}}{1-\sum_{1}^{k-1} x_{i}} \right\rvert\, x_{i}=x_{1}, \ldots, x_{k-1}=x_{k-1}\right) \\
& =\frac{v_{k}}{v_{k}+v_{k+1}} \\
& \Rightarrow \quad E\left(x_{k} \mid x_{1}=x_{1}, \cdots, x_{k-1}=x_{k-1}\right) \\
& \left.=\frac{v_{k}}{v_{k}+v_{k+1}}\left(1-\sum_{i}^{k-1} x_{i}\right)\right]
\end{aligned}
$$

Result:
If $\left(x_{1}, \ldots, x_{k}\right)$ is a randorn vector having $D\left(v_{1}, \ldots, v_{k} ; v_{k+1}\right) d i s^{k}$, then $\left(x_{1}+\cdots+x_{k}\right)$ has the R Rota dist $B\left(19, t \cdots+v_{k} ; v_{k+1}\right)$.
proof $E\left[\left\{1-\frac{k}{i} x_{i}\right\}^{\gamma}\right]$

$$
\begin{aligned}
& \quad=\int_{S_{k}}\left\{1-\sum_{1}^{k} x_{i}\right\}^{\gamma} f\left({\underset{\sim}{x}}^{x}\right) d \underset{\sim}{x} \\
& =\frac{\Gamma\left(v_{1}+\cdots+v_{k+1}\right)}{\sqrt{\left(v_{1}\right)} \cdot \cdots \sqrt{\left(v_{k+1}\right)}} \cdot \frac{\Gamma\left(v_{1}\right) \cdots \Gamma\left(v_{k}\right) \mid\left(v_{k+1}+r\right)}{\Gamma\left(v_{1}+\cdots+v_{k} v_{k+i}+r\right)}
\end{aligned}
$$

$=\frac{B\left(v_{k+1}+\gamma, v_{i}+\cdots+v_{k}\right)}{B\left(v_{k+1}, v_{1}+\cdots+v_{k}\right)}$, which is tier eth order moment of

$$
B\left(v_{k+1} ; v_{1}+\cdots+v_{k}\right)
$$

Hence $\left\{1-\frac{k}{2} x_{1}\right\} \sim B\left(v_{k+1}, v_{1}+\cdots+v_{k}\right)$
[since $\left\{1-\sum_{1}^{x} x_{i}\right\}$ is, a bownaler $r v$, thin dis m
Is uniquely deterunina by iris moments

$$
\Leftrightarrow \sum_{1}^{k} x_{i} \sim B\left(v_{1}+\cdots+v_{k}, v_{k+1}\right)
$$

