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a b s t r a c t

Infectious diseases remain among the top contributors to human illness and death worldwide, among
which many diseases produce epidemic waves of infection. The lack of specific drugs and ready-to-use
vaccines to prevent most of these epidemics worsens the situation. These force public health officials
and policymakers to rely on early warning systems generated by accurate and reliable epidemic
forecasters. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such
as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which
could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics
exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on
seasonal-dependent variability and the nature of these epidemics. We analyze various epidemic time
series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive
neural network and call it Ensemble Wavelet Neural Network (EWNet) model. MODWT techniques
effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time
series and improve the nonlinear forecasting scheme of the autoregressive neural network in the
proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore
the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the
associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice
of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet
framework with twenty-two statistical, machine learning, and deep learning models for fifteen real-
world epidemic datasets with three test horizons using four key performance indicators. Experimental
results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic
forecasting methods.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Epidemiological modeling is a centuries-old field of research;
owever, still handy in guiding decision-making and devising
ppropriate interventions that mitigate the impacts of epidemics
Hamer, 1906; McKendrick, 1914; Snow, 1855). Most recently,
pidemiological modeling and forecasting have become an im-
ediate choice for designing policies for public health officials
uring outbreaks (Ferguson, Donnelly, & Anderson, 2001; Funk,
amacho, Kucharski, Eggo, & Edmunds, 2018; Keeling et al., 2001).
pidemiological forecasting models (we will henceforth refer to
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as epicasters) can be used to forecast the total number of con-
firmed cases to define intervention strategies (e.g., Thompson
& Brooks-Pollock, 2019). Recent examples of real-time model-
ing during epidemic outbreaks can be drawn from vector-borne
diseases such as Malaria (Rouamba, Samadoulougou, & Kirakoya-
Samadoulougou, 2020), Dengue (Johnson et al., 2018), the flu
(Influenza) (Rangarajan, Mody, & Marathe, 2019), viral infection
(Hepatitis) (Wang, Shen, & Jiang, 2018), and most recent Covid-
19 pandemic (Chakraborty & Ghosh, 2020; Chakraborty, Ghosh,
Mahajan, & Arora, 2022). Despite tremendous progress in public
health practice in the 21st century, infectious diseases caused
by microorganisms are still the leading cause of morbidity and
mortality on the global level. Out of many causes of mortality,
deaths due to infectious diseases (more precisely, epidemics and
pandemics) are one of the leading causes of death in the last
centennial (Jemal, Ward, Hao, & Thun, 2005). Since many of these

epidemics were not foreseen or predicted thus, their untimely
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utbreak results in the mass destruction of limited resources and
he collapse of the economy (Bhatt et al., 2013). This problem
s pivotal in developing countries, particularly with the con-
urrent rising trends in the occurrence of epidemics. Therefore,
arly knowledge of epidemic timing, intensity, and mortality
ates are crucial in designing countermeasures to reduce the
mpact of such cumbersome outbreaks. However, these early
arning systems are usually designed following two strategies:

‘nowcasting" and ‘‘forecasting". While the former helps develop
ituational awareness by predicting the disease incidence at a
ime near the available data (Chakraborty et al., 2022; Wu, Leung,
Leung, 2020), the latter is designed for formulating control re-

ponse strategies well ahead of time to handle large-scale emer-
encies (Chakraborty, Chattopadhyay, & Ghosh, 2019; Johansson
t al., 2019). In our research, we combine the tasks of nowcasting
nd forecasting for predicting the disease incidence (specifically
pidemics) at a time near and after the available data and col-
ectively designate it as ‘‘epicasting". The primary goal of the
picasting models is to accurately forecast the disease dynamics
or formulating real-time outbreak management decisions and
eveloping informed future response policy (McRoberts et al.,
019; Roosa et al., 2020).
Within the scope of epidemic modeling and forecasting, sev-

ral mechanistic (or deterministic) and phenomenological mod-
ls have been proposed. Amongst the available deterministic
ethodologies, compartmental models are widely used to study

he changes in the characteristics (e.g., age, gender) and state
e.g., susceptible to, infectious with, or recovering from a particu-
ar disease) of the population by segregating them into several
‘compartments’’ (Brauer, 2008). The simple SIR (susceptible–
nfected–recovered) model, consisting of a system of three cou-
led non-linear ordinary differential equations, yields several
undamental insights into outbreaks of infectious diseases and
heir control (Weiss, 2013). Despite these mechanistic models’
ast applicability, they are more suitable for ‘‘understanding’’ the
isease dynamics rather than real-time forecasting the outbreak,
hich is one of the primary motivations for epicasting (Keeling &
ohani, 2011). To overcome the problem of limited predictability
f the mechanistic approaches, several attempts to anticipate the
nfectious disease dynamics with statistical and machine learning
pproaches have been adopted (Chakraborty, Chattopadhyay, &
hosh, 2019; Chakraborty et al., 2022; Clayton & Hills, 2013).
ome examples of epicasting models are as follows: Modified
ersion of autoregressive (AR) model for forecasting dengue epi-
emic datasets (Deb & Deb, 2022); Bayesian methodology for an-
lyzing malaria outbreak (Rouamba et al., 2020); Autoregressive
ikelihood ratio for forecasting influenza incidence (Rangarajan
t al., 2019) amongst many others. While statistical models focus
n parametric methods for predicting disease outbreaks, modern
achine learning, and deep learning methodologies have been
sed to learn temporal disease dynamics in a purely data-driven
pproach (Santosh, Ramesh, & Reddy, 2020; Wu, Green, Ben, &
’Banion, 2020). Several other statistical forecasters have been
eveloped in the recent literature; among them, the most popular
odels are Random Walk (RW) (Pearson, 1905), Random Walk
ith Drift (RWD) (Entorf, 1997), Autoregressive Integrated Mov-

ng Average (ARIMA) (Box, Jenkins, Reinsel, & Ljung, 1970), Ex-
onential Smoothing State Space (ETS) (Hyndman, Koehler, Ord,
Snyder, 2008), Theta Model (Assimakopoulos & Nikolopoulos,

000), Wavelet-based ARIMA (WARIMA) (Aminghafari & Poggi,
007), Self-exciting Threshold Autoregressive (SETAR) (Tong &
im, 2009), Trigonometric Box–Cox ARIMA Trend seasonality
TBATS) (De Livera, Hyndman, & Snyder, 2011), Bayesian Struc-
ural Time Series (BSTS) (Scott & Varian, 2014), and Hybrid ARIMA-
ARIMA (we call it Hybrid-1) (Chakraborty & Ghosh, 2020).

ith the increasing data availability and computation power,
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machine learning and deep learning architectures have become
a vital part of epidemic forecasting and are widely used as indi-
vidual forecasters or in a hybridized environment (Chakraborty,
Chattopadhyay, & Ghosh, 2019; Johansson et al., 2019; Wang,
Chen, & Marathe, 2019). A non-exhaustive list of such machine
learning and deep learning models are Artificial Neural Net-
works (ANN) (Rumelhart, Hinton, & Williams, 1986), Autore-
gressive Neural Networks (ARNN) (Faraway & Chatfield, 1998),
Support Vector Regression (SVR) (Smola & Schölkopf, 2004), Long
Short-term Memory (LSTM) network (Hochreiter & Schmidhuber,
1997), NBeats (Oreshkin, Carpov, Chapados, & Bengio, 2019), Deep
AR (Salinas, Flunkert, Gasthaus, & Januschowski, 2020), Tempo-
ral Convolutional Networks (TCN) (Chen, Kang, Chen, & Wang,
2020), Transformers (Wu, Green, et al., 2020), Hybrid ARIMA-ANN
(we call it Hybrid-2) (Zhang, 2003), Hybrid ARIMA-ARNN (we
call it Hybrid-3) (Chakraborty, Chattopadhyay, & Ghosh, 2019).
Applying leading-edge research concerning epicasting of dengue,
malaria, influenza, and other infectious disease confirmed cases,
recovered cases, and mortality using the above-mentioned com-
partmental, statistical, machine learning, and deep learning meth-
ods are given in Table 1.

Albeit the applicability of statistical models for epicasting,
these models impose some restrictions on the data characteris-
tics before their application. For example, real-world epidemic
datasets show complex, noisy, non-stationary, and nonlinear be-
havior owing to the changing population size and climatic con-
ditions (Duncan, Duncan, & Scott, 1996; Weiss, 2013). In such a
scenario, pre-processing the complex time series with suitable
mathematical transformations has often yielded satisfactory re-
sults (Cazelles, Chavez, Magny, Guégan, & Hales, 2007). One such
widespread mathematical transformation is log transformation
which effectively analyzes skewed data and reduces variabil-
ity. Log transformation generally makes the transformed dataset
conform more closely to the normal distribution. In recent lit-
erature, log-transformed time series data is modeled using a
linear AR model, followed by the inverse transformation of the
forecasts (Lütkepohl & Xu, 2012). However, this transformation
changes the symmetric measurement errors on the original scale
to asymmetric errors on the log scale because the linear fit is per-
formed on the log-scaled data. Log transformation is also highly
impacted by outliers or peaks in the time series datasets visible
in most epidemic data. Another popularly used transformation
in time series literature is the Fourier transformation. Although
Fourier transforms are ideal for periodic signals, their perfor-
mance for non-periodic signals and signals with changing charac-
teristics over time (i.e., non-stationary time series) is unsatisfac-
tory as this transformation will generally give the averaged data.
Hence, the direct use of Fourier transformation to pre-process the
non-stationary real-world epidemic signals is avoided (Brunton
& Kutz, 2022). To overcome this problem, wavelet transform
has been considered as an efficient mathematical tool for the
past three decades (Percival & Mofjeld, 1997; Percival & Walden,
2000; Walden, 2001). Wavelet transformations are in many ways
a generalization of the Fourier transform that allows the inde-
pendent choice of time and frequency resolution at different
times and frequencies (Brunton & Kutz, 2022). The ability of
the wavelet transformation to decompose the original series into
many high and low-frequency coefficients allows for the ap-
propriate extraction of signal from noise (Percival & Walden,
2000). In the literature, most wavelet decomposition included
a discrete wavelet transform (DWT) followed by a statistical or
machine learning approach to generate forecast (Chakraborty,
Chattopadhyay, & Ghosh, 2019; Mabrouk, Abdallah, & Dhifaoui,
2008; Saâdaoui & Rabbouch, 2019; Zhu, Wang, & Fan, 2014).
However, the restriction on signal length imposed by the DWT

approach led to the application of a maximal overlap discrete
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Table 1
Related works on epidemiological forecasting.
Research topic Disease Countries Model Results Conclusion

Forecasting epidemics
based on geographical
hierarchy (Gibson,
Moran, Reich, & Osthus,
2021)

Influenza United
States

Weighted combination of
forecasts for different
regions where the weights
are selected relative to the
population size — a
probabilistic coherence
approach.

The proposed approach
is 79% more efficient in
predicting influenza
incidence for multiple
seasons.

National incidence is a weighted
average of region-wise incidence
and selecting the weights based
on the demography of regions is
an essential consideration in
improving forecasts.

Parameter identification
in epidemic forecasting
(Mummert & Otunuga,
2019)

Influenza United
States

Local lagged adapted
generalized method of
moments (LLGMM) for
parameter identification in
compartmental SEIRS
model.

The model shows a good
qualitative fit for
long-term forecasts.

The LLGMM parameter estimation
technique shows promising results
in forecasting the incidence rate
and can be further improved by
considering more complex models
than SEIRS.

Forecasting epidemics
with sparse
representation
(Rangarajan et al., 2019)

Dengue and
influenza

Brazil,
Mexico,
Singapore,
Taiwan,
Thailand,
and the
United
States

Autoregressive Likelihood
Ratio (ARLR) Methodology.

The forecasts generated
by the ARLR model
reduce the RMSE and
MAE scores by 18%
compared to traditional
forecasting techniques.

Electronic health records,
historical incidence data, and
frequency of internet search terms
on Google trends provide valuable
information for epicasting.

Epidemic analysis and
forecasting (Ho & Ting,
2015)

Dengue Malaysia Seasonal and Trend
decomposition with Loess
method (STL), Holt Method,
ARIMA, and STL-ETS.

MAE, RMSE, and MASE
scores are the least for
the STL method.

The dengue data exhibits trend
and seasonality and can be best
forecasted with the STL model.

Overcoming the
challenges in epidemic
forecasting due to data
scarcity (Rouamba et al.,
2020)

Malaria Burkina Faso Bayesian methodology for
spatio-temporal prediction.

6-months ahead
forecasts have actual
cases within 95%
credible interval.

Spatial fractional variance value
suggested a strong spatial
dependence of malaria incidence.

Early detection of
epidemic outbreak (Deb
& Deb, 2022)

Dengue San Juan
and Iquitos

A weighted ensemble of
negative binomial
regression, seasonal ARIMA,
and generalized linear
ARMA models, with
weights, selected relative to
the performance on training
data.

Ensemble method is
most suitable for
forecasting outbreaks
compared to its
components as evident
from the MAE score.

Climate and terrain factors
provide useful information for
forecasting the dengue outbreak
in these regions.

Predicting epidemic
incidence with Baidu
search-engine data (Liu
et al., 2019)

Dengue South China Generalized Additive Mixed
(GAMX) Model.

GAMX showed 72% and
10% improvement in
RMSE and R2 compared
to the Generalized
Additive Model (GAM)
for generating 6-months
ahead forecasts.

Historical incidence data along
with climatic conditions played an
essential role in accurately
forecasting dengue incidence in
South China.

Forecasting Dengue
(Buczak et al., 2018)

Dengue San Juan
and Iquitos

Ensemble framework
including two-dimensional
method of analogs, additive
Holt Winter’s method with
and without wavelet
smoothing.

Ensemble model
forecasts a maximum
number of weekly cases
and total case count
with minimum RMSE
score compared to
traditional forecasters.

Their method scored the
maximum rank in predicting
weekly maximum count and total
count in the 2015 NOAA Dengue
Challenge.

Modeling epidemic
transmission (Jing et al.,
2018)

Dengue Guangzhou,
China

ARIMA with exogenous
variables (ARIMAX).

The forecasts generated
by the model report an
RMSE value of 0.6445
and a consistency rate of
0.7917.

Imported cases and climatic
conditions are key determinants
of modeling local epidemic
transmission.

Hybrid methodology for
epicasting (Chakraborty,
Chattopadhyay, & Ghosh,
2019)

Dengue Peru,
Philippines,
Puerto Rico

Remodeling the ARIMA
residuals with an ARNN
model and hybridizing the
ARIMA and ARNN outputs
for forecasting dengue
cases.

Hybrid model produces
the best forecast with a
one-year lead time
based on MAE, RMSE,
and sMAPE scores.

Hybrid ARIMA-ARNN model is
best suited for long-term
forecasting.

(continued on next page)
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Table 1 (continued).
Research topic Disease Countries Model Results Conclusion

Modeling trajectories of
Dengue (Johnson et al.,
2018)

Dengue Iquitos and
San Juan

Gaussian process (GP)
regression model.

The GP approach
predicts the future by
memorizing historical
data and performs
superior to the
generalized linear model
(GLM) techniques that
model the lagged
observations along with
climatic conditions.

This method is advantageous in
situations with a lack of ancillary
covariates.

Modeling and forecasting
epidemics (Wang et al.,
2018)

Hepatitis B China Seasonal ARIMA and grey
model (GM).

RMSE & MAE scores of
the SARIMA model were
lower than the GM
model in forecasting the
future trajectory.

Utilizing SARIMA model forecasts
is a supporting tool for health
officials to control hepatitis
outbreaks in China.

Malaria forecasting data
from 1994 to 1999 (Gao
et al., 2003)

Malaria Honghe
State, China

Artificial Neural network
(ANN).

ANN model has been
used and decreased the
error of statistical
models.

Neural network model was
effective for forecasting malaria. It
has the ability for more accurate
forecasting and easy applicability.

Prediction of the spread
of influenza epidemics
(Viboud, Boëlle, Carrat,
Valleron, & Flahault,
2003)

Influenza-
like illness
(ILI)

France Naive method. Ten weeks ahead
forecast for the temporal
and spatial spread of
influenza was generated.

Their method proved appropriate
for forecasting both national and
regional ILI incidences during the
epidemic and pre-epidemic
periods.

Deep learning approach
for modeling epidemic
(Santosh et al., 2020)

Malaria Telangana,
India

Long short-term memory
(LSTM) model.

12-months ahead
prediction was evaluated
based on several
accuracy measures.

LSTM successfully forecasts the
endemic periods in the upcoming
year for four different regions in
Telangana.

Machine learning-based
algorithm to determine
epidemic transmission
(Ch et al., 2014)

Malaria Rajasthan,
India

Hybridized Support Vector
Machine with Fire Fly
Algorithm (SVM-FFA).

One step ahead forecast
was evaluated based on
different performance
indicators.

The coupled SVM-FFA approach
exhibited better accuracy in
predicting malaria incidence than
several benchmark forecasters.
wavelet transform (MODWT), which has similar properties to
DWT but is free from the limitations (Percival & Walden, 2000).
Moreover, the MODWT approach provides increased resolution
for noisy data, and unlike DWT, the number of coefficients at
each level is the same as that of the original series. Applications
of the MODWT-based autoregressive moving average (ARMA)
model and hybrid ARIMA-WARIMA (based on error correction
approach) have been proposed for meteorological forecasting
and epidemic forecasting (Chakraborty, Chattopadhyay, & Ghosh,
2019; Zhu et al., 2014). Recent studies have also focused on
the application of MODWT-based deep learners, Wavelet Trans-
formers (W-Transformers) and Wavelet NBeats (W-NBeats) for
modeling real-world time series and stock-price datasets, re-
spectively (Sasal, Chakraborty, & Hadid, 2022; Singhal, Neeraj,
Mathew, & Agarwal, 2022). Several studies have also attempted to
model MODWT decomposed coefficients with an artificial neural
network for predicting electricity price (Saâdaoui & Rabbouch,
2019), generating weather forecasts (Nury, Hasan, & Alam, 2017),
analyzing the wholesale price of agricultural commodities (An-
joy & Paul, 2019), forecasting the occurrence of flood (Nanda,
Sahoo, Beria, & Chatterjee, 2016), and foretelling the daily river
discharge (Quilty & Adamowski, 2021). These studies suggest that
the wavelet-based neural network model generates more accu-
rate forecasts than the multilayered perceptrons. However, these
wavelet neural networks (Alexandridis & Zapranis, 2014) have
less application in the epidemic incidence prediction owing to the
unavailability of a vast amount of historical data and discrepancy
regarding the choice of the hidden neurons in wavelet neural
network resulting in an unstable learning algorithm. Another ma-
jor disadvantage of the previously built wavelet neural networks
is that they lack the desired theoretical properties like asymp-
totic stationarity, which makes long-term forecasts unstable and
inaccurate. To mitigate these concerns, this paper attempts to
design a novel ensemble of wavelet neural networks, and we
call it EWNet, that can handle epicasting problems and generate
188
short, medium, and long-term forecasts that are more reliable and
accurate as compared to state-of-the-art methods from statistics
and machine learning literature. EWNet is first built theoretically
with the help of the MODWT algorithm combined with ARNN
models in an ensemble setup and further used to solve the epicas-
ting problem. More precisely, our proposed EWNet model initially
decomposes the epidemic datasets into several ‘‘details’’ (de-
scribing high-frequency variations at a particular time scale) and
‘‘smooth’’ (describing low-frequency variations) using a MODWT-
based additive decomposition. In the subsequent step, EWNet
models the ‘‘details’’ and ‘‘smooth’’ segments of the data with a
series of autoregressive feedforward neural networks having pre-
defined architecture specified in the theoretical sections. Finally,
an ensemble approach is applied to ensure the reduction of bias
in the overall forecast.

The main contributions of the paper can be summarized in the
following manner:

1. We present a novel formulation of the proposed EWNet
model designed to handle nonlinear, non-stationarity, and
long-range dependency of real-world epidemic datasets.
We analyze several theoretical properties of the proposed
framework, including asymptotic stationarity, ergodicity,
irreducibility, and learning stability.

2. The proposed EWNet model has a solid mathematical basis
and is more explainable and reliable than modern deep
learning techniques. In addition, the model does not have
growing variance over time and exhibits better long-range
forecastability for epidemic datasets.

3. From a practitioner’s viewpoint, we extensively study the
global characteristics of fifteen real-world infectious dis-
ease datasets covering influenza, malaria, dengue, and hep-
atitis B from different regions. We demonstrate the epi-
casting ability of the proposed EWNet model on all the
fifteen epidemic datasets by a rolling window approach
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having three test horizons — short, medium, and long-
term and measure their performance using four accuracy
metrics, namely Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Scaled Error (MASE),
and symmetric Mean Absolute Percent Error (sMAPE).

4. We check the efficacy of the proposed model by comparing
its performance indicators with a total of 22 state-of-the-
art forecasters ranging from traditional time series models
to the most recent deep learning algorithms. We show
that our proposal can generate a better long-term forecast
and outperform most forecasters on average. Moreover,
we report the robustness of the forecast generated by our
proposed EWNet method using a non-parametric test. Fi-
nally, the statistical significance of the experimental results
and the potential threats to validate the results provide a
strong justification for the multi-disciplinary usability of
the proposed EWNet model in future studies.

The remaining sections of this paper are structured as follows.
ection 2 provides a detailed description of the formulation of
he proposed EWNet model. Then, in Section 3, we provide the
tatistical properties of the proposed EWNet model describing its
table learning, geometric ergodicity, and asymptotic stationarity,
long with the practical implications of these theoretical results.
detailed summary of the real-world epidemic data character-

stics, performance measures used in this study, and forecast
valuation of the proposed methodology with other state-of-
he-art forecasters are provided in Section 4. Finally, Section 5
valuates the statistical significance of the improvements in fore-
asts due to the application of the proposed EWNet model and
nvestigates the unexpected threats to the validity of these re-
ults. We conclude this paper in Section 6 with some discussion
nd the future scope of research.

. Method

This section gives an overview of the maximal overlap dis-
rete wavelet transform (MODWT) approach. We then present
he detailed formulation of the EWNet model. The key of the
nsemble wavelet neural network (EWNet) model is the wavelet
ecomposition of time series and the construction of an ensemble
f autoregressive neural networks.

.1. Wavelet transformations and DWT approach

In our study, we utilize a discrete wavelet transformation
DWT) approach to denoise the epidemiological data
time-indexed) followed by an autoregressive neural network
rchitecture (Faraway & Chatfield, 1998). In particular, we con-
entrate on ‘maximal overlapping’ versions of DWT that are
pplicable for arbitrary time series. DWT represents a signal using
n orthonormal basis representation that has been widely used
n smoothing signals (Percival & Walden, 2000; Walden, 2001),
ompressing digital images (Hilton, Jawerth, & Sengupta, 1994),
eophysics (Zhu et al., 2014), atmosphere (Percival & Mofjeld,
997), economics (Anjoy, Paul, Sinha, Paul, & Ray, 2017), en-
rgy (Yang & Wang, 2021), and material science (Li et al., 2020)
mong many others. We start with the description of wavelets
nd the DWT approach that can create a basis for the MODWT
lgorithm to be used in the proposal.
The Daubechies wavelets (Daubechies, 1992) are a family of

rthogonal wavelets defining a discrete wavelet transform. We
onsider discrete compactly supported filters of Daubechies class
f wavelets here. We denote by {gm : m = 0, 1, . . . ,M − 1}
he scaling filters and {hm : m = 0, 1, . . . ,M − 1} the wavelet
ilters. We restrict the scaling filter and wavelet filter to satisfy
189
nit energy assumptions (refer to Eq. (1)) and even-length scaling
ssumptions (refer to Eq. (2)) defined as follows:
−1∑

m=0

g2
m =

M−1∑
m=0

h2
m = 1 (1)

−1∑
m=0

gmgm+2n =

M−1∑
m=0

hmhm+2n = 0 (2)

or all non-zero and integer n. These two properties together are
alled the ‘‘orthonormality property" in wavelet literature (Percival
Walden, 2000). Scaling and wavelet filters are also related by

he following restriction:

m ≡ (−1)m+1hM−1−m or hm ≡ (−1)mgM−1−m;

for m = 0, 1, . . . ,M − 1.

hus, we call {gm} as ‘‘quadrature mirror" filter corresponding to
hm}. The construction scheme of DWT coefficients is well known
s the ‘pyramid algorithm’ (Percival & Mofjeld, 1997).
Suppose we denote the epidemic time series to be transformed

y Y = {Yt : t = 0, 1, . . . ,N − 1}. With V0,t ≡ Yt , the jth stage
nput to the pyramid algorithm is {Vj−1,t : t = 0, . . . ,Nj−1 − 1},
here Nj = N/2j. In the DWT pyramid algorithm, jth stage
utputs are the jth level wavelet and scaling coefficients and
hese jth level coefficients can directly be linked to the series {Yt},
ollowing (Walden, 2001).

j,t =

Mj−1∑
m=0

hj,mY(2j(t+1)−1−m) mod N and Vj,t

=

Mj−1∑
m=0

gj,mY(2j(t+1)−1−m) mod N ;

here the jth level filters have the same unit energy and related
roperties as discussed in Eqs. (1) and (2) along with

j−1∑
m=0

gj,m = 2j/2 and
Mj−1∑
m=0

hj,m = 0.

t level j the nominal frequency band to which the corresponding
wavelet coefficients {Uj,t} is given by |l| ∈

(
1

2j+1 ,
1
2j

)
. However,

WT restricts the sample size to be exactly a power of 2, whereas
avelet details and scaling coefficients of a DWT decomposed sig-
al do not scale and are shift-invariant. We may overcome these
eficiencies of DWT by using a modified version of DWT, namely
he maximal overlap discrete wavelet transformation (MODWT)
ased on haar filter (Percival, 1995; Percival & Mofjeld, 1997).

.2. MODWT algorithm

The MODWT is an improved and modified version of the
WT algorithm. Both DWT and MODWT allow to perform a
ulti-resolution analysis which is a scale-based additive decom-
osition (Nason & Sachs, 1999). However, the MODWT algorithm
vercomes the deficiencies of the DWT algorithm and can handle
he circular shift in the signal. Thus it is best suited for decom-
osing epidemiological time series that exhibit non-stationary
easonal patterns. Several applications of MODWT in time series
nalysis can be found in Anjoy and Paul (2019), Zhang and Ben-
eniste (1992) and Zhu et al. (2014). Therefore, in our study, we
onsider MODWT, which is well-defined for all sample sizes and
hift-invariant. This is also called nondecimated wavelet transform,
s there is a redundancy of wavelet and scaling coefficients at
ach decomposition level of the original series following a par-
icular pattern. A mathematical formulation of MODWT can be
xtended directly from the DWT formulation in Section 2.1.
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Fig. 1. MRA-based MODWT decomposition of the Colombia dengue dataset with the original epidemic time series and its 6 levels. In Figure, (a) denotes the original
time series in actual frequency scale; (b)–(f) denote the detail coefficients reproduced by the MODWT algorithm with haar filter, and (g) represents the scaling
coefficients of the series generated by MODWT algorithm with haar filter. The figure depicts time-localized information on frequency patterns that are identified by
wavelets.
f

Y

Here, we define MODWT filters {h̃j,m} and {g̃j,m} by
e-normalizing the DWT filters:

˜ j,m =
hj,m

2j/2 and g̃j,m =
gj,m
2j/2 ; (3)

and width Mj of MODWT and DWT are the same. Another modi-
fication made w.r.t. the DWT filter is that MODWT filters do not
have unit energy, i.e.,
Mj−1∑
m=0

h̃2
j,m =

Mj−1∑
m=0

g̃2
j,m =

1
2j ,

nd, therefore, there is no need for downsampling by 2j in the
ODWT. With Ṽ0,t ≡ Yt , then the MODWT pyramid algorithm
enerates the MODWTwavelet coefficients {Ũj,t} and the MODWT
caling coefficients {Ṽj,t} (Percival & Walden, 2000). These coeffi-
ients can also be formulated in terms of filtering of {Yt}, using
he filters as in Eq. (3):

˜ j,t =

Mj−1∑
m=0

h̃j,mY(t−m) mod N and Ṽj,t =

Mj−1∑
m=0

g̃j,mY(t−m) mod N ;

where Mj = (2j
−1)(M −1)+1. Similar to DWT, the MODWT co-

efficients at level j are associated to the same nominal frequency
band |fq| ∈

(
1

2j+1
1
2j

]
and are defined as the convolutions of the

ime series Yt . Thus, the wavelet coefficients at each level will
have the same length as that of the original series. The coefficients
can also be expressed using matrix notation as follows Percival
and Walden (2000):

Ũj = ũjY and Ṽj = ṽjY ,

here the square matrices ũj and ṽj of order N × N comprises
alues dictated by wavelet filters and scaling filters, respectively.

˜ j =

⎡⎢⎢⎢⎢⎢⎣
h̃j,0 h̃j,N−1 h̃j,N−2 . . . h̃j,3 h̃j,2 h̃j,1

h̃j,1 h̃j,0 h̃j,N−1 . . . h̃j,4 h̃j,3 h̃j,2
...

...
... . . .

...
...

...

h̃j,N−2 h̃j,N−3 h̃j,N−4 . . . h̃j,1 h̃j,0 h̃j,N−1

h̃j,N−1 h̃j,N−2 h̃j,N−3 . . . h̃j,2 h̃j,1 h̃j,0

⎤⎥⎥⎥⎥⎥⎦ (4)

nd ṽj can similarly be expressed as in Eq. (4) with each {h̃j,m}

eplaced by {g̃ }. Thus, the original series (Y ) can be written
j,m
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rom its MODWT based via,

=

J∑
j=1

ũT
j Ũj + ṽTJ ṼJ =

J∑
j=1

Dj + SJ ,

where Dj = ũT
j Ũj is the jth level (j = 1, 2, . . . , J) details and

SJ = ṽTJ ṼJ is the Jth level smooth of the MODWT decomposition.
A more detailed description and pseudo-code of the MODWT
algorithm is available in Percival and Mofjeld (1997). MODWT is
valid for any integer N , whereas DWT needs N to be an integer
multiple of 2. Also, MODWT is a more handy tool for handling
non-stationary and seasonal discrete time series, which is the
case in most epidemic datasets. These properties of MODWT are
a key element for pre-processing highly non-stationary and long-
term dependent epidemic datasets. The remaining nonlinearity of
the epidemic time series is further modeled with the ARNNmodel
in the proposed EWNet framework. For graphical illustration, the
MODWT decomposition on the Colombia Dengue dataset is pre-
sented in Fig. 1. We aim to create a new set of random variables
(equal-sized time series named as details and smooth coefficients
of MODWT algorithm) and use them to build a novel ensemble of
autoregressive neural nets in the EWNet framework. In the next
subsection, we combine the MODWT algorithm and ARNN model
to utilize their complimentary benefits for epicasting.

2.3. Proposed EWNet model

This section provides a detailed formulation of our proposed
EWNet methodology that utilizes a wavelet decomposition al-
gorithm as a data pre-processing step. A salient feature of the
MODWT algorithm is that it helps to decompose epidemic time
series in trend and higher frequency bands which are exploited
for forecasting in the proposal. The multiresolution analysis of
MODWT decomposes the discrete time series Yt (t = 1, 2, . . . ,N),
where N is the number of historical samples, into high-frequency
information and low-frequency information by applying cor-
responding filters. These high and low-frequency decomposed
series are termed wavelet (details), and scaling (smooth) coef-
ficients can track the original series as:

Yt =

J∑
Dj,t + SJ,t .
j=1

https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
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Table 2
Global characteristics of epidemic datasets.
Datasets Time span Frequency Length Behavior

AustraliaInfluenza 1947–2015 Weekly 974 Long term dependent, Non-stationary, Non-seasonal, Nonlinear
JapanInfluenza 1998–2015 Weekly 964 Long term dependent, Stationary, Non-seasonal, Nonlinear
MexicoInfluenza 2000–2015 Weekly 830 Long term dependent, Non-stationary, Non-seasonal, Nonlinear

Ahmedabad Dengue (Enduri & Jolad, 2017) 2005–2012 Weekly 424 Long term dependent, Non-stationary, Non-seasonal, Nonlinear
Bangkok Dengue (Polwiang, 2020) 2003–2017 Monthly 180 Long term dependent, Non-stationary, Seasonal, Nonlinear
ColombiaDengue 2005–2016 Weekly 626 Long term dependent, Non-stationary, Non-seasonal, Nonlinear
HongKongDengue 2002–2017 Monthly 192 Long term dependent, Non-stationary, Seasonal, Linear
Iquitos Dengue (Deb & Deb, 2022) 2002–2013 Weekly 598 Long term dependent, Stationary, Non-seasonal, Nonlinear
Philippines Dengue (Chakraborty, Chattopadhyay, & Ghosh, 2019) 2008–2016 Monthly 108 Long term dependent, Stationary, Non-seasonal, Nonlinear
San Juan Dengue (Johansson et al., 2019) 1990–2013 Weekly 1196 Long term dependent, Stationary, Non-seasonal, Nonlinear
SingaporeDengue 2000–2015 Weekly 838 Long term dependent, Non-stationary, Non-seasonal, Linear
VenezuelaDengue 2002–2014 Weekly 660 Long term dependent, Non-stationary, Non-seasonal, Linear

China Hepatitis B (Wang et al., 2018) 2010–2017 Monthly 92 Long term dependent, Non-stationary, Seasonal, Nonlinear

ColombiaMalaria 2005–2016 Weekly 626 Long term dependent, Non-stationary, Non-Seasonal, Linear
VenezuelaMalaria 2002–2014 Weekly 669 Long term dependent, Non-stationary, Non-Seasonal, Nonlinear
k

p
t
p
r
U
s
s
a
t
c
T
c

Theoretically, Dj,t (j = 1, 2, . . . , J) components capture the
non-smooth bumpy details (local fluctuations) of the series Yt ,
indicated by the fast dynamics whereas its counterpart SJ,t ap-
prehends the smooth tendencies (overall ‘‘trend’’ of the original
signal) of the series, signalized by slow dynamics. Epidemic time
series considered in this study have long-term memory (as re-
ported in Table 2), and long-term memory processes have a
high degree of correlation. With the help of MODWT (with ‘haar’
filter), we create a new set of random variables (equal-sized time
series), namely, the wavelet coefficients, that are approximately
uncorrelated (both within and between scales). The decompo-
sition process can be iterated, with successive approximations
being decomposed in turn, so that the original signal is broken
down into many lower-resolution components. Simultaneously,
the problem of generating forecasts ŶN+h (h-step ahead forecasts)
based on Y1, Y2, . . . , YN can be solved by generating the forecasts
D̂j,N+h (j = 1, 2, . . . , J) and ŜJ,N+h, based on their previous
observations, i.e.,

D̂j,N+h = f (Dj,1,Dj,2, . . . ,Dj,N ); j = 1, 2, . . . , J,

ŜJ,N+h = f (SJ,1, SJ,2, . . . , SJ,N ),

where f is the autoregressive neural network function. We choose
the value of J + 1 as a floor function of log (base e) of the length
of training subset as suggested by Percival and Mofjeld (1997).

In our proposed framework, we utilize these decomposed time
series using an ensemble of neural networks for generating the
forecasts from several decomposed components. The neural net
comprises of three layers — one input layer with p nodes, one
hidden layer with k nodes, and an output layer with no recurrent
connections (feedforward structure). We operate J + 1 of these
feedforward neural networks, each of which models p lagged
observations from a series to generate a one-step-ahead forecast
in a single iteration.

D̂j,N+1 = α0,j +

k∑
i=1

βi,jφ(αi,j + β ′

i,jDj); j = 1, 2, . . . , J,

ŜJ,N+1 = η0 +

k∑
i=1

δiφ(ηi + δ′

iSJ );

here Dj, SJ denotes p lagged observations of the corresponding
ecomposed series (j = 1, 2, . . . , J), α0,j, η0, αi,j, βi,j, ηi, δi (i =

, 2, . . . , k; j = 1, 2, . . . , J) are the connection weights of the
network, β ′

i,j, δ
′

i are p dimensional weight vectors, and φ is the
nonlinear activation function (precisely, logistic sigmoidal activa-
tion function). The weights of the network take random values
at the beginning and are then trained by gradient descent back-
propagation approach (Rumelhart et al., 1986). This procedure is
continued iteratively until the forecast of the desired horizon is
 t
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obtained. Eventually, the forecasts originating from all the trained
networks are aggregated to produce the final forecast as

ŶN+h =

J∑
j=1

D̂j,N+h + ŜJ,N+h

The choice of the hyperparameter p is based on the minimization
of forecast error for the validation set in a cross-validation way

p = argmin
p

1
|V |

∑
t∈V

2|Ŷt − Yt |

|Ŷt | + |Yt |
∗ 100%,

where Yt is the series at time point t , Ŷt is the predicted value at
time point t , V is the validation set and the number of neurons

= [
p+1
2 ] in the hidden layer is chosen (proof is discussed in Sec-

tion 3.1). Detailed descriptions of the EWNet model parameters
are described below.

1. Wavelet levels (J + 1): An integer value specifying the level
of the wavelet decomposition of the original series.
In order to account for the maximum level in the decom-
position, we set J + 1 = ⌊loge N⌋ based on the recommen-
dation of Percival and Mofjeld (1997).

2. Fast Flag: Denotes the wavelet decomposition achieved by
using pyramid algorithm described in Percival and Walden
(2000).

3. Boundary: A ‘‘periodic’’ boundary is set and it is used to
obtain coefficients from the training time series.

4. MaxARParameter (p): An integer indicating the value of
the lagged inputs in each of the J + 1 ARNN models.
This is a tuning parameter in EWNet and is chosen using
cross-validation.

5. Hidden neurons (k): The number of hidden neurons in (J+1)
ARNN models are set to k =

[ p+1
2

]
(discussed in details in

Section 3.1).
6. NForecast (h): The desired forecast horizon.

A schematic flow diagram of the proposed EWNet model is
ortrayed in Fig. 2. A detailed inspection of Fig. 2 describes
he mechanism of generating a one-step-ahead forecast in the
roposed EWNet model, where each wavelet decomposed se-
ies is modeled with autoregressive neural network architecture.
sing one-step ahead forecasts, we iteratively find the multi-
tep ahead forecasts from the EWNet model. Based on the non-
tationary and nonlinear characteristics of the time series, we
pply MODWT-based decomposition to break the series into mul-
iple sub-frequencies. Following this, each detail and smooth
omponent is fed into an ARNN model for prediction purposes.
he wavelet analysis can efficiently diagnose the main frequency
omponents of the signal, and the ARNN can now model the de-
ails and smooth components of the series with higher accuracy;

https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Australia_Flu.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Japan_Flu.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Mexico_Flu.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Dengue.dat
https://data.gov.hk/en-data/dataset/hk-dh-chpsebcdde-dengue-fever-cases
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Singapore_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Venezuela_Dengue.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Colombia_Malaria.dat
https://github.com/JohannHM/Disease-Outbreaks-Data/blob/master/Venezuela_Malaria.dat
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Fig. 2. Schematic diagram of the EWNet framework: Given the original input series of size n, we employ MODWT transformation to decompose the series into one
mooth and J details coefficients each of size n. In the subsequent step, each of the transformed series is modeled with an autoregressive neural network and their
orecasts are combined via inverse MODWT transformation to generate the one-step ahead ensemble forecast.
hus, the name of the model, Ensemble Wavelet Neural Network
EWNet), is justified. In the proposed model, the time series is
irst decomposed into several sub-time series [D1,D2, . . . ,DJ , SJ ],
where the former J series are the wavelet detail components, and
SJ is the smooth component as depicted for the Colombia dengue
data in Fig. 1. Finally, the forecasted series is formed through
inverse wavelet transform from the forecast generated by the de-
tails and smooth components. A detailed description concerning
the implementation of the model is available in Algorithm 1. So
far as the study proceeds, in the following section, we develop the
theoretical results of the proposed EWNet model from a nonlinear
time series viewpoint and show the stability in the learning of our
proposal, asymptotic behavior, and their practical implications.

Remark 1. Most machine learning and deep learning frame-
works utilize a sliding window approach to reconstruct the time
series forecasting task as a supervised learning problem. The
previous steps are used as inputs, and the next step as the
outputs. However, in the proposed EWNet architecture, we em-
ploy an ensemble ARNN framework on the MODWT decomposed
training series. Unlike most machine learning and deep learn-
ing approaches, the proposed model does not reconstruct the
epidemic series into an input–output supervised framework; in-
stead, it utilizes p-lagged observations of each of the wavelet
decomposed training data and generates a one-step-ahead fore-
cast using a nonlinear function as discussed in Algorithm 1.
Moreover, we recursively update the training data with the latest
forecast (obtained from EWNet) to develop the multi-step ahead
forecasts for each transformed series using the same nonlinear
activation function. Finally, we consider an ensemble of the fore-
casts generated from each wavelet decomposed series and obtain
our desired results. In the experimental evaluation, we utilize the
original test data only to compute the forecasting accuracy of
the proposed EWNet framework in comparison with benchmark
methods.
192
Algorithm 1: Proposed EWNet model
Input : Univariate time series {Y1, Y2, . . . , YN} with N

historical observations.
Output: Record prediction corresponding to the historical

data window, fitted values of the original series,
and h-step ahead forecast (h to be specified by
user).

Train Procedure:
1 Compute the maximal overlap discrete wavelet transform

(MODWT) of the original time series via pyramid
algorithm.

2 Extract the wavelet and scaling coefficients corresponding
to each level and transform them to time series objects.

3 Model these individual time series using an
autoregressive neural network with p lagged values.

4 Select the MaxARParam corresponding to the minimum
accuracy measure (MASE) on the validation set and k as
specified.

Test Procedure:
Execute the previously mentioned steps for acquiring the
forecast on the hold-out test set.

5 The fitted model generates a one-step-ahead prediction.
6 Iterate the process until the forecast of the desired

horizon is computed.
7 Combine the final forecasts generated from the wavelet
and scaling series using an inverse MODWT approach to
achieve the desired output.

3. Statistical properties of EWNet model

In this section, we explore several theoretical aspects of the
proposed EWNet approach and discuss their practical impli-
cations from practitioners’ points of view. We start with the
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earning stability problem of EWNet and then investigate the
symptotic behavior of the associated Markov chain.

.1. Stable learning using EWNet model

We investigate the effect of learning stability and the choice of
idden neurons in the EWNet model. In unstable neural network
odels, the number of hidden nodes in hidden layers either
ecomes too large or too small. This instability in the neural
etwork gets reflected in the output layer of the neural net,
nd a trade-off is required. Several previous studies established
heoretical results on the choice of hidden neurons of feedforward
eural network, for example, see Chakraborty, Chakraborty, and
urthy (2019), Tamura, Tateishi, Matumoto, and Akita (1993) and
eng and Yeung (2006). In the proposed EWNet, we consider
he following assumptions to ensure learning stability in the
roposed ensemble framework.

(a) EWNet has three layers: one input, one hidden, and one
output layer with no recurrent connections (feedforward
structure). Also, there is no direct connection from the
input to the output layer in EWNet.

(b) Gradient descent backpropagation (Hinton & Salakhutdi-
nov, 2006) learning is used without introducing an inertia
term to train the EWNet model.

(c) EWNet starts with random weights, and the network is
mainly trained for one-step forecasting, although multi-
step ahead forecasts can also be computed recursively.

(d) We further assumed that the learning rate (η) is the same
for all the connections and connection weights

(
w(o)

)
and

error signal
(
δ(o)

)
in the output layer are assumed to have

a symmetrical distribution with respect to the origin.
(e) The number of lagged inputs (p) in EWNet(p, k) model is

selected by a grid search optimization algorithm and the
number of hidden neurons is set to k =

[ (p+1)
2

]
unless

it is particularly specified. The above choice of k provides
stability of learning in the proposed EWNet model.

ssumptions (a) - (d) are trivially true. But, the assumption (e)
s critical, and we discuss below the choice of hidden neuron
nd stability of learning for the EWNet(p, k) model. Throughout

this section, we denote the triplet notion (i, h, o) as the (input,
hidden state, and output) of the EWNet model. The change of
internal state ∆u through learning for the same input patterns
is considered a rough standard for the stability of learning in the
proposed EWNet, as previously described in seminal papers on
statistical properties of neural networks (Hornik, 1993; White,
1989). The change in weights from the ith input to the j̃th hidden
euron can be mathematically written as

w
(h)
j̃i

= ηδ
(h)
j̃

x(i)i ,

where, x(i)i is the output of the ith input neuron, δ(h)
j̃

is the

propagated error signal for the j̃th hidden neuron and can be
mathematically expressed as

δ
(h)
j̃

=
∂E

∂u(h)
j̃

,

where E is the L2-error loss between the training signal yl and
utput value x(o)l . The change in the internal state can be written
s

u(h)
j̃

=

p∑
∆w

(h)
j̃i

x(i)i = ηδ
(h)
j̃

p∑(
x(i)i

)2
.

i=1 i=1 y
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he propagated error signal δ(h)
j̃

in the hidden layer is computed
s
(h)
j̃

= g ′

(
u(h)
j̃

)
w

(o)
l̃j
δ
(o)
l , (5)

here g ′(·) is the derivative of the activation function (logistic
igmoidal activation function of EWNet model is both continuous
nd differentiable), δ(o)l is the output error signal, and w(o)

l̃j
is the

utput weights. Accordingly, δ(h)
j̃

is inversely proportional to the
umber of hidden neurons and can be computed using Eq. (5).
nder the standard regularity condition that g ′

(
u(h)
j̃

)
and w(o)

l̃j
δ
(o)
l

re independent (Fujita, 1998; Hornik, 1993), the variance of δ(h)
j̃

,

enoted by V
(
δ
(h)
j̃

)
, is mathematically represented as(

δ
(h)
j̃

)
= E

[
g ′

(
u(h)
j̃

)
w

(o)
l̃j
δ
(o)
l − E

(
g ′

(
u(h)
j̃

)
w

(o)
l̃j
δ
(o)
l

)]2

=

[
E2

(
g ′

(
u(h)
j̃

))
+ V

(
g ′

(
u(h)
j̃

))]
E

[
w

(o)
l̃j
δ
(o)
l

]2
.

The boundary of the stable learning of a hidden neuron is summa-
rized as η.

( p
k

)
by adding the effect of learning rate η to the above

iscussion. The number of hidden neurons becoming too large
an make the output neurons unstable, whereas if the number of
idden neurons becomes too small, the hidden neurons become
nstable again. Here a trade-off is derived for the learning struc-
ure of the EWNet algorithm. We introduce a balancing equation
s follows:

η.

(p
k

)
= η.k, (6)

where the L.H.S. and R.H.S. of Eq. (6) are obtained from the
viewpoint of the boundary of stable learning in hidden and output
neurons, respectively. Here, we also pose α as a constant for
consistency. Therefore, we initially choose the number of hidden
neurons to be k =

√
α.p. We take the minimum value of α to be

1 and the maximum value of α to be p (≥ 1). Thus, k lies between
p and p for stable learning in the EWNet model. A natural choice

of k ∈ (
√
p, p) is [

p+1
2 ], can be easily derived using AM-GM in-

equality. Thus, we conclude that the network structure proposed
in the EWNet model has stable learning property that is desired
from the statistical perspective. Next, we prove the asymptotic
stationarity of the associated stochastic process from a nonlinear
time series point of view, following Meyn and Tweedie (2012).

3.2. Geometric ergodicity and asymptotic stationarity

The proposed ensemble wavelet-based autoregressive neural
network (EWNet) model is an integrated approach that com-
bines wavelet transformation with the ARNN algorithm. First,
the wavelet decomposition coefficients for time series data are
transported into the ARNN model to set up a forecast ensemble
in the proposed framework. Wavelet transformation decomposes
a time series into J + 1 independent orthogonal components
with both time and frequency localization. Then, we fit several
specific autoregressive neural network models to the component
series and obtain forecasts later aggregated to get the actual
predictions and, after that, out-of-sample forecasts. Therefore, we
only need to show that, under the sufficient conditions stated
below, a single autoregressive neural network process is ergodic
and asymptotically stationary to ensure that the whole process is
ergodic and asymptotically stationary.

We start with a simple ARNN(1, k) process with k hidden
nits that can be defined by the following stochastic differential
quation:

= f (y ,Θ) + ε ,
t t−1 t
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here yt−1 is the previous lagged input, Θ denotes the weight
ector, εt is a sequence of independently and identically dis-

tributed (i.i.d.) random errors, and f denotes an autoregressive
eural network function. The output of an ARNN(1, k) model with
ctivation function G (e.g., logistic sigmoidal activation function)
s given by

(yt−1,Θ) = ψ1yt−1 + ν +

k∑
i=1

βiG
(
φi,1yt−1 + µi

)
= ψ1yt−1 + g (yt−1, β, φ) , (7)

where the weight components are the shortcut connections ψ1,
he hidden layer to output unit weights β = (ν, β1, β2, . . . , βk)′
nd the input to hidden unit weights φ =

(
φ1,1, . . . , φk,1,

µ1, . . . , µk)
′ are collected together in the network weight vector

Θ .

Remark 2. Our proposed EWNet model can be thought of as a
sum of J + 1 different ARNN(p, k) processes, where J + 1 denotes
he number of details and smooth coefficients obtained using the
ODWT algorithm.

Now, we show the ergodicity and stationarity of a simple
RNN(1, k) process. In statistical analysis of nonlinear time series,

the ergodicity and stationarity of the underlying process are of
particular interest since, for such processes, a single realization
displays the whole probability law of the data generation pro-
cess (Meyn & Tweedie, 2012). Before discussing the results for
ergodicity and stationarity, we discuss the concept of irreducibil-
ity for the ARNN(1, k) process, which acts as a connectionist in
stablishing the theoretical results.

.2.1. Irreducibility
‘Irreducibility’ is a very primordial concept of a Markov chain

n which, irrespective of the starting point, the Markov chain
an reach all parts of the state space (Meyn & Tweedie, 2012).
nother key property of Markov chains is called ‘aperiodicity’
hich refers to a Markov chain with no cycles. More formally, the
efinition of ‘irreducibility’ can be given as follows Panja, Kumar,
nd Chakraborty (2022).

efinition 1. A Markov chain is called irreducible if
∞∑
t=1

P t (y,A)

> 0 for all y ∈ X , whenever λ(A) > 0, where P t (y,A) denotes
he transition probability from the state y to the set A ∈ B in t
teps where the state space X ⊆ R2, and B is the usual Borel
-field and λ be the Lebesgue measure.

Now, we write the ARNN(1, k) process in the state space form
s follows:

t = ψ1yt−1 + F (yt−1) + εt , (8)

where F (yt−1) = g (yt−1, β, φ) refers to the nonlinear component
of yt . Thus, yt is considered as a Markov chain with state space
X ⊆ R2 equipped with Borel σ -field B and Lebesgue measure
λ. To establish the results for irreducibility, we begin by writing
Eq. (8) as a control system driven by the control sequence {εt} :

yt = Ft (y0, ε1, . . . , εt ),

where the definition of Ft (·) follows inductively from Eq. (8). We
define At

+
(y) as the set of all states that are accessible from y at

time t:

A0
+

:= {y} and At
+
(y) := {Ft (y0, ε1, . . . , εt ); εi ∈ θ},

where the control set θ is an open set in R. The control system Ft

is said to be forward accessible if the set
∞⋃

At
+
(y) has a nonempty
t=0
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interior for each y ∈ X . Generally, forward accessibility refers to
the set of reachable states that is not concentrated in some lower
dimensional subset of X . This property together with an addi-
tional assumption on the noise process ensures the irreducibility
of the corresponding Markov process (Meyn & Tweedie, 2012).
Now, we write the control system defined in Eq. (8) as follows:

yt = ψ1yt−1 + F (yt−1) + εt

= ψ2
1 yt−2 + ψ1F (yt−2) + F (yt−1) + εt . (9)

Consider a special case: when F ≡ 0, the control system Ft is
referred to as a controllable linear system, where every point of
the state space is accessible regardless of its initialization for any
control value εt . The underlying assumptions of a forward control
system (as in Eq. (8)) are presented below in Proposition 1.

Proposition 1. The sufficient conditions of forward accessibility for
the control system (in Eq. (8)) are the followings:

1. G ∈ C∞ is a bounded, non-constant, and asymptotically
constant function (C∞) (any function is C∞ if derivatives of
all orders are continuous).

2. The linear part of R.H.S. of Eq. (8) is controllable, i.e., ψ1 ̸= 0.

Proof. The proof builds on Panja et al. (2022) and Trapletti,
Leisch, and Hornik (2000). Logistic squasher activation functions
(used in the EWNet model) satisfy Assumption 1. Assumption 2 of
Proposition 1 implies the non-vanishing criterion (controllability)
of the linear part of R.H.S. of Eq. (8). Since Assumption 1 holds for
the ARNN model, then for any k ∈ Z+ and any scalars β0, βi, µi
and φi ̸= 0, the condition

β0 +

k∑
i=1

βiG′(φiy + µi) = 0, ∀ y ∈ R

implies β0 = 0 (from Assumption 1). Next, we define a ma-
jor element of the generalized controllability matrix (GCM) as
follows:

c = ψ1 +

k∑
i=1

βiφi,1G′
(
φi,1(ŷ1) + µi

)
.

We can set θ ≡ R and choose any ŷ1. Then Assumption 2
implies that c ̸= 0. This indicates that the GCM matrix is a non-
singular matrix and, therefore, the control system in Eq. (8) is
forward accessible, concluding the proof of Proposition 1. Related
lemmas for multilayered perceptron are given as Lemma 2.5–2.7
in Hwang and Ding (1997). □

Remark 3. The controllability of the linear components of the
ARNN process is shown in Proposition 1 implies forward accessi-
bility. But, the associated Markov chain is said to be irreducible
when the support of the distribution of the noise process is
sufficiently large.

Therefore, under suitable conditions on the distribution of the
noise process εt , we can show the irreducibility of the corre-
sponding Markov chain.

Theorem 1 (Theorem of Irreducibility). Suppose the distribution of
εt is absolutely continuous w.r.t. the Lebesgue measure λ and the
probability distribution function (p.d.f.) ν(·) of εt is positive every-
where in R and lower semi-continuous. Then under the condition
rescribed in Proposition 1, the Markov chain in Eq. (8) is irreducible
n the state space (R2,B).

roof. The proof build on Chakraborty, Chakraborty, Biswas,
anerjee, and Bhattacharya (2020), Panja et al. (2022) and
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rapletti et al. (2000). It is trivial that the state y∗
= 0 is globally

ttractive from the control system defined in Eq. (8), and the next
omponent of yt , regardless of its origin, can reach the point 0 in
ne step. Furthermore, we consider the iterated first component
rom t = 0 to t = 2 and define it as y2 = · · ·+g(. . . , β, φ), where
ll the terms that are functions of the starting point or the second
omponent are necessarily omitted. Owing to the bounded and
ontinuous function g(·) and non-zero value of ψ1, it is obvious
hat the initial component can reach the point 0, irrespective of its
tarting point and the second component, in two steps. Following
he above-stated argument, we can conclude that the state space
n R2 is connected since every state can be approached in two
teps. Hence, the Markov Chain, defined in Eq. (8) is ‘aperiodic’
nd ‘irreducible’. An immediate instance is a Gaussian white noise
hat satisfies the conditions stated in Theorem 1 without loss of
enerality. □

emark 4. Theorem 1 shows the irreducibility property for
the ARNN(1, k) process and demonstrates its proximity to the
concept of forward accessibility of a control system. However,
we also showed that ARNN processes might not exhibit for-
ward accessibility, and in such scenarios, inferring about the
data-generating process from the observed data is impossible.

3.2.2. Ergodicity and stationarity
This section shows the (strict) stationarity of the state–space

form defined in Eq. (8). For a state–space {yt}, the notion of
tationarity has a close relationship with the geometric ergodicity
f the process. The geometric ergodicity of a stochastic process
mplies that the underlying distribution of the process converges
o the unique stationary solution at a geometric rate for any
nitials of the model (Meyn & Tweedie, 2012). A formal definition
f geometric ergodicity and asymptotic stationarity can be given
ollowing Trapletti et al. (2000).

efinition 2. A Markov chain {yt} is called geometrically ergodic
f there exists a probability measureΠ on (X ,B, λ) and a constant
ρ > 1 such that lim

t→∞
ρt

∥P t (y, ·) − Π (·)∥ = 0 for each y ∈ X ,
where ∥ · ∥ denotes the total variation norm. Then, we say the
distribution of {yt} converges to Π and {yt} is asymptotically
stationary.

Hence, {yt} is (strictly) stationary when it starts in the infinite
past or with initial distribution Π . We give the main result on
ergodicity and stationarity of the associated Markov chain in the
theorem below.

Theorem 2 (Main Theorem). Suppose the Markov chain {yt} of the
ARNN(1, k) process satisfies the conditions of Theorem 1 and E|εt | <
∞. Then, a sufficient condition for the geometric ergodicity (vis-a-vis
asymptotic stationarity) of the Markov chain {yt} is that |ψ1| < 1.

Proof. To show the geometric ergodicity, we use Theorem 15.0.1
of Meyn and Tweedie (2012) and verify the drift criterion 15.3 of
Theorem 15.0.1 of Meyn and Tweedie (2012). Similar results for
the vector threshold autoregressive model are discussed in Tjøs-
theim (1990).

We begin the proof by recalling the state–space model in
Eq. (8):

yt = ψ1yt−1 + F (yt−1) + εt ,

where F (·) is the nonlinear part and the intercept. For the general
ARNN(p, k) process, we define the following matrix:

Ψ :=

⎡⎢⎢⎢⎢⎣
ψ1 ψ2 . . . ψp−1 ψp
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

⎤⎥⎥⎥⎥⎦

0 0 . . . 1 0
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as the shortcut connections to the autoregressive part. Now, there
exists a transformation Q such that Γ = QΨQ−1 where the
diagonal elements Γ consists of the eigenvalues of Ψ and the
off-diagonal elements are arbitrarily small. Considering, T (y) =

∥
∑

y∥ as the test function and τ = {y ∈ Rp, T (y) ≤ c ′
}, for some

c ′ < ∞, as the test set, we have

E[T (yt )|yt−1 = y] ≤ ∥QΨ y∥ + ∥QF (y)∥ + E∥Qεt∥

≤ (∥Λ∥ + ∥∆∥)T (y) + ∥QF (y)∥ + E∥Qεt∥,

where Λ is a diagonal matrix with the eigenvalues of Ψ , i.e., Λ =

diag(Γ ) and ∆ = Γ −Λ. Since, the absolute value of the largest
eigenvalue of Ψ is strictly less than one, following the assumption
of Theorem 2, then ∥Λ∥ < 1, and the transformation Q can be so
chosen that (∥Λ∥ + ∥∆∥) < 1 − ϵ for some ϵ > 0. Since the
second and third terms are bounded, we can choose ϵ such that
E[T (yt )|yt−1 = y] ≤ (1 − ϵ)T (y) + δ1τ (y) for some 0 < δ < ∞

and for all y. The result is also valid for the test function T (y)+ 1
and hence, we get the desired result. □

Remark 5. Theorem 2 states the sufficient condition for the
geometric ergodicity of the ARNN(1, k) process. Consider the
following example: if ψ1 = 1, then the long-term behavior of
the ARNN(1, k) process can be determined by the nonlinear part
and the intercept term of the process. Moreover, the geometric
convergence rate in Theorem 2 implies that the memory of the
ARNN process vanishes exponentially fast. This means that the
simplest version of the ARNN(p, k) process converges to a Wiener
process (Li, Wang, Zhang, Liu, & Fu, 2018). Also, theoretical results
suggest that the shortcut weight corresponding to the autoregres-
sive part determines whether the overall process is ergodic and
asymptotically stationary.

3.2.3. Practical implications of theoretical results
Some interpretations and practical implications of the theo-

retical results are discussed below from practitioners’ points of
view:

(a) In the ideal situation, when an irreducible ARNN process
generates the data, the estimated weights are not too far
from the true weights. Then, one can draw an indirect con-
clusion on the statistical nature of the estimated shortcut
weight corresponding to the autoregressive part being less
than one in absolute terms, and then the data generation
process is said to be ergodic and stationary. But, if the con-
ditions are not met, the model is likely to be unspecified,
and the estimation procedure should be diligently done.

(b) The theoretical results of asymptotic stationarity and er-
godicity for the EWNet(p, k) model would directly follow
from the ARNN(p, k) process since the proposed EWNet is a
simple aggregation of several ARNN models fitted after the
Wavelet decomposition of the time series data. These the-
oretical results guarantee that the proposed EWNet model
cannot show ‘explosive’ behavior or growing variance over
time.

(c) The theoretical result for the number of hidden nodes in
the EWNet model is set to a fixed value depending on the
number of lagged inputs (as discussed in Section 3.1). Due
to this, the running time of the EWNet model is minimal
as compared to unstable neural networks in which the
number of hidden nodes either becomes too large or too
small. Thus, our proposed model does not face the problem
of under-fitting or over-fitting.
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. Experimental analysis

In this section, we present a detailed description of the:
pidemic datasets and their global characteristics (refer to Sec-
ion 4.1); Performance measures used in our study (refer to
ection 4.2); Benchmark forecasters utilized in our study 4.3, and
mplementation of the proposed EWNet model for epidemiolog-
cal datasets along with its performance comparison with the
tate-of-the-art forecasters (refer to Section 4.4).

.1. Epidemic datasets and their global characteristics

Epidemic datasets are accumulated from publicly available
ata resources (health websites, published manuscripts, etc.).
hey represent crude data of diseases, namely dengue, malaria,
epatitis B, and influenza, occurring in distinct regions. In this
tudy, we have considered 15 datasets, amongst which 11 of them
epresent the overall number of subjects infected by a particular
isease in a week, whereas the remaining corresponds to the
ggregated monthly caseload. For example, the dengue incidence
ases in Ahmedabad are recorded weekly per 104 population,
whereas, for the Philippines, we consider the total number of
people suffering from dengue across several regions per 106

population. These epidemic time series datasets are of different
lengths and free from missing observations. Moreover, we ana-
lyze several global attributes of these datasets to understand real-
world epidemiological datasets’ structural patterns and identify
the best-suited epicasting framework for the given scenario. Since
the primary objective of this study is to provide a meaningful
epicasting technique for real-world epidemic datasets, compre-
hensive knowledge of the data is the foundation step to accom-
plish this goal. Thus, we study several classical and advanced
time series characteristics of the epidemic datasets based on the
recommendations of De Gooijer and Hyndman (2006) and Lemke,
Budka, and Gabrys (2015). A detailed description and usage of
these global characteristics are summarized below:
Stationarity is a time series’s foremost fundamental statistical
property essential for many classical forecasting models. A time
series is said to be generated from a stationary process if the se-
ries does not change over time. Our study used the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test to test the null hypothesis
that the given time series is stationary (Shin & Schmidt, 1992).
This test is implemented using the kpss.test function of ‘‘tseries’’
package in R.
Nonlinearity is another essential time series feature that deter-
mines the model variant to be used. For testing the null hy-
pothesis that the observed time series is linear, we perform
a Teraesvirta’s neural network test, using the nonlinearityTest
function of the R package ‘‘nonlinearTseries’’ (Teräsvirta, Lin, &
Granger, 1993).
Seasonality is another essential feature of a time series that refers
to the repeating patterns of the series within a fixed period.
We analyze the given series by performing a combined test
comprising of the Kruskal–Wallis test and QS test of seasonality,
often termed Ollech and Webel’s test, to determine the presence
of seasonal patterns. This test was performed using isSeasonal
function of ‘‘seastests" in R.
Long range dependence in time series processes has attracted
much attention in probabilistic time series. To compute the time
series’s long-range-dependency or self-similarity parameter,
Hurst exponent(H), is used (Hurst, Black, Simaika, & Long-term
Storage, 1965). The value of H is computed using the hurstexp
function of the R package ‘‘pracma’’.

On performing the above-mentioned statistical tests and com-
puting the global characteristics of epidemic datasets, we summa-
rize the relevant results in Table 2.
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4.2. Performance measures

In our analysis, we evaluate the forecasts obtained from the
proposed model and other baseline models using four popu-
larly used accuracy measures, namely Root Mean Squared Er-
ror (RMSE), Mean Absolute Scaled Error (MASE), Mean Abso-
lute Error (MAE), and symmetric Mean Absolute Percent Error
(sMAPE) (Hyndman & Athanasopoulos, 2018). The mathematical
formula for calculating these measures is given below:

RMSE =

√ 1
N

N∑
t=1

(yt − ŷt )2; MASE =

∑F+N
t=F+1 |ŷt − yt |

N
F−S

∑F
t=S+1 |yt − yt−S |

;

MAE =
1
N

N∑
t=1

|yt − ŷt |; and sMAPE =
1
N

N∑
t=1

2|ŷt − yt |
|ŷt | + |yt |

× 100%;

where N denotes the forecast horizon, ŷt is the forecast against
the actual value yt . By definition, the minimum value of these
performance measures suggests the ‘best’ model.

4.3. Benchmark forecasting models

Below we provide a brief description of the baseline models
included in the experimental analysis and their implementation:

(a) Statistical Models:

• Random Walk (RW), also popularly known as the persistence
model, is one of the simplest stochastic models based on the
assumption that in each period the time-dependent variable
takes a random step away from its previous value, and the
steps are independently and identically distributed in size
with zero-mean (Pearson, 1905).

• RandomWalk with Drift (RWD) is a variant of the persistence
model where the distribution of step sizes has a non-zero
mean (Entorf, 1997). If the series being fitted by a random
walk model has an average upward (or downward) trend
that is expected to continue in the future, one includes a
non-zero constant term in the model, i.e., assume that the
random walk undergoes ‘‘drift’’.

• Autoregressive Integrated Moving Average (ARIMA) is one of
the most popular forecasting techniques that track linearity
in a stationary time series (Box et al., 1970). The ARIMA
model is a linear regression model indulged to track lin-
ear tendencies in stationary time series data. The model is
expressed as ARIMA(p,d,q), where p, d, and q are integer
parameter values that decide the structure of the model.
More precisely, p and q are the order of the AR and MA
models, respectively, and parameter d is the level of the
difference applied to the data.

• Exponential Smoothing State Space (ETS) models are very
effective univariate forecasting techniques. This model com-
prises of three components — an error component (E), a
trend component (T), and a seasonal component(S). Fore-
casts are computed in this model as a weighted average of
historical data, with exponentially decreasing weights for
distant observations (Hyndman et al., 2008).

• Theta Method is a univariate time series framework that
decomposes the series into two or more ‘theta lines’ and
extrapolates them using various forecasting techniques; the
predictions for each series are aggregated to produce the
outcome (Assimakopoulos & Nikolopoulos, 2000).

• Trigonometric Box–Cox ARIMA Trend seasonality (TBATS)
model handles time series data with multiple seasonal pat-
terns using an exponential smoothing method (De Livera
et al., 2011).
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Various statistical models, namely RW, RWD, ARIMA, ETS,
Theta, and TBATS models are implemented using the ‘‘fore-
cast" package of R statistical software.

• Self-exciting Threshold Autoregressive (SETAR) is an extended
autoregressive model that allows for flexibility in the model
parameters through a regime-switching behavior
(Tong, 1990). We execute this model using the setar function
of the ‘‘tsDyn" package in R with the default embedding
dimension as 4.

• Wavelet-based ARIMA (WARIMA) model is a variant of the
ARIMA method. This model decomposes a non-stationary
time series into several wavelet coefficients and generates
forecasts from each of these series using an ARIMA model,
and the final prediction is an aggregate of these candi-
date forecasts (Aminghafari & Poggi, 2007). The WARIMA
models are trained on the datasets with ‘‘WaveletArima"
package of R with the default parameters MaxARParam =

MaxMAParam = 5.
• Bayesian Structural Time Series (BSTS) framework models

structural time series in Bayesian framework for generat-
ing short-term forecasts and was implemented using ‘‘bsts"
package in R (Scott & Varian, 2014).

(b) Machine Learning Approaches:

• Artificial Neural Networks (ANN), also known as neural nets,
are popularly used in supervised learning problems. It is
an extreme simplification of human neural systems and
comprises of computational units analogous to biological
neurons. ANNs consist of three layers: input, hidden (one
or more), and output. Each neuron in the mth layer is inter-
connected with the neurons of the (m + 1)th layer by some
signal. Each connection is assigned a weight. The output may
be calculated after multiplying each input with its corre-
sponding weight. The output passes through an activation
function to get the final ANN output. This multi-layered
feedforward neural network can also model time-dependent
signals using fully connected hidden layers (Rumelhart et al.,
1986). In standard ANN, a cross-validation approach is ap-
plied to choose the number of hidden layers and the number
of hidden nodes. Furthermore, the weights are optimized
using a gradient descent back-propagation algorithm. The
ANN framework is implemented using the mlp function of
‘‘nnfor" package in R.

• Autoregressive Neural Network (ARNN) is a modification of
the ANN algorithm specialized for time series forecasting
applications. Many potential problems in fitting ANN mod-
els were revealed such as the possibility that the fitting
routine may not converge or may converge to a local min-
imum. Moreover, it was found that an ANN model which
fits well with the training data may give poor out-of-sample
forecasts (Faraway & Chatfield, 1998). To overcome these
challenges, a single hidden-layered feedforward architec-
ture, namely ARNN is proposed to generate forecasts in
time series datasets (Faraway & Chatfield, 1998). It uses an
autoregressive (AR) model to choose the optimal number of
nodes in the input layer. This tends to reduce the effect of
extreme input values, thus making the network somewhat
robust to outliers as compared to a standard ANN model.
The inputs to each node are combined using a weighted
linear combination and modified by a nonlinear (sigmoidal
activation) function before computing output. The model
weights are directly estimated from the data using back-
propagation, and the number of neurons in the hidden layer
is set to k = (p + 1)/2 where p denotes the number of in-
puts selected using AR model (Hyndman & Athanasopoulos,
2018). We use the nnetar function of the ‘‘forecast" package
of R to implement the ARNN framework.
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• Support Vector Regression (SVR) is a supervised learner that
fits an optimal hyperplane to predict the future values of
a time series (Smola & Schölkopf, 2004). To apply the SVR
model, we transform the time series data into a matrix in
which each value relates to the time window (lags = 15) that
precedes it. Followed by the transformation, the radial basis
kernel-based SVR model is fitted to the dataset by setting
the regularization parameter to 1.0 and the loss penalty
parameter value to 0.2 to generate the multi-step ahead
forecasts in a recursive manner. In this study, we utilize
the ‘‘sktime" library in python to perform the data trans-
formation and implement the SVR framework on epidemic
datasets.

(c) Deep Learning Models:

• Long Short-term Memory (LSTM) is a variant of the recurrent
neural network (RNN) approach that models the long-term
dependencies in a sequence prediction problem using sev-
eral feedback connections in the training phase (Hochreiter
& Schmidhuber, 1997). For implementing the LSTM net-
works, we utilize the default number of input and output
observations as 10 and 3, respectively; the number of fea-
ture maps for each hidden RNN layer is set as 25, and the
model is trained over 100 epochs (Herzen et al., 2022). It is a
popular benchmark deep learner for time series forecasting
tasks.

• Neural Basis Expansion Analysis for Time Series (NBeats) model
is extensively designed for forecasting time series datasets.
It comprises of a fully connected neural network architec-
ture with several blocks. Each block contains two layers
— the first is responsible for processing the time series
data to reproduce the past and forecast the future, and
the second layer remodels the residuals obtained from the
first to update the forecasts (Oreshkin et al., 2019). For the
experimentation, we set the default number of blocks as 4.

• Deep Autoregressive (Deep AR) is a time series forecasting
model that utilizes a recurrent neural architecture for gen-
erating point estimates and interval estimates about future
time points (Salinas et al., 2020).

• Temporal Convolutional Networks (TCN) model utilizes con-
volutions to learn the sequential pattern in a time series and
generalizes this pattern in the future (Chen et al., 2020). We
train the TCN model with a default kernel size of 2 and 4
filters.

• Transformers is a state-of-the-art deep learning model that
analyzes the sequential patterns in time series using a multi-
headed attention mechanism. This model can learn complex
dynamic systems of historical data (Wu, Green, et al., 2020).
We implemented the transformers model with the input
dimensionality as 64 and specified the number of heads in
the multi-headed attention mechanism as 8. These default
parameters avoid over-fitting in univariate series.
All the above-stated deep learning frameworks have been
implemented using the python library ‘‘Darts" (Herzen et al.,
2022) specially designed for modeling time series datasets.

• W-Transformer is a wavelet-based deep learner which has
been recently proposed as an extension of the EWNet frame-
work (Sasal et al., 2022) for large-frequency time series
data. This model utilizes a MODWT decomposition to the
time series data and builds multi-head attention-based local
transformers on the decomposed datasets to vividly capture
the time series’s non-stationarity and long-range nonlinear
dependencies.

• Wavelet NBeats (W-NBeats) is a wavelet variant of the data-
driven NBeats framework, proposed as an extended
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version of EWNet (Singhal et al., 2022). This model decom-
poses the time-indexed signal using a DWT approach with a
Daubechies 4 filter into high-frequency and low-frequency
wavelet coefficients. Followed by the DWT mechanism, the
transformed series are individually modeled using an NBeats
framework to generate one-step ahead forecasts. Finally,
the forecasts generated by the detailed and smooth coef-
ficients are aggregated to recursively generate the desired
multi-step ahead predictions. This method is more useful
for handling time series with multiple seasonal patterns.
We implement the W-Transformers framework using the
procedure described in Sasal et al. (2022). In a similar way,
we implement the W-NBeats framework.

(d) Hybrid Models:
The idea of generating hybrid forecasts of a time series af-

ter splitting it into linear and nonlinear components was first
suggested by Zhang (2003). It comprises of two stages — firstly,
the linear part of the series is predicted using a linear model
(e.g., ARIMA), and the residuals generated from this linear model
are assumed to contain nonlinear patterns and are re-modeled in
the second stage using a nonlinear model (e.g., ARNN)
(Chakraborty, Chattopadhyay, & Ghosh, 2019). The forecasts from
these two stages are finally aggregated to generate the desired
output. This hybridized approach has shown significant improve-
ment over its component forecasters in several applications
(Chakraborty et al., 2020; Chakraborty, Chattopadhyay, & Ghosh,
2019; Chakraborty et al., 2022; Zhang, 2003). We have considered
three hybridized methods in our study, namely: 1. Hybrid ARIMA-
WARIMA (We call it Hybrid-1) (Chakraborty & Ghosh, 2020); 2.
Hybrid ARIMA-ANN (We call it Hybrid-2) (Zhang, 2003); 3. Hybrid
ARIMA-ARNN (We call it Hybrid-3) (Chakraborty, Chattopadhyay,
& Ghosh, 2019). Forecasts for these hybrid models are generated
using the implementation available at Chakraborty et al. (2022).

4.4. Experimental results and benchmark comparison

In this section, we discuss the implementation of the pro-
posed EWNet model for epicasting. Several benchmark mod-
els are also considered for comparing the performance of our
proposed epicaster. To assess the effectiveness of EWNet and
comparative models, we use the standard cross-validation tech-
nique for time series forecasting, say rolling window method (de
Oliveira, Silva, & de Mattos Neto, 2021). To demonstrate the
generalizability of the EWNet model, we analyze its epicast-
ing performance for three different forecast horizons — long,
medium, and short-term spanning over (52, 26, 13) weeks for
weekly datasets and (12, 6, 3) months for monthly datasets, re-
spectively. Furthermore, we compare the accuracy measures of
our proposed EWNet model with state-of-the-art statistical mod-
els, machine learning methods, advanced deep learning archi-
tectures, and hybridized approaches. We initially partitioned the
datasets into three segments for the experimentation: train, val-
idation, and test set. The validation set was chosen to represent
the temporal behavior of both the train and test sets (Hyndman &
Athanasopoulos, 2018). We considered the validation size twice
that of the test, following Godahewa, Bergmeir, Webb, Hynd-
man, and Montero-Manso (2021). The validation set was used for
tuning the hyper-parameters of the proposed EWNet(p, k) model
based on MASE metric, a popularly used forecasting metric (Hyn-
dman & Athanasopoulos, 2018). Implementation of the EWNet
algorithm (see Section 2.3 for details) is done using R statistical
software.

During the implementation of the EWNet model, a
multiresolution-based MODWT approach was first employed us-
ing the modwt function of the ‘‘wavelets" package in R to decom-
pose the training data into its corresponding wavelet and scaling
198
coefficients using the pyramid algorithm with ‘haar’ filter and the
number of levels set to the floor function of loge(length(train))
see details in Algorithm 1). In the next step, each series of
avelet and scaling coefficients (also named as details and
mooth, respectively) are modeled with an autoregressive neural
etwork having p lagged inputs and k hidden nodes arranged
n a single hidden layer. For selecting the value of p, we follow
grid search approach over the range (1−20) for epidemic

atasets considered in this study. The choice of another model
arameter (k) defining the number of hidden nodes in the hidden
ayer of EWNet was made using the previously defined formula

=
[ (p+1)

2

]
(as described in Section 3.1). Implementation of

eural network generates a one-step-ahead forecast of the series
sing the nnetar function of R statistical software (Hyndman
Athanasopoulos, 2018). Once the forecast for the validation

f the desired horizon is generated for a grid of p values, the
arameter (p) was chosen by minimizing the MASE score on the
alidation dataset. Once the p is finalized, we re-train the model
sing the chosen value of p to generate one-step ahead out-of-
ample forecasts. Furthermore, autoregressive feedforward neural
etwork is also utilized iteratively to generate the forecast of
he desired horizon. Finally, the output generated from all the
etworks is aggregated for forecasting the epidemic datasets.
Below we discuss the values of the EWNet model parameters

p, k) used for different epidemic datasets. In the case of the
ingapore dengue incidence dataset, the chosen parameters were
1, 1) for all three forecast horizons, however, for the Venezuela
engue dataset, the values of (p, k) are selected as (1, 1), (7, 4),
nd (11, 6) for 13, 26, and 52-weeks ahead forecasts, respectively.
or forecasting short, medium, and long-term dengue incidence
n Colombia, we use (11, 6), (30, 15), and (7, 4) as the values of
he hyperparameters whereas for malaria incidence, the corre-
ponding values are (19, 10), (13, 7), and (20, 10). For generating
, 6, and 12-months ahead forecasts of hepatitis B incidence in
hina, the selected values of (p, k) are (2, 1), (1, 1), and (15, 8).

In the case of the Bangkok dataset, the trained EWNet model
utilizes (5, 3), (6, 3), and (1, 1) as the model tuning parameters for
forecasting dengue cases with 3, 6, and 12-month lead time, re-
spectively. The values of the hyperparameters (p, k) of the EWNet
model for generating short, medium, and long-term forecasts of
the Philippines are (19, 10), (15, 8), and (14, 7) and for Hong
Kong datasets were (7, 4), (6, 3), and (10, 5), respectively. The
malaria case loads of Venezuela are forecasted for short-term
using EWNet (20, 10) model, and for the medium and long-
term forecast the fitted EWNet model architecture has (12, 6)
and (1, 1) as the chosen set of parameters values. In the case
of Iquitos dengue incidence, the tuning hyper-parameter values
are (19, 10), (1, 1), and (5, 3) for 13, 26, and 52-weeks ahead
forecasts. For generating a long-term forecast of dengue incidence
in San Juan the model, hyper-parameters are selected as (9, 5)
whereas, in the case of short and medium-term forecasting, the
chosen values are (20, 10) and (1, 1). The forecasts for Ahmed-
abad dengue cases are generated with the chosen architecture of
the EWNet model as (9, 5), (19, 10), and (15, 8) for 13, 26, and
52 weeks, respectively. For generating short, medium, and long-
term forecasts of influenza incidence cases the proposed model
is trained with (1, 1), (10, 5), and (1, 1) for Japan, (2, 1), (5, 3),
and (1, 1) for Mexico, and (13, 7), (14, 7), and (4, 2) for Australia,
respectively.

Once we implemented our proposed model on these epi-
demic datasets, we generated out-of-sample forecasts for dif-
ferent forecast horizons. Beneath, we summarize the epicasting
performance of the proposed EWNet model with other state-
of-the-art forecasters in terms of four performance measures.
Three different forecast horizons are considered: short, medium,

and long-term. Experimental results presented in Tables 5, 4,
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Table 3
Long-term forecasting performance of the proposed EWNet model in comparison to the statistical, machine learning, and deep learning forecasting techniques (best results are highlighted).
Data Metrics RW RWD ARIMA ETS Theta WARIMA SETAR TBATS BSTS Hybrid 1 ANN ARNN SVR Hybrid 2 Hybrid 3 LSTM NBeats Deep AR TCN Trans-

formers
W
NBeats

W-
Transformer

Proposed

Pearson
(1905)

Entorf
(1997)

Box et al.
(1970)

Hyndman
et al.
(2008)

Assi-
makopoulos
and
Nikolopou-
los
(2000)

Amingha-
fari and
Poggi
(2007)

Tong and
Lim (2009)

De Livera
et al.
(2011)

Scott and
Varian
(2014)

Chakraborty
and Ghosh
(2020)

Rumelhart
et al.
(1986)

Faraway
and
Chatfield
(1998)

Smola and
Schölkopf
(2004)

Zhang
(2003)

Chakraborty,
Chattopad-
hyay, and
Ghosh
(2019)

Hochreiter
and
Schmidhu-
ber
(1997)

Oreshkin
et al.
(2019)

Salinas
et al.
(2020)

Chen et al.
(2020)

Wu,
Green,
et al.
(2020)

Sing-
hal
et al.
(2022)

Sasal
et al.
(2022)

EWNet

Australia RMSE 82.08 81.74 81.58 84.84 83.13 58.55 61.28 64.97 175.8 81.71 76.00 69.65 90.59 81.60 78.74 85.17 58.76 81.66 840.4 94.95 105.18 103.4 49.41
Influenza MASE 3.350 3.331 3.314 3.573 3.451 2.667 2.683 2.811 8.908 3.354 2.995 2.689 4.057 3.314 3.164 3.568 2.836 3.440 33.72 4.435 5.556 5.613 2.330

MAE 53.21 52.90 52.63 56.75 54.80 42.35 42.62 44.65 141.4 53.27 145.7 171.6 64.44 148.9 191.2 56.67 159.2 81.90 172.8 174.1 88.25 89.15 37.00
sMAPE 90.82 89.71 88.40 108.3 98.95 66.92 61.56 69.64 187.2 93.00 88.40 108.3 164.9 93.03 187.2 115.4 69.64 61.56 98.95 66.92 120.1 122.7 58.65

Japan RMSE 254.4 263.5 164.7 186.1 187.3 196.6 297.3 174.8 205.7 167.5 191.9 202.7 189.3 161.6 163.6 171.0 148.7 179.6 211.3 157.4 276.9 289.9 156.5
Influenza MASE 5.521 5.709 3.354 3.950 3.978 4.008 6.488 3.665 4.402 3.428 4.145 3.174 2.366 3.224 3.309 2.638 2.270 3.737 3.137 2.945 5.398 5.876 2.798

MAE 239.9 248.1 145.7 171.6 172.8 174.1 281.9 159.2 191.2 148.9 180.1 137.9 102.8 140.1 143.8 114.6 98.64 162.4 136.3 127.9 234.6 255.3 121.5
sMAPE 138.7 139.1 130.8 134.9 135.1 136.7 142.3 132.8 136.3 131.5 133.2 107.0 112.7 130.0 130.5 130.1 121.9 134.2 162.6 129.3 159.7 164.1 128.6

Mexico RMSE 135.6 138.0 67.82 153.7 89.59 113.6 723.5 93.40 206.8 66.60 275.8 1355 65.03 68.21 197.5 52.63 216.8 197.0 1212 568.9 91.93 97.61 38.37
Influenza MASE 8.345 8.488 4.279 9.445 5.595 6.988 46.31 5.814 12.52 4.206 16.01 72.58 2.447 4.305 8.990 2.684 11.67 12.45 67.94 37.36 5.475 5.666 1.945

MAE 126.5 128.6 64.86 143.1 84.81 105.9 701.8 88.11 189.8 63.74 242.7 1100 37.09 65.25 136.2 40.68 176.8 188.8 1029 566.3 82.98 85.88 29.47
sMAPE 138.9 139.2 122.3 141.5 129.4 135.6 175.7 130.1 146.2 121.6 158.9 178.0 120.4 122.5 129.6 104.8 140.0 150.2 196.9 177.1 129.9 130.3 108.4

Ahmedabad RMSE 15.24 14.98 14.51 14.21 14.01 11.39 12.14 14.21 30.95 14.16 13.14 15.02 15.59 14.43 14.07 15.19 16.29 14.54 584.2 13.02 22.06 22.76 8.427
Dengue MASE 1.902 1.887 1.953 1.987 1.975 1.489 1.979 1.987 4.497 1.769 1.949 1.814 1.859 1.959 1.996 1.754 2.024 1.747 82.37 2.205 3.812 3.927 1.084

MAE 9.885 9.802 10.14 10.32 10.26 7.740 10.28 10.32 23.36 9.194 10.13 9.430 9.659 10.18 10.37 9.117 10.51 9.077 428.0 11.45 19.81 20.41 5.633
sMAPE 99.07 98.52 102.8 103.7 103.0 96.99 99.34 103.7 179.9 93.99 101.1 89.18 93.27 103.0 103.6 85.55 104.9 88.97 191.1 104.3 142.3 151.3 69.69

Bangkok RMSE 596.8 584.1 493.0 424.6 473.9 779.4 415.4 436.6 637.8 529.4 462.4 518.0 480.7 478.8 479.8 884.9 889.7 892.6 866.3 893.1 1203 700.6 426.7
Dengue MASE 2.091 2.055 1.938 1.590 1.872 3.262 1.648 1.734 2.433 2.123 1.820 2.004 1.906 1.875 1.861 3.303 3.333 3.331 3.197 3.344 4.314 2.646 1.703

MAE 476.8 468.6 441.8 362.4 426.7 743.6 375.6 395.2 554.6 484.0 415.1 457.0 434.6 427.6 424.3 753.0 760.1 759.5 729.0 762.5 983.6 603.3 388.2
sMAPE 70.44 68.95 65.43 53.95 63.09 76.92 56.23 58.73 86.00 71.33 61.56 67.98 64.17 63.20 62.67 187.5 194.3 190.5 171.2 195.1 84.15 90.82 57.24

Colombia RMSE 1160 1278 998.3 997.2 1036 863.0 707.2 997.4 1576 1001 799.3 811.3 1334 994.7 997.6 2125 1107 2016 3317 732.1 1629 1951 730.9
Dengue MASE 5.565 6.150 4.864 4.861 5.023 4.463 3.880 4.859 7.598 4.849 4.118 3.930 6.699 4.852 4.862 11.88 5.621 11.16 16.99 5.495 9.002 9.534 3.611

MAE 918.2 1015 802.6 802.1 828.8 736.3 640.1 801.7 1253 800.1 679.5 648.4 1105 800.6 802.2 1961 927.4 1842 2803 615.4 1485 1573 595.8
sMAPE 44.52 47.31 40.99 40.97 41.82 38.91 35.14 40.96 53.44 40.87 36.69 35.48 66.63 40.93 40.97 191.3 45.54 165.6 145.8 49.50 70.93 114.5 33.23

Hong RMSE 3.786 3.814 4.219 4.136 4.278 3.261 4.599 3.992 4.187 4.362 4.014 4.877 4.075 4.553 4.076 3.729 4.599 6.617 57.82 4.747 5.734 4.812 3.050
Kong MASE 0.786 0.803 0.914 0.904 0.948 0.739 0.911 0.853 0.932 0.989 0.823 1.082 0.789 1.010 0.884 0.784 0.918 1.437 11.38 0.955 1.229 1.057 0.635
Dengue MAE 3.000 3.065 3.491 3.452 3.619 2.823 3.478 3.256 3.560 3.778 3.144 4.131 3.012 3.859 3.377 2.993 3.508 5.487 43.48 3.648 4.694 4.034 2.423

sMAPE 36.11 36.76 40.51 40.29 41.74 33.93 42.99 38.52 41.27 43.12 38.56 43.61 36.16 43.64 39.63 36.19 39.60 63.59 158.9 45.41 49.18 47.68 30.87

Iquitos RMSE 14.19 14.35 10.12 14.19 14.24 12.97 10.35 10.08 17.79 10.50 12.05 11.36 12.42 10.19 10.24 12.71 13.25 12.49 120.9 13.67 20.52 20.21 8.181
Dengue MASE 2.213 2.258 1.799 2.213 2.227 1.983 1.662 1.813 3.111 1.733 1.863 1.785 1.917 1.779 1.774 1.944 2.077 1.926 18.02 2.116 3.253 3.212 1.559

MAE 9.635 9.829 7.832 9.635 9.696 8.633 7.234 7.892 13.54 7.543 8.109 7.772 8.345 7.744 7.724 8.461 9.042 8.384 78.45 9.213 14.16 13.98 6.784
sMAPE 198.0 200.0 105.2 199.9 200.0 137.7 102.6 105.3 198.8 105.4 118.9 111.1 124.7 105.1 105.2 129.7 113.1 125.6 169.2 159.7 173.1 160.8 96.44

Philippines RMSE 43.26 45.29 39.86 40.21 43.88 34.25 95.08 38.64 45.34 30.89 88.07 61.26 37.55 42.71 33.42 56.88 18.63 43.01 171.2 56.05 63.03 47.39 15.01
Dengue MASE 1.088 1.151 1.011 0.979 1.109 0.713 2.364 0.777 0.973 0.647 2.331 1.251 0.822 1.098 0.841 1.226 0.431 0.831 4.348 1.205 1.598 0.983 0.306

MAE 37.84 40.06 35.18 34.07 38.58 24.82 82.26 27.06 33.87 22.51 81.11 43.53 28.60 38.23 29.27 42.65 14.99 28.92 151.2 41.94 55.59 34.18 10.67
sMAPE 66.62 68.96 64.13 62.57 67.60 45.88 95.34 53.25 80.50 45.02 96.70 70.90 55.01 67.12 79.63 110.1 31.18 57.88 200.0 106.8 82.88 73.56 25.91

San RMSE 115.9 115.9 100.1 105.7 108.2 91.12 103.5 108.2 108.8 93.08 236.8 100.4 112.7 142.9 91.66 74.38 104.4 112.5 426.8 121.4 153.2 149.4 99.69
Juan MASE 5.843 5.837 4.758 5.082 5.257 4.230 4.949 5.234 5.317 4.258 14.34 4.776 5.589 7.765 4.170 3.359 4.900 5.571 19.19 6.207 7.320 7.217 4.722
Dengue MAE 93.59 93.50 78.21 81.41 84.22 67.75 79.27 83.84 85.18 68.21 229.8 76.52 89.53 124.4 66.80 53.80 78.51 89.24 307.5 99.43 117.3 115.6 75.64

sMAPE 152.3 151.9 97.07 107.6 116.1 78.12 102.5 114.4 120.2 77.05 114.8 96.31 134.7 95.11 74.21 59.47 94.36 133.4 155.2 177.9 132.9 130.5 94.48

Singapore RMSE 133.7 129.4 130.1 122.4 128.6 193.0 136.9 129.8 159.7 130.4 162.9 142.1 195.9 130.3 130.3 224.9 174.9 129.5 392.1 134.1 271.2 248.1 121.9
Dengue MASE 2.348 2.241 2.490 2.579 2.473 3.873 2.883 2.453 3.026 2.505 4.078 3.454 3.878 2.509 2.504 4.993 4.016 2.411 8.256 3.359 5.782 4.741 2.435

MAE 86.54 82.61 91.78 95.06 91.16 142.7 106.2 90.43 111.5 92.34 150.3 127.3 142.9 92.49 92.31 184.0 148.0 88.89 304.3 123.8 213.1 174.8 90.46
sMAPE 34.53 32.84 36.31 37.69 36.11 59.64 41.18 35.82 45.54 36.51 53.82 47.75 68.32 36.56 36.50 107.8 53.00 35.25 132.8 46.50 72.23 64.82 35.12

Venezuela RMSE 597.6 598.3 622.2 614.8 618.5 582.1 645.1 622.9 600.1 618.8 705.6 682.0 835.0 621.5 621.9 1470 682.5 1355 2003 874.0 1076 1235 563.6
Dengue MASE 3.182 3.183 3.270 3.386 3.266 3.061 3.329 3.272 3.263 3.258 3.569 3.471 4.300 3.267 3.268 8.580 3.582 7.802 10.66 4.524 5.843 6.441 2.927

MAE 507.3 507.4 521.2 539.7 520.6 488.0 530.6 521.6 520.2 519.2 569.0 553.4 685.4 520.8 521.0 1368 571.0 1243 1700 721.2 931.4 1027 466.6
sMAPE 38.68 38.69 39.85 40.60 39.80 37.08 40.64 39.88 39.53 39.69 44.24 42.76 56.10 39.81 39.83 188.4 45.04 152.9 147.5 60.21 75.38 103.4 35.37

China RMSE 8766 104E2 9358 9249 103E2 8592 100E2 9379 103E2 9701 9868 101E2 7289 9348 109E2 975E2 113E2 975E2 599E2 975E2 104E2 975E2 8017
Hepatitis MASE 1.133 1.374 1.221 1.205 1.350 1.137 1.340 1.224 1.368 1.264 1.289 1.293 0.995 1.203 1.461 15.57 1.543 15.57 9.171 15.57 1.304 15.57 0.889
B MAE 7083 8588 7635 7532 8441 7109 8376 7653 8551 7904 8060 8088 6218 7524 9137 973E2 9648 973E2 573E2 973E2 8154 973E2 5556

sMAPE 7.344 9.010 7.947 7.835 8.841 7.370 8.797 7.968 8.963 8.243 8.416 8.467 6.415 7.826 9.620 199.9 10.20 199.9 85.32 199.9 8.507 199.9 5.790

Colombia RMSE 628.9 626.5 810.2 798.5 804.2 804.3 692.9 802.9 779.0 812.9 838.2 919.9 753.6 813.3 814.1 1766 861.3 1696 2510 1134 1466 1566 714.3
Malaria MASE 2.969 2.939 3.547 3.500 3.518 3.618 3.192 3.518 3.448 3.561 3.748 4.365 3.325 3.559 3.570 9.163 4.049 8.750 11.40 5.410 7.081 7.188 3.305

MAE 538.7 533.3 643.6 635.2 638.3 656.6 579.2 638.5 625.6 646.1 680.2 792.2 603.4 645.9 648.0 1662 734.9 1587 2070 981.8 1285 1304 599.7
sMAPE 34.04 33.71 41.71 41.04 41.30 42.63 36.89 41.30 40.27 41.91 45.00 56.16 38.59 41.89 42.08 193.9 50.82 174.5 136.4 74.94 90.65 115.4 38.44

Venezuela RMSE 418.4 395.3 250.1 271.0 261.7 193.8 301.2 249.9 213.9 238.8 206.6 652.3 745.2 247.1 236.6 1448 421.0 1325 1893 827.1 327.7 1018 232.3
Malaria MASE 2.188 2.064 1.279 1.387 1.336 0.912 1.553 1.278 1.079 1.216 1.032 3.530 4.242 1.262 1.191 8.591 2.123 7.839 9.884 4.774 1.712 5.799 1.183

MAE 364.3 343.6 212.8 230.9 222.4 151.8 258.4 212.7 179.5 202.5 171.9 587.7 706.2 210.2 198.3 1430 353.5 1305 1645 794.9 285.1 965.5 196.8
sMAPE 27.19 25.41 14.95 16.29 15.65 10.77 18.40 14.94 12.57 14.19 12.01 49.10 62.37 14.76 13.90 192.5 26.45 161.3 141.7 73.45 20.03 98.22 13.80

199
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Table 4
Medium-term forecasting performance of the proposed EWNet model in comparison to the statistical, machine learning, and deep learning forecasting techniques (best results are highlighted)
Data Metrics RW RWD ARIMA ETS Theta WARIMA SETAR TBATS BSTS Hybrid 1 ANN ARNN SVR Hybrid 2 Hybrid 3 LSTM NBeats Deep AR TCN Trans-

formers
W
NBeats

W-
Transformer

Proposed

Pearson
(1905)

Entorf
(1997)

Box et al.
(1970)

Hyndman
et al.
(2008)

Assi-
makopoulos
and
Nikolopou-
los
(2000)

Amingha-
fari and
Poggi
(2007)

Tong and
Lim (2009)

De Livera
et al.
(2011)

Scott and
Varian
(2014)

Chakraborty
and Ghosh
(2020)

Rumelhart
et al.
(1986)

Faraway
and
Chatfield
(1998)

Smola and
Schölkopf
(2004)

Zhang
(2003)

Chakraborty,
Chattopad-
hyay, and
Ghosh
(2019)

Hochreiter
and
Schmidhu-
ber
(1997)

Oreshkin
et al.
(2019)

Salinas
et al.
(2020)

Chen et al.
(2020)

Wu,
Green,
et al.
(2020)

Sing-
hal
et al.
(2022)

Sasal
et al.
(2022)

EWNet

Australia RMSE 76.80 76.59 75.03 70.53 81.39 84.58 64.60 85.66 134.2 74.51 72.65 97.31 119.9 74.99 74.43 93.98 59.31 94.81 152.9 126.0 138.9 135.7 39.42
Influenza MASE 2.612 2.614 2.575 2.485 2.729 2.812 2.268 2.735 3.859 2.559 2.537 3.087 4.032 2.571 2.554 3.009 1.860 3.189 5.630 4.259 4.872 4.867 1.228

MAE 64.58 64.62 63.64 61.41 67.46 69.52 56.07 67.60 95.39 63.25 62.72 76.31 99.67 63.55 63.15 74.39 45.98 78.84 139.1 105.3 120.4 120.3 30.36
sMAPE 72.62 72.55 71.28 67.21 76.74 79.23 61.65 76.83 66.81 70.83 69.09 110.7 166.1 71.16 70.68 86.76 48.85 93.51 178.0 180.3 139.8 133.8 43.91

Japan RMSE 7.301 7.359 115.9 6.839 7.076 114.8 239.3 138.1 46.95 109.6 99.47 236.2 6.571 18.21 112.8 6.321 142.8 170.7 355.0 54.64 180.5 187.1 43.05
Influenza MASE 1.111 1.125 19.31 1.002 1.072 18.18 36.99 23.17 6.497 18.18 16.12 32.83 0.967 0.894 18.74 0.898 21.88 30.03 52.29 7.053 31.73 32.52 6.381

MAE 6.308 6.388 109.7 5.693 6.089 103.2 210.1 131.6 36.90 103.3 91.57 186.5 5.495 15.90 106.4 5.099 124.3 170.5 297.0 40.06 180.2 184.7 36.24
sMAPE 77.57 78.08 172.2 73.37 76.10 167.4 176.9 176.2 172.3 174.8 166.6 162.5 71.18 19.21 170.7 68.29 169.8 184.7 192.0 235.4 185.4 185.5 135.5

Mexico RMSE 3.990 4.537 24.08 4.797 3.997 24.98 19.23 68.28 43.99 21.04 232.2 358.5 6.645 24.34 27.28 7.177 509.6 233.0 239.2 644.0 77.71 80.92 22.72
Influenza MASE 0.607 0.684 4.357 0.700 0.633 4.071 2.666 12.03 7.433 3.749 38.91 41.79 1.032 4.403 4.562 1.026 89.58 43.80 33.73 121.0 14.55 15.16 4.039

MAE 3.231 3.642 23.18 3.720 3.368 21.65 14.18 63.99 39.54 19.94 207.0 222.3 5.489 23.42 24.26 5.459 476.5 233.0 179.4 644.0 77.39 80.64 21.48
sMAPE 38.68 44.18 112.8 41.62 40.82 103.5 83.00 150.2 187.5 106.9 173.1 173.0 75.12 113.2 109.6 78.95 191.2 185.6 160.3 194.5 162.4 163.7 108.1

Ahmedabad RMSE 19.12 18.94 20.46 23.13 23.05 25.60 19.18 23.13 22.31 21.09 21.36 22.46 21.89 20.48 19.06 20.94 16.38 21.39 38.77 20.24 25.33 26.20 11.74
Dengue MASE 1.642 1.626 1.809 2.065 2.056 2.446 1.723 2.065 1.996 1.854 1.892 1.992 1.938 1.811 1.673 1.892 1.443 2.007 3.502 1.855 2.329 2.489 1.023

MAE 14.85 14.69 16.35 18.67 18.58 22.11 15.57 18.67 18.04 16.76 17.11 18.01 17.52 16.37 15.13 17.10 13.05 18.14 31.66 16.77 21.06 22.50 9.256
sMAPE 86.81 85.45 103.6 130.7 129.2 164.0 95.69 130.7 123.6 106.4 111.5 121.5 115.8 103.8 91.30 109.9 82.47 112.9 146.4 106.0 118.3 139.4 54.16

Bangkok RMSE 200.2 214.8 553.0 478.3 589.9 383.0 388.8 253.0 678.5 518.6 392.3 657.7 591.6 429.0 533.9 1196 1197 1200 1214 1207 479.1 1166 316.0
Dengue MASE 0.616 0.648 2.008 1.629 2.157 1.345 1.312 0.784 2.543 1.892 1.327 2.447 2.167 1.519 1.886 4.576 4.578 4.588 4.631 4.615 1.660 4.457 1.006

MAE 159.2 167.3 518.5 420.6 556.8 347.3 338.8 202.3 656.5 488.4 342.8 632.0 559.5 392.4 487.1 1181 1182 1184 1195 1191 428.6 1150 259.9
sMAPE 13.59 14.21 53.63 41.11 58.93 32.44 31.51 18.13 74.30 49.81 32.08 70.22 59.33 37.97 49.59 194.5 195.0 195.6 195.4 198.0 35.34 184.8 22.54

Colombia RMSE 975.4 1017 949.8 917.2 941.8 840.5 809.2 906.0 801.4 934.4 1092 1010 411.4 952.1 947.5 1285 917.9 1153 3465 630.1 1847 701.9 417.8
Dengue MASE 9.321 9.708 9.068 8.717 8.943 8.201 7.662 8.612 7.665 8.886 10.41 9.638 3.141 9.067 8.991 12.72 8.916 11.28 33.73 5.495 17.79 5.308 4.010

MAE 901.6 938.9 877.0 843.1 865.0 793.2 741.0 832.9 741.4 859.4 1007 932.2 303.7 877.0 869.6 1230 862.4 1091 3262 531.4 1720 513.4 387.8
sMAPE 55.81 57.29 54.79 53.33 54.24 51.25 48.80 52.90 48.90 54.02 59.89 57.01 24.77 54.76 54.41 191.8 54.20 150.5 174.5 49.50 81.95 47.67 28.50

Hong RMSE 2.582 2.589 3.143 2.663 2.791 3.201 2.565 2.880 2.976 3.423 3.729 3.289 2.635 2.874 3.018 2.405 8.370 4.719 29.17 3.879 3.874 4.124 2.133
Kong MASE 0.667 0.672 0.885 0.733 0.766 0.841 0.741 0.821 0.838 0.958 1.038 0.872 0.664 0.815 0.850 0.652 2.252 1.350 8.055 1.045 1.022 1.259 0.578
Dengue MAE 2.000 2.016 2.655 2.200 2.298 2.522 2.224 2.463 2.515 2.875 3.115 2.618 1.991 2.446 2.550 1.957 6.756 4.052 24.16 3.135 3.067 3.776 1.736

sMAPE 23.52 23.69 29.65 25.52 26.46 28.21 25.91 27.91 28.52 31.57 34.42 26.37 23.27 27.71 28.70 23.03 49.40 39.88 163.6 39.64 33.74 41.86 20.31

Iquitos RMSE 14.06 14.04 13.12 14.93 14.95 14.98 14.20 13.17 14.68 13.50 15.43 14.79 13.73 13.25 13.40 11.71 13.87 15.09 62.83 12.28 25.01 27.55 11.95
Dengue MASE 1.811 1.809 1.703 1.940 1.943 1.974 1.848 1.713 1.898 1.759 2.008 1.923 1.778 1.730 1.739 1.518 1.811 1.594 7.124 1.573 3.266 3.549 1.557

MAE 11.15 11.14 10.49 11.95 11.96 12.16 11.38 10.55 11.69 10.83 12.37 11.84 10.95 10.65 10.71 9.352 11.16 12.22 43.88 9.692 20.12 21.87 9.594
sMAPE 102.4 102.1 91.60 115.7 116.1 122.6 103.5 92.36 112.7 98.37 124.4 115.1 110.7 93.73 94.77 101.9 117.6 85.52 170.3 85.55 159.9 158.5 81.96

Philippines RMSE 28.75 28.51 24.33 34.76 22.86 19.20 144.1 34.72 44.83 26.71 30.58 14.88 23.81 23.49 12.42 46.55 5.502 28.10 137.5 45.36 51.68 27.75 6.810
Dengue MASE 0.652 0.641 0.556 0.987 0.586 0.578 4.452 0.978 1.346 0.729 0.831 0.527 0.747 0.635 0.338 1.535 0.177 0.693 4.801 1.495 1.736 0.566 0.247

MAE 17.18 16.89 14.65 26.01 15.46 15.24 117.2 25.78 35.48 19.22 21.89 13.88 19.67 16.74 8.917 40.44 4.686 18.27 126.4 39.39 45.75 14.92 6.507
sMAPE 31.53 30.75 24.92 59.26 27.25 25.83 181.3 58.12 101.3 38.87 47.13 29.90 35.23 28.92 28.20 123.6 9.441 36.45 200.0 118.5 68.43 25.37 14.33

San RMSE 72.19 73.64 97.26 73.07 72.33 76.13 95.39 76.34 93.55 94.87 199.9 119.7 116.5 138.7 96.52 102.6 106.9 113.1 467.0 111.3 193.1 191.5 64.44
Juan MASE 3.264 3.305 4.594 3.616 3.619 3.381 4.290 3.733 4.441 4.448 9.784 5.928 5.627 6.754 4.552 4.677 5.172 5.524 19.78 5.287 8.903 8.883 3.242
Dengue MAE 59.27 60.02 83.42 65.66 65.71 61.39 77.90 67.79 80.65 80.78 177.6 107.6 102.2 122.6 82.66 84.93 93.92 100.3 359.2 96.02 161.7 161.3 58.87

sMAPE 47.03 47.31 79.37 53.62 53.56 49.22 65.27 55.59 58.39 75.64 82.51 134.1 109.8 98.24 78.12 73.67 101.2 94.91 160.6 96.86 153.2 152.8 48.33

Singapore RMSE 166.2 163.0 151.9 137.2 149.4 140.0 136.2 141.7 151.3 151.9 119.3 119.4 226.7 151.0 151.3 290.1 219.6 148.9 437.5 120.8 321.5 293.2 141.7
Dengue MASE 2.460 2.396 2.244 2.188 2.220 2.389 2.373 2.307 2.270 2.277 2.330 2.260 4.145 2.237 2.244 6.375 3.961 2.244 10.58 2.576 5.044 4.455 2.251

MAE 98.81 96.20 90.13 87.85 89.13 95.94 95.28 92.63 91.17 91.44 93.60 90.79 166.4 89.86 90.13 256.0 159.0 90.12 425.1 103.4 202.6 178.9 90.40
sMAPE 28.34 27.32 25.11 24.65 24.79 27.48 27.33 26.30 25.53 25.61 27.07 26.22 61.04 25.03 25.12 126.4 58.99 25.18 184.9 29.48 67.44 64.12 25.48

Venezuela RMSE 476.3 481.6 486.6 588.0 514.4 609.7 465.7 508.5 542.0 472.4 490.8 486.0 524.7 487.3 486.8 1109 707.9 985.2 2341 526.8 875.4 723.8 392.0
Dengue MASE 2.535 2.557 3.178 3.880 3.385 4.058 3.003 3.346 3.438 3.057 3.210 3.175 2.774 3.182 3.179 7.500 4.014 6.484 15.27 2.787 5.759 4.115 2.540

MAE 343.2 346.1 430.2 525.1 458.2 549.2 406.4 452.9 465.3 413.7 434.5 429.7 375.4 430.8 430.4 1015 543.3 877.7 2068 377.2 779.6 557.1 343.8
sMAPE 32.49 32.78 39.95 46.24 41.93 48.26 38.14 41.57 43.23 38.66 40.27 39.93 36.04 39.99 39.96 187.1 56.23 137.7 157.5 36.28 63.34 61.09 33.27

China RMSE 5820 5304 5154 5472 5494 4542 6556 5546 5732 5103 8104 9845 6407 5154 5979 985E2 9735 985E2 316E2 985E2 7910 985E2 5145
Hepatitis MASE 0.871 0.803 0.943 1.043 1.058 0.745 1.192 1.063 0.900 0.881 1.385 1.247 1.265 0.913 1.170 20.82 1.886 20.81 6.488 20.81 1.549 20.82 0.912
B MAE 4118 3792 4458 4928 4998 3519 5632 5024 4254 4164 6547 5893 5976 4310 5532 983E2 8913 983E2 306E2 983E2 7320 983E2 4313

sMAPE 4.211 3.891 4.583 5.072 5.145 3.618 5.831 5.172 4.351 4.267 6.554 5.826 6.177 4.431 5.706 199.9 9.384 199.9 37.05 199.9 7.622 199.9 4.459

Colombia RMSE 604.1 598.7 617.0 655.3 649.4 561.9 361.8 646.8 695.0 616.4 514.3 393.3 329.1 614.6 614.8 1220 934.4 1137 3063 528.6 1078 643.5 555.5
Malaria MASE 4.537 4.496 4.660 4.996 4.950 4.201 2.499 4.916 5.317 4.652 3.905 2.683 2.208 4.645 4.675 10.31 7.482 9.548 25.19 3.977 8.347 4.522 3.546

MAE 516.0 511.3 529.9 568.1 562.9 477.7 284.2 559.0 604.6 528.9 444.1 305.1 250.7 528.3 531.6 1172 850.9 1085 2865 452.3 949.2 514.2 403.3
sMAPE 39.22 38.97 39.98 42.03 41.76 36.91 25.05 41.54 43.87 39.91 35.27 26.26 22.36 39.90 40.09 193.8 55.50 164.5 173.9 44.08 58.94 51.09 31.55

Venezuela RMSE 317.6 303.3 244.5 204.6 199.7 260.5 274.1 278.4 170.3 235.3 159.9 192.7 825.8 238.7 226.5 1609 1145 70.19 1361 567.9 328.5 1257 197.8
Malaria MASE 1.653 1.563 1.217 0.992 0.970 1.328 1.398 1.425 0.839 1.159 0.795 0.963 4.769 1.180 1.104 9.421 62.79 3.294 72.59 31.04 1.721 7.328 0.973

MAE 281.3 265.9 207.0 168.7 165.0 225.9 237.8 242.5 142.7 197.2 135.3 164.0 811.6 200.8 187.9 1603 1140 59.82 1318 563.8 292.8 1246 165.6
sMAPE 18.69 17.55 13.32 10.67 10.42 14.71 15.52 15.85 8.950 12.63 8.466 10.15 66.95 12.89 11.99 198.5 161.5 47.75 195.6 135.9 19.67 126.5 10.48
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Table 5
Short-term forecasting performance of the proposed EWNet model in comparison to the statistical, machine learning, and deep learning forecasting techniques (best results are highlighted).
Data Metrics RW RWD ARIMA ETS Theta WARIMA SETAR TBATS BSTS Hybrid 1 ANN ARNN SVR Hybrid 2 Hybrid 3 LSTM NBeats Deep AR TCN Trans-

formers
W
NBeats

W-
Transformer

Proposed

Pearson
(1905)

Entorf
(1997)

Box et al.
(1970)

Hyndman
et al.
(2008)

Assi-
makopoulos
and
Nikolopou-
los
(2000)

Amingha-
fari and
Poggi
(2007)

Tong and
Lim (2009)

De Livera
et al.
(2011)

Scott and
Varian
(2014)

Chakraborty
and Ghosh
(2020)

Rumelhart
et al.
(1986)

Faraway
and
Chatfield
(1998)

Smola and
Schölkopf
(2004)

Zhang
(2003)

Chakraborty,
Chattopad-
hyay, and
Ghosh
(2019)

Hochreiter
and
Schmidhu-
ber
(1997)

Oreshkin
et al.
(2019)

Salinas
et al.
(2020)

Chen
et al.
(2020)

Wu, Green,
et al.
(2020)

Sing-
hal
et al.
(2022)

Sasal
et al.
(2022)

EWNet

Australia RMSE 107.0 108.3 93.19 85.92 112.3 61.60 58.30 40.53 39.79 94.67 85.69 35.02 69.57 93.19 92.65 55.24 47.89 54.18 145.9 62.85 92.12 101.4 29.37
Influenza MASE 4.585 4.636 4.065 3.737 4.812 2.770 2.538 1.802 1.795 4.203 3.774 1.280 2.375 4.075 4.099 2.064 1.724 2.021 6.097 2.844 4.306 4.725 1.070

MAE 92.46 93.49 81.97 75.35 97.03 55.87 51.13 36.33 36.19 84.76 76.12 25.81 47.91 82.17 82.66 41.63 34.77 40.75 122.9 57.35 86.84 95.28 21.59
sMAPE 97.09 97.39 93.82 91.24 98.55 81.88 77.59 66.52 66.03 95.71 91.62 43.29 71.75 93.96 94.47 67.24 63.70 83.14 149.1 84.30 107.2 110.9 34.58

Japan RMSE 10.56 10.65 84.52 8.950 8.803 30.09 96.69 102.6 33.09 74.54 44.88 210.1 7.920 76.86 82.14 8.944 30.49 9.505 129.0 10.55 175.5 191.0 22.28
Influenza MASE 1.034 1.045 8.564 0.658 0.640 2.887 7.699 10.49 3.241 7.453 4.542 17.42 0.755 7.735 8.281 0.667 2.656 0.695 12.36 0.843 19.48 21.16 2.135

MAE 9.308 9.405 77.07 5.923 5.763 25.98 69.29 94.42 29.17 67.07 40.88 156.8 6.799 69.62 74.53 5.999 23.90 6.263 111.3 7.594 175.3 190.4 19.22
sMAPE 80.89 81.29 152.8 69.59 66.65 117.8 135.6 159.2 194.6 153.8 134.6 156.4 70.17 152.5 151.2 73.56 108.8 75.99 180.8 106.0 180.6 181.9 107.2

Mexico RMSE 6.719 7.375 5.977 4.514 4.667 9.282 9.974 48.57 15.84 4.201 197.7 11.64 7.491 5.844 10.22 9.164 33.15 8.851 135.4 8.494 71.91 70.68 10.19
Influenza MASE 0.851 0.935 0.771 0.595 0.623 1.164 1.189 6.854 2.139 0.544 25.00 1.503 0.960 0.748 1.344 1.209 4.905 1.179 18.30 1.126 11.18 10.99 1.328

MAE 5.462 6.001 4.946 3.821 3.998 7.468 7.630 43.97 13.72 3.490 160.4 9.645 6.161 4.802 8.624 7.759 31.47 7.567 117.4 7.226 71.71 70.57 8.525
sMAPE 64.87 74.09 49.82 43.36 45.43 61.27 58.57 133.2 169.5 39.99 159.7 99.38 77.30 48.71 76.75 113.5 123.4 108.8 179.8 100.9 157.9 157.5 117.0

Ahmedabad RMSE 23.74 24.49 29.93 32.87 26.09 15.93 13.14 21.18 58.17 30.58 29.17 6.548 15.73 30.07 28.26 13.12 9.711 5.961 56.49 13.82 24.96 27.34 5.751
Dengue MASE 2.882 2.972 3.859 4.189 3.246 1.993 1.602 2.632 7.399 4.083 3.630 0.807 1.853 3.868 3.531 1.637 1.079 0.752 6.774 1.738 3.204 3.536 0.748

MAE 19.69 20.31 26.37 28.62 22.18 13.61 10.94 17.98 50.56 27.90 24.81 5.520 12.66 26.43 24.13 11.19 7.378 4.865 46.29 11.87 21.89 24.16 5.111
sMAPE 78.97 79.84 89.59 91.72 83.17 69.35 62.26 77.25 109.1 92.79 86.43 35.82 77.79 89.60 85.87 63.96 52.18 34.81 157.6 68.72 127.1 146.8 38.18

Bangkok RMSE 206.2 210.8 205.1 279.7 209.2 215.8 232.0 351.9 201.8 271.9 327.6 330.7 514.6 227.5 244.2 1122 1126 1129 1138 1132 407.1 1092 192.3
Dengue MASE 0.465 0.476 0.488 0.573 0.478 0.439 0.455 0.821 0.479 0.735 0.771 0.776 1.315 0.596 0.588 3.069 3.080 3.091 3.112 3.096 0.896 2.984 0.438

MAE 167.0 171.1 175.3 206.1 171.6 155.6 163.6 295.2 172.2 264.1 277.5 279.1 472.8 214.4 211.5 1103 1107 1111 1118 1113 322.0 1072 158.0
sMAPE 15.25 15.60 15.99 18.26 15.65 13.77 12.78 29.44 15.72 23.22 28.38 27.24 51.51 19.58 19.39 194.1 195.5 197.1 198.3 197.7 26.46 183.4 14.41

Colombia RMSE 162.5 164.7 227.3 250.4 261.0 132.4 205.5 196.3 162.5 192.2 251.2 160.7 155.6 227.1 228.5 960.9 255.0 819.5 2981 905.4 2215 156.8 166.0
Dengue MASE 1.006 1.006 1.754 2.095 2.217 1.005 1.519 1.387 1.576 1.178 2.113 1.541 0.982 1.751 1.699 10.39 2.540 8.819 31.74 9.780 24.26 1.205 1.074

MAE 91.69 91.63 159.7 190.8 201.9 91.57 138.3 126.3 143.5 107.3 192.5 140.3 89.42 159.5 154.7 947.2 231.4 803.3 2891 890.8 2210 109.7 97.84
sMAPE 10.81 10.79 16.84 19.50 20.41 10.67 14.98 13.90 16.67 12.15 19.64 16.18 10.53 16.82 16.36 190.5 27.28 139.4 200.0 168.7 107.1 12.91 11.31

Hong RMSE 3.366 3.455 3.503 3.142 3.342 3.743 3.158 2.978 3.357 2.813 4.850 2.654 1.786 3.985 3.196 2.480 6.246 1.394 12.34 2.367 5.892 4.029 1.317
Kong MASE 1.067 1.101 1.157 1.028 1.066 1.421 1.054 1.011 1.069 1.042 1.681 0.853 0.576 1.349 1.100 0.881 2.095 0.370 4.303 0.728 2.019 1.596 0.315
Dengue MAE 2.667 2.751 2.891 2.570 2.666 3.553 2.636 2.528 2.673 2.605 4.204 2.133 1.441 3.373 2.751 2.202 5.238 0.925 10.75 1.820 5.047 3.991 1.089

sMAPE 33.98 34.77 36.16 33.14 33.99 41.98 33.82 32.80 34.05 33.21 47.05 28.25 19.52 40.04 35.02 29.49 54.19 9.355 157.6 24.89 53.33 49.33 18.76

Iquitos RMSE 18.03 18.29 7.039 13.90 13.89 8.382 16.47 7.046 6.635 7.360 10.41 10.68 4.908 6.722 6.292 10.41 5.915 7.379 149.2 12.19 12.37 13.11 5.996
Dengue MASE 3.246 3.292 1.179 2.500 2.498 1.306 3.019 1.168 1.072 1.218 1.807 1.865 0.821 1.122 1.039 1.820 0.989 1.171 23.22 2.186 1.751 1.812 0.927

MAE 16.77 17.01 6.088 12.91 12.90 6.747 15.60 6.033 5.540 6.293 9.340 9.639 4.240 5.801 5.372 9.403 4.794 6.053 120.0 11.29 9.047 9.359 4.791
sMAPE 120.2 120.6 89.09 111.5 111.5 94.06 118.8 88.12 86.03 88.73 103.1 103.1 101.9 87.69 85.61 104.8 101.3 91.54 189.9 107.8 118.7 125.0 114.3

Philippines RMSE 30.22 30.06 35.66 36.39 33.33 30.02 33.03 40.83 48.40 36.22 31.63 11.53 29.68 33.23 18.64 58.29 6.985 37.13 158.0 57.95 45.83 48.37 3.413
Dengue MASE 0.374 0.377 0.416 0.440 0.415 0.374 0.489 0.522 0.691 0.424 0.426 0.161 0.368 0.451 0.302 0.893 0.088 0.447 2.625 0.894 0.742 0.553 0.047

MAE 21.46 21.63 23.94 25.29 23.84 21.52 28.09 30.01 39.73 24.34 24.49 9.287 21.14 25.91 17.39 51.31 5.054 25.67 150.7 51.34 42.60 31.75 2.715
sMAPE 32.67 33.02 37.21 39.96 37.18 32.78 43.60 52.24 82.10 37.82 38.53 17.95 32.11 40.85 49.33 128.9 6.318 40.74 200.0 130.0 67.42 55.48 6.663

San RMSE 98.52 99.63 29.28 99.80 107.6 72.30 53.57 64.20 115.2 30.86 222.1 21.57 42.91 93.32 30.22 41.57 29.11 30.03 477.7 52.69 101.9 90.73 37.12
Juan MASE 5.966 6.032 1.787 6.135 6.637 4.698 3.271 4.083 7.097 1.941 14.24 1.169 2.011 5.753 1.844 2.166 1.754 1.897 26.18 3.129 4.837 4.500 2.190
Dengue MAE 89.00 89.98 26.65 91.50 99.00 70.07 48.79 60.91 105.8 28.95 212.5 17.44 29.99 85.83 27.51 32.31 26.16 28.29 390.5 46.68 72.16 67.13 32.67

sMAPE 78.08 78.49 35.34 79.44 82.61 68.96 56.06 63.93 85.21 37.94 115.5 24.13 36.83 58.45 35.70 41.06 36.44 37.92 175.5 53.96 100.0 99.40 42.87

Singapore RMSE 205.1 202.9 217.7 213.8 218.1 237.2 187.4 222.7 221.5 217.2 171.4 184.3 275.6 199.6 216.7 370.4 293.0 206.0 643.5 337.2 477.3 463.1 218.8
Dengue MASE 2.937 2.906 3.197 3.146 3.207 3.521 2.677 3.310 3.272 3.190 2.448 2.639 4.352 2.925 3.173 6.633 4.823 2.958 12.19 5.906 7.212 7.623 3.248

MAE 149.3 147.7 162.4 159.9 163.0 179.0 136.0 168.2 166.3 162.1 124.4 134.1 221.2 154.8 161.3 337.2 245.2 150.3 620.0 300.2 366.6 387.5 165.1
sMAPE 38.07 37.54 42.78 41.91 42.98 48.84 33.80 44.94 44.18 42.67 30.31 33.24 66.79 42.78 42.34 138.2 79.50 38.45 201.0 111.4 117.3 142.9 43.83

Venezuela RMSE 791.2 797.6 794.7 742.2 801.9 767.8 776.2 804.6 1001 829.6 781.1 783.6 727.2 792.6 794.8 1394 1115 1260 2685 1340 752.1 986.8 814.1
Dengue MASE 4.101 4.136 4.128 3.876 4.186 4.132 4.062 4.197 5.275 4.345 4.073 4.094 3.716 4.112 4.128 8.118 6.232 7.257 16.13 7.776 3.953 5.257 4.317

MAE 671.9 677.6 676.3 635.0 685.7 677.0 665.5 687.6 864.1 711.7 667.2 670.8 608.9 673.8 676.4 1329 1021 1189 2643 1274 647.8 861.3 707.4
sMAPE 59.90 60.61 60.47 55.65 61.73 61.52 59.31 61.95 86.40 65.07 59.45 59.93 52.24 60.15 60.49 190.5 115.1 151.7 200.0 174.0 49.36 86.35 64.79

China RMSE 9519 9217 6300 6164 6098 6700 5416 6172 7813 7271 7038 4781 6421 6894 6081 968E2 6580 968E2 171E3 968E2 6346 968E2 3492
Hepatitis MASE 0.985 0.959 0.732 0.705 0.697 0.791 0.685 0.707 0.899 0.827 0.883 0.616 0.769 0.812 0.669 12.99 0.752 12.99 22.94 12.99 0.779 12.99 0.397
B MAE 7331 7135 5445 5239 5183 5885 5094 5254 6686 6153 6573 4584 5722 6042 4975 966E2 5592 966E2 170E3 966E2 5797 966E2 2954

sMAPE 7.499 7.311 5.642 5.432 5.375 6.086 5.289 5.448 6.880 6.352 6.775 4.690 5.941 6.242 5.161 199.9 5.791 199.9 200.0 199.9 6.022 199.9 3.063

Colombia RMSE 256.7 252.8 266.2 276.3 274.4 437.2 417.6 306.3 218.5 269.9 243.8 260.7 373.7 265.7 262.1 989.4 284.8 904.2 2685 928.5 1347 390.4 183.4
Malaria MASE 1.604 1.604 1.472 1.481 1.473 2.384 2.344 1.617 1.396 1.676 1.384 1.459 2.297 1.487 1.453 7.887 1.584 7.155 21.57 7.364 10.77 2.879 1.217

MAE 194.5 194.3 178.3 179.4 178.5 288.9 284.0 195.8 169.1 203.1 167.7 176.8 278.4 180.1 176.0 955.6 191.9 867.0 2614 892.3 1305 348.9 147.5
sMAPE 22.92 22.96 21.11 21.11 21.05 28.89 28.75 22.36 20.45 23.70 20.24 21.01 28.91 21.29 20.92 192.3 22.33 156.3 200.0 165.8 81.87 39.77 18.39

Venezuela RMSE 121.7 123.9 121.1 120.6 120.7 138.3 158.9 120.6 127.3 139.4 129.6 151.9 814.2 120.8 120.9 1604 187.9 1469 2766 1535 395.7 1275 114.2
Malaria MASE 0.747 0.719 0.825 0.798 0.786 0.960 1.112 0.801 0.711 0.874 0.930 1.072 6.147 0.802 0.816 12.21 1.124 11.18 20.86 11.68 2.736 9.687 0.782

MAE 97.92 94.26 108.0 104.4 102.9 125.7 145.6 104.9 93.13 114.5 121.8 140.5 805.3 105.0 106.9 1599 147.3 1464 2733 1530 358.4 1269 102.5
sMAPE 6.107 5.883 6.731 6.511 6.414 7.845 9.136 6.536 5.815 7.141 7.598 8.797 65.59 6.546 6.664 194.1 9.264 164.0 200.0 178.1 24.81 128.3 6.407

201
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nd 3 depict that the models’ efficiency depends mainly on the
ype of disease considered and the forecast horizon. The ac-
uracy measures for the Australian influenza cases show that
ur proposed EWNet architecture outperforms all the bench-
ark epicasters for different forecast horizons. Notably, the short-

erm forecast of the EWNet framework is more reliable than the
econd-best epicaster, ARNN. This improvement in the forecast
ccuracy is predominately attributed to the MODWT decomposi-
ion of the epidemic series. In the case of influenza incidence in
apan, the data-driven SVR model epicasts the 13-weeks ahead
isease dynamics most accurately as measured by the RMSE met-
ic, whereas the forecasts generated by the conventional Theta
odel lie closer to the actual incidence cases in terms of the
bsolute, scaled, and relative error metrics. However, the deep
earning-based LSTM network and the hybrid ARIMA ANN meth-
ds are more precise for their medium-term forecasting ana-
og. Moreover, the long-term influenza forecasts generated by
he proposed EWNet framework for the Japan region are highly
ompetitive with the deep neural architecture-based NBeats and
RNN frameworks. For Mexico’s long-term influenza forecasting
ask, the proposed EWNet framework outperforms the baseline
picasters in terms of all the key performance indicators except
he sMAPE score, where the LSTM network exhibits the least
core. On the contrary, for the medium-term and short-term
ounterparts of the Mexico influenza epicasting, the persistence
odel and the hybridized ARIMA-WARIMA (Hybrid-1) frame-
orks, respectively, produce the best results. Moreover, based
n the accuracy measures of the dengue forecasting, we can
onclude that the proposed EWNet model generates a more re-
iable long-term and medium-term forecast for Ahmedabad and
ong Kong regions. In particular, for the Ahmedabad dengue
ncidence cases, the 52-weeks ahead forecast is improved by 37%
ue to the use of the stable nonlinear neural network framework
ith the MODWT decomposition (as done in EWNet) instead of
he linear ARIMA model with the MODWT decomposition (as
one in WARIMA). However, for the short-term dengue fore-
asting of these regions, the proposed EWNet model and the
eep AR framework display competitive performance. The for-
er model has the least RMSE and MASE scores and the latter
erforms best in terms of MAE and sMAPE metrics. Further-
ore, for the dengue incidence cases of the Iquitos, Philippines,
nd Venezuela regions, the proposed EWNet approach demon-
trates superior long-term forecasting ability compared to all
he statistical, machine learning, and deep-learning forecasters.
owever, for the 26-weeks and 13-weeks ahead epicasting of the
enezuela dengue cases, the kernel-based SVR model, the per-
istence model, and the EWNet framework generate competitive
ut-of-sample predictions. Although the proposed EWNet frame-
ork and the SVM model exhibit the best short-term forecasting
erformance for the Philippines and Iquitos regions, the deep
earning-based LSTM and NBeats methods significantly surpass
ther forecasters with the lowest medium-term forecasting error
or these regions, respectively. The long-term forecasts gener-
ted by the proposed EWNet model for Singapore’s dengue cases
re competitive with the conventional RWD’s epicasts. However,
he stochastic ETS model and the machine learning-based ANN
ramework demonstrate better forecasting ability for this region’s
edium-term and short-term dengue incidence cases. Addition-
lly, for the crude dengue incidence dataset of the San Juan
egion, the ARNN, EWNet, and LSTM models generate better out-
f-sample predictions with 13-weeks, 26-weeks, and 52-week
ead times, respectively. For the Bangkok region’s long-term and
edium-term dengue forecasts, we observe that the ETS model
nd RW model of statistical paradigm outperform all the forecast-
rs, respectively. However, the performance of these forecasters
ags behind the proposed EWNet model in generating a 13-
eeks ahead forecast. Furthermore, the hyperplane-based SVR
202
model generates the best medium-term forecasts for Colombia’s
dengue and malaria incidence cases. However, for the short-
term forecast, although the SVR model can maintain its per-
formance superiority in dengue incidence cases, the proposed
EWNet framework significantly improves the forecast accuracy
for malaria cases. On the other hand, for the 52-weeks ahead
forecast of the Colombia region, the proposed EWNet model
generates the best dengue forecast, and the traditional RWD
model provides the same for the malaria counterpart. For the
Venezuela region, statistical BSTS and WARIMA models, data-
driven ARNN and Deep AR methods, and the proposed EWNet
framework generate competitive forecasts for malaria incidence.
Furthermore, in the case of hepatitis B cases in China, the pro-
posed EWNet model and the SVR model generate competitive
long-term forecasts. However, for medium-term and short-term
forecasting, the MODWT-based WARIMA and EWNet framework
transcends all other epicasters, respectively.

From the above experimental evaluations, it is identifiable
that the epicasting performance of the advanced models, like
SVR, ANN, ARNN, LSTM, Transformer, Deep AR, NBeats, and TCN,
drastically drops for long-term forecasting compared with the
proposed EWNet model for the majority of the infectious disease
datasets. This phenomenon occurs primarily due to the lack of a
humongous amount of historical data in most datasets, which can
also be seen in several recent studies (Chakraborty et al., 2022;
Godahewa et al., 2021; Petropoulos et al., 2022). Moreover, we
can observe that the proposed EWNet framework outperforms
the benchmark forecasters in the epicasting tasks, on average.
This is primarily due to the non-stationary and nonlinear charac-
teristics of the real-world epidemic datasets, as evident in Table 2.
The wavelets coupled with ARNN in an ensemble framework
(as done in the EWNet architecture) capture the non-stationary
and seasonality of the time series using the wavelet decompo-
sition, whereas the ARNN is responsible for handling nonlinear
behavior. Additionally, since the epidemic datasets exhibit long-
range dependency (as in Table 2), the ARNN framework present
in the forecasting stage of the EWNet model can generate more
reliable long-term forecasts (Leoni, 2009). It is also important to
note that, despite the rapid surge of different attention-based
models in epidemic forecasting (Sasal et al., 2022; Wu, Green,
et al., 2020), the performance of the multi-head Transformers
model is significantly worse than the majority of the forecasters.
This is because although Transformers can accurately extract
semantic relations among the elements in a long sequence, in
a time series modeling for extracting temporal correlations in
an ordered sequence, the model employs positional encoding
and tokenizes the dataset into several sub-series. This nature of
the permutation-invariant self-attention mechanism eventually
leads to the loss of temporal information resulting in imprecise
forecast (Zeng, Chen, Zhang, & Xu, 2022). Moreover, unlike the
proposed EWNet framework, the wavelet-based deep learners
W-Transformers and W-NBeats lack the desired theoretical basis
that restricts the model from showing ‘explosive’ behavior or
growing variance over time, hence they fail to generate reliable
forecasting results as compared to the proposed framework. An-
other potential cause for their failure is the small-data problems
of epidemic datasets. Most deep learning methods are highly suit-
able for high-frequency (e.g., daily or hourly) datasets. However,
high-frequency epidemiological datasets with many observations
are seldom available, hence the applicability of these models is
limited, especially in the epicasting domain.

Along with point estimates of the future epidemic cases, we
also showcase the probabilistic band of the forecasts (for the test
data). It is crucial in many applications, as they enable optimal
decision-making under various forms of uncertainty in contrast

to point forecasts. There are two widely used approaches for
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Fig. 3. The plot shows the ground truth (red), fitted values and forecasts of the EWNet model (blue), forecasts of the RW model (green), forecasts of the Hybrid-3
odel (purple), and the probabilistic band (based on the confidence interval approach) of the proposed EWNet framework (yellow shaded) for different datasets. On
ach row, the plots from left to right represent the training and fitted values of the EWNet framework; long-term forecasts (point and interval) and ground truth
ata; medium-term forecasts (point and interval) and ground truth data; and short-term forecasts (point and interval) and ground truth data, respectively. For each
lot, the vertical axis represents dengue cases, and the horizontal axis represents the time horizon.
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uantifying the uncertainty in machine learning-based forecasts:
onfidence intervals (CI) and conformal predictions (CP). The
ormer is useful for quantifying the certainty of an estimate,
hereas the latter is used to create prediction intervals — the
onfidence around a given prediction to capture the uncertainty
f the model prediction (Vovk, Gammerman, & Shafer, 2005).
e employ both approaches within our framework and obtain
robabilistic bands over the point estimates for the test period of
he epidemic datasets. For deriving the confidence intervals, we
ollow a simple pre-control limits approach (Montgomery, 2020)
nd obtain more than 85% confidence intervals. In formulating the
WNet framework (as in Eq. (8)), we assume ϵt as a sequence
f i.i.d. random shocks. Therefore, under the assumptions of nor-
ality, we use the formula for obtaining the probabilistic bands
203
as upper pre-control limits (UPCL) = mean + 1.5 × sigma and
lower pre-control limits (LPCL) = mean − 1.5 × sigma. Under
his assumption, we expect 86% of the test data to lie within the
robabilistic bands. However, the results may violate when the
aussian assumption is not met (as seen in a few data examples
n Figs. 3 and 4). There are other ways to obtain the confidence
ntervals explored in Panja et al. (2022) (using simulations via
onte Carlo or bootstrapping) and in Salinas et al. (2020) (using
xpectations of loss function under the forecast distribution).
he primary drawback of these computationally expensive algo-
ithms is that their prediction intervals increase exponentially
or long-range forecasting. However, these approaches are dis-
arded since epidemic forecasts have real-time usage and cannot
e computationally expensive. In Figs. 3 and 4, we present the
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Fig. 4. The plot shows the ground truth (red), fitted values of the EWNet model (blue), and forecasts of the overall top two performing models based on four statistical
measures: EWNet (blue), RW (green), Hybrid-3 (purple), and the probabilistic band (based on the confidence interval approach) of the proposed EWNet framework
(yellow shaded) for different datasets. On each row, the plots from left to right represent the training and fitted values of the EWNet framework; long-term forecasts
(point and interval) and ground truth data; medium-term forecasts (point and interval) and ground truth data; and short-term forecasts (point and interval) and
ground truth data, respectively. For each plot, the vertical axis represents epidemic cases, and the horizontal axis represents the time horizon.
probabilistic band obtained using mean ±1.5 sigma for short,
edium, and long-term forecasts on all the epidemic datasets.
urthermore, we find the conformal predictions to associate reli-
ble estimates of uncertainty quantification. Conformal prediction
onverts point estimates to a prediction region in a distribution-
ree and model-agnostic way that guarantees convergence (Vovk,
hen, Manokhin, & Xie, 2017). We use the ‘‘caretForecast" package
n R to obtain conformal prediction intervals which are built by
tudying the distribution of the residuals. Since data and model-
ng uncertainties are considered for the validation data, conformal
rediction generates trustable prediction intervals, as depicted in
igs. 5 and 6.

emark 6. Below we provide an in-depth analysis of the proba-
ilistic bands in Figs. 3–6 using pre-control limits and conformal
rediction approaches:
204
• The medium and long-term prediction intervals of the
EWNet framework (as in Figs. 3 and 4) for Ahmedabad
and Iquitos dengue datasets demonstrate that our proposal
underestimates the crude incidence cases for these regions
for a few weeks. One plausible reason for this could be
the changing climatic patterns, including natural calamities,
weather changes, and global warming, which eventually
lead to a rise in precipitation, resulting in a sudden dengue
epidemic outbreak.

• For constructing the probabilistic band of the EWNet frame-
work using the confidence interval approach, we assumed
that the random shocks ϵt (refer to Eq. (8)) follow a Gaussian
distribution. However, this assumption is not met for some
epidemic datasets, e.g., dengue cases of San Juan, Singa-
pore, and Venezuela regions, and thus our results (including
CIs) are violated. Hence, to overcome this drawback, we
have also generated the conformal predictions following
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Fig. 5. The plot shows the ground truth (red), fitted values and forecasts of the EWNet model (blue), forecasts of the RW model (green), forecasts of the Hybrid-3
odel (purple), and the probabilistic band (based on the conformal prediction approach) of the proposed EWNet framework (yellow shaded) for different datasets.
n each row, the plots from left to right represent the training and fitted values of the EWNet framework; long-term forecasts (point and interval) and ground truth
ata; medium-term forecasts (point and interval) and ground truth data; and short-term forecasts (point and interval) and ground truth data, respectively. For each
lot, the vertical axis represents dengue cases, and the horizontal axis represents the time horizon.
the model-agnostic approach (Figs. 5, 6), which generates
trustable prediction intervals using the distribution of the
residuals.

• Moreover, it is frequently observed that the exposure of a
population to any epidemic outbreaks develops herd immu-
nity resulting in a decrease in the crude incidence cases as
seen in the Colombia dengue and Japan influenza datasets.
Traditional compartmental models (e.g., SIR) in epidemi-
ology literature consider the population susceptibility cy-
cles in their model formulation using certain pre-specified
constraints; however, our proposed EWNet framework is
unable to generalize this phenomenon owing to its pure
data-driven approach. Although, regarding real-time fore-
casts and decision-making, accurate and reliable forecasts
205
generated by EWNet for most datasets significantly enrich
the epicasting benchmarks.

• For the malaria forecasting task of Colombia and Venezuela
regions, we notice that the corresponding incidence datasets
demonstrate certain anomalies (outliers and high peaks).
These sudden changes in the level of infection are due to
several factors, including but not limited to the impact of
policy changes, environmental hazards, population behav-
ior, and human settlements. These anomalous observations
in the time series significantly deteriorate the forecasters’
performance, including our proposed EWNet framework.

• Thus, we recommend that practitioners and health offi-
cials consider the factors listed above while utilizing our
EWNet framework for planning and decision-making in
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Fig. 6. The plot shows the ground truth (red), fitted values of the EWNet model (blue), and forecasts of the overall top two performing models based on four statistical
measures: EWNet (blue), RW (green), Hybrid-3 (purple), and the probabilistic band (based on the conformal prediction approach) of the proposed EWNet framework
(yellow shaded) for different datasets. On each row, the plots from left to right represent the training and fitted values of the EWNet framework; long-term forecasts
(point and interval) and ground truth data; medium-term forecasts (point and interval) and ground truth data; and short-term forecasts (point and interval) and
ground truth data, respectively. For each plot, the vertical axis represents epidemic cases, and the horizontal axis represents the time horizon.
public health. Moreover, EWNet can easily adapt and im-
prove during its usage when new test samples are available.
This makes the proposed forecasting framework useful and
reliable from the practitioner’s perspective.

5. Significance of the improvement and threats to validity

In this section, we comment on the significance of the im-
rovements in accuracy measures and discuss the potential
hreats that can impact the results of our experimental analysis.

.1. Overall assessment of the benchmark comparisons and potential
mprovement

A couple of interesting phenomena are observable from the
xperiments. Firstly, the proposed EWNet framework produces
he best epicasting results in 60% of the datasets (9 out of 15
206
datasets) for long-term forecast horizon, whereas in medium-
term and short-term forecasting, it outperforms the competitive
forecasters in 27% and 47% cases, respectively in comparison
with 22 benchmark forecasters Secondly, among the baseline
forecasters, the ARNN (Faraway & Chatfield, 1998) and the sup-
port vector regression (SVR) (Smola & Schölkopf, 2004) mod-
els generate a better short-term forecast, whereas for medium-
term epicasting, the persistence models namely, random walk
(RW) (Pearson, 1905) and the random walk with drift (RWD) (En-
torf, 1997) methods demonstrate higher accuracy. Moreover, for
long-term horizon WARIMA (Aminghafari & Poggi, 2007), hy-
brid ARIMA-WARIMA (Hybrid 1) (Chakraborty & Ghosh, 2020),
and TBATS (De Livera et al., 2011) models have better fore-
casting ability than the previously proposed baseline epicast-
ers. Nevertheless, the overall performance of the random walk
(RW) (Pearson, 1905) model and hybrid ARIMA-ARNN (Hybrid-
3) (Chakraborty, Chattopadhyay, & Ghosh, 2019) framework are
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etter than other baselines in terms of different accuracy mea-
ures. Another critical observation is that the performance of the
dvanced deep learning frameworks, specifically LSTM (Hochre-
ter & Schmidhuber, 1997), NBeats (Oreshkin et al., 2019), and
eep AR (Salinas et al., 2020) is superior in comparison with
ther models for 17% of the cases. This observation is interesting
ince the epidemic datasets’ lengths range from 92 to 1196,
nd deep learners mostly succeed with large datasets. It is a
ommon problem in epidemic datasets since historical records
re seldom available. In our experimental evaluation, we also
mployed other wavelet-based ensemble techniques with tradi-
ional ARIMA model and data-driven Transformers and NBeats
ethods in the combination phase as WARIMA (Aminghafari
Poggi, 2007), W-Transformers (Sasal et al., 2022), and W-

Beats (Singhal et al., 2022) models, respectively. Although the
ARIMA (Aminghafari & Poggi, 2007) method generates bet-

er epicasts for the long-term horizon, its overall rank of 9.79
w.r.t. MASE score, ref Fig. 7(b)) lags behind the proposed EWNet
ramework with an overall rank of 3.69 (w.r.t. MASE score, ref
ig. 7(b)). This failure of the WARIMA model is primarily at-
ributed to the inability of the linear ARIMA method to generalize
ell on nonlinear epidemic datasets. In the case of the recently
roposed W-Transformers model (Sasal et al., 2022), the authors
ave extended the idea of EWNet by incorporating the attention-
ased Transformers model with the MODWT decomposed time
eries. As aptly pointed out by the authors in their manuscript,
his approach works better with high-frequency datasets having
everal observations; however, for the epidemic datasets with
ewer historical observations, this framework fails to generate
atisfactory forecasts (Sasal et al., 2022). Moreover, the W-NBeats
rchitecture utilizes the deep learning-based NBeats model in the
nsemble framework. Since the NBeats model is a fully-connected
eep neural network architecture based on backward and for-
ard residual links, it is a benchmark method for large time
eries datasets with complex seasonalities (Oreshkin et al., 2019).
owever, real-world epidemic datasets exhibit irregularities and
ypically comprise of limited data (low-frequency), leading to
he failure of the W-NBeats framework to generate satisfactory
esults in the epicasting task as compared to the proposed EWNet
odel.
From Tables 5–3, we observe a significant improvement in

picasting by applying the proposed EWNet framework as re-
orted by the RMSE, MASE, MAE, and sMAPE scores. Furthermore,
he evaluation of the EWNet model on the crude incidence data
f various diseases for diverse regions portrays that the pro-
osed methodology can capture the long-range dependence of
he series. Thus, based on the experimental evaluations, we can
onclude that the framework proposed in this paper can poten-
ially be used as an early warning system by public health officials
nd disease control programs to plan and prevent the outbreak
ith a substantial lead time.

.2. Statistical significance of the results

Next, we focus on determining the statistical significance of
he forecasts obtained from our proposed model compared to its
ounterparts generated by other benchmark forecasters. We ini-
ially utilize multiple comparisons with the best (MCB) (Koning,
ranses, Hibon, & Stekler, 2005) procedure to determine the rel-
tive performance of different methods. For this non-parametric
est, we compute the models’ average ranks based on the RMSE,
ASE, MAE, and sMAPE scores for different epidemic datasets and

heir corresponding critical distances. The results of the MCB test
resented in Fig. 7 can be interpreted as follows: The proposed
WNet model has the least rank (3.57), (3.69), (3.82), and (4.31);
n terms of RMSE, MASE, MAE, and sMAPE scores. Moreover, the
 t

207
upper boundary of the critical distance for the EWNet model
(marked by the shaded region) is the reference value for the
test. Since all the benchmark forecasters have critical intervals
(w.r.t. RMSE, MASE, and MAE scores) entirely above the ref-
erence value without overlap, they perform significantly worse
than the proposed EWNet method. In the case of the sMAPE
metric, there is a slight overlap between the critical intervals of
the EWNet framework and the RW model; however, the non-
overlapping critical intervals for the other baseline forecasters
indicate that their performance is significantly worse than the
proposed method.

Alongside the MCB test, we consider a non-parametric Fried-
man test (Friedman, 1937, 1940) for determining the robustness
of our experimental evaluation. This statistical methodology tests
the null hypothesis that all models are equivalent based on their
rankings across various accuracy measures for different datasets.
The ranking mechanism assigns rank 1 to the best-performing
method, rank 2 to the second-best, and so on. The average of
the ranks across all the datasets is then computed for different
models. This distribution-free test rejects the null hypothesis of
model equivalence if the value of the test statistic is greater
than the critical value (Iman & Davenport, 1980). Let rm,d denote
the rank assigned to mth model (out of M̃ models) for the dth
dataset (out of D̃ datasets). The Friedman test compares the aver-
age rank, computed using the following formula, among several
algorithms: Rm =

1
D̃

∑
d rm,d. Under the null hypothesis, i.e., the

ranks Rm are equal for all m = 1, 2, . . . , M̃ , the Friedman statistic
defined as:

χ2
F =

12D̃

M̃(M̃ + 1)

[∑
m

R2
m −

M̃(M̃ + 1)2

4

]
,

follows χ2 distribution with (M̃−1) degrees of freedom, when M̃
and D̃ are large. Owing to several difficulties with the Friedman
statistic for a lesser number of datasets and algorithms, a modi-
fication of the test statistic was proposed in Iman and Davenport
(1980) as

FF =
(D̃ − 1)χ2

F

D̃(M̃ − 1) − χ2
F

,

hich is distributed as F distribution with (M̃−1) and (M̃−1)(D̃−

) degrees of freedom.
Following the Friedman test procedure, we compute the ranks

f various models for different epidemic datasets. Table 6 pro-
ides the average ranks of the models for different accuracy mea-
ures. From Table 6, we can infer that the proposed EWNet model
ets the upper hand in epicasting the disease dynamics over all
ther models. Amongst several benchmarks, hybrid ARIMA-ARNN
Hybrid-3) (second best model w.r.t RMSE) and random walk
RW) (second best model w.r.t MASE, MAE, and sMAPE) perform
etter than other baselines. Moreover, we summarize the value of
he Friedman test statistics χ2

F and FF obtained for the 23 models
cross different test horizons of the 15 datasets in Table 7. Since
he observed value of the statistic FF (as tabulated in Table 7)
s greater than the critical value F22,968 = 1.553, so we reject
he null hypothesis at 5% level of significance and conclude that
he performance of the algorithms considered in our study is
ignificantly different across all the performance measures.
Furthermore, we proceed to check whether the forecast per-

ormance of the proposed EWNet model is significantly differ-
nt from other models by utilizing a post-hoc non-parametric
ilcoxon signed-rank test (Woolson, 2007). This test checks the
ull hypothesis that no significant difference exists between the
orecasts generated by the proposed EWNet model and state-of-
he-art approaches at 95% significance level. The distribution-free
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Fig. 7. Visualization of the multiple comparisons with the best (MCB) analysis. The figure demonstrates the MCB test results w.r.t. (a) RMSE metric, (b) MASE metric,
(c) MAE metric, and (a) sMAPE metric. The vertical axis for each plot represents the average rank and the horizontal axis depicts the corresponding model such that
EWNet-3.57 in (a) indicates the average rank of the proposed EWNet model based on RMSE metric is 3.57, and similar to others.
Table 6
Average rank of the algorithms corresponding to the performance measures (best-ranked
model is highlighted).

Models RMSE MASE MAE sMAPE

RW (Pearson, 1905) 10.27 9.378 9.200 9.156
RWD (Entorf, 1997) 10.60 10.07 9.933 9.889
ARIMA (Box et al., 1970) 9.786 9.961 9.887 9.604
ETS (Hyndman et al., 2008) 9.741 10.18 10.07 9.911
Theta (Assimakopoulos & Nikolopoulos, 2000) 10.56 10.80 10.67 10.33
WARIMA (Aminghafari & Poggi, 2007) 9.422 9.788 9.778 9.400
SETAR (Tong & Lim, 2009) 10.01 10.18 10.20 9.244
TBATS (De Livera et al., 2011) 10.17 10.63 10.62 10.27
BSTS (Scott & Varian, 2014) 12.96 12.82 12.69 13.29
Hybrid-1 (Chakraborty & Ghosh, 2020) 9.876 9.766 9.689 9.711
ANN (Rumelhart et al., 1986) 12.07 12.71 12.98 12.09
ARNN (Faraway & Chatfield, 1998) 11.42 10.93 11.27 10.56
SVR (Smola & Schölkopf, 2004) 10.29 9.600 9.444 10.36
Hybrid-2 (Zhang, 2003) 9.862 10.22 10.61 9.822
Hybrid-3 (Chakraborty, Chattopadhyay, & Ghosh, 2019) 9.380 9.511 9.889 9.978
LSTM (Hochreiter & Schmidhuber, 1997) 14.80 14.56 14.47 15.44
NBeats (Oreshkin et al., 2019) 13.12 13.07 13.27 13.20
Deep AR (Salinas et al., 2020) 14.79 14.61 14.46 14.71
TCN (Chen et al., 2020) 22.36 22.07 22.00 21.73
Transformers (Wu, Green, et al., 2020) 14.48 15.50 15.23 16.40
W-NBeats (Singhal et al., 2022) 18.27 18.07 17.96 17.67
W-Transformer (Sasal et al., 2022) 18.22 17.84 17.80 18.47
Proposed EWNet 3.573 3.689 3.822 4.431
Table 7
Values of Friedman Test statistic for various accuracy metrics.
Test statistic RMSE MASE MAE sMAPE

χ2
F 316.60 306.88 302.00 311.42

FF 20.686 19.766 19.314 20.193

Wilcoxon signed-rank test procedure rejects the null hypothesis
if the calculated p-value for the test is below 0.05 and concludes
hat there is a significant difference between the epicasting ability
f the proposed model and other state-of-the-art methods. From
he results obtained in this test, tabulated in Table 8, we can
nfer that the proposed EWNet model’s performance is statisti-
ally significant compared to all other models considered in the
nalysis. Thus from the above performed statistical tests, we can
nfer at a 5% significance level that the potential improvement in
208
the epicasting performance of our proposed EWNet framework is
robust and statistically significant.

5.3. Validation of data, results, and performance measures

Our analysis is based on fifteen epidemic datasets (influenza,
dengue, malaria, and hepatitis B) collected from publicly available
sources. The dengue datasets have been used multiple times
in various studies for formulating better epicasting techniques
(Chakraborty, Chattopadhyay, & Ghosh, 2019; Deb & Deb, 2022;
Johansson et al., 2019; Johnson et al., 2018). Our chosen datasets
are diverse in nature, representing several diseases from dis-
tinct locations, with varied lengths, frequency, and statistical
characteristics, which generalizes our findings. However, further
investigations on some other infectious disease datasets are es-
sential in future work. We did not consider Covid-19 datasets in



M. Panja, T. Chakraborty, U. Kumar et al. Neural Networks 165 (2023) 185–212

m
a
c
b
c
c
d
g
p
t
i
n
o
B
d
W
t
t
A
a
p
e

Table 8
Statistical Significance values (p-values) for EWNet and other models for Wilcoxin Signed-rank test.

RMSE MASE MAE sMAPE

RW (Pearson, 1905) 0.00012 0.00094 0.00466 0.00200
RWD (Entorf, 1997) 0.00008 0.00084 0.00452 0.00188
ARIMA (Box et al., 1970) < 0.00001 < 0.00001 < 0.00001 0.00108
ETS (Hyndman et al., 2008) < 0.00001 0.00014 < 0.00001 0.00138
Theta (Assimakopoulos & Nikolopoulos, 2000) < 0.00001 < 0.00001 < 0.00001 0.00058
WARIMA (Aminghafari & Poggi, 2007) < 0.00001 < 0.00001 < 0.00001 0.00328
SETAR (Tong & Lim, 2009) < 0.00001 < 0.00001 < 0.00001 0.00424
TBATS (De Livera et al., 2011) < 0.00001 < 0.00001 < 0.00001 0.00016
BSTS (Scott & Varian, 2014) < 0.00001 < 0.00001 < 0.00001 < 0.00001
Hybrid-1 (Chakraborty & Ghosh, 2020) < 0.00001 < 0.00001 < 0.00001 0.00228
ANN (Rumelhart et al., 1986) < 0.00001 < 0.00001 < 0.00001 < 0.00001
ARNN (Faraway & Chatfield, 1998) < 0.00001 < 0.00001 < 0.00001 < 0.00001
SVR (Smola & Schölkopf, 2004) 0.00028 0.00194 0.00052 0.00100
Hybrid-2 (Zhang, 2003) < 0.00001 < 0.00001 < 0.00001 < 0.00001
Hybrid-3 (Chakraborty, Chattopadhyay, & Ghosh, 2019) < 0.00001 < 0.00001 < 0.00001 < 0.00001
LSTM (Hochreiter & Schmidhuber, 1997) < 0.00001 < 0.00001 < 0.00001 < 0.00001
NBeats (Oreshkin et al., 2019) < 0.00001 < 0.00001 < 0.00001 < 0.00001
Deep AR (Salinas et al., 2020) < 0.00001 < 0.00001 < 0.00001 < 0.00001
TCN (Chen et al., 2020) < 0.00001 < 0.00001 < 0.00001 < 0.00001
Transformers (Wu, Green, et al., 2020) < 0.00001 < 0.00001 < 0.00001 < 0.00001
W-NBeats (Singhal et al., 2022) < 0.00001 < 0.00001 < 0.00001 < 0.00001
W-Transformer (Sasal et al., 2022) < 0.00001 < 0.00001 < 0.00001 < 0.00001
our study due to their dubious nature, and thus forecasting Covid-
19 majorly failed due to lack of transparency, errors, and lack
of determinacy (Ioannidis, Cripps, & Tanner, 2020). In our study,
RMSE, MASE, MAE, and sMAPE are considered as the key perfor-
mance indicator (Box et al., 1970; Hyndman et al., 2008). Different
accuracy measures are available in the time series forecasting
literature, and the metric’s choice may influence the forecasters’
performance. Although we considered both absolute, percentage,
and scaled error measures for computing the epicasters’ perfor-
mance, several other measures can be considered for studying
the effectiveness of different models. The proposed EWNet overall
performed well compared with twenty-two statistical, machine
learning, and deep learning models. However, epidemic outbreaks
sometimes vary with respect to climatic, social, environmental,
biological, and human factors. In this study, we have only studied
the past observations of epidemic datasets and extrapolated the
forecasts based on past dependency to provide valuable insights
into the disease dynamics.

6. Conclusions and discussions

Infectious disease outbreaks play an essential role in global
orbidity and mortality. Real-time epidemic forecasting provides
n opportunity to predict geographic disease spread and case
ounts to inform public health interventions better when out-
reaks occur. Providing actionable insights, such as accurate fore-
asting of case counts with reliable uncertainty quantification, is
ritical for resource allocation and preparedness planning. Epi-
emic forecasting (called ‘epicasting’) is beginning to be inte-
rated into infectious disease outbreak response decision-making
rocesses. We propose an EWNet model that could accelerate
he adoption of forecasting among public health practitioners,
mprove epidemic management, save lives, and reduce the eco-
omic impact of outbreaks. We investigated our proposed model
n the laboratory-confirmed cases of influenza, dengue, hepatitis-
, and malaria datasets for different regions. The majority of these
atasets exhibit assertive nonlinear and non-stationary behavior.
e proposed a new variant of the wavelet-based forecasting

echnique using the ARNN model and outperformed several sta-
istical, machine learning, and deep learning models on average.
dditionally, we have shown theoretical results and derived their
ppropriate probabilistic bands, which back the success of the
roposed EWNet model. Based on the experimental results with
pidemic datasets, the proposed EWNet model is well-suited to
209
extrapolate the future dynamics of non-stationary and nonlinear
epidemic datasets due to the hybridization of wavelet decom-
position and ARNN framework. The proposed EWNet model can
be deployed as an early warning system that can be monitored
and automatically retrained with crude incidence data of the
infectious disease in an incremental training or batch training
procedure. Additionally, the theoretical basis for selecting the
model’s hyperparameters significantly reduces its run-time com-
plexity compared to state-of-the-art deep learners. It enables the
proposed epicaster to generate real-time forecasts. These real-
time forecasts backed with reliable prediction intervals will allow
health officials to monitor infectious disease dynamics and aid in
designing effective disease-combatting policies. However, several
factors can be identified as essential components in establishing a
good prediction for an epidemic or disease risk. For example, the
accuracy of EWNet can be improved if we include geographical
scale, temperature, rainfall, or other attributes that impact indi-
vidual epidemics. These limitations of outbreak prediction will
ensure the adoption of predictive tools by public health officials,
operations managers, and healthcare practitioners. Forecasting
the epidemic outbreak based on certain auxiliary variables may
be considered a future scope of work to further improve the
EWNet model for multivariate set-up. Another interesting future
direction would be to explore the EWNet model in various other
applied forecasting research.
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