
IIIT Bangalore

IMPLEMENTATION OF DEEP LEARNING

FRAMEWORKS

By Tanujit Chakraborty

International Institute of Information

Technology Bangalore

ARTIFICIAL NEURAL NETWORKS

USING SCIKIT LEARN

2

ARTIFICAL NEURAL NETWORKS

International Institute of Information

Technology Bangalore

Introduction

One of the most fascinating machine learning modeling technique

Generally uses back propagation algorithm

Relatively complex (due to deep learning with many hidden layers)

Structure is inspired by brain functioning

Generally computationally expensive

3

ARTIFICAL NEURAL NETWORKS

International Institute of Information

Technology Bangalore

Instructions

1. Normalize the data – Use Min – Max transformation (optional)

Normalized data = Data – Minimum / (Maximum – Minimum)

2. Number of hidden layers required = 1 for vast number of application

3. Number of neurons required = 2/3 of the number of predictor variables

or input layers

Remark: The optimum number of layers and neurons are the ones which

would minimize mean square error or misclassification error

which can be obtained by testing again and again
4

5

Example: Develop a model to predict the non payment of overdrafts by

customers of a multinational banking institution. The data collected is given in

Logistic_Reg.csv file. The factors and response considered are given below. Use

80% of the data to develop the model and validate the model using remaining

20% of the data?

International Institute of Information

Technology Bangalore

5

SL No Factor

1 Individual expected level of activity score

2 Transaction speed score

3 Peer comparison score in terms of transaction volume

Response Values

Outcome 0: Not Paid and 1: Paid

ARTIFICAL NEURAL NETWORKS

ARTIFICAL NEURAL NETWORKS

International Institute of Information

Technology Bangalore

Example

Importing packages

import pandas as mypd

from sklearn.cross_validation import train_test_split

from sklearn.neural_network import MLPClassifier

Reading the data

mydata = mypd.read_csv("E:/ISI/Course_Material/Data/Logistic_Reg.csv")

x = mydata.values[:, 0:3]

y = mydata.Outcome

Splitting the data into training and test

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state

= 100) 6

ARTIFICAL NEURAL NETWORKS

International Institute of Information

Technology Bangalore

Example

Develop the model

mymodel =MLPClassifier(solver = 'lbfgs', alpha = 1e-5, hidden_layer_sizes = (2),

random_state = 100)

mymodel.fit(x_train, y_train)

7

Note:

Classification problem: Use MLPCLassifier

Value estimation: Use MLPRegressor

Solver:

‘lbfgs’ : Uses quasi-Newton method optimization algorithm.

‘sgd’ :Uses stochastic gradient descent optimization algorithm.

‘adam’ :Uses stochastic gradient-based optimizer

ARTIFICAL NEURAL NETWORKS

International Institute of Information

Technology Bangalore

Example: Interpretation

hidden_layer_sizes : a vector representing hidden layers and hidden neurons in

each layer

hidden_layer_sizes = (l) : one hidden layers with l hidden neurons

8

ARTIFICAL NEURAL NETWORKS

International Institute of Information

Technology Bangalore

Output

mymodel.score(x_train, y_train)

9

Statistics Value

% Accuracy 96.81

% Error 3.19

mymodel.predict_proba(x_train)

ARTIFICAL NEURAL NETWORKS

International Institute of Information

Technology Bangalore

Output: Validation

predtest = mymodel.predict(x_test)

mytable = mypd.crosstab(y_test, predtest)

mytable

10

Predicted

0 1

Actual
0 54 4

1 0 138

Actual Vs Predicted

International Institute of Information

Technology Bangalore

ARTIFICIAL NEURAL NETWORKS

USING TENSORFLOW & KERAS

11

International Institute of Information

Technology Bangalore

12

RELATIONSHIP BETWEEN KERAS & TENSORFLOW

WHAT IS KERAS?

International Institute of Information

Technology Bangalore

• Francois Chollet, the author of Keras, says:

“The framework was developed with a focus on enabling fast experimentation.

Being able to go from idea to result with the least possible delay is key to

doing goodresearch.”

• Keras is open source framework written in Python

• ONEIROS (Open Ended Neuro-Electronic Intelligent Robot OS)

• Contains neural-network building blocks like layers, optimizer,

activation functions

• Support CNN and RNN

13

DEVELOPMENT OF KERAS

International Institute of Information

Technology Bangalore

• Francois Chollet, Google AI Developer/Researcher developed Keras

on 27 March 2015 to facilitate his own research and experiments.

• With the explosion of deep learning popularity, many developers,

programmers, and machine learning practitioners flocked to Keras due

to its easy-to-use API.

• At that time the popular deep learning libraries (Torch, Theano, and

Caffe) tedious, time-consuming, and inefficient.

•Keras, on the other hand, was extremely easy to use

14

BACKEND OF KERAS

International Institute of Information

Technology Bangalore

• A backend is a computational engine — it builds the network

graph/topology, runs the optimizers, and performs the actual number

crunching.

• Keras might have several backend one at a time and can be thought

as a set of abstractions that makes it easier to perform deep learning.

• Keras’ default backend was Theano until v1.1.0.

• With the release of TensorFlow by Google, Keras started supporting

TensorFlow as a backend, resulting in TensorFlow being the default

backend starting from the release of Keras v1.1.0.

15

KERAS FEATURES

International Institute of Information

Technology Bangalore

• Contains datasets and some pre-trained deep learning applications.

• Model check-pointing, early stopping

• Uses libraries TensorFlow, Theano, CNTK as backend, only one at a

time

• Backend does all computations

• Keras call backend functions

• Works for both CPU and GPU

16

KERAS FEATURES

International Institute of Information

Technology Bangalore

17

KERAS FEATURES

International Institute of Information

Technology Bangalore

• Rapid prototyping-

1. Build neural network with minimal lines of code

2. Build simple or complex neural networks within a few minutes

• Flexibility-

Sometime it is desired to define own metrics, layers, a cost

function, Keras provide freedom for the same.

• Two types of built in models

1. Sequential

2. Functional

• All models have following common properties

Inputs that contain a list of input tensors

Layers, which comprise the model graph

Outputs, a list of output tensors.

18

SEQUENTIAL MODEL

International Institute of Information

Technology Bangalore

• It is linear stack of layers

• Output of previous layer is

input to the next layer.

• Create models by

stacking one layer on

top of other

• Useful in situation where

task is not complex

• Provides higher

level of

abstraction

19

FUNCTIONAL MODEL

International Institute of Information

Technology Bangalore

• It define more complex

models

• Such as directed acylic

graphs

• Multi input output models

• Model with shared layers

• Possible to connect a

layer with any other layer

20

STEPS IN BUILDING A MODEL

International Institute of Information

Technology Bangalore

21

MODEL METHODS

International Institute of Information

Technology Bangalore

1. Compile:It isused toconfiguremodel. Itacceptfollowingparameters

• Optimizer:

• This specifies type of optimiser to use in back-propagation

algorithm

• SGD, Adadelta, Adagrad , Adam , Nadam optimizer and many

others.

• Loss:

• It is the objective function

• It track losses or the drift from the function during training the

model.

• For regression: mean squared error, mean absolute error etc.

• For classification: Categorical cross-entropy, binary cross entropy

• Different loss functions for different outputs

22

MODEL METHODS

International Institute of Information

Technology Bangalore

• Metrics:

• It is similar to objective function.

• Results from metric aren’t used when trainingmodel.

• It specifies the list of metrics that model evaluate during training and

testing.

• The commonly used metric is the accuracy metric.

• Possible to specify different metrics for different output

23

MODEL METHODS

International Institute of Information

Technology Bangalore

1. Compile: It isused toconfiguremodel. Itacceptfollowingparameters

• Optimizer:
• This specifies type of optimiser to use in back-propagation

algorithm

• SGD, Adadelta, Adagrad , Adam , Nadam optimizer and many

others.

• Loss:
• It is the objective function

• It track losses or the drift from the function during training the

model.

• For regression: mean squared error, mean absolute error etc.

• For classification: Categorical cross-entropy, binary cross entropy

• Different loss functions for different outputs
24

International Institute of Information

Technology Bangalore

• epochs:

• An epoch is an iteration

• It specifies number of times training data is feed to the model.

• validation_split:

• Validation data is selected from the end samples

• At the end of each epoch, loss and metrics are calculated for this

data.

• validation_data:

• Fraction of the data that is used as validation.

25

MODEL METHODS

International Institute of Information

Technology Bangalore

Keras contains various datasets that are used to build neural networks.

The datasets are described below

1. Boston House Pricing dataset:

It contains 13 attributes of houses of Boston suburbs in the late 1970s

Used in regression problems

2. CIFAR10:

• It is used for classification problems.

• This dataset contains 50,000 32×32 colour images

• Images are labelled over 10 categories

• 10,000 test images.

3. CIFAR100:

• Same as CIFAR10 but it has 100 categories

26

KERAS DATASETS

International Institute of Information

Technology Bangalore

4. MNIST:

• This dataset contains 60,000 28×28 grayscale images of 10 digits

• Also include 10,000 test images.

5. Fashion-MNIST:

• This dataset is used for classification problems.

• This dataset contains 60,000 28×28 grayscale images of 10

categories, along

6. IMDB movie reviews data:

• Dataset of 25,000 movies reviews from IMDB

• labeled by sentiment (positive/negative).

7. Reuters newswire topics classification:

• Dataset of 11,228 newswires from Reuters, labeled over 46 topics

27

KERAS DATASETS

International Institute of Information

Technology Bangalore

It consist of different types of layers used in deep learning such as

:

1. Dense layer:

• A Dense layer is fully connected neural network layer

(Ramchoun et al, 2016)

28

KERAS LAYERS

International Institute of Information

Technology Bangalore

2. Convolutional layer:

• Mostly used in computer vision.

• It extract features from the input image.

• It preserves the spatial relationships between pixels

• It learn image features using small squares of input data

• Finally, the obtained matrix is known as the feature map

29

KERAS LAYERS

International Institute of Information

Technology Bangalore

3. Pooling layer

• Also called as subsampling or down-sampling layer

• Pooling reduces the dimensionality of feature map

• Retains the most important information

• There are many types of pooling layers such as

• MaxPooling and AveragePooling

• In case of max pooling, take the largest element from the rectified feature

map within that window.

• In average pooling, average of all elements in that window is taken.

30

KERAS LAYERS

International Institute of Information

Technology Bangalore

Figure: Max Pooling Concept

31

KERAS LAYERS

International Institute of Information

Technology Bangalore

4. Recurrent layer

• Basic building block of RNN

• This is mostly used in sequential and time series modelling.

5. Embedding layers

• Required when input is text

• These are mostly used in Natural Language Processing.

6. Batch Normalisation layer

• Normalize the activations of the previous layer at each batch

• Applies a transformation that maintains the mean activation close to 0 and

the activation standard deviation close to 1.

32

KERAS LAYERS

International Institute of Information

Technology Bangalore

PACKAGE INSTALLATION

! pip install tensorflow

import tensorflow as tf

import numpy as np

import math

import pandas as pd

from matplotlib import pyplot as plt

%matplotlib inline

DEFINING PLOT FUNCTION

def do_plot(x, y, title):

plt.figure(figsize=(10,5))

plt.plot(x,y)

plt.title(title)

plt.ylabel('Y axis')

plt.xlabel('X axis')

plt.show()

33

IMPLEMENTATION OF ACTIVATION FUNCTION

International Institute of Information

Technology Bangalore

DATA

x = tf.Variable(tf.range(-10, 10, 0.1), dtype=tf.float32)

y_predicted = np.array([1,1,0,0,1])

y_true = np.array([0.30,0.7,1,0,0.5])

LINEAR ACTIVATION
def linear_activation(x):

c = 0.1

return c*x.numpy()

do_plot(x.numpy(), linear_activation(x), 'Linear Activation')

34

IMPLEMENTATION OF ACTIVATION FUNCTION

International Institute of Information

Technology Bangalore

SIGMOID ACTIVATION

y = tf.nn.sigmoid(x)

do_plot(x.numpy(), y.numpy(), 'Sigmoid Activation')

with tf.GradientTape() as t:

y = tf.nn.sigmoid(x)

do_plot(x.numpy(), t.gradient(y, x).numpy(), 'Grad of Sigmoid')

35

IMPLEMENTATION OF ACTIVATION FUNCTION

International Institute of Information

Technology Bangalore

TANH ACTIVATION

def tanh(x):

return (math.exp(x) - math.exp(-x)) / (math.exp(x) + math.exp(-x))

y = tf.nn.tanh(x)

do_plot(x.numpy(), y.numpy(), 'Tanh Activation')

with tf.GradientTape() as t:

y = tf.nn.tanh(x)

do_plot(x.numpy(), t.gradient(y, x).numpy(), 'Grad of Tanh')

36

IMPLEMENTATION OF ACTIVATION FUNCTION

International Institute of Information

Technology Bangalore

RELU ACTIVATION

def relu(x):

return max(0,x)

y = tf.nn.relu(x)

do_plot(x.numpy(), y.numpy(), 'ReLU Activation')

with tf.GradientTape() as t:

y = tf.nn.relu(x)

do_plot(x.numpy(), t.gradient(y, x).numpy(), 'Grad of ReLU')

37

IMPLEMENTATION OF ACTIVATION FUNCTION

International Institute of Information

Technology Bangalore

SOFTMAX ACTIVATION

x1 = tf.Variable(tf.range(-1, 1, .5), dtype=tf.float32)

y = tf.nn.softmax(x1)

do_plot(x1.numpy(), y.numpy(), 'Softmax Activation')

38

IMPLEMENTATION OF ACTIVATION FUNCTION

International Institute of Information

Technology Bangalore

SWISH ACTIVATION

y = tf.nn.swish(x)

do_plot(x.numpy(), y.numpy(), 'Swish Activation')

with tf.GradientTape() as t:

y = tf.nn.swish(x)

do_plot(x.numpy(), t.gradient(y, x).numpy(), 'Grad of Swish')

39

IMPLEMENTATION OF ACTIVATION FUNCTION

International Institute of Information

Technology Bangalore

MEAN ABSOLUTE ERROR

USING NUMPY FUNCTION

def mae_np(y_predicted, y_true):

return np.mean(np.abs(y_predicted-y_true))

mae_np(y_predicted, y_true)

USER DEFINED FUNCTION

def mae(y_predicted, y_true):

total_error = 0

for yp, yt in zip(y_predicted, y_true):

total_error += abs(yp - yt)

print("Total error is:",total_error)

mae = total_error/len(y_predicted)

print("Mean absolute error is:",mae)

return mae

mae(y_predicted, y_true)
40

IMPLEMENTATION OF LOSS FUNCTION

OUTPUT

0.5

International Institute of Information

Technology Bangalore

MEAN SQUARE ERROR

USING NUMPY FUNCTION

np.mean(np.square(y_true-y_predicted))

USER DEFINED FUNCTION

def mse(y_true, y_predicted):

total_error = 0

for yt, yp in zip(y_true, y_predicted):

total_error += (yt-yp)**2

print("Total Squared Error:",total_error)

mse = total_error/len(y_true)

print("Mean Squared Error:",mse)

return mse

mse(y_true, y_predicted)

41

IMPLEMENTATION OF LOSS FUNCTION

OUTPUT

0.366

International Institute of Information

Technology Bangalore

LOG LOSS

USER DEFINED FUNCTION

epsilon = 1e-15

y_predicted_new = [max(i,epsilon) for i in y_predicted]

y_predicted_new = [min(i,1-epsilon) for i in y_predicted_new]

y_predicted_new = np.array(y_predicted_new)

-np.mean(y_true*np.log(y_predicted_new)+(1-y_true)*np.log(1-y_predicted_new))

42

IMPLEMENTATION OF LOSS FUNCTION

OUTPUT

17.26

International Institute of Information

Technology Bangalore

• The dataset was constructed from a number of scanned document dataset

available from the National Institute of Standards & Technology (NIST).

• Images of digits were taken from a variety of scanned documents, normalized in

size and centred.

• Each image is a 28 by 28 pixel square (784 pixels total). A standard split of the

dataset is used to evaluate and compare models, where 60,000 images are used

to train a model and a separate set of 10,000 images are used to test it.

• It is a digit recognition task. As such there are 10 digits (0 to 9) or 10 classes to

predict. Results are reported using prediction error, which is nothing more than the

inverted classification accuracy.

43

HANDWRITTEN DIGIT RECOGNITION PROBLEM

International Institute of Information

Technology Bangalore

Import the packages

import tensorflow as tf

from tensorflow import keras

import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

Load the data

(X_train, y_train) , (X_test, y_test) = keras.datasets.mnist.load_data()

Visualizing our 1st input data

plt.matshow(X_train[0])

y_train[0]

5

44

HANDWRITTEN DIGIT RECOGNITION PROBLEM

International Institute of Information

Technology Bangalore

Data Scaling

X_train = X_train / 255

X_test = X_test / 255

Data Shape

X_train[0].shape

Flatten the 28*28 grid data into a 1-dimensional data

X_train_flattened = X_train.reshape(len(X_train), 28*28)

X_test_flattened = X_test.reshape(len(X_test), 28*28)

Flattened Data Shape

X_train_flattened.shape

45

HANDWRITTEN DIGIT RECOGNITION PROBLEM

(28, 28)

(60000, 784)

International Institute of Information

Technology Bangalore

46

HANDWRITTEN DIGIT RECOGNITION PROBLEM

(28, 28)

(60000, 784)

International Institute of Information

Technology Bangalore

Simple Neural Network without hidden layer with Flattened Data

model = keras.Sequential([

keras.layers.Dense(10, input_shape=(784,), activation='sigmoid')])

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(X_train_flattened, y_train, epochs=5)

47

HANDWRITTEN DIGIT RECOGNITION PROBLEM

…

Epoch 5/5 1875/1875 [==============================] - 3s

1ms/step - loss: 0.2668 - accuracy: 0.9252

International Institute of Information

Technology Bangalore

Simple Neural Network without hidden layer with Flattened Data

model.evaluate(X_test_flattened, y_test)

y_predicted = model.predict(X_test_flattened)

Testing Our 1st Test Data

y_predicted[0]

48

HANDWRITTEN DIGIT RECOGNITION PROBLEM

array([2.27106214e-02, 5.61349339e-07, 8.58167410e-02, 9.66806769e-01,

3.78498435e-03, 1.18708253e-01, 2.98759551e-06, 9.99864399e-01,

1.03265375e-01, 6.57766342e-01], dtype=float32)

313/313 [==============================] - 1s 1ms/step - loss:

0.2667 - accuracy: 0.9251 [0.2667323350906372, 0.9251000285148621]

International Institute of Information

Technology Bangalore

Simple Neural Network without hidden layer with Flattened Data

plt.matshow(X_test[0])

np.argmax(y_predicted[0])

(This gives the index of the output layer

where the maximum value occurs)

So our model gives accurate prediction for the 1st test data.

We shall check the labels for the first 5 test data

y_predicted_labels = [np.argmax(i) for i in y_predicted]

y_predicted_labels[:5]

49

HANDWRITTEN DIGIT RECOGNITION PROBLEM

7

[7, 2, 1, 0, 4]

International Institute of Information

Technology Bangalore

Simple Neural Network without hidden layer with Flattened Data

We shall visualize the Confusion Matrix:

cm = tf.math.confusion_matrix(labels=y_test,predictions=y_predicted_labels)

import seaborn as sn

plt.figure(figsize = (10,7))

sn.heatmap(cm, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

50

HANDWRITTEN DIGIT RECOGNITION PROBLEM

International Institute of Information

Technology Bangalore

Neural Network with hidden layer having 100 neuron with Flattened Data

model = keras.Sequential([

keras.layers.Dense(100, input_shape=(784,), activation='relu'),

keras.layers.Dense(10, activation='sigmoid')])

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(X_train_flattened, y_train, epochs=5)

51

HANDWRITTEN DIGIT RECOGNITION PROBLEM

…

Epoch 5/5 1875/1875 [==============================] - 4s

2ms/step - loss: 0.0516 - accuracy: 0.9843

International Institute of Information

Technology Bangalore

Neural Network with hidden layer having 100 neuron with Flattened Data

model = keras.Sequential([

keras.layers.Dense(100, input_shape=(784,), activation='relu'),

keras.layers.Dense(10, activation='sigmoid')])

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(X_train_flattened, y_train, epochs=5)

52

HANDWRITTEN DIGIT RECOGNITION PROBLEM

…

Epoch 5/5 1875/1875 [==============================] - 4s

2ms/step - loss: 0.0516 - accuracy: 0.9843

International Institute of Information

Technology Bangalore

Neural Network with hidden layer having 100 neuron with Flattened Data

model.evaluate(X_test_flattened, y_test)

Thus by adding a hidden layer the accuracy of the neural network has increased from 92.51%

to 97.53%.

y_predicted = model.predict(X_test_flattened)

y_predicted_labels = [np.argmax(i) for i in y_predicted]

cm = tf.math.confusion_matrix(labels=y_test,predictions=y_predicted_labels)

plt.figure(figsize = (10,7))

sn.heatmap(cm, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

53

HANDWRITTEN DIGIT RECOGNITION PROBLEM

313/313 [==============================] - 1s 1ms/step - loss: 0.0785 -

accuracy: 0.9753 [0.07848526537418365, 0.9753000140190125]

International Institute of Information

Technology Bangalore

Neural Network with hidden layer having 100 neuron with Flattened Data

54

HANDWRITTEN DIGIT RECOGNITION PROBLEM

International Institute of Information

Technology Bangalore

Neural Network with hidden layers having 100 neuron & using Flatten layer

model = keras.Sequential([

keras.layers.Flatten(input_shape=(28, 28)),

keras.layers.Dense(100, activation='relu'),

keras.layers.Dense(10, activation='sigmoid')])

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(X_train, y_train, epochs=5)

55

HANDWRITTEN DIGIT RECOGNITION PROBLEM

…

Epoch 5/5 1875/1875 [==============================] - 4s

2ms/step - loss: 0.0517 - accuracy: 0.9839

International Institute of Information

Technology Bangalore

Neural Network with hidden layers having 100 neuron & using Flatten layer

model.evaluate(X_test, y_test)

There is not a significant change in the accuracy as compared to the previous model but the

advantage is that we need not flatten the data outside the neural network.

y_predicted = model.predict(X_test)

y_predicted_labels = [np.argmax(i) for i in y_predicted]

cm = tf.math.confusion_matrix(labels=y_test,predictions=y_predicted_labels)

plt.figure(figsize = (10,7))

sn.heatmap(cm, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

56

HANDWRITTEN DIGIT RECOGNITION PROBLEM

313/313 [==============================] - 0s 1ms/step - loss: 0.0794 -

accuracy: 0.9775 [0.07937731593847275, 0.9775000214576721]

International Institute of Information

Technology Bangalore

Neural Network with hidden layers having 100 neuron & using Flatten layer

57

HANDWRITTEN DIGIT RECOGNITION PROBLEM

International Institute of Information

Technology Bangalore

• The digit recognition problem is one of the classic problems that has been used

in the Machine Learning world for quite sometime is the MNIST problem. The

objective is to identify the digit based on image. But MNIST is not very great

problem because we come up with great accuracy even if we are looking at few

pixels in the image. So, another common example problem against which we test

algorithms is Fashion-MNIST.

• Fashion-MNIST is a dataset of Zalando’s fashion article images —consisting of

a training set of 60,000 examples and a test set of 10,000 examples. Each

instance is a 28×28 greyscale image, associated with a label.

•The objective is to identify (predict) different fashion products from the given

images using various best possible Machine Learning Models (Algorithms) and

compare their results (performance measures/scores) to arrive at the best ML

model
58

FASHION MNIST PROBLEM

International Institute of Information

Technology Bangalore

CATEGORIES OF PRODUCTS

59

FASHION MNIST PROBLEM

0 1 2 3 4 5 6 7 8 9

T-shirt/

top

Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle

Boot

International Institute of Information

Technology Bangalore

LOAD THE DATA

fm = tf.keras.datasets.fashion_mnist

(trainX, trainy), (testX, testy) = fm.load_data()

DATA SIZE

print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))

print('Test: X=%s, y=%s' % (testX.shape, testy.shape))

60

FASHION MNIST PROBLEM

Train: X=(60000, 28, 28), y=(60000,) Test: X=(10000, 28, 28), y=(10000,)

International Institute of Information

Technology Bangalore

VISUALIZATION OF FEW INPUT DATA

class_labels = ["T-shirt/ top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", “Sneaker",

"Bag", "Ankle boot"]

for i in range(9):

pyplot.subplot(330 + 1 + i)

pyplot.imshow(trainX[i], cmap=pyplot.get_cmap('gray'))

pyplot.show()

61

FASHION MNIST PROBLEM

International Institute of Information

Technology Bangalore

BUILDING THE SEQUENTIAL MODEL AND ADD LAYERS INTO IT

from keras.models import Sequential

from keras.layers import Flatten, Dense, Activation

model = Sequential()

model.add(Flatten(input_shape=[28, 28]))

model.add(Dense(100, activation="relu"))

model.add(Dense(10, activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy",

optimizer="adam",

metrics=["accuracy"])

model.fit(trainX, trainy, epochs = 10)

62

FASHION MNIST PROBLEM

…

Epoch 10/10 1875/1875 [==============================] - 4s 2ms/step - loss: 0.5266 -

accuracy: 0.8237

International Institute of Information

Technology Bangalore

TESTING MODEL ACCURACY

model.evaluate(testX, testy)

Above shows accuracy score of 81.31%.

plt.matshow(testX[0])

yp = model.predict(testX)

yp_labels = [np.argmax(i) for i in yp]

np.argmax(yp[0])

class_labels[np.argmax(yp[0])]

So our model gives accurate prediction for the 1st test data.

63

FASHION MNIST PROBLEM

313/313 [==============================] - 1s 1ms/step - loss: 0.5724 - accuracy:

0.8132 [0.5723907947540283, 0.8131999969482422]

9

‘ Ankle Boot ’

International Institute of Information

Technology Bangalore

VISUALIZING THE CONFUSION METRIX

cm = tf.math.confusion_matrix(labels=testy,predictions=yp_labels)

plt.figure(figsize = (10,7))

sn.heatmap(cm, annot=True, fmt='d')

plt.xlabel('Predicted')

plt.ylabel('Truth')

64

FASHION MNIST PROBLEM

International Institute of Information

Technology Bangalore

VISUALIZING THE NEURAL NETWORK MODEL

from keras.utils.vis_utils import plot_model

plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)

65

FASHION MNIST PROBLEM

International Institute of Information

Technology Bangalore

APPLYING CONVOLUTIONAL NEURAL NETWORK ON OUR DATASET

IMPORT THE NECESSARY PACKAGES

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Dense

from keras.layers import Flatten

from keras.optimizers import SGD

66

FASHION MNIST PROBLEM

International Institute of Information

Technology Bangalore

BUILDING CNN

def define_model():

model = Sequential()

model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', input_shape

=(28, 28, 1)))

model.add(MaxPooling2D((2, 2)))

model.add(Flatten())

model.add(Dense(100, activation='relu', kernel_initializer='he_uniform'))

model.add(Dense(10, activation='softmax'))

opt = SGD(lr=0.01, momentum=0.9)

model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])

return model

model.fit(trainX, trainy, epochs = 10, batch_size=32, verbose=0)

model.evaluate(testX, testy)

67

FASHION MNIST PROBLEM

313/313 [==============================] - 0s 1ms/step - loss: 0.6233 - accuracy:

0.8119 [0.6233423352241516, 0.8119000196456909]

International Institute of Information

Technology Bangalore

VISUALIZING THE CONVOLUTIONAL NEURAL NETWORK MODEL

plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)

68

FASHION MNIST PROBLEM

Thank You

69

