
 

OLYMPIAD MATHEMATICS BY TANUJIT CHAKRABORTY 

MATHEMATICS 
PROBLEMS WITH 

SOLUTIONS  

Algebra 

Problem set  

1. If 𝒂𝟏 + 𝒂𝟐 + 𝒂𝟑 +⋯……𝒂𝒏 = 𝟏, 𝒂𝒊 >

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒂𝒊 show that ∑
𝟏

𝒂𝒊
≥ 𝒏𝟐𝒏

𝒊=𝟏 . 

2. If 𝒂𝟏, 𝒂𝟐, … . , 𝒂𝒏 are all positive, then  

√𝒂𝟏𝒂𝟐 +√𝒂𝟏𝒂𝟑 +⋯+√𝒂𝟏𝒂𝒏 +√𝒂𝟐𝒂𝟑 +

√𝒂𝟐𝒂𝟒…+⋯+√𝒂𝟐𝒂𝒏 +⋯+√𝒂𝒏−𝟏𝒂𝟏 +

√𝒂𝒏−𝟏𝒂𝟐 +⋯+√𝒂𝒏−𝟏𝒂𝒏−𝟏 +√𝒂𝒏−𝟏𝒂𝒏 ≤
𝒏−𝟏

𝟐
(𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏). 

3. If 𝒘𝟑 + 𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 = 𝟏𝟎, show that 4 

𝒘𝟒 + 𝒙𝟒 + 𝒚𝟒 + 𝒛𝟒 ≥ √𝟐𝟓𝟎𝟎
𝟑

. 

4. If x and y are real, solve the inequality  

𝒍𝒐𝒈𝟐𝒙 + 𝒍𝒐𝒈𝒙𝟐 + 𝟐𝐜𝐨𝐬𝒚 ≤ 𝟎  

5. Let P(x) = 𝒙𝟐 + 𝒂𝒙 + 𝒃 be a quadratic 

polynomial in which a and b are integers. 

Show that there is an integer M such that 

P(n). P(n+1) = 𝑷(𝒏) for any integer n.  

 

6. Prove that the polynomial  

𝒙𝟗𝟗𝟗𝟗 + 𝒙𝟖𝟖𝟖𝟖 + 𝒙𝟕𝟕𝟕𝟕 +⋯+ 𝒙𝟏𝟏𝟏𝟏 + 𝟏 is 

divisible by 𝒙𝟗 + 𝒙𝟖 + 𝒙𝟕 +⋯+ 𝒙 + 𝟏.  

7. Find all integral solution of  

𝒙𝟑 + 𝟓𝒚𝟑 + 𝟐𝟓𝒛𝟑 − 𝟏𝟓𝒙𝒚𝒛 = 𝟎  

8. Solve :  

𝒍𝒐𝒈𝟐𝒙 + 𝒍𝒐𝒈𝟒𝒚 + 𝒍𝒐𝒈𝟒𝒛 = 𝟐  

𝒍𝒐𝒈𝟑𝒚 + 𝒍𝒐𝒈𝟗𝒛 + 𝒍𝒐𝒈𝟗𝒙 = 𝟐  

𝒍𝒐𝒈𝟒𝒛 + 𝒍𝒐𝒈𝟏𝟔𝒙 + 𝒍𝒐𝒈𝟏𝟔𝒚 = 𝟐  

9. Prove that the polynomial  

𝒇(𝒙) = 𝒙𝟒 + 𝟐𝟔𝒙𝟑 + 𝟓𝟐𝒙𝟐 + 𝟕𝟖𝒙 + 𝟏𝟗𝟖𝟗 

cannot be expressed as a product of two 

polynomials p(x) and q(x) with integral 

coefficients of degree less than 4.  

10. Find all positive integers x, y, z satisfying  

𝒙𝒚
𝒛
. 𝒚𝒛

𝒙
. 𝒛𝒙

𝒚
= 𝟓𝒙𝒚𝒛  

11. Show that the set of polynomials 

𝑷 = {𝒑𝒌|𝒑𝒌(𝒙) = 𝒙
𝟓𝒌+𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 +

𝟏. 𝒌𝝐𝑵}  

Has a common non−trivial polynomial divisor.  

12. If f is a polynomial with integer coefficients 

such that there exists four distinct integer 

𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝒏𝒅 𝒂𝟒 with 𝒇(𝒂𝟏) = 𝒇(𝒂𝟐) =

𝒇(𝒂𝟑) = 𝒇(𝒂𝟒) = 𝟏𝟗𝟗𝟏, then show that 

there exists no integer b, such that f(b) 

=1993.  

13. Determine all the roots of the system of 

simultaneous equations x + y+ z = 𝟑, 𝒙𝟐 +

𝒚𝟐 + 𝒛𝟐 = 𝟑 𝒂𝒏𝒅 𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 = 𝟑.  

14. Determine all pairs of positive integers (m, 

n) such that  

(𝟏 + 𝒙𝒏 + 𝒙𝟐𝒏 +⋯+ 𝒙𝒎𝒏)𝒊𝒔 𝒅𝒊𝒗𝒊𝒔𝒊𝒃𝒍𝒆 (𝟏 +

𝒙 + 𝒙𝟐 +⋯+ 𝒙𝒎).  

15. Let x = 𝒑, 𝒚 = 𝒒, 𝒛 = 𝒓 𝒂𝒏𝒅 𝒘 = 𝒔 be the 

unique solutions of the system of linear 

equations 𝒙 + 𝒂𝒊𝒚 + 𝒂𝒊
𝟐𝒛 + 𝒂𝒊

𝟑𝒘 =

𝒂𝒊
𝟒, 𝒊 = 𝟏, 𝟐, 𝟑, 𝟒. Express the solution of 

the following system in terms of p, q, r and 

s;  𝒙 + 𝒂𝒊
𝟐𝒚 + 𝒂𝒊

𝟒𝒛 + 𝒂𝒊
𝟔𝒘 = 𝒂𝒊

𝟖, 𝒊 =

𝟏, 𝟐, 𝟑, 𝟒. (Assume the uniqueness of the 

solution) 
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16. If P(x) is a polynomial of degree n such that 

𝑷(𝒙) = 𝟐𝒙 for x =1, 2, 3, ….n + 1, find 

P(x+2).  

17. What is the greatest integer, n for which 

there exists a simultaneous solution x to 

the inequalities k < 𝒙𝒌 < 𝑘 + 1, 𝑘 =

1,2,3,…𝑛.  

18. Let f be a function on the positive integers, 

i.e.,  

𝒇:𝑵 → 𝒁 with the following properties:  

(𝒂)𝒇(𝟐) = 𝟐  

(𝒃)𝒇(𝒎 × 𝒏) = 𝒇(𝒏)𝒇(𝒎) for all positive 

integers m and n.  

(𝒄)𝒇(𝒎) > 𝑓(𝒏)𝒇𝒐𝒓 𝒎 > 𝑛.  

Find f(1998).  

19. A leaf is torn from a paper back novel. The 

sum of the remaining pages is 15,000. 

What are the page numbers of the torn 

leaf?  

20. Show that a positive integer n good if 

there are n integers, positive or negative 

and not necessarily distinct, such that their 

sum and product both equal to n.  

Example 8 is as good as = 𝟒 × 𝟐 ×

𝟏. 𝟏. 𝟏. 𝟏(−𝟏). (−𝟏) = 𝟒 + 𝟐 + 𝟏 + 𝟏 + 𝟏 +

𝟏 + (−𝟏) + (−𝟏) = 𝟖 

Show that the integers of the form (4k+1) 

where k ≥ 𝟎 𝒂𝒏𝒅 𝟒𝒍 (𝒍 ≥ 𝟐) are good.  

21.  Show that for any triangle ABC, the 

following inequality is true 

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 > √𝟑𝐦𝐚𝐱[|𝒂𝟐 − 𝒃𝟐|, |𝒃𝟐 −

𝒄𝟐|, |𝒄𝟐 − 𝒂𝟐|]   

Where a, b, c are the sides of the triangle in 

the usual notation.  

22. Determine the largest number in the 

infinite sequence;  1; √𝟐, √𝟑
𝟑
, √𝟒
𝟒
, … . , √𝒏

𝒏
.  

23. If 𝒂𝟏 ≥ 𝒂𝟐 ≥ ⋯ ≥ 𝒂𝒏 be real numbers 

such that  

𝒂𝟏
𝒌 + 𝒂𝟐

𝒌 +⋯+ 𝒂𝒏
𝒌 ≥ 𝟎 for all integers k>0 

and  

𝒑 = 𝐦𝐚𝐱[|𝒂𝟏|, |𝒂𝟐|, … , |𝒂𝒏|], prove that  

𝒑 = |𝒂𝟏| = 𝒂𝟏 and that (𝒙 − 𝒂𝟏)(𝒙 −

𝒂𝟐)… (𝒙 − 𝒂𝒏) ≤ 𝒙𝒏 − 𝒂𝟏
𝒏.  

24. Let a > 2 be given and define recursively  

𝒂𝟎 = 𝟏, 𝒂𝟏 = 𝒂, 𝒂𝒏+𝟏 = (
𝒂𝒏

𝟐

𝒂𝒏−𝟏
𝟐 − 𝟐)𝒂𝒏. 

Show that for all k 𝝐 𝑵, we have  

𝟏

𝒂𝟎
+
𝟏

𝒂𝟏
+
𝟏

𝒂𝟐
+⋯+

𝟏

𝒂𝒌

<
𝟏

𝟐
(𝟐 + 𝒂 − √𝒂𝟐 − 𝟒) 

25. Let P(x) be a real polynomial function and  

𝑷(𝒙) = 𝒂𝒙𝟑 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅.  

Prove if |P(x)| ≤ 𝟏 for all x such that |x| ≤ 𝟏 

then |a|+|b|+|c|+|d| ≤ 𝟕.  

26. Let a, b, c be real numbers with 0 < a, b, c < 

1 and a+b+c = 𝟐. Prove that  

𝒂

𝟏 − 𝒂
.
𝒃

𝟏 − 𝒃
.
𝒄

𝟏 − 𝒄
≥ 𝟖 

27. If 𝒂𝟎, 𝒂𝟏, … . 𝒂𝟓𝟎 are the coefficients of the 

polynomial  

(𝟏 + 𝒙 + 𝒙𝟐)𝟐𝟓 

Prove that the sum 𝒂𝟎, 𝒂𝟐 +⋯𝒂𝟓𝟎 is even.  

28. Prove that the polynomial  

𝒇(𝒙) = 𝒙𝟒 + 𝟐𝟔𝒙𝟑 + 𝟓𝟐𝒙𝟐 + 𝟕𝟖𝒙 + 𝟏𝟗𝟖𝟗  
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Cannot be expressed as product f(x) =

𝒑(𝒙)𝒒(𝒙) where p(x), q(x) are both 

polynomials with integral coefficients and with 

degree not more than 3.  

29. Prove that  

𝟏 <
𝟏

𝟏𝟎𝟎𝟏
+

𝟏

𝟏𝟎𝟎𝟐
+

𝟏

𝟏𝟎𝟎𝟑
+⋯+

𝟏

𝟑𝟎𝟎𝟏
<
𝟒

𝟑
 

 

30. If x, y and z are three real numbers such 

that  

𝒙 + 𝒚 + 𝒛 = 𝟒 𝒂𝒏𝒅 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝟔 

Then show that each of x, y, z lie in the closed 

interval [(2/3),2]. Can x attain the extreme 

value 2/3 and 2?  

31. Let f(x) be a polynomial with integer 

coefficients. Suppose for five distinct 

integers 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒 and 𝒂𝟓 one has 

f(𝒂𝒊) = 𝟐 𝒇𝒐𝒓 𝟏 ≤ 𝒊 ≤ 𝟓. Show that there 

is no integer b such that f(b) = 𝟗.  

32. Let f be a function defined on the set of 

non−negative integers and taking value in 

the same set. Suppose we are given that  

(𝒊) 𝒙 − 𝒇(𝒙) = 𝟏𝟗 [
𝒙

𝟏𝟗
] − 𝟗𝟎 [

𝒇(𝒙)

𝟗𝟎
] for all 

non−negative integers x.  

(𝒊𝒊) 𝟏𝟗𝟎𝟎 < 𝑓(𝟏𝟗𝟎𝟎) < 2000  

Find all the possible values of f(1990). (Here [z] 

denotes the largest integer ≤ z; e.g., [3.145] =

𝟑). 

33. Solve for real x;  
𝟏

[𝒙]
+

𝟏

[𝟐𝒙]
= {𝒙} +

𝟏

𝟑
, where 

[x] is the greatest integer less than or 

equal to x and {x} = 𝒙 − [𝒙]. [e.g., [3.4] =

 3 and {3.4} = 0.4].  

34. Define a sequence 〈𝒂𝒏〉𝒏≥𝟏 by  

𝒂𝟏 = 𝟏, 𝒂𝟐 = 𝟐 𝒂𝒏𝒅 𝒂𝒏+𝟐 = 𝟐𝒂𝒏+𝟏 − 𝒂𝒏 +

𝟐,≥ 𝟏.  

Prove that for any m, 𝒂𝒎𝒂𝒎+𝟏 is also a term in 

the sequence.  

35. Suppose a and b are two positive real 

numbers such that the roots of the cubic 

equation 𝒙𝟑 − 𝒂𝒙 + 𝒃 = 𝟎 are all real. If 𝜶 

is a root of this cubic with minimal 

absolute value prove that  

𝒃

𝒂
< 𝛼 ≤

𝟑𝒃

𝟐𝒂
 

36. Let a, b, c be three real numbers such that 

1 ≥ 𝒂 ≥ 𝒃 ≥ 𝒄 ≥ 𝟎. Prove that if l is a root 

of the cubic equation 𝒙𝟑 + 𝒂𝒙𝟐 + 𝒃𝒙 +

𝒄 = 𝟎 (real or complex), then |𝒍| ≤ 𝟏.  

 

Number Theory 

37. Show the square of an integer cannot be in 

the form  

4n+3 or 4n+2, where n 𝝐𝑵.  

38. Show that 𝒏 = 𝟐𝒎−𝟏(𝟐𝒎 − 𝟏) is a perfect 

number, if (𝟐𝒎 − 𝟏) is a prime number.  

 

39. When the numbers 19779 and 17997 are 

divided by a certain three digit number, 

they leave the same remainder. Find this 

largest such divisor and the remainder. 

How many such divisors are there?  

40. Find the sum of all integers n, such that 1 

≤ 𝒏 ≤ 𝟏𝟗𝟗𝟖 and that 60 divides 𝒏𝟑 +

𝟑𝟎𝒏𝟐 + 𝟏𝟎𝟎𝒏.  

 

41. Prove by induction : 𝟏𝟑 = 𝟏, 𝟐𝟑 = 𝟑 +

𝟓, 𝟑𝟑 = 𝟕 + 𝟗 + 𝟏𝟏, 𝟒𝟑 = 𝟏𝟑 + 𝟏𝟓 + 𝟏𝟕 +

𝟏𝟗 etc.  
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42. Prove by induction that if n ≥ 𝟎, then 𝟐𝒏 >

𝒏𝟑.  

 

43. In a sequence 1, 4, 10, …….; 𝒕𝟏 = 𝟏, 𝒕𝟐 =

𝟒, 𝒂𝒏𝒅 𝒕𝒏 = 𝟐𝒕𝒏−𝟏 + 𝟐𝒕𝒏−𝟐 for n ≥ 3.  

Show by second principle of mathematical 

induction that  

𝒕𝒏 =
𝟏

𝟐
[(𝟏 + √𝟑)

𝒏
+ (𝟏 −

√𝟑)
𝒏
] 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 𝝐 𝑵.  

44. Prove that for all natural numbers n, 

(𝟑 + √𝟓)𝒏 + (𝟑 − √𝟓)𝒏 is divisible by 𝟐𝒏.  

 

45. A three digit number in base 11, when 

expressed in base 9, has its digits reversed. 

Find the number.  

46. If n and k are positive integers and k > 1. 

Prove that  

[
𝒏

𝒌
] + [

𝒏 + 𝟏

𝒌
] ≤ [

𝟐𝒏

𝒌
] 

47. How many zeroes does 6250! end with?  

 

48. If 𝒏! has exactly 20 zeroes at the end, find 

n. How many such n are there?  

49. Prove that [x] + [y] ≤ [x+y], x = [𝒙] + {𝒙} 

and y = [𝒚] + {𝒚}, where both {x} and {y} 

are greater than or equal to 0.  

 

50. Prove that [x] + [2x] + [4x] + [8x] + [16x] + 

[32x] = 12345 has no solution.  

51. Find all the integral solutions of 𝒚𝟐 = 𝟏 +

𝒙 + 𝒙𝟐.  

52. Find the product of  

𝟏𝟎𝟏 × 𝟏𝟎𝟎𝟎𝟏 × 𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏 × …

× (𝟏𝟎𝟎𝟎…𝟎𝟏) 

Where the last factor has 𝟐𝟕 − 𝟏 zeroes 

between the ones. Find the number of ones in 

the product.  

53. Find the last two digits of (𝟓𝟔𝟕𝟖𝟗)𝟒𝟏.  

 

54. Prove that 
𝟏.𝟑.𝟓.𝟕…𝟗𝟗

𝟐.𝟒.𝟔.𝟖…𝟏𝟎𝟎
<

𝟏

𝟏𝟎
.  

55. Prove that 𝟐𝟐𝟐𝟐𝟓𝟓𝟓𝟓 + 𝟓𝟓𝟓𝟓𝟐𝟐𝟐𝟐 is 

divisible by 7.  

56. Find all six digits numbers 

𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒, 𝒂𝟓, 𝒂𝟔 formed by using the 

digits 1, 2, 3, 4, 5, 6 once each such that 

the number 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒌 is divisible by k 

for 1 ≤ 𝒌 ≤ 𝟔.  

57. Find the number of all rational numbers 
𝒎

𝒏
 

such that  

(i) 0 < 
𝒎

𝒏
< 1,  

(ii) m and n are relatively prime and  

(iii) 𝒎.𝒏.= 𝟐𝟓! 

58. Find the remainder when 𝟒𝟑𝟑𝟑𝟑 is divided 

by 9.  

 

59. Let d be any positive integer not equal to 

2, 5 or 13. Show that one can find distinct 

a, b in the set {2, 5, 13, d} such that 𝒂𝒃 –𝟏 

is not a square.  

60. Show that 𝟏𝟏𝟗𝟗𝟕 + 𝟐𝟏𝟗𝟗𝟕 +⋯+ 𝟏𝟗𝟗𝟔𝟏𝟗𝟗𝟕 

is divisible by 1997.  

 

61. Prove that 𝒍𝒐𝒈𝟑 𝟐 is irrational.  

62. Find all the ordered pairs of integers (x, z) 

such that 𝒙𝟑 = 𝒛𝟑 + 𝟕𝟐𝟏.  

 

63. Prove that for any natural number, n, E =

 𝟐𝟗𝟎𝟑𝒏 − 𝟖𝟎𝟑𝒏 − 𝟒𝟔𝟒𝒏 + 𝟐𝟔𝟏𝒏 is 

divisible by 1897.  

64. Find all primes p for which the quotient 

(𝟐𝒑−𝟏 − 𝟏) + 𝒑 is a square.  

 

65. 𝑺 = 𝟏! + 𝟐! + 𝟑! + 𝟒! +⋯+ 𝟏𝟗𝟗𝟕! Find 

the unit digit and tens digit of S.  
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66. All two digit numbers from 10 to 99 are 

written consecutively, that is 𝑵 = 

101112…99. Show that 𝟑𝟐|𝑵. From which 

other two digit number you should start so 

that N is divisible by (a) 3 (b) 𝟑𝟐.  

 

67. 𝑵 = 𝟐𝒏−𝟏(𝟐𝒏 − 𝟏)𝒂𝒏𝒅 (𝟐𝒏 − 𝟏) is a 

prime number. 1 < 𝒅𝟏 < 𝒅𝟐 < ⋯ < 𝒅𝒌 =

𝑵 are the divisors of N. Show that 
𝟏

𝟏
+

𝟏

𝒅𝟏
+

𝟏

𝒅𝟐
+⋯+

𝟏

𝒅𝒌
= 𝟐.  

 

68. N = 𝑷𝟏. 𝑷𝟐. 𝑷𝟑 and 𝑷𝟏, 𝑷𝟐 𝒂𝒏𝒅 𝑷𝟑 are 

distinct prime numbers. If ∑ 𝒅 = 𝟑𝑵𝒅/𝑵  (or 

ℕ(𝑵) = 𝟑𝑵), show that ∑
𝟏

𝒅𝒊
= 𝟑.𝑵

𝒊=𝟏   

 

69. If 𝒏𝟏 and 𝒏𝟐 are two numbers, such that 

the sum of all the divisors of 𝒏𝟏 other than 

𝒏𝟏 is equal to sum of all the divisors of 𝒏𝟐 

other than 𝒏𝟐, then the pair (𝒏𝟏, 𝒏𝟐) is 

called an amicable number pair.  

Given :  𝒂 = 𝟑. 𝟐𝒏 − 𝟏,  

𝒃 = 𝟑. 𝟐𝒏−𝟏 − 𝟏  

And 𝒄 = 𝟗. 𝟐𝟐𝒏−𝟏 − 𝟏 

Where a, b and c are all prime numbers, then 

show that (𝟐𝒏𝒂𝒃, 𝟐𝒏𝒄) is an amicable pair.  

70. Show that s(N) = 𝟒𝑵 𝒘𝒉𝒆𝒏 𝑵 =30240.  

 

71. Show that f(𝑷𝟏
𝒂𝟏 . 𝑷𝟐

𝒂𝟏)  =

𝒇(𝑷𝟏
𝒂𝟏). 𝒇(𝑷𝟐

𝒂𝟐),𝒘𝒉𝒆𝒓𝒆 𝑷𝟏 𝒂𝒏𝒅 𝑷𝟐 are 

distinct prime.  

 

72. Define 𝑭(𝒏) = ∑ 𝒕𝟑(𝒅)𝒒|𝒏 = cube of the 

number of divisors of d, i.e., F(n) is defined 

as the sum of the cubes of the number of 

divisors of the divisors of n.  

 

73. Show that F (𝑷𝟏
𝒂𝟏 × 𝑷𝟐

𝒂𝟐) = 𝑭(𝑷𝟏
𝒂𝟏) ×

𝑭(𝑷𝟐
𝒂𝟐).  

 

74. Prove that F(𝑷𝟏
𝒂𝟏) = {𝒇(𝑷𝟏

𝒂𝟏)}𝟐, where F 

and f are as defined in problems 56 and 62.  

 

75. Sum of the cubes of the number of divisors 

of the divisors of a given number is equal 

to square of their sum.  For example if N 

=18.  

The divisors of 18 are  1, 2, 3, 6, 9, 18 

No. of divisors of 18 are 1  2  2  4  3  6 

Sum of the cubes of these divisors  

𝟏𝟑 + 𝟐𝟑 + 𝟐𝟑 + 𝟒𝟑 + 𝟑𝟑 + 𝟔𝟑 = (𝟏𝟑 + 𝟐𝟑 +

𝟑𝟑 + 𝟒𝟑) + 𝟐𝟑 + 𝟔𝟑 = 𝟏𝟎𝟎 + 𝟐𝟐𝟒 = 𝟑𝟐𝟒 .  

Square of the sum of these divisors = (𝟏 + 𝟐 +

𝟐 + 𝟒 + 𝟑 + 𝟔)2 = 𝟏𝟖𝟐 = 𝟑𝟐𝟒.  

76. Find all positive integers n for which 𝒏𝟐 +

𝟗𝟔 is a perfect square.  

 

77. There are n necklaces such that the first 

necklace contains 5 beads, the second 

contains 7 beads and, in general, the ith 

necklace contains i beads more than the 

number of beads in (𝒊 − 𝟏)th necklace. 

Find the total number of beads in all the n 

necklaces.  

 

78. Let a sequence 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, …, of complex 

numbers be defined by 𝒙𝟏 = 𝟎, 𝒙𝒏+𝟏 =

𝒙𝒏
𝟐 − 𝒊 for n > 1 where 𝒊𝟐 = −𝟏. Find the 

distance of 𝒙𝟐𝟎𝟎𝟎 𝒇𝒓𝒐𝒎 𝒙𝟏𝟗𝟗𝟕 in the 

complex plane. 

 

79. Find all n such than 𝒏! has 1998 zeroes at 

the end of 𝒏!  

 



Olympiad Mathematics by Tanujit Chakraborty 

6 
 

80. Let f be a function from the set of positive 

integers to the set of real numbers {f : N →

𝑹} such that  

(i) 𝒇(𝟏) = 𝟏 

(ii) 𝒇(𝟏) + 𝟐𝒇(𝟐) + 𝟑𝒇(𝟑) +⋯+

𝒏𝒇(𝒏) = 𝒏(𝒏 + 𝟏)𝒇(𝒏). Find 

f(1997).  

81. Suppose f is a function on the positive 

integers, which takes integer values (i.e. 

𝒇:𝑵 → 𝒁) with the following properties:  

(a) 𝒇(𝟐) = 𝟐 

(b) 𝒇(𝒎.𝒏) = 𝒇(𝒎). 𝒇(𝒏) 

(c) 𝒇(𝒎) > 𝑓(𝒏) if m > n.  

Find f(1983).  

82. Show that for  

𝒇(𝒎) =
𝟏

𝟖
[(𝟑 + 𝟐√𝟐)

𝟐𝒎+𝟏
+ (𝟑 −

𝟐√𝟐)
𝟐𝒎+𝟏

− 𝟔] both f(m)+1 and 2f(m)+1 are 

perfect squares for all m 𝝐 𝑵 by showing that 

f(m) is an integer.  

83. Show that 𝒏 =
𝟏

𝟖
× [(𝟏𝟕 + 𝟏𝟐√𝟐)

𝒎
+

(𝟏𝟕 − 𝟏𝟐√𝟐)
𝒎
+ 𝟔] is an integer for all m 

𝝐 𝑵 and hence, show that both (n−1) and 

(2n−1) are perfect squares for all m 𝝐 N.  

84. A sequence of numbers 𝒂𝒏, 𝒏 =1, 2, … is 

defined as follows:  

𝒂𝟏 =
𝟏

𝟐
 and for each 𝒏 ≥ 𝟐, 𝒂𝒏 = (

𝟐𝒏−𝟑)

𝟐𝒏
)𝒂𝒏−𝟏. 

Prove that ∑ 𝒂𝒌 < 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1
𝒏
𝒌=𝟏 .  

85. Let T be the set of all triplets (a, b, c) of 

integers such that 1 ≤ 𝒂 ≤ 𝒃 ≤ 𝒄 ≤ 𝟔. For 

each triplet (a, b, c) in T, take the number 

𝒂 × 𝒃 × 𝒄 and add all these numbers 

corresponding to all the triplets in T. Prove 

that this sum is divisible by 7.  

 

86. Find the least number whose last digit is 7 

and which becomes 5 times larger when 

this last digit is carried to the beginning of 

the number.  

 

87. All the 2−digit numbers from 19 to 93 are 

written consecutively to form the number 

N = 𝟏𝟗𝟐𝟎𝟐𝟏𝟐𝟐…𝟗𝟏𝟗𝟐𝟗𝟑. Find the 

largest power of 3 that divides N.  

 

88. If a, b, x and y are integers greater than 1 

such that a and b have no common factors 

except 1 and 𝒙𝒂 = 𝒚𝒃, show that 𝒙 =

𝒏𝒃 𝒂𝒏𝒅 𝒚 = 𝒏𝒂 for integers n greater than 

1.  

 

89. Find all four – digit numbers having the 

following properties :  

 

i. It is a square,  

ii. Its first two digits are equal to each 

other and  

iii. Its last two digits are equal to each 

other.  

 

90. Determine with proof, all the positive 

integers n for which  

i. n is not the square of any integer 

and  

ii. [√𝒏]𝟑 𝒅𝒊𝒗𝒊𝒅𝒆𝒔 𝒏𝟐.  

([x] denotes the largest integer that is less than 

or equal to x).  

91. For a positive integer n, define A(n) to be 

(𝟐𝒏)!/(𝒏!)𝟐. Determine the sets of positive 

integers n for which:  

(i) A(n) is an even number;   (ii) A(n) is a 

multiple of 4.  

92. Given any positive integer n show that 

there are two positive rational numbers a 

and b, a ≠ b, which are not integers and 
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which are such that a –b, 𝒂𝟐 − 𝒃𝟐, … , 𝒂𝒏 −

𝒃𝒏 are all integers.  

 

Geometry 

93. Suppose ABCD is a cyclic quadrilateral. The 

diagonals AC and BD intersect at P. Let O 

be the circumcentre of triangle APB and H, 

the orthocenter of triangle CPD. Show that 

O, P, H are collinear.  

94. In a triangle ABC, AB = AC. A circle is 

drawn touching the circumcircle of ∆ABC 

internally and also, touching the sides AB 

and AC at P and Q respectively. Prove that 

the midpoint of PQ is the in centre of 

triangle ABC. 

95. ABC is a right angled triangle with ∠𝑪 =

𝟗𝟎°. The centre and the radius of the 

inscribed circle is I and r. Show that 𝑨𝑰 ×

𝑩𝑰 = √𝟐 × 𝑨𝑩 × 𝒓.  

 

96. Let 𝑪𝟏 be any point on side AB of a triangle 

ABC. Draw C1C meeting AB at C1. The lines 

through A and B parallel to CC1 meet BC 

produced and AC produced at A1 and B1 

respectively. Prove that  
𝟏

𝑨𝑨𝟏
+

𝟏

𝑩𝑩𝟏
=

𝟏

𝑪𝑪𝟏
  

 

97. If 𝒖 = 𝒄𝒐𝒕 𝟐𝟐° 𝟑𝟎′, 𝒗 =
𝟏

𝒔𝒊𝒏 𝟐𝟐°𝟑𝟎′
, prove 

that u satisfies a quadratic and v satisfies a 

quartic (biquadratic or 4th degree) 

equation with integral coefficients which is 

a monic polynomial equation (i.e., the 

leading coefficient = 𝟏).  

 

98. Let AB and CD be two perpendicular chords 

of a circle with centre O and radius r and let 

X, Y, Z, W denote in cyclical order the four 

parts into which the disc is thus divided. 

Find the maximum and minimum of the 

quantity  
𝑬(𝑿)+𝑬(𝒁)

𝑬(𝒀)+𝑬(𝑾)
, where E(u) denotes the 

area of u.  

99. Two given circles intersect in two points P 

and Q. Show how to construct a segment 

AB passing through P and terminating on 

the two circles such that AP. PB is a 

maximum.  

 

100. Let A, B, C, D be four given points on a 

line l. Construct a square such that two of 

its parallel sides or their extensions go 

through A and B respectively and the other 

two sides (or their extensions) go through 

C and D respectively.  

 

101. The diagonals AC, BD of the 

quadrilateral ABCD intersect at the interior 

point O. The areas of the triangles AOB and 

COD are s1 and s2 respectively and the area 
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of the quadrilateral is s. Prove that √𝒔𝟏 +

√𝒔𝟐 ≤ √𝒔. When does equality hold?  

 

102. Let M be the midpoint of the side AB of 

∆𝑨𝑩𝑪. Let P be a point on AB between A 

and M and let MD be drawn parallel to PC, 

intersecting BC at D. If the ratio of the area 

of ∆𝑩𝑷𝑫 to that of ∆𝑨𝑩𝑪 is denoted by r, 

then examine which of the following is 

true:  

 

(a) 
𝟏

𝟐
< 𝑟 < 1 depending upon the 

position of P.  

(b) 𝒓 =
𝟏

𝟐
 

(c) 
𝟏

𝟑
< 𝑟 <

𝟐

𝟑
 depending upon the 

position of P.  

103. ABCDE is a convex pentagon inscribed 

in a circle of radius 1 units with AE as 

diameter. If AB = 𝒂,𝑩𝑪 = 𝒃, CD = 𝒄,𝑫𝑬 =

𝒅, prove that 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒂𝒃𝒄 +

𝒃𝒄𝒅 < 4.  

 

104. A rhombus has half the area of the 

square with the same side length. Find the 

ratio of the longer diagonal to that of the 

shorter one.  

105. A ball of diameter 13 cm is floating so 

that the top of the ball is 4cm above the 

smooth surface of the pond. What is the 

circumference in centimeters of the circle 

formed by the contact of the water surface 

with the ball.  

 

106. OPQ is a quadrant of a circle and 

semicircles are drawn on OP and OQ. Show 

that the shaded areas a and b are equal.  

 

107. Given a circle of radius 1 unit and AB is 

a chord of the circle with length 1 unit. If C 

is any point on the major segment, show 

that 𝑨𝑪𝟐 +𝑩𝑪𝟐 ≤ 𝟐(𝟐 + √𝟑).  

 

108. From a point E on the median AD of 

∆𝑨𝑩𝑪, the perpendicular EF is dropped to 

the side BC. From a point M on EF, 

perpendiculars MN and MP are drawn to 

the sides AC and AB respectively. If N, E, P 

are collinear, show that M lies on the 

internal bisector of ∠𝑩𝑨𝑪.  

 

109. AD is the internal bisector of 

∠𝑨 𝒊𝒏 ∆𝑨𝑩𝑪. Show that the line through D 

drawn parallel to the tangent to the 

circumcircle at A touches the inscribed 

circle.  

 

110. Given two concentric circles of radii R 

and r. From a point P on the smaller circle, 

a straight line is drawn to intersect the 

larger circle at B and C. The perpendicular 

to BC at P intersects the smaller circle at A. 

Show that  

 

𝑷𝑨𝟐 + 𝑷𝑩𝟐 + 𝑷𝑪𝟐 = 𝟐(𝑹𝟐 + 𝒓𝟐).  

111. Find x, y, z ∈ 𝑹 satisfying 
𝟒√𝒙𝟐+𝟏

𝒙
=

𝟓√𝒚𝟐+𝟏

𝒚
=
𝟔√𝒛𝟐+𝟏

𝒛
 and xyz = 𝒙 + 𝒚 + 𝒛.  

 

112. If 𝒂𝟎 +𝒂𝟏𝒄𝒐𝒔𝒙 + 𝒂𝟐𝒄𝒐𝒔 𝟐𝒙 +

𝒂𝟑𝒄𝒐𝒔 𝟑𝒙 = 𝟎 for all 𝒙 ∈ 𝑹, show that 

𝒂𝟎 = 𝒂𝟏 = 𝒂𝟐 = 𝒂𝟑 = 𝟎.  

 

113. If any straight line is drawn cutting 

three concurrent lines OA, OB, OP at A, B, 

P, then  

 

𝑨𝑷

𝑷𝑩
=
𝑨𝑶 𝒔𝒊𝒏 𝑨𝑶𝑷

𝑩𝑶 𝒔𝒊𝒏 𝑷𝑶𝑩 
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114. ABC is a triangle that is inscribed in a 

circle. The angle bisectors of A, B, C meet 

the circle at D, E, F respectively. Show that 

AD is perpendicular to EF.  

 

115. ABC is a triangle. The bisectors of 

∠𝑩 𝒂𝒏𝒅 ∠𝑪 meet AC and AB at D and E 

respectively and BD and CE intersect at O. 

If OD=OE, prove that either ∠𝑩𝑨𝑪 = 𝟔𝟎° 

or the triangle is isosceles.   

 

116. Show that the radian measure of an 

acute angle is less than harmonic mean of 

its sine and its tangent.  

 

117. Show how to construct a chord BPC in 

a given angle A, through a given point P, 

such that 
𝟏

𝑩𝑷
+

𝟏

𝑷𝑪
 is maximum, where P is 

in the interior of ∠𝑨.  

 

118. If a line AQ of an equilateral triangle 

ABC, is extended to meet the circumcircle 

at P, then 
𝟏

𝑷𝑩
+

𝟏

𝑷𝑪
=

𝟏

𝑷𝑸
 where Q is the 

point where AQ meets BC.  

 

119. Let ABC be a triangle of area ∆ and 

A’B’C’ be the triangle formed by the 

altitudes 𝒉𝒂, 𝒉𝒃, 𝒉𝒄 𝒐𝒇 ∆𝑨𝑩𝑪 as its sides 

with area ∆′and A’’B’’C’’ be the triangle 

formed by the altitudes of ∆A’B’C’ as its 

sides with area ∆’’. If ∆′= 𝟑𝟎 𝒂𝒏𝒅 ∆′′ =

𝟐𝟎, find D.  

 

120. Let ABC be a right angled triangle right 

angled at A and S be its circumcircle. Let 𝑺𝟏 

be the circle touching AB, AC and circle S 

internally. Let 𝑺𝟐 be the circle touching AB, 

AC and S externally. If 𝒓𝟏 𝒂𝒏𝒅 𝒓𝟐 are the 

radii of circles 𝑺𝟏 and 𝑺𝟐 respectively, 

show that 𝒓𝟏. 𝒓𝟐 = 𝟒 𝒂𝒓𝒆𝒂 (∆𝑨𝑩𝑪). 

121. Two circles C1 and C2 intersect at two 

distinct points P and Q in a plane. Let a line 

passing through P meet the circles C1 and 

C2 in A and B respectively. Let Y be the 

midpoint of AB and QY meet the circles C1 

and C2 in X and Z respectively. Show that Y 

is also the midpoint of XZ.  

 

122. Given a triangle ABC in a plane 𝚺 find 

the set all points P lying in the plane 𝚺 such 

that the circumcircles of triangles ABP, BCP 

and CAP are congruent.  

 

123. Suppose ABCD is a convex 

quadrilateral and P.Q are the midpoints of 

CD, AB. Let AP, DQ meet in X and BP, CQ 

meet in Y. Prove that [ADX] + [BCY] = 

[PXQY]. How does the conclusion alter if 

ABCD is not a convex quadrilateral?  

 

124. A triangle ABC has in centre I. Points X, 

Y are located on the line segments AB, AC 

respectively so that BX. AB = 𝑰𝑩𝟐 and 

CY.AC = 𝑰𝑪𝟐. Given that X, I, Y are 

collinear, find the possible values of the 

measure of angle A.  

 

125. Suppose A1A2A3 … An is an n−sided 

regular polygon such that  

 

𝟏

𝑨𝟏𝑨𝟐
=

𝟏

𝑨𝟏𝑨𝟑
+

𝟏

𝑨𝟏𝑨𝟒
 

Determine n, the number of sides of 

the polygon.  

 

126. Let ABC be a triangle with ∠𝑨 = 𝟗𝟎°, 

and S be its circumcircle. Let S1 be the 

circle touching the rays AB, AC and the 

circle S internally. Further let S2 be the 

circle touching the rays AB, AC and the 

circle S externally. If 𝒓𝟏, 𝒓𝟐 be the radii of 
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the circles S1 and S2 respectively, show that 

𝒓𝟏𝒓𝟐 = 𝟒[𝑨𝑩𝑪].  

 

127. Suppose ABCD is a rectangle and P, Q, 

R, S are points on the sides AB, BC, CD, DA 

respectively. Show that  PQ + QR + RS + SP 

≥ √𝟐 AC.  

 

 

128.    Let ABC be a triangle and 𝒉𝒂 be the 

altitude through A. Prove that  

(𝒃 + 𝒄)𝟐 ≥ 𝒂𝟐 + 𝟒𝒉𝒂
𝟐 

(As usual a, b, c denote the sides BC, 

CA, AB respectively).  

 

129. Let P be an interior point of a triangle 

ABC and let BP and CP meet AC and AB in E 

and F respectively. If [BPF] = 𝟒, [𝑩𝑷𝑪] =

𝟖 𝒂𝒏𝒅 [𝑪𝑷𝑬] = 𝟏𝟑, find [AFPE]. (Here [] 

denotes the area of a triangle or a 

quadrilateral as the case may be).  

 

130. Suppose ABCD is a cyclic quadrilateral 

inscribed in a circle of radius one unit.  

If AB. BC. CD. DA ≥ 𝟒. Prove that ABCD is a 

square.  

 

COMBINATORICS 

131. Find the number of ways to choose an 

ordered pair (a, b) of numbers from the set 

(1, 2, …, 10) such that |a−b| ≤ 5.  

 

132. Identify the set S by the following 

information :  

(i) 𝑺 ∩ {𝟑, 𝟓, 𝟖, 𝟏𝟏} = {𝟓, 𝟖} 

(ii) 𝑺 ∪ {𝟒, 𝟓, 𝟏𝟏, 𝟏𝟑} =

{𝟒, 𝟓, 𝟕, 𝟖, 𝟏𝟏, 𝟏𝟑}  

(iii) {𝟖, 𝟏𝟑} ⊂ 𝑺 

(iv) 𝑺 ⊂ {𝟓, 𝟕, 𝟖, 𝟗, 𝟏𝟏, 𝟏𝟑} 

Also show that no three of the conditions 

suffice to identify S uniquely.  

133. Let S be the set of pensioners, E the set 

of those that lost an eye, H those that lost 

an ear, A those that lost an arm and L 

those that lost a leg. Given that n(E) =

𝟕𝟎%, n (H) < 75%,𝒏(𝑨) =

𝟖𝟎% 𝒂𝒏𝒅 𝒏(𝑳) = 𝟖𝟓%, find what 

percentage at least must have lost all the 

four.  

134. Let set S = {𝒂𝟏, 𝒂𝟐, 𝒂𝟑, … , 𝒂𝟏𝟐} where 

all twelve elements are distinct, we want 

to form sets each of which contains one or 

more of the elements of set S (including 

the possibility of using all the elements of 

S). The only restriction is that the subscript 

of each element in a specific set must be 

an integral multiple of the smallest 

subscript in the set. For example 

{𝒂𝟐, 𝒂𝟔, 𝒂𝟖} is one acceptable set, as is 

{𝒂𝟔}. How many such sets can be formed? 

Can you generalize the result?  

 

135. Prove that there are 𝟐(𝟐𝒏−𝟏 − 𝟏) ways 

of dealing n cards to two persons. (The 

players may receive unequal numbers of 

cards).  

 

136. Let S be the set of natural numbers 

whose digits are chosen from {1, 2, 3, 4} 

such that  

(a) When no digits are repeated, find n(S) 

and the sum of all numbers in S.  

(b) When S1 is the set of upto 4−digit 

numbers where digits are repeated. 

Find |S1| and also find the sum of all 

the numbers in S1.  

 

137.  Find the number of 6 digit natural 

numbers where each digit appears at least 

twice.  
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138. Let 𝑿 = {𝟏, 𝟐, 𝟑, …𝑵} 𝒘𝒉𝒆𝒓𝒆 𝒏 ∈ 𝑵. 

Show that the number of r combinations of 

X which contain no consecutive integers is 

given by (𝒏−𝒓+𝑰
𝒓
) where 0 ≤ 𝒓 ≤ 𝒏 − 𝒓 + 𝑰.  

 

139. Let S = {1, 2, 3, …, (n+1), where n ≥ 2 

and let t = {(𝒙, 𝒚, 𝒛)|𝒙, 𝒚, 𝒛 ∈ 𝑺, 𝒙 < 𝑦, 𝑦 <

𝑧}. By counting the members of T in two 

different ways, prove that  

 

∑𝒌𝟐 = (
𝒏 + 𝟏

𝟐
) + 𝟐(

𝒏 + 𝟏

𝟑
)

𝒏

𝒌=𝟏

 

 

140. Find the number of permutations  

(p1, p2, p3, p4, p5, p6) of (1, 2, 3, 4, 5, 6) such 

that for any k, 1 ≤ 𝒌 ≤ 𝟓 (p1, p2, p3, …, pk) does 

not form a permutation of 1, 2, 3, …, k, i.e., p1 

≠ 1, (p1, p2) is not a permutation of (1, 2) (p1, 

p2, p3) is not a permutation of (1, 2, 3), etc.  

141. Consider the collection of all three 

element subsets drawn from the set {1, 2, 

3, 4, …, 299, 300}. Determine the number 

of subsets for which, the sum of the 

elements is a multiple of 3.  

 

142. 4n + 1 points lie within an equilateral 

triangle of side 1 com. Show that it is 

possible to choose out of them, at least 

two, such that the distance between them 

is 
𝟏

𝟐𝒏
 cm.  

 

 

143. Let A be any set of 19 distinct integers 

chosen from the Arithmetic Progression 1, 

4, 7, …, 100. Prove that there must be two 

distinct integers in A, whose sum is 104.  

 

144. Let X ⊂ {1, 2, 3, …99} and n(X) = 10. 

Show that it is possible to choose two 

disjoint non−empty proper subsets Y, Z of 

X such that ∑(𝒚|𝒚 ∈ 𝒀) = ∑(𝒛|𝒛 ∈ 𝒁).  

 

 

145. Find the number of integer solutions to 

the equation  

𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 = 𝟐𝟖 𝒘𝒉𝒆𝒓𝒆 𝟑 ≤ 𝒙𝟏 ≤

𝟗, 𝟎 ≤ 𝒙𝟐 ≤ 𝟖 𝒂𝒏𝒅 𝟕 ≤ 𝒙𝟑 ≤ 𝟏𝟕.  

 

146. I have six friends and during a certain 

vacation, I meet them during several 

dinners. I found that I dined with all the six 

exactly on one day, with every five of them 

on 2days, with every four of them on 3 

days, with every three of them on 4 days 

and with every two of them on 5 days. 

Further every friend was present at 7 

dinners and every friend was absent at 7 

dinners. How many dinners did I have 

alone?  

 

147. Let A denote the subset of the set 𝑺 = 

{a, a+d, …, a+2nd} having the property that 

no two  distinct elements of A add up to 

2(a+ nd). Prove that A cannot have more 

than (n+1) elements. If in the set S, a+ 2nd 

is changed to a + (2n +1)d, what is the 

maximum number of elements in A if in 

this case no two elements of A add up to 

2a + (2n + 1)d?  

 

 

148. Show that the number of three 

elementic subsets (a, b, c) of {1, 2, 3, …, 63} 

with (a+b+c) < 95 is less than the number 

of those with (a + b + c) > 95.   

 

149. Given any five distinct real numbers, 

prove that there are two of them, say x 

and y, such that  



Olympiad Mathematics by Tanujit Chakraborty 

12 
 

0 < (x – y)/(1 + xy).  

150. Show that using 𝟏 = 𝟑𝟎, 𝟑𝟏, 𝟑𝟐, … , 𝟑𝒏, 

weight, i.e., (n + 1) weight each of which is 

of the form 𝟑𝒊, 𝟎 ≤ 𝒊 ≤ 𝒏, one can weight 

all the objects weighing from 1 unit to  

 

𝟏 + 𝟑 + 𝟑𝟐 +⋯+ 𝟑𝒏

=
𝟑𝒏+𝟏 − 𝟏

𝟐
 𝒖𝒏𝒊𝒕𝒔. 

151. To cross a river there is a boat which 

can hold just two persons. n newly wedded 

couples want to cross the river  to reach 

the far side of the river. But husbands and 

wives have no mutual confidence in the 

other. So, none of them want to leave his 

(her) wife (husband) along with other man 

(woman). But they do not mind leaving 

them alone or with at least one more 

couple. How many times they have to row 

front and back so that all the couples reach 

the famside of the river?  

152. A difficult mathematical competition 

consisted of a Part I and a part II with a 

combined total of 28 problems. Each 

contestant solved 7 problems altogether. 

For each pair of problems there were 

exactly two contestants who solved both 

of them. Prove that there was a contestant 

who in Part I solved either no problem or 

at least 4 problems.    

153. It is proposed to partition the set of 

positive integers into two disjoint subsets 

A and B. Subject to the following 

conditions:  

(i) I is in A.  

(ii) No two distinct members of A have 

a sum of the form 𝟐𝒌 + 𝟐(𝒌 =

𝟎, 𝟏, 𝟐, … ).  

(iii) No two distinct members of B have 

a sum of the form 𝟐𝒌 + 𝟐(𝒌 =

𝟎, 𝟏, 𝟐, … ).  

Show that this partitioning can be carried out 

in a unique manner and determine the subsets 

to which 1987, 1988, 1989, 1997, 1998 belong.  

154. Suppose A1, A2,…., A6 are six sets each 

with four elements and B1, B2, …, Bn are n 

sets each two elements such that  

𝑨𝟏 ∪ 𝑨𝟐 ∪ … .∪ 𝑨𝟔
= 𝑩𝟏 ∪ 𝑩𝟐 ∪ …∪ 𝑩𝒏
= 𝑺 (𝒔𝒂𝒚) 

Given that each element of S belongs 

to exactly four of the Ai’s and exactly 

three of the Bj’ s, find n.  

 

155. Two boxes contain between 65 balls of 

several different sizes. Each ball is white, 

black, red, or yellow. If you take any five 

balls of the same colour, at least two of 

them will always be of the same size 

(radius). Prove that there are at least three 

balls which lie in the same box, have the 

same colour and are of the same size.  

 

156. Let A denote a subset of the set {1, 11, 

21, 31, …, 541, 551} having the property 

that no two elements of A add up to 552. 

Prove that A cannot have more than 28 

elements.  

 

157. Find the number of permutations, 

(𝑷𝟏, 𝑷𝟐, … , 𝑷𝟔) of (1, 2, …, 6) such that for 

any k, 𝟏 ≤ 𝒌 ≤ 𝟓, (𝑷𝟏, 𝑷𝟐, … , 𝑷𝒌) does not 

form a permutation of 1, 2, …, k. [That is 

𝑷𝟏 ≠ 𝟏; (𝑷𝟏, 𝑷𝟐) is not a permutation of 1, 

2, 3, etc.] 

158. Let A be a subset of {1, 2, 3, ….2n−1, 

2n} containing n+1 elements. Show that  

a. Some two elements of A are relatively 

prime:  

b. Some two elements of A have the 

property that one divides the other.  
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159. Let A denote the set of all numbers 

between 1 and 700 which are divisible by 3 

and let B denote the set of all numbers 

between 1 and 300 which are divisible by 

7. Find the number of all ordered pairs (a, 

b) such that 𝒂 ∈ 𝑨, 𝒃 ∈ 𝑩,𝒂 ≠ 𝒃 and a + b 

is even.  

 

160. Find the number of unordered pairs {A, 

B} (i.e., the pairs {A, B} and {B, A} are 

considered to be the same) of subsets of 

an n−element set X which satisfy the 

conditions :  

(a) 𝑨 ≠ 𝑩;  

(b) 𝑨 ∪ 𝑩 = 𝑿.  

 

161. Find the number of quadratic 

polynomials, ax2+bx+c, which satisfy the 

following conditions :  

(a) a, b, c are distinct;  

(b) 𝒂, 𝒃, 𝒄 ∈ {𝟏, 𝟐, 𝟑, … , 𝟏𝟗𝟗𝟗} and  

(c) 𝒙 + 𝟏 divides ax2+bx+c.  

 

162. Let X be a set containing n elements. 

Find the number of all ordered triplets (A, 

B, C) of subsets of X such that A is a subset 

of B and B is a proper subset of C.  

 

163. Find the number of 𝟒 × 𝟒 arrays whose 

entries are from the set {0, 1, 2, 3} and 

which are such that the sum of the 

numbers in each of the four rows and in 

each of the four columns is divisible by 4. 

(An 𝒎× 𝒏 array is an arrangement of mn 

numbers in m rows and n columns).    

 

164. There is a 𝟐𝒏 × 𝟐𝒏 array (matrix) 

consisting of 0’s and I’s there are exactly 

3n zeroes. Show that it is possible to 

remove all the zeroes by deleting some n 

rows and some n columns. 

 

165. For any natural number n, (n ≥3), let 

f(n) denote the number of non−congruent 

integer−sided triangle with perimeter n 

(e.g., f(3) = 𝟏, 𝒇(𝟒) = 𝟎, 𝒇(𝟕) = 𝟐). Show 

that  

 

(a) f(1999) > f(1996);  

(b) f(2000) = f(1997)  
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SOLUTION SET 

Algebra 

1. (𝑎 − 𝑏)2 ≥ 0 

⇒ 𝑎2 + 𝑏2 ≥ 2𝑎𝑏  

⇒
𝑎

𝑏
+
𝑏

𝑎
≥ 2  

𝑎1 + 𝑎2 + 𝑎3 +⋯+ 𝑎𝑛 = 1 …….(1)  

Dividing equation (1) by a1, a2, a3, …, an 

successively and adding, we get  

1 +
𝑎2
𝑎1
+
𝑎3
𝑎1
+⋯+

𝑎𝑛
𝑎1
=
1

𝑎1
 

𝑎1
𝑎2
+ 1 +

𝑎3
𝑎2
+⋯+

𝑎𝑛
𝑎2
=
1

𝑎2
 

………………………………… 

………………………………… 

𝑎1
𝑎𝑟
+
𝑎2
𝑎𝑟
+⋯+

𝑎𝑟−1
𝑎𝑟

+ 1 +
𝑎𝑟+1
𝑎𝑟

+⋯+
𝑎𝑛
𝑎𝑟

=
1

𝑎𝑟
 

………………………………… 

………………………………… 

𝑎1
𝑎𝑛
+
𝑎2
𝑎𝑛
+
𝑎3
𝑎𝑛
+⋯+

𝑎𝑛−1
𝑎𝑛

+ 1 = 1/𝑎𝑛 

Adding (1 + 1 + n terms) = ∑
𝑎𝑖

𝑎𝑗
; 𝑖 ≠ 𝑗, 𝑖, 𝑗 =

1, 2, 3,… 𝑛  

∑
1

𝑎𝑖

𝑛

𝑖=1

 

In ∑
𝑎𝑖

𝑎𝑗
 there are n(n−1) fractions. 

𝑎𝑖

𝑎𝑗
 are all 

distinct. Pairing 
𝑎𝑖

𝑎𝑗
 𝑎𝑛𝑑

𝑎𝑗

𝑎𝑖
 there are 

𝑛(𝑛−1)

2
 pairs 

of fractions of the form 
𝑎𝑖

𝑎𝑗
+
𝑎𝑗

𝑎𝑖
.  

But each 
𝑎𝑖

𝑎𝑗
+
𝑎𝑗

𝑎𝑖
≥ 2  

∴∑
1

𝑎𝑖
≥ 𝑛 +

𝑛(𝑛 − 1)

2
× 2

𝑛

𝑖=1

 

∑
1

𝑎𝑖
≥ 𝑛 + 𝑛2 − 𝑛 = 𝑛2

𝑛

𝑖=1

 

Equality holds when all ai are equal, i.e., each is 

equal to 
1

𝑛
.  

Aliter : By A.M. –G.M. inequality  

∑𝑎𝑖
𝑛
≥ (𝑎1 +⋯+ 𝑎𝑛)

1/𝑛 

∑
1
𝑎𝑖
𝑛
≥ (

1

𝑎1
+⋯+

1

𝑎𝑛
)
1/𝑛

 

Since both the sides of the inequalities are 

positive, we have  

∑𝑎𝑖
𝑛
.
∑
1
𝑎𝑖
𝑛
≥ 1 

Since ∑𝑎𝑖 = 1, we get ∑
1

𝑎𝑖
≥ 𝑛2.  

2. By A.M. –G.M. inequality,  

√𝑎1𝑎2 ≤
𝑎1 + 𝑎2
2

 

√𝑎1𝑎3 ≤
𝑎1 + 𝑎3
2

 

……………………… 

……………………… 
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……………………… 

√𝑎𝑛−1𝑎𝑛 ≤
𝑎𝑛−1 + 𝑎𝑛

2
 

Where 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, 2, …𝑛  

There are 
𝑛(𝑛−1)

2
 inequalities and, on the right 

hand side, each 𝑎𝑖  occurs (n−1) times.  

Adding these inequalities, we get  

√𝑎1𝑎2 +√𝑎1𝑎3 +⋯+√𝑎𝑖𝑎𝑗 +⋯+√𝑎𝑛−1𝑎𝑛

≤ (𝑛 − 1) 

(
𝑎1 + 𝑎2 +⋯+ 𝑎𝑛

2
)

=
𝑛 − 1

2
(𝑎1 + 𝑎2 +⋯+ 𝑎𝑛) 

 

3. Applying Cauchy Schwarz inequality for w2, 

x2, y2, z2 and w, x, y, z, we get  

(𝑤3 + 𝑥3 + 𝑦3 + 𝑧3)2  ≤ (𝑤4 + 𝑥4 + 𝑦4 +

𝑧4)(𝑤2 + 𝑥2 + 𝑦2 + 𝑧2)…….(1)  

Again applying Cauchy Schwarz inequality with 

w2, x2, y2, z2 and 1, 1, 1, 1, we get  

(𝑤2 + 𝑥2 + 𝑦2 + 𝑧2)2  ≤ (𝑤4 + 𝑥4 + 𝑦4 +

𝑧4)4  

⇒ (𝑤2 + 𝑥2 + 𝑦2 + 𝑧2) ≤ (𝑤4 + 𝑥4 + 𝑦4 +

𝑧4)2 ……….(2)  

∴ (𝑤4 + 𝑥4 + 𝑦4 + 𝑧4) ≥
(𝑤3+𝑥3+𝑦3+𝑧3)2

(𝑤2+𝑥2+𝑦2+𝑧2)
, by 

Eq. (1)  

⇒                                         ≥
(𝑤3+𝑥3+𝑦3+𝑧3)2

2(𝑤4+𝑥4+𝑦4+𝑧4)1/2
 by 

(2)  

⇒ (𝑤4 + 𝑥4 + 𝑦4 + 𝑧4)3/2  ≥
100

2
= 50  

⇒ 𝑤4 + 𝑥4 + 𝑦4 + 𝑧4 ≥ 50
2

3𝑜𝑟 √2500
3

  

 

4. Here x > 0 and 𝑥 ≠ 1.  

Let 𝑙𝑜𝑔2𝑥 = 𝑝 𝑎𝑠 𝑥 ≠ 1, 𝑝 ≠ 0.  

The given inequality becomes 𝑝 +
1

𝑝
+ 2cos 𝑦 ≤

0 

𝑖. 𝑒. ,
𝑝2+1+2𝑝cos𝑦

𝑝
 ≤ 0.  

Case I: when p > 0 

𝑝2 + 1 + 2𝑝 cos 𝑦 ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 𝑎𝑛𝑑 𝑝 > 0  

(𝑝 − 1)2 + 2𝑝(1 + 𝑐𝑜𝑠𝑦) ≤ 0 ………(1)  

Since p > 0 therefore 1 + cos y ≥ 0, (𝑝 − 1)2 ≥

0  

(𝑝 − 1)2 + 2𝑝(1 + 𝑐𝑜𝑠𝑦) ≥ 0 ……,(2)  

The only way both equation (1) and equation 

(2) are satisfied when  

(𝑝 − 1)2 + 2𝑝(1 + cos 𝑦)  = 0  

Since, (𝑝 − 1)2 ≥ 0 𝑎𝑛𝑑 2𝑝(1 + cos 𝑦) ≥ 0, we 

get  

(𝑝 − 1)2 = 0 𝑎𝑛𝑑 2𝑝(1 + cos 𝑦) = 0   

∴ 𝑝 = 1 𝑎𝑛𝑑 cos𝑦 = −1  

∴ 𝑦 = (2𝑛 + 1)𝜋  

Solution set is x =2 and y = (2𝑛 + 1)𝜋.  

 

Case II: when p < 0  

𝑝2 + 1 + 2𝑝𝑐𝑜𝑠 𝑦 ≥ 0  

(𝑝 + 1)2 − 2𝑝(1 − cos 𝑦) ≥ 0   

(𝑝 + 1)2 ≥ 0 𝑎𝑛𝑑 – 𝑝(1 − cos 𝑦) ≥ 0 for all y  

∴ solution set is 0<x<1 and all y ∈ R.  
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5. Clearly P(n) × P(n + 1) is of fourth degree 

in ‘n’ as P(n) and P(n+1) are of second 

degree each in n, and so P(n) × P(n+1) will 

be a polynomial of 4th degree in n, with 

leading coefficient 1.  

 

So, if there exists an M so that P(M) =

𝑃(𝑛) × 𝑃(𝑛 + 1), then M must be in the 

form of quadratic in n, with leading 

coefficient 1.  

 

Let M = 𝑛2 + 𝑐𝑛 + 𝑑, where c and d are 

integers.  

Now P(M) = 𝑃(𝑛2 + 𝑐𝑛 + 𝑑)  

= (𝑛2 + 𝑐𝑛 + 𝑑)2 + 𝑎(𝑛2 + 𝑐𝑛 + 𝑑) + 𝑏  

= 𝑛4 + 2𝑐𝑛3 + (𝑐2 + 2𝑑 + 𝑎)𝑛2 +

(2𝑐𝑑 + 𝑎𝑐)𝑛 + 𝑑2 + 𝑎𝑑 + 𝑏  

 

𝑎𝑛𝑑 𝑃(𝑛) × 𝑃(𝑛 + 1) = (𝑛2 + 𝑎𝑛 +

𝑏)[(𝑛 + 1)2 + 𝑎(𝑛 + 1) + 𝑏]  

= 𝑛4 + 2(𝑎 + 1)𝑛3 + [(𝑎 + 1)2 +

(𝑎 + 2𝑏)]𝑛2 + (𝑎 + 1)(𝑎 + 2𝑏)𝑛 + 𝑏(𝑎 +

𝑏 + 1)  

 

Now comparing, the coefficients of n3 

constant terms of P(M) and P(n) × 𝑃(𝑛 +

1), we get  

2𝑐 = 2(𝑎 + 1)  

⇒ 𝑐 = (𝑎 + 1)  

And 𝑑2 + 𝑎𝑑 + 𝑏 = 𝑎𝑏 + 𝑏2 + 𝑏  

⇒ 𝑑2 − 𝑏2 + 𝑎𝑑 − 𝑎𝑏 = (𝑑 − 𝑏)(𝑑 + 𝑎 +

𝑏) = 0  

⇒ 𝑑 = 𝑏 𝑜𝑟 𝑑 = −(𝑎 + 𝑏)  

 

Using these values of 𝑑 = 𝑏 𝑎𝑛𝑑 𝑐 = 𝑎 +

1, the coefficient of n2 and n in P(M) are  

 

𝑐2 + 2𝑑 + 𝑎 = (𝑎 + 1)2 + 2𝑏 + 𝑎  

And 2cd+ac = 2 (a+1) b+ a(a+1)  

 

= (𝑎 + 1)(2𝑏 + 𝑎) respectively  

 

But these are the coefficients of n2 and n in 

P(n) × 𝑃(𝑛 + 1). Thus, with these values 

for c and d, P(M) = 𝑃(𝑛) × 𝑃(𝑛 + 1).  

 

So, the M of the desired property is 

n2+(a+1)n+b.  

 

Thus, we can verify that 𝑑 = −(𝑎 +

𝑏), 𝑐 = (𝑎 + 1), 𝑖𝑓 𝑃(𝑀)𝑎𝑛𝑑 𝑃(𝑛) ×

𝑃(𝑛 + 1) are identical and, hence, show 

that there exists exactly one M for every n 

which is a function of n, i.e.  

 

𝑀 = 𝑓(𝑛) = 𝑛2 + (𝑎 + 1)𝑛 + 𝑏  

 

 

6. Let P= x9999 + x8888 + x7777 +… + x1111 + 1 

And Q= x9 + x8 + x7 + … + x + 1 

𝑃 − 𝑄 = 𝑥9(𝑥9990 − 1) + 𝑥8(𝑥8880 − 1) +

𝑥7(𝑥7770 − 1) +⋯+ 𝑥(𝑥1110 − 1)  

= 𝑥9[(𝑥10)999 − 1] + 𝑥8[(𝑥10)888 − 1] +

𝑥7[(𝑥10)777 − 1] +⋯+ 𝑥[(𝑥10)111 − 1] ……(1)  

But (𝑥10)𝑛  − 1 is divisible by 𝑥10 −

1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1.  

∴ 𝑅.𝐻. 𝑆. of equation (1) is divisible by 𝑥10 − 1.  

∴ 𝑃 − 𝑄 is divisible by 𝑥10 − 1 and hence 

divisible by x9 + x8 + … + 1.  

 

7. We shall use the identity  

𝑎3 + 𝑏3 + 𝑐3 − 3𝑎𝑏𝑐

=
1

2
(𝑎 + 𝑏 + 𝑐)[(𝑎 − 𝑏)2

+ (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2] 
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Writing a= 𝑥, 𝑏 = 51/3𝑦, 𝑐 = 52/3𝑧 in the given 

equation, it can be written as  

𝑥3 + (5
1

3𝑦)3 + (5
2

3𝑧)3 − 3 × 𝑥 × 51/3𝑦 ×

52/3𝑧 = 0  

∴
1

2
(𝑥 + 5

1
3𝑦 + 5

2
3𝑦) [(𝑥 − 5

1
3𝑦)

2

+ (5
1
3𝑦 − 5

2
3𝑧)

2

+ (5
2
3𝑧 − 𝑥)

2

] 

⇒ (𝑥 + 5
1
3𝑦 + 5

2
3𝑧) = 0 

𝑜𝑟 [(𝑥 − 5
1
3𝑦)

2

+ (5
1
3𝑦 − 5

2
3𝑦)

2 

+ (5
2
3𝑧 − 𝑥)

2

] = 0 

If 𝑥 + 51/3𝑦 + 52/3𝑧 = 0, 𝑡ℎ𝑒𝑛 51/3𝑦 +

52/3𝑧 = −𝑥  

Clearly the left hand side is irrational, when y 

and z are integers other than zero and the right 

hand side is also an integer.  

So 𝑥 = 𝑦 = 𝑧 = 0 is a solution.  

If (𝑥 − 5
1

3𝑦)
2

+ (5
1

3𝑦 − 5
2

3𝑧)
2

+ (5
2

3𝑧 − 𝑥)
2

=

0, 𝑡ℎ𝑒𝑛  

𝑥 = 51/3𝑦, 𝑦 = 51/3𝑧 𝑎𝑛𝑑 𝑥 = 52/3𝑧.  

Again this is possible only when 𝑥 = 𝑦 = 𝑧 = 0 

as we need integer values for x, y, and z.  

Aliter : number theoretic solution  

𝑥3 + 5𝑦3 + 25𝑧3 − 15𝑥𝑦𝑧 = 0  

⇒ 𝑥3 = 5(3𝑥𝑦𝑧 − 𝑦3 − 5𝑧3) ……….(1)  

⇒
5

𝑥3
 and hence 5/x.  

Let 𝑥 = 5𝑥1 𝑡ℎ𝑒𝑛 𝑥
3 = 125𝑥1

3  

So that the equation becomes  

𝑦2 = 5𝑥1𝑦𝑧 − 25𝑥1
3 − 5𝑧3  

⇒
5

𝑦
𝑎𝑛𝑑 𝑙𝑒𝑡 𝑦 = 5𝑦1  

Again the equation becomes 𝑧3 = 15𝑧𝑥1𝑦1 −

5𝑥1
3 − 25𝑦1

3  

⇒
5

𝑧
𝑎𝑛𝑑 𝑡𝑎𝑘𝑖𝑛𝑔 𝑧 = 5𝑧1  

We get 𝑥1
3 + 5𝑦1

3 + 25𝑧1
3 − 15𝑥1𝑦1𝑧1 = 0 

……….(2)  

 This implies that if (x, y, z) is an integral 

solution, then (x/5, y/5, z/5) is also an integral 

solution to eq. (1).  

Arguing in the same way we find   

𝑥2 =
𝑥1
5
, 𝑦2 =

𝑦1
5
, 𝑧2 =

𝑧1
5

 

𝑜𝑟, 𝑥2 =
𝑥

52
, 𝑦2 =

𝑦

52
, 𝑧2 =

𝑧

52
 

Is also an integral solution and thus, by 

induction method, we get 

𝑥𝑛 =
𝑥

5𝑛
, 𝑦𝑛 =

𝑦

5𝑛
, 𝑧𝑛 =

𝑧

5𝑛
  

Is an integral solution for all 𝑛 ≥ 0.  

This mean that x, y and z are multiple of 5n, for 

all 𝑛 ∈ 𝑁.  

This is possible only when x, y, z are all zero.  

 

8. Suppose 𝑙𝑜𝑔𝑎𝑥 = 𝑏  

Then 𝑥 = 𝑎𝑏 = (𝑎𝑛)
𝑏

𝑛  

⇒ 𝑙𝑜𝑔𝑎
𝑛𝑥 =

𝑏

𝑛
  

⇒ 𝑛 𝑙𝑜𝑔𝑎𝑛  𝑥 = 𝑏  
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⇒ 𝑙𝑜𝑔𝑎𝑛 𝑥
𝑛 = 𝑏 = 𝑙𝑜𝑔𝑎𝑥  

𝑠𝑜 𝑙𝑜𝑔2 𝑥 = 𝑙𝑜𝑔22  𝑥
2 = 𝑙𝑜𝑔4𝑥

2  

𝑙𝑜𝑔3 𝑦 = 𝑙𝑜𝑔32𝑦
2 = 𝑙𝑜𝑔9𝑦

2  

𝑙𝑜𝑔4 𝑧 = 𝑙𝑜𝑔42  𝑧
2 = 𝑙𝑜𝑔16 𝑦

2  

𝑠𝑜 𝑙𝑜𝑔2 𝑥 + 𝑙𝑜𝑔3𝑦 + 𝑙𝑜𝑔4𝑧 = 2  

⇒ 𝑙𝑜𝑔4 𝑥
2𝑦𝑧 = 2  

⇒ 𝑥2𝑦𝑧 = 42 = 16 ………(1)  

Similarly, 𝑦2𝑥𝑧 = 81 ……….(2)  

And 𝑧2𝑥𝑦 = 256 ……….(3)  

And hence 𝑥2𝑦𝑧 × 𝑦2𝑥𝑧 × 𝑧2𝑥𝑦 = 16 × 81 ×

256  

⇒ (𝑥𝑦𝑧)4 = 24 × 34 × 44  

xyz = 24 as x, y, z > 0 

Dividing eq. (1), (2), and (3) by xyz = 24, we can 

get  

𝑥 =
16

24
, 𝑦 =

81

24
, 𝑧 =

256

24
 

⇒ 𝑥 =
2

3
, 𝑦 =

27

8
, 𝑧 =

32

3
 

 

9. If possible, let us express  

𝑥4 + 26𝑥3 + 52𝑥2 + 78𝑥 + 1989 ≡ (𝑥2 +

𝑎𝑥 + 𝑏)(𝑥2 + 𝑐𝑥 + 𝑑)  

By comparing coefficients of both sides, we get  

a + c = 26……….(1) 

ac+b+d= 52………..(2)  

bc + ad= 78………(3)  

bd = 1989 = 13 × 32 × 17 ………..(4)  

Now, we see that 13 is a divisor of 26, 52, 78 

and 1989 and 13 is a prime number.  

Thus, 13/ b.d.  

⇒ 13 divides one of b or d but not both.  

If 13/b say and 13’/d, them from eq. (3), 13/a.  

Now, 13/ac and 13/b, and 13/52.  

∴ 13/d, from (2) is a contradiction.  

Such a factorization is not prime.  

∴ 13’/d, it is a contradiction.  

So if 13/d and 13/b, then again from eq. (3), 

13/c. [From eq. (1) 13/a also].  

Now, 𝑏 = 52 − 𝑎𝑐 − 𝑑.  

13/b, 13/52, 13/ac, 13/d but it is again a 

contradiction.  

So there does not exist quadratic polynomials 

p(x) and q(x) with integral coefficients such that 

f(x) = 𝑝(𝑥) × 𝑞(𝑥).  

Similarly, if p(x) is a cubic polynomial and q(x) is 

a linear one then let  

𝑝(𝑥) = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐  

𝑞(𝑥) = (𝑥 + 𝑑)  

𝑥4 + 26𝑥3 + 52𝑥2 + 78𝑥 + 13 × 32 × 17 =

(𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐)(𝑥 + 𝑑)  

Again comparing coefficients  

𝑎 + 𝑑 = 26……(5) 

𝑎𝑑 + 𝑏 = 52……… . . (6) 

𝑏𝑑 + 𝑐 = 78……… . (7) 

𝑐𝑑 = 13 × 32 × 17………(8) 
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As before 13 divides exactly one of c and d.  

If 13/d, then 13’/c, then by eq. (7), 13/bd, 13’/c 

and 13/78 = 𝑏𝑑 + 𝑐 is a contradiction.  

So let 13/c, 13’/d.  

By eq. (7), 13/b,  

By eq. (6), 13/b and 13/52 

⇒ 13/𝑎𝑑  

⇒ 13/𝑎 , as 13/d.  

By eq. (5), 13/a, 13/d and 13/26 = 𝑎 + 𝑑 (a 

contradiction) and hence there does not exist 

any polynomials p(x) and q(x) as assumed and 

hence the result.  

10. x, y, z are integers and 5 is a prime number 

and given equation is  

𝑥𝑦
𝑧
. 𝑦𝑧

𝑥
. 𝑧𝑥

𝑦
= 5𝑥𝑦𝑧 

Dividing both sides of the equation by xyz,  

𝑥𝑦
𝑧−1. 𝑦𝑧

𝑥−1. 𝑧𝑥
𝑦−1 = 5 

So the different possibilities are  

𝑥𝑦
𝑧−1 = 5

𝑦𝑧
𝑥−1 = 1

𝑧𝑥
𝑦−1 = 1

|  𝑜𝑟 
𝑥𝑦

𝑧−1 = 1

𝑦𝑧
𝑥−1 = 5

𝑧𝑥
𝑦−1 = 1

|  𝑜𝑟 
𝑥𝑦

𝑧−1 = 1

𝑦𝑧
𝑥−1 = 1

𝑧𝑥
𝑦−1 = 5

| 

Taking the first column  

𝑥 = 5, 𝑦2 − 1 = 1; 𝑦𝑧 = 2, 𝑦 = 2, 𝑎𝑛𝑑 𝑧 = 1  

And these values are satisfying the other 

expressions in the first column.  

Similarly from the second column, we get 𝑦 =

5, 𝑧 = 2, 𝑥 = 1 and from the third column, we 

get 𝑧 = 5, 𝑥 = 2, 𝑦 = 1.  

 

11. If 𝑘 = 1 

𝑃1(𝑥) = 𝑥
9 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 𝑥9 − 𝑥4 +

𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 = 𝑥4(𝑥5 − 1) +

(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) = 𝑥4(𝑥 − 1)(𝑥4 +

𝑥3 + 𝑥2 + 𝑥 + 1) + (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1) =

(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)[𝑥4(𝑥 − 1) + 1]  

Thus, 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 is a non−trivial 

polynomial divisor of 𝑃1(𝑥).  

𝑃𝑘(𝑥) = 𝑥
(5𝑘+4) − 𝑥4 + (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 +

1) = 𝑥4[𝑥5𝑘 − 1] + (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)  

(𝑥5 − 1) divides (𝑥5)𝑘 − 1, 𝑥4 + 𝑥3 + 𝑥2 +

𝑥 + 1 divides 𝑥5 − 1 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑥5𝑘 − 1.  

Therefore 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑃𝑘(𝑥) 

for all k.  

 

12. Suppose there exists an integer b such that 

f(b) = 1993 

 Let 𝑔(𝑥) = 𝑓(𝑥) − 1991.  

Now, g is a polynomial with integer coefficients 

and  

𝑔(𝑎𝑖) = 0𝑓𝑜𝑟 𝑖 = 1,2,3,4  

Thus (𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎3)𝑎𝑛𝑑 (𝑥 − 𝑎4) 

are all factors of g(x).  

So, 𝑔(𝑥) = (𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎3)(𝑥 −

𝑎4) × ℎ(𝑥)  

Where h(x) is polynomial with integer 

coefficients.  

𝑔(𝑏) = 𝑓(𝑏) − 1991  

= 1993 − 1991 = 2 (by our choice of b) 

But 𝑔(𝑏) = (𝑏 − 𝑎1)(𝑏 − 𝑎2)(𝑏 − 𝑎3)(𝑏 −

𝑎4)ℎ(𝑏) = 2  
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Thus, (𝑏 − 𝑎1)(𝑏 − 𝑎2)(𝑏 − 𝑎3)(𝑏 − 𝑎4) are all 

divisors of 2 and are distinct.  

∴ (𝑏 − 𝑎1)(𝑏 − 𝑎2)(𝑏 − 𝑎3)(𝑏 −

𝑎4)𝑎𝑟𝑒 1, −1, 2, 2, −2 in some order and h(b) is 

an integer.  

∴ 𝑔(𝑏) = 4. ℎ(𝑏) ≠ 2.  

Hence such a and b does not exist.  

 

13. Let x, y, z be the roots of the cubic 

equation  

𝑡3 − 𝑎𝑡2 + 𝑏𝑡 − 𝑐 = 0 ………(1)  

𝑠1 = 𝑥 + 𝑦 + 𝑧 = 𝑎 ………..(2)  

𝑠2 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 𝑏 ………….(3)  

⇒ 2𝑥𝑦 + 2𝑦𝑧 + 2𝑧𝑥 = 2𝑏 …………(4)  

From eq. (2) we get 𝑎 = 3. 

From eq. (2) and eq. (3) we get  

2𝑏 = 2𝑥𝑦 + 2𝑦𝑧 + 2𝑧𝑥 = (𝑥 + 𝑦 + 𝑧)2 −

(𝑥2 + 𝑦2 + 𝑧2)  

= 9 − 3 = 6  

⇒ 𝑏 = 3  

Since x, y and z are the roots of eq. (1), 

substituting and adding, we get  

(𝑥3 + 𝑦3 + 𝑧3) − 𝑎(𝑥2 + 𝑦2 + 𝑧2) + 𝑏(𝑥 +

𝑦 + 𝑧) − 3𝑐 = 0  

⇒ 3− 3𝑎 + 3𝑏 − 3𝑐 = 0  

⇒ 3− 9 + 9 − 3𝑐 = 0  

⇒ 𝑐 = 1  

Thus eq. (1) becomes  

𝑡3 − 3𝑡2 + 3𝑡 − 1 = 0  

⇒ (𝑡 − 1)3 = 0  

Thus, the roots are 1, 1, 1. 

Hence 𝑥 = 𝑦 = 𝑧 = 1 is the only solution for 

the given equation.  

 

14. 1 + 𝑥𝑛 + 𝑥2𝑛 +⋯+ 𝑥𝑚𝑛 =
𝑥(𝑚+1)𝑛−1

𝑥𝑛−1
 

(verify)  

𝑎𝑛𝑑 1 + 𝑥 + 𝑥2 +⋯+ 𝑥𝑚 =
𝑥𝑚+1−1

𝑥−1
  

We must find m, and n so that 
1+𝑥𝑛+𝑥2𝑛+⋯+𝑥𝑚𝑛

1+𝑥+𝑥2+⋯+𝑥𝑚
 

is a polynomial  

     
𝑥(𝑚+1)𝑛−1

𝑥𝑛 −1
÷
𝑥𝑚+1−1

𝑥−1
=
[𝑥(𝑚+1)𝑛−1](𝑥−1)

(𝑥𝑛−1)(𝑥𝑚+1−1)
 must 

be a polynomial.  

Now, if k and l are relatively prime, then (𝑥𝑘 −

1) and (𝑥1 − 1) have just one common factor. 

For the roots of 𝑥𝑘 − 1 = 0, say 1, w1, w2, 

…….wk−1 are all distinct factor.  

Similarly, also those of 𝑥1 − 1 =

1,𝑤′1, 𝑤′2, … , 𝑤′𝑟−1 is distinct factor.  

By De Moivre's formula, the roots of 𝑥𝑘 − 1 are  

cos
2𝑛𝜋

𝑘
+ 𝑖 𝑠𝑖𝑛

2𝑛𝜋

𝑘
 

For n = 0, 1,2… , 𝑘 − 1 and those of 𝑥1 − 1 are 

cos
2𝑛𝜋

𝑙
+ 𝑖 𝑠𝑖𝑛

2𝑛𝜋

𝑙
 

For n= 0, 1, 2, … 𝑙 − 1. If l and k are prime 

integer other than zero, 

Roots will be cos
2𝑛𝜋

𝑙
+ 𝑖 𝑠𝑖𝑛

2𝑛𝜋

𝑙
 𝑎𝑛𝑑 cos

2𝑛𝜋

𝑘
+

𝑖 sin
2𝑛𝜋

𝑘
 respectively.  



Olympiad Mathematics by Tanujit Chakraborty 

21 
 

Since all the factors of 𝑥𝑛(𝑚+1) − 1 are distinct, 

𝑥𝑚+1 − 1, 𝑥𝑛 − 1 cannot have any common 

factors other than (x−1). Thus (m+1) and n must 

be relatively prime.  

Again 𝑥𝑛(𝑚+1) − 1 = (𝑥𝑛)𝑚+1  − 1 =

(𝑥𝑚+1)𝑛 − 1.  

So 𝑥𝑛(𝑚+1) − 1 is divisible by (𝑥𝑛 − 1) and also 

by (𝑥𝑚+1) − 1.  

𝑡ℎ𝑢𝑠,
[𝑥(𝑚+1)𝑛 − 1](𝑥 − 1)

(𝑥𝑛 − 1)(𝑥𝑚+1 − 1)
 

Is a polynomial which shows that the condition 

(m + 1) and n must be relatively prime is also 

sufficient.  

 

15. Consider the quadratic equation  

𝑝 + 𝑞𝑡 + 𝑟𝑡2 + 𝑠𝑡3 = 𝑡4  

Or, 𝑡4 − 𝑠𝑡3 − 𝑟𝑡2 − 𝑞𝑡 − 𝑝 = 0.  

Now, by our assumption of the problem, a1, a2, 

a3 and a4 are the solution of this equation and 

hence  

𝑠1 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 𝑠  

𝑠2 = (𝑎1 + 𝑎2)(𝑎3 + 𝑎4) + 𝑎1𝑎2 + 𝑎3𝑎4 = −𝑟  

𝑠3 = 𝑎1𝑎2(𝑎3 + 𝑎4) + 𝑎3𝑎4(𝑎1 + 𝑎2) = 𝑞  

𝑠4 = 𝑎1𝑎2𝑎3𝑎4 = −𝑝  

 The second system of equation is  

(𝑡2)4 −𝑤(𝑡2)3 − 𝑧(𝑡2)2 − 𝑦(𝑡2) − 𝑥 = 0  

Putting 𝑡2 = 𝑢, we have  

𝑢4 −𝑤𝑢3 − 𝑧𝑢2 − 𝑦𝑢 − 𝑥 = 0  

And the roots can be seen to be 

𝑎1
2, 𝑎2

2, 𝑎3
2 𝑎𝑛𝑑 𝑎4

2  

And 𝑠1 = 𝑎1
2 + 𝑎2

2 + 𝑎3
2 + 𝑎4

2 = 𝑤  

⇒ 𝑤 = (∑𝑎𝑖)
2 − 2∑ 𝑎𝑖𝑎𝑗 = 𝑠

2 + 2𝑟𝑖<𝑗   

𝑠2 =∑𝑎𝑖
2𝑎𝑗

2 = −𝑧

𝑖<𝑗

 

𝑜𝑟, 𝑧 = −∑𝑎𝑖
2𝑎𝑗

2

𝑖<𝑗

= −(∑𝑎𝑖𝑎𝑗)

𝑖<𝑗

 2 + 2(∑𝑎𝑖)  

∑ 𝑎𝑖𝑎𝑗𝑎𝑘 − 2𝑎1𝑎2𝑎3𝑎4
𝑖<𝑗<𝑘

 

For (𝑎1
2𝑎2

2 + 𝑎1
2𝑎3

2 + 𝑎1
2𝑎4

2 + 𝑎2
2𝑎3

2 +

𝑎2
2𝑎4

2 + 𝑎3
2𝑎4

2)  = (𝑎1𝑎2 + 𝑎1𝑎3 + 𝑎1𝑎4 +

𝑎2𝑎3 + 𝑎2𝑎4 + 𝑎3𝑎4)
2  − 2(𝑎1 + 𝑎2 + 𝑎3 +

𝑎4)(𝑎1𝑎2𝑎3 + 𝑎1𝑎2𝑎4 + 𝑎1𝑎3𝑎4 + 𝑎2𝑎3𝑎4) −

2𝑎1𝑎2𝑎3𝑎4  

Hence z = −𝑟2 + 2𝑞𝑠 + 2𝑝.  

𝑠3 = 𝑎1
2𝑎2

2𝑎3
2 + 𝑎1

2𝑎2
2𝑎4

2 + 𝑎1
2𝑎3

2𝑎4
2 +

𝑎2
2𝑎3

2𝑎4
2 = 𝑦  

𝑦 = (𝑎1𝑎2𝑎3 + 𝑎1𝑎2𝑎4 + 𝑎1𝑎3𝑎4 +

𝑎2𝑎3𝑎4)
2 − 2(𝑎1𝑎2𝑎3𝑎4)(𝑎1𝑎2 + 𝑎1𝑎3 +

𝑎1𝑎4 + 𝑎2𝑎3 + 𝑎2𝑎4 + 𝑎3𝑎4)  

= 𝑞2 − 2𝑝𝑟  

Finally, 𝑠4 = 𝑎1
2𝑎2

2𝑎3
2𝑎4

2 = −𝑥  

𝑜𝑟, 𝑥 = −(𝑎1
2𝑎2

2𝑎3
2𝑎4

2) = −(𝑎1𝑎2𝑎3𝑎4)
2 =

−𝑝2  

∴ 𝑥 = −𝑝2, 𝑦 = 𝑞2 − 2𝑝𝑟, 𝑧 = −𝑟2 + 2𝑞𝑠 + 2𝑝  

And 𝑤 = 𝑠2 + 2𝑟 is the solution.  

 

16. 2𝑚 = (1 + 1)𝑚 = 𝐶0 + 𝐶2 +⋯+

𝐶𝑚 𝑓𝑜𝑟 𝑚 =1, 2, …n + 1 

Now consider the polynomial  



Olympiad Mathematics by Tanujit Chakraborty 

22 
 

𝑓(𝑥) = 2 [(
𝑥 − 1

0
) + (

𝑥 − 1

1
) + (

𝑥 − 1

2
) +⋯

+ (
𝑥 − 1

𝑛
)] 

𝑤ℎ𝑒𝑟𝑒 (
𝑥 − 1

𝑟
) =

(𝑥 − 1)(𝑥 − 2)… (𝑥 − 𝑟)

𝑟
 

Clearly, f(x) is of degree n.  

Now  

𝑓(𝑟) = 2 [(
𝑟 − 1

0
) + (

𝑟 − 1

1
) +⋯+ (

𝑟 − 1

𝑟 − 1
)

+ (
𝑟 − 1

𝑟
) +⋯

+ (
𝑟 − 1

𝑛
)]𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑟

≤ 𝑛 + 1. 

But (𝑟−1
𝑘
) = 0 for all k> r−1 where k and are 

integers.  

= 2. 2𝑟−1 = 2𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 = 1, 2, … , 𝑛 + 1. 

∴ Thus, f(x) is the required polynomial.  

∴ 𝑓(𝑛 + 2) = 2 [(
𝑛 + 1

0
) + (

𝑛 + 1

1
) +⋯

+ (
𝑛 + 1

𝑛
) + (

𝑛 + 1

𝑛 + 1
) − 1] 

= 2[2𝑛+1 − 1] = 2𝑛+2 − 2  

Similarly, P(x+2) = 2𝑥+2 − 2.  

 

17. If 𝑘 = 1; 1 < 𝑥 < 2 …….(1) 

𝑘 = 2; 2 < 𝑥2 < 3 ………(2)  

𝑘 = 3; 3 < 𝑥3 < 4 ………..(3)  

𝑘 = 4; 4 < 𝑥4 < 5 ……….(4)  

𝑘 = 5; 5 > 𝑥5 > 6 ………..(5)  

………………………….. 

Consider the inequality 2 < 𝑥2 < 3, then x 

should lie between √2 and √3.  

i.e. √2 < 𝑥 < √3.  

Now, 1 < √2 < 𝑥 < √3 < √4 = 2 

And hence satisfies eq. (1) and eq. (2) of the 

inequalities  

√2 < 𝑥 < √3 

⇒ (√2)
3
< 𝑥3 < (√3)

3
 

⇒ 2√2 < 𝑥3 < 3√3 

Applying this in eq. (3), 

3 < 2√2 < 𝑥3 < 3√3 

𝐵𝑢𝑡 3√3 > 4 

Now picking up the third inequality, we have  

3 < 𝑥3 < 4 

⇒ √3
3

< 𝑥√4
3

 

⇒ √9
3

< 𝑥2 < √16
3

= 2√2
3

 

Since 23 < 9, 2 < √9
3

< 𝑥2 < √16
3

≮ √16
3

= 3.  

Again this value of x falls as x may be lying 

between 3 = √27
3

 and √16
3

. Now we have the 

same problem with lower limit of x4 for the 4th 

inequality.  

So, trying with √3
3

< 𝑥 < √5
4

, we shall get 

34<x12<53 or 81<x12<125.  

1 < √3
3

< 𝑥 < √5
4

< √16
4

= 2 is true.  

2 = √8
3

< √9
3

< 𝑥2 < √52
4

< √34
4

= 3  

Hence the second of the inequalities also true.  

Again by our choice of x,  
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√3
3

< 𝑥  

⇒ 3 < 𝑥3 < √53
4

(= √125
4

) < √44
4

= 4 (∵

125 < 44 = 256)  

For the 4th row,  

√43
3

< √34
3

< 𝑥4 < √54
4

= 5 is again true.  

For the 5th row,  

√35
3

< 𝑥5 < √55
4

  

√53
3

< √35
3

< 𝑥5 < √55
4

≰ √64
4

  

(∵ √55
4

= √3125
4

≰ √1296
4

)  

However, for the third row,  

We have 3 < 𝑥3 and for the fifth row and we 

have, 𝑥5 < 6 

So 35 < 𝑥15 < 63 for such x.  

But this leads to the contradiction 243 < 𝑥15 <

216 and hence the greatest n for which the 

rows of the given inequalities hold is 4 and for 

any x such that √3
3

< 𝑥 < √5
5

 will satisfy these 

inequalities.  

 

18. We have 𝑓:𝑁 → 𝑍.  

And f(m) > f(n) for m > n.  

⇒ 𝑓(1) < 𝑓(2) = 2  

2 = 𝑓(2) = 𝑓(1 × 2) = 𝑓(1) × 𝑓(2) = 𝑓(1) ×

2  

∴ 𝑓(1) =
2

2
= 1  

Now, 𝑓(4) > 𝑓(3) > 𝑓(2) = 2  

And 𝑓(4) = 𝑓(2) × 𝑓(2) = 2 × 2 = 4  

And so 4 > f(3) > 2 and f(3) is an integer and 

hence f(3) = 3 

And f(6) > f(5) > f(4)  

⇒ 𝑓(2) × 𝑓(3) > 𝑓(5) > 𝑓(2) × 𝑓(2)  

⇒ 2 × 3 > 𝑓(5) > 4  

⇒ 𝑓(5) = 5  

So we guess that f(n)= 𝑛.  

Let us prove it.  

We will use mathematical induction for proving.  

f(n) = n is true for 𝑛 = 1,2.  

Let us assume that the result is true for all m<n 

and then we shall prove it for n, where n > 2.  

If n is even then let n = 2m 

𝑓(𝑛) = 𝑓(2𝑚) = 𝑓(2) × 𝑓(𝑚) = 2 ×𝑚 =

2𝑚 = 𝑛  

If n is odd and n=2m+1, then n > 2m.  

𝑓(𝑛) = 𝑓(2𝑚 + 1) > 𝑓(2𝑚) = 2𝑚  

And 𝑓(2𝑚 + 2) = 𝑓2(𝑚 + 1) = 𝑓(2) × 𝑓(𝑚 +

1)  

𝑛 = 2𝑚 + 1  

m+1 < n, m < n 

and hence f(2m+2)= 𝑓[2(𝑚 + 1)] = 𝑓(2) ×

𝑓(𝑚 + 1) = 2 × (𝑚 + 1)  

Thus, 2m< f(2m+1) < f(2m+2) = 2(𝑚 + 1) =

2𝑚+2  

⇒ 2𝑚 < 𝑓(2𝑚 + 1) < 2𝑚 + 2  

There is exactly one integer 2m+1 between 2m 

and 2m+2 and hence  
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𝑓(𝑛) = 𝑓(2𝑚 + 1) = (2𝑚 + 1) = 𝑛  

Thus 𝑓(𝑛) = 𝑛𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑁 

Hence f(1998) = 1998.  

 

19. Let the number of pages in the novel be n. 

Since, the number of pages after a leaf is 

firm is 15,000, the sum of the numbers on 

all the pages must exceed 15,000.  

𝑖. 𝑒. ,
𝑛(𝑛+1)

2
> 15,000  

⇒ 𝑛(𝑛 + 1) > 30,000  

∴ (𝑛 + 1)2 > 𝑛(𝑛 + 1) > 30,000 > 1732  

⇒ (𝑛 + 1) > 173  

⇒ 𝑛 > 172 ………(1)  

The sum of the numbers on the page torn 

should be less than or equal to (n−1)+n= 2𝑛 −

1.  

Hence (1 + 2 + … + n)−(2n−1)≤ 15,000 

⇒ 𝑛(𝑛 + 1) − 2(2𝑛 − 1) ≤ 30,000  

⇒ 𝑛2 − 3𝑛 + 2 ≤ 30,000  

⇒ (𝑛 − 2(𝑛 − 1) ≤ 30,000  

⇒ (𝑛 − 2)2 < (𝑛 − 2)(𝑛 − 1) ≤ 30,000 <

1742  

⇒ (𝑛 − 2) < 174  

⇒ 𝑛 < 176 …….(2) 

By eq. (1) and (2), we get  

172<n<176 

So n could be one of 173, 174 or 175.  

If n = 173, then  

𝑛(𝑛 + 2)

2
=
173 × 174

2
= 15,051 

Thus the sum of the numbers on the torn pages 

= 15015 − 15,000 =51 and this could be x + 

(x+1)= 2𝑥 + 1 = 51.  

So, the page numbers on the torn pages =
51+1

2
= 26 𝑎𝑛𝑑

51−1

2
= 25  

If 𝑛 = 174, then  

𝑛(𝑛 + 1)

2
=
174 × 175

2
= 15,225. 

So the sum of the numbers on the torn pages 

15225 − 15000 = 225 and in this case, the 

numbers on the torn pages =
225−1

2
=

112 𝑎𝑛𝑑
225+1

2
= 113.  

(But actually the smaller number on the torn 

page should be odd and hence, though it is 

theoretically correct, but no acceptable in 

reality).  

If 𝑛 = 175, 𝑡ℎ𝑒𝑛
𝑛(𝑛+1)

2
=
175×176

2
= 15,400 

and the sum of the numbers on the torn page is 

400 (= 15400 − 15000) which is not possible 

because the sum should be an odd number and 

hence this value of n also should be rejected.  

So the numbers on the torn page should be 25 

and 26 and the number of pages is 173.  

 

20. Case 1: 𝑛 =4k + 1 

𝑛 = 4𝑘 + 1 = (4𝑘 + 1) × (1)2𝑘 × (−1)2𝑘  

= (4𝑘 + 1) + (1 + 1 +⋯+ 1)⏟          
2𝑘 𝑡𝑖𝑚𝑒𝑠

+ [(−1) + (−1) +⋯+ (−1)⏟                
2𝑘 𝑡𝑖𝑚𝑒𝑠

 



Olympiad Mathematics by Tanujit Chakraborty 

25 
 

Case 2: 𝑛 = 4𝑙 here there are two cases where 

(a) l is even with 𝑙 ≥ 2 and (b) l is odd with 𝑙 ≥

3  

(a) 𝑛 = 4𝑙, 𝑙 is even.  

 

Consider integers w and v such that,  

 

𝑛 = 4𝑙 = 2𝑙 × 2 × (1)𝑤 × (−1)𝑣  

= 2𝑙 + 2 + (1 + 1 +⋯+ 1)⏟          
𝑤 𝑡𝑖𝑚𝑒𝑠 

+ [(−1) + (−1) +⋯+ (−1)]⏟                  
𝑣 𝑡𝑖𝑚𝑒𝑠

 

 

Now by definition of good integer, we 

have 2 + w + v= 4𝑙 

[there are 2 + w + v factors).  

⇒ 𝑤 + 𝑣 = 4𝑙 − 2 ……(1) 

 

And again since 4𝑙 = 2𝑙 + 2 + 𝑤 − 𝑣 

We get 𝑤 − 𝑣 = 2𝑙 − 2 ……….(2) 

Solving eq. (1) and eq. (2), we get 𝑤 =

3𝑙 − 2 𝑎𝑛𝑑 𝑣 = 𝑙.  

 

(b) l is odd. With 𝑙 ≥ 3.  

Choose w and v such that  

𝑛 = 4𝑙 = (2𝑙) × (−2) × (1)𝑤(−1)𝑣  

= 2𝑙 + (−2) + (1 + 1 +⋯+ 1)⏟          
𝑤 𝑡𝑖𝑚𝑒𝑠

+ [(−1) + (−1) +⋯+ (−1)]⏟                  
𝑣 𝑡𝑖𝑚𝑒𝑠

 

Again since there are w + v + 2 factors,  

We have w + v + 2 = 4𝑙  

Or 𝑤 + 𝑣 = 4𝑙 − 2 

And 4𝑙 = 2𝑙 − 2 + 𝑤 − 𝑣 (by definition of good 

integer) 

⇒ 𝑤 − 𝑣 = 2𝑙 + 2  

Solving 𝑤 = 3𝑙 𝑎𝑛𝑑 𝑣 = 𝑙 − 2  

Since l is odd and 𝑙 ≥ 3  

𝑙 − 2 ≥ 1  

Now, n = 4𝑙 = 2𝑙 × (−2) × (1)3𝑙 × (−1)𝑙−2 =

2𝑙 + (−2) + (1 + 1 +⋯+ 1)⏟          
3𝑙 𝑡𝑖𝑚𝑒𝑠

+

[(−1) + (−1) +⋯+ (−1)⏟                
(𝑙−2)𝑡𝑖𝑚𝑒𝑠

 

= 2𝑙 − 2 + 3𝑙 − (𝑙 − 2) = 4𝑙 

 

21. Without loss of generality, we may assume 

𝑎 ≥ 𝑏 ≥ 𝑐, so that |𝑐2 − 𝑎2| = 𝑎2 − 𝑐2 is 

the maximum of |𝑎2 − 𝑏2|, |𝑏2 −

𝑐2|𝑎𝑛𝑑 |𝑐2 − 𝑎2|.  

It is enough to prove that 𝑎2 + 𝑏2 + 𝑐2 −

√3(𝑎2 − 𝑏2) > 0  

Now 𝑎2 + 𝑏2 + 𝑐2 − √3(𝑎2 − 𝑐2) > 𝑎2 +

(𝑎 − 𝑐)2 + 𝑐2 − √3(𝑎2 − 𝑐2)  

(as b > a –c, by triangle inequality)  

> 2𝑎2 + 2𝑐2 − 2𝑎𝑐 − √3𝑎2 + √3𝑐2  

> (2 − √3)𝑎2 + (2 + √3)𝑐2 − 2𝑎𝑐  

But (√3 − 1)2 = 2(2 − √3)  

And (√3 + 1)2 = 2(2 + √3)  

So 𝑎2 + 𝑏2 + 𝑐2 − √3(𝑎2 − 𝑐2)  >

 
[(√3−1)𝑎]2−4𝑎𝑐+[(√3+1)𝑐]2

2
 =

1

2
[(√3 − 1)𝑎 −

(√3 + 1)𝑐]
2

 ≥ 0  

And hence the result.  

 

22. By checking the first four values we find 

31/3 to be the largest. We will prove that 

{𝑛
1

𝑛} , 𝑛 ≥ 3 is a decreasing sequence.  



Olympiad Mathematics by Tanujit Chakraborty 

26 
 

𝑛
1
𝑛 > (𝑛 + 1)

1
𝑛+1 

⇔ 𝑛𝑛+1 > (𝑛 + 1)𝑛  

⇔ 𝑛 > (1 +
1

𝑛
)
𝑛

  

Now, (1 +
1

𝑛
)
𝑛
= 1 + 𝑛.

1

𝑛
+
𝑛(𝑛−1)

2
×

1

𝑛2
+

𝑛(𝑛−1)(𝑛−2)

6
.
1

𝑛3
+⋯  

= 1 + 1 +
1

2
(1 −

1

𝑛
) +

1

6
(1 −

1

𝑛
) (1 −

2

𝑛
) +⋯  

< 1 + 1 +
1

2
+
1

4
+
1

8
+⋯ < 3  

𝑜𝑟, 3 >  (1 +
1

𝑛
)
𝑛

  

∴ 𝑖𝑓 𝑛 ≥ 3, 𝑛
1

𝑛 > (𝑛 + 1)
1

𝑛+1  

i.e., {𝑛
1

𝑛 } is decreasing for 𝑛 ≥ 3.  

But 31/3 is also greater than 1 and 21/2.  Hence 

31/3 is the largest.  

23. Taking 𝑘 = 1, since  

𝑎1
𝑘 + 𝑎2

𝑘 +⋯+ 𝑎𝑛
𝑘  ≥ 0,  

And for 𝑘 = 1, we have  

𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 ≥ 0……..(1) 

And since 𝑎1 ≥ 𝑎2 ≥ 𝑎3 ≥ ⋯ ≥ 𝑎𝑛, 𝑎1 ≥ 0 

……..(2) 

And if all 𝑎1, 𝑖 = 1,2, …𝑛 are positive a1 is the 

maximum of all 𝑎𝑖𝑠 

∴ 𝑝 = |𝑎1| = 𝑎1  

Suppose that some of the 𝑎𝑖𝑠 are negative and 

p≠ 𝑎1, then an < 0 and hence  

𝑝 = |𝑎𝑛|  

Let r be an index such that  

𝑎𝑛 = 𝑎𝑛−1 = ⋯ = 𝑎𝑟+1 < 𝑎𝑟 ≤ 𝑎𝑟−1 ≤ ⋯ ≤

𝑎1  

Then 𝑎1
𝑘 + 𝑎2

𝑘 +⋯+ 𝑎𝑟−1
𝑘 + 𝑎𝑟

𝑘 +⋯+ 𝑎𝑛
𝑘  

= 𝑎𝑛
𝑘 {(

𝑎1
𝑎𝑛
)
𝑘

+ (
𝑎2
𝑎𝑛
)
𝑘

+⋯+ (
𝑎𝑟−1
𝑎𝑛

)
𝑘

+ (
𝑎𝑟
𝑎𝑛
)
𝑘

+ (𝑛 − 𝑟)} = 𝑎𝑛
𝑘𝑋 

Where the value of the second bracket is taken 

as X.  

Since |
𝑎1

𝑎𝑛
| , |

𝑎2

𝑎𝑛
| , … , |

𝑎𝑟

𝑎𝑛
| are all less than 1, so 

their kth powers are all less than these fractions 

and by taking k sufficiently large, which would 

make X > 0 and 𝑋𝑎𝑛
𝑘 < 0 for k odd, a 

contradiction and hence 𝑝 = 𝑎1.  

Taking 𝑥 > 𝑎1, then by AM−GM inequality,  

(𝑥 − 𝑎2)(𝑥 − 𝑎3)(𝑥 − 𝑎4)… (𝑥 − 𝑎𝑛)  

≤ (
∑ (𝑥 − 𝑎𝑗)
𝑛
𝑗=2

𝑛 − 1
)

𝑛−1

            

≤ (
(𝑛 − 1)𝑥 + 𝑎1

𝑛 − 1
)

𝑛−1

        [∵ ∑𝑎𝑖 ≥ 0] 

𝑏

𝑖=1

 

= (𝑥 +
𝑎1
𝑛 − 1

)
𝑛−1

 

≤ 𝑥𝑛−1 + 𝑥𝑛−2. 𝑎1 + 𝑥
𝑛−2𝑎1

2 +⋯+ 𝑎1
𝑛−1 

[Here we have used (𝑛−1
𝑟
) ≤ (𝑛 − 1)𝑟, 𝑟 ≥ 1] 

Multiplying both sides by (𝑥 − 𝑎1), we get  

(𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎3)… (𝑥 − 𝑎𝑛) ≤

(𝑥 − 𝑎1)(𝑥
𝑛−1 + 𝑥𝑛−2𝑎1 +⋯+ 𝑎1

𝑛−1 = 𝑥𝑛 −

𝑎1
𝑛. 

 

24. 𝑎0 = 1 𝑎𝑛𝑑 𝑎1 = 𝑎 > 2 and so a can be 

written as  
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𝑏 +
1

𝑏
=
𝑏2 + 1

𝑏
 

For real number b > 0 and  

𝑎2 − 2 = 𝑏2 +
1

𝑏2
 

𝑛𝑜𝑤, 𝑎2 = (
𝑎1
2

𝑎0
2 − 2)𝑎1 = (

𝑎2

1
− 2)𝑎

= (𝑎2 − 2)𝑎 

= (𝑏2 +
1

𝑏2
) (𝑏 +

1

𝑏
) = (𝑏3 +

1

𝑏3
+ 𝑏 +

1

𝑏
) 

=
𝑏6 + 1 + 𝑏4 + 𝑏2

𝑏3
=
(𝑏2 + 1)(𝑏4 + 1)

𝑏3
 

Similarly,  

𝑎3 = [(
𝑎2

𝑎1
)

2

− 2]𝑎2  = [(𝑏
2 +

1

𝑏2
)
2

− 2] 𝑎2 

= [(𝑏2 +
1

𝑏2
)
2

− 2] (𝑏2 +
1

𝑏2
)(𝑏 +

1

𝑏
) 

= (𝑏4 +
1

𝑏4
) (𝑏2 +

1

𝑏2
)(𝑏 +

1

𝑏
) 

(𝑏2
2
+
1

𝑏2
2)(𝑏

21 +
1

𝑏2
1) (𝑏

20 +
1

𝑏2
0) 

(𝑏2 + 1)(𝑏4 + 1)(𝑏8 + 1)/𝑏7 

And proceeding in this manner, we get  

𝑎𝑛 = (𝑏
2𝑛−1 +

1

𝑏2
𝑛−1) (𝑏

2𝑛 +
1

𝑏2
𝑛)…(𝑏 +

1

𝑏
) 

Hence, L.H.S. = ∑ 1/𝑎𝑖 
𝑛
𝑖=0   

= 1 +
𝑏

𝑏2 + 1
+

𝑏3

(𝑏2 + 1)(𝑏4 + 1)

+
𝑏7

(𝑏2 + 1)(𝑏4 + 1)(𝑏8 + 1)
+⋯

+
𝑏2

𝑛−1

(𝑏2 + 1)(𝑏4 + 1)… (𝑏2
𝑛
+ 1)

 

The right hand side of the inequality is  

1

2
(𝑎 + 2 − √𝑎2 − 4)

=
1

2
[𝑏 +

1

𝑏
+ 2 − (𝑏 −

1

𝑏
)]

= (
1

𝑏
+ 1)  

You may know the following identity:  

∑
𝑎𝑗

(1 + 𝑎1)… (1 + 𝑎𝑛)

𝑛

𝑗=1

= 1 −
1

(1 + 𝑎1)… (1 + 𝑎𝑛)
 

[This result is obtained by using partial 

fractions]. 

So the L.H.S.  

∑
1

𝑎𝑖

𝑛

𝑖=1

= 1 +
𝑏

𝑏2 + 1
+

𝑏3

(𝑏2 + 1)(𝑏4 + 1)
+⋯

+
𝑏2

𝑛−1

(𝑏2 + 1)(𝑏4 + 1)… (𝑏2
𝑛
+ 1)

 

∑
𝑏2

𝑖

(𝑏2 + 1)… (𝑏2
𝑖
+ 1)

𝑛

𝑖=1

= 1 −
1

(𝑏2 + 1)(𝑏4 + 1)… (𝑏2
𝑛
+ 1)

< 1 

Now  

𝐿. 𝐻. 𝑆. =
1

𝑏
[𝑏 +

𝑏2

𝑏2 + 1
+

𝑏4

(𝑏2 + 1)(𝑏4 + 1)

+⋯+
𝑏2

𝑛

(𝑏2 + 1)… (𝑏2
𝑛
+ 1)

] 

= 1 +
1

𝑏
[
𝑏2

𝑏2 + 1
+⋯+

𝑏2
𝑛

(𝑏2 + 1)… (𝑏2
𝑛
+ 1)

] 
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𝑎𝑛𝑑 𝑐𝑙𝑒𝑎𝑟𝑙𝑦 
𝑏2

𝑏2 + 1
+

𝑏4

(𝑏2 + 1)(𝑏4 + 1)
+⋯

+
𝑏2

𝑛

(𝑏2 + 1)(𝑏2
𝑛
+ 1)

 

∑
𝑏2

𝑖

(1 + 𝑏2)… (1 + 𝑏2
𝑖
)

𝑛

𝑖=1

= 1 −
1

(1 + 𝑏2)… (1 + 𝑏2
𝑛
)
 

So, the L.H.S.  

=∑
1

𝑎𝑖
= 1 +

1

𝑏
[∑

𝑏2
𝑖

(1 + 𝑏2)… (1 + 𝑏2
𝑖
)

𝑛

𝑖=1

]

𝑛

𝑖=0

= 1

+
1

𝑏
(1

−
1

(1 + 𝑏2)… (1 + 𝑏2
𝑛)
) 

= 1 +
1

𝑏
−

1

𝑏(1 + 𝑏2)(1 + 𝑏4)… (1 + 𝑏2
𝑛
)

< 1 +
1

𝑏
= 𝑅.𝐻. 𝑆. 

And hence the result.  

 

25. Considering the polynomial ±𝑃(±𝑥) we 

may assume without loss of generality that 

a, b ≥ 0.  

Case I : if c, d ≥ 0, then  

𝑃(1) = 𝑎 + 𝑏 + 𝑐 + 𝑑 ≤ 1 < 7  

Case II: if 𝑑 ≤ 0 and 𝑐 ≥ 0, then 

|a|+|b|+|c|+|d|= 𝑎 + 𝑏 + 𝑐 + 𝑑 = (𝑎 + 𝑏 +

𝑐 + 𝑑) − 2𝑑 

= 𝑃(1) − 2𝑃(0) ≤ 1 + 2 = 3 < 7  

Case III: If 𝑑 ≥ 0, 𝑐 < 0  

|a|+|b|+|c|+|d| = 𝑎 + 𝑏 − 𝑐 + 𝑑 

=
4

3
𝑃(1) −

1

3
𝑃(−1) −

8

3
𝑃 (
1

2
) +

8

3
𝑃 (−

1

2
) 

≤
4

3
+
1

3
+
8

3
+
8

3
=
21

3
= 7 

Case IV: d > 0, c > 0 

|a|+|b|+|c|+|d| = 𝑎 + 𝑏 − 𝑐 − 𝑑 

5

3
𝑃(1) − 4𝑃 (

1

2
) +

4

3
𝑃 (−

1

2
) 

≤
5

3
+ 4 +

4

3
=
21

3
= 7 

 

26. Here we use A.P. ≥ G.P.  

𝑎 =
(𝑎 + 𝑏 − 𝑐) + (𝑎 − 𝑏 + 𝑐)

2

≥ √(𝑎 + 𝑏 − 𝑐)(𝑎 − 𝑏 + 𝑐) 

𝑏 =
(𝑏 + 𝑎 − 𝑐) + (𝑏 − 𝑎 + 𝑐)

2

≥ √(𝑏 + 𝑎 − 𝑐)(𝑏 − 𝑎 + 𝑐) 

𝑐 =
(𝑐 + 𝑎 − 𝑏) + (𝑐 − 𝑎 + 𝑏)

2

≥ √(𝑐 + 𝑎 − 𝑏)(𝑐 − 𝑎 + 𝑏) 

∴ 𝑎. 𝑏. 𝑐. =
[(𝑎+𝑏−𝑐)+(𝑎−𝑏+𝑐)][(𝑏+𝑎−𝑐)+(𝑏−𝑎+𝑐)][(𝑐+𝑎−𝑏)+(𝑐−𝑎+𝑏)]

8
  

≥

√(𝑎 + 𝑏 − 𝑐) − (𝑎 − 𝑏 + 𝑐)(𝑏 + 𝑎 − 𝑐)(𝑏 − 𝑎 + 𝑐)(𝑐 + 𝑎 − 𝑏)(𝑐 − 𝑎 + 𝑏)  

= (𝑎 + 𝑏 − 𝑐)(𝑏 − 𝑎 + 𝑐)(𝑐 − 𝑏 + 𝑎)  

i.e., 𝑎𝑏𝑐 ≥ (𝑎 + 𝑏 − 𝑐)(𝑏 − 𝑎 + 𝑐)(𝑐 − 𝑏 +

𝑎) = (2 − 2𝑐)(2 − 2𝑎)(2 − 2𝑏) = 8(1 −

𝑐)(1 − 𝑎)(1 − 𝑏)[∵ 𝑎 + 𝑏 + 𝑐 = 2] 

∴
𝑎

1 − 𝑎
.
𝑏

1 − 𝑏
.
𝑐

1 − 𝑐
≥ 8 
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27. Taking 𝑥 = 1 in the given equation :  

(1 + 𝑥 + 𝑥2)25 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+

𝑎50𝑥
50  

We get  

325 = 𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎50 

Similarly, 𝑥 = −1 gives  

1 = 𝑎0 + 𝑎1 + 𝑎2 +⋯+ 𝑎50 

Adding these, we have  

1 + 325 = 2(𝑎0 + 𝑎2 + 𝑎4 +⋯+ 𝑎50) 

But  

1 + 325 = 325 − 1 + 2 

= 2(324 + 323 + 322 +⋯+ 1 + 1) 

There are even number of odd terms in the 

braces, and hence the sum is even. This implies 

that 𝑎0 + 𝑎2 + 𝑎4 +⋯+ 𝑎50 is even.  

 

28. Assume, if possible  

𝑓(𝑥) = (𝑥 + 𝑎)(𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐)  

Comparing the coefficients of like powers of x, 

we get  

𝑎 + 𝑏 = 26 

𝑎𝑏 + 𝑐 = 52, 

𝑎𝑐 + 𝑑 = 78, 

𝑎𝑑 = 1989 

But 1989 = 32. 13.17. Thus 13 divides ad and 

hence 13 divides a or d but not both. If 13 

divides a then 13 divides 𝑑 = 78 − 𝑎𝑐 which is 

not possible. Suppose 13 divides d. Then 13 

divides ac. But since 13 does not divide a, 13 

divides c which implies 13 divides 𝑎𝑑 = 52 − 𝑐 

and so b is divisible by 13 which in turn implies 

13 divides 𝑎 = 26 − 𝑏, a contradiction.  

Therefore, f(x) has no linear factors:  

If 𝑓(𝑥) = (𝑥2 + 𝑎𝑥 + 𝑏)(𝑥2 + 𝑐𝑥 + 𝑑), then 

again  

𝑎 = 𝑐 = 26,  

𝑏 + 𝑎𝑐 + 𝑑 = 52,  

𝑎𝑑 + 𝑏𝑐 = 78  

𝑏𝑑 = 1989  

Since 1989= 32. 13.17, 13 divides bd. This 

implies that 13 divides b or d but not both. If 13 

divides b, the 13 divides ad (= 78 − 𝑏𝑐) and 

hence 13 divides a. But then 13 divides d (=

52 − 𝑏 − 𝑎𝑐) a contradiction. Similar argument 

shows that 13 divides d is also not possible. We 

conclude that f(x) cannot be written as a 

product of two polynomials with integral 

coefficients, each of degree < 4.  

 

29. Consider 2001 numbers  

1

𝑘
, 1001 ≤ 𝑘 ≤ 3001 

Using AM−HM inequality, we get  

( ∑ 𝑘

3001

𝑘=1001

)( ∑
1

𝑘

3001

𝑘=1001

) > (2001)2 

But  

∑ 𝑘 = (2001)2
3001

𝑘=1001

 

Hence we get the inequality.  
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∑
1

𝑘
> 1

3001

𝑘=1001

 

On the other hand, grouping 500 terms at a 

time, we also have  

𝑆 = ∑
1

𝑘

3001

𝑘=1001

 

<
500

1000
+
500

1500
+
500

2000
+
500

2500
+

1

3001
 

<
1

2
+
1

3
+
1

4
+
1

5
+

1

3000
=
3851

3000
>
4

3
 

Note : We can sharpen the above inequality. 

Consider the sum  

𝑆 = ∑
1

𝑘

3𝑛+1

𝑘=𝑛+1

 

There are 2n+1 terms in the sum and the 

middle term is 
1

2𝑛+1
. We can write the sum in 

the form  

𝑆 =
1

2𝑛 + 1
+∑(

1

2𝑛 + 1 + 𝑘
+

1

2𝑛 + 1 − 𝑘
)

𝑛

𝑘=1

 

=
1

2𝑛 + 1
+

2

(2𝑛 + 1)
∑

1

1 − (
𝑘

2𝑛 + 1)
2

𝑛

𝑘=1

 

For 0 < a < ½, we have  

1 + 𝑎 <
1

1 − 𝑎
< 1 + 2𝑎 

Thus we get the bounds  

1

2𝑛 + 1
+

2

2𝑛 + 1
∑ [1 + (

𝑘

2𝑛 + 1
)
2

] < 𝑆

𝑛

𝑘=1

 

And  

𝑆 <
1

2𝑛 + 1
+

2

2𝑛 + 1
∑ [1 + 2(

𝑘

2𝑛 + 1
)
2

]

𝑛

𝑘=1

. 

This on simplification gives  

1 +
2

(2𝑛 + 1)3
∑𝑘2 < 𝑆

𝑛

𝑘=1

< 1 +
4

(2𝑛 + 1)3
∑𝑘2
𝑛

𝑘=1

. 

Now using the identity 

∑𝑘2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

𝑛

𝑘=1

 

The inequality simplifies to  

1 +
𝑛(𝑛 + 1)

3(2𝑛 + 1)2
< 𝑆 < 1 +

2𝑛(𝑛 + 1)

3(2𝑛 + 1)2
 

But for 𝑛 ≥ 1, we also have  

2

9
≤
𝑛(𝑛 + 1)

(2𝑛 + 1)2
≤
1

4
 

This leads to  

29

27
< 𝑆 <

7

6
 

 

30. We have,  

𝑦 + 𝑧 = 4 − 𝑥 

𝑦2 + 𝑧2 = 6 − 𝑥2 

From Cauchy Schwarz inequality we get,  

𝑦2 + 𝑧2 ≥
1

2
(𝑦 + 𝑧)2  

Hence,  

6 − 𝑥2 ≥
1

2
(4 − 𝑥)2 
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This simplifies to (3x−2)(x−2)≤ 0. Hence we 

have 2/3 ≤ 𝑥 ≤ 2.  

Suppose 𝑥 = 2.  

Then 𝑦 + 𝑧 = 2, 𝑦2 + 𝑧2 = 2 which has 

solution 𝑦 = 𝑧 = 1. (Similarly 𝑥 = 2/3 is also 

possible (verify)).  

Since the given relations are symmetric in x, y 

and z, similar assertions hold for y and z also.  

 

31. Consider the polynomial f(x) −2. This 

vanishes at 𝑎1, 𝑎2, 𝑎3, 𝑎4 𝑎𝑛𝑑 𝑎5. Hence  

𝑓(𝑥) − 2 = (𝑥 − 𝑎1)(𝑥 − 𝑎2)(𝑥 − 𝑎3)(𝑥

− 𝑎4)(𝑥 − 𝑎5)𝑔(𝑥) 

  For some polynomial g(x) with integral 

coefficients.  

If f(b) = 9 for some integer b, then 

7 = (𝑏 − 𝑎1)(𝑏 − 𝑎2)(𝑏 − 𝑎3)(𝑏 − 𝑎4)(𝑏 −

𝑎5)𝑔(𝑏)  

which is impossible because the integers 𝑏 −

𝑎1, 𝑏 − 𝑎2, … , 𝑏 − 𝑎5 are all distinct and 7 

cannot be factored into more than 3 distinct 

numbers. [Best we can do is 7 =

(−7)(−1)(1)].  

Remark : The same conclusion holds even if f(x) 

assumes the value 2 for only 4 distinct integers.  

32. The relation (i) gives  

𝑓(1990) − 90 [
𝑓(1990)

90
] = 1990 − 19 [

1990

19
]

= 1990 − 1976 = 14 

Using relation (ii),  

1990

90
<
𝑓(1990)

90
<
2000

90
 

𝑜𝑟, 21
10

90
<
𝑓(1990)

90
< 22

20

90
 

Thus  

[
𝑓(1990)

90
] = 21 𝑜𝑟 22 

If  

[
𝑓(1990)

90
] = 21 

Then  

𝑓(1990) = 14 + 90.21 = 1904  

If  

[
1990

90
] = 22 

Then  

𝑓(1990) = 1994  

 

33. Since the right hand side is positive, so is 

the left hand side. Hence x must be 

positive.  

Let 𝑥 = 𝑛 + 𝑓, where 𝑛 = [𝑥] 𝑎𝑛𝑑 𝑓 = [𝑥]. We 

consider two cases:  

Case 1: 0 ≤ 𝑓 < 1/2 : In this case, we get [2x]=

[2𝑛 + 2𝑓] = 2𝑛, as 2f < 1. Hence the equation 

becomes  

1

𝑛
+
1

2𝑛
= 𝑓 +

1

3
 

This forces (1/n)+(1/2n) ≥ 1/3. We conclude 

that 2𝑛 − 9 ≤ 0. Thus n can take values 1, 2, 3, 

4. Among these 𝑛 = 2,3,4 are all admissible, 

because for n = 2,3,4 we get f=5/12, 1/6, 1/24 

respectively which are all less than ½; while 𝑛 =



Olympiad Mathematics by Tanujit Chakraborty 

32 
 

1 is not admissible, because 𝑛 = 1 gives f > ½. 

We get three solutions in this case;  

𝑥 = 2 + (
5

12
) =

29

12
; 𝑥 = 3 + (

1

6
) =

19

6
; 𝑥

= 4 + (
1

24
) =

97

24
 

Case 2: (1/2) ≤ 𝑓<1: Now we get [2x] = 2𝑛 +

1, as 1≤ 2𝑓 < 2. The given equation reduces to  

1

𝑛
+

1

2𝑛 + 1
= 𝑓 +

1

3
 

We conclude, as in Case 1. 1/n + 1/ (2n+1) ≥ 

1/2 + 1/3. This reduces to 10𝑛2 − 13𝑛 − 6 ≤ 0 

. It follows that 𝑛 = 1. But this is not admissible 

since n = 1 gives 𝑓 = 1. We do not have any 

solution in this case.  

 

34. By looking at the first few values of 𝑎𝑛, we 

guess that  

𝑎𝑛 = (𝑛 − 1)
2 + 1 = 𝑛2 − 2𝑛 + 2 .  

We prove this by induction on n. In fact, 

𝑎𝑛+1 = 2𝑎𝑛 − 𝑎𝑛−1 + 2 

= 2[(𝑛 − 1)2 + 1] − [(𝑛 − 2)2 + 1] + 2 

= 2𝑛2 − 4𝑛 + 4 − (𝑛2 − 4𝑛 + 5) + 2

= 𝑛2 + 1 

Now we have,  

𝑎𝑚𝑎𝑚+1 = [(𝑚 − 1)
2 + 1][𝑚2 + 1] 

= 𝑚2(𝑚 − 1)2 +𝑚2 + (𝑚 − 1)2 + 1 

= [𝑚(𝑚 − 1) + 1]2 + 1 

= 𝑎𝑚2−𝑚+2 

 

35. Let 𝛼, 𝛽, 𝛾 be the rots of the given cubic 

𝑥3 − 𝑎𝑥 + 𝑏 = 0, where a > 0 and b > 0. 

We have  

𝛼 + 𝛽 + 𝛾 = 0
𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼 = −𝑎

𝛼𝛽𝛾 = −𝑏
} 

From the last of these equations, we see that 

either all the roots are negative or two are 

positive and one negative. However, the second 

equation in (*) shows that all three cannot be 

negative. So, two of 𝛼, 𝛽, 𝛾 are positive and the 

remaining root is negative. The first equation in 

(*) implies that the negative rot is numerically 

larger than the other two positive roots. Hence, 

we may assume that 𝛾 < 0 < 𝛼 ≤

𝛽 𝑤ℎ𝑒𝑟𝑒 |𝛼| ≤ |𝛽| ≤ |𝛾|.  

We have  

𝑏 − 𝑎𝛼 = −𝛼𝛽𝛾 + 𝛼(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼) =

𝛼2(𝛽 + 𝛾) = −𝛼3 < 0.  

Since a is positive, we get b/a < 𝛼 proving the 

first inequality.  

Again, we have  

3𝑏 − 2𝑎𝛼 = −3𝛼𝛽𝛾 + 2𝛼(𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼)  

= −𝛼𝛽𝛾 + 2𝛼2𝛽 + 2𝛼2𝛾  

𝛼[2𝛼(𝛽 + 𝛾) − 𝛽𝛾]  

= 𝛼[−2(𝛽 + 𝛾)2 − 𝛽𝛾]           (𝑠𝑖𝑛𝑐𝑒 𝛼 =

−(𝛽 + 𝛾)  

= −𝛼(2𝛽2 + 5𝛽𝛾 + 2𝛾2)  

= −𝛼(2𝛽 + 𝛾)(𝛽 + 2𝛾)  

= −𝛼(𝛽 − 𝛼)(𝛾 − 𝛼).  

Observe that –𝛼 < 0, 𝛽 ≥ 𝛼, 𝛾 − 𝛼 < 0. Hence 

3𝑏 − 2𝑎𝛼 is nonnegative. This proves the 

second inequality, 𝛼 ≤ 3𝑏/2𝑎.  
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36. Since l is a root of the equation 𝑥3 +

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0,  

We have  

𝑙3 = −𝑎𝑙2 − 𝑏𝑙 − 𝑐  

This implies that  

𝑙4 = −𝑎𝑙3 − 𝑏𝑙2 − 𝑐𝑙 = (1 − 𝑎)𝑙3 + (𝑎 −

𝑏)𝑙2 + (𝑏 − 𝑐)𝑙 + 𝑐  

Where we have used again  

−𝑙3 − 𝑎𝑙2 − 𝑏𝑙 − 𝑐 = 0 . 

Suppose |𝑙| ≥ 1. Then we obtain  

|𝑙|4 ≤ (1 − 𝑎)|𝑙|3 + (𝑎 − 𝑏)|𝑙|2 + (𝑏 − 𝑐)|𝑙| +

𝑐  

≤ (1 − 𝑎)|𝑙|3 + (𝑎 − 𝑏)|𝑙|3 + (𝑏 − 𝑐)|𝑙|3 +

𝑐|𝑙|3  

≤ |𝑙|3.  

This shows that |𝑙| ≤ 1. Hence the only 

possibility in this case is |𝑙| = 1. We conclude 

that |𝑙| ≤ 1 is always true.  

 

37. Let us take square of an even integer, say, 

2a.  

𝑁 = 2𝑎  

⇒ 𝑁2 = 2𝑎 × 2𝑎 = 4𝑎2  

And 4a2 is not in the form of 4n + 3 or 4n + 2.  

If N is an odd number, then 𝑁 = 2𝑎 + 1.  

And 𝑁2 = (2𝑎 + 1)2 = 4𝑎2 + 4𝑎 + 1 =

4𝑎(𝑎 + 1) + 1 = 4𝑛 + 1.  

Here again the square is not in the form of 4n + 

3 or 4n + 2. In other words, any number in the 

form of 4n + 3 or 4n + 2 cannot be a square 

number. 

Where N is odd, 𝑁2 = 4𝑎(𝑎 + 1) + 1. 

As either a or a+1 is even, 𝑁2 = 8𝑘 + 1 for 

some k ∈ 𝑁.  

∴ The square of an odd number is in the form of 

8k+1.  

 

38. Let 𝑛 = 2𝑚−1 × 𝑝, where 𝑝 = 2𝑚 − 1 is a 

prime number.  

The divisors of 2𝑚−1 × 𝑝 are  1, 2, 22, 23, 

2𝑚−1, 𝑝, 2𝑝, 22𝑝,… , 2𝑚−2𝑝, 2𝑚−1𝑝.  

Now, we should sum all these divisors excepting 

the last one, viz. 2𝑚−1𝑝.  

The number of ways, in which a composite 

number can be expressed as a product of two 

factors, which are relatively prime to each 

other, is 2𝑛−1, where n is the number of distinct 

prime.  

For example, 58 × 37 × 415 can be resolved 

into product of two factors, in 23−1 = 22 = 4 

ways so that factors are co−prime numbers.  

Here they are  

58 × (37 × 415) 

37 × (58 × 415) 

415 × (37 × 58) 

And finally, 1 × (415 × 37 × 58).  

𝑆 = (1 + 2 + 22 +⋯+ 2𝑚−1 + 𝑝(1 + 2 + 22

+⋯+ 2𝑚−2) 
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=
1(2𝑚 − 1)

2 − 1
+
𝑝[1(2𝑚 − 1)]

2 − 1
 

= 2𝑚 − 1 + 𝑝(2𝑚−1 − 1) 

2𝑚 + 𝑝2𝑚−1 − 𝑝 − 1 

= 2𝑚−1(2 + 𝑝) − (𝑝 + 1) 

= 2𝑚−1(1 + 2𝑚) − 2𝑚       [∵ 𝑝 = 2𝑚 − 1] 

= 2𝑚−1(2𝑚 − 1) = 𝑛 

Now s(n), the sum of positive divisors of n, is 

given by  

𝑠(𝑛) =
𝑝1
𝑎1+1 − 1

𝑝1 − 1
×
𝑝2
𝑎2+1 − 1

𝑝2 − 1
× …

×
𝑝𝑚
𝑎𝑚+1 − 1

𝑝𝑚 − 1
 

Where 𝑛 = 𝑝1
𝑎1 × 𝑝2

𝑎2 × 𝑝𝑚
𝑎𝑚  

For example,  

𝑠(48) = 𝑠(24 × 3) 

=
25 − 1

2 − 1
×
32 − 1

2 − 1
= 31 × 4 = 124 

𝑠𝑘(𝑛), the sum of the kth power of the divisors 

of n =
𝑝1
𝑘(𝑎1+1)−1

𝑝1
𝑘−1

×
𝑝2
𝑘(𝑎2+1)−1

𝑝2
𝑘−1

× …
𝑝𝑚
𝑘(𝑎𝑚+1)

𝑝𝑚
𝑘 −1

 . 

39. Let the divisor be d and the remainder be 

r.  

Then by Euclidean Algorithm, we find  

19779 = 𝑑𝑞1 + 𝑟 ……(1) 

17997 = 𝑑𝑞2 + 𝑟 ………(2) 

By subtracting eq. (2) from eq. (1), we get  

1782 = 𝑑(𝑞1 − 𝑞2)  

∴ d is a three digit divisor of 1782.  

Therefore, possible values of d are 891, 594, 

297, 198.  

Hence, largest three digit divisor is 891 and the 

remainder is 177.  

 

40. (i) If 60 = 3 × 4 × 5 and 4|100n, then 4 

should divide 𝑛3 + 30𝑛2 i.e., 4 should 

divide 𝑛2(𝑛 + 30). This implies that n is 

even.  

 

(ii) If 5 |(30𝑛2 + 100𝑛), 

then 5 should divide 𝑛3. 

Hence 5 should divide 

n.  

(iii) If 3|30 n2, then 3 

should divide n3+100n, 

i.e., 3 should divide 

𝑛(𝑛2 + 100𝑛) =

𝑛(𝑛2 + 1 + 99) 

If 𝑛 ≡ ±1(𝑚𝑜𝑑 3), 𝑛2 = 1(mod 3) and  

𝑛2 + 1 ≡ 2(𝑚𝑜𝑑 3), so neither of (𝑛2 + 1 +

99) and n are divisible by 3.  

However, if 𝑛 = 0 (𝑚𝑜𝑑 3), 𝑡ℎ𝑒𝑛 𝑛(𝑛2 + 1 +

99) is divided by 3, i.e., n(n2+100) is divisible by 

3 only if n is a multiple of 3. From (i) , (ii) and 

(iii), we find that n must be a multiple of 30. So, 

we should find the sum of all multiples of 30 

less than 1998.  

𝑆𝑛 = 30 + 60 +⋯+ 1980 = 30(1 + 2 +⋯+

66) = 66330  

Principles of Induction  

1. First Principle of Mathematical 

Induction : Let {T(n): n∈ 𝑁} be a set of 

statements.  
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If T(1) is true and the truth of T(k) implies the 

truth of T(k+1), then T(n) is true for all n.  

𝐸𝑥𝑎𝑚𝑝𝑙𝑒: 𝑆𝑛 =∑𝑘 =
𝑛(𝑛 + 1)

2

𝑛

𝑘=1

 

𝑆1 =
1 × 2

2
= 1 𝑖𝑠 𝑡𝑟𝑢𝑒. 

𝐿𝑒𝑡 𝑆𝑘 =∑𝑡 =
𝑘(𝑘 + 1)

2

𝑘

𝑡=1

 

𝑆𝑘+1 =∑ 𝑡 =∑𝑡 + 𝑘 + 1

𝑘

𝑡=1

𝑘+1

𝑡=1

 

=
𝑘(𝑘 + 1)

2
+ (𝑘 + 1) 

=
(𝑘 + 1)(𝑘 + 2)

2
 

Hence, the identity is true for all n by induction. 

2. Second Principle of Mathematical 

Induction Strong principle of 

mathematical induction: Let {T(n) : 𝑛 ∈

𝑁} be a set of statements. If (i) T (1) is 

true and (ii) if for each natural number 

k, the truth of T(m) for all m < k where 

𝑘 ≥ 2 implies the truth of T(k), then 

T(n) is true for all n.  

3. Third Principle of Mathematical 

Induction. Let {T(n) |𝑛 ∈ 𝑁} be a set of 

statements for each natural number n. 

If  

 

(i) T (a) is true for some a ∈ 𝑁 

(ii) T(k) is true implies that T(k+1) is 

true for all 𝑘 ≥ 𝑎, then T(n) is 

true for all natural number 𝑛 ≥

𝑎.  

Examples on Mathematical Inductions  

(1) There must be something wrong with 

the following proof: what is it?  

Theorem : Let a be a positive number. For all 

positive integers n, we have 𝑎𝑛−1 = 1.  

Proof : If 𝑛 = 1, 𝑎𝑛−1 = 𝑎1−1 = 𝑎0 = 1.  

Assume that this statement is true for 𝑛 ≤

𝑘, 𝑖. 𝑒. , 𝑎𝑛−1 = 1 for all 𝑛 ≤ 𝑘.  

If 𝑘 ≥ 1 now for n = 𝑘 + 1, we have  

𝑎(𝑘+1)−1 = 𝑎𝑘 =
𝑎𝑘−1 × 𝑎𝑘−1

𝑎𝑘−2
=
1 × 1

1
= 1 

So the theorem is true for 𝑛 = 𝑘 + 1 wherever 

the theorem is true for 𝑛 ≤ 𝑘 and hence, by the 

second principle of Mathematical induction, the 

theorem is true for all natural numbers, n.  

Fallacy, for this explanation :  

When we have written 𝑎(𝑘+1)−1 𝑎𝑠 
𝑎𝑘−1×𝑎𝑘−1

𝑎𝑘−2
, 

we have assumed that the theorem is true for 

𝑛 ≤ 𝑘 and we have verified that it is true for 

𝑛 = 1. For example, taking 𝑘 = 1; the 

denominator becomes 𝑎1−2 = 𝑎−1 but we have 

not proved that 𝑎−1 = 1; neither can it proved.  

Therefore the proof has a loop hole here.  

 

41. From the pattern  

13 = 1, 23 = 3 + 5, 33 = 7 + 9 + 11, 43 =

13 + 15 + 17 + 19…  

Note that the first term on the R.H.S are 1st, 2nd, 

4th, 7th, …, odd numbers. So the R.H.S. of the nth 

identity to be proved has  

[
(𝑛−1)𝑛

2
+ 1] 𝑠𝑡 odd number as first term.  

Hence the nth identity to be proved is  
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𝑛3 = [
(𝑛 − 1)𝑛

2
+ 1] 2 − 1 +⋯𝑛 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠.  

i.e. 𝑛3 = (𝑛2 − 𝑛 + 1) + (𝑛2 − 𝑛 + 3) +⋯+

(𝑛2 + 𝑛 − 1)(n terms) . Assume this is true for 

n  

then (n+1)th identity to be proved is  

(𝑛 + 1)3 = (𝑛2 + 𝑛 + 1) + (𝑛2 + 𝑛 + 3) +

⋯+ (𝑛2 + 𝑛 + 2𝑛 + 1) [(n+1 terms)] 

= (𝑛2 − 𝑛 + 1) + (𝑛2 − 𝑛 + 3) +⋯+

(𝑛2 + 𝑛 − 1) + 2𝑛 +⋯+ (𝑛2 + 𝑛 + 2𝑛 + 1)  

= 𝑛3 + 2𝑛2 + 𝑛2 + 3𝑛 + 1 = (𝑛 + 1)3  

So the right hand side of kth row is  

(𝑘2 − 𝑘 + 1) + (𝑘2 − 𝑘 + 3) +⋯+ [(𝑘2 −

𝑘 + 1) + (𝑘 − 1)2]  

= (𝑘2 − 𝑘 + 1) + (𝑘2 + 𝑘 + 3) +⋯+ (𝑘2 +

𝑘 − 1)  

Now if we assume that the pattern holds for the 

kth row then we will have  

(𝑘2 − 𝑘 + 1) + (𝑘2 − 𝑘 + 3) +⋯+ (𝑘2 + 𝑘 −

1) = 𝑘3  

Now the (k+1)th row numbers will be  

(𝑘2 + 𝑘 + 1) + (𝑘2 + 𝑘 + 3) +⋯+ (𝑘2 + 𝑘 +

1 + 2𝑘)  

= (𝑘2 + 𝑘 + 1) + (𝑘2 + 𝑘 + 3) +⋯+ (𝑘2 +

3𝑘 + 1)  

= [(𝑘2 − 𝑘 + 1) + 2𝑘] + [(𝑘2 − 𝑘 + 3) +

2𝑘] + ⋯+ [(𝑘2 + 𝑘 − 1) + 2𝑘] + (𝑘2 + 3𝑘 +

1)  

(𝑘2 − 𝑘 + 1) + (𝑘2 − 𝑘 + 3) +⋯+ (𝑘2 + 𝑘 − 1)⏟                                
𝑘3

+

(𝑘 × 2𝑘) + (𝑘2 + 3𝑘 + 1) + 3𝑘2 + 3𝑘 + 1 =

(𝑘 + 1)3 (By assumption)  

Note : Now adding both the sides of n rows, we 

get  

13 + 23 + 33 +⋯+ 𝑛3 = 1 + 3 + 5 +⋯+

(2𝑛 − 1) +⋯+ (𝑛2 + 𝑛 − 1)  

Thus, on the right side there are  

(𝑛2 + 𝑛 − 1) + 1

2

=
𝑛(𝑛 + 1)

2
 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 1 

𝑠𝑜 13 + 23 + 33 +⋯+ 𝑛3 = (
𝑛(𝑛 + 1)

2
)

2

 

[Sum of the first n odd numbers = 𝑛2: Prove by 

Mathematical Induction 

Hint: 1 + 3 + 5 +⋯+ 2𝑛 − 1 = 𝑛2, 𝑛 = 1 =

1 × 1 = 12…] 

 

42. For 𝑛 = 10, we have 210 = 1024 > 103 =

1000.  

So the statement is true for 𝑛 = 10.  

Supposing that this statement is true for 𝑛 =

𝑘 ≥ 10;  

i.e., 2𝑘 > 𝑘3.  

For 𝑛 = 𝑘 + 1, 2𝑘+1 > 2 × 𝑘3 

Now, 2𝑘3 − (𝑘3 + 3𝑘2 + 3𝑘 + 1) = 𝑘3 −

3𝑘2 − 3𝑘 − 1 = (𝑘 − 1)3 − 6𝑘.  

Let 𝑘 = 10 + 𝑎,𝑤ℎ𝑒𝑟𝑒 𝑎 ≥ 0.  

Then (𝑘 − 1)3 − 6𝑘 = (10 + 𝑎 − 1)3 −

6(10 + 𝑎) = (9 + 𝑎)3 − 60 − 6𝑎 

= 729 + 243𝑎 + 27𝑎2 + 𝑎3 − 60 − 60𝑎  

= 669 + 183𝑎 + 27𝑎2 + 𝑎3 ≥ 0  
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[∵ 𝑎 ≥ 0]  

⇒ 2𝑘3 > (𝑘 + 1)3  

⇒ 2𝑘+1 > (𝑘 + 1)3  

Hence the inequality is true for all 𝑛 ≥ 10.  

 

43. Let us assume that the result is true for 𝑡𝑘 

for all k > n.  

𝑡1 =
1

2
[(1 + √3)

1
+ (1 − √3)

1
] 

=
1

2
(1 + √3 + 1 − √3) 

=
1

2
× 2 = 1 𝑖𝑠 𝑡𝑟𝑢𝑒. 

𝑡2 = 4 =
1

2
[(1 + √3)

2
+ (1 − √3)

2
] =

1

2
(8)

= 4 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑡𝑟𝑢𝑒. 

Now, we have to prove that  

𝑡𝑛 =
1

2
[(1 + √3)

𝑛
+ (1 − √3)

𝑛
] 

Since  

𝑡𝑛 = 2[𝑡𝑛−1 + 𝑡𝑛−2] 

= 2 [
1

2
{(1 + √3)

𝑛−1
+ (1 − √3)

𝑛−1
}

+
1

2
{(1 + √3)

𝑛−2

+⋯(1 − √3)
𝑛−2

}] 

= [(1 + √3)
𝑛−1

+ (1 + √3)
𝑛−2

+ (1 + √3)
𝑛−1

+ (1 + √3)
𝑛−2

] 

= [(1 + √3)
𝑛−2

(2 + √3)

+ (1 − √3)
𝑛−2

(2 − √3)] 

= [(1 + √3)
𝑛−2 (1 + √3)

2

2

+ (1 − √3)
𝑛−2 (1 − √3)

2

2
] 

=
1

2
[(1 + √3)

𝑛
+ (1 − √3)

𝑛
] 

𝑇ℎ𝑢𝑠, 𝑡𝑛 =
1

2
[(1 + √3)

𝑛
+ (1 − √3)

𝑛
] 

So, by the second principle of mathematical 

induction, the formula is true for all natural 

numbers.  

 

44. Let T(n) be the statement that (3 +

√5)
𝑛
+ (3 − √5)

𝑛
 is divisible by 2n.  

𝑇1: (3 + √5) + (3 − √5) = 6 is divisible by 

21 = 2 is true.  

𝑇2: (3 + √5)
2
+ (3 − √5)

2
= 28 is divisible by 

22 is true. Let us take that 𝑇𝑘 is true for all k < n 

for some n.  

𝑇𝑛: (3 + √5)
𝑛
+ (3 − √5)

𝑛
 is divisible by 2n.  

Now, for n −1 < n 

(3 + √5)
𝑛−1

+ (3 − √5)
𝑛−1

 is divisible by 

2𝑛−1.  

(3 + √5)
𝑛
+ (3 − √5)

𝑛
  

= [(3 + √5)
𝑛−1

+ (3 − √5)
𝑛−1

] (3 + √5 +

3 − √5) − [(3 + √5)(3 − √5)
𝑛−1

+ (3 −

√5)(3 + √5)
𝑛−1

]  



Olympiad Mathematics by Tanujit Chakraborty 

38 
 

= 6 [(3 + √5)
𝑛−1

+ (3 − √5)
𝑛−1

] − [4(3 −

√5)
𝑛−2

+ 4(3 + √5)
𝑛−2

]  

= 3 × 2 [(3 + √5)
𝑛−1

+ (3 − √5)
𝑛−1

] −

[4(3 + √5)
𝑛−2

+ (3 − √5)
𝑛−2

]  

Here 2 [(3 + √5)
𝑛−1

+ (3 − √5)
𝑛−1

] is 

divisible by 2 × 2𝑛−1 = 2𝑛, 𝑎𝑛𝑑 4 [(3 +

√5)
𝑛−2

+ (3 − √5)
𝑛−2

] is divisible by 4 ×

2𝑛−2 = 2𝑛 

Thus (3 + √5)
𝑛
+ (3 − √5)

𝑛
 is divisible by 2n 

i.e., Tn is true if 𝑡𝑛−1 𝑎𝑛𝑑 𝑡𝑛−2 are true.  

Similarly, 𝑡1 𝑎𝑛𝑑 𝑡2 are true and, therefore, by 

the second principle of mathematical induction, 

𝑇𝑛 is true for all 𝑛 ∈ 𝑁.  

 

45. (𝑥𝑦𝑧)11 = (𝑧𝑦𝑥)12  

112𝑥 + 11𝑦 + 𝑧 = 92𝑧 + 9𝑦 + 𝑥  

⇒ 120𝑥 + 2𝑦 − 80𝑧 = 0  

⇒ 60𝑥 + 𝑦 − 40𝑧 = 0  

⇒ 40𝑧 − 60𝑥 = 𝑦  

⇒ 20(2𝑧 − 3𝑥) = 𝑦, 𝑏𝑢𝑡 0 ≤ 𝑦 < 9  

So 20|y, but as 0 ≤ 𝑦 < 9, 𝑦 = 0 

Therefore, 2𝑧 = 3𝑥. As 0 ≤ 𝑥, 𝑧 < 9, the 

solutions are 𝑥 = 2, 𝑧 = 3 𝑎𝑛𝑑 𝑥 = 4, 𝑧 = 6. 

Thus two possible solutions are 

(203)11 𝑎𝑛𝑑 (406)12.  

 

 

 

46. Let 𝑛 = 𝑞𝑘 + 𝑟, 0 ≤ 𝑟 ≤ 𝑘.  

𝑁𝑜𝑤,
𝑛

𝑘
=
𝑞𝑘 + 𝑟

𝑘
= 𝑞 +

𝑟

𝑘
; 
𝑛 + 1

𝑘

=
𝑞𝑘 + 𝑟 + 1

𝑘
= 𝑞 +

𝑟 + 1

𝑘
;  

2𝑛

𝑘
=
2𝑞𝑘 + 2𝑟

𝑘
= 2𝑞 +

2𝑟

𝑘
; 0 ≤ 𝑟 < 𝑘 

Thus, (i) r may be equal to k−1, or  

(ii) r may be < k−1 

If 𝑟 = 𝑘 − 1, we have  

[
𝑛

𝑘
] = 𝑞. [

𝑛 + 1

𝑘
] = [𝑞 +

𝑘

𝑘
] = 𝑞 + 1 

[
2𝑛

𝑘
] = [2𝑞 +

2𝑘 − 2

𝑘
]

= 2𝑞 + 1 [𝑠𝑖𝑛𝑐𝑒 𝑘 > 1.
2

𝑘
≤ 1] 

So, by adding and equating, we get  

[
𝑛

𝑘
] + [

𝑛 + 1

𝑘
] = 2𝑞 + 1 = [

2𝑛

𝑘
] 

 

(ii)If r < k−1 we have  

[
𝑛

𝑘
] = 𝑞. [

𝑛 + 𝑘

𝑘
] = 𝑞 

[
2𝑛

𝑘
] = [2𝑞 +

2𝑟

𝑘
] ≥ 2𝑞 

So by adding, we get  

[
𝑛

𝑘
] = [

𝑛 + 1

𝑘
] ≤ [

2𝑛

𝑘
] 

Combining (i) and (ii), we get  

[
𝑛

𝑘
] + [

𝑛 + 1

𝑘
] ≤ [

2𝑛

𝑘
] 

Note : When 𝑘 = 2, the above inequality holds 

as an equality. (verify).  
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47. We need to find the largest e such that 

10𝑒| 6250!. 

But as 10 = 2 × 5, this implies that we need to 

find the largest e such that 5𝑒|6250! (clearly a 

larger power of 2| 6250!) 

𝐵𝑢𝑡, 𝑒 =∑[
6250

5𝑖
]

∞

𝑖=1

= 1250 + 250 + 50 + 10 + 2

= 1562 

Hence 6250! Ends with 1562 zeroes.  

 

48. If e is the maximum power of 5 in n!, then  

𝑒 =∑[
𝑛

5𝑖
] <∑[

𝑛

5𝑖
] =

𝑛

5
∑

1

5𝑖−1

∞

𝑖=1

∞

𝑖=1

∞

𝑖=1

 

=

𝑛
5

1 −
1
5

=
𝑛

4
 

∴ 𝑛 = 4𝑒  

Here e is given to be 20.  

∴ 𝑛 ≥ 80. For 80, 𝑒 = 19.  

Therefore, 85 is the required answer. Not only 

85, 86, 87, 88, 89 are also valid values of n. If 

solution exists for this type of problem, there 

will be 5 solutions.  

 

49. 𝑥 + 𝑦 = [𝑥] + [𝑦] + {𝑥} + {𝑦} 

[𝑥 + 𝑦] = [𝑥] + [𝑦] + [{𝑥} + {𝑦}] ≥ [𝑥] + [𝑦] 

This can be generalized for n numbers:  

[𝑥1] + [𝑥2] + ⋯+ [𝑥𝑛] ≤ [𝑥1 + 𝑥2 +⋯+ 𝑥𝑛]  

 

50. 12345 ≤ 𝑥 + 2𝑥 + 4𝑥 + 8𝑥 + 16𝑥 +

32𝑥 = 63𝑥  

∴ 𝑥 ≥
12345

63
= 195

20

21
  

When 𝑥 = 196, the L.H.S of the given equation 

becomes 12348.  

∴ 195
20

21
≤ 𝑥 ≤ 196 

Consider x in the interval (195
31

32
, 196). The 

L.H.S. expression of the given equation.  

= 195 + 0 + 390 + 1 + 780 + 3 + 1560 + 7

+ 3120 + 15 + 6240 + 31

= 12342 < 12345 

When x < 195 
31

32
, the L.H.S. is less than 12342.  

∴ for no value of x. The given equality will be 

satisfied.  

 

51. If x > 0, then 𝑥2 < 𝑥2 + 1 + 𝑥 < 𝑥2 +

2𝑥 + 1 = (𝑥 + 1)2.  

So 𝑥2 + 𝑥 + 1 lies between the two 

consecutives square integers and hence, cannot 

be a square.  

𝐼𝑓 𝑥 = 0, 𝑦2 = 1 + 0 + 0 = 1 is a square 

number. Thus, the solutions in this case are is 

(0, 1), (0, −1). 

Again if x < −1, then 𝑥2 > 𝑥2 + 𝑥 + 1 > 𝑥2 +

2𝑥 + 1, and hence, there exists no solution.  

For = −1 , we have  

𝑦2 = 1 − 1 + (−1)2 = 1  

∴ 𝑦 = ±1  

Thus, the only integral solutions are (0,1), (0, 

−1), (−1, +1), (−1, −1) 
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52. Since 101 × 10001 × …× 1000…01 

= (102 + 1)(104 + 1)(108 + 1)… (102
7
+ 1)  

= (102
1
+ 1)(102

2
+ 1)… (102

7
+ 1)  

= (102 + 1)(104 + 1)… (10128 + 1)  

Multiply and divide by 102 − 1,  

(102 − 1)(102 + 1)

(102 − 1)
(104 + 1)(108

+ 1)… (102
7
+ 1) 

1

(102 − 1)
(104 − 1)(104 + 1)(108

+ 1)… (102
7
+ 1) 

=
1

(102 − 1)
(108 − 1)(108 + 1)… (102

7
+ 1) 

=
1

(102 − 1)
(102

8
− 1) =

[(102)128 − 1]

102 − 1
 

= (102)127 + (102)126 +⋯+ 1 

This number has 128, 1’s in it with a 0 between 

every two ones.  

𝑆𝑜,
(102)128 − 1

99

=
(102 − 1)[(102)127 + (102)126 +⋯+ 102 + 1

99
 

= 10254 + 10252 +⋯+ 102 + 1

= 101010…101 

(These are 128 ones alternating zeroes and 

there are 127 zeroes in between).  

 

53. 56789 ≡ 89 (𝑚𝑜𝑑 100) 

= −11 (𝑚𝑜𝑑 100)  

∴ (56789)49 ≡ (−11)41 (mod 100)  

≡ (−11)40 × (−11) (mod 100)  

≡ 1140 × (−11) (mod 100)  

112 ≡ 21 (mod 100)  

114 ≡ 41 (mod 100)  

116 ≡ 21 × 41 (mod 100)  

≡ 61 (mod 100)  

1110 ≡ 41 × 61 (mod 100)  

≡ 01 (mod 100)  

1140 ≡ (01)40 (mod 100)  

≡ 1 (mod 100)  

(−11)41 ≡ 1140 × (−11) (mod 100)  

≡ 1 × (−11) (mod 100)  

≡ −11 (mod 100)  

≡ 89 (mod 100)  

That is last two digits of (56789)41 are 8 and 9 

in that order.  

 

54. Let 𝑃 =
1.3.5.7…(2𝑛−3).(2𝑛−1)

2.4.6…(2𝑛−2).2𝑛
  

Here we will prove that the product 𝑃𝑛 is 

actually less than 
1

√3𝑛+1
 for n > 1 and greater 

than 
1

√4𝑛+1
.  

𝑃1 =
1

2
, 𝑃2 =

1.3

2.4
 =
3

8
, 𝑃3 =

1.3.5

2.4.6
=
15

48
 

And writing 𝑛 = 1,𝑤𝑒 𝑔𝑒𝑡 𝑃1 =
1

2
 

𝑃2 =
3

8
<

1

√3 × 2 + 1
=
1

√7
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𝐹𝑜𝑟 𝑃2
2 =

9

64
𝑎𝑛𝑑 (√

1

7
)

2

=
1

7
 𝑎𝑛𝑑 𝑃2

2 =
9

24

<
1

7
 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑃2 <

1

√7
 

𝑛 = 3 gives 
1

√3𝑛+1
=

1

√10
 

𝑃3 =
12

48
<

1

√10
 

𝐹𝑜𝑟, 𝑃3
2 =

225

2304
<
225

2250
=
1

10
 

𝑁𝑜𝑤 𝑙𝑒𝑡 𝑃𝑛
2 =

12. 32. 52…(2𝑛 − 1)2

22. 42. 62…(2𝑛)2
 

We have verified  

𝑃1
2 ≤

1

√4
, 𝑃2
2 <

1

√3 × 2 + 1
, 𝑃3
2 <

1

√3 × 3 + 1
 

We use mathematical induction to prove our 

assertion.  

We have verified that for 𝑛 = 2,3  

𝑃𝑛 <
1

√3𝑛 + 1
 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 𝑃𝑛

2 <
1

3𝑛 + 1
 

Let us assume that this result is true is true for 

𝑛 = 𝑚.  

𝑖. 𝑒. , 𝑃𝑚
2 < 

1

3𝑚 + 1
 

𝑖. 𝑒. , 𝑃𝑚
2 <

12. 32…(2𝑚 − 1)2

22. 42…(2𝑚)2
<

1

3𝑚 + 1
 

𝑃𝑚+1
2  =

12. 32…(2𝑚 − 1)2. (2𝑚 + 1)2

22. 42…(2𝑚)2. 22(𝑚 + 1)2
 

<
1

(3𝑚 + 1)
×
(2𝑚 + 1)2

22(𝑚 + 1)2
 

1

(3𝑚 + 1)
×
(2𝑚 + 1)2

22(𝑚 + 1)2

=
4𝑚2 + 4𝑚 + 1

4(3𝑚 + 1)(𝑚2 + 2𝑚 + 1)
 

=
4𝑚2 + 4𝑚 + 1

12𝑚3 + 28𝑚2 + 20𝑚 + 4
 

<
4𝑚2 + 4𝑚 + 1

12𝑚3 + 28𝑚2 + 19𝑚 + 4
 

Where m is positive 

=
(4𝑚2 + 4𝑚 + 1)

(4𝑚2 + 4𝑚 + 1)(3𝑚 + 4)
 

=
1

3𝑚 + 4
=

1

3(𝑚 + 1) + 1
 

Thus, 𝑃𝑚
2 < 

1

3𝑚+1
 implies 𝑃𝑚+1

2 <

1

3(𝑚+1)+1
 𝑎𝑛𝑑 𝑃2

2, 𝑃3
2, … are less than 

1

3×2+1
 𝑎𝑛𝑑 

1

3×3+1
 respectively.  

∴ 𝑃𝑛
2 <

1

3𝑛 + 1
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 2 

𝑜𝑟, 𝑃𝑛 <
1

√3𝑛 + 1
 

In the problem, we have 𝑛 = 50 

𝑠𝑜,
1.3… (2 × 50 − 1)

2.4… (2 × 50)
<

1

√150 + 1
=

1

√151

<
1

√100
=
1

10
 

Here we shall show that  

1.3.5… (2𝑛 − 1)

2.4.6… (2𝑛)
>  

1

√4𝑛 + 1
 

𝐿𝑒𝑡 𝑃𝑛 =
1.3.5… (2𝑛 − 1)

2.4.6… (2𝑛)
 

𝑇ℎ𝑒𝑛 𝑃𝑛
2 =

12. 32. 52…(2𝑛 − 1)2

22. 42. 62…(2𝑛)2
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𝑃1
2 =

12

22
=
1

4
>
1

5
 

𝐻𝑒𝑛𝑐𝑒  𝑃1 > √
1

5
=

1

√4 × 1 + 1
 

So the assumption is true for 𝑛 = 1.  

Let us assume that  

𝑃𝑚
2 > 

1

4𝑚 + 1
 

⇒ 𝑃𝑚 >
1

√4𝑚 + 1
 

𝑃𝑚+1
2 =

12. 32…(2𝑚 − 1)2. (2𝑚 + 1)2

22. 42…(2𝑚)2. (2𝑚 + 2)2

>
1

4𝑚 + 1
×
(2𝑚 + 1)2

(2𝑚 + 2)2
 

𝐵𝑢𝑡 
1

4𝑚 + 1
×
(2𝑚 + 1)2

(2𝑚 + 2)2
 

=
4𝑚2 + 4𝑚 + 1

(4𝑚 + 1)(4𝑚2 + 8𝑚 + 4)
 

=
(4𝑚2 + 4𝑚 + 1)

16𝑚3 + 36𝑚2 + 24𝑚 + 4
 

=
(4𝑚2 + 4𝑚 + 1)

(4𝑚2 + 4𝑚 + 1)(4𝑚 + 5) − 1
 

>
4𝑚2 + 4𝑚 + 1

(4𝑚2 + 4𝑚 + 1)(4𝑚 + 5)
=

1

(4𝑚 + 5)
 

𝑆𝑜, 𝑃𝑚+1
2

12. 32…(2𝑚 − 1)2. (2𝑚 + 1)2

22. 42…(2𝑚)2. (2𝑚 + 2)2
 

>
1

(4𝑚 + 1)
×
(2𝑚 + 1)2

(2𝑚 + 1)2
>

1

4𝑚 + 5

=
1

4(𝑚 + 1) + 1
 

∴ 𝑃𝑚+1 >
1

√4(𝑚 + 1) + 1
 

𝑃1 is true, the truth of Pm implies truth of Pm+1. 

So Pn is true for all 𝑛 ∈ 𝑁.  

 

55.  

2222 ≡ 3 (mod 7) 

22222 ≡ 9 = 2 (mod 7)  

22224 ≡ 4 (mod 7) 

22226 ≡ 8 = 1 (mod 7)  

22225555 = [(2222)6]925 × 22225  

= [(2222)6]925 × 22224 × 22221 = 1 × 4 × 3  

= 12 = 5 (mod 7)  

5555 ≡ 4 (mod 7) 

55553 ≡ 43 (𝑚𝑜𝑑 7) = 1(mod 7)  

(5555)2222 = (55553)740 × 55552  

≡ 1 × 4 × 4 (mod 7) 

= 2 (mod 7)  

And hence 22225555 + 55552222 ≡ 5 + 2 = 0 

(mod 7) and, hence, the result.  

 

56. 𝑎1𝑎2𝑎3𝑎4𝑎5 is divisible by 5 and hence 𝑎5 =

5.  

𝑎1𝑎2, 𝑎1𝑎2𝑎3𝑎4, 𝑎𝑛𝑑 𝑎1𝑎2𝑎3𝑎4𝑎5𝑎6 are to be 

divisible by 2, 4 and 6 respectively. 

𝑎2, 𝑎4 𝑎𝑛𝑑 𝑎6 should be even numbers.  

So 𝑎1 = 1 and 𝑎3 = 3 𝑜𝑟 𝑎1 = 3 𝑎𝑛𝑑 𝑎3 = 1  

Case 1: If 𝑎1 = 1, 𝑎2 = can be 2, 4 or, 6 and 

𝑎1𝑎2𝑎3 = 123, 143 or 163 but 143, 163 are not 

divisible by 3.  
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So 𝑎1𝑎2𝑎3 should be 123. For 𝑎4, we have 

either 4 or 6 but for 𝑎4 = 4, 1234 is not divisible 

by 4 and hence 𝑎4 = 6 and hence. The six digit 

number, when 𝑎 = 1, is 123654.  

Case 2 : If 𝑎1 = 3, 𝑎2 can be2 or 6 or 4 but then 

𝑎1𝑎2𝑎3 = 321 is divisible by 3 and 361 o 341 is 

not divisible by 3.  

So, 𝑎2 can be 6 or 4.  

Now 𝑎1𝑎2𝑎3𝑎4 = 321𝑎4 and a4 can be 4 or 6. 

For 𝑎4 = 4  321𝑎4 is not divisible by 4 and 

hence 𝑎4 = 6 𝑎𝑛𝑑 𝑎6 = 4’  

The number, thus, is 321654.  

Thus, there are exactly 2 numbers 123654 and 

321654 satisfying the condition.  

 

57. It is given that  𝑚 × 𝑛 = 25! = 222 × 310 ×

56 × 71 × 111 × 131 × 171 × 191 × 231  

Thus 25! Is the product of powers of 9 prime 

numbers. Thus number of ways in which 25! 

Can be written as the product of two relatively 

prime numbers m and n is 29, which leads to 29 

factors, exactly half of which, are less than 1. 

There are 28 such fractions.  

58. Since 10𝑛 ≡ 1 (mod 9) for all 𝑛 ∈ 𝑁, any 

number written in decimal representation such 

as 𝑎𝑛 𝑎𝑛−1𝑎𝑛−2…𝑎1𝑎0 ≡ 𝑎𝑛 + 𝑎𝑛−1 +⋯+

𝑎1 + 𝑎0 (mod 9).  

∴ 4333 ≡ 4 + 3 + 3 + 3 ≡ 13 (𝑚𝑜𝑑 9) ≡

4(mod 9)  

∴ 43333 ≡ 43 (mod 9) 

≡ 64 (mod 9) 

≡ 1  (mod 9)  

i.e., when 43333 is divided by 9, the remainder 

is 1.  

 

59. Here we should show that there does not 

exist any positive integer d, which makes 

(2d−1), (5d−1), (13d−1) to be square number 

simultaneously.  

Assuming the contrary,  

2𝑑 − 1 = 𝑥2 

5𝑑 − 1 = 𝑦2 

13𝑑 − 1 = 𝑧2 

Where x, y and z are positive integers 𝑥2 =

2𝑑 − 1 is an odd number, and since 𝑥2 ≡ 1 

(mod 8) for all odd integer x if d is even, then 

d= 2, 4 or 6 (mod 8).  

2d−1= 3, 7 or 3 (mod 8) which is impossible and 

hence d must be odd. Hence y and z are even.  

Now 𝑧2 − 𝑦2 = 8d  

⇒ (𝑧 − 𝑦)(𝑧 + 𝑦) = 8𝑑  

Therefore either (z –y) or (z+y) is divisible by 4.  

If z−y is divisible by 4, then z + y = (𝑧 − 𝑦) + 2𝑦 

is also divisible by 4 because (z – y) and 2y are 

divisible by 4.  

Similarly, if z + y is divisible by 4, then z – y = (z 

+ y) – 2y is also divisible by 4.  

Thus, (z – y). (z + y) is divisible by 4 × 4 = 16.  

Thus, 16|8d, where d is an odd number.  

This is a contradiction and hence, (2d – 1), (5d – 

1) and (13d – 1) cannot simultaneously be 

square integers.  
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60. We shall make groups of the terms of the 

expression as follows :  

(11997 + 19961997) + (21997 + 19951997) +

⋯+ (9981997 + 9991997)  

Here each bracket is of the form (𝑎𝑖
2𝑛+1 +

𝑏𝑖
2𝑛+1) is divisible by (𝑎𝑖 + 𝑏𝑖) 

But (𝑎𝑖 + 𝑏𝑖) = 1997 for all i. 

∴ Each bracket and hence, their sum is divisible 

by 1997.  

 

61. If possible, let 𝑙𝑜𝑔3 2 be a rational number 
𝑝

𝑞
 

where p, q are integers, 𝑞 ≠ 0. 

𝑙𝑜𝑔3
2  =

𝑝

𝑞
 

⇒ 3
𝑝
𝑞 = 2 

⇒ 3𝑝 = 2𝑞 

3|3𝑝 𝑏𝑢𝑡 3 |2𝑞 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 2 | 3𝑝 and hence, it is 

a contradiction.  

Or 3𝑝 is an odd number and 2𝑞 is an even 

number but an odd number equals to an even 

number is a contradiction.  

[Note that 30 = 1 < 2 = 3𝑝/𝑞 < 31 = 3, 0 < 

p/q < 1 and both p and q are positive real 

numbers. What we have proved here p/q is not 

a rational number or there cannot be exist 

integers satisfying 3𝑝 = 2𝑞] 

 

62. Since 𝑥3 − 𝑧3 = 721  

⇒ 𝑥3 − 𝑧3 = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑧 + 𝑧2) = 721 

For integral x, z; 𝑥2 + 𝑥𝑧 + 𝑧2 > 0, 

∵ 𝑥3 − 𝑧3 = 721  

⇒ 𝑥3 − 𝑧3 > 0  

⇒ 𝑥 − 𝑧 > 0  

So (x – z) (𝑥2 + 𝑥𝑧 + 𝑧2) = 721 = 1 × 721 =

7 × 103 = 103 × 7 = 721 × 1  

Case (i) 𝑥 − 𝑧 = 1 ⇒ 𝑥 = 1 + 𝑧 

And 𝑥2 + 𝑥𝑧 + 𝑧2 = (1 + 𝑧)2 + (1 + 𝑧)𝑧 +

𝑧2 = 721  

⇒ 3𝑧2 + 3𝑧 − 720 = 0  

⇒ 𝑧2 + 𝑧 − 240 = 0  

⇒ (𝑧 + 16)(𝑧 − 15) = 0  

⇒ 𝑧 = −16 or 15 

Solving, we get  

𝑥 = −15 𝑜𝑟 16  

So (−15, −16) and (16, 15) is two of the ordered 

pairs.  

Case (ii) 𝑥 − 𝑧 = 7 𝑜𝑟 𝑥 = 7 + 𝑧  

And 𝑥2 + 𝑥𝑧 + 𝑧2 = 103 

⇒ (7 + 𝑧2) + (7 + 𝑧)𝑧 + 𝑧2 = 103  

⇒ 3𝑧2 + 21𝑧 − 54 = 0  

⇒ 𝑧2 + 7𝑧 − 18 = 0  

⇒ (𝑧 + 9)(𝑧 − 2) = 0  

⇒ 𝑧 = −9 𝑜𝑟 𝑧 = 2  

So the corresponding values of x are −2 and 9.  

So the other ordered pairs are (−2, −9), (9, 2).  

Corresponding to x – z = 103 and x – z = 721, 

the values are imaginary and hence, there are 
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exactly four ordered pairs of integers (−15, 

−16), (16, 15), (−2, −9) and (9, 2), 

satisfying the equation 𝑥3 = 𝑧3 + 721.  

 

63. Since 1897 = 7 × 271 

Now (2903𝑛 − 803𝑛) − (464𝑛 − 261𝑛) =

(2903 − 830)| (2903𝑛 − 803𝑛) 

And (464 – 261) | (464𝑛 − 261𝑛) 

i.e. 2100|(2903𝑛 − 803𝑛) 

203|(464𝑛 − 261𝑛)  

⇒ 7 | (2903𝑛 − 803𝑛)  

And 7|(464𝑛 − 261𝑛) ∵ 2100 = 7 × 300 

203 = 7 × 29  

Hence, 7 | E  

Again, 2903𝑛 − 803𝑛 − 464𝑛 + 261𝑛 

= (2903𝑛 − 464𝑛) − (803𝑛 − 261𝑛) 

2903 − 464 = 2439|(2903𝑛 − 464𝑛)  

And (803 − 261) = 542| (803𝑛 − 261𝑛) 

i.e. 2439 = 271 × 9 | (2903𝑛 − 464𝑛) 

and 542 = 271 × 2 | (803𝑛 − 261𝑛)  

So, 271 | (2903𝑛 − 464𝑛) 

And also 271 | (803𝑛 − 261𝑛) 

And hence, 271 | E.  

Thus, the given expression is divisible by the 

prime numbers 7 and 271 and, hence is divisible 

by 271 × 7 = 1897. 

 

64.  If 𝑝 = 2,
2𝑝−1

𝑝
=
1

2
 is not even an integer.  

Let p be a prime of the form 4k + 1.  

Then, if 
2𝑝−1

𝑝
=
24𝑘−1

4𝑘+1
= 𝑚2 for some odd 

integer m.  

Then 2𝑘 − 1 = (4𝑘 + 1)𝑚2 

Since m2 is an odd number, 𝑚2 ≡ | (𝑚𝑜𝑑 4) as 

all odd squares leave a remainder/ when divide 

by 4 and hence of the form 4l + 1 (say)  

Then 24𝑘 − 1 = (4𝑘 + 1)(4𝑙 + 1) = 1 (mod 4) 

But the left hand side  

24𝑘 − 1 = (16𝑘 − 1) ≡ −1 (mod 4) 

≡ 3  (mod 4) 

And it is a contradiction and hence p cannot be 

of the form 4k + 1.  

So, let p be of the form 4k + 3.  

Firstly, let us take k = 0, 𝑡ℎ𝑒𝑛 𝑝 = 3.  

𝑠𝑜,
2𝑝−1−1

3
=
22−1

3
 is a square.  

Therefore, 𝑝 = 3 is one of the solutions.  

Let p be 4k + 3 with k > 0.  

2𝑝−1 − 1 = 24𝑘+1 − 1 = (22𝑘+1 − 1)(22𝑘+1 +

1)  

And 22𝑘+1 − 1 𝑎𝑛𝑑 22𝑘+1 + 1 being 

consecutive odd numbers are relatively prime.  

So, 2𝑝−1 − 1 = 𝑝𝑚2 

⇒ (22𝑘+1 − 1)(22𝑘+1 + 1) = (4𝑘 + 3)𝑚2 =

𝑝𝑚2  
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So, 𝑝𝑚2 could be written as 𝑝𝑢2 ×

𝑣2 𝑤ℎ𝑒𝑟𝑒 𝑝𝑢2 𝑎𝑛𝑑 𝑣2 are relatively prime.  

Thus, 22𝑘+1 − 1 = 𝑝𝑢2 

And 22𝑘+1 + 1 = 𝑣2 

⇒ 22𝑘+1 = 𝑣2 − 1 = (𝑣 + 1)(𝑣 − 1)  

So, (v + 1) and (v – 1) are both powers of 2.  

Two powers of 2 differ by 2 only if they are 2 

and 22. In all other cases, the difference will be 

greater than 2.  

So, 𝑣 − 1 = 21 = 2 

𝑣 + 1 = 22 = 4 ⇒ 𝑣 = 3  

i.e., 22𝑘+1 = 23 = 8 

hence, 𝑘 = 1 𝑎𝑛𝑑 𝑝 = 4𝑘 + 3 = 7.  

Therefore, the only other possibility is 𝑝 = 7. 

Thus, for 𝑝 = 7,
2𝑝−1

𝑝
 =

27−1

7
=
63

7
= 9 which is 

a perfect square.  

Thus, the only primes satisfying the given 

conditions are 3 and 7.  

 

65. From 5!, all the numbers will have the unit 

digit zero and from 10!, all the unit and tens 

digit will be zero. So, the unit digit of the 

numbers S is the unit digit of  

1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33. 

That is unit digit of S, is 3 

The tens digit of S, is the tens digit of  

1! + 2! + 3! + 4! + 5! + 6! + 7! + 8! + 9!= 33 +

120 + 720 + 5040 + 40320 + 362880 

So, to get the tens digit of S, add only the tens 

digit of 33 + 120 + … + 362880 which is 3 + 2 + 2 

+ 4 + 2 + 8 = 21 

So, the tens digit of S is 1.  

 

66. N is divisible by 9, if the digit sum is divisible 

by 9.  

The digital sum of N :  

The number of 1𝑆 occurring in the digits form 

10 to 19 = 11 

And from 20 to 99 = 8. 

So total of ones is 11 + 8 = 19. 

Similarly, no. of 2𝑆, 3𝑆…9 are all equal to 19.  

So sum of all the digits = 19(1 + 2 + 3 +⋯+

9) =
19×9×10

2
= 19 × 5 × 9 = 855. 

And hence, 1011 …99 is divisible by 9.  

When the number start from 12, the sum of the 

digits become 855 − 2= 852 (Since 10, 11 

account for the digital sum 3) and hence, is 

divisible by 3.  

(a) For divisibility by 3, it could start from 

13, 15, 16, 18, 19, 21, 22, 24, 25,… 

(b) For divisibility by 32 = 9 the numbers 

may start from any of 18, 19, 27, 28, 36, 

37,… 

 

67. Let 2𝑛 − 1 = 𝑞 

We have already seen that 1, 𝑑1𝑑2…𝑑𝑘  are  

1,2, 22, … , 2𝑛−1, 𝑞, 2𝑞, … , 2𝑛−1𝑞 respectively.  
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𝑆𝑜, 𝑆 =
1

1
+
1

𝑑1
+
1

𝑑2
+⋯+

1

𝑑𝑘
 

=
1

1
+
1

2
+
1

22
+⋯+

1

2𝑛−1

+
1

𝑞
[
1

1
+
1

2
+
1

22
+⋯+

1

2𝑛−1
] 

∴ 𝑆 =
2𝑛 − 1

2𝑛−1
+
1

𝑞

(2𝑛 − 1)

2𝑛−1

=
(2𝑛 − 1)𝑞 + (2𝑛 − 1)

𝑞2𝑛−1
 

=
(2𝑛 − 1)(𝑞 + 1)

𝑞2𝑛−1
=

(2𝑛 − 1)(2𝑛)

(2𝑛 − 1)(2𝑛−1)
 

=
2𝑛

2𝑛−1
= 2 

 

68. The divisors of N are  

1, 𝑃1, 𝑃2, 𝑃3, 𝑃1𝑃2, 𝑃1𝑃3, 𝑃2𝑃3, 𝑃1𝑃2𝑃3  

It is given that  

1 + 𝑃1 + 𝑃2 + 𝑃3 + 𝑃1𝑃2 + 𝑃1𝑃3 + 𝑃2𝑃3 +

𝑃1𝑃2𝑃3 = 3𝑁  

𝑁𝑜𝑤,∑
1

𝑑𝑖
=
1

1
+
1

𝑃1
+
1

𝑃2
+
1

𝑃3
+

1

𝑃1𝑃2
+

1

𝑃1𝑃3

𝑁

𝑖=1

+
1

𝑃2𝑃3
+

1

𝑃1𝑃2𝑃3
 

=
𝑃1𝑃2𝑃3 + 𝑃2𝑃3 + 𝑃1𝑃3 + 𝑃1𝑃2 + 𝑃3 + 𝑃2 + 𝑃1 + 1

𝑃1𝑃2𝑃3
 

But the numerator is the sum of the divisors of 

N.  

i.e., ∑ 𝑑 = 3𝑁 = 3𝑃1𝑃2𝑃3𝑑|𝑁  and hence  

∑
1

𝑑1
=
3𝑃1𝑃2𝑃3
𝑃1𝑃2𝑃3

= 3

𝑁

𝑖=1

 

 

69. If 𝑁 = 𝑝1
𝑎1 , 𝑝1

𝑎2 , … 𝑝𝑛
𝑎𝑛, then the sum of the 

divisors of N is given by the formula  

∑𝑑(𝑁) =
𝑝1
𝛼1+1 − 1

𝑝1 − 1
×
𝑝1
𝛼1+2 − 1

𝑝𝑛 − 1

× …
𝑝𝑛
𝛼𝑛+2 − 1

𝑝𝑛 − 1
 

So, the sum of the divisors of 2𝑛𝑎. 𝑏 = (2𝑛+1 −

1) ×
𝑎2−1

𝑎−1
×
𝑏2−1

𝑏−1
 

= (2𝑛+1 − 1)(𝑎 + 1)(𝑏 + 1) 

= (2𝑛+1 − 1)(9. 22𝑛−1) 

But 2𝑛𝑎𝑏 = 2𝑛[9. 22𝑛−1 − 9. 2𝑛−1 + 1] (on 

simplification).  

The sum of the divisors of 2𝑛𝑎𝑏 other than 

2𝑛𝑎. 𝑏 is  

9. 22𝑛−1(2𝑛+1 − 1) − 2𝑛(9. 22𝑛−1 − 9. 2𝑛−1 +

1)  

= 9. 23𝑛 − 9. 22𝑛−1 − 9. 23𝑛−1 + 9. 22𝑛−1 − 2𝑛  

= 9. 23𝑛−1(2 − 1) − 2𝑛  

= 9. 23𝑛−1 − 2𝑛  

= 2𝑛(9. 22𝑛−1 − 1)  

= 2𝑛. 𝑐  

Thus, the sum of the divisors of 2𝑛. 𝑎𝑏 other 

than itself is 2𝑛𝑐.  

Now, sum of the divisors of 2𝑛𝑐 other than 

itself is  

2𝑛+1 − 1

2 − 1
×
𝑐2 − 1

𝑐 − 1
− 2𝑛. 𝑐 

= (2𝑛+1 − 1)(𝑐 + 1) − 2𝑛. 𝑐 

= (2𝑛+1 − 1)9. 22𝑛−1 − 2𝑛(9. 22𝑛 − 1) 

= 9. 23𝑛 − 9. 22𝑛−1 − 9. 23𝑛−1 + 2𝑛 
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= 9. 23𝑛−1 − 9. 22𝑛−1 + 2𝑛 

= 2𝑛[9. 22𝑛−1 − 9. 22𝑛−1 + 1] 

= 2𝑛𝑎𝑏 

i.e., the sum of the divisors of 2𝑛. 𝑐 other than 

2𝑛. 𝑐 is equal to 2𝑛𝑎𝑏. 

 

70. Since 𝑁 = 30240 = 25 × 33 × 51 × 71 

𝑆𝑜, 𝑠(𝑁) =
(26 − 1)

2 − 1
×
(34 − 1)

(3 − 1)
×
(52 − 1)

(5 − 1)

×
(72 − 1)

(7 − 1)
 

= 63 × 40 × 6 × 8 

= 27 × 35 × 5 × 7 

= 22 × 25 × 33 × 51 × 71 = 4 × 𝑁 = 4𝑁 

71. The divisors of 𝑃1
𝑎1 . 𝑃2

𝑎2  are of the form 

𝑃1
𝑟. 𝑃2

𝑠 where 0 ≤ 𝑟 ≤ 𝑎1 𝑎𝑛𝑑 0 ≤ 𝑠 ≤ 𝑎2.  

𝑁𝑜𝑤, 𝑓(𝑃1
𝑎1 . 𝑃2

𝑎2) = ∑ 𝑡(𝑃1
𝑟. 𝑃2

𝑠)
0≤𝑟≤𝑎1
0≤𝑠≤𝑎2

 

= ∑ ∑ (𝑟 + 1)(𝑠 + 1)

0≤𝑠≤𝑎20≤𝑟≤𝑎1

 

= ∑ (𝑟 + 1) [ ∑ (𝑠 + 1)

0≤𝑠≤𝑎1

]

0≤≤𝑎1

 

∑ (𝑟 + 1)(
(𝑎2 + 1)(𝑎2 + 2)

2
)

0≤𝑟≤𝑎1

 

=
(𝑎2 + 1)(𝑎2 + 2)

2
∑ (𝑟 + 1)

0≤𝑟≤𝑎1

 

=
(𝑎2 + 1)(𝑎2 + 2)

2

(𝑎1 + 1)(𝑎1 + 2)

2
 

∵ 𝑓(𝑃1
𝑎1) = ∑ 𝑡(𝑃1

𝑟) = ∑ (𝑟 + 1)

0≤𝑟≤𝑎10≤𝑟≤𝑎1

 

=
(𝑎1 + 1)(𝑎1 + 2)

2
 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑓(𝑃2
𝑎2) =

(𝑎2 + 1)(𝑎2 + 2)

2
 

∴ 𝑓(𝑃1
𝑎1 . 𝑃2

𝑎2) = 𝑓(𝑃1
𝑎1). 𝑓(𝑃2

𝑎2) 

Where 𝑝1 ≠ 𝑝2 i.e., f is multiplicative.  

 

72. Consider F(18).  

Divisors of 18 are 1, 2, 3, 6, 9, 18.  

No. of divisors of divisors of 18 are 1, 2, 2, 4, 3, 

6.  

Sum of the cubes of the number of divisors of 

18  

= 13 + 23 + 23 + 43 + 33 + 63 = 324  

Now, 18 = 21 × 32 

𝐹(21) = 13 + 23 = 9  

𝐹(32) = 𝐹(9) = 13 + 23 + 33 = 36  

And 𝐹(2) × 𝐹(32) = 9 × 36 = 324 = 𝐹(18)  

Thus, F is also multiplicative.  

 

73. Any divisor of 𝑃1
𝑎1  𝑖𝑠 𝑃1

𝑟 , 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑟 ≤ 𝑎1 

𝐹(𝑃1
𝑎1) =∑𝑡3(𝑃1

𝑟) = ∑(𝑟 + 1)3

𝑎1

𝑟=0

𝑎1

𝑟=0

 

= sum of the first a1 + 1 natural numbers. 

= [
(𝑎1 + 1)(𝑎1 + 2)

2
]

2
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝐹(𝑃2
𝑎2) = [

(𝑎2 + 1)(𝑎2 + 2)

2
]

2

 

𝐹(𝑃1
𝑎1 . 𝑃2

𝑎2) = ∑ 𝑡3(𝑃1
𝑟. 𝑃2

𝑠)
0≤𝑟≤𝑎1
0≤𝑠≤𝑎2

 

=∑.∑(𝑟 + 1)3(𝑠 + 1)3

𝑎1

𝑠=0

𝑎1

𝑟=0

 

=∑(𝑟 + 1)3(∑(𝑠 + 1)3

𝑎2

𝑠=0

)

𝑎1

𝑟=0

 

=∑(𝑟 + 1)3. [
(𝑎2 + 1)(𝑎2 + 2)

2
]

2𝑎1

𝑟=0

 

= 𝐹(𝑃2
𝑎2).∑(𝑟 + 1)3

𝑎1

𝑟=0

 

= 𝐹(𝑃2
𝑎2) [

(𝑎1 + 1)(𝑎1 + 2)

2
]

3

 

= 𝐹(𝑃2
𝑎2)𝐹(𝑃1

𝑎1) 

74. Since 𝐹(𝑃1
𝑎1) = 13 + 23 + 33 +⋯+

(𝑎1 + 1)
3 

[𝑓(𝑃1
𝑎1)]

2
= [1 + 2 + 3 +⋯+ (𝑎1 + 1)]

2 =

[
(𝑎1+1)(𝑎1+2)

2
]
3
 

= 13 + 23 +⋯+ (𝑎1 + 1)
3  

= 𝐹(𝑃1
𝑎1)  

 

75. The solution is based on the result derived 

in problem 62.  

We can show that 𝐹(𝑁) = 𝑓(𝑁)2.  

If 𝑛 = 𝑃1
𝑎1 . 𝑃2

𝑎2 …𝑃𝑛
𝑎𝑛, then  

𝐹(𝑛) = 𝐹(𝑃1
𝑎1 . 𝑃2

𝑎2 …𝑃𝑛
𝑎𝑛) 𝑎𝑛𝑑 𝑃1, 𝑃2, … , 𝑃𝑛 

are distinct prime numbers and we have proved 

earlier that F is a multiplicative.  

∴ 𝐹(𝑛) = 𝐹(𝑃1
𝑎1 . 𝑃2

𝑎2 …𝑃𝑛
𝑎𝑛) 

= 𝐹(𝑃1
𝑎1). 𝐹(𝑃2

𝑎2)…𝐹(𝑃𝑛
𝑎𝑛) 

𝐵𝑢𝑡, 𝐹(𝑃1
𝑎1) = 13 + 23 +⋯+ 𝑎𝑖

3

= [
(𝑎𝑖 + 1)(𝑎𝑖 + 2)

2
]

3

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑁 

We have  

𝐹(𝑛) =

[
(𝑎1+1)(𝑎1+2)

2
]
2
. [
(𝑎2+1)(𝑎2+2)

2
]
2
… [

(𝑎𝑛+1)(𝑎𝑛+2)

2
]
2
  

[(𝑎1 + 1)(𝑎1 + 2)(𝑎2 + 1)(𝑎2 + 2)… (𝑎𝑛 +

1)(𝑎𝑛 + 2)]
2/(2𝑛)2 …….(A)  

Now, 𝐹(𝑛) = 𝑓(𝑃1
𝑎1 . 𝑃2

𝑎2 …𝑃𝑛
𝑎𝑛) 

= 𝑓(𝑃1
𝑎1). 𝑓(𝑃2

𝑎2)…𝑓(𝑃𝑛
𝑎𝑛)  [∵ f is 

multiplicative]  

=
(𝑎1 + 1)(𝑎1 + 2)

2
.
(𝑎2 + 1)(𝑎2 + 2)

2
 

…
(𝑎𝑛 + 1)(𝑎𝑛 + 2)

2
 

= (𝑎1 + 1)(𝑎1 + 2)(𝑎2 + 1)(𝑎2 + 2)… (𝑎𝑛 +

1)(𝑎𝑛 + 2)/2
𝑛 …….(B)  

∴ From (A) and (B), we see that 𝐹(𝑛) = [𝑓(𝑛)]2 

 

76. Let 𝑛2 + 96 = 𝑘2, 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑁.  

Then 𝑘2 − 𝑛2 = 96 

(𝑘 − 𝑛)(𝑘 + 𝑛) = 96 = 31 × 25  

Clearly k > n and hence, k + n > k – n > 0.  
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Since 3 is the only odd factor, both k and n are 

integers.  

We must have k + n and k – n both to be either 

even or odd. (If one is odd and the other even, 

then k and n do not have integer solutions). 

Also both k + n and k – n cannot be odd as the 

product is given to be even. So the difference 

possibilities for k + n, k – n are as follows.  

𝑘 − 𝑛 = 2          𝑘 + 𝑛 = 48… . (1) 

𝑘 − 𝑛 = 4        𝑘 + 𝑛 = 24… . (2) 

𝑘 − 𝑛 = 6          𝑘 + 𝑛 = 16… . (3) 

𝑘 − 𝑛 = 8      𝑘 + 𝑛 = 12… . (4) 

So, solving separately eqns. (1), (2), (3) and (4), 

we get 𝑛 = 23,10,5,2. 

So, there are exactly four values for which 

n2+96 is a perfect square.  

𝑛 = 23 𝑔𝑖𝑣𝑒𝑠 232 + 96 = 625 = 252  

𝑛 = 10 𝑔𝑖𝑣𝑒𝑠 102 + 96 = 196 = 142  

𝑛 = 5 𝑔𝑖 𝑣𝑒𝑠 52 + 96 = 121 = 112  

𝑛 = 2 𝑔𝑖𝑣𝑒𝑠 22 + 96 = 100 = 102  

 

77. Let us write the sequence of the number of 

beads in the 1st, 2nd, 3rd ,…, nth necklaces.  

= 5, 7, 10, 14, 19… 

= (4 + 1), (4 + 3), (4 + 6), (4 + 10), (4

+ 15),… , [4 +
𝑛(𝑛 + 1)

2
] 

𝑆𝑛 = total number of beads in the n necklaces  

𝑆𝑛 = (4 + 4 +⋯+)⏟        
𝑛 𝑡𝑖𝑚𝑒𝑠

+ 1 + 3 + 6 +⋯

+
𝑛(𝑛 + 1)

2
 

= 4n + Sum of the first n triangular numbers. 

= 4𝑛 +
1

2
(∑𝑛2 + 𝑛) 

= 4𝑛 +
1

2
(∑𝑛2 +∑𝑛) 

= 4𝑛 +
1

2
[
𝑛(𝑛 + 1)(2𝑛 + 1)

6
] +

1

2

𝑛(𝑛 + 2)

2
 

= 4𝑛 +
𝑛(𝑛 + 1)(2𝑛 + 1)

12
+
𝑛(𝑛 + 1)

4
 

=
1

12
[48𝑛 + 2𝑛(𝑛 + 1)(𝑛 + 2)] 

=
𝑛

6
[𝑛2 + 3𝑛 + 26] 

 

78. 𝑥1 = 0 

= 𝑥2 = 0
2 − 𝑖 = −𝑖  

𝑥3 = (−𝑖)
2 − 𝑖 = −1 − 𝑖 = −(1 + 𝑖)  

𝑥4 = [−(1 + 𝑖)
2] − 𝑖 = 2𝑖 − 𝑖 = 𝑖  

𝑥5 = (𝑖)
2 − 𝑖 = −1 − 𝑖 = 𝑥3  

𝑥6 = (−1 − 𝑖)
2 − 𝑖 = 𝑖 = 𝑥4  

∴ 𝑥6 = 𝑥4 and hence 𝑥7 = 𝑥5 and so on  

𝑥2𝑛 = 1 𝑓𝑜𝑟 𝑛 ≥ 1, 𝑥2𝑛+1 = −1− 𝑖  

So 𝑥2000 = 𝑖 = (0,1) in the complex plane. 

𝑥1997 = (−1,−𝑖) = (−1,−1) in the complex 

plane.  

So, the distance between 

𝑥2000 𝑎𝑛𝑑 𝑥1997 𝑖𝑠 √1
2 + 22 = √5.  
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79. You know that the greatest power of a > 1, 

𝑎 ∈ 𝑁, dividing n is given by  

∑[
𝑛

𝑎𝑖
]…… (1)

∞

𝑖=1

 

𝐵𝑢𝑡 ∑[
𝑛

𝑎𝑖
] <∑

𝑛

𝑎𝑖

∞

𝑖=1

∞

𝑖=1

= 𝑛 (
1

𝑎 − 1
)…… . (2) 

We want to find n, such that  

∑[
𝑛

5𝑖
] = 1998

∞

𝑖=1

 

𝐵𝑦 𝑒𝑞. (2),∑[
𝑛

5𝑖
] < 𝑛 (

1

5 − 1
) =

𝑛

4

∞

𝑖=1

 

𝑆𝑜,
𝑛

4
> 1998 

n > 7992 

By trial and error, we take 𝑛 = 7995 and then 

search for the correct value. If 𝑛 = 7995, then 

the number of zeroes at the end of 7995 is by 

eq. (1). 

7995

5
+
7995

52
+⋯ 

= 1599 + 319 + 63 + 12 + 2 = 1995 

So true for 𝑛 = 8000, we get the number of 

zeroes at the end of 8000! = 1600 + 320 + 64 + 

12 + 2= 1998.  

Note : Corresponding to 1997 zeroes at the end, 

there exists no n, as 7995! Has 1995 zeroes and 

the next multiple of 5, i.e., 8000 is a multiple of 

125, it adds 3 more zeroes to 1995 given 1998 

zeroes at the 9 end.  

 

80. 𝑓(1) = 1 

𝑓(1) + 2𝑓(2) = 2(2 + 1)𝑓(2)  

⇒ 4𝑓(2) = 1,⇒ 𝑓(2) =
1

4
.  

Again, f(1) + 2f(2) + 3f(3)= (3 × 4)𝑓(3) 

⇒ 9𝑓 (3) = 1 +
1

2
=
3

2
 

⇒ 𝑓(3) =
1

6
 

The above calculations suggest that f(n) may be 

1/2n for n > 1. Let us verify if it is so.  

𝐹𝑜𝑟 𝑛 = 2,      𝑓(2) =
1

2 × 2
=
1

4
 𝑖𝑠 𝑡𝑟𝑢𝑒. 

𝑛 = 3,      𝑓(3) =
1

3 × 2
=
1

6
𝑖𝑠 𝑎𝑙𝑠𝑜 𝑡𝑟𝑢𝑒. 

So, let us assume that f(n) =
1

2𝑛
.  

Now, we should show that f(n+1) =
1

2(𝑛+1)
.  

(Here we use the principle of Mathematical 

induction).  

By the (ii) hypothesis, we have  

𝑓(1) + 2𝑓(2) + ⋯+ 𝑛(𝑓𝑛) = 𝑛(𝑛 + 1)𝑓(𝑛)  

𝑓(1) + 2𝑓(2) + ⋯+ 𝑛𝑓(𝑛) + (𝑛 + 1)𝑓(𝑛 +

1) = (𝑛 + 1)(𝑛 + 2)𝑓(𝑛 + 1)  

= 1 +
1

2
+
1

2
+
1

2
+⋯+

1

2⏟                
𝑛 𝑡𝑖𝑚𝑒𝑠

+ (𝑛 + 1)𝑓(𝑛 + 1) 

= (𝑛 + 1)(𝑛 + 2)𝑓(𝑛 + 1) 

⇒ 1+ (𝑛 − 1)
1

2
= (𝑛 + 1)𝑓(𝑛 + 1)(𝑛 + 2 − 1) 

⇒ (𝑛 + 1)2 × 𝑓(𝑛 + 1) 
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= 𝑓(𝑛 + 1) =
1 + (𝑛 − 1)

1
2

(𝑛 + 1)2
=

𝑛 + 1

2(𝑛 + 1)2

=
1

2(𝑛 + 1)
 

Thus, by the principle of mathematical 

induction, we have proved that f(n) =
1

2𝑛
 for n > 

1.  

∴ 𝑓(1997) =
1

2 × 1997
=

1

3994
 

 

81. 𝑓(2) = 2 

𝑓(4) = 𝑓(2.2) = 𝑓(2). 𝑓(2) = 2.2 = 4  

𝑓(8) = 𝑓(2.4) = 𝑓(2). 𝑓(4) = 2.4 = 8  

Thus, we infer that 𝑓(2𝑛) = 2𝑛.  

Let us use M. I. for proving 

𝑓(21) = 2 (by hypothesis) ……..(1) 

Assume 𝑓(2𝑛) = 2𝑛 ………..(2) 

𝑓(2𝑛+1)  = 𝑓(2. 2𝑛) = 𝑓(2). 𝑓(2𝑛) = 2. 2𝑛 

……..(3) 

By hypothesis and eq. (1) and (2), we need to 

find f(n) for all n. Let us see what happens for 

f(1), f(3) at first.  

f(1) < f(2)          (Given)  

Now     𝑓(2) = 𝑓(1 × 2) = 𝑓(1) × 𝑓(2) 

⇒ 𝑓(1) = 1  

Similarly, f(2) < f(3) < f(4) 

2 < f(3) < 4 

But the only integer lying between 2 and 4 is 3. 

Thus f(3) = 3.  

So again we guess that 𝑓(𝑛) = 𝑛, for all n.  

Let us prove by using the strong principle of 

mathematical induction.  

Let f(n) = 𝑛 for all n < a, fixed 𝑚 ∈ 𝑁.  

Now, we should prove that f(m)= m.  

If m is an even integer, then f(m) = 2𝑘 and k < 

m.  

So, 𝑓(𝑚) = 𝑓(2𝑘) = 𝑓(2) × 𝑓(𝑘) = 2 × 𝑘 =

2𝑘 = 𝑚 

So, all even m, f(m) = m.  

If m is an odd integer, let m = 2𝑘 + 1 

And f(2k) < f( 2k + 1)< f(2k + 2) 

2k < f(2k + 1) < (2k + 1) 

(Because the function f(n) = n is true for all 

even integer n).  

But only integer lying between 2k and 2k + 2, is 

2k + 1, (since the range of f is integer).  

Thus, f(2k + 1) = 2k + 1 

i.e., f(m) = m, in the case of odd m also.  

Thus, f(n) = n, for all 𝑛 ∈ 𝑁 

∴ 𝑓(1983) = 1983 

 

82. First let us show that the expression  

𝑓(𝑚) =
1

8
[(3 + 2√2)

2𝑚+1
+ (3 −

2√2)
2𝑚+1

− 6] is an integer.  

𝐹𝑜𝑟 𝑚 =
1

8
× [2 × 3𝑐0 × 3

3 + 2 × 3𝑐2 × 3
1

× (2√2)
2
− 6] 
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=
1

8
× [54 + 144 − 6] =

1

8
× [192] = 24 

And hence, is an integer.  

For any m > 1, let us prove that the expression  

𝑓(𝑚 + 1) =
1

8
[(3 + 2√2)

2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] 

is an integer. Expanding and cancelling the 

terms, we get  

𝑓(𝑚 + 1) =
1

8
× [(3 + 2√2)

2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] 

=
1

4
× [32𝑚+1 + 2𝑚 + 1𝑐2 . 3

2𝑚−1. (2√2)
2

+ 2𝑚 + 1𝑐4 . 3
2𝑚−3(2√2)

4

+⋯

+ 2𝑚 + 1𝑐𝑚 . 3. (2√2)
2𝑚−1

− 3] 

=
1

4
× [2𝑚 + 1𝑐23

2𝑚+1(2√2)
2

+ 2𝑚 + 1𝑐4 . 3
2𝑚−3. (2√2)

4

+⋯+ 2𝑚 + 1𝑐2𝑚3. (2. √2)
2𝑚

+ 32𝑚+1 − 3] 

All the terms in the above expression except 

32𝑚+1 − 3 are multiples of 4, as the even 

powers of (2√2) is a multiple of 4.  

32𝑚+1 − 3 = 3[9𝑚 − 1] is also a multiple of 4.  

𝑁𝑜𝑤, 𝑓(𝑚) + 1 =
1

8

× [(3 + 2√2)
2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] + 1 

=
1

8
× [(3 + 2√2)

2𝑚+1
+ (3 − 2√2)

2𝑚+1
− 6

+ 8] 

=
1

8
× [(3 + 2√2)

2𝑚+1
+ (3 − 2√2)

2𝑚+1
+ 2] 

Now, 3 + 2√2 = (1 + √2)
2
 𝑎𝑛𝑑 3 − 2√2 =

(1 − √2)
2

.  

𝑆𝑜,
1

8
× [(3 + 2√2)

2𝑚+1
+ (3 − 2√2)

2𝑚+1

+ 2] 

=
1

8
× [{(1 + √2)

2
}
2𝑚+1

+ {(1 − √2)
2
}
2𝑚+1

+ 2] 

=
1

8
× [{(1 + √2)

2𝑚+1
}
2

+ {(1 − √2)
2𝑚+1

}
2

+ 2] 

=
1

8
× [{(1 + √2)

2𝑚+1
}
2

+ {(1 − √2)
2𝑚+1

}
2

− 2(−1)] 

=
1

8
× [{(1 + √2)

2𝑚+1
}
2

+ {(1 − √2)
2𝑚+1

}
2

− 2

× (1 + √2)
2𝑚+1

(1

− √2)
2𝑚+1

] 

Since (1 + √2)
2𝑚+1

(1 − √2)
2𝑚+1

= [(1 +

√2)(1 − √2)]
2𝑚+1

= (−1)2𝑚+1 = −1.  

So the given expression is equal to  

= {
(1 + √2)

2𝑚+1
− (1 − √2)

2𝑚+1

2√2
}

2

 

Note that  
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(1 + √2)
2𝑚+1

− (1 − √2)
2𝑚+1

2√2
 

Is an integer, as all the left over terms contain 

2√2 as a factor in the numerator.  

𝑁𝑜𝑤, 2𝑓(𝑚) + 1

=
1

4

× [(3 + 2√2)
2𝑚+1

+ (3 − 2√2)
2𝑚+1

− 6] + 1 

=
1

4
× [(3 + 2√2)

2𝑚+1
+ (3 − 2√2)

2𝑚+1
− 2] 

Since n is shown to be an integer, so (2n + 1) is 

also an integer.  

Now, (2n + 1) can be written as  

=
1

4
× [{(1 + √2)

2𝑚+1
}
2

+ {(1 − √2)
2𝑚+1

}
2

− 2] 

=
1

4
× [{(1 + √2)

2𝑚+1
}
2

+ {(1 − √2)
2𝑚+1

}
2

+ 2

× {(1 + √2)(1 − √2)}
2𝑚+1

] 

= {
(1 + √2)

2𝑚+1
+ (1 − √2)

2𝑚+1

2
}

2

 

By a similar reasoning, the expression  

(1 + √2)
2𝑚+1

+ (1 − √2)
2𝑚+1

2
 

Is an integer. Hence, the result.  

83. As the terms containing √2 vanishes in the 

expansion of (17 + 12√2)
𝑚
+ (17 − 12√2)

𝑚
 

and integral terms are all multiples of 8 and 

hence, n is an integer. (Prove it).  

𝑛 − 1 =
1

8
× [(17 + 12√2)

𝑚
+ (17 − 12√2)

𝑚

+ 6 − 8] 

=
1

8
× [(17 + 12√2)

𝑚
+ (17 − 12√2)

𝑚
− 2] 

We know  

17 + 12√2 = (3 + 2√2)
2

 

17 − 12√2 = (3 − 2√2)
2

 

Again both (17 + 12√2)(17 −

12√2) 𝑎𝑛𝑑 (3 + 2√2)(3 − 2√2) are equal to 

1.  

𝑆𝑜,
1

8
× [(17 + 12√2)

𝑚
+ (17 − 12√2)

𝑚
− 2] 

=
1

8
× [(3 + 2√2)

𝑚
]
2
+ [(3 − 2√2)

𝑚
]
2
− 2

× (3 + 2√2)(3 − 2√2) 

=
1

8
× [
(3 + 2√2)

𝑚
− (3 − 2√2)

𝑚

2√2
]

2

 

𝑎𝑛𝑑 2𝑛 − 1 =
1

4

× [(17 + 12√2)
𝑚

+ (17 − 12√2)
𝑚
+ 6 − 4] 

=
1

4
× [(17 + 12√2)

𝑚
+ (17 − 12√2)

𝑚
+ 2] 

= [
(3 + 2√2)

𝑚
+ (3 − 2√2)

𝑚

2
]

2

 

And hence the result.  

(Show that (3 + 2√2)
𝑚
− (3 −

2√2)𝑚 𝑎𝑛𝑑 
(3+2√2)

𝑚
+(3−2√2)

𝑚

2
 𝑎𝑟𝑒 𝑎𝑛𝑑 𝑠𝑜 

(1+√2)
𝑛
−(1−√2)

𝑛

2√2

 is also an integer and hence, their sum is also 

an integer. 
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Thus, 
1

32
[(17 + 12√2)

𝑛
+ (17 − 12√2)

𝑛
− 2] 

is a square integer.  

To show that exp. (1) can be written as 
1

2
𝑚(𝑚 + 1). Consider the exp. (2)  

1

32
× [(17 + 12√2)

𝑛
− (17 − 12√2)

𝑛
− 2] 

= {
(1+√2)

𝑛
+(1−√2)

𝑛

2
}
2

{
(1+√2)

𝑛
−(1−√2)

𝑛

2√2
}
2

  

=
1

2
[
{(1+√2)

𝑛
−(1−√2)

𝑛
}
2

4
] [
{(1+√2)

𝑛
+(1−√2)

𝑛
}
2

4
]  

For all n, we shall show that  

{(1 + √2)
𝑛
− (1 − √2)

𝑛
}
2

4
.
{(1 + √2)

𝑛
+ (1 − √2)

𝑛
}
2

4
 

Are consecutive integers.  

Clearly for 𝑛 = 1, we get  

{(1 + √2)
𝑛
− (1 − √2)

𝑛
}
2

4
=
8

4
= 2 

𝑎𝑛𝑑 
{(1 + √2)

𝑛
+ (1 − √2)

𝑛
}
2

4
=
4

4
= 1 

And hence for 𝑛 = 1,  

{(1+√2)
𝑛
+(1−√2)

𝑛
}
2

4
 𝑎𝑛𝑑 

{(1+√2)
𝑛
−(1−√2)

𝑛
}
2

4
  

Are consecutive integers.  

For any n,  

(1 + √2)
𝑛
− (1 − √2)

𝑛

2
 𝑎𝑛𝑑 

(1 + √2)
𝑛
+ (1 − √2)

𝑛

2
 

Are integers (prove) and, hence  

{
(1 + √2)

𝑛
− (1 − √2)

𝑛

2
}

2

=
{(1 + √2)

𝑛
− (1 − √2)

𝑛
}
2

4
 

𝑎𝑛𝑑 {
(1+√2)

𝑛
−(1−√2)

𝑛

2
}
2

=

{(1+√2)
𝑛
−(1−√2)

𝑛
}
2

4
 𝑎𝑟𝑒 integers.  

𝑁𝑜𝑤,
{(1 + √2)

𝑛
+ (1 − √2)

𝑛
}
2

4

=
(1 + √2)

2𝑛
+ (1 − √2)

2𝑛
− 2

4
 

=
(3 + 2√2)

𝑛
+ (3 − 2√2)

𝑛
− 2

4
……(3) 

𝑎𝑛𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,
{(1 + √2)

𝑛
− (1 − √2)

𝑛
}
2

4

=
(3 + 2√2)

𝑛
+ (3 − 2√2)

𝑛
− 2

4
… (4) 

∴ From exp. (3) and exp. (4), we find that  

{(1 + √2)
𝑛
+ (1 − √2)

𝑛
}

4
  

𝑎𝑛𝑑 
{(1 + √2)

𝑛
− (1 − √2)

𝑛
}

4
 

Are integers of the form 
2𝑘−2

4
 𝑎𝑛𝑑 

2𝑘+1

2
 𝑜𝑟

1

2
(𝑘 − 1) 𝑎𝑛𝑑

1

2
(𝑘 + 1) 

And hence, they differ by 
1

2
(𝑘 + 1) −

1

2
(𝑘 −

1) = 1.  

𝑆𝑜,
1

32
× {(17 + 12√2)

𝑛
− (17 + 12√2)

𝑛

− 2}  
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=
1

2
×
{(1 + √2)

𝑛
− (1 − √2)

𝑛
}
2

4

×
{(1 + √2)

𝑛
+ (1 − √2)

𝑛
}
2

4

=
1

2

(𝑘 − 1)

2
×
(𝑘 + 1)

2
 

Or 
1

2
(𝑚 − 1)𝑚 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 

𝑚(𝑚+1)

2
 and 

hence, the result.  

Note : This 
1

32
× [(17 + 12√2)

𝑛
+ (17 −

12√2)
𝑛
− 2] gives you an infinite family of 

square and triangular numbers.  

 

84. Given 𝑎1 =
1

2
 𝑓𝑜𝑟 𝑛 ≥ 2 

𝑆𝑜, 𝑎𝑘 =
2𝑘 − 3

2𝑘
 𝑎𝑘−1 𝑓𝑜𝑟 𝑘 ≥ 2 

Or, 2𝑘𝑎𝑘 = (2𝑘 − 3)𝑎𝑘−1 

⇒ 2𝑘𝑎𝑘 − (2𝑘 − 3)𝑎𝑘−1 = 0  

⇒ 2𝑘𝑎𝑘 − 2(𝑘 − 1)𝑎𝑘−1 + 𝑎𝑘−1 = 0  

⇒ 2𝑘𝑎𝑘 − 2(𝑘 − 1)𝑎𝑘−1 = −𝑎𝑘−1 ………..(1) 

Now adding up to eq. (1) from 𝑘 = 2 𝑡𝑜 𝑘 =

(𝑛 + 1), we have  

4𝑎2 − 2𝑎1 = −𝑎1
6𝑎3 − 4𝑎2 = −𝑎2
8𝑎4 − 6𝑎3 = −𝑎3

⋮ ⋮ ⋮

}……(2) 

2𝑛𝑎𝑛 − 2(𝑛 − 1)𝑎𝑛−1 = −𝑎𝑛−1 

2(𝑛 + 1)𝑎𝑛+1 − 2𝑛𝑎𝑛 = −𝑎𝑛 

Summing, eq. (2), we get  

2(𝑛 + 1)𝑎𝑛+1 − 2𝑎1 = −∑𝑎𝑘

𝑛

𝑘=1

 

⇒∑𝑎𝑘 = 2𝑎1 − 2(𝑛 + 1)𝑎𝑛+1

𝑛

𝑘=1

= 1 − 2(𝑛 + 1)𝑎𝑛+1 

𝑎1 =
1

2
, 𝑎𝑛 = (1 −

3

2𝑛
)𝑎𝑛−1 

⇒ 𝑎2 = (1 −
3

4
)
1

2
=
1

2
×
1

4
=
1

8
 

⇒ 𝑎3 = (1 −
3

6
)
1

8
=
1

2
×
1

8
=
1

16
 

𝑎𝑛 = (1 −
3

2𝑛
)𝑎𝑛−1 

Is positive as (1 −
3

2𝑛
) for all n > 2 is positive 

and a1, a2, a3, … are all positive since each ai is a 

product of (1 −
3

2𝑖
) 𝑎𝑖 − 1 and 𝑎1 > 0 implies 

that a2 > 0, …., 𝑎𝑖 − 1 > 0 and hence  

∑𝑎𝑘 = 1 − 2(𝑛 + 1)𝑎𝑛+1 < 1

𝑛

𝑘=1

 

[∵ 2(𝑛 + 1)𝑎𝑛+1 > 0] 

 

85. If (a, b, c) is a valid triplet then (7 – c, 7 – b, 

7 – a) is also a valid triplet as 1 ≤ (7 − 𝑐) ≤

(7 − 𝑏) ≤ (7 − 𝑎) ≤ 6.  

Note (7 − 𝑏) ≠ 𝑏 etc  

𝐿𝑒𝑡 𝑆 = ∑ (𝑎, 𝑏, 𝑐)

1≤𝑎≤𝑏≤𝑐≤6

, 𝑡ℎ𝑒𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 

𝑆 = ∑ (7 − 𝑎)(7 − 𝑏)(7 − 𝑐)

1≤𝑎≤𝑏≤𝑐≤6

 

∴ 2𝑆 = ∑ [(𝑎, 𝑏, 𝑐)

1≤𝑎≤𝑏≤𝑐≤6

+ (7 − 𝑎)(7 − 𝑏)(7 − 𝑐)] 
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= ∑ [73 − 72(𝑎 + 𝑏 + 𝑐)

1≤𝑎≤𝑏≤𝑐≤6

+ 7(𝑎𝑏 + 𝑏𝑐 +⋯+ 𝑐𝑎)] 

In the R.H.S., every term is divisible by 7, i.e., 7 | 

2S, and hence, 7 | S.  

 

86. Let the required number be ….abc 7. Since it 

is given that  

5(…𝑎𝑏𝑐7) = 7…𝑎𝑏𝑐  

We find that 𝑐 = 5. Putting this value of c back 

in the equation we have 5(…ab57) = 7…ab5 we 

give 𝑏 = 8. Continuing this way till we get 7 for 

the first time, we find that required number is 

142857.  

 

87. To test the divisibility of the number N =

19202122… 919293 by 3 or 9 we should find 

the sum of the digits of N. Noting that 1 occurs 

9 times in the digits from 19 to 93 (in 19, 21, 31, 

…, 91), 2 occurs 18 times (in 20, 21, 22, …, 29, 

32, 42, …., 92) etc. we find the sum of the digits 

of N to be 717. This number is divisible by 3 

(since 7 + 1 + 7= 15 is so) but not by 9. Thus the 

highest power of 3 dividing N is 3.  

 

88. First note that the set of primes dividing x is 

the same as the set of primes dividing y. Take 

any prime p dividing x (and hence y also) and 

suppose it occur to the power 𝛼 in x and 𝛽 in y 

(that is, 𝑝𝛼 is the maximum power of p dividing 

x and 𝑝𝛽 is the maximum power of p dividing y). 

Then  

𝑥𝑎 = 𝑦𝑏 ⇒ 𝑝𝛼𝑎 = 𝑝𝛽𝑏 ⇒ 𝛼𝑎 = 𝛽𝑏

⇒ 𝑎|𝛽𝑏 𝑎𝑛𝑑 𝑏|𝛼𝑎 

⇒ 𝑎|𝛽 𝑎𝑛𝑑 𝑏|𝛼 𝑠𝑖𝑛𝑐𝑒 (𝛼, 𝛽) = 1.  

Write 𝛽 = 𝛼𝛽𝑝 𝑎𝑛𝑑 𝛼 = 𝛽𝛼𝑝. Then  

𝑝𝛼𝑎 = 𝑝𝛽𝑏 ⇒ 𝑝𝑎𝑏𝛼𝑝 = 𝑝𝑎𝑏𝛽𝑝 

⇒ 𝛼𝑝 = 𝛽𝑝.  

For each prime p dividing x and (and hence y) 

get the integer 𝛼𝑝. Verify that the integer  

𝑛 = ∏ 𝑝𝛼𝑝𝑝|𝑛  (this notation means n is the 

product of the numbers 𝑝𝛼𝑝 for each prime p 

dividing n) satisfies the required properties.  

89. Let 𝑛 = 𝑎𝑎𝑏𝑏 be a number satisfying the 

given properties.  

Since n is 𝛼 square the only possibilities for b 

are 1, 4, 5, 6 or 9. Among them 1, 5, 6 and 9 are 

not possible since the numbers aa 11, aa 55, 

and aa99 leave remainder 3 and aa 66 leaves 

remainder 2 when divided by 4, which is not 

possible if n is a square. So b can only be 4. 

Clearly 11 divides 𝑛 = 𝑎𝑎𝑏𝑏. Since n is a square 

and 11 is a prime. 112 also divides 𝑛 = 11 ×

𝑎0𝑏 that is, 11 divides a0b which implies 11 

divides a + b. Since b can be only 4, the only 

possibility for a is 𝑎 = 7.  

Noting that 7744 = (88)2 is indeed a square, 

we conclude that 7744 is the only number with 

the given properties.  

 

90. Let [√𝑛] = 𝑘. Then 𝑘2 < 𝑛 < (𝑘 + 1)2. 

Also since 𝑘3 divides n2, we have that k2 divides 

n2 and hence k divides n.  

Thus, the only possibilities for n are 𝑛 = 𝑘2 + 𝑘 

and 𝑛 = 𝑘2 + 2𝑘.  

(i) Let 𝑛 = 𝑘2 + 𝑘. Then  
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𝑘3|𝑛2 ⇒ 𝑘3|(𝑘2 + 𝑘)2 = 𝑘4 + 2𝑘3 + 𝑘2  

⇒ 𝑘3|𝑘2  ⇒ 𝑘 = 1 

i.e., 𝑛 = 2.  

(ii)   Let 𝑛 = 𝑘2 + 2𝑘. Then  

𝑘3| 𝑛2  ⇒ 𝑘3 |(𝑘2 + 2𝑘)2 = 𝑘4 + 4𝑘3 + 4𝑘2 

Which implies that 𝑘3| 4𝑘2 𝑜𝑟 𝑘|4. Therefore, 

𝑘 = 1, 2 𝑜𝑟 4.  

When 𝑘 = 1, 2, 4, we get the corresponding 

values 3, 8 and 24 for n. Thus, n= 2, 3, 8 and 24 

are all positive  integers satisfying the given 

conditions.  

 

91. Since the product of k consecutive integers 

is divisible by k!, A(n) is an integer. We compare 

the highest powers of 2 dividing the numerator 

and denominator to determine the nature of 

A(n).  

Suppose we express n in the base 2, say,  

𝑛 = 𝑎𝑙2
𝑙 + 𝑎𝑙−12

𝑙−1 + 𝑎𝑙−22
𝑙−2 +⋯+ 𝑎𝑙 . 2 +

𝑎0 = 1.  

The highest power of 2 dividing n! is given by 

𝑠 = [
𝑛

2
] + [

𝑛

22
] + [

𝑛

23
] + ⋯+ [

𝑛

2𝑙
] 

Where [x] denotes the largest integer smaller 

than x.  

But, for 1 ≤ 𝑚 ≤ 𝑙.  

[
𝑛

2𝑚
] = 𝑎𝑙2

𝑙−𝑚 + 𝑎𝑙−22
𝑙−𝑚−1 +⋯+ 𝑎𝑚 

Thus,  

𝑠 = ∑ [
𝑛

2𝑚
]

𝑙

𝑚=1

 

= ∑ ∑ 𝑎𝑘2
𝑘−𝑚

𝑙

𝑘=𝑚

𝑙

𝑚=1

 

=∑𝑎𝑘 (∑ 2𝑚 − 1

𝑘

𝑚=1

)

𝑙

𝑘=1

 

=∑𝑎𝑘(2
𝑘 − 1)

𝑙

𝑘=1

 

=∑𝑎𝑘2
𝑘 −∑𝑎𝑘

𝑙

𝑘=0

𝑙

𝑘=0

 

= 𝑛 − {𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑠 𝑜𝑓 𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 2} 

Hence the highest power of 2 dividing (𝑛!)2 is 

2𝑠 = 2𝑛 − 2 (sum of the digits of n in the base 

2). Similarly the highest power of 2 dividing 

(2n)! is t = 2𝑛 − (sum of the digits of 2n in the 

base 2). But the digits of n in base 2 and those 

of 2n in base 2 are the same except for a zero at 

the end of the representation for 2n.  

Thus 

𝑡 − 2𝑠 = 𝑎𝑙 + 𝑎𝑙−1 + 𝑎𝑙−2 +⋯+ 𝑎𝑙 + 𝑎0  

Where the 𝑎𝑖  are the digits of n in base 2. Note 

that 𝑎𝑙 = 1. Hence 𝑡 − 2𝑠 ≥ 1. But A(n) is even 

if and only if 𝑡 − 2𝑠 ≥ 1. Hence it follows that 

A(n) is even for all n.  

Moreover A(n) is divisible by 4 if and only if 𝑡 −

2𝑠 ≥ 2. Since A(1) = 2, 4 does not divide A(1). 

Suppose n = 2 for some l.  

Then 𝑎𝑙 = 1 and 𝑎𝑖 = 0 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑙 − 1. 

Hence 𝑡 − 2𝑠 = 1 and A(n) is not divisible by 4. 

On the other hand if n is not a power of 2, then 

for some l,  

𝑛 = 2𝑙 + 𝑎𝑙−12
𝑙−1 + 𝑎𝑙−22

𝑙−2 +⋯+ 𝑎0 
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Where 𝑎𝑖 ≠ 0 for at least one i and hence must 

be equal to 1. Thus 𝑡 − 2𝑠 ≥ 1 + 𝑎𝑖 ≥ 2. It 

follows that A(n) is divisible by 4 if and only if n 

is not a power of 2.  

Remark : Given any prime p, the highest power 

of s of p dividing n! is given by  

𝑠

=
𝑛 − (𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑔𝑖𝑡𝑠 𝑜𝑓 𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑝)

𝑝 − 1
 

 

92. Take 𝑎 = 2𝑛 +
1

2
, 𝑏 = 2𝑛+1 +

1

2
. In the 

binomial expansions of 𝑎𝑘  𝑎𝑛𝑑 𝑏𝑘, 1 ≤ 𝑘 ≤ 𝑛, 

we see that all the terms except the last are 

integral and the last terms are each equal to 

1/2k. Hence 𝑎𝑘 − 𝑏𝑘 is an integer for 1 ≤ 𝑘 ≤

𝑛.  

 

93. ABCD is a cyclic quadrilateral. ‘O’ is the 

circumcentre of ∆𝐴𝑃𝐵. That is, if M is the 

midpoint of PB, then OM is ⊥r to PB in the fig., 

H, is the ortho−centre of ∆𝐶𝑃𝐷. Let OP 

produced meet DC in L.  

To prove that : O, P and H, are collinear.  

That is, to prove that H lies on OP or OP 

produced.  

That is, to prove that H lies on OP or OP 

produced.  

Or, in other words, OP produced is 

perpendicular to DC.  

Proof : Since quadrilateral ABCD is cyclic.  

∠𝐶𝐷𝐵 = ∠𝐶𝐴𝐵 = ∠𝑃𝐴𝐵 

=
1

2
∠𝑃𝑂𝐵 (𝑆𝑖𝑛𝑐𝑒 𝑂 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑚𝑐𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 ∆𝑃𝐴𝐵) 

= ∠𝑃𝑂𝑀(= ∠𝐵𝑂𝑀)𝑎𝑠 𝑂𝑀 𝑖𝑠 𝑡ℎ𝑒 

⊥ 𝑟 𝑏𝑖𝑠𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑃𝐵 

In ∆𝐿𝐷𝑃 𝑎𝑛𝑑 ∆𝑀𝑂𝑃 

∠𝐿𝐷𝑃 = ∠𝑃𝑂𝑀  

∠𝐷𝑃𝐿 = ∠𝑂𝑃𝑀                  (𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑜𝑝𝑝. ∠𝑠)  

∴ ∠𝑃𝐿𝐷 = ∠𝑃𝑀𝑂 = 90° and hence the result.  

 

94. Let ∠𝐴𝐵𝐶 = ∠𝐴𝐶𝐵 = 𝑏°  

AT is the angle bisector of ∠𝐴. I is the midpoint 

of PQ. Now 𝐴𝑃 = 𝐴𝑄 as the smaller circle 

touches AB and AC at P and Q respectively. The 

centre of the circle PQT lies on the angle 

bisector of ∠𝐴, namely AT; since PQ is the chord 

of contact of the circle PQT, 𝑃𝑄 ⊥ 𝐴𝑇 and the 

midpoint I of PQ lies on AT.  

Now, to prove that I is the incentre of ∆𝐴𝐵𝐶, it 

is enough to prove that BI is the angle bisector 

of ∠𝐵 and CI is the angle bisector of 

∠𝐶 respectively. By symmetry, ∠𝑃𝑇𝐼 = ∠𝑄𝑇𝐼 =

𝑎°.  

Now ∠𝐴𝐵𝑇 = 90° (∵ 𝐴𝑇 𝑖𝑠 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 ⊙

𝐴𝐵𝐶) 

∴ ∠𝑃𝐵𝑇 = 90°  

Also, ∠𝑃𝐼𝑇 = 90° 

∴ PBTI is cyclic.  
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∴ ∠𝑃𝐵𝐼 = ∠𝑃𝑇𝐼 =

𝑎° (𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡)  

∴ ∠𝐼𝐵𝐷 = ∠𝐴𝐵𝐷 − ∠𝐴𝐵𝐼 = 𝑏 − 𝑎  

∠𝑇𝐵𝐶 = ∠𝑇𝐴𝐶 = 90° − 𝑏  

∴ ∠𝐼𝐵𝑇 = ∠𝐼𝐵𝐷 + ∠𝐷𝐵𝑇  

= 𝑏 − 𝑎 + 90° − 𝑏 = 90° − 𝑎  

But since PBTI is cyclic,  

∠𝐼𝑃𝑇 = ∠𝐼𝐵𝑇 = 90° − 𝑎 …….(1) 

∠𝐵𝑃𝑇 = 180° − ∠𝑇𝑃𝐴 = 180° − ∠𝐴𝑃𝐼 −

∠𝐼𝑃𝑇  

= 180° − 𝑏 − 90° + 𝑎 ……..(2) 

= 90° + 𝑎 − 𝑏  

But APT is a tangent to circle PQ.  

∴ ∠𝐵𝑃𝑇 = ∠𝑃𝑄𝑇 = ∠𝐼𝑄𝑇  

From (1) and (2), we get  

90° + 𝑎 − 𝑏 = 90° − 𝑎  

2𝑎 = 𝑏  

∴ ∠𝐼𝐵𝐷 = 𝑏 − ∠𝑃𝐵𝐼 = 2𝑎 − 𝑎 = 𝑎  

∴ ∠𝐼𝐵𝐷 = ∠𝑃𝐵𝐼  

∴ 𝐵𝐼 is the angle bisector of ∠𝐵  

 

95. Area of the right angled ∆𝐴𝐶𝐵 

=
1

2
𝐴𝐶 × 𝐵𝐶 =

1

2
(𝑥 + 𝑟)(𝑦 + 𝑟) 

=
1

2
{𝑥𝑦 + 𝑟(𝑥 + 𝑦) + 𝑟2} 

⇒ 𝐴𝐶 × 𝐵𝐶 = 𝑥𝑦 + 𝑟𝐴𝐵 + 𝑟2 

⇒ 𝑥𝑦 = 𝐴𝐶 × 𝐵𝐶 − 𝑟𝐴𝐵 − 𝑟2 

Now 𝐴𝐼2 × 𝐵𝐼2 = (𝑥2 + 𝑟2)(𝑦2 + 𝑟2) 

= 𝑥2𝑦2 + 𝑟2(𝑥2 + 𝑦2) + 𝑟4  

= 𝑥2𝑦2 + 𝑟2[(𝑥 + 𝑦)2 − 2𝑥𝑦] + 𝑟4  

= 𝑥2𝑦2 + 𝑟2[𝐴𝐵2 − 2𝑥𝑦] + 𝑟4  

= 𝑥2𝑦2 + 𝑟2𝐴𝐵2 − 𝑟22𝑥𝑦 + 𝑟4  

= 𝑟2𝐴𝐵2 + (𝑟2 − 𝑥𝑦)2  

= 𝑟2𝐴𝐵2 + [𝑟2 − 𝐴𝐶 × 𝐵𝐶 + 𝑟𝐴𝐵 + 𝑟2]2  

= 𝑟2𝐴𝐵2 + [2𝑟2 − 𝐴𝐶 × 𝐵𝐶 + 𝑟𝐴𝐵]2  

Area of the ∆𝐴𝐵𝐶 = 𝑟(𝑟 + 𝑥 + 𝑦)  

= 𝑟(𝑟 + 𝐴𝐵)  

= 𝑟2 + 𝑟𝐴𝐵 =
1

2
𝐴𝐶. 𝐵𝐶 
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⇒ 𝐴𝐶 × 𝐵𝐶 = 2𝑟2 + 2𝑟. 𝐴𝐵  

∴ 𝐴𝐼2 × 𝐵𝐼2 = 𝑟2𝐴𝐵2 + [2𝑟2 − 2𝑟2 − 2𝑟𝐴𝐵 +

𝑟𝐴𝐵]2  

= 𝑟2𝐴𝐵 + 𝑟2𝐴𝐵2 = 2𝑟2. 𝐴𝐵2  

∴ 𝐴𝐼. 𝐵𝐼 = √2𝑟2. 𝐴𝐵2 = √2𝑟. 𝐴𝐵.  

 

96. AA1, BB1 and CC1 are parallel line segment 

and hence  

𝐶𝐶1
𝐴1𝐴

=
𝐶1𝐵

𝐴𝐵
……(1) 

𝐴𝑙𝑠𝑜,              
𝐶𝐶1
𝐵1𝐵

=
𝐴𝐶1
𝐴𝐵

…… . (2) 

Adding (1) and (2), we have  

𝐶𝐶1
𝐴1𝐴

=
𝐶𝐶1
𝐵1𝐵

=
𝐶1𝐵 + 𝐴𝐶1

𝐴𝐵
=
𝐴𝐵

𝐴𝐵
= 1……(3) 

Dividing (3) by CC1, we get  

1

𝐴1𝐴
+

1

𝐵1𝐵
=

1

𝐶𝐶1
 

Note that ABB1A1 is a trapezium and C1C2 is the 

harmonic mean of the parallel sides AA1, BB1 

and C1C2 is parallel to the parallel sides.  

 

97. We can construct 22°30′ 𝑜𝑟 22
1°

2
=
90°

4
. 

Draw an isosceles right angled triangle BCA and 

extend CA to D such that 𝐴𝐷 = 𝐴𝐵.  

𝑁𝑜𝑤,∠𝐴𝐷𝐵 = ∠𝐴𝐵𝐷 = 22
1°

2
 

Let us take 𝐴𝐶 = 𝐵𝐶 = 1 𝑢𝑛𝑖𝑡𝑠 

Then 𝐴𝐵 = 𝐴𝐷 = √2 units  

And 𝐵𝐷 = √1 + (1 + √2)
2

 units  

= √4 + 2√2 units  

𝑢 = cot 22
1°

2
=
𝐶𝐷

𝐶𝐵
= √2 + 1 

⇒ (𝑢 − 1) = √2 

⇒ 𝑢2 − 2𝑢 − 1 = 0 

𝑎𝑛𝑑 𝑣 =
1

sin22
1°
2

=
𝐵𝐷

𝐵𝐶
= √4 + 2√2 

⇒ (𝑣2 − 4)2 = 8 

⇒ 𝑣4 − 8𝑣2 + 8 = 0 

 

98. Let P be the point of intersection of the ⊥r 

chord AB and CD and let the centre O, belong to 

the part Z. Let K and L be points on the arc AC 

and BD respectively as shown in the figure. Let M 

and N be the midpoints of the chord AB and CD 

respectively. Since AB and CD intersect each 

other at right angle,  
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We have 𝐵𝑂𝐷⏞ +𝐶𝑂𝐴⏞ = 𝜋 

We have E(AOCK) + E(BODL) =
1

2
𝜋𝑅2 

𝐸(𝑋) + 𝐸(𝑍) = 𝐸(𝐴𝑂𝐶𝐾) + 𝐸(𝐵𝑂𝐷𝐿) −

𝐸(𝑂𝐴𝑃) − 𝐸(𝐶𝑂𝑃) + 𝐸(𝑃𝑂𝐷) + 𝐸(𝑃𝑂𝐵)  

=
1

2
𝜋𝑅2 −

1

2
𝑂𝑀 × 𝐴𝑃 −

1

2
𝑂𝑁 × 𝐶𝑃 +

1

2
𝑂𝑁

× 𝐷𝑃 +
1

2
𝑂𝑀 × 𝐵𝑃 

=
1

2
𝜋𝑅2 +

1

2
𝑂𝑀(𝐵𝑃 − 𝐴𝑃) +

1

2
𝑂𝑁 (𝐷𝑃

− 𝐶𝑃) 

=
1

2
𝜋𝑅2 +

1

2
𝑂𝑀[(𝐵𝑀 +𝑀𝑃) − (𝐴𝑀 −𝑀𝑃)]

+
1

2
𝑂𝑁[(𝐷𝑁 + 𝑃𝑁)

− (𝐶𝑁 − 𝑃𝑁)] 

=
1

2
𝜋𝑅2 + 𝑂𝑀.𝑀𝑃 + 𝑂𝑁 × 𝑁𝑃 

=
1

2
𝜋𝑅2 + 2𝐸(𝑂𝑁𝑃𝑀) 

Where E(ONPM) is the area of the rectangle 

ONPM.  

Similarly,  

𝐸(𝑌) + 𝐸(𝑊) = 𝜋𝑅2 − [
1

2
𝜋𝑅2 + 2𝐸(𝑂𝑁𝑃𝑀)] 

=
1

2
𝜋𝑅2 − 2𝐸(𝑂𝑁𝑃𝑀) 

The quantity  

𝐸(𝑋) + 𝐸(𝑍)

𝐸(𝑌) + 𝐸(𝑊)
=

1
2𝜋𝑅

2 + 2𝐸(𝑂𝑁𝑃𝑀)

1
2𝜋𝑅

2 − 2𝐸(𝑂𝑁𝑃𝑀)
 

The maximum quantity thus corresponds to the 

maximum of 2E (ONPM) which is 𝑅2 and hence 

the maximum quantity of  

𝐸(𝑋) + 𝐸(𝑍)

𝐸(𝑌) + 𝐸(𝑊)
=
𝑅2 (

1
2
𝜋 + 1)

𝑅2 (
1
2𝜋 − 1)

=
𝜋 + 2

𝜋 − 2
 

And the minimum quantity is obtained when 2E 

(ONPM)= 0 (i.e., when the perpendicular chord 

are two ⊥ 𝑟 diameters)  

Then the minimum value of  

𝐸(𝑋) + 𝐸(𝑍)

𝐸(𝑌) + 𝐸(𝑊)
= 1 

When 𝑂 ∈ the region Y, then the minimum 

value can be shown to be 
𝜋−2

𝜋+2
 and the maximum 

value is 1.  

Note: The maximum is reached when we have 

the conditions as shown in the adjacent figure.  

𝑂𝑀.𝑂𝑁 =
𝑅

√2
.
𝑅

√2
=
𝑅2

2
 

 

99. Let C1, C2, be two circles. We first show that 

if APB is a straight line such that there is a circle 

C touching C1 at A and C2 at B, then AB is the 

segment giving the required maximum.  

Let A’P and PB’ be any other chord so that A’PB’ 

may be collinear and the extension of these 

chords meet the circle C at C and D.  
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𝐶𝑃. 𝑃𝐷 = 𝐴𝑃. 𝑃𝐵 > 𝐴′𝑃 × 𝑃𝐵′ 

∴ 𝐴𝑃. 𝑃𝐵 is maximum.  

Now we need to construct such a chord APB. 

For this we need to construct a circle C touching 

C1 and C2 at points A and B so that APB are 

collinear. Let us find the properties of the points 

A and B.  

 

Let O be the centre of the circle C and O1 and O2 

be the centres of the circles C1 and C2. Now C 

and C1 touch at A.  

∴ 𝐴𝑂1𝑂 are collinear. Similarly BO2O are 

collinear. Let AT, BS be the common tangents to 

circles C and C1 and C and C2 respectively.  

Let ∠𝑃𝐴𝑇 = 𝑥 𝑎𝑛𝑑 ∠𝑃𝐵𝑆 = 𝑦 since AT is 

tangent to circle C.  

∠𝑃𝐴𝑇 = 𝑥

=
1

2
∠𝐴𝑂𝐵  (𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑡ℎ𝑒𝑜𝑟𝑒𝑚) 

Since BS  is tangent to circle C.  

∠𝑃𝐵𝑆 = 𝑦 =
1

2
∠𝐴𝑂𝐵 

∴ 𝑥 = 𝑦. Since AT is tangent to circle C1, we get  

∠𝑃𝐴𝑇 = 𝑥 =
1

2
∠𝐴𝑂1𝑃 

Similarly, since BS is tangent to circle C2, we get  

∠𝑃𝐵𝑆 = 𝑦 =
1

2
∠𝐵𝑂2𝑃 = 𝑥 

∴ ∠𝐴𝑂1𝑃 = ∠𝐴𝑂𝐵 = ∠𝐵𝑂2𝑃  

∴ ∆𝐴𝑂1𝑃 ≈ ∆𝑃𝑂2𝐵  

∴
𝐴𝑃

𝑃𝐵
=
𝐴𝑂1
𝑃𝑂2

=
𝑟1
𝑟2

 

Therefore the line segment AB must be such 

that P divides AB internally in the ratio r1 : r2. 

Further PO2||OO1 and PO1||OO2.  

So join PO1 and PO2. Through O1 draw a line 

parallel to PO2 to meet circle C1 in A. Through O2 

draw a line parallel to PO1 to meet the circle C2 

in B. Now these two parallel lines drawn meet 

at O. If we draw a circle with O as centre and 

radius OA= OB, the circle touches C1 at A and C2 

at B. Note, we can prove that APB are collinear 

and AB is the required chord.  
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Note: In the previous problem the line AB and 

O1O2 meet in a point S1 say. This point S1 divides 

O1O2 externally in the ratio r1:r2. The point S1 is 

called the external centre of similitude of the 2 

circles C1 and C2. If we draw any line l through S1 

meeting C1 in P1, Q1 and C2 in P2, Q2 then P2, Q2 

then O1P1||O2P2 and O1Q1||O2Q2. 

Moreover the direct common tangent to the 

two circles C1 and C2 meet at S1.  

100. Draw BB’ ⊥ 𝑟 to 𝑙 and BB’=CD. Join AB’ 

and extend it to Y. Through C and D draw 

perpendiculars to AY meeting AY at P and S.  

Through B draw BZ perpendicular to CP and SD 

meeting them at Q and R respectively. PQRS is 

the required square.  

 

Proof: Draw BL and CN ⊥ 𝑟 to AS and SD 

respectively.  

∆𝐿𝐵𝐵′ ≡ ∆𝑁𝐶𝐷 

𝑎𝑠 ∠𝐿𝐵𝐵′ = 90° − ∠𝐴𝐵𝐿 = ∠𝐿𝐴𝐵 = ∠𝑁𝐶𝐷 

𝑎𝑛𝑑 𝐵𝐵′ = 𝐶𝐷𝑎𝑛𝑑 ∠𝐵𝐿𝐵′ = ∠𝐶𝑁𝐷 = 90°  

𝑃𝑄 = 𝐿𝐵 = 𝐶𝑁 = 𝑄𝑅 = 𝑃𝑆 

Thus the adjacent sides of the rectangle PQRS 

are equal and hence it is a square.  

If B’ is constructed on the opposite half−plane, 

we get P’Q’R’S’, the reflection of PQRS about 

the line 𝑙 and lying on the opposite half plane.  

In fact, this construction is possible, even if A, B, 

C, D are such that no three of these are 

collinear (i.e., for any four points in the plane). 

This construction exactly follows the same 

procedure.  

BB’ (BB’’) is perpendicular to CD and equal to 

CD. Join AB’ (or AB’).  

Draw CP, DS ⊥ 𝑟 to AB’ produced and extend PC 

and SD. Through B draw BR and BQ 

perpendicular to SR and PQ, PQRS is the 

required square.  

Draw CP1, DS1 ⊥ 𝑟 to AB’’ and through B draw ⊥

𝑟 to CP1 and DS1 produced meeting them at Q1 

and R1 respectively.  

P1Q1R1S1 is the required square.  

Thus there are two solutions.  
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101. Let m∠𝐴𝑂𝐵 = 𝜃 𝑎𝑟𝑒𝑎 𝑜𝑓 ∆𝐴𝑂𝐵 = 𝑠1 =
1

2
𝑂𝐴.𝑂𝐵. sin 𝜃.  

 

Similarly 𝑠2 =
1

2
𝑂𝐷. 𝐷𝐶. 𝑠𝑖𝑛𝜃 

𝑎𝑛𝑑 𝑠 =
1

2
{𝑂𝐴. 𝑂𝐵. 𝑠𝑖𝑛𝜃

+ 𝑂𝐷.𝑂𝐶. sin𝜃

+ 𝑂𝐴.𝑂𝐷. sin(𝜋 − 𝜃)

+ 𝑂𝐵. 𝑂𝐶. sin(𝜋 − 𝜃)}  

=
1

2
sin𝜃 [(𝑂𝐴. 𝑂𝐵 + 𝑂𝐷.𝑂𝐶 + 𝑂𝐴.𝑂𝐷

+ 𝑂𝐵. 𝑂𝐶)]…… . (1)   [sin(𝜋

− 𝜃) = sin 𝜃]  

2√𝑂𝐴.𝑂𝐵. 𝑂𝐶. 𝑂𝐷 = 2√𝑂𝐴.𝑂𝐷. 𝑂𝐶. 𝑂𝐵

≤ 𝑂𝐴.𝑂𝐷

+ 𝑂𝐶.𝑂𝐵 (𝑎𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝐴𝑀

− 𝐺𝑀 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦)……(2) 

𝑂𝐴.𝑂𝐵 + 𝑂𝐶. 𝑂𝐷 + 2√𝑂𝐴. 𝑂𝐵. 𝑂𝐶. 𝑂𝐷

= (√𝑂𝐴.𝑂𝐵 + √𝑂𝐶. 𝑂𝐷)
2

 

But 𝑂𝐴.𝑂𝐵 + 𝑂𝐶. 𝑂𝐷 + 2√𝑂𝐴.𝑂𝐵. 𝑂𝐶. 𝑂𝐷  

= 𝑂𝐴.𝑂𝐵 + 𝑂𝐶. 𝑂𝐷 + 2√(𝑂𝐴. 𝑂𝐷). (𝑂𝐵. 𝑂𝐶) 

≤ 𝑂𝐴.𝑂𝐵 + 𝑂𝐶. 𝑂𝐷 + 𝑂𝐴.𝑂𝐷

+ 𝑂𝐵. 𝑂𝐶 [𝑏𝑦 (1)] 

𝑆𝑜, √𝑂𝐴. 𝑂𝐵 + √𝑂𝐶. 𝑂𝐷

≤ √𝑂𝐴.𝑂𝐵 + 𝑂𝐶. 𝑂𝐷 + 𝑂𝐴.𝑂𝐷 + 𝑂𝐵.𝑂𝐶 [𝑏𝑦 (2)] 

√
sin𝜃

2
[√𝑂𝐴. 𝑂𝐵 + √𝑂𝐶. 𝑂𝐷] ≤

√
sin𝜃

2
√𝑂𝐴.𝑂𝐵 + 𝑂𝐶. 𝑂𝐷 + 𝑂𝐴.𝑂𝐷 + 𝑂𝐵.𝑂𝐶 

𝑖. 𝑒. , √𝑠1 +√𝑠2 ≤ √𝑠 

AM−GM inequality becomes an equality  

When 𝑂𝐴.𝑂𝐷 = 𝑂𝐵.𝑂𝐶  

𝑜𝑟,
𝑂𝐴

𝑂𝐶
=
𝑂𝐵

𝑂𝐷
 

That is in ∆𝑠 𝐴𝑂𝐵 and COD if 
𝑂𝐴

𝑂𝐶
=
𝑂𝐵

𝑂𝐷
 and we 

know that the vertically opposite angles 

∠𝐴𝑂𝐵 = ∠𝐶𝑂𝐷.  

That if ∆𝑠 AOB and COD are similar, their 

equality  

√𝑠1 + √𝑠2 = √𝑠 holds  

Thus, the similarity of triangles implies,  

∠𝑂𝐵𝐴 = ∠𝑂𝐷𝐶, which implies that AB|| CD.  

 

102. Join PD and MC and let them intersect at E.  

Area of ∆𝐵𝑃𝐷 = 𝐴𝑟𝑒𝑎 𝑜𝑓 ∆𝐵𝑀𝐷 +

𝑎𝑟𝑒𝑎 𝑜𝑓 ∆𝑀𝐷𝐶 

(∆𝑀𝐷𝑃 = ∆𝑀𝐷𝐶 as both the triangles lie on 

the same base MD and between the same 

parallels PC and MD) 
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= 𝐴𝑟𝑒𝑎 𝑜𝑓 ∆𝐶𝑀𝐵 

=
1

2
𝐴𝑟𝑒𝑎 𝑜𝑓 ∆𝐴𝐵𝐶 (𝑎𝑠 𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝐴𝐵) 

𝑇ℎ𝑢𝑠,
𝑎𝑟𝑒𝑎 𝑜𝑓 ∆𝐵𝑃𝐷

𝑎𝑟𝑒𝑎 𝑜𝑓 ∆𝐴𝐵𝐶
=

1

2
𝐴𝑟𝑒𝑎 𝑜𝑓 ∆𝐴𝐵𝐶

𝐴𝑟𝑒𝑎 𝑜𝑓 ∆𝐴𝐵𝐶
=
1

2
.    

𝑇ℎ𝑢𝑠, 𝑟 =
1

2
 (𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑃) 

 

103. Since AE is the diameter  

∠𝐴𝐶𝐸 = 90° 

𝑎𝑛𝑑 𝐴𝐶2 + 𝐶𝐸2 = 𝐴𝐸2 = 22 = 4 

By cosine formula (for ∆𝐴𝐵𝐶) 

𝐴𝐶2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos(180° − 𝜃) 

= 𝑎2 + 𝑏2 + 2𝑎𝑏 cos 𝜃 

 

Similarly in ∆ 𝐶𝐸𝐷 

𝐶𝐸2 = 𝑐2 + 𝑑2 − 2𝑐𝑑 cos(90° + 𝜃)  

= 𝑐2 + 𝑑2 + 2𝑐𝑑 sin𝜃   

∴ 𝐴𝐶2 + 𝐶𝐸2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 +

2𝑎𝑏 cos𝜃 + 2𝑐𝑑 sin𝜃  

𝐼𝑛  ∆𝐴𝐶𝐸,
𝐴𝐶

𝐴𝐸
= sin𝜃 

⇒ 𝐴𝐶 = 2 sin𝜃 > 𝑏 (∵ 𝐴𝐸 = 2)…… . (1) 

𝑎𝑛𝑑
𝐶𝐸

𝐴𝐸
= cos 𝜃(𝐴𝐸 = 2) 

⇒ 𝐶𝐸 = 2 cos 𝜃 > 𝑐 …… . (2) 

(Because in ∆s ABC and CDE, ∠𝐵 𝑎𝑛𝑑 ∠𝐶 are 

obtuse angles and AC is the greatest side of 

∆𝐴𝐵𝐶 and CE is the greatest side of ∆ 𝐶𝐷𝐸). 

∴  𝐴𝐶2 + 𝐶𝐸2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 +

2𝑎𝑏 cos𝜃 + 2𝑐𝑑 cos 𝜃 = 4  

⇒ 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑎𝑏. 2 cos 𝜃 +

𝑐𝑑. 2 sin 𝜃 = 4  

⇒ 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 + 𝑎𝑏𝑐 + 𝑏𝑐𝑑 < 4 [by (1) 

and (2)] 

 

104. If a is side of the rhombus, then area of the 

rhombus is 

1

2
𝑎2 sin2𝜃 × 2 

But by hypothesis, this area is equal to 
1

2
𝑎2 i.e.,  

1

2
𝑎2 = 𝑎2 𝑠𝑖𝑛 2𝜃 

⇒ sin2𝜃 =
1

2
 

⇒ 2𝜃 = 30° 𝑜𝑟 150° 

⇒ 𝜃 = 15° 𝑜𝑟 75° 
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[If the acute angle of the rhombus is 30°, the 

other angle which is obtuse is 150°]  

𝐵𝑦 𝑠𝑖𝑛𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎,
𝐵𝐷

sin2𝜃

=
𝐴𝐵

sin(90 − 𝜃)
 (𝑖𝑛 ∆𝐴𝐵𝐷) 

⇒ 𝐵𝐷 =
𝑎 × 2 sin 𝜃 cos 𝜃

cos 𝜃
= 2𝑎 sin𝜃 

𝐴𝑔𝑎𝑖𝑛 
𝐴𝐶

sin(180 − 2𝜃)
=

𝑎

sin𝜃
 (𝑖𝑛 ∆𝐴𝐵𝐶) 

𝐴𝐶 =
𝑎 sin2𝜃

sin𝜃
=
2𝑎 sin𝜃 cos𝜃

sin𝜃
= 2𝑎 cos 𝜃 

𝐴𝐶 ∶ 𝐵𝐷 = cos𝜃: sin𝜃 

[𝐼𝑓 𝜃 = 15°, 𝑡ℎ𝑒𝑚 𝐴𝐶 > 𝐵𝐷 𝑎𝑛𝑑 𝑖𝑓 𝜃

= 75°, 𝐵𝐷 > 𝐴𝐶] 

𝐴𝐶:𝐵𝐷 = cos 15°: sin 15°  

= sin75°: sin 15°  

= sin(45° + 30°): sin (45° − 30°)  

= sin45° cos 30° +

cos 45° sin30°: sin 45° cos 30° −

cos 45° sin30°  

=
1

2
(√3 + 1):

1

2
(√3 − 1)  

= (√3 + 1) ∶ (√3 − 1)  

𝑜𝑟,
𝐴𝐶

𝐵𝐷
=
√3 + 1

√3 − 1
= (2 + √3) 

 

105. We should find the circumference of circle 

on AB as diameter. 

𝐶𝐷 = 4 𝑐𝑚 

𝑂𝐶 = 𝑂𝐵 =
13

2
= 6.5 𝑐𝑚 

𝑆𝑜, 𝑂𝐷 = 6.5 𝑐𝑚 − 4𝑐𝑚 = 2.5 𝑐𝑚 

𝑆𝑜, 𝐷𝐵 = √(6.5)2 − (2.5)2 = 6 𝑐𝑚 

So the circumference of the circle is  

2𝜋 × 6 𝑐𝑚 = 12𝜋 𝑐𝑚  

 

 

106. Area of the quadrant = areas of the two 

semicircles +b – a [Since sum of the areas of the 

two semicircles include the area shaded ‘a’ 

twice)  

𝑖. 𝑒. ,
1

4
𝜋𝑟2 =

1

2
𝜋 (
𝑟

2
)
2

+
1

2
𝜋 (
𝑟

2
)
2

+ 𝑏 − 𝑎 

⇒
1

4
𝜋𝑟2 =

1

4
𝜋𝑟2 + 𝑏 − 𝑎 

⇒ 𝑏 − 𝑎 = 0 
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⇒ 𝑎 = 𝑏 

 

107. To solve this problem we use the sine 

formula from trigonometry.  

In the diagram,  

∠𝐴𝐶𝐵 =
1

2
∠𝐴𝑂𝐵 =

60°

2
= 30° 

If ∠𝐶𝐴𝐵 = 𝜃 𝑡ℎ𝑒𝑛 ∠𝐴𝐵𝐶 = (150° − 𝜃)  

𝐵𝑦 𝑠𝑖𝑛𝑒 𝑟𝑢𝑙𝑒 
𝐴𝐵

sin30°
=
𝐵𝐶

sin 𝜃
=

𝐴𝐶

sin(150° − 𝜃)
 

⇒ 𝐴𝐶 = 2 × 𝐴𝐵 sin(150° − 𝜃)

= 2 sin(150° − 𝜃) 

𝑎𝑛𝑑 𝐵𝐶 = 2𝐴𝐵 sin𝜃 = 2 sin𝜃 

𝐴𝐶2 + 𝐵𝐶2 = 4𝑠𝑖𝑛2 𝜃 + 4𝑠𝑖𝑛2(150° − 𝜃)

= 2[2 𝑠𝑖𝑛2𝜃

+ 2𝑠𝑖𝑛2(150° − 𝜃)] 

∵ 2𝑠𝑖𝑛2 𝐴 = (1 − cos 2𝐴)  

Therefore, 2[2 𝑠𝑖𝑛2𝜃 + 2𝑠𝑖𝑛2(150° − 𝜃)] 

= 2[2 − cos 2𝜃 − cos(300° − 2𝜃)]   

= 2[2 − (cos 2𝜃 + cos(300° − 2𝜃)]  

= 2[2 − (2 cos
300°

2
. cos(150° − 2𝜃))]    

[∵ cos𝐴 + cos𝐵 = 2 cos
𝐴 + 𝐵

2
cos

𝐴 − 𝐵

2
 ]  

= 2[2 − 2 cos 150°. cos(150° − 2𝜃)]  

= 2[2 + √3. cos(150° − 2𝜃)]  

≤ 2(2 + √3)  ∵ cos(150° − 2𝜃) ≤ 1 

Again AC2 + BC2 is a maximum when cos(150° −

2𝜃) takes the maximum value, i.e., when 

150° − 2𝜃 ⇒ 𝜃 = 75° 

Then ∠𝐴𝐵𝐶 = 75° therefore ∠𝐵𝐴𝐶 = 𝜃 = 75° 

Thus C takes the position at the midpoint of the 

major segment and AC = BC.  

 

108. Before proving the main problem, let us 

prove the following: 

If in ∆𝐴𝐵𝐶, AD is the median, XY is a line 

segment parallel to BC intersecting the median. 

AD at E, then AE is the median of ∆𝐴𝑋𝑌, or in 

other words 𝑋𝐸 = 𝑌𝐸. ∆𝐴𝑋𝐸 similar to ∆𝐴𝐵𝐷 

(1) and ∆𝐴𝑌𝐸 similar to ∆𝐴𝐶𝐷 (2) 
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𝐴𝑋

𝐴𝐵
=
𝐴𝐸

𝐴𝐷
=
𝑋𝐸

𝐵𝐷
;… . . (3) 

𝑎𝑛𝑑
𝐴𝑌

𝐴𝐶
=
𝐴𝐸

𝐴𝐷
=
𝐸𝑌

𝐷𝐶
…… (4) 

From (3) and (4),  

𝑋𝐸

𝐵𝐷
=
𝐴𝐸

𝐴𝐷
=
𝐸𝑌

𝐷𝐶
 

⇒
𝑋𝐸

𝐵𝐷
=
𝐸𝑌

𝐷𝐶
 

⇒
𝐵𝐷

𝐷𝐶
=
𝑋𝐸

𝐸𝑌
 

But D is the midpoint of BC and hence BD= DC 

⇒ 𝑋𝐸 = 𝐸𝑌  

𝑖. 𝑒. , 𝑋𝐸 = 𝑌𝐸 …….(5) 

Now, draw XY parallel to BC through E. Join AM. 

Join the collinear points P, E, N  

MPAN is a cyclic quadrilateral as  

∠𝑀𝑃𝐴 + ∠𝑀𝑁𝐴 = 90° + 90° = 180° 

Since EF is perpendicular to BC and XY is drawn 

parallel to BC, ∠𝑋𝐸𝑀 = ∠𝐸𝐹𝐵 = 90° 

In the quadrilateral MPXE,  

∠𝑀𝑃𝑋 + ∠𝑀𝐸𝑋 = 90° + 90° = 180° 

And hence MPXE is a cyclic quadrilateral and in 

the quadrilateral MENY.  

∠𝑀𝐸𝑌 = ∠𝑀𝑁𝑌 = 90°……(6) 

So MENY is a cyclic quadrilateral, since 

∠𝑀𝐸𝑌 𝑎𝑛𝑑 ∠𝑀𝑁𝑌 are subtended by MY at E 

and N and they are equal by (6). In ∆s MEX and 

MEY,  

𝑋𝐸 = 𝑌𝐸 

∠𝑀𝐸𝑋 = ∠𝑀𝐸𝑌 = 90° 

ME is common  

And hence ∆𝑀𝐸𝑋 ≡ ∆𝑀𝐸𝑌 

∴ ∠𝑀𝑋𝐸 = ∠𝑀𝑌𝐸… . (7) 

∠𝑃𝐴𝑀 = ∠𝑃𝑁𝑀 (angle on the same segment 

in the cyclic quadrilateral MPAN).  

= ∠𝐸𝑁𝑀  

= ∠𝐸𝑌𝑀 (angle on the same segment in 

quadrilateral EMYN) 

= ∠𝐸𝑋𝑀  by (7) 

= ∠𝐸𝑃𝑀 (angle on the same segment in cyclic 

quadrilateral MPXE) 

= ∠𝑁𝑃𝑀  

= ∠𝑁𝐴𝑀 (cyclic quadrilateral APMN) 

That is AM bisects the vertical angle A of ∆ABC.  

That is M lies on the bisector of ∠𝐴.  

 



Olympiad Mathematics by Tanujit Chakraborty 

70 
 

109. Let EF be the tangent to the circumcircle 

through A.  

AD is the bisector of ∠𝐴 and DH is parallel to EF 

meeting AC at H.  

Let the incircle touch the side BC at G. 

∠𝐴𝐷𝐻 = 180° − ∠𝐷𝐴𝐹 

= 180° −
𝐴

2
− 𝐵 

= 𝐶 +
𝐴

2
 

 

 

(Since  ∠𝐻𝐴𝐹 = ∠𝐴𝐵𝐶, being angles in 

alternate segments) 

If the incircle touches BC at G, then  

∠𝐴𝐷𝐺 = ∠𝐷𝐴𝐶 + ∠𝐴𝐶𝐷 

(exterior angle = sum of the remote interior 

angles).  

=
𝐴

2
+ 𝐶 

𝑖. 𝑒. , ∠𝐼𝐷𝐺 = ∠𝐼𝐷𝐻… . (1) 

Let the tangents through D to the incircle meet 

the incircle at G and K. Where G and K lie on 

opposite sides of ID. (Since the incircle touches 

the side BC at G, GD is one tangent from D, the 

other being DK).  

𝑆𝑜, ∠𝐼𝐷𝐺 = ∠𝐼𝐷𝐾 

𝐵𝑢𝑡    ∠𝐼𝐷𝐺 = ∠𝐼𝐷𝐻……𝑓𝑟𝑜𝑚 (1) 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒     ∠𝐼𝐷𝐾 = ∠𝐼𝐷𝐻, 

But both K and H are on the same side of ID and 

hence K is a point of DH or DH is a tangent to 

the incircle through D.  

 

110. Let BC meet the smaller circle at P and M.  

Through P draw PA ⊥ 𝑟 to BC meeting smaller 

circle at A since ∠𝐴𝑃𝑀 = 90°, AM is the 

diameter of the smaller circle.  

 

𝑜𝑟, 𝐴𝑀 = 2𝑟 

Let OK be the ⊥ 𝑟 from O to BC.  

And OK= d units; 𝐵𝐾 = 𝐾𝐶;  

𝑃𝐾 = 𝐾𝑀 …..(1) 

Now 𝑃𝐴2 + 𝑃𝐵2 + 𝑃𝐶2 = 𝑃𝐴2(𝑃𝐶 − 𝑃𝐵)2 +

2𝑃𝐶. 𝑃𝐵 

= 𝑃𝐴2 + (𝑃𝐶 −𝑀𝐶)2 + 2𝑃𝐶. 𝑃𝐵 …..by (1) 

= 𝑃𝐴2 + 𝑃𝑀2 + 2𝑃𝐶. 𝑃𝐵  
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= 𝐴𝑀2 + 2𝑃𝐶. 𝑃𝐵  

= 4𝑟2 + 2𝑃𝐶. 𝑃𝐵  

𝑁𝑜𝑤, 𝑅2 = 𝑂𝐵2 = 𝑂𝐾2 + 𝐵𝐾2 = 𝑑2 +
1

4
𝐵𝐶2 

𝑟2 = 𝑂𝑀2 = 𝑂𝐾2 + 𝐾𝑀2 = 𝑑2 +
1

4
𝑃𝑀2 

∴ 𝑅2 − 𝑟2 =
1

4
(𝐵𝐶2 − 𝑃𝑀2)

=
1

4
(𝐵𝐶 + 𝑃𝑀)(𝐵𝐶 − 𝑃𝑀) 

=
1

4
(2𝐵𝐾 + 2𝑃𝐾)(2𝐵𝐾 − 2𝑃𝐾) 

= (𝐵𝐾 + 𝑃𝐾)(𝐵𝐾 − 𝑃𝐾) 

= (𝐶𝐾 + 𝑃𝐾)(𝐵𝑃) 

= 𝑃𝐶. 𝐵𝑃 

𝑜𝑟, 2(𝑅2 − 𝑟2) = 2𝑃𝐶. 𝑃𝐵  

∴ 𝑃𝐴2 + 𝑃𝐵2 + 𝑃𝐶2 = 4𝑟2 + 2𝑃𝐶. 𝑃𝐵  

= 4𝑟2 + 2(𝑅2 − 𝑟2)  

= 2𝑅2 + 2𝑟2 = 2(𝑅2 + 𝑟2)  

 

111. Let 𝑥 = tan𝑎, 𝑦 = tan 𝑏, 𝑧 =

tan𝑔,     
−𝜋

2
< 𝑎, 𝑏, 𝑔 <  

+𝜋

2
 

4√(𝑡𝑎𝑛2 𝑎 + 1)

tan 𝑎
=
5√(𝑡𝑎𝑛2 𝑏 + 1)

tan 𝑏

=
6√(𝑡𝑎𝑛2𝑔 + 1

tan𝑔
 

⇒
4

sin𝑎
=

5

sin𝑏
=

6

sin𝑔
… . (1) 

Again tan a tan b tan g = tan a + tan b+ tan g 

⇒ tan𝑎(tan 𝑏 tan 𝑔 − 1) = (tan 𝑏 + tan𝑔)  

⇒ −tan𝑎 =
(tan 𝑏 + tan 𝑔)

1 − tan 𝑏 tan 𝑔
= tan(𝑏 + 𝑔) 

⇒ tan(𝑘𝜋 − 𝑎) = tan(𝑏 + 𝑔)  

⇒ 𝑎 + 𝑏 + 𝑔 = 𝑘𝜋  

I taking 𝑘 = 1, we get a + b + g= 𝜋 which 

implies that there exists a triangle whose angles 

are a, b and g and whose sides opposite to 

these angles are proportional to 4, 5 and 6 

respectively.  

Let the sides of such triangle be 4k, 5k and 6k.  

𝑠 = semiperimeter of the triangle =
15𝑘

2
 

tan
𝑎

2
= √

(𝑠 − 5𝑘)(𝑠 − 6𝑘)

𝑠(𝑠 − 4𝑘)
= √

5𝑘
2 ×

3𝑘
2

15
2 𝑘 ×

7
2𝑘

= √
1

7
 

𝑥 = tan𝑎 =
2𝑡

1 − 𝑡2
=
2√
1
7

1 −
1
7

=
√7

3
 

Similarly, 𝑦 = tan𝑏 =
5√7

9
 and 𝑧 = tan𝑔 = 3√7 

[tan
𝑏

2
= √

(𝑠 − 4𝑘)(𝑠 − 6𝑘)

𝑠(𝑠 − 5𝑘)
 𝑎𝑛𝑑 tan

𝑔

2

= √
(𝑠 − 4𝑘)(𝑠 − 5𝑘)

𝑠(𝑠 − 6𝑘)
] 

Where a, b, g are measures of the angles A, B 

and C of ∆ABC.  

 

112. Let f(x)= 𝑎0 + 𝑎1 cos𝑥 + 𝑎2 cos 2𝑥 +

𝑎3 cos3𝑥 
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𝑓(0) = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 = 0 ……..(1) 

𝑓 (
𝜋

2
) = 𝑎0 − 𝑎2 = 0 ⇒ 𝑎0 = 𝑎2………(2) 

𝑓 (
𝜋

3
) = 𝑎0 +

1

2
𝑎1 −

1

2
𝑎2 − 𝑎3 = 0 

⇒
1

2
𝑎2 +

1

2
𝑎1 − 𝑎3 = 0 

⇒ 𝑎3 =
1

2
(𝑎2 + 𝑎1)……(3) 

𝑓 (
𝜋

4
) = 𝑎0 +

𝑎1

√2
−
𝑎3

√2
= 0 

⇒ 𝑎2 +
(𝑎1 − 𝑎3)

√2
= 0 

𝑜𝑟, 𝑎2 =
(𝑎3 − 𝑎1)

√2
……(4) 

Substituting in (1) the values obtained (2) and 

(3) 

2𝑎2 + 𝑎1 +
1

2
(𝑎1 + 𝑎2) = 0 

⇒ 5𝑎2 + 3𝑎1 = 0 

𝑜𝑟, 𝑎2 =
−3

5
𝑎1……(5) 

From (4) and (5) we get  

(
1

√2
−
3

5
)𝑎1 =

1

√2
𝑎3… . . (6) 

And from (3), (5) and (6) we get  

(
1

√2
−
3

5
) 𝑎1 =

1

2√2
[(𝑎1 −

3

5
𝑎1)] 

=
1

2√2
×
2

5
𝑎1 =

1

√2. 5
𝑎1 

⇒ (
1

√2
−
3

5
−

1

√2. 5
) 𝑎1 = 0 

⇒
(5 − 3√2 − 1)

5√2
𝑎1 = 0 

⇒
(4 − 3√2)

5√2
𝑎1 = 0 𝑏𝑢𝑡 

4 − 3√2

5√2
≠ 0 

𝑎1 = 0  

𝑎3 = 0 [𝑎𝑠 𝑎3 = √2(
1

√2
−
3

5
)𝑎1] 

𝑎2 =
−3

5
𝑎1 = 0 

𝑎0 = 𝑎2 = 0 

𝑇ℎ𝑢𝑠 𝑎0 = 𝑎1 = 𝑎2 = 𝑎3 = 0  

 

 

113.  

 

𝐴𝑃

𝑃𝐵
=
∆𝐴𝑂𝑃

∆𝑃𝑂𝐵
=

1
2𝐴𝑂. 𝑃𝑂. sin𝐴𝑂𝑃

1
2𝐵𝑂. 𝑃𝑂 sin𝐵𝑂𝑃

 

=
𝐴𝑂 sin𝐴𝑂𝑃

𝐵𝑂 sin𝐵𝑂𝑃
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𝑜𝑟,
𝐴𝑃

𝑃𝐵
=
∆𝐴𝑂𝑃

∆𝑃𝑂𝐵
=

1
2
𝑂𝐴. 𝑃𝐻

1
2
𝐵𝑂. 𝑃𝐾

=

1
2
𝑂𝐴. 𝑂𝑃. sin𝐻𝑂𝑃

1
2
𝑂𝐴. 𝑂𝑃 sin𝑃𝑂𝐾

 

=
𝑂𝑃 sin𝐴𝑂𝑃

𝑂𝑃 sin𝑃𝑂𝐵
 

 

114. Let AD intersect EF at M.  

Consider the ∆𝐼𝑀𝐹 

∠𝑀𝐹𝐼 = ∠𝐸𝐹𝐶  

= ∠𝐸𝐵𝐶  

(angles in the same segment) 

=
𝐵

2
  

∠𝑀𝐼𝐹 = 180° − ∠𝑀𝐼𝐶 

= 180° − [180° −
𝐴

2
−
𝐶

2
]  (𝐼𝑛 ∆𝐴𝐼𝐶) 

=
𝐴

2
+
𝐶

2
=
1

2
(180° − 𝐵) 

 

= 90° −
𝐵

2
 

∴ ∠𝐼𝑀𝐹 = 180° − [∠𝑀𝐹𝐼 + ∠𝑀𝐼𝐹] 

= 180° − (
𝐵

2
+ 90° −

𝐵

2
) 

= 90° 

i.e., AD is perpendicular to EF.  

[Similarly we can prove that BE and CF are 

perpendiculars to FD and ED respectively].  

 

115. Join AO. In ∆𝐴𝑂𝐷,𝑚∠𝑂𝐴𝐷 =
𝐴

2
 

𝑚∠𝑂𝐷𝐴 = 𝑚∠𝐵𝐷𝐴 = 𝐶 +
𝐵

2
 

(exterior angle = sum of the remote interior 

angles) 

 

∠𝐴𝑂𝐷 = 180° −
𝐴

2
−
𝐵

2
− 𝐶 

= 180° −
1

2
(180° − 𝐶) − 𝐶 

= 90° −
1

2
𝐶 

Similarly in ∆𝐴𝑂𝐸,  

𝑚∠𝑂𝐴𝐸 =
𝐴

2
, 𝑚∠𝑂𝐸𝐴 = 𝑚∠𝐶𝐸𝐴 = 𝐵 +

𝐶

2
 

(exterior angle =sum of the remote interior 

angles) 

𝑎𝑛𝑑 ∠𝐸𝑂𝐴 = 180° −
𝐴

2
−
𝐶

2
− 𝐵 
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= 180° −
1

2
(180° − 𝐵) − 𝐵 

= 90° −
1

2
𝐵 

Using the sine formula for the two triangles 

ADO and AEO, we get  

𝑂𝐷

sin∠𝑂𝐴𝐷
=

𝐴𝑂

sin∠𝐴𝐷𝑂
 

⇒
𝑂𝐷

sin
𝐴
2

=
𝐴𝑂

sin (𝐶 +
𝐵
2)

 

⇒ 𝑂𝐷 =
𝐴𝑂 sin

𝐴
2

sin (𝐶 +
𝐵
2)
… . . (1) 

𝐴𝑔𝑎𝑖𝑛 
𝑂𝐸

sin∠𝑂𝐴𝐸
=

𝐴𝑂

sin∠𝑂𝐸𝐴
 

⇒
𝑂𝐸

sin
𝐴
2

=
𝐴𝑂

sin (𝐵 +
𝐶
2)

 

⇒ 𝑂𝐸 =
𝐴𝑂 sin

𝐴
2

sin (𝐵 +
𝐶
2)
……(2) 

𝐵𝑢𝑡 𝑂𝐷 = 𝑂𝐸 (𝑔𝑖𝑣𝑒𝑛) 

∴ From (1) and (2), we get  

sin (𝐶 +
𝐵

2
) = sin (𝐵 +

𝐶

2
) 

⇒ 𝐶 +
𝐵

2
= 𝐵 +

𝐶

2
…… . (3) 

𝑜𝑟, 𝐶 +
𝐵

2
= 180° − (𝐵 +

𝐶

2
)… . . (4) 

⇒
𝐶

2
=
𝐵

2
⇒ ∠𝐵 = ∠𝐶

}  𝐹𝑟𝑜𝑚 (3) 

⇒
3

2
(𝐵 + 𝐶) = 180°

⇒ 𝐵 + 𝐶 = 120°
}  𝑓𝑟𝑜𝑚 (4) 

∴ ∠𝐴 = 180° − 120° = 60° 

 

 116. Let the acute angle in the problem be a.  

The harmonic mean of sin a and tan a is  

2

1
sin 𝑎

+
1

tan 𝑎

=
2 sin 𝑎 

1 + cos 𝑎
=
4 sin

𝑎
2
cos

𝑎
2

2𝑐𝑜𝑠2
𝑎
2

 

= 2 tan
𝑎

2
 

So, we should prove a < 2 tan 
𝑎

2
 

In the figure 𝑚∠𝐴𝑂𝐵 = a radians and the 

radius of the circle with centre O is 1 unit, i.e., 

𝑂𝐴 = 𝑂𝐵 = 1. 

𝐴𝑟𝑐 𝐴𝐵 = 𝑑 <
𝜋

2
 

Let the tangents at A and B intersect at C. Let 

OB produced meet the tangent at A at point D 

and let BE ⊥r to AD.  

(i) Area of the sector OAB  

=
1

2
× 𝑎 × 1 =

𝑎

2
 𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠 

But the sector OAB is contained in the 

quadrilateral OACB.  
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(ii) ∴ Area of sector < area of the 

quadrilateral  

⇒ Area of the sector < 2 area of ∆𝑂𝐴𝐶 [∵

∆𝑂𝐴𝐶 = ∆𝑂𝐵𝐶] 

Area of ∆𝑂𝐴𝐶 =
1

2
𝑂𝐴 × 𝐴𝐶 =

1

2
× 1 ×

tan
𝑎

2
 𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠 

∴
𝑎

2
< 2 <

1

2
tan

𝑎

2
 

⇒ 𝑎 < 2 tan
1

2
 𝑎𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑. 

 

117. Draw PC’||AB and P’C’ ||BC as in the 

figure.  

∆𝐴𝑃′𝐶′ is similar to ∆ APC 

[∵ ∠𝑃′𝐴𝐶′ = ∠𝑃𝐴𝐶, ∠𝐴𝐶𝑃 = ∠𝐴𝐶′𝑃′] 

And ∆𝑃𝐶′𝑃′ is similar to ∆𝐴𝐵𝑃 

[∵ ∠𝐶′𝑃′𝑃 = ∠𝐵𝑃𝐴;  ∠𝐶′𝑃𝑃′ = ∠𝐵𝐴𝑃] 

∴
𝑃′𝐶′

𝑃𝐶
=
𝐴𝑃′

𝐴𝑃
…… (1) 

𝑎𝑛𝑑 𝑃𝐵
𝑃′𝐶′

𝑃𝐵
=
𝑃′𝑃

𝑃𝐴
…… . (2) 

 

Adding (1) and (2), we get  

𝑃′𝐶′

𝑃𝐶
=
𝑃′𝐶′

𝑃𝐵
=
𝐴𝑃′ + 𝑃′𝑃

𝑃𝐴
 

⇒ 𝑃′𝐶′ (
1

𝑃𝐶
+

1

𝑃𝐵
) = 1  𝑜𝑟,   

1

𝑃𝐵
+

1

𝑃𝐶
=

1

𝑃′𝐶′
 

If the quantity 
1

𝑃𝐵
+

1

𝑃𝐶
 is a maximum, then P’C’ 

should be minimum.  

But C’P’ is minimum if C’P’ is ⊥ 𝑟 to AP. But P’C’ 

is || to BC and P’C’ ⊥ 𝑟 to AP implies BC should 

be perpendicular to AP. So, join the vertex A of 

the given angle to the given point P and draw 

perpendicular to AP through P, terminated by 

the arms of the given angle A at C and B. Now, 

we have got the chord BPC satisfying the 

hypothesis.  

 

118. ∆𝐴𝐵𝐶 is equilateral  

∴ 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐴  

ACPB is a cyclic quadrilateral 

∴ By Ptolemy’s theorem, we get  

𝑃𝐶. 𝐴𝐵 + 𝑃𝐵. 𝐴𝐶 = 𝑃𝐴. 𝐵𝐶  

Cancelling 𝐴𝐵 = 𝐴𝐶 = 𝐵𝐶 we get 

𝑃𝐵 + 𝑃𝐶 = 𝑃𝐴  
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Dividing by PB.PC, we get 
1

𝑃𝐵
+

1

𝑃𝐶
=

𝑃𝐴

𝑃𝐵.𝑃𝐶
 

…….(1) 

∠𝐴𝑃𝐶 = ∠𝐴𝐵𝐶 = 60° 

∠𝐴𝑃𝐵 = ∠𝐴𝐶𝐵 = 60° 

In ∆𝑠 ABP and CQP, we have  

∠𝐵𝐴𝑃 = ∠𝐵𝐶𝑃 (angles in the same segment) 

∠𝐴𝐵𝑃 = 180° − 60° − ∠𝐵𝐴𝑃 

∠𝐶𝑄𝑃 = 180° − 60° − ∠𝑄𝐶𝑃 

But since ∠𝑄𝐶𝑃 = ∠𝐵𝐴𝑃 we get  

∠𝐴𝐵𝑃 = ∠𝐶𝑄𝑃  

∴ ∆𝐴𝐵𝑃~∆𝐶𝑄𝑃  

∴
𝑃𝐴

𝑃𝐶
=
𝑃𝐵

𝑃𝑄
 

⇒
𝑃𝐴

𝑃𝐵. 𝑃𝐶
=
1

𝑃𝑄
 

Substituting in (1), we get  
1

𝑃𝐵
+

1

𝑃𝐶
=

1

𝑃𝑄
.  

 

119. Let a, b, c be the sides of ∆𝐴𝐵𝐶. 

Let ℎ𝑎, ℎ𝑏 , ℎ𝑐  𝑏𝑒 𝑡ℎ𝑒 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 ∆𝐴′𝐵′𝐶′. They 

are also the altitudes of ∆𝐴𝐵𝐶.  

Let ℎ′𝑎, ℎ′𝑏 , ℎ′𝑐  𝑏𝑒 𝑡ℎ𝑒 𝑠𝑖𝑑𝑒𝑠 𝑜𝑓 ∆𝐴′′𝐵′′𝐶′′. 

They are also the altitudes of ∆𝐴′𝐵′𝐶′.  

1

2
𝑎ℎ𝑎 =

1

2
𝑎ℎ𝑏 =

1

2
𝑎ℎ𝑐 = ∆           ∴ ℎ𝑎 =

2∆

𝑎
 

1

2
ℎ𝑎ℎ′𝑎 =

1

2
ℎ𝑏 . ℎ′𝑏 =

1

2
ℎ𝑐 . ℎ′𝑐 = ∆ 

∴ ℎ′𝑎 =
2∆′

ℎ𝑎
=

2∆

2∆/𝑎
=
𝑎∆′

∆
 

∆′′2 =
ℎ′𝑎+ℎ′𝑏+ℎ′𝑐

2
.
ℎ′𝑎+ℎ′𝑏−ℎ′𝑐

2
.
ℎ′𝑎−ℎ′𝑏+ℎ′𝑐

2
.
ℎ′𝑏+ℎ′𝑐−ℎ′𝑎

2
  

=
1

24
[
𝑎∆′

∆
+
𝑏∆′

∆
+
𝑐∆′

∆
] [
𝑎∆′

∆
+
𝑏∆′

∆
−
𝑐∆′

∆
] [
𝑎∆′

∆

−
𝑏∆′

∆
+
𝑐∆′

∆
] [
𝑏∆′

∆
+
𝑐∆′

∆
−
𝑎∆′

∆
] 

=
∆𝑟4

24∆4
(𝑎 + 𝑏 + 𝑐)(𝑎 + 𝑏 − 𝑐)(𝑎 − 𝑏 + 𝑐)(𝑏

+ 𝑐 − 𝑎) 

=
∆𝑟4

∆4
. ∆2=

∆𝑟4

∆2
 

∆′= 30, ∆′′ = 20  

∴ ∆2=
∆𝑟4

∆′′2
=
304

204
=
34×104

24×102
  ;    ∆=

32×10

2
= 45. 

 

120. Since both S1 and S2 touch AB, AC, their 

centres O1, O2 lie on the angle bisector of ∠𝐴.  
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𝐼𝑛 ∆𝐴𝑂𝑂1 

(𝑂1𝑂)
2 = (𝑅 − 𝑟1)

2 = 𝑅2 + (√2𝑟1)
2 −

2𝑅√2𝑟1 cos(𝐵 − 45°) 

[Since S and S1 touch each other, the distance 

between their centres = difference in the radii 

= 𝑅 − 𝑟1. 

Also 𝐴𝑂1 = √2 𝑟1 

∠𝑂𝐴𝑂1 = ∠𝑂𝐴𝐵 − ∠𝑂1𝐴𝐵  = 𝐵 − 45°  

O is the midpoint of the hypotenuse BC  

∴ 𝑂𝐵 = 𝑂𝐴 = 𝑂𝐶, ℎ𝑒𝑛𝑐𝑒 ∠𝑂𝐴𝐵 = ∠𝑂𝐵𝐴 =

∠𝐵]  

∴ 𝑅2 + 𝑟1
2 − 2𝑅1

= 𝑅2 + 2𝑟1
2

− 2𝑅√2𝑟1 (
cos𝐵

√2
+
sin𝐵

√2
)

− 2𝑅𝑟1 

= 𝑟1
2 − 𝑟1(2𝑅 sin𝐶 + 2𝑅 sin𝐵) 

[∵ 𝑖𝑡 𝑖𝑠 𝑎 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒𝑑 𝑡𝑟𝑎𝑖𝑛𝑔𝑙𝑒, ∠𝐶

= 90 − ∠𝐵] 

= 𝑟1
2 − 𝑟1(𝑏 + 𝑐) 

But 2𝑅 = 𝑎 

−𝑎𝑟1 = 𝑟1
2 − 𝑟1(𝑏 + 𝑐) 

(𝑏 + 𝑐 − 𝑎) = 𝑟1 

Similarly, from ∆𝑂2𝑂𝐴, we get cancelling r1 

𝑟2 = (𝑏 + 𝑐 + 𝑎) 

∴ 𝑟1𝑟2 = (𝑏 + 𝑐)
2 − 𝑎2 = 2𝑏𝑐 = 4.

1

2
𝑏𝑐 = 4∆ 

 

121. Join PQ, BZ and AX.  

 

In circle C2, we have ∠𝑍𝐵𝑃 = ∠𝑍𝑄𝑃; in circle 

C1, we have ∠𝑃𝑄𝑋 = ∠𝑃𝐴𝑋. Thus, we obtain 

∠𝑍𝐵𝐴 = ∠𝐵𝐴𝑋. (So BZ is parallel to AX). The 

triangles AXY and BZY are then congruent, 

because by hypothesis 𝐴𝑌 = 𝑌𝐵 and angles AYX 

and YAX are respectively equal to BYZ and YBZ. 

This congruence gives us 𝑋𝑌 = 𝑍𝑌, which is 

what we want.  

 

122. We shall show that the locus of all such 

points is the union of the circumcircle and the 

orthocenter of the triangle ABC.  

Let P be any point in the cone determined by 

two sides, say, BA and BC. Using the sine rule in 

the triangles PAC and PBC, we get  

∠𝐶𝐴𝑃 = 𝛼 𝑜𝑟 180° − 𝛼 
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Similarly, using the triangles CAP and BAP, we 

also get  

∠𝐴𝐶𝑃 = 𝛽 𝑜𝑟 180° − 𝛽 

Consider the case ∠𝐶𝐴𝑃 = 𝛼 and ∠𝐴𝐶𝑃 =

180° − 𝛽 

 

Here we get,  

∠𝐴𝑃𝐶 = 180° − (𝑎 + 180° − 𝛽) = 𝛽 − 𝛼  

Again the triangle BPC and BPA give  

∠𝐵𝐴𝑃 = ∠𝐵𝐶𝑃 𝑜𝑟 ∠𝐵𝐴𝑃 = 180° − ∠𝐵𝐶𝑃. 

If ∠𝐵𝐴𝑃 = ∠𝐵𝐶𝑃 = 𝛾, then the sum of the 

angles of the quadrilateral is equal to 2𝛽 + 2𝛾. 

This implies that 𝛽 + 𝛾 = 180°. Since 𝛽 𝑎𝑛𝑑 𝛾 

are angles of a triangle, this is impossible.  

If ∠𝐵𝐴𝑃 = 180° − ∠𝐵𝐶𝑃 = 180° − 𝛾, then we 

get −2𝛽 + 360° = 180°. Hence 𝛽 = 90°. This 

forces that ∠𝑃𝐶𝐴 = 90° and AP is a diameter of 

the circle through A, B, C and P, is on the 

circumcircle of ABC. Similarly, we can dispose 

off the case ∠𝐶𝐴𝑃 = 180° − 𝛼, ∠𝐴𝐶𝑃 = 𝛽. 

Finally consider the case, ∠𝐶𝐴𝑃 = 180° −

𝛼, 𝑎𝑛𝑑 ∠𝐴𝐶𝑃 = 180° − 𝛽. 

Considering the triangle ACP, we see that  

∠𝐴𝑃𝐶 = 180° − ∠𝐴𝐵𝐶 

Similarly, the case ∠𝐶𝐴𝑃 = 𝛼, ∠𝐴𝐶𝑃 =

𝛽 𝑔𝑖𝑣𝑒𝑠 𝑡ℎ𝑎𝑡 ∠𝐴𝑃𝐶 𝑎𝑛𝑑 ∠𝐴𝐵𝐶 are 

supplementary angles. Thus, A, B, C and P are 

concyclic.  

On the other hand, suppose P is in the cone 

determined by the lines, say CB and AB 

extended. Since  

∠𝑃𝐵𝐶 + ∠𝑃𝐴𝐶 = ∠𝑃𝐵𝐴 + ∠𝑃𝐶𝐴 = 180° 

It follows that ∠𝐴𝐵𝐶 𝑎𝑛𝑑 ∠𝐴𝑃𝐶 are 

supplementary angles. Thus, triangles ABC and 

APC, and hence triangles ABC and BPC, have the 

same circumradii. Now sine rule gives  

∠𝐶𝑃𝐵 = 𝛽 𝑜𝑟 180° − 𝛽, ∠𝐴𝑃𝐵

= 𝛾 𝑜𝑟 180° − 𝛾 

Also, if ∠𝐵𝐴𝑃 = 𝛼, 𝑡ℎ𝑒𝑛 ∠𝐵𝐶𝑃 = 𝛼 𝑜𝑟 180° −

𝛼 

Consider the case  

∠𝐶𝑃𝐵 = 𝛽, ∠𝐴𝑃𝐵 = 180° − 𝛾 𝑎𝑛𝑑 ∠𝐵𝐶𝑃 = 𝛼 

Then  

∠𝐴𝑃𝐶 = 𝛽 + 180 − 𝛾, ∠𝑃𝐴𝐶 + ∠𝑃𝐶𝐴

= 𝛽 + 𝛾 + 2𝛼 

And hence 𝛽 + 𝛾 + 2𝛼 = 𝛾 − 𝛽 𝑜𝑟 𝛼 + 𝛽 = 0 

which is impossible.  

If ∠𝐵𝐶𝑃 = 180° − 𝛼, then we have  

∠𝐴𝑃𝐶 = 𝛽 + 180 − 𝛾, ∠𝑃𝐴𝐶 + ∠𝑃𝐶𝐴

= 𝛽 + 𝛾 + 180. 

Then we would have,  

𝛾 − 𝛽 = 𝛽 + 𝛾 + 180 

Which is impossible. Similarly we can dispose 

off the cases 

∠𝐶𝑃𝐵 = 180° − 𝛽, ∠𝐴𝑃𝐵 = 𝛾, ∠𝐵𝐶𝑃

= 𝛼 𝑜𝑟 180° − 𝛼 
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 Finally if  

∠𝐶𝑃𝐵 = 𝛽, ∠𝐴𝑃𝐵 = 𝛾, ∠𝐵𝐶𝑃 = 180° − 𝛼 

Then again we get  

∠𝐴𝑃𝐶 = 𝛽 + 𝛾, ∠𝑃𝐴𝐶 + ∠𝑃𝐶𝐴

= 180° + 𝛽 + 𝛾 

This forces 2(𝛽 + 𝛾) = 0 which is impossible. 

We conclude that the only possibility is  

∠𝐴𝑃𝐵 = 𝛾, ∠𝐶𝑃𝐵 = 𝛽 𝑎𝑛𝑑 ∠𝐵𝐶𝑃 = 𝛼 

In this case, we get  

∠𝐴𝑃𝐶 = 𝛽 + 𝛾, ∠𝑃𝐴𝐶 + ∠𝑃𝐶𝐴 = 2𝛼 + 𝛽 + 𝛾 

This gives us  

𝑎 = 90° − (𝛽 + 𝛾) 

Thus, 𝛼 + 𝛽 = 90° − 𝛾, 𝑎𝑛𝑑 𝛼 + 𝛽 = 90° − 𝛽. 

These imply that AP is perpendicular to CB and 

CP is perpendicular to AB. Hence P is the 

orthocenter. Similarly we can consider other 

regions determined by BA and CA or BC and AC.  

Finally if P is a point inside the triangle, we can 

show that P is the orthocenter of the triangle 

ABC in the similar way.  

Thus if P is any point satisfying the hypothesis, 

then either P is the orthocenter of the triangle 

ABC or P must be on the circumcircle of the 

triangle ABC.  

Aliter:  

We need to know the following facts about 

three equal circles intersecting in a common 

point. If three congruent (that is, equal) circle 

C1, C2, C3 have a common point P and A, B, C are 

the other three points of intersections, then  

(a) The circumcircle of triangle ABC has the 

same radius as the three circles; and  

(b) The point P is the orthocenter of 

triangle ABC.  

A brief proof of (a) and (b) follows:  

Let X, Y, Z be the centres of the circles C1, C2, C3 

respectively. Complete the quadrilaterals PXBZ 

and PXCY, join AP and ZY. Observe that PXBZ 

and PXCY are rhombuses and so ZB is parallel 

and equal to YC. Hence so are BC and ZY. Since 

AP is perpendicular to ZY, AP is perpendicular to 

BC. Similarly BP and CP are perpendicular to CA 

and AB respectively. Hence P is the orthocenter 

of triangle ABC. This proves (b).  

 

To prove (a), complete the parallelogram AYCQ, 

which is in fact a rhombus. So 𝐴𝑄 = 𝐶𝑄. It is 

easily see that AZBQ is also a rhombus. So 𝐴𝑄 =

𝐵𝑄. Thus Q is the circumcircle of triangle ABC 

and its radius (= 𝐴𝑄 = 𝐶𝑌) is the same as that 

of each of the three circles.  

Note that we have a configuration of three 

equal circle such that P falls outside triangle 

ABC, but statements (a) and (b) are still true.  
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Coming to the problem : Let (XYZ) denote the 

circle through any three non collinear points X, Y, 

Z. It is given that three equal circles pass through 

P. Hence by (a) above, the four circles (PAB), 

(PBC), (PCA) and (ABC) are congruent to one 

another. Observe that either the three circles 

(PAB), (PBC), (PCA) coincide [and hence coincide 

with (ABC)] or the three circles are all distinct 

passing through the point P. Thus either P is on 

the circumcircle of ABC or P is the orthocenter of 

ABC.  

 

123. We denote areas of triangles ABC, 

quadrilaterals ABCD, etc. by [ABC], [ABCD] etc. 

Join PQ and draw one of the diagonals, say BD. 

We use the fact that the median of a triangle 

bisects its area. 

 

From triangles DAB (with median DQ) and BCD 

(with median BP), we have  

[𝐴𝐷𝑄] = [𝐵𝐷𝑄]𝑎𝑛𝑑 [𝐵𝑃𝐶] = [𝐵𝑃𝐷] 

Adding, we have  

[𝐴𝐷𝑄] + [𝐵𝑃𝐶] = [𝐵𝐷𝑄] + [𝐵𝑃𝐷] = [𝐵𝑃𝐷𝑄]

= [𝐵𝑃𝑄] + [𝐷𝑃𝑄]

= [𝐴𝑃𝑄] + [𝐶𝑃𝑄] 

Since PQ is a median of both the triangles APB 

and CQD. Writing in terms of smaller areas, we 

have  

[AXQ] + [AXD] + [BYC] + [PYC] = [AXQ] + [PXQ] + 

[CPY] + [QPY].  

On cancellation, this yields, [ADX] + [BCY] = 

[PXCY].  

If ABCD is a concave quadrilateral and the 

points P, Q, X, Y are located as in the problem 

(see figure) then by a similar argument, we 

arrive at the relation | [ADX] – [BCY]|=

[𝑃𝑋𝐶𝑌], where the left hand side denotes the 

modulus of the difference of areas. The proof is 

left to the reader.  

 

124. From the relation 𝐵𝐼2 = 𝐵𝑋. 𝐵𝐴 we see 

that BI is a tangent to the circle passing through 

A, X, I at I. Hence  

∠𝐵𝐼𝑋 = ∠𝐵𝐴𝐼 =
𝐴

2
…… . . (1) 

[Alternatively, one observes that in triangles BIX 

and BAI, ∠𝐼𝐵𝑋 is common and BI|BX= 𝐵𝐴|𝐵𝐼. 

Consequently the two triangles are similar, 

implying (1)].  
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Similarly, from the relation 𝐶𝐼2 = 𝐶𝑌. 𝐶𝐴. CA 

we obtain  

∠𝐶𝐼𝑌 = ∠𝐶𝐴𝐼 =
𝐴

2
         (2) 

It is known that  

∠𝐵𝐼𝐶 = 90° +
𝐴

2
           (3) 

From (1), (2), (3) and the fact that X, I, Y are 

collinear, we obtain  

𝐴

2
+
𝐴

2
+ (90° +

𝐴

2
) = 180° 

Solving we get 𝐴 = 60°.  

 

125. From the given relation, we have  

A1A2 . A1A3 + A1A2 . A1A4 = A1A3 .  A1A4          (1) 

 

Also in the cyclic quadrilateral A1A3A4A5, we 

have, by Ptolemy’s theorem,  

𝐴4𝐴5. 𝐴1𝐴3 + 𝐴3𝐴4. 𝐴1𝐴5 = 𝐴3𝐴5. 𝐴1𝐴4    (2) 

Since A1A2….An is a regular polygon, we have  

𝐴1𝐴2 = 𝐴4𝐴5, 𝐴1𝐴2 = 𝐴3𝐴4, 𝐴1𝐴3 = 𝐴3𝐴5 

Comparing (1) and (2), we have  

𝐴1𝐴4 = 𝐴1𝐴5 

Since that two diagonals A1A4 and A1A5 are 

equal, it follows that there must be the same 

number of vertices between A1 and A4 as 

between A1 and A5. That is the polygon must be 

7−sided, that is 𝑛 = 7. 

 

Aliter:  

If O is the centre of the circle in which A1A2….An 

is inscribed and 𝜃 is the angle which each side 

of the polygon subtends at O then using the 

relation  

1

𝐴1𝐴2
=

1

𝐴1𝐴3
+

1

𝐴1𝐴4
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Obtain as equation in 𝜃. Solve the equation to 

get 𝜃 =
2𝜋

7
. This means 𝑛 = 7.  

 

126. Let S1 touch the circle S at K, the rays AB 

and AC at M and L respectively. We have 𝑃𝐿 =

𝑃𝑀 = 𝑃𝐾 = 𝑟1 (as P is the centre of S1) and 

𝑅 = 𝑂𝐾 = 𝑂𝑃 + 𝑟1. Where R is the 

circumradius of triangle ABC (Note that O, the 

midpoint of the hypotenuse BC is the 

circumcentre of triangle ABC). From the figure, 

it is clear that AMPL is a square with side r1.  

 

So  

𝐵𝑀 = 𝐴𝐵 − 𝐴𝑀 = 𝑐 − 𝑟1; and 𝐿𝐶 = 𝐴𝐶 −

𝐴𝐿 = 𝑏 − 𝑟1 

Therefore from triangle BMP and CLP, we have  

𝑃𝐵2 = 𝑃𝑀2 +𝑀𝐵2 = 𝑟1
2 + (𝑐 − 𝑟1)

2 

𝑃𝐶2 = 𝑃𝐿2 + 𝐿𝐶2 = 𝑟1
2 + (𝑏 − 𝑟1)

2 

And  

Applying Appolonius theorea to DPBC, in which 

PO is a median we get  

𝑃𝐵2 = 𝑃𝐶2 = 2(𝑃𝑂2 + 𝐶𝑂2) 

That is,  

𝑟1
2 + (𝑐 − 𝑟1)

2 + 𝑟1
2 + (𝑏 − 𝑟1)

2

= 2[(𝑅 − 𝑟1)
2 + 𝑅2] 

Using the fact that 𝑅 =
𝑎

2
 𝑎𝑛𝑑 𝑎2 = 𝑏2 + 𝑐2, if 

we solve the above equation for r1, we obtain 

𝑟1 = 𝑏 + 𝑐 − 𝑎.  

Similarly, working with S2 we obtain 𝑟2 = 𝑏 +

𝑐 + 𝑎. 

Hence  

𝑟1𝑟2 = (𝑏 + 𝑐 − 𝑎)(𝑏 + 𝑐 + 𝑎) 

= (𝑏 + 𝑐)2 − 𝑎2 = 𝑏2 + 𝑐2 + 2𝑏𝑐 − 𝑎2 

= 2𝑏𝑐 = 4(
1

2
𝑏𝑐) = 4[𝐴𝐵𝐶] 

Aliter : 

Choose A as origin, AB and AC as the x−axis and 

y−axis respectively. Let B= (𝑏, 0)𝑎𝑛𝑑 𝐶 =

(0, 𝑐). Then the circumcenter of triangle ABC 

which is at the midpoint of BC is given by 𝑂 =

(
𝑏

2
,
𝑐

2
).  

Any circle G which touches the positive x−axis 

and positive y−axis will have its center at (r, r) 

where r is the radius of the circle. Now the 

equation to the circumcircle S of the triangle 

ABC is  

(𝑥 −
𝑏

2
)
2

+ (𝑥 −
𝑐

2
)
2

= (
𝑎

2
)
2
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The equation to G is (𝑥 − 𝑟)2 + (𝑦 − 𝑟)2 = 𝑟2. 

If the two circles S and G touch each other 

either internally (giving 𝐺 = 𝑆2), then we have  

(𝑟 ±
𝑎

2
)
2

= (𝑟 −
𝑏

2
)
2

+ (𝑟 −
𝑐

2
)
2

 

Giving 𝑟 = 𝑏 + 𝑐 ± 𝑎. Here b + c – a is the 

radius of the circle 𝑆1, namely, r1 and b + c + a is 

that of S2, namely r2.  

Hence 𝑟1𝑟2 = (𝑏 + 𝑐 − 𝑎)(𝑏 + 𝑐 + 𝑎) = 4 (area 

ABC), as before.  

 

127. We have (see figure) PQ. QR > BQ. QC, QR. 

RS> CR. RD, etc.  

 

Therefore,  

(𝑃𝑄 + 𝑄𝑅 + 𝑅𝑆 + 𝑆𝑃)2

= 𝑃𝑄2 +⋯+ 2𝑃𝑄.𝑄𝑅 +⋯

> (𝑃𝐵2 + 𝐵𝑄2) + ⋯

+ 2𝐵𝑄.𝑄𝐶 +⋯

= (𝑃𝐴 + 𝑃𝐵)2 + (𝐵𝑄 + 𝑄𝐶)2

+ (𝐶𝑅 + 𝑅𝐷)2 + (𝐷𝑆 + 𝑆𝐴)2

= 𝐴𝐵2 + 𝐵𝐶2 + 𝐶𝐷2 + 𝐷𝐴2

= 𝐴𝐶2 + 𝐵𝐷2 = 2𝐴𝐶2 

Hence PQ +QR + RS + SP > √2 AC.  

 

128. Draw a line 𝑙 parallel to BC through A and 

reflect AC in this line to get AD. Let CD intersect 

𝑙 in P. Join BD.  

 

 

Observe that 𝐶𝑃 = 𝑃𝐷 = 𝐴𝑄 = ℎ𝑎 , 𝐴𝑄 being 

the altitude through A. We have  

𝑏 + 𝑐 = 𝐴𝐶 + 𝐴𝐵 = 𝐴𝐷 + 𝐴𝐵 ≥ 𝐵𝐷 =

√𝐶𝐷2 + 𝐶𝐵2 = √4ℎ𝑎
2 + 𝑎2.  

Which yields the result. Equality occurs if and 

only if B, A, D are collinear, i.e., if and only if 

𝐴𝐷 = 𝐴𝐵 (as AP is parallel to BC and bisects DC) 

and this is equivalent to 𝐴𝐶 = 𝐵𝐶.  

Alternatively, the given inequality is equivalent 

to  

(𝑏 + 𝑐)2 − 𝑎2 ≥ 4ℎ𝑎
2 =

16∆2

𝑎2
 

Where ∆ is the area of the triangle ABC. Using 

the identity  

16∆2= [(𝑏 + 𝑐)2 − 𝑎2][𝑎2 − (𝑏 − 𝑐)2] 

We see that the inequality to be proved is 𝑎2 −

(𝑏 − 𝑐)2 ≤ 𝑎2 (here we use a < b + c) which is 

true. Observe that equality holds if and only if 

𝑏 = 𝑐.  
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129.  

More generally, let [𝐵𝑃𝐹] = 𝑢, [𝐵𝐹𝐶] =

𝑣 𝑎𝑛𝑑 [𝐶𝑃𝐸] = 𝑤. 𝐽𝑜𝑖𝑛 𝐴𝑃. 𝐿𝑒𝑡 [𝐴𝐹𝑃] =

𝑥 𝑎𝑛𝑑 [𝐴𝐸𝑃] = 𝑦.  

 

Using the triangles AFC and BFC, we get  

𝑥

𝑦 + 𝑤
=
𝐹𝑃

𝑃𝐶
=
𝑢

𝑣
 

This gives the equation  

𝑣𝑥 − 𝑢𝑦 = 𝑢𝑤 

Again using the triangles AEB and CEB we get 

another equation  

𝑤𝑥 − 𝑣𝑦 = −𝑢𝑤 

Solving these equations, we obtain  

𝑥 =
𝑢𝑤(𝑢 + 𝑣)

𝑣2 − 𝑢𝑤
, 𝑦 =

𝑢𝑤(𝑤 + 𝑣)

𝑣2 − 𝑢𝑤
 

Hence we obtain  

𝑥 + 𝑦 =
𝑢𝑤(𝑢 + 2𝑣 + 𝑤)

𝑣2 − 𝑢𝑤
 

Putting the values 𝑢 = 4, 𝑣 = 8,𝑤 =

1,𝑤𝑒 𝑔𝑒𝑡 [𝐴𝐹𝑃𝐸] = 143.  

 

 

130. Let 𝐴𝐵 = 𝑎, 𝐵𝐶 = 𝑏, 𝐶𝐷 = 𝑐, 𝐷𝐴 = 𝑑.  

We are given that 𝑎𝑏𝑐𝑑 ≥ 4. Using Ptolemy’s 

theorem and the fact that each diagonal cannot 

exceed the diameter of the circle we get 𝑎𝑐 +

𝑏𝑑 = 𝐴𝐶. 𝐵𝐷 ≤ 4. But on application of 

AM−GM inequality gives  

𝑎𝑐 + 𝑏𝑑 ≥ 2√𝑎𝑏𝑐𝑑 ≥ 2√4 = 4 

We conclude that 𝑎𝑐 + 𝑏𝑑 = 4. This forces 

𝐴𝐶. 𝐵𝐷 = 4 𝑔𝑖𝑣𝑖𝑛𝑔 𝐴𝐶 = 𝐵𝐷 = 2. Each of AC 

and BD is thus a diameter. This implies that 

ABCD is a rectangle. Note that  

(𝑎𝑐 − 𝑏𝑑)2 = (𝑎𝑐 + 𝑏𝑑)2 − 4𝑎𝑏𝑐𝑑 ≤ 16 − 16

= 0 

And hence 𝑎𝑐 = 𝑏𝑑 = 2. Thus we get 𝑎 = 𝑐 =

√𝑎𝑐 = √2 𝑎𝑛𝑑 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑏 = 𝑑 = √2. It now 

follows that ABCD is a square.  

 

131. Let 𝐴1 = {(𝑎, 𝑏)|𝑎, 𝑏 ∈

{1, 2, 3, … , 10}, |𝑎 − 𝑏| = {𝑖}, 𝑖 = 0, 1, 2, 3, 4, 5 

𝐴0 = {(𝑖, 𝑖)|𝑖 = 1, 2, 3, … , 10}𝑎𝑛𝑑 |𝐴0| = 10 

𝐴1
= {(𝑖, 𝑖 + 1)|𝑖 = 1, 2, 3, … , 9}

∪ {(𝑖, 𝑖 − 1)|𝑖 = 2, 3, … , 10} 𝑎𝑛𝑑 |𝐴1| = 9 + 9

= 18 

𝐴2
= {(𝑖, 𝑖 + 2)|𝑖 = 1, 2, 3, … , 8}

∪ {(𝑖, 𝑖 − 2)|𝑖 = 3, 4, … , 10}𝑎𝑛𝑑 |𝐴2| = 8 + 8

= 16 

𝐴3
= {(𝑖, 𝑖 + 3)|𝑖 = 1, 2,… , 7}

∪ {(𝑖, 𝑖 − 3)|𝑖 = 4, 5, … , 10} 𝑎𝑛𝑑 |𝐴3| = 7 + 7

= 14 
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𝐴4
= {(𝑖, 𝑖 + 4)|𝑖 = 1, 2,… , 6}

∪ {(𝑖, 𝑖 − 4)|𝑖 = 5, 6, … , 10} 𝑎𝑛𝑑 |𝐴4| = 6 + 6

= 12 

𝐴5 = {(𝑖, 𝑖 + 5)|𝑖

= 1, 2, … , 5}  

∪ {(𝑖, 𝑖 − 5)|𝑖 = 6, 7, … , 10}𝑎𝑛𝑑 |𝐴5| = 5 + 5

= 10 

∴ 𝑇ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 (𝑎, 𝑏) =

⋃ 𝐴𝑖 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐ℎ 𝑝𝑎𝑖𝑟𝑠, (𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡) =
5
𝑖=0

|⋃ 𝐴𝑖
5
𝑖=0 | = ∑ |𝐴𝑖| = 10 + 18 + 16 + 14 +

5
𝑖=0

12 + 10 = 80  

 

132. From (i) 

5, 8 ∈ 𝑆…… . (1) 

From (ii),  

7, 8 ∈ 𝑆…… . (2) 

From (ii),  

8, 13 ∈ 𝑆…… . (3) 

Therefore from eqns. (1), (2) and (3), we find 

that  

5, 7, 8, 13 ∈ 𝑆…… (4) 

𝑆 ⊂ {5, 7, 8, 9, 11, 13}        (𝐺𝑖𝑣𝑒𝑛) 

If at all S contains any other element other 

those given in (4), it may be 9 or 11 or both.  

But 9 ∉ 𝑆 [  ∵ 9 ∉ 𝑆 ∪ {4, 5, 11, 13} =

{4, 5, 7, 8, 11, 13}] 

Again 11 ∉ 𝑆, 𝑓𝑜𝑟 11 ∉ 𝑆 ∩ {3, 5, 8, 11} =

{5, 8} 

∴ 𝑆 = {5, 7, 8, 13} 

If condition (i) is not given, then S is not unique 

as S may be {7, 8, 13} or {5, 7, 8, 13} or {5, 7, 8, 

11, 13}. 

Similarly, deleting any other data leads to more 

than one solution to S (verify).  

 

133. Let n(S) be 100.  

∴ 𝑛(𝑆) ≥ 𝑛(𝐸 ∪ 𝐻)

= 𝑛(𝐸) + 𝑛(𝐻) − 𝑛(𝐸 ∩ 𝐻) 

⇒ 100 ≥ 70 + 75 − 𝑛(𝐸 ∩ 𝐻) 

⇒ 𝑛(𝐸 ∩ 𝐻) ≥ 45 

Similarly 100 ≥ 𝑛(𝐿 ∪ 𝐴) = 𝑛(𝐿) + 𝑛(𝐴) −

𝑛(𝐿 ∩ 𝐴) 

= 80 + 85 − 𝑛(𝐿 ∩ 𝐴)  

𝑜𝑟, 𝑛(𝐿 ∩ 𝐴) ≥ 65 

Now, 𝑛(𝑆) = 100 ≥ 𝑛[(𝐸 ∩ 𝐻) ∪ (𝐿 ∩ 𝐴)] =

𝑛[(𝐸 ∩ 𝐻) + 𝑛(𝐿 ∩ 𝐴) − 𝑛(𝐸 ∩ 𝐻 ∩ 𝐿 ∩ 𝐴)] 

𝑂𝑟, 100 ≥ 45 + 65 − 𝑛(𝐸 ∩ 𝐻 ∩ 𝐿 ∩ 𝐴)  

𝑂𝑟, 𝑛(𝐸 ∩ 𝐻 ∩ 𝐿 ∩ 𝐴) ≥ 110 − 100 = 10  

That is at least 10 percent of the people must 

have lost all the four.  

 

134. Every (positive) integer is a multiple of 1. 

So, we will first see a set consisting of a1 and 

other elements:  

There are 11 elements other than a1. So the set 

with a1 and another element, with one other 

element, 2 other elements, …, and all the 11 

other elements, that is, we have to choose a1 

and 0, 1, 2, …, 11 other elements a2, a3, …, a11. 
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This could be done in 11𝐶0 + 11𝐶1 + 11𝐶2 +

⋯ 11𝐶11 = 2
11 ways.  

If a set contains a2 as the element with the least 

subscript, then besides a2 the set can have a4, 

a6, a8, a10, a12, or 5 other elements, none or one 

or more of them. This could be done in  

𝑛𝐶0 + 𝑛𝐶1 + 𝑛𝐶2 + 𝑛𝐶3 + 𝑛𝐶4 + 𝑛𝐶5 = 2
5 𝑤𝑎𝑦𝑠  

Similarly for having a3 as the element with the 

least subscript 3, we have 𝑎6, 𝑎9, 𝑎12 to be the 

elements such that the subscripts (6, 9, 12) are 

divisible by 3.  

So, the number of subsets with a3 as one 

element is   

3𝐶0 + 3𝐶1 + 3𝐶2 + 3𝐶3 = 2
3 

For a4, one of the elements, the number of 

subsets (other elements being a8 and a12, is 22. 

For a5 it is 21 (there is just an element a10 such 

that 10 is a multiple of 5).  

For a6, it is again 21. (as 6/12) 

For a7, a8, a9, a10, a11 and a12, there is just one 

subset, namely, the set with these elements. 

This is total up to 6.  

So, the total number of acceptable set 

according to the conditions is  

211 + 25 + 23 + 22 + 21 + 21 + 6 = 2048 +

32 + 8 + 4 + 2 + 2 + 6 = 2102.  

If there are n elements in the set a1, a2, a3, …, an 

then there are n multiples of 1.  

[
𝑛

2
]  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 2 

[
𝑛

3
]  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 3 

⋯⋯⋯⋯⋯⋯⋯⋯⋯ 

⋯⋯⋯⋯⋯⋯⋯⋯⋯ 

[
𝑛

𝑛
]  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑛 

So that the total number of such sets is given by  

2𝑛−1 + 2
[
𝑛
2
]
−1

+ 2
[
𝑛
3
]
−1

+⋯+ 2
[
𝑛
𝑛
]
−1

 

 

135. Let us number the cards, for the moment. 

Let us accept the case where all the cards go to 

one of the two players, also. With just two 

cards, we have possibilities,  

AA.      AB.      BA.        BB.               ……..(1) 

Here, AA means A gets card 1 and also card 2,  

           AB means A gets card 1 and B gets card 2,  

           BA means B gets card 1 and A gets card 2,  

           BB means B gets card 1 and also card 2,  

Thus, for two cards we have 4 possibilities. For 

three card  

AAA, ABA, BAA, BBA, AAB, ABB, BAB, BBB     

……..(2)  

i.e., for three cards there are 23 = 8 

possibilities. Here, if the third card goes to A, 

then, in (1) annex A at the end, thus getting  

AAA, ABA, BAA, BBA  

If it goes to B then in (1) annex B at the end, 

which gives  

AAB, ABB, BAB, BBB.  

Thus, the possibilities doubled, when a new 

card (third card) is included.  
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In fact, just with one card it may either go to A 

or B, giving AB.  

By annexing the second card, it may give  

AA              BA             giving (1) 

AA              BB                  

Thus, every new card doubles the existing 

number of possibilities of distributing the cards.  

Hence, the number of possibilities with n cards 

is 2n but this includes the 2 distributions where 

one of them gets all the cards, and the other 

none.  

So, total number of possibilities is    

2𝑛 − 2 = 2(2𝑛−1 − 1). 

Note: We can look at the same problem in the 

following way. The above distribution of cards is 

the same as number of possible n digit numbers 

where only 2 digits 1 and 2 are used, and each 

digit must be used at least once. This is  

2𝑛 − 2 = 2(2𝑛−1 − 1).  

Aliter: Since n cards are dealt with and each 

player must get at least one card, player 1 can 

get r cards and player 2 get (n−r) cards where 

1 ≤ 𝑟 ≤ 𝑛 − 1. Now player 1 can get r cards in 

C (n, r) ways.  

Total number of ways of dealing cards to 

players 1 and 2  

= ∑𝐶(𝑛, 𝑟) =∑𝐶(𝑛, 𝑟) − 𝐶(𝑛, 0)

𝑛

𝑟=0

𝑛−1

𝑟=1

− 𝐶(𝑛, 𝑛) = 2𝑛 − 2 

 

136. (a) S consists of single digit numbers, two 

digit numbers, three digit numbers and four 

digit numbers.  

No. of single digit numbers = 4 

No. of two digit numbers 4 × 3 = 12 

(Since repetition is not allowed, there are four 

choices for ten’s place and three choices for 

unit’s place).  

No. of three digit numbers = 4 × 3 × 2 = 24 

No. of four digit numbers = 4 × 3 × 2 × 1 = 24 

∴ 𝑛(𝑆) = 4 + 12 + 24 + 24 = 64  

Now, for the sum of these 64 numbers, sum of 

all the single digit numbers is 1 + 2 + 3 + 4 = 10.  

(Since there are exactly 4 digits 1, 2, 3, 4 and 

their numbers are 1, 2, 3, and 4).  

Now, to find the sum of all the two digit 

numbers:  

No. of two digit numbers is 12.  

The digits used in unit’s place are 1, 2, 3 and 4.  

In the 12 numbers, each of 1, 2, 3 and 4 occurs 

thrice in unit digit (
12

4
= 3) 

Again in ten’s place, each of these digits occur 

thrice also.  

So, the sum of these 12 numbers = 30 ×

(1 + 2 + 3 + 4) + 3 × (1 + 2 + 3 + 4) =

300 + 30 = 330. 

No. of three digits numbers is 24.  

So, the number of times each of 1, 2, 3, 4 occurs 

in each of unit’s, ten’s and hundred’s place is  
24

4
= 6 
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So, sum of all these three digit numbers is  

100 × 6(1 + 2 + 3 + 4) + 10

× 6(1 + 2 + 3 + 4) + 1

× 6(1 + 2 + 3 + 4)

= 6,000 + 600 + 60 = 6660 

Similarly for the four digit numbers, the sum is 

computed as  

1000 × 6(1 + 2 + 3 + 4) + 100

× 6(1 + 2 + 3 + 4) + 10

× 6(1 + 2 + 3 + 4) + 1

× 6(1 + 2 + 3 + 4)

= 60,000 + 6,000 + 600 + 60

= 66,660 

[Since there are 24 four digit numbers, each of 

1, 2, 3, 4 occurs in each of the four digits in 
24

4
=

6 times]. 

So, the sum of all the single digit, two digit, 

three digit and four digit numbers = 10 +

330 + 6660 + 66660 = 73,660.  

(b)(i) There are just four single digit numbers 1, 

2, 3 and 4. 

(ii) There are 4 × 4 = 16 two digit numbers, as 

digits can be repeated.  

(iii) There are 4 × 4 × 4 = 64 three 

digit numbers.  

(iv) There are 4 × 4 × 4 × 4 = 256 four 

digit numbers.  

So, total number of numbers up to 4 digit 

numbers that could be formed using the digits 

1, 2, 3 and 4 is 4 + 16 + 64 + 256 = 340.  

Sum of the 4 single digit numbers = 1 + 2 +

3 + 4 = 10. 

To find the sum of 16, two digit numbers each 

of 1, 2, 3, 4 occur in each of unit’s and ten’s 

place =
16

4
= 4 times.  

So, the sum of all these 16 numbers is  

= 10 × 4(1 + 2 + 3 + 4) + 4(1 + 2 + 3 + 4)

= 400 + 40 = 440 

Similarly, the sum of all the 64 three digits 

numbers  

= 100 ×
64

4
× (1 + 2 + 3 + 4) + 10 ×

64

4

× (1 + 2 + 3 + 4) + 1 ×
64

4
× (1 + 2 + 3 + 4)

= 16,000 + 1,600 + 160

= 17,760 

Again the sum of all the 256 four digit numbers  

= 1000 ×
256

4
× (1 + 2 + 3 + 4) + 100 ×

256

4

× (1 + 2 + 3 + 4) + 10 ×
256

4

× (1 + 2 + 3 + 4) + 1 ×
256

4
× (1 + 2 + 3 + 4)

= 6,40,000 + 64,000 + 6,400

+ 640 = 7,11,040 

Therefore, sum of all the numbers is  

= 10 + 440 + 17,760 + 7,11,040 = 7,29,250 

 

137. We consider numbers like 222222 or 

233200 but not 212222, since the digit 1 occurs 

only once.  

The set of all such 6 digit can be divided into 

following classes.  

𝑆1 = the set of all 6 digit numbers where a 

single digit is repeated 6 times.  



Olympiad Mathematics by Tanujit Chakraborty 

89 
 

𝑛(𝑆1) = 9, since ‘0’ cannot be a significant 

number when all its digits are zero.  

Let S2 be set of all six digit numbers, made up of 

three distinct digits.  

Here we should have two cases S2 (a) one with 

exclusion of zero as a digit and other S2 (b) with 

the inclusion of zero as a digit.  

S2 (a) The number of ways, three digits could be 

chosen from 1, 2, …, 9 is 9𝐶3. Each of these 

three digits occur twice. So, the number of six 

digit numbers in this case is  

= 9𝐶3 ×
6!

2! × 2! × 2!
 =
9 × 8 × 7

1 × 2 × 3
×
720

8
= 9 × 8 × 7 × 15 = 7560 

S2 case (b) The three digit used include one 

zero, implying, we have to choose the other two 

digits from the 9 non−zero digits.  

This could be done in  

9𝐶2 =
9 × 8

1.2
= 36 

Since zero cannot be in the leading digit, so let 

us fix one of the fixed non−zero number in the 

extreme left. Then the other five digits are 

made up of 2 zeroes, 2 fixed non zero number 

and the another non zero number, one of which 

is put in the extreme left.  

In this case the number of six digit numbers that 

could be formed is  

5!

2! × 2! × 2!
× 2 

(since from either of the pairs of fixed non zero 

numbers, one can occupy the extreme digit) =

60.  

So, the total number in this case = 36 × 60 =

2160.  

∴ 𝑛(𝑆2) = 𝑛(𝑆2𝑎) + 𝑛(𝑆2𝑏) = 7560 + 2160

= 9720 

Now, let S3 be the set of six digit numbers 

whose digits are made up of two distinct digits 

each of which occurs thrice.  

Here again, there are two cases : S3(a) excluding 

the digit zero and S3 (b) including the digit zero.  

S3(a) is the set of six digit numbers, each of 

whose digits are made up of two non zero digits 

each occurring thrice.  

∴ 𝑛[𝑆3(𝑎)] = 9𝐶2 ×
6!

3! × 3!
= 36 × 20 = 720 

S3 (b) consists of 6 digit numbers whose digits 

are made up of three zeroes and one of the non 

zero digit, occurring thrice.  

If you fix one of the nine non zero digit, use that 

digit in the extreme left. This digit should be 

used thrice. So in the remaining 5 digits, this 

fixed non zero digit is used twice and the digit 

zero occurs thrice.  

So, the number of 6 digit numbers formed in 

this case is  

9 ×
5!

3! × 2!
= 90. 

∴ 𝑛(𝑆3) = 𝑛𝑆3(𝑎) + 𝑛𝑆3(𝑏) = 720 + 90

= 810. 

Now, let us take S4, the case where the six digit 

number consists of exactly two digits, one of 

which occurs twice and the other four times.  

Here again, there are two cases: S4 (a) excluding 

zero and S4(b) including zero.  

If a and b are two non zero numbers a used 

twice and b four times, then we get  
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6!

2! × 4!
 

And when a used four times, b twice, we again 

get  

6!

4! × 2!
 

So, when 2 of the nine non zero digit are used 

to form the six digit number in this case, the 

total numbers got is  

9𝐶2 × 2 ×
6!

4! × 2!
 = 36 × 5 × 6 = 1080 

Thus   𝑛[𝑆4(𝑎)] = 1080 

For counting the numbers is S4(b):  

In this case we may use 4 zeroes and a non zero 

number twice or 2 zeroes and a non zero 

number four times.  

In the former case, assuming the one of the 

fixed non zero digit occupying the extreme left, 

we get the other five digits consisting of 4 

zeroes and one non zero number.  

This result in 9 ×
5!

4!×1!
 = 45 six digit numbers.  

When we use the fixed non zero digit 4 times 

and use zero twice, then we get 9 ×
5!

3!×2!
 = 90 

six digit numbers, as the fixed number occupies 

the extreme left and for the remaining three 

times it occupies 3 of the remaining digits, other 

digits being occupied by the two zeroes.  

𝑆𝑜, 𝑛(𝑆4) = 𝑛[𝑆4(𝑎)] + 𝑛[𝑆4(𝑏)]

= 1080 + 45 + 90 = 1215 

Hence, the total number of six digit numbers 

satisfying the given condition  

= 𝑛(𝑆1) + 𝑛(𝑆2) + 𝑛(𝑆3) + 𝑛(𝑆4)

= 9 + 720 + 810 + 1215

= 2754. 

 

138. From the hypothesis 𝑟 ≤ 𝑛 − 𝑟 + 1, we get  

2𝑟 ≤ 𝑛 + 1. 

Each such r combination can be represented by 

a binary sequence b1 b2 b3 …. 𝑏𝑛 where 𝑏𝑖 = 1, 

if i is a member of the r combination and 0, 

otherwise with no consecutive 𝑏′𝑖𝑠 = 1 (the 

above r combinations contain no consecutive 

integers).  

The number of Is in the sequence is r.  

Now, this amounts to counting such binary 

sequences.  

Now, look at the arrangement of the following 

boxes; and the balls in them.  

1 2 3 4 5 6 7 

OO OOO OO OOOO O O OOO 

 

Here, the balls stand for the binary digits zero, 

and the boundaries on the left and right of each 

box can be taken as the binary digit one. In this 

display of boxes and balls as interpreted gives 

previously how we want the binary numbers. 

Here, there are 7 boxes, and 6 left/right 

boundary for the boxes. So this is an illustration 

of 6 combination of non−consecutive numbers.  

The reason for zeroes in the front and at the 

end is that we can have leading zeroes and 

trailing zeroes in the binary sequence 

𝑏1, 𝑏2, … , 𝑏𝑛.  
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Now, clearly finding the r combination amounts 

to distribution of (n – r) balls into (r + 1) distinct 

boxes [(𝑛 − 𝑟)𝑏𝑎𝑙𝑙𝑠 = (𝑛 − 𝑟)𝑧𝑒𝑟𝑜𝑒𝑠as these 

are r ones, in the n number sequence] such that 

the 2nd, 3rd … rth boxes are non empty. (The first 

and last boxes may or may not be empty – in 

the illustration of 1st and 7th may have zeroes or 

may not have balls as we have already had 6 

combinations).  

Put (r−1) balls one in each of 2nd, 3rd, …, rth 

boxes (so that no two 1’s occur consecutively). 

Now we have (n – r) – (r – 1) balls to be 

distributed in (r + 1) distinct boxes.  

 

139. T can be written as 𝑇 = 𝑇1 ∪ 𝑇2, 𝑇1 =

{(𝑥, 𝑦, 𝑧)|𝑥, 𝑧 ∈ 𝑆, 𝑥 < 𝑦} 𝑎𝑛𝑑 𝑇2 =

{(𝑥, 𝑦, 𝑧)! 𝑥, 𝑦, 𝑧 ∈ 𝑆, 𝑥 + 𝑦 < 𝑧}. 

The number of elements in T1 is the same as 

choosing two elements from the set S, where 

𝑛(𝑆) = (𝑛 + 1), 𝑖. 𝑒. , 𝑛(𝑇1) = (
𝑛+1
2
). (as every 

subset of two elements, the larger element will 

be z and the smaller will be x and y).  

In T2, we have 2(𝑛+1
3
) elements, after choosing 

3 elements from the set S, two of the smaller 

elements will be x and y and they may be either 

taken as (x, y, z) or as (y, x, z) or in other words, 

every three element subset of S, say (s, b, c), 

the greatest is z, and the other two can be 

placed in two different ways in the first two 

positions,  

∴ 𝑛(𝑇)(𝑜𝑟 |𝑇|) = (
𝑛 + 1

2
) + 2(

𝑛 + 1

3
) 

T can also be considered as  

⋃𝑆𝑖 = {(𝑥, 𝑦, 𝑖)|𝑥, 𝑦 < 𝑖, 𝑥, 𝑦 ∈ 𝑆}

𝑛+1

𝑖=2

 

All these sets are pair wise disjoint as for 

different i, we get different ordered triplets (x, 

y, i). 

Now in S1, the first two components of (x, y, i), 

namely (x, y), can be any element from the set 

1, 2, 3, …, i – 1.  

x and y can be any member from 1, 2, 3, …, 

(i−1), equal or distinct.  

∴ The number of ways of selecting (x, y), x, y ∈

{1, 2, 3, … , (𝑖 − 1)}𝑖𝑠 (𝑖 − 1)2.  

Thus, n(Si) for each i is (𝑖 − 1)2, 𝑖 ≥ 2. For 

example,  

𝑛(𝑆2) = 1, 𝑛(𝑆3) = 2
2 = 4 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 

𝑁𝑜𝑤, 𝑛(𝑇) = 𝑛 (⋃𝑆𝑖

𝑛+1

𝑖=2

)  

= ∑𝑛(𝑆𝑖)

𝑛+1

𝑖=2

 

(because all 𝑆′𝑖𝑠 are pair wise disjoint) 

= ∑(𝑖 − 1)2 =∑𝑖2
𝑛

𝑖=1

𝑛+1

𝑖=2

 

And hence,  

(
𝑛 + 1

2
) + 2(

𝑛 + 1

3
) = ∑𝑘2

𝑛

𝑘=1

 

 

140. For each positive integer k, 1 ≤ 𝑘 ≤

5, 𝑙𝑒𝑡 𝑁𝑘 denote the number of permutations 

(p1, p2, …, p6) such that 𝑝1 ≠ 1, (𝑝1, 𝑝2) is not a 

permutation of (1, 2), … (𝑝1, 𝑝2, … , 𝑝𝑘) is not a 

permutation of (1, 2, …, k).  

We are required to find N5.  
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We shall start with N1.  

The total number of permutations of (1, 2, 3, 4, 

5, 6) is 6! And the permutations of (2, 3, 4, 5, 6) 

is 5! Thus, the number of permutations in which 

𝑝 = 1is 5!. 

So, the permutation in which 𝑝 ≠ 1 𝑖𝑠 6! − 5! =

720 − 120 = 600.  

Now, we have to remove all the permutations 

with (1, 2)and (2, 1) as the first two elements to 

get N2. Of these, we have already taken into 

account (1, 2) in considering N1 and subtracted 

all the permutations starting with 1. So we 

should consider the permutation beginning with 

(2, 1).  

When 𝑝1 = 2, 𝑝2 = 1 (p3, p4, p5 and p6) can be 

permuted in 4! ways.  

So, 𝑁2 = 𝑁1 − 4! = 600 − 24 = 576. 

Having removed the permutations beginning 

with (1, 2), we should now remove those 

beginning with (1, 2, 3). But, corresponding to 

the first two places (1, 2) and (2, 1), we have 

removed all the permutations. So, we should 

now remove the permutations with first three 

places (3, 2, 1), (3, 1, 2), (2, 3, 1).  

Note that the first 3 positions being 1 2 3 is 

included in the permutations beginning with 1.  

For each of these three arrangements, there are 

3! Ways of arranging 4th, 5th and 6th places and 

hence,  

𝑁3 = 𝑁2 − 3 × 3! = 576 − 18 = 558 

To get N4, we should remove all the 

permutations beginning with the permutations 

of (1, 2, 3, 4) of which the arrangement of (1, 2, 

3) in the first three places have already been 

removed. We have to account for the rest.  

So, when 4 is in the first place, 3! Arrangements 

of 1, 2, 3 in the 2nd, 3rd and 4th places are 

possible. Also, when 4 is in the second place, 

since we have removed the permutations when 

1 occupies the first place, there are two choices 

for the first place with 2 or 3 and for each of 

these there are 2 arrangements, i.e., (2, 4, 1, 3), 

(2, 4, 3, 1), (3, 4, 2, 1), (3, 4, 1, 2). When 4 is in 

the third place, then there are first 3 

arrangements (2, 3, 4, 1), (3, 2, 4, 1) and (3, 1, 4, 

2).  

So, the total permutations of (1, 2, 3, 4) to be 

removed from S3 to get S4 is (6 + 4 + 3) × 2 =

26, because there are 2 ways of arranging the 

5th and 6th places for each one of the above 

permutations of (1, 2, 3, 4).  

∴  𝑆4 = 𝑆3 − 26 = 558 − 26 = 532 

To get N5; we should remove from S4 al the 

permutations of (1, 2, 3, 4, 5) which have not 

been removed until now. When 5 occupies the 

first position, there are 4! = 24 ways of getting 

2nd, 3rd, 4th and 5th places which have not been 

removed so far. 

When 𝑝2 = 5, 𝑝1 cannot be 1, so p1 can be 

chosen from the other 3, viz., 2, 3 and 4, in 3 

ways and 3rd, 4th and 5th places can be filled for 

each of the first place choice in 3 × 2 × 1 = 6 

ways.  

So, when 𝑝2 = 5, there are 18 different 

arrangements to be removed.  

When 𝑝3 = 5, the first 2 places cannot be (1, 2) 

so that they can be filled in (2, 3), (2, 4), (3, 1), 

(3, 2), (3, 4), (4, 1), (4, 2), (4, 3) and for the 

fourth and fifth places there are exactly two 

choices for each of the above arrangements for 

the first and second place.  
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So when 𝑝3 = 5, the number of arrangements 

to be removed is 8 × 2 = 16.  

When 𝑝4 = 5, 𝑝1𝑝2𝑝3 can be removed (241, 

412, 421, 234, 243, 342, 324, 423, 432, 314, 

341, 413, 431) and since there is only one 

choice left, we now to remove 13 arrangements 

when  

𝑝4 = 5 

When 𝑝5 = 5, we have already removed the 

permutations of (1, 2, 3, 4) of the first four 

places to find S4 

So now 𝑆5 = 𝑆4 − (24 + 18 + 16 + 13) =

534 − 71 = 463. 

So, 463 is the desired number of permutations.  

 

141. The given set 𝑆 = {1, 2, 3, 4, … , 299, 300} 

can be realized as the union of the three 

disjoint sets s1, s2 and s3 with  

𝑠1 = {𝑥 ∈ 𝑆|𝑥 = 3𝑛 + 1, 99 ≥ 𝑛 ≥ 0}, 

𝑠2 = {𝑥 ∈ 𝑆 |𝑥 = 3𝑛 + 2, 99 ≥ 𝑛 ≥ 0} 

𝑎𝑛𝑑 𝑠3 = {𝑥 ∈ 𝑆 |𝑥 = 3𝑛, 100 ≥ 𝑛 ≥ 1} 

Now, to get the set of all three element subsets 

of S, with the sum of the elements of the subset 

a multiple of 3, we should choose all three 

elements from the same set s1, s2 or s3 or we 

should choose one element from each of the 

set s1, s2 and s3.  

We see that 𝑛(𝑠1) = 𝑛(𝑠2) = 𝑛(𝑠3) = 100. 

Choosing all the three elements from either s1, 

s2 or s3 will give 3 × 100𝐶3 triplets and its sum is 

also divisible by 3.   

Choosing the three elements, one each from s1, 

s2 and s3 will give  

100𝐶1 × 100𝐶1 × 100𝐶1 triplets and its sum is 

also divisible by 3.  

So, the total number of 3 element subsets with 

the required property is  

3 × 100𝐶3 + 100𝐶1 × 100𝐶1 × 100𝐶1 

=
3 × 100 × 99 × 98

1 × 2 × 3
+ 1003

= 100 × 99 × 49 + 1000000

= 485100 + 1000000

= 1485100 

 

142. ABC is an equilateral triangle of side 1 cm. 

If the sides are divided into equal parts, we get 

4 equilateral triangles with side ½ cm.  

Again, if each of these four triangles is 

subjected to the above method, we get 4 × 4 

triangles of side  

1

2
×
1

2
=
1

22
𝑐𝑚 

Thus, after n steps we get, 4n triangles of side  
1

2𝑛
𝑐𝑚. 
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Now, if we take 4𝑛 + 1 points inside the original 

equilateral ∆𝐴𝐵𝐶, then at least two of the 

points lie on the same triangle out of 4n 

triangles by Pigeon Hole Principle.  

Hence, the distance between them is less than 

or at the most equal to the length of the side of 

the triangle, in which they lie, that is, they are 
1

2𝑛
𝑐𝑚 apart or they are less than 

1

2𝑛
𝑐𝑚 apart.  

143. There are 
(100−1)

3
+ 1 = 34 elements in 

the progression 1, 4, 7, …, 100.  

Consider the following pairs:  

(4, 100), (7, 97), (10, 94), …, (49, 55).  

There are in all  

49 − 4

3
+ 1 = 16 𝑝𝑎𝑖𝑟𝑠 (𝑜𝑟 

100 − 55

3
+ 1) 

Now, we shall show that we can choose 

eighteen distinct numbers from the A.P. such 

that no two of them add up to 104. In the above 

16 pairings of the A.P. the numbers 1 and 52 are 

left out.  

Now, taking one of the numbers from each of 

the pairs, we can have 16 numbers and 

including 1 and 52 with these 16 numbers, we 

now have 18 numbers.  

(Note. We can have 216 such sets of numbers, 

and any two of these sets will have the common 

elements 1 and 52).  

But, no pair of numbers from these 18 numbers 

can sum up to 104, since just one numbers is 

selected from each pair, and the other number 

of the pair (not selected) is 104 – the number 

chosen.  

Also 1 + 52 ≠ 54. Thus, we can choose 18 

numbers, so that no two of them sum up to 

104.  

For getting 19 numbers (all these should be 

distinct), we should choose one of the 16 not 

chosen numbers, but then this number chosen 

is the 104 complement of one of the 16 

numbers chosen already (among the 18 

numbers).  

Thus, if a set of 19 distinct elements are chosen, 

then we have at least one pair whose sum is 

104.  

 

144.  Since 𝑛(𝑋) = 10, the number of non 

empty, proper subsets of X is  

210 − 2 = 1022. 

The sum of the elements of the proper subsets 

of X can possibly range from  

1 𝑡𝑜 ∑(90 + 𝑖)

9

𝑖=1

. 

That is 1 to (91 + 92 + … + 99), i.e., 1 to 855.  

That is, the 1022 subsets can have sums from 1 

to 855.  

By Pigeon−hole Principle, at least two distinct 

subsets B and C will have the same sum.  

(Since there are 855 different sums, and so if 

we have more than 855 subsets, then at least 

two of them have the same sum).  
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If B and C are not disjoint, then let  

𝑋 = 𝐵 − (𝐵 ∩ 𝐶) 

𝑎𝑛𝑑 𝑌 = 𝐶 − (𝐵 ∩ 𝐶) 

Clearly, X and Y are disjoint and non empty and 

have the same sum of their elements Define 

s(A) = sum of the elements of A. 

We have B and C not necessarily disjoint such 

that s(B)= s(C).  

Now,  𝑠(𝑋) = 𝑠(𝐵) − 𝑠(𝐵 ∩ 𝐶) 

𝑠(𝑌) = 𝑠(𝐶) − 𝑠(𝐵 ∩ 𝐶)  

But 𝑠(𝐵) = 𝑠(𝐶). 𝐻𝑒𝑛𝑐𝑒, 𝑠(𝑋) = 𝑠(𝑌). 

Also 𝑋 ≠ 𝜙. For if X is empty, then 𝐵 ⊂ 𝐶 which 

implies s(B) < s(C) (a contradiction).  

Thus, X and Y are non empty and 𝑠(𝑋) = 𝑠(𝑌). 

 

145. Consider three numbered boxes whose 

contents are denoted as x1, x2, x3 respectively. 

The problem now reduces to distributing 28 

balls in the three boxes such that the first box 

has at least 3 and not more than 9 balls, the 

second box has at most 8 balls, and the third 

box has at least 7 and at most 17 balls.  

At first, put 3 balls in the first box, and 7 balls in 

the third box. This takes care of the minimum 

needs of the boxes.  

So, now the problem reduces to finding the 

number of distribution of 18 balls in 3 boxes 

such that the first has at most (9 – 3) = 6, the 

second at most 8 and the third at most (17 −

7) = 10.  

The number of ways of distributing 18 balls in 3 

boxes with no condition is  

(
18 + 3 − 1

3 − 1
) = (

20

2
) = 190. 

[The number of ways of distributing r identical 

objects in n distinct boxes is  

(
𝑛 + 𝑟 − 1

𝑟
) = (

𝑛 + 𝑟 − 1

𝑛 − 1
) 

where ‘n’ stands for the numbers of boxes and r 

for balls].  

Let d1 be the distribution where the first box 

gets at least 7; d2, the distributions where the 

second box gets at least 9; and d3, the 

distribution where the third gets at least 11.  

|𝑑1| = (
18 − 7 + 3 − 1

3 − 1
) = (

13

2
) =

13 × 2

1.2
= 78 

|𝑑2| = (
18 − 9 + 3 − 1

3 − 1
) = (

11

2
) =

11 × 10

1.2
= 55 

|𝑑3| = (
18 − 11 + 3 − 1

3 − 1
) = (

9

2
) =

9 × 8

1.2
= 36 

∴ |𝑑1 ∩ 𝑑2| = (
18 − 7 − 9 + 3 − 1

3 − 1
) = (

4

2
)

= 6 
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|𝑑2 ∩ 𝑑3| = (
18 − 9 − 11 + 3 − 1

3 − 1
) = (

0

2
)

= 0, 

|𝑑3 ∩ 𝑑1| = (
18 − 11 − 7 + 3 − 1

3 − 1
) = (

2

2
) = 1 

Therefore, |𝑑1 ∩ 𝑑2 ∩ 𝑑3| = 0 

And |𝑑1 ∪ 𝑑2 ∪ 𝑑3| = 78 + 55 + 36 − 6 − 0 −

1 + 0 = 162. 

So, the required number of solutions = 190 −

162 = 28.  

[Note that, the number of ways the first box 

gets utmost 6, the second utmost 8 and the 

third utmost 10 = Total number of ways of 

getting 18 balls distributed in 3 boxes – (the 

number of ways of getting at least 7 in the first 

box, at least 9 in the second box and at least 1 

in the third box).  

And 𝑛(𝐴 ∪ 𝐵 ∪ 𝐶)′ = 𝑛(𝐴′ ∩ 𝐵′ ∩ 𝐶′). 

 

146.  Let the proposer of the problems be called 

X, and the friends be denoted as A, B, C, D, E, F. 

Since X dines with all the 6 friends exactly on 

one day, we have the combination XABCDEF (1) 

for one day 1.  

Thus, every five of A, B, C, D, E, F had already 

dined with X for a day. According to the 

problem, every five of them should dine on 

another day. It should happen in 6𝐶5 = 6 days. 

The combination is XABCDE (2), XABCDF (3), 

XABCEF (4), XABDEF (5), XACDEF (6), XBCDEF 

(7).  

In (1) and (2) together, X has already dined with 

every four friends three times, for example with 

ABCD, he dined on the first day the numbers 

above the combinations can be taken as the 

rank of the days X dines with his friends.  

2nd and 3rd days, X dined with every three 

friends of them on four days, for example with 

ABC, 1st, 2nd, 3rd and 4th days, X has dined with 

every two friends, of them for five days for 

example with AB, 1st, 2nd, 3rd, 4th and 5th days.  

With just one of them he has dined so far 6 days 

(with A, 1st, 2nd, 3rd, 4th, 5th and 6th days).  

So, he has to dine with every one of them for 

one more day he should dine with XA, XB, XC, 

XD, XE and XF for 6 more days. Thus, the total 

number of days he dined so far with at least 

one of his friends is 1 + 6 + 6 = 13 days. In this 

counting, we see that he has dined with every 

one of them for 7 days. That shows that he has 

not dined with every one of them for 6 days.  

But it is given that every friend was absent for 7 

days. Since each one of them has been absent 

for 6 days already, all of them have to be absent 

for one more day.  

Thus, he dined alone for 1 day and the total 

number of dinners he had is 13 + 1 = 14.  

 

147. Now pair of the elements of S as [a, a + 

2nd], [a + d, a + (2n – 1)d],  …, [a + (n – 1)d, a + 

(n + 1)d] and one term a + nd is left out.  

Now, sum of the terms in each of the pairs is 

2(a + nd). Thus, each term of the pair is 2(a + 

nd) complement of the other term.  

Now, there are n pairs. If we choose one term 

from each pair, we get n term. To this collection 

of terms include (a + nd) also.  

Now, we have (n + 1) numbers. Thus, set A can 

be taken as the set of the above (n + 1) 

numbers, here no two elements of the set A 

add up to 2(a + nd) as no element has its 2(a + 
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nd) complement in A except a + nd, but then we 

should take two distinct elements. 

If we add any more terms to A so that A 

contains more than (n + 1) elements, then some 

of the elements will now have then 2(a + nd) 

complement in A, so that sum of these two 

elements will be 2(a + nd), and hence, the 

result.  

In the second case, we have  

𝑆 = {𝑎, 𝑎 + 𝑑,… , 𝑎 + (2𝑛 + 1)𝑑} 

There are 2(n + 1) elements. So, pairing them as 

before gives (n + 1) pairs i.e., [a, a+(2n+1)d], 

[a+d, a+2nd], …, [a+nd, a+(n+1)d] 

Now, we can pick exactly one term from each of 

these (n + 1) pairs.  

We get a set A of (n + 1) elements where no 

two of which add up to [2a + 2(n + 1)d].  

Note here we need not use distinct numbers, 

even if the same number is added to itself, the 

sum will not be [2a + 2(n + 1)d]. Here again, 

even choosing one more term from the 

numbers left out, and adding it to A, A will have 

a pair which adds up to [2a + 2(n+1)d].  

Thus, the maximum number of elements in A 

satisfying the given condition is (n + 1).  

148. Let 𝑆 = {1, 2, 3, … , 63}. 

Let A be the set of all three elementic subsets of 

S such that (a + b + c) < 95, i.e.,  

𝐴 = {(𝑎, 𝑏, 𝑐)|(𝑎 + 𝑏 + 𝑐) < 95, (𝑎, 𝑏, 𝑐) ∈ 𝑆} 

Similarly, let B be the set of all three elements 

subsets of S such that (a + b + c) > 95, where (a, 

b, c) ∈ 𝑆}, 

𝑖. 𝑒. , 𝐵 = {(𝑎, 𝑏, 𝑐)|(𝑎 + 𝑏 + 𝑐) > 95, (𝑎, 𝑏, 𝑐)

∈ 𝑆} 

𝑎𝑛𝑑 𝐶 = {(𝑎, 𝑏, 𝑐)|(𝑎 + 𝑏 + 𝑐) > 97, (𝑎, 𝑏, 𝑐)

∈ 𝑆} 

Clearly, C is a proper subset of B because 

(𝑎, 𝑏, 𝑐) ∈ 𝑆, 𝑖𝑓 (𝑎 + 𝑏 + 𝑐) =

96 𝑡ℎ𝑒𝑛 (𝑎, 𝑏, 𝑐) ∈ 𝐵 𝑎𝑛𝑑 (𝑎, 𝑏, 𝑐) ∉ 𝐶.  

However, every element of C∈ B,  

As (a + b +c) > 97  

𝑜𝑟, (𝑎 + 𝑏 + 𝑐) > 95 also  

Hence, (a, b, c) ∈ 𝐶 ⇒ (𝑎, 𝑏, 𝑐) ∈ 𝐵 also.  

Now, it is enough if we show that 𝑛(𝐴) =

𝑛(𝐶) 𝑎𝑠 𝑛(𝐶) <  𝑛(𝐵)𝑎𝑛𝑑 𝑛(𝐴) = 𝑛(𝐶) ⇒

𝑛(𝐴) ⊂ 𝑛(𝐵). 

If (a, b, c) ∈ 𝐴, 𝑡ℎ𝑒𝑛 1 ≤ (𝑎 + 𝑏 + 𝑐) <

95 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 1 ≤ (𝑎, 𝑏, 𝑐) ≤ 63. 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 1 ≤ (64 − 𝑎), (64 − 𝑏), (64 −

𝑐) ≤ 63 𝑎𝑛𝑑 𝑎𝑠 (𝑎 + 𝑏 + 𝑐) < 95, (64 − 𝑎) +

(64 − 𝑏) + (64 − 𝑐) = 192 − (𝑎 + 𝑏 + 𝑐) >

192 − 95 = 97.  

 

Thus to each element of A, there is a unique 

element in C. Conversely, if (a, b, c) ∈ 𝐶,  

𝑡ℎ𝑒𝑛 (64 − 𝑎), (64 − 𝑏), (64 − 𝑐)

∈ 𝐴 𝑓𝑜𝑟 (64 − 𝑎) + (64 − 𝑏)

+ (64 − 𝑐)

= 192

− (𝑎 + 𝑏

+ 𝑐), 𝑎𝑛𝑑 𝑠𝑖𝑛𝑐𝑒 (𝑎, 𝑏, 𝑐)

∈ 𝐶, (𝑎 + 𝑏 + 𝑐) > 97 

∴ 192 − (𝑎 + 𝑏 + 𝑐) < 192 − 97 = 95. 

And thus  {(64 − 𝑎), (64 − 𝑏), (64 − 𝑐)} ∈ 𝐴, 

which shows that every element of C there 

corresponds a unique element in A. Thus, there 
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is a 1−1 correspondence between the sets A 

and C.  

∴ 𝑛(𝐴) = 𝑛(𝐶) < 𝑛(𝐵). 

 

149. Here we are using the property of tangent 

functions of trigonometry.  

Given a real number a, we can find a unique 

real number A, lying between –
𝜋

2
 𝑎𝑛𝑑

𝜋

2
 i.e., 

lying in the interval  (−
𝜋

2
,
𝜋

2
) 

Such that tan𝐴 = 𝑎, as the tangent function in 

the open interval (−
𝜋

2
,
𝜋

2
) is continuous and 

strictly increasing and covers R completely.  

Therefore, corresponding to the five given real 

numbers  

𝑎𝑖(𝑖 = 1, 2, 3, 4, 5), we can find five distinct real 

numbers  

𝐴𝑖 , (𝑖 = 1, 2, 3, 4, 5) lying between 

–
𝜋

2
 𝑎𝑛𝑑

𝜋

2
 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 tan 𝐴𝑖 = 𝑎𝑖. 

Divide the open interval (−
𝜋

2
,
𝜋

2
) into four 

equal intervals, each of length 
𝜋

4
. 

Now, by Pigeon hole Principle at least two of 

the 𝐴𝑖𝑠 must lie in one of the four intervals. 

Suppose 𝐴𝑘  𝑎𝑛𝑑 𝐴𝑙𝑤𝑖𝑡ℎ 𝐴𝑘 > 𝐴𝑙  lie in the 

same interval, then  

0 < 𝐴𝑘 − 𝐴𝑙 <
𝜋

4
 

So tan 0 < tan (𝐴𝑘 − 𝐴𝑙) < tan
𝜋

2
 

[It is because tan function increases in the 

interval (−
𝜋

2
,
𝜋

2
)]  

𝑖. 𝑒. , 0 <  
tan𝐴𝑘 − tan𝐴𝑙
1 + tan𝐴𝑘 tan𝐴𝑙

< 1 

0 <
𝑎𝑘 − 𝑎𝑙
1 + 𝑎𝑘𝑎𝑙

< 1 

Hence there are two real numbers 𝑥 = 𝑎𝑘 , 𝑦 =

𝑎𝑙  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 0 <
𝑥−𝑦

1+𝑥𝑦
 . 

 

150. Using 1 = 30, you can weigh 
31−1

2
 = 1 

weight is clear. If 1, 3 are given weights, then 

using both sides of the balance, we can weigh 4 

weights as follows. 

Wt. of the 

object  

Left pan  Right pan  

1 1 Object  

3−1= 2 3 Object + 1 (if 

object’s 

weight is 3 −

1 = 2.  

3 3 Object  

3 + 1= 4 3, 1 Object  

 

Thus, we have the four weights 1, 2, 3, 4 =
32−1

2
 

weighed using only 2 weights, namely, 1 and 3 

but using the weights on both pans.  

To prove the general case we’ll use the principle 

of Mathematical Induction.  

Let us assume that using the weights 1, 3, 32, …., 

3𝑘, we can weigh from 1 to 
3𝑘+1−1

2
 units.  

Now, if we have one more weight, say, 3𝑘+1 at 

our disposal, then we need to prove that we 
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can weigh from 1 unit to 
3𝑘+1−1

2
 units. We can 

clearly weigh from 1 unit to 
3𝑘+1−1

2
 units by the 

first k + 1 weights, namely, 1, 3, 32, …, 3𝑘. We 

need to prove that additional we can weigh 

from 
3𝑘+1−1

2
+ 1 𝑡𝑜 

3𝑘+2−1

2
 units using the 

additional weight 3𝑘+1 along with others. 

Consider two cases:  

(i) Weighing from 
3𝑘+1−1

2
+

1 𝑡𝑜 3𝑘+1 − 1. 

(i.e.) we want to weigh 
3𝑘+1−1

2
+ 𝑟 𝑤ℎ𝑒𝑟𝑒 1 ≤

𝑟 ≤
3𝑘+1−1

2
. Now for weighing this use the weigh 

3𝑘+1 in one pan and the object and the weights 

representing  

3𝑘+1 −
3𝑘+1 − 1

2
− 𝑟 =

3𝑘+1 − 1

2
− (𝑟 − 1) 

Note that 
3𝑘+1−1

2
− (𝑟 − 1) can be represented 

using the weights 1, 3, 32, …., 3k by induction 

hypothesis:  

∴ Using 1, 3, 32, …, 3𝑘, 3𝑘+1 we can weigh all 

weights up to 
3𝑘+1−1

2
+
3𝑘+1−1

2
= 3𝑘+1 − 1. 

Now to weigh 3𝑘+1, we need to use only one 

weight, namely, 3𝑘+1. 

To weigh from 3𝑘+1 +

1 𝑡𝑜 
3𝑘+2−1

2
, 𝑖. 𝑒. , 𝑡𝑜 𝑤𝑒𝑖𝑔ℎ 3𝑘+1 +

𝑟 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑟 ≤
3𝑘+1−1

2
 𝑤𝑒 𝑛𝑒𝑒𝑑 𝑢𝑠𝑒 3𝑘+1 

weight on one pan along with the 

representation for the weight r in terms of 1, 3, 

32, …., 3k in the same pan and the object in the 

other pan.  

Thus, we can weigh up to 
3𝑘+1−1

2
 units starting 

from 1 unit using the weights 1, 3, 32, …, 

3𝑘 , 3𝑘+1.  

Note: In all the above weighings we use weights 

on both the pans, the pan where the object is 

placed as well as the other pan. This 

representation is nothing but the balanced 

ternary representation of rational numbers 

where the three digits in the balanced ternary 

representation are taken to be 0, 1, −1 instead 

of 0, 1, 2. Any number 𝑛 ∈ 𝑁 can be 

represented as 𝑛 = 𝑏0 + 𝑏13 + 𝑏23
2 +⋯+

𝑏𝑘3
𝑘 𝑤ℎ𝑒𝑟𝑒 𝑏0, 𝑏1, … , 𝑏𝑘 ∈ {0, 1, −1}. 

 

151. Let us find the number of times they have 

to row front and back when there are 1, 2 and 3 

couples.  

For just one couple, they just row and cross 

over to the far side thus, it is enough if they row 

once.  

So for 𝑛 = 1, no. of times they should row is 1. 

Observe the following diagrams. For 𝑛 = 2;  

Let us denote the couples as 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛).  

For 𝑛 = 2, we have two couples 

(𝑥1, 𝑦1), (𝑥2, 𝑦2). 

So, when there are two couples they will reach 

the far side of the river by rowing 5 times.  

When 𝑛 = 3, where the couples are (x1 y1), (x2 

y2) and (x3 y3) we can infer that when there are 

n couples they have n0 row (4n – 3) times. For 

𝑛 = 1, we say that they row first once which is 

4 × 1 − 1 = 1 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑛 = 2, we also saw that 

they rowed 5 times which is 4 × 2 − 3 = 8 −

5 = 5 is true.  
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Also again, for 𝑛 = 3,𝑤𝑒 𝑔𝑒𝑡 4 × 3 − 3 = 12 −

3 = 9 times, to be true.  

 So, let us see if we can use mathematical 

induction to see if the formula is true. Since we 

have already seen that he formula is true for 

𝑛 = 1 (also 2, 3). We shall assume that it is true 

for 𝑛 = 𝑘. That is if there are 𝑛 = 𝑘 couples, 

they can cross over the river by rowing (4k – 

3)times. Now, draw the diagram from this 

stage, when there are k + 1 couples.  

Thus assuming that they have to row (4k – 3) 

times when are k couples, we find that they 

have to row four more times, i.e., (4k + 1) times 

when there are (k + 1) couples.  

4𝑘 + 1 = 4(𝑘 + 1) − 3 

So, the truth of P(k) implies the truth of P(k + 1) 

and we have shown that this formula is true for 

𝑛 = 1. 

Thus, the formula we informed is true for all 

𝑛 ∈ 𝐷. So, when there are n couples they have 

to row (4n – 3) times to row across the river to 

reach the far side.  

 

152. We will find the total number of 

contestants.  

Since for each pair of problems there were 

exactly two contestants, let us assume that an 

arbitrary problem p1 was solved by r 

contestants. Each of these r contestants solved 

6 more problems, solving 6r more problems in 

all counting multiplicities. Since every problem, 

other than p1, was paired with p1 and was 

solved by exactly two contestants, each of the 

remaining 27 problems (i.e., other than p1) is 

counted twice among the problems solved by 

the r contestants, 

𝑖. 𝑒. , 6𝑟 = 2 × 27 

𝑜𝑟, 𝑟 = 9 

Therefore, an arbitrary problem p1 is solved by 

9 contestants.  

Hence, in all we have 
9×28

7
 = 36 contestants, as 

each contestant solves 7 problems.  

For the rest of the proof, let us assume the 

contrary, that is, every contestant solved either 

1, 2 or 3 problems in Part I. 

Let us assume that there are n problems in part 

I and let x, y, z be the number of contestants 

solves either 1, 2 or 3 problems in Part I, we get  

𝑥 + 𝑦 + 𝑧 = 36……(1) 

𝑥 + 2𝑦 + 3𝑧 = 9𝑛…… . (2) 

(Since each problem was solved by 9 

contestants.) 

Since every contestant among y solves a pair of 

problems in Part I and every contestant among 

z solves 3 pairs of problems in Part I and as each 

pair of problems was solved by exactly two 

contestants, we get following equations  

𝑦 + 3𝑧 = 2 𝑛𝐶2 = 2
𝑛(𝑛 − 1)

2
= 𝑛(𝑛 − 1)… . (3) 

From eq. (1), eq. (2) and eq. (3) we get  

𝑧 = 𝑛2 − 10𝑛 + 36 

𝑎𝑛𝑑 𝑦 = −2𝑛2 + 29𝑛 − 108

= −2(𝑛 −
29

4
)
2

−
23

8
< 0 

As y < 0 is not an acceptable result, our 

assumption is wrong. Here, there is at least one 

contestant who solved either no problem from 

Part I or solved at least 4 problems from Part I.  
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153. Since it is given that 1 ∈ 𝐴, 2 ∉

𝐴. 𝐹𝑜𝑟 𝑖𝑓 2 ∈ 𝐴, then 20 + 2 = 3 is generated 

by 2 members of A violating the condition for 

the partitioning :  

∴ 2 ∈ 𝐵 

Similarly, 3 ∉ 𝐴 𝑎𝑠 1 + 3 = 4 = 21 + 2        ∴

3 ∈ 𝐵. 

But 4 ∉ 𝐵. 𝐹𝑜𝑟 𝑖𝑓 4 ∈ 𝐵, 𝑡ℎ𝑒𝑛 22 + 2 = 4 +

2 = 6 is generated by two members of B. 

∴ The partitioning for the first few positive 

integers is  

𝐴 = {1, 4, 7, 8, 12, 13, 15, 16, 20, 23,… } 

𝐵

= {2, 3, 5, 6, 9, 10, 11, 14, 17, 18, 19, 21, 22,… } 

Suppose 1, 2, …, n−1 (for 𝑛 ≥ 3) have already 

been assigned to 𝐴 ∩ 𝐵 in such a way that no 

distinct members of A or B have a sum = 21 +

2(𝑙 = 0, 1, 2, … ). 

Now, we need to assign n to A or B.  

Let k be a positive integer such that 2𝑘−1 + 2 ≤

𝑛 < 2𝑘 + 2. 

Then assign ‘n’ to the complement of the set to 

which 2𝑘 + 2 − 𝑛 belongs. But for this, we need 

to check that 2𝑘 + 2 − 𝑛 has already been 

assigned.  

Now as 𝑛 ≥ 2𝑘−1 + 2 > 2𝑘−1 + 1 

2𝑛 > 2𝑘 + 2 

∴ 𝑛 > 2𝑘 + 2 − 𝑛. 

Since all numbers below n have been assumed 

to be assigned to either A or B, 2𝑘 + 2 − 𝑛 has 

already been assigned and hence n is also 

assigned uniquely.  

For example, consider 𝑘 = 1 

3 = 20 + 2 ≤ 𝑛 < 21 + 2 = 4 

Consider 𝑛 = 3,     4 − 𝑛 = 1. 

Now 1 ∈ 𝐴 (given) 

∴ 3 ∈ 𝐵. 

Consider 𝑘 = 2 

∴  22−1 + 2 ≤ 𝑛 < 22 + 2 = 6 

4 ≤ 𝑛 < 6 

When 𝑛 = 4, 𝑎𝑠 6 − 𝑛 = 2 ∈ 𝐵, we assign 4 to 

A.  

When 𝑛 = 5, 𝑎𝑠 6 − 5 = 1 ∈ 𝐴, we assign 5 to 

B.  

Since the set to which n gets assigned is 

uniquely determined by the set to which 2𝑘 +

2 − 𝑛 belongs, the partitioning is unique.  

Looking at the pattern of the partitioning of the 

initial set of positive integers, we conjecture the 

following.  

(1) 𝑛 ∈ 𝐴 𝑖𝑓 4|𝑛 

(2) 𝑛 ∈ 𝐵 𝑖𝑓 2|𝑛 𝑏𝑢𝑡 4 ⋋ 𝑛 

(3) If 𝑛 = 2𝑟. 𝑘 + 1 

(𝑟 ≥ 1, k odd, then 𝑛 ∈ 𝐴 if k is of the form 4m 

– 1 and 𝑛 ∈ 𝐵 if k is of the form (4m + 1). 

Proof of the conjecture : We note that 1, 4 ∈ A 

and 2, 3 ∈ B. If 2𝑘−1 + 2 ≤ 𝑛 < 2𝑘 + 2 and all 

the numbers less than n have been assigned to 

A or B and satisfy the above conjecture, then if 

4 | n, as 2𝑘 + 2 − 𝑛 is divisible by 2 but not by 

4, 2𝑘 + 2 − 𝑛 ∈ 𝐵. Hence, 𝑛 ∈ 𝐴. Similarly, if 2 
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divides n but not 4, then 2𝑘 + 2 − 𝑛 is divisible 

by 4 and hence, is in A.  

∴ 𝑛 ∈ 𝐵 

If 𝑛 = 2𝑟. 𝑘 + 1 

Where r > 1, k odd and 𝑘 = 4𝑚 − 1, then  

2𝑘 + 2 − 𝑛 = 2𝑘 − 2𝑟 . 𝑘 + 1

= 2𝑟(2𝑘−𝑟 − 𝑘) + 1 

Where clearly 2𝑘−𝑟 − 𝑘 is odd and equals 1 

(mod 4). 

∴ 2𝑘 + 2 − 𝑛 = 2𝑘 − 2𝑟. 𝑘 + 1

= 2𝑟(2𝑘−𝑟 − 𝑘) + 1 

Where clearly 2𝑘−𝑟 − 𝑘 is odd and equals 1 

(mod 4). 

∴ 2𝑘 + 2 − 𝑛 ∈ 𝐵. 

Hence, 𝑛 ∈ 𝐴. Similarly, it can be shown that if 

𝑛 = 2𝑟. 𝑘 + 1,𝑤ℎ𝑒𝑟𝑒 𝑘 ≡ 1 (𝑚𝑜𝑑 4), 𝑡ℎ𝑒𝑛 𝑛 ∈

𝐵. Thus, the conjecture is proved.  

Now, 1988 is divisible by 4.  

∴ 1988 ∈ 𝐴 

1987 = 21. 993 + 1 𝑤ℎ𝑒𝑟𝑒 993 = 1 (𝑚𝑜𝑑 4)

∴ 1987 ∈ 𝐵 

1989 = 22. 497 + 1 𝑤ℎ𝑒𝑟𝑒 497 = 1 (𝑚𝑜𝑑 4)  

∴ 1989 ∈ 𝐵 

2|1998     𝑏𝑢𝑡 4′/1998  ∴ 1998 ∈ 𝐵 

1997 = 22. 499 + 1 𝑤ℎ𝑒𝑟𝑒 499 = 3 (𝑚𝑜𝑑 4)  

∴ 1997 ∈ 𝐴 

 

154. Since each Ai contains 4 elements, totally 

we get 24 elements of which some may be 

repeated. But each element is repeated 4 times 

as each element belongs to exactly 4 of the Ais. 

Hence there are 
24

4
= 6 distinct elements in S.  

Since S= 𝐵1 ∪ 𝐵2 ∪ 𝐵3 ∪ …∪ 𝐵𝑛, and each Bi 

consists of 2 elements, this union accounts for 

2n elements. But each elements appears exactly 

3 times. Thus the number of distinct elements 

in S is also equal to 2n/3.  Therefore  
2𝑛

3
=

6 𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 𝑛 = 9. 

 

155. This makes repeated use of the Pigeon hole 

Principle. As there are 65 balls and two boxes, 

one of the boxes must contain at least 33 balls 

(as otherwise the total number of balls would be 

≤ 32 + 32 = 64).  

Consider that box (i.e., the one containing ≥ 33 

balls).We have more than 33 balls and four 

colours (white, black, red, yellow) and hence 

there must be at least 9 balls of the same colour 

in the box. 

There are at most 4 different sizes available for 

these 9 balls of the same colour. For if there were 

5 (or more) different sizes, then the collection of 

five balls, all of the different sizes would not 

satisfy the given property. Thus among these 9 

balls (of the same colour and in the same box) 

there must be at least 3 balls of the same size.  

 

156. Pair off the elements of the set {1, 11, 21, 

31, …, 541, 551} as follows : {(1, 551), (11, 541), 

…{271, 281}}. There are 28 such pairs and they 

account for all the numbers in the original set.  

So if the subset of A has more than 28 

elements, then A should contain both the 

elements of some pair, but then there is a 

contradiction since each pair above has the 

property that the two elements in the pair add 
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up to 552.  Thus A cannot have more 28 

elements.  

 

157. We shall look at the problem form a 

general viewpoint. For any positive integer, n, 

let 𝑇𝑛 denote the number of permutations of 

(P1, P2, …, Pn) of 1, 2, 3, …, n such that for each 

k, 1 ≤ 𝑘 ≤ 𝑛, (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) is not a 

permutation of 1, 2, …, k.  

We shall obtain a formula for 𝑇𝑛 which 

expresses 𝑇𝑛 in terms of T1, T2, …, 𝑇𝑛−1 (n > 1). 

(Such a relation is called a recurrence relation 

for 𝑇𝑛). 

Consider any permutation (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛) of 

1, 2, …, n. there is always a least positive integer 

k such that (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑘) is a permutation 

of 1, 2, .. k. in fact k may be any integer in the 

set {1, 2, …, n}; and those permutations for 

which 𝑘 = 𝑛 are exactly the ones we wish to 

count. The number of permutations of (1, 2, …, 

n) for all of which k is the least positive integer 

satisfying the above property is Tk . (n – k)!, by 

our definition of 𝑇𝑛. The second factor 

corresponds to the permutations of k + 1, k + 2, 

…, n which fill up the remaining (n – k)places. 

Since there are n! permutations in all, we obtain  

𝑛! = ∑𝑇𝑘  . (𝑛 − 𝑘)!

𝑛

𝑘−1

 

= 𝑇1 . (𝑛 − 1)! + 𝑇2 . (𝑛 − 2)! + ⋯+ 𝑇𝑛−1. 1!

+ 𝑇𝑛. 0! 

Hence  

𝑇𝑛 = 𝑛! − 𝑇1. (𝑛 − 1)! − 𝑇2. (𝑛 − 2)!…

− 𝑇𝑛−1. 1! 

Clearly  

𝑇1 = 1 

𝑇2 = 2! − 𝑇1. 1! = 2 − 1 = 1 

𝑇3 = 3! − 𝑇1. 1! − 𝑇2. 1! = 6 − 2 − 1 = 3 

𝑇4 = 4! − 𝑇1. 1! − 𝑇2. 2! = 𝑇3. 1! 

= 24 − 6 − 2 − 3 = 13. 

𝑇5 = 5! − 𝑇1. 4! − 𝑇2. 3! − 𝑇3. 2! − 𝑇4. 1! 

= 120 − 24 − 6 − 6 − 13 = 71 

𝑇6 = 6! − 𝑇1. 5! − 𝑇2. 4! − 𝑇3. 3! − 𝑇4. 2!

− 𝑇5. 1!

= 720 − 120 − 24 − 18 − 26

− 71 = 461. 

Thus the required number is 461.  

 

158. a. Since A contains n + 1 elements of the 

set {1, 2, 3, …., 2n} some two of the n + 1 

element must be consecutive (Why?). But then 

any two consecutive integers are relatively 

prime and we have the desired conclusion.  

b. We give a proof by making use of the Pigeon 

hole Principle. Write each of the n + 1 numbers 

in the form 2𝑝. 𝑞, where q is an odd number 

and p is a non negative integer. What are the 

possible values of q? Since the numbers of A 

come from the set {1, 2, 3, …, 2n}, we see that q 

can be any one of the n odd numbers 1, 3, 5, 7, 

…. 2n−1. As there are n + 1 numbers in A, there 

are n + 1 values of q. Hence by the 

afore−mentioned principle, for some two 

numbers 𝑎 = 2𝑝1 . 𝑞1 𝑎𝑛𝑑 𝑏 = 2
𝑝2 . 𝑞2, we must 

have 𝑞1 = 𝑞2.  

Since 𝑎 ≠ 𝑏, 𝑝1 is either greater than 𝑝2 or less 

than 𝑝2. In the former case b divides a., while in 

the latter case a divides b.  
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159. First, not that A has 233 elements of which 

116 are even and 117 are odd. B has 42 

elements of which 21 are even and 21 are odd 

and 𝐴 ∩ 𝐵 has 14 elements.  

Therefore, the required number is:  

𝑛 = |{(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑎 + 𝑏 𝑖𝑠 𝑒𝑣𝑒𝑛}|

− |{(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑎

= 𝑏}| 

= |{(𝑎, 𝑏): 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑎 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑏 𝑖𝑠 𝑒𝑣𝑒𝑛}|

+ |{(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏

∈ 𝐵, 𝑎 𝑜𝑑𝑑, 𝑏 𝑜𝑑𝑑}|

− |{(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑎

= 𝑏}| 

= 116 × 21 + 117 × 21 − 14 = 4879. 

 

160. Suppose A has r elements, 0 ≤ 𝑟 ≤ 𝑛. Such 

an A can be chosen in (
𝑛

𝑟
) ways. For each such 

A, the set B must necessarily have the 

remaining (n – r) elements and possibly some 

elements of A.  

Thus, 𝐵 = (𝑋\𝐴) ∪ 𝐶,𝑤ℎ𝑒𝑟𝑒 𝐶 ⊂ 𝐴. Hence B 

can be chosen in 2𝑟 ways. Thus there are 

∑ (
𝑛

𝑟
)2𝑟 = (1 + 2)𝑛 = 3𝑛𝑛

𝑟=0  ways of choosing 

two sets A and B satisfying the given conditions. 

Among these choices, only in one case 𝐴 = 𝐵(=

𝑋), and in all other cases 𝐴 ≠ 𝐵. Since the order 

does not matter, we essentially have (3𝑛 −

1)/2 pairs.  

 

161. Since x + 1 divides ax2 + bc + c, we must 

have 𝑎 + 𝑐 = 𝑏. 

Thus we have to count the number of triples (a, 

b, c) with the condition that a, b, c lie in the set 

{1, 2, 3, …, 1999}, 𝑎 ≠ 𝑐 𝑎𝑛𝑑 𝑎 + 𝑐 = 𝑏. If we 

take a < c, then for each a with 1 ≤ 𝑎 ≤ 999, c 

can take values from a + 1 to 1999 – a. Thus for 

𝑎 = 1, c runs from 2 to 1998 giving 1997 

ordered pairs (a, c) with a < c; for 𝑎 = 2, c runs 

from 3 to 1997, giving 1995 pairs (a, c) with a < 

c, and so on.  

The number of ordered pairs (a, c) with a < c 

and a + c lying in the set {1, 2, 3, …, 1999} is thus 

equal to 1997 + 1995 + 1993+ …+ 1 = 9992. 

Similarly the number of pairs (a, c) with c < a 

and a + c lying in the set {1, 2, 3, …, 1999} is 

9992. Hence the required number of 

polynomials is 2.9992 = 1996002. 

 

 

162. Let us denote by 0 or 1 the absence or 

presence of an element of X in the sets A, B, C. 

For any fixed element of X, there are only four 

choices to conform with 𝐴 ⊂ 𝐵 ⊂ 𝐶, namely, 

000, 001, 011, 111. Thus there are 4𝑛choices. 

But 𝐵 = 𝐶 gives three choices, namely, 000, 

011, 111. Hence there are 3𝑛 triples (A, B, B). 

The number of triples (A, B, C) with 𝐴 ⊂ 𝐵 ⊂

𝐶 𝑏𝑢𝑡 𝐵 ≠ 𝐶 is therefore 4𝑛 − 3𝑛. 

 

163. We fill up the 3 × 3 array at the left top 

(shown by dots in the adjacent figure) arbitrarily 

using the numbers 0, 1, 2, 3. This can be done in 

49 ways. The three numbers in the first row 

uniquely fix a. similarly b, c, p, q, r are fixed 

uniquely (If a number n when divided by 4 

leaves a remainder R, then n + (4 – R) is divisible 

by 4 and 4−R is in the set {0, 1, 2, 3}).  

It is also clear that a+b+c and p+q+r leave the 

same remainder modulo 4, since both are 

obtained by the same set of nine numbers 

adding row−wise and adding column−wise, 
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modulo 4. Hence x is also fixed uniquely by the 

nine numbers originally chosen. Then the 

number of arrays required is 49.  

 

164. Delete any n rows containing maximal 

number of zeroes. We claim that at most n 

zeroes are left in the remaining n rows. For, if 

otherwise, there are at least n + 1 zeroes left 

and so there are at least 2 zeroes in some row, 

by the Pigeon hole Principle.  

Since we have deleted rows containing 

maximum number of zeroes, each such row 

must contain at least 2 zeroes. Hence we would 

have deleted at least 2n zeroes. These along 

with n+1 zeroes would account for more than 

3n zeroes, a contradiction to the hypothesis. 

This proves our claim.  

Now remove the columns (numbering not more 

than n) containing the remaining zeroes. By this 

process, we are removing all the 3n zeroes in 

the desired manner.  

 

165.  

(a) Let a, b, c be the sides of a triangle with 

a+b+c = 1996, and each being a positive 

integer.  

Then a + 1, b + 1, c + 1 are also sides of a 

triangle with perimeter 1999 because 

𝑎 < 𝑏 + 𝑐 ⇒ 𝑎 + 1 < (𝑏 + 1) + (𝑐 + 1) 

and so on. Moreover (999, 999, 1) form the 

sides of a triangle with perimeter 1999, which is 

not obtainable in the form (a + 1, b + 1, c + 1) 

where a, b, c are the integers and the sides of a 

triangle with a + b +c  = 1996.  

We conclude that f(1999) > f(1996) 

 

(b) As in the case (a) we conclude that f(2000) ≥ 

f(1997).  

On the other hand, if x, y, z are the integer sides 

of a triangle with 𝑥 + 𝑦 + 𝑧 = 2000, and say 

𝑥 ≥ 𝑦 ≥ 𝑧 ≥ 1, then we cannot have 𝑧 = 1; for 

otherwise we would get 𝑥 + 𝑦 = 1999 forcing 

x, y to have opposite parity so that 𝑥 − 𝑦 ≥ 1 =

𝑧 violating triangle inequality for x, y, z. Hence 

𝑥 ≥ 𝑦 ≥ 𝑧 > 1. This implies that 𝑥 − 1 ≥ 𝑦 −

1 ≥ 𝑧 − 1 > 0.  

 

If 𝑥 ≥ 𝑦 + 𝑧 − 1, then we see that y+z−1 ≤ 𝑥 <

𝑦 + 𝑧, showing that 𝑦 + 𝑧 − 1 = 1. Hence we 

obtain 2000 = 𝑥 + 𝑦 + 𝑧 = 2𝑥 + 1 which is 

impossible. We conclude that x < y + z – 1. This 

shows that (x−1)<(y−1) + (z−1) and hence x−1, 

y−1, z−1 are the sides of a triangle with 

perimeter 1997. This gives 𝑓(2000) ≤

𝑓(1997). Thus we obtain the desired result.  

 

 

 

 

 

 

 

 

 


