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Motivation

“Prediction is very difficult, especially if it’s about the future” - Niels Bohr, Father of
Quantum Mechanics.
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Motivation

Predictive modelling approaches are used in the fields of statistics
and machine learning, mainly for their accuracy and ability to deal
with complex data structures.

In this thesis, we have developed some novel Hybrid Predictive
models motivated by the applied problems from the domain of
Business Analytics, Quality Control, Macroeconomics, and Software
Reliability. More precisely, we have considered the following
prediction problems:

1 Feature Selection cum Classification Problem.
2 Imbalanced Classification Problem.
3 Nonparametric Regression estimation problem.
4 Designing Regression Model Combining Frequentist and Bayesian

Methods.
5 Designing Forecasting Model for Nonstationary and Nonlinear

Time Series data.
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Motivation

Primary motivation of this thesis comes from the real-world data
sets, with a variety of data types, such as business, macroeconomics,
process efficiency improvement, water quality control, and software
defect prediction.

As a secondary motivation, we emphasis on the development of
hybrid models that are scalable (the size of the data does not pose a
problem), robust (work well in a wide variety of problems), accurate
(achieve higher predictive accuracy), statistically sound (have desired
asymptotic properties), and easily interpretable.

The newly developed hybrid methods are shown to outperform the
current state-of-the-arts and overcome the deficiencies of the hybrid
models available in the literature.

Both theoretical (asymptotic results) and computational aspects of
the proposed hybrid frameworks are studied.
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Thesis Overview

Chapter 1: Introduction

Chapter 2: Preliminaries

Chapter 3: A Nonparametric Hybrid Model for Pattern Classification

Chapter 4: Hellinger Net : A Hybrid Model for Imbalanced Learning

Chapter 5: A Distribution-free Hybrid Method for Regression Modeling

Chapter 6: Bayesian Neural Tree Models for Nonparametric Regression

Chapter 7: A Hybrid Time Series Model for Macroeconomic Forecasting

Chapter 8: Conclusions and Future Works
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Chapter 1: Introduction
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Popular Prediction Models

Linear Regression
(Galton, 1875).

Linear Discriminant
Analysis (R.A.
Fisher, 1936).

Logistic Regression
(Berkson, JASA,
1944).

k-Nearest Neighbor
(Fix & Hodges,
1951).

Parzens Density
Estimation (E
Parzen, AMS,
1962)

ARIMA Model (Box
and Jenkins, 1970).

Classification and
Regression Tree
(Breiman et al.,
1984).

Artificial Neural
Network (Rumelhart
et al., 1985).

MARS (Friedman,
1991, Annals of
Statistics).

SVM (Cortes &
Vapnik, Machine
learning, 1995)

Random forest
(Breiman, 2001).

Deep Convolutional
Neural Nets
(Krizhevsky,
Sutskever, Hinton,
NIPS 2012).

GAN (Goodfellow et
al., NIPS 2014).

Deep Learning
(LeCun, Bengio,
Hinton, Nature
2015).

Bayesian Deep
Neural Network (Y.
Gal, Islam, Zoubin,
ICML 2017).
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Need for Hybridization

Statistical issue: It is often the case that the model space is too large to explore
for limited training data, and that there may be several different models giving
the same accuracy on the training data. The risk of choosing the wrong model
can be reduced by combining two models, like CART and ANN.

Representation issue: In many learning tasks, the true unknown hypothesis could
not be represented by any hypothesis in the hypothesis space. By hybridization, it
may be possible to expand the space of representable functions. Thus the
learning algorithm may be able to form a more accurate approximation to the
true unknown hypothesis.

Computational issue: Many learning algorithms perform some kind of local search
that may get stuck in local optima. Even if there are enough training data, it may
still be challenging to find the best hypothesis. By combining two or more
models, the risk of choosing a wrong local minimum can be reduced.
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Ensemble & Hybrid Models

Problem: Single models have
the drawbacks of sticking to
local minimum or over-fitting
the data set, etc.

Ensemble models are such where
predictions of multiple models
are combined together to build
the final model.

Examples: Bagging, Boosting,
Stacking and Voting Method

Caution: But ensembles dont
always improve accuracy of the
model but tends to increase the
error of each individual base
classifier.

Hybrid models are such where
more than one models are
combined together.

It overcomes the limitations of
single models and reduce
individual variance & bias, thus
improve the performance of the
model.

Caution: To build a good
ensemble classifier the base
classifier needs to be simple, as
accurate as possible, and distinct
from the other classifier used.

Desired: Interpretability, Less
Complexity, Less Tuning
Parameters, high accuracy.
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Popular Hybrid Prediction Models

Perceptron Trees
(Utgoff, AAAI, 1988).

Entropy Nets (Sethi,
Proceeding of
IEEE,1990).

Neural trees (Sirat &
Nadal, Network,
1990).

Sparse Perceptron
Trees (Jackson,
Craven, NIPS, 1996).

SVM Tree Model
(Bennett et al., NIPS,
1998)

Hybrid DT-ANN Model
(Jerez-Aragones et al.,
2003, AI in Medicine)

Flexible Neural Tree
(Chen et al.,
Neurocomputing, 2006)

Hybrid DT-SVM Model
(Sugumaran et al,,
Mechanical Systems and
Signal Processing, 2007).

Hybrid CNNSVM
Classifier (Niu et al., PR,
2012).

Convolutional Neural
Support Vector Machines
(Nagi et al., IEEE ICMLA,
2012).

Hybrid DT model
utilizing local SVM
(Dejan et al., IJPR,
2013).

Neural Decision
Forests (Bulo,
Kontschieder, CVPR,
2014).

Deep Neural Decision
Forests (Kontschieder,
ICCV, 2015).

Soft Decision Tree
(Frosst, Hinton,
Google AI, 2017).

Deep Neural Decision
Trees (Yang et al.,
ICML, 2018).
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Some Drawbacks of the Existing Hybrid Models

Theoretical Robustness: Regardless of the practical use of SDT and neural trees,
theoretical properties like universal consistencies of these hybrid methods are
unknown. Thus, one needs to analyze the data complexity for splitting, which
leads to more accurate classification in the neural trees node.

High-dimensional set-up: Accurate classification of high dimensional feature
space leads to more depth trees, thus achieving less depth neural trees require
more complex computations at each node.

Small Sample Size and Interpretability: The previously used hybrid models
sometimes over-fit for small or moderate sample-sized data sets. In DNDT, each
node in their oblique decision tree involves all features rather than a single
feature, which renders the model uninterpretable.
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Chapter 2: Preliminaries
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Decision Trees

Decision tree is defined by a
hierarchy of rules (in form of a
tree).

Rules from the internal nodes of
the tree are called root nodes

Each rule (internal node) tests
the value of some feature.

Labeled training data is used to
construct the Decision tree. The
tree need not to be always a
binary tree.

CART (Breiman et al., 1984),
RF (Breiman, 2001), BART
(Chipman et al., 2010).

CART is a greedy
divide-and-conquer algorithm.

Attributes are selected on the
basis of an impurity function
(e.g., IG for Classification &
MSE for Regression).

Pros: Built-in feature selection
mechanism, Comprehensible,
easy to design, easy to
implement, good for structural
learning.

Cons: Too many rules loose
interpretability, risk of
over-fitting, sticking to local
minima.
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Introduction: Graphical Interpretation

Let X be the space of all possible values of p features
and C be the set of all possible binary outcomes. We
are given a training sample with n observations
L = {(X1,C1), (X2,C2), ..., (Xn,Cn)}, where
Xi = (Xi1,Xi2, ...,Xip) ∈ X and Ci ∈ C .

Also let Ω = {ω1, ω2, ..., ωk} be a partition of the

feature space X . We denote Ω̃ as one such partition
of Ω. Define Lωi

= {(Xi ,Ci ) ∈ L : Xi ∈ ωi ,Ci ∈ C}
as the subset of L induced by ωi and let LΩ̃ denote

the partition of L induced by Ω̃.

Now, let us define L̂ to be the space of all learning
samples and D be the space of all partitioning

classification function, then Φ : L̂→ D such that
Φ(L) = (ψ ◦ φ)(L), where φ maps L to some induced
partition (L)Ω̃ and ψ is an assigning rule which maps

(L)Ω̃ to d on the partition Ω̃.

The most basic reasonable assigning rule ψ is the
plurality rule ψpl (LΩ̃) = d such that if x ∈ ωi , then
d(x) = arg maxc∈C |Lc,ωi

|.

For any random variable X and set A, let
ηn,X (A) = 1

n

∑n
i=1 I (Xi ∈ A) be the empirical

probability that X ∈ A based on n observations and I
denotes the indicator function.

Fig: Graphical interpretation of tree

structured model.
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Artificial Neural Networks

ANN is composed of several
perceptron-like units arranged in
multiple layers.

Consists of an input layer, one
or more hidden layer, and an
output layer.

Nodes in the hidden layers
compute a nonlinear transform
of the inputs.

Universal Approximation
Theorem (Hornik, 1989): A
one hidden layer FFNN with
sufficiently large number of
hidden nodes can approximate
any function.

Pros: Able to learn any complex
nonlinear mapping or
approximate any continuous
function.

Pros: No prior assumption
about the data distribution or
input-output mapping function.

Cons: When applied to limited
data can overfit the training
data and lose generalization
capability

Cons: Training ANN is
time-consuming and selection of
the network topology lack
theoretical background, often
“trial and error” matter.
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Statistical Learning Theory: Consistency

Statistical learning theory (SLT) studies mathematical foundations for machine
learning models, originated in late 1960s.

Basic concept of Consistency: A learning rule, when presented more and more
training examples → the optimal solution.

Definition (Consistency)

Given an infinite sequence of training points (Xi ,Yi )i∈N with µ. For each n ∈ N, let fn
be a classifier for the first n training points. The learning algorithm is called consistent
with respect to µ if the risk R(fn) converges to the risk R(fBayes), that is for all ε > 0,

µ(R(fn)− R(fBayes) > ε)→ 0 as n→∞.

Definition (Universally Consistency)

The learning algorithm is called universally consistent if it is consistent for all
probability distributions µ.
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Statistical Learning Theory in Decision Trees & Neural Networks

Consistency of data driven histogram
methods (Lugosi & Nobel, 1996,
Annals of Statistics).

A Fast, Bottom-Up Decision Tree
Pruning Algorithm with Near-Optimal
Generalization (Kearns, Mansour,
ICML, 1998)

Generalization Bounds for Decision
Trees (Mansour et al., 2000, COLT).

Consistency of Online Random Forest
(Denil et al., 2013, ICML).

Consistency of Random Forest
(Scornet et al., 2015, Ann. Stat.).

Strong Universal Consistency of FFNN
Classifier (Lugosi & Zeger 1995, IEEE
Information Theory).

Approximation properties of ANN
(Mhaskar, 1993, Advances in
Computational Mathematics).

Prediction Intervals for Artificial
Neural Networks (Hwang, Ding, 1997,
JASA)

Provable approximation properties for
DNN (Shaham et al., 2018, Applied &
Computational Harmonic Analysis).

On Deep Learning as a remedy for the
curse of dimensionality (Bauer,
Kohler, 2019, Ann. Stat.).
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Consistency of data-driven histogram methods for density estimation and
classification

Theorem (Lugosi and Nobel, 1996, Annals of Statistics)

Let (X ,Y ) be a random vector taking values in Rp × C and L be the set of first n outcomes of
(X ,Y ). Suppose that Φ is a partition and classification scheme such that Φ(L) = (ψpl ◦ φ)(L),

where ψpl is the plurality rule and φ(L) = (L)Ω̃n
for some Ω̃n ∈ Tn, where

Tn = {φ(`n) : P(L = `n) > 0}. Also suppose that all the binary split functions in the question set
associated with Φ are hyperplane splits. As n →∞, if the following regularity conditions hold:

λ(Tn)

n
→ 0 (0.1)

log(4n(Tn))

n
→ 0 (0.2)

and for every γ > 0 and δ ∈ (0, 1),

inf
S⊆Rp :ηx (S)≥1−δ

ηx (x : diam(Ω̃n[x] ∩ S) > γ)→ 0 (0.3)

with probability 1. then Φ is risk consistent.

Eqn. (0.2) is the sub-linear growth of the number of cells, Eqn. (0.3) is the sub-exponential
growth of a combinatorial complexity measure, and Eqn. (0.4) is the shrinking cell condition.
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Consistency Results for Neural Network Classifier

Theorem (Lugosi & Zeger, 1995, IEEE Information Theory)

Consider a neural network with one hidden layer with bounded output weight having k hidden
neurons and let σ be a logistic squasher. Let Fn,k be the class of neural networks defined as

Fn,k =

{
k∑

i=1

ciσ(aTi z + bi ) + c0 : k ∈ N, ai ∈ Rdm , bi , ci ∈ R,
k∑

i=0

|ci | ≤ βn

}
and let ψn be the function that minimizes the empirical L1 error over ψn ∈ Fn,k . It can be shown
that if k and βn satisfy

k →∞, βn →∞,
kβ2

n log(kβn)

n
→ 0

then the classification rule

gn(z) =

{
0, if ψn(z) ≤ 1/2.

1, otherwise.
(0.4)

is universally consistent.

For universal convergence, the class over which the minimization is performed has to be defined
carefully. Above theorem shows that this may be achieved by neural networks with k nodes, in
which the range of output weights c0, c1, ..., ck is restricted.
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Introduction: Perceptron Trees (AAAI, 1988)

Perceptron trees are composed
of three basic steps:

(a) Converting a DT into rules.
(b) Constructing a two hidden
layered NN from the rules.
(c) Training the MLP using
gradient descent
backpropagation (Rumelhart,
Hinton (1988).

In decision trees, the overfitting
occurs when the size of the tree
is too large compared to the
number of training data.

Instead of using pruning
methods (removing child nodes),
PT employs a backpropagation
NN to give weights to nodes
according to their significance.

Fig: Graphical Representation of Perceptron Trees Model [Paul

Utgoff, 1988, AAAI]
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Introduction: SVM Tree Model (NIPS, 1998)

SVM are generalized to decision
trees. SVM is used for each
decision in the tree.

The “optimal” decision tree is
characterized, and both a primal
and dual space formulation for
constructing the tree are
introduced.

The model results in a simple
decision trees with multivariate
linear or nonlinear decisions.

Consistency results are yet to be
proved and can be extended for
different problems (Interesting
Problem!).

Fig: SVM Formulation for Decision Trees: A logical and

geometric depiction of a decision tree with optimal margins

[Bennett ET AL., 1998, NIPS]
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Introduction: Hybrid DT-ANN Model (AI in Medicine, 2003)

The DT unit leads to the selection of
the most significant prognostic factors
from the patients’ database for every
time interval.

The NN system computes an
attributes set from the prognostic
factors selector giving a value
corresponding to the a posteriori
probability of relapse for the patient
under study.

Useful when (a) data present an
important number of attributes with
missing values, (b) the prognostic
factors’ significance is not the same
over the time of patient follow-up,
and the utilisation of survival estimate
techniques is not very advisable.

Promising area for Biostatisticians.

Fig: A combined ANN and DT model for prognosis of breast

cancer [Jerez-Aragones et al., 2003, AI in Medicine]
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Introduction: Hybrid DT-SVM Model (MSSP, 2007)

DT is used to identify the best
features from a given set of samples
for the purpose of classification.

Proximal Support Vector Machine
(PSVM) which has the capability to
efficiently classify the faults are used
for classification task using the DT
identified features.

In general, the approach can be used
for feature selection in any domain.

Simple, interpretable, but lacks
accuracy in some typical problems.

Fig: Feature selection using Decision Tree and classification

through Proximal Support Vector Machine for fault diagnostics of

roller bearing [Sugumaran et al., 2007, Mechanical Systems &

Signal Processing]
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Introduction: DNDF for Image Data Sets (ICCV, 2015)

Fig: Deep neural decision forests [Kontschieder et al., 2015, ICCV]

Description: Deep CNN with variable number of layers, subsumed via parameters θ.
FC block: Fully Connected layer used to provide functions fn(; θ). Each output of fn is
brought in correspondence with a split node in a tree, eventually producing the routing
(split) decisions dn(x) = σ(fn(x). The order of the assignments of output units to
decision nodes can be arbitrary (the one we show allows a simple visualization).
The circles at bottom correspond to leaf nodes, holding probability distributions π.
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Chapter 3: A Nonparametric Hybrid Model for
Pattern Classification

Publications:

1. Tanujit Chakraborty, Ashis Kumar Chakraborty, and C. A. Murthy. “A
nonparametric ensemble binary classifier and its statistical properties”, Statistics &
Probability Letters, 149 (2019): 16-23. (Read Online)

2. Tanujit Chakraborty, Swarup Chattopadhyay, and Ashis Kumar Chakraborty. “A
novel hybridization of classification trees and artificial neural networks for selection of
students in a business school”, Opsearch, 55 (2018): 434-446. (Read Online)
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Motivating Problem

Placement of MBA student is a
serious concern for Private B-Schools.

The data is collected from a private
business school which receives
applications from across the country
for the MBA program and admits a
pre-specified number of students every
year.

Authorities want us to come up with a
model that can help them to predict
whether a student will be placed or
not on certain characteristics of that
students provided at the time of
admission.

Selecting a wrong student may
increase the number of unplaced
students. Also, more the number of
unplaced students more is the negative
impact on the institutes reputation.
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Business School Data

The data set comprises of several parameters of passed out students profile
(collected at the time of admission) along with their placement information
(collected at the end of the MBA program).

The data set comprise of several parameters of passed out students’ profile along
with their placement information (on average 60% students got placed in last 5
years).

The data contains 24 explanatory variables out of which 7 are categorical
variables. The response variable (Placement) indicate whether the student got
placed or not.

Table: Sample business school data set.

ID Gender SSC HSC DEGREE E.Test SSC HSC HSC Placement
Percentage Percentage Percentage Percentile Board Board Stream

1 M 68.4 85.6 72 70 ICSE ISC Commerce Y
2 M 59 62 50 79 CBSE CBSE Commerce Y
3 M 65.9 86 72 66 Others Others Commerce Y
4 F 56 78 62.4 50.8 ICSE ISC Commerce Y
5 F 64 68 61 24.3 Others Others Commerce N
6 F 70 55 62 89 Others Others Science Y
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
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Scope of the Problem

Goal: We would like to come up with a model that can help the authorities of a
business school to predict whether a student will be placed or not based on
certain characteristics of that student at the time of admission to the professional
course.

Scope: Feature Selection (selection of important students’ characteristics) cum
data classification (a system that will give judgements based on the
characteristics of new applicants to their MBA program).

Previous works: Dean’s dilemma problem is very popular in Educational data
mining. There are various literature available in the field where data mining
techniques like logistic regression, LDA, DT, ANN, kNN, SVM, RF, etc have
been employed to model students’ admission, students’ placements.

Pena-Ayala A (2014) Educational data mining: A survey and a data
mining-based analysis of recent works. Expert systems with applications,
Elsevier, 41(4):14321462 provides a survey of all the techniques used in similar
problems.
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Development of an Ensemble Model

First, apply classification tree
algorithm to train and build a decision
tree model that extracts important
features.

Feature selection model is generated
by decision tree and it also shortlists
the important features and filters out
the rest.

The prediction result of CT algorithm
is used as an additional feature in the
input layer of ANN model.

Export important input variables
along with additional input variable to
the appropriate ANN model and
network is generated.

Run ANN algorithm till satisfactory
accuracy is reached by optimizing
weights and number of hidden layer
neurons. Then the classifier will be
ready to use.

Fig: Flowchart of the Ensemble Model
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But...

What will be the optimal Choice of the number of hidden nodes for
the model? (Trial and Error!)

Theoretical Consistency of the Model? (Statistical Learning Theory!)

Importance of CT output in the second stage of the ensemble model?
(Experimental or Theoretical Justification!)

Experimental Evaluation and comparative study with single and
hybrid ensemble models? (Important!)

Can this model be useful for practitioner working in other disciplines
but on similar types of problems? (Very Important!)
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Improved Version of the Proposed Model

First, apply the CT algorithm to train and build a decision tree and record
important features.

Using important input variables obtained from CT along with an additional input
variable (CT output), a FFNN model (with one hidden layer) is generated.

The optimum number of neurons in the hidden layer of the model to be chosen
as O

(√
n/dmlog(n)

)
[to be discussed], where n, dm are number of training

samples and number of input features in ANN model, respectively.

Figure: Graphical Presentation of the proposed ensemble model
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Merits

Can select important features from the data set;

Suitable for Feature Selection cum Classification Problems with
limited data sets;

Useful for high dimensional feature spaces in the data sets;

Simple and Easily interpretable;

“white-box-like” model, fast in implementation.
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On Theoretical Consistency

A consistent rule guarantees us that taking more samples essentially suffices to
roughly reconstruct the unknown distribution of (X, Y).

A binary tree-based classification and partitioning scheme Φ is defined as an
assignment rule applied to the limit of a sequence of induced partitions φ(i)(L),
where φ(i)(L) is the partition of the training sample L induced by the partition
(φi ◦ φi−1 ◦ .... ◦ φ1)(X ).

We need to show that CT scheme are well defined, which will be possible only if

there exists some induced partition L
′

such that limi→∞ φ(i)(L) = L
′
.

If each cell of Lωi has cardinality ≥ kn and kn
log(n))

→∞, then CT is said to be

risk consistent.

Theorem (below) along with the consistency results of FFNN model ensures the
universal consistency of the proposed hybrid model.
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On Theoretical Consistency

Lemma (Chakraborty et al., 2019, Statistics & Probability Letters)

If L is a training sample and φ(i) is defined as above, then there exists
N ∈ N such that for n ≥ N

φ(n)(L) = lim
i→∞

φ(i)(L)

Theorem (Chakraborty et al., 2019, Statistics & Probability Letters)

Suppose (X ,Y ) be a random vector in Rp × C and L be the training set consisting of
n outcomes of (X ,Y ). Let Φ be a classification tree scheme such that
Φ(L) = (ψpl ◦ limi→∞ φ(i))(L) where, ψpl is the plurality rule and φ(L) = (L)Ω̃n

for

some Ω̃n ∈ Tn, where
Tn = {limi→∞ φ(i)(`n) : P(L = `n) > 0}.

Suppose that all the split function in CT in the question set associated with Φ are
axis-parallel splits. Finally if for every n and wi ∈ Ω̃n, the induced subset Lwi has

cardinality ≥ kn, where kn
log(n))

→∞ and shrinking cell condition holds true, then Φ is

risk consistent.
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On the choice of Number of Hidden Neurons

Lemma (Chakraborty et al., 2019, Statistics & Probability Letters)

Assume that there is a compact set E ⊂ Rdm such that Pr{Z ∈ E} = 1 and the

Fourier transform P̃0(w) of P0(z) satisfies
∫
Rdm |ω||P̃0(ω)|dω <∞ then

infψ∈Fn,k E

(
f (Z , ψ)− P0(Z)

)2

≤ c
k
, where c is a constant depending on the

distribution.

Proposition (Chakraborty et al., 2019, Statistics & Probability Letters)

For a fixed dm, let ψn ∈ Fc . The neural network satisfying regularity conditions of
strong universal consistency and if the conditions of the above lemma holds, then the

optimal choice of k is O

(√
n

dm log(n)

)
.

For practical use, if the data set is limited, the recommendation is to use

k =

(√
n

dm log(n)

)
for achieving utmost accuracy of the propose model.
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Importance of CT output in neural net

CT output also plays an important role in further modeling. It actually improves
the performance of the model at a significant rate (can be shown using
experimental results).

We can use one hidden layer in ANN model due to the incorporation of CT
output as an input information in ANN.

CT predicted results provide some direction for the second stage modelling using
ANN.

Tree output estimates are probabilistic estimates, not from a direct mathematical
or parametric model, thus direct correlationship with variables can’t be estimated.

It should be noted that one-hidden layer neural networks yield strong universal
consistency and there is little theoretical gain in considering two or more hidden
layered neural networks (Devroye, IEEE IT, 2013).
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Measure of Importance of CT output

To see the importance of CT given classification results as a relevant feature, we
introduce a non-linear measure of correlation between any feature and the actual class
levels, namely C-correlation (Yu and Liu, 2004, JMLR) as follows:

Definition (C-correlation)

It is the correlation between any feature Fi and the class levels C, denoted by SUFi ,C .
Symmetrical uncertainty (SU) is defined as follows:

SU(X ,Y ) = 2

[
H(X )− H(X |Y )

H(X ) + H(Y )

]
(0.5)

where, H(X ) is the entropy of a variable X and H(X |Y ) is the entropy of X while Y
is observed.

We can decide a feature to be highly correlated with class C if SUFi ,C > β, where
β is a relevant threshold to be determined by user.

While experimentation, we can check whether CT output can be taken as a
non-redundant feature for further model building.
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Application on Business School Data

Fig: Decision Tree Diagram Fig: Ensemble CT-ANN Model Diagram
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Performance Evaluation

Popularly used performance metric are:

Precision= TP
TP+FP

; Recall= TP
TP+FN

;

F-measure =2 (Precision.Recall)
(Precision+Recall)

; Accuracy = (TP+TN)
(TP+TN+FP+FN)

;

TP (True Positive): correct positive prediction; FP (False Positive): incorrect positive
prediction; TN (True Negative): correct negative prediction; FN (False Negative):
incorrect negative prediction.

Table: Quantitative measure of performance for different classifiers.

Classifier Precision Recall F-measure Accuracy (%)
LR 0.964 0.794 0.871 77.143

LDA 0.964 0.794 0.871 77.143
kNN 0.800 1.000 0.889 80.000
SVM 0.964 0.771 0.857 75.000
RF 0.823 1.000 0.903 82.857

CART 0.823 1.000 0.903 83.333
ANN 0.928 0.812 0.867 77.142

Neural Trees 0.918 0.894 0.906 85.169
Entropy Nets 0.839 0.928 0.881 80.555

Proposed Ensemble CT-ANN 0.942 0.970 0.956 91.667

Talk by Tanujit Chakraborty



Other Applications: Medical Data Sets

Data Sets: The proposed model is evaluated using six publicly available medical data
sets from Kaggle (https://www.kaggle.com/datasets) and UCI Machine Learning
repository (https://archive.ics.uci.edu/ml/datasets.html) dealing with various
diseases. These binary classification data sets have limited number of observations and
high-dimensional feature spaces.

Table: Characteristics of the data sets used in experimental evaluation

Data set Classes Objects Number of Number of Number of
(n) feature (p) (+)ve instances (−)ve instances

breast cancer 2 286 9 85 201
heart disease 2 270 13 120 150
pima diabetes 2 768 8 500 268

promoter gene sequences 2 106 57 53 53
SPECT heart images 2 267 22 55 212

wisconsin breast cancer 2 699 9 458 241
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Experimental Results

Table: Results (and their standard deviation) of classification algorithms over 6 medical data sets

Classifiers Data set The number of (reduced) Classification F-measure
features after accuracy

feature selection (%)

CT breast cancer 7 68.26 (6.40) 0.70 (0.07)
heart disease 7 76.50 (4.50) 0.81 (0.03)
pima diabetes 6 71.85 (4.94) 0.74 (0.03)

promoter gene sequences 17 69.43 (2.78) 0.73 (0.01)
SPECT heart images 9 75.70 (1.56) 0.78 (0.00)

wisconsin breast cancer 8 94.20 (2.98) 0.89 (0.01)

ANN (with 1HL) breast cancer 9 61.58 (5.89) 0.64 (0.04)
heart disease 13 73.56 (5.44) 0.79 (0.02)
pima diabetes 8 66.78 (4.58) 0.69 (0.04)

promoter gene sequences 57 61.77 (3.46) 0.65 (0.02)
SPECT heart images 22 79.69 (0.23) 0.81 (0.01)

wisconsin breast cancer 9 94.80 (2.01) 0.96 (0.01)

Entropy Nets breast cancer 7 69.00 (6.25) 0.72 (0.05)
heart disease 7 79.59 (4.78) 0.83 (0.01)
pima diabetes 6 69.50 (4.05) 0.72 (0.02)

promoter gene sequences 17 66.23 (1.98) 0.70 (0.01)
SPECT heart images 9 76.64 (1.70) 0.78 (0.01)

wisconsin breast cancer 8 95.96 (2.18) 0.96 (0.00)

DNDT breast cancer 8 66.12 (7.81) 0.68 (0.08)
heart disease 7 81.05 (3.89) 0.86 (0.02)
pima diabetes 6 69.21 (5.08) 0.72 (0.05)

promoter gene sequences 17 69.06 (1.75) 0.71 (0.01)
SPECT heart images 10 75.50 (0.89) 0.77 (0.00)

wisconsin breast cancer 7 94.25 (2.14) 0.95 (0.00)

Proposed Model breast cancer 7 72.80 (6.54) 0.77 (0.06)
heart disease 7 82.78 (4.78) 0.89 (0.02)
pima diabetes 6 76.10 (4.45) 0.79 (0.04)

promoter gene sequences 17 75.40 (1.50) 0.79 (0.01)
SPECT heart images 9 81.03 (0.56) 0.82 (0.00)

wisconsin breast cancer 8 97.30 (1.05) 0.98 (0.00)
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Simulation Study

Simulated Data Sets: Three popularly used toy data sets (number of samples to be
100) are generated to visualize the decision boundaries of the classification algorithms
used in this chapter. In all the experiments, 60% of the data samples are used for
training, and the rest 40% of the data are for testing. The details of the data
generation process are described with codes here:
https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/

datasets/_samples_generator.py.

Table: Classification accuracy percentage of different classifiers on three synthetic data sets. Best
results in the Table are made bold.

Classifiers Moon data Circle data Linearly-separable data
kNN 90 82 90
CT 90 68 93

Linear SVM 90 40 95
ANN 88 60 93

Hybrid CT-ANN 93 90 95
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Simulation Study

A comparison of several classifiers on synthetic data sets. The plots show training
points in solid colors and testing points semi-transparent. The lower right in each plot

shows the classification accuracy on the test set.
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Conclusions

A novel nonparametric ensemble classifier is proposed to achieve
higher accuracy in classification performance with very little
computational cost (by working with a subset of input features).

Our proposed feature selection cum classification model is robust in
nature.

Ensemble CT-ANN is shown to be universally consistent and less
time consuming during the actual implementation.

We have also found the optimal value of the number of neurons in
the hidden layer so that the user will have less tuning parameters to
be controlled.

But many Real-world data sets are usually skewed, in that many
cases belong a larger class and fewer cases belong to a smaller yet
usually more exciting class.

In the next chapter, we are going to consider the problem of data
imbalanced in classification framework.
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Chapter 4: Hellinger Net: A Hybrid Model for
Imbalanced Learning

Publications:

1. Tanujit Chakraborty and Ashis Kumar Chakraborty. “Hellinger Net: A Hybrid
Imbalance Learning Model to Improve Software Defect Prediction”. IEEE
Transactions on Reliability (2020). (Read Online)

2. Tanujit Chakraborty and Ashis Kumar Chakraborty. “Superensemble Classifier for
Improving Predictions in Imbalanced Datasets”, Communications in Statistics: Case
Studies, Data Analysis and Applications, 6 (2020): 123-141. (Read Online)
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Motivation

Software defect prediction is important to
identify defects in the early phases of
software development life cycle.

This early identification and thereby
removal of software defects is crucial to
yield a cost-effective and good quality
software product.

Though, previous studies have successfully
used machine learning techniques for
software defect prediction, these
techniques yield biased results when
applied on imbalanced data sets.

This study proposes an ensemble classifier,
namely Hellinger Net, for software defect
prediction on imbalanced NASA data sets.
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Imbalanced Classification Problem

Real-world data sets are usually skewed, in
that many cases belong a larger class and
fewer cases belong to a smaller yet usually
more exciting class

For example, consider a binary
classification problem with the class
distribution of 90 : 10. In this case, a
straightforward method of guessing all
instances to be positive class would
achieve an accuracy of 90%.

Learning from an imbalanced data set
presents a tricky problem in which
traditional learning algorithms perform
poorly.

Traditional classifiers usually aim to
optimize the overall accuracy without
considering the relative distribution of
each class.
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Sampling Techniques

One way to deal with the imbalanced data problems is to modify the class
distributions in the training data by applying sampling techniques to the data set

Sampling technique either oversamples the minority class to match the size of the
majority class or undersamples the majority class to match the size of the
minority class.

Synthetic minority oversampling technique (SMOTE) is among the most popular
methods that oversamples the minority class by generating artificially interpolated
data (Chawla et al., 2002, JAIR).

TL (Tomek links) and ENN (edited nearest neighbor) are popular undersampling
approaches (Batista et al., 2004, ACM SIGKDD).

But these approaches have apparent deficiencies, such as undersampling majority
instances may lose potentially useful information of the data set and oversampling
increases the size of the training data set which may increase computational cost.

To overcome these problems, “imbalanced data-oriented” algorithms are designed
which can handle class imbalance without any modification to class distribution.
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Effect of Class Imbalance on Decision Tree

Let X be attribute and Y be the response class. Here Y + denotes majority class, Y−

denotes minority class and n is the total number of instances. Also, let X≥ −→ Y +

and X< −→ Y− be two rules generated by CT. Table below shows the number of
instances based on the rules created using CT.

Table: An example of notions of classification rules

class and attribute X≥ X< sum of instances
Y + a b a + b
Y− c d c + d

sum of attributes a + c b + d n

In the case of imbalanced data set the majority class is always much larger than the
size of the minority class and thus we will always have a + b >> c + d . It is clear that
the generation of rules based on confidence in CT is biased towards majority class.

Various measures, like information gain (IG), gini index (GI) and misclassification
impurity (MI) expressed as a function of confidence, are used to decide which variable
to split in the important feature selection stage, get affected by class imbalance.
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Effect of Class Imbalance on Distance Measures

Table: An example of notions of classification rules

class and attribute X≥ X< sum of instances
Y + a b a + b
Y− c d c + d

sum of attributes a + c b + d n

Using Table 1, we compute the following:

P(Y +/X≥) =
a

a + c
= Confidence(X≥ −→ Y +)

For an imbalanced data set, Y + will occur more frequently with X≥ & X< than to
Y−. So the concept of confidence is a fatal error in an imbalanced classification
problem.

Entropy at node t is defined as:

Entropy(t) = −
∑
j=1,2

P(j/t)log
(
P(j/t)

)
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Effect of Class Imbalance on Distance Measures

In binary classification, information gain for splitting a node t is defined as:

IG = Entropy(t)−
∑
i=1,2

ni

n
Entropy(i) (0.6)

where i represents one of the sub-nodes after splitting (assuming we have two sub
nodes only), ni is the number of instances in sub-node i and n is the total number of
instances. The objective of classification using CT is to maximize IG which reduces to:

Maximize

{
−
∑
i=1,2

ni

n
Entropy(i)

}
(0.7)

The maximization problem in eqn. (1.7) reduces to:

Maximize

{
n1

n

[
P(Y +/X≥)log

(
P(Y +/X≥)

)
+ P(Y−/X≥)log

(
P(Y−/X≥)

)
]

+
n2

n
[P(Y +/X<)log

(
P(Y +/X<)

)
+ P(Y−/X<)log

(
P(Y−/X<)

)]}
(0.8)

The task of selecting the “best” set of features for node i are carried out by picking
up the feature with maximum IG. As P(Y +/X≥) >> P(Y−/X≥), we face a problem
while maximizing eqn. (0.8).
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Hellinger Distance

Let (Θ, λ) denote a measurable space. Let us suppose that P and Q be two
continuous distributions with respect to the parameter λ having the densities p and q
in a continuous space Ω, respectively. Define HD as follows:

dH(P,Q) =

√∫
Ω

(
√
p −√q)2dλ =

√
2

(
1−

∫
Ω

√
pqdλ

)
where

∫
Ω

√
pqdλ is the Hellinger integral. It is noted that HD doesn’t depend on the

choice of the parameter λ.

For the application of HD as a decision tree criterion, the final formulation can be
written as follows:

HD = dH(X+,X−) =

√√√√ k∑
j=1

(√ |X+j |
|X+|

−

√
|X−j |
|X−|

)2

, (0.9)

where |X+| indicates the number of examples that belong to the majority class in
training set and |X+j | is the subset of training set with the majority class and the
value j for the feature X . The bigger the value of HD, the better is the discrimination
between the features (Hellinger Distance Decision Tree, Chawla et al. 2008, ECML).
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Proposed Model: Hellinger Net

Hellinger Net is composed of three
basic steps:

(a) Converting a DT into rules (HD is
used as criterion);
(b) Constructing a two hidden layered
NN from the rules;
(c) Training the MLP using gradient
descent backpropagation (Rumelhart,
Hinton (1988).

In decision trees, the overfitting
occurs when the size of the tree is too
large compared to the number of
training data.

Instead of using pruning methods
(removing child nodes), HN employs a
backpropagation NN to give weights
to nodes according to their
significance.

Fig: Graphical Representation of Hellinger Nets

The idea of the this approach is inspired
from the idea of Perceptron Trees [Paul E

Utgoff, 1988, AAAI]
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Hellinger Net Algorithm

Build a HDDT with (kn − 1) split nodes and kn leaf nodes. HDDT is mapped
into a two hidden layered MLP model having (kn − 1) and kn hidden neurons in
first hidden layer (HL1) and second hidden layer (HL2), respectively.

The first hidden layer is called the partitioning layer which partitions the input
feature spaces into different regions. It corresponds to the internal nodes of the
DT. In HL1, the neurons compute all the tree split decisions and indicate the split
directions for the inputs.

Further, HL1 passes the information to HL2. The neurons in the second hidden
layer represent the terminal nodes of the DT.

The final layer is the output class label of the tree. Train the tree structured
neural network using gradient descent backpropagation algorithm.

Hellinger Net uses sigmoidal activation function instead of the relay-type
activation function τ(u) with a hyperbolic tangent activation function
σ(u) = tanh(u) which has a chosen range from −1 to 1.

More precisely, the model uses σ1(u) = σ(β1u) at every neuron of the first hidden
layer for better generalization, where β1 is a positive hyper-parameter that
determines the contrast of the hyperbolic tangent activation function.
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Merits & Possible Extensions

Merits:

1. The additional training using backpropagation potentially
improves the predictions of the HDDT and can deny tree pruning
steps vis-a-vis the risk of overfitting.;

2. Hellinger Nets give weight to nodes according to their significance
as determined by the gradient backpropagation algorithm.;

3. In Hellinger Nets, the neural network follows the built-in hierarchy
of the originating tree since connections do not exist between all
pairs of neurons in any two adjacent layers.;

4. Since the number of neurons in the hidden layers are fixed, thus
the training time is less.

Possible Extensions:

1. Theoretical Consistency?

2. Rate of Convergence?
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On Theoretical Consistency

Theorem (Chakraborty et al., 2020, IEEE Transactions on Reliability)

Assume X is uniformly distributed in [0, 1]p and Y = {0, 1}. As n→∞ and for any
kn, β1, β2 →∞ if the following conditions are satisfied:

(A1)
k4
n log(β2k4

n )

n
→ 0,

(A2) there exists δ > 0 such that
k2
n

n1−δ → 0,

(A3)
k2
n

e2β2
→ 0, and

(A4)
k3
nβ2

β1
→ 0,

then Hellinger Nets classifier is consistent.

The above Theorem states that with certain restrictions imposed on the number kn of
terminal nodes and the parameters β1, β2 being properly regulated as functions of n,
the empirical L1 risk-minimization provides local consistency of the Hellinger Nets
classifier.
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Rate of Convergence

Theorem (Chakraborty et al., 2020, IEEE Transactions on Reliability)

Assume that X is uniformly distributed in [0, 1]p and Y = {0, 1} and a function
m : Cp → {0, 1} satisfies |m(x)−m(z)| ≤ c‖x − z‖δ for any δ ∈ [0, 1] and z ∈ [0, 1]p .
Let mn be the estimate that minimizes empirical L1-risk and the network activation
function σi satisfies Lipschitz property. Then for any n ≥ max{β2, 2p+1L}, we have

E

∫
[0,1]p

∣∣mn(X )−m(X )
∣∣µ(dx) = O

(
log(n)6

n

)

The proof of the Theorem is using Complexity Regularization Principles.

The rate of convergence doesn’t depend on the data dimension and hence the
model will be able to circumvent the so-called problem of “curse of
dimensionality”.

In practice, the larger the value of kn, β1, and β2, the better the model
performance is.
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Applications: Data Sets

Data Sets: The proposed model is evaluated using five publicly available data sets
from the area of Software Defect Prediction (NASA Metrics Data Program) available
at Promise Software Engineering repository
(http://promise.site.uottawa.ca/SERepository/datasets-page.html).

Table: Characteristics of the data sets used in experimental evaluation

Data set Classes Objects Number of Number of Number of
(n) feature (p) reported defects non-defects

CM1 2 498 21 49 449
JM1 2 10885 21 2106 8779
KC1 2 2109 21 326 1783
KC2 2 522 21 105 415
PC1 2 1109 21 77 1032
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Performance Evaluation

The performance evaluation measure used in our experimental analysis is based on the
confusion matrix in Table 2. Area under the receiver operating characteristic curve
(AUC) is a popular metric for evaluating performances of imbalanced data sets and

higher the value of AUC, the better the classifier is. AUC =
Sensitivity+Specificity

2
;

where, Sensitivity = TP
TP+FN

; Specificity = TN
FP+TN

.

Table: Average AUC value for balanced data sets (using SMOTE and SMOTE+ENN) on different
classifiers

Data Sampling kNN CT RF ANN ANN RBFN
Techniques (with 1HL) (with 2HL)

CM1 SMOTE 0.700 0.665 0.722 0.605 0.680 0.704
SMOTE+ENN 0.685 0.650 0.708 0.600 0.652 0.700

JM1 SMOTE 0.758 0.745 0.762 0.740 0.735 0.764
SMOTE+ENN 0.760 0.778 0.770 0.750 0.720 0.765

KC1 SMOTE 0.783 0.845 0.859 0.765 0.798 0.905
SMOTE+ENN 0.801 0.850 0.875 0.798 0.807 0.914

KC2 SMOTE 0.927 0.965 0.967 0.933 0.942 0.954
SMOTE+ENN 0.935 0.952 0.966 0.925 0.937 0.949

PC1 SMOTE 0.770 0.758 0.753 0.698 0.719 0.745
SMOTE+ENN 0.788 0.760 0.761 0.712 0.725 0.748
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Performance Evaluation

Highest AUC value in both the tables are highlighted with dark black for all the data
sets. It is clear from computational experiments that our model stands as very much
competitive with the current state-of-the-art models.

Table: AUC results (and their standard deviation) of classification algorithms over original
imbalanced test data sets

Classifiers CM1 JM1 KC1 KC2 PC1
CT 0.603 (0.04) 0.665 (0.03) 0.810 (0.04) 0.950 (0.00) 0.724 (0.02)
RF 0.690 (0.06) 0.725 (0.03) 0.850 (0.04) 0.964 (0.00) 0.747 (0.04)

k-NN 0.651 (0.03) 0.727 (0.01) 0.750 (0.03) 0.902 (0.02) 0.730 (0.05)
RBFN 0.652 (0.06) 0.723 (0.04) 0.884 (0.05) 0.935 (0.01) 0.725 (0.04)
HDDT 0.625 (0.04) 0.738 (0.04) 0.933 (0.02) 0.974 (0.00) 0.760 (0.02)
HDRF 0.636 (0.04) 0.742 (0.03) 0.939 (0.02) 0.988 (0.00) 0.760 (0.03)

CCPDT 0.618 (0.05) 0.712 (0.05) 0.912 (0.03) 0.971 (0.00) 0.753 (0.01)
ANN (with 1HL) 0.585 (0.03) 0.700 (0.03) 0.768 (0.05) 0.918 (0.02) 0.649 (0.03)
ANN (with 2HL) 0.621 (0.02) 0.715 (0.02) 0.820 (0.04) 0.925 (0.01) 0.710 (0.03)

Hellinger Net 0.720 (0.06) 0.798 (0.04) 0.964 (0.01) 0.985 (0.00) 0.789 (0.05)
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Simulation Study

Simulated Data Sets: Three toy data sets (binary) are generated with weights = [0.2,
0.8], [0.1, 0.9] and [0.05, 0.95], i.e., data sets with imbalance rates of 20%, 10% and
5%, respectively. We added Gaussian noise to the data with the standard deviation
equals to 0.5. This test problem is suitable for algorithms that can learn data
imbalance problems in complex nonlinear manifolds.

Table: AUC results of different imbalanced classifiers on three synthetic data sets.

Imbalanced Simulated Data Simulated Data Simulated Data
Classifiers with IR = 20% with IR = 10% with IR = 5%

HDDT 0.80 0.85 0.91
HDRF 0.82 0.88 0.91

VCB-SVM 0.87 0.89 0.93
ISDA 0.84 0.91 0.90

Hellinger net 0.86 0.92 0.95
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Simulation Study

A comparison of several imbalanced classifiers on synthetic data sets. The plots show
training points in solid colors and testing points semi-transparent. The lower right in

each plots shows the classification accuracy on the test set.
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Conclusions

Learning from an imbalanced data set presents a tricky problem in which
traditional learning models perform poorly.

Simply allocating half of the training examples to the minority class does not
provide the optimal solution in most of the real-life problems.

If one would like to work with the original data without taking recourse to
sampling, our proposed hybrid methodology will be quite handy.

We proposed ‘Hellinger Nets’, a hybrid learner, that first construct a tree and
then simulate it using neural networks.

We also show the consistency and rate of convergence of Hellinger Nets algorithm.

In the next chapter, we are going to consider another common problem of
predictive analytics, namely regression.
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Chapter 5: A Distribution-free Hybrid Method for
Regression Modeling

Publications:

1. Tanujit Chakraborty, Ashis Kumar Chakraborty, and Swarup Chattopadhyay. “A
novel distribution-free hybrid regression model for manufacturing process efficiency
improvement”, Journal of Computational and Applied Mathematics, 362 (2019):
130-142. (Read Online)

2. Tanujit Chakraborty, Swarup Chattopadhyay, and Ashis Kumar Chakraborty.
“Radial basis neural tree model for improving waste recovery process in a paper
industry”, Applied Stochastic Models in Business and Industry, 36 (2020): 49-61.
(Read Online)
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Motivation

This work is motivated by a
particular problem in a modern
paper manufacturing industry, in
which maximum efficiency of the
process fiber-filler recovery
equipment, also known as Krofta
supracell, is desired.

As a by-product of the paper
manufacturing process, a lot of
unwanted materials along with
valuable fibers and fillers come
out as waste materials.

The job of an efficient Krofta
supracell is to separate the
unwanted materials from the
valuable ones so that fibers and
fillers can be reused in the
manufacturing process.

Fig: Krofta supracell
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Process Efficiency Improvement Problem

The Krofta recovery percentage was
around 75%. The paper
manufacturing company wants to
improve the recovery percentage to
90%.

To identify the important parameters
affecting the Krofta efficiency, a
failure mode and effect analysis
(FMEA) was performed with the help
of process experts.

Goal: We would like to come up with
a model that can help the
manufacturing process industry to
achieve an efficiency level of about
90% from the existing level of about
75% to improve the Krofta supracell
recovery percentage.

Fig: Process Flow Diagram of Krofta supracell
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Process Data Set

The data set collected for a year from the process on the following causal
variables: Inlet Flow, Water Pressure (water inlet pressure to ADT), Air Pressure,
Pressure of Air-Left, Pressure of Air-Right, Pressure of ADT-D Left, Pressure of
ADT-D Right and Amount of chemical lubricants.

The response variable (FFRE recovery percentage) lies between 20 to 100.

This data set will be used for finding crucial process parameters and also finding a
prediction model that can help the company for forecasting future recovery
percentage of FFRE.

Table: Sample data set

Inlet Flow Water Pressure Air Pressure Air-Left Air-Right ADT-D ADT-D Amount of Recovery
Left Right chemical

Percentage
1448 6.4 5.8 1.0 2.1 3.2 4.0 2.0 96.80
1794 5.2 5.6 2.4 1.6 3.6 4.0 3.0 97.47
2995 6.0 6.0 1.5 4.5 4.0 4.8 4.0 28.87
1139 6.5 6.0 1.2 1.7 3.0 4.6 2.0 33.05
2899 6.2 5.7 2.0 1.2 3.1 4.0 2.0 97.91
1472 6.6 6.8 3.7 3.1 5.2 4.8 4.0 57.77
1703 6.2 6.0 2.9 1.0 3.0 4.2 2.0 26.94
1514 5.5 5.0 2.0 2.1 3.8 4.7 2.0 67.01

. . . . . . . . .

. . . . . . . . .
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Proposed Hybrid RBNT Model

Apply RT algorithm to train and build
a decision tree. Use the tree to
extract the important features and
find the splits between different
adjacent values of the features.

Choose the features that have
minimum mean squared error as
important input variables and record
RT predicted outputs.

Export important input variables
along with an additional feature
(prediction values of RT algorithm) to
the RBFN model and a neural
network is generated.

RBFN model uses Gaussian kernel as
an activation function, and parameter
optimization is done using gradient
descent algorithm. Finally, we obtain
the final outputs.

Fig: Flowchart of the Proposed Radial Basis Neural Tree Model
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Theoretical Consistency

Theorem (Chakraborty et al., 2020, Applied Stochastic Models)

Suppose (X ,Y ) be a random vector in Rp × [−K ,K ] and Ln be the training set of n
outcomes of (X ,Y ). Finally if for every n and wi ∈ Ω̃n, the induced subset (Ln)wi

contains at least kn of the vectors of X1,X2, ...,Xn, then empirically optimal regression
trees strategy employing axis parallel splits are consistent when the size kn of the tree
grows as o( n

log(n)
).

Theorem (Chakraborty et al., 2020, Applied Stochastic Models)

Consider a RBF network with Gaussian radial basis kernel having one hidden layer with

k (> 1) nodes. If k →∞, b →∞ and kb4 log(kb2)
n

→ 0 as n→∞, then RBFN model
is said to be universally consistent for all distribution of (Z ,Y ).
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On the choice of Number of Hidden Neurons

RBFN is a family of ANNs, consists of only a single hidden layer and uses radial
basis function as an activation function, unlike feed forward neural network. RBF
network with one hidden layer having k nodes for a fixed Gaussian function is
given by the equation:

f (zi ) =
k∑

j=1

wj exp

(
−
‖ zi − ci ‖2

2σ2
i

)
+ w0,

where
∑k

j=0 |wj | ≤ b (> 0) and c1, c2, ..., ck ∈ Rdm .

For practical use, if the data set is limited, the recommendation is to use
k =

(√
n/dmlog(n)

)
for achieving utmost accuracy of the propose model.

Proposition (Chakraborty et al., 2019, Journal of Comp. & Appl. Mathematics)

For any fixed dm and training sequence ξn, let Y ∈ [−K ,K ], and m, f ∈ Fn,k , if the
neural network estimate mn satisfies the above-mentioned regularity conditions of
strong universal consistency and f satisfying

∫
Sr

f 2(z)µ(dz) <∞ where, Sr is a ball

with radius r centered at 0, then the optimal choice of k is O

(√
n

dm log(n)

)
.
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Experimental Evaluation

Popularly used performance metric are:

MAE = 1
n

∑n
i=1

∣∣yi − ŷi
∣∣; RMSE =

√
1
n

∑n
i=1(yi − ŷi )2; MAPE = 1

n

∑n
i=1

∣∣∣∣ yi−ŷi
yi

∣∣∣∣;
R2 = 1−

[∑n
i=1(yi−ŷi )

2∑n
i=1(yi−y)2

]
; AdjR2 = 1−

[
(1−R2)(n−1)

n−dm−1

]
;

where, yi , y , ŷi denote the actual value, average value and predicted value of the
dependent variable, respectively for the i th instant. Here n and dm denote the number
of data points and independent variables used for performance evaluation, respectively.

Table: Quantitative measure of performance for different regression models. Results are based on
10 fold cross validations. Mean values of the respective measures are reported with standard
deviation within the bracket.

Models MAE RMSE MAPE R2 Adj(R2)
RT 11.691 (0.45) 16.927 (0.89) 29.010 (1.02) 59.028 (3.25) 55.304 (1.95)

ANN 12.334 (0.25) 17.073 (0.56) 27.564 (1.85) 58.310 (2.98) 54.529 (2.08)
SVR 12.460 (0.28) 20.362 (1.23) 40.010 (1.81) 40.174 (2.05) 35.325 (2.64)

BART 12.892 (0.59) 16.010 (1.25) 30.038 (1.95) 59.380 (2.50) 56.458 (1.75)
RBFN 13.926 (2.50) 18.757 (3.25) 32.48 (3.45) 49.689 (5.45) 46.335 (3.95)

Tsai Neural tree 10.895 (0.78) 16.012 (0.50) 24.021 (1.85) 65.120 (2.89) 62.946 (1.78)
Proposed Model 9.226 (0.35) 14.331 (0.82) 20.187 (1.45) 70.632 (2.00) 68.675 (2.13)
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Other Experiments

Data Sets: The proposed model is evaluated using six publicly available from UCI
Machine Learning repository (https://archive.ics.uci.edu/ml/datasets.html).
These regression data sets have limited number of observations.

Table: Data set characteristics: number of samples and number of features, after removing
observations with missing information or nonnumerical input features.

Sl. No. Data Number of samples Number of features
1 Auto MPG 398 7
2 Concrete 1030 8
3 Forest Fires 517 10
4 Housing 506 13
5 Wisconsin 194 32

Table: Average RMSE results for each of the models across the different data sets

Data RT ANN SVR BART RBFN Neural Tree Our Model
Auto MPG 3.950 4.260 5.720 3.220 4.595 3.300 3.215
Concrete 8.700 10.180 11.588 5.540 10.210 7.420 7.063

Forest Fires 75.138 90.702 91.985 65.890 82.804 62.478 64.411
Housing 4.980 9.054 12.520 3.978 7.871 4.590 3.077

Wisconsin 41.059 34.710 41.220 32.054 38.495 40.700 23.659
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Application to Simulated data

We investigate the asymptotic behavior of the proposed RBNT model on an artificial
data set created by sampling inputs x uniformly from the p-dimensional hypercube
[0, 1]p and computing outputs y as

y(x) =

p∑
j=1

sin
(

20x(j) − 10
)

+ ε,

where ε is a zero mean Gaussian noise with variance σ2, which corrupts the
deterministic signal. We choose p = 2 and σ = 0.01, and investigate the asymptotic
behavior as the number of training samples increases. Figure in the next slide
illustrates the RMSE for an increasing number of training samples and shows that the
RBNT model error decreases much faster than other competitive model errors as
sample size increases.
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Asymptotic Behavior

This figure shows the test RMSE for synthetic data with exponentially increasing
training set size (x-axis). Solid lines connect the mean RMSE values obtained across 3
randomly drawn data sets for each data set size, whereas error bars show the empirical

standard deviation.
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Conclusions

In this chapter, we build a hybrid regression model for improving the process
efficiency in a paper manufacturing company.

Our study presented a hybrid RT-RBFN model that integrates RT and RBFN
algorithm which gives more accuracy than all other competitive models to address
the Krofta efficiency improvement problem.

The proposed model is consistent, and when applied to other complex regression
problems, it performed well as compared to other state-of-the-art.

The usefulness and effectiveness of the model lie in its robustness and easy
interpretability as compared to complex “black-box-like” models.
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Chapter 6: Bayesian Neural Tree Models for
Nonparametric Regression

Publications:

1. Tanujit Chakraborty, Ashis Kumar Chakraborty, and Zubia Mansoor. “A hybrid
regression model for water quality prediction”, Opsearch, 56 (2019): 1167-1178.
(Read Online)

2. Tanujit Chakraborty, Gauri Kamat, and Ashis Kumar Chakraborty. “Bayesian
neural tree models for nonparametric regression”, Under Review. (Read Online)
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Motivation

Frequentist and Bayesian methods differ in many aspects but share some basic
optimal properties. In real-life prediction problems, situations exist in which a
model based on one of the above paradigm is preferable depending on some
subjective criterion.

Nonparametric classification and regression techniques, such as decision trees and
neural networks, have frequentist (classification and regression trees (CART) and
artificial neural networks) as well as Bayesian (Bayesian CART and Bayesian
neural networks) approach to learning from data..

In this chapter. we present two hybrid models combining the Bayesian and
frequentist versions of CART and neural networks, which we call the Bayesian
neural tree (BNT) model. BNT model can simultaneously perform feature
selection and prediction, are highly flexible, and generalize well in settings with a
limited number of training observations.
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Bayesian Neural Tree-1 Model

The BNT-1 model comprises of two
stages. In the first stage, a classical
CART model is fit to the data, taking
all d predictors. The CART model
implicitly selects a feature at each
internal split (based on maximum
reduction in the MSE).

We record these features, as well as
the predictions obtained from the
CART model and use them in the
second stage to construct a BNN with
one hidden layer.

We use a Gaussian prior for the
network weights and also model the
data likelihood to be Gaussian. The
prior for the number of hidden
neurons (k) is taken to be a
Geometric distribution with probability
of success p.

Finally, we obtain the final outputs.

Fig: Algorithm of the BNT-1 Model
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Bayesian Neural Tree-2 Model

The BNT-2 model also follows a
two-step pipeline. A BCART model is
fit to the data in the first stage, with
the best fitting tree found via
posterior stochastic search.

We record the important features and
predictions from BCART, and use
these as inputs to a one-hidden-layer
ANN in stage two.

Export important input variables
along with an additional feature
(prediction values of BCART
algorithm) to an optimal ANN model
and a neural network is generated.

Finally, we obtain the final outputs.

Fig: Algorithm of the BNT-2 Model
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Asymptotic Consistency for BNT-1 Model

Theorem (Chakraborty et al., 2019)

Assume that Z is uniformly distributed in [0, 1]dm , Πi
ind∼ N (0, τ2), k ∼ Geometric(p),

and the following conditions hold:
(A1) For all i , we have λi > 0;
(A2) Bn ↑ n, for all r > 0, there exists q > 1 and N such that∑∞

i=Bn+1 λi < exp
(
− nqr

)
for n ≥ N;

(A3) There exists ri > 0,Ni such that Πn(F c
n ) < exp(−nri ) for all n ≥ Ni ;

(A4) For all γ, v > 0, there exists I and Mi such that for any i ≥ I ,
Πi (Kγ) ≥ exp(−nv) for all n ≥ Mi .
Then for all ε > 0, the posterior is asymptotically consistent for f0 over Hellinger
neighborhoods and P

(
Hε |(Z1,Y1), ..., (Zn,Yn)

)
→ 1 in probability.

In other words, the posterior probability of any Hellinger neighborhood of f0 converges
to 1 in probability, where Hε is the Hellinger neighborhoods, Kγ is the
Kullback-Leibler neighborhood, and We denote the prior for f by Πn(·).

Above Theorem shows that the posterior is consistent when the number of hidden
neurons of the neural network (with Bayesian setting) is a parameter that can be
estimated from the data. Thus, we can let the data derive the number of hidden nodes
in the model and emphasize on model selection during practical implementation.
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Asymptotic Consistency for BNT-2 Model

Theorem (Chakraborty et al., 2019)

Consider an ANN with a logistic sigmoidal activation function having one hidden layer
with k (> 1) hidden nodes. If k and βn are chosen to satisfy

k →∞, βn →∞,
kβ4

n log(kβ2
n)

n
→ 0

as n→∞, then the model is said to be consistent for all distributions of (Z,Y) with
E|Y|2 <∞.

Proposition (Chakraborty et al., 2019)

Assume that Z is uniformly distributed in Cdm and Y is bounded a.s. and m is
Lipschitz (δ, c)-smooth. Under the assumptions of the above Theorem, with fixed dm,

and m, f ∈ Fn,k , also f satisfying
∫
Cdm f 2(z)µ(dz) <∞, we have k = O

(√
n

dm log(n)

)
.
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Application to Water Quality Prediction

We consider a particular problem in a
modern paper industry that produces
papers for multiple uses. Paper
machines produce papers by using
pulp, fiber, filler, chemical lubricant,
and a considerable amount of water.

The boiler produces steam for power
generation purposes and also helps to
make pulp for paper production. The
steam produced in the boiler is used
for cooking wood chips (along with
the cooking chemicals).

The boiler stipulates the desired level
of water quality to be received from
the water treatment plant. In the
plant, the process of demineralization
(DM process) is applied for the
removal of dissolved solids by the ion
exchange process (IEP) that involves
two stages of demineralization

Fig: Process Flow Diagram of Krofta supracell
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Process Data Set

DM process outlet pH happens to be the key performance indicator (KPI) of the
water treatment plant. It was found that the plant can not produce water of
desired quality specified by the boiler to be supplied to the paper machine.

Finding a prediction model for the water quality will help the company to address
the problem of variation in DM outlet water pH as well as an indication for the
health of the boiler water tube.

An extensive preliminary data analysis was conducted to determine a set of
possible causal variables that happen to be the key to water pH level variations.

Table: Sample data set for DMST-1

Sl. No. Inlet Flow Water Pressure Air Pressure MB stroke Amount of DM water
chemical outlet pH

1 1980 5.8 5.0 70 9.96 9.276
2 2150 7.0 7.0 60 8.69 9.094
3 1780 6.0 5.0 45 7.73 8.594
4 2808 5.2 6.4 50 6.54 8.738
5 1590 6.2 5.7 40 5.56 8.592
6 2995 6.0 6.0 50 7.23 9.099
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
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Experimental Results

Table: Quantitative measures of performance for different regression models on test data set
(average values of the metrics after 5-fold cross validations)

Regression Models Data set RMSE MAPE R2 Adj R2

Kernel SVR DMST 1 4.06 4.50 75.66 70.29
DMST 2 4.18 5.20 72.70 67.25

B-splines DMST 1 4.32 5.40 69.85 63.30
DMST 2 6.94 7.21 56.70 49.78

MARS DMST 1 4.29 5.26 65.95 58.90
DMST 2 6.74 7.93 57.53 47.05

RT DMST 1 3.44 4.12 80.52 75.56
DMST 2 3.89 4.78 76.56 71.23

ANN (with 2HL) DMST 1 3.86 4.80 76.95 70.03
DMST 2 4.12 5.91 70.10 64.73

BNT-2 Model DMST 1 3.05 3.40 85.40 82.50
DMST 2 3.20 3.75 83.50 80.00

Table: Optimal range of causal variables for achieving desired pH level

Process Range for Range for Range for Expected range
Water Pressure MB stroke chemical consumption for DM water outlet pH

DMST 1 5.0-6.0 45-55 6.5-7.5 8.5-9.1

DMST 2 5.0-6.0 40-50 7.5-8.5 8.5-9.2
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Conclusions

In this work, we present two hybrid models that combine frequentist and Bayesian
implementations of decision trees and neural networks.

The proposed hybrid machine learning paradigm, when applied to solve water
quality forecasting problems in a paper manufacturing industry, performs better
than competing tools.

An immediate extension of this work will be to develop hybrid methodology based
on two Bayesian models, namely BCART and BNN to enhance uncertainty
quantification and decision making in a fully nonparametric regression scenario.

In the next chapter, we look at a different kind of regression problem, namely
time series forecasting.
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Chapter 7: A hybrid time series model for
Macroeconomic forecasting

Publications:

Tanujit Chakraborty, Ashis Kumar Chakraborty, Munmun Biswas, Sayak Banerjee, and
Shramana Bhattacharya. “Unemployment rate forecasting: A hybrid approach”,
Computational Economics (2020). (Read Online)
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Linear Vs. Nonlinear Models in Time Series Forecasting

Conventional statistical methods, the autoregressive integrated moving average
(ARIMA) (Box and Jenkins, 1976) is extensively utilized in constructing a
forecasting model.

ARIMA cannot be utilized to produce an accurate model for forecasting nonlinear
time series.

Machine Learning algorithms have been successfully utilized to develop a
nonlinear model for forecasting time series.

Determining whether a linear or nonlinear model should be fitted to a real-world
data set is difficult.

The ARIMA model is used for prediction non-stationary time series when linearity
between variables is supposed.

However, in many practical situations supposing linearity is not valid.
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Background: ARIMA Model

The ARIMA model, introduced by Box and Jenkin, is a linear regression model
indulged in tracking linear tendencies in stationary time series data.

The model is expressed as ARIMA(p,d, q) where p, d, and q are integer
parameter values that decide the structure of the model.

More precisely, p and q are the order of the AR model and the MA model
respectively, and parameter d is the level of differencing applied to the data.

The mathematical expression of the ARIMA model is as follows:

yt = θ0 + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q ,

where yt is the actual value, εt is the random error at time t, φi and θj are the
coefficients of the model.

It is assumed that εt−l (εt−l = yt−l − ŷt−l ) has zero mean with constant
variance, and satisfies the i.i.d condition.

Three Steps: Model identification, Parameter Estimation, and Diagnostic
Checking.
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Background: NNAR Model

Neural nets are based on simple mathematical models of the brain, used for
sophisticated nonlinear forecasting.

NNAR (Faraway and Chatfield, JRSS C, 1998) overcomes the problems of fitting
ANN for time series data sets like the choice on the number of hidden neurons,
and its black box nature.

NNAR model is a nonlinear time series model which uses lagged values of the
time series as inputs to the neural network.

NNAR(p,k) is a feed-forward neural network having one hidden layer with p
lagged inputs and k nodes in the hidden layer.

Thus, NNAR model with one hidden layer with the following mathematical form:

x̂t = φ0

{
wc0 +

∑
h

wh0
φh

(
wch +

∑
i

wihxt−ji

)}
where {wch} denotes the connecting weights and φi is the activation function.

An NNAR(p,k) model uses p as the optimal number of lags (calculated based on

the AIC value) for an AR(p) model and k is set to k = [ (p+1)
2

] for non-seasonal
data sets.
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Motivation for Hybrid Techniques

A Forecaster wants the ARIMA model error series to be composed by i.i.d.
random chocks or unpredictable or unsystematic terms with zero mean and
constant variance, reflecting the piece of variability for which no reduction is
possible.

However, due to model mis-specification or to disturbances introduced in the
stochastic process after forecasters elaboration, this (white noise) assumption
may be violated during application phase.

If the information underlying the error series is modeled, the performance of the
original forecaster can be improved.

Table: Popular Hybrid Models in Time Series Forecasting Literature

Hybrid Model Author Year Journal
SARIMA + BPNN Tseng 2002 TFSC
ARIMA + ANN Zhang 2003 Neurocomputing
ARIMA + SVM Pai 2005 Omega
ARIMA + RNN Aladag 2009 AML
ARIMA + PNN Khashei 2012 C&IE
VARMA + BNN Guo 2016 JAS
ARIMA + DNN Qin 2017 KBS
Hybrid Survey Khashei 2018 CinS
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Proposed Additive Hybrid Model

Zt = Yt + Nt , where Yt is the linear part
and Nt is the nonlinear part of the hybrid
model.

Both Yt and Nt are estimated from the
data set.

Let, Ŷt be the forecast value of the
ARIMA model at time t and εt represent
the residual at time t as obtained from the
ARIMA model.

Then εt = Zt − Ŷt .

The residuals are modeled by the NNAR
model and can be represented as follows
εt = f (εt−1, εt−2, ..., εt−n) + ςt , where f
is a nonlinear function modeled by the
NNAR approach and ςt is the random
error.

Therefore, the combined forecast is
Ẑt = Ŷt + N̂t , where, N̂t is the forecast
value of the NNAR model.

Fig: Graphical Representation of Hybrid

ARIMA + NNAR Model
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Applications: Unemployment Rate Data Sets

Region Training data ACF plot PACF plot
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Table: Training data sets and corresponding ACF,PACF plots.
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Performance Evaluation

Table: Quantitative measures for different forecasting models on the Switzerland data

Model 1-Year ahead forecast 2-Year ahead forecast 3-Year ahead forecast
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

ARIMA 0.047 0.037 1.095 0.153 0.116 3.436 0.437 0.314 9.365

ANN 0.226 0.133 5.394 0.949 0.607 40.363 1.326 0.933 115.176

NNAR 0.073 0.048 1.715 0.209 0.140 4.775 0.498 0.340 10.924

Hybrid ARIMA+ANN 0.045 0.035 1.035 0.151 0.114 3.366 0.435 0.311 9.295

Hybrid ARIMA+SVM 0.048 0.038 1.117 0.154 0.117 3.459 0.438 0.315 9.387

Hybrid ARIMA+NNAR 0.036 0.028 0.838 0.142 0.104 3.093 0.427 0.301 9.017
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Fig: Actual vs predicted forecasts (using ARIMA+NNAR model) of Switzerland Data set
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Merits & Discussions

The hybridization approach studies the relationship between linear and nonlinear
components of the econometric time series.

The Additive method is appropriate for explaining variations of economic and
business data where there are interactions between linear and nonlinear time
series.

The proposed hybrid model assume that the residuals from the linear model will
contain only the nonlinear relationship. However, one may not always guarantee
that the residuals of the linear component may comprise valid nonlinear patterns.

This model also supposes that the linear and nonlinear patterns of a time series
can be separately modeled by different models and then the forecasts can be
combined together and this may degrade performance, if it is not true.
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On Asymptotic Stationarity

ARIMA model has the in-built mechanism to transform a nonstationary time series
into a stationary one and then it models the remainder by a stationary process. This is
done by simple differencing to transform nonstationary ARIMA into stationary.

Consider the stochastic difference equation:

εt = f (εt−1, εt−2, ..., εt−p , θ) + ςt , (0.10)

where ςt is an i.i.d. white noise and f (., θ) is a feedforward neural network with weight
parameter θ. This is called an NNAR process of order p and has k hidden nodes in its
one hidden layer. Thus, we refer the model as NNAR(p, k) model.

We consider the following architecture:

f (ε) = c0 +
k∑

i=1

wiσ
(
ai + b′i ε

)
(0.11)

Let εt denote a time series generated by a nonlinear autoregressive process as defined
in (0.10). Let E(εt) = 0, then f equals to the conditional expectation
E
(
εt |εt−1, ..., εt−p

)
is the best prediction for εt in the L2-minimization sense.
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On Geometric Ergodicity

We use the following notation:

zt−1 =
(
εt−1, ..., εt−p

)′
;F (zt−1) =

(
f (zt−1), εt−1, ..., εt−p+1

)′
; ς̂t =

(
ςt , 0, ..., 0)

′

Then we can write scalar AR(p) model in (0.10) as a first-order vector model,

zt = F (zt−1) + ς̂t with zt , ς̂t ∈ Rp (0.12)

Definition (Geometric ergodicity, Chan & Tong, 1985, AAP)

Let {zt}, a markov chain, is said to be geometrically ergodic if there exists a
probability measure Π(A) = limt→∞ P(εt ∈ A) on the state space (Rp ,B,P), where B
are Borel set on Rp and P be the Lebesgue measure, and for ρ > 1 and for all z ∈ Rp ,

lim
n→∞

ρn‖P{zt+n ∈ A|zt = z} − Π(A)‖ = 0

where ‖.‖ denotes the total variation and P{zt+n ∈ A|zt = z} denote the probability
of going from point z to set A ∈ B in n steps.

If the markov chain is geometrically ergodic then its distribution will converge to Π
and the corresponding time series will be called asymptotically stationary (Chan &
Tong, 1985, Advances in Applied Probability).
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On Asymptotic Stationarity

It is also important to note that all neural network activation functions (like logistics
or tan-hyperbolic) are continuous and compact functions with bounded range.

Lemma (Chakraborty et al. Computational Economics (2020))

Suppose {zt} is defined as in (0.10) and (0.12), F be a compact set can be
decomposed as F = Fm + Fn, and the following conditions hold:
(i) Fm(.) is continuous and homogeneous and Fn(.) is bounded;
(ii) E |ςt | <∞ and probability distribution function of ςt is positive everywhere in R;
then {zt} is geometrically ergodic.

Theorem (Chakraborty et al. Computational Economics (2020))

Let E |ςt |1+δ <∞ for all δ > 1 and the probability density function of ςt is positive
everywhere in R and {εt} and {zt} are defined as in (0.10) and (0.12). Then if f is a
nonlinear neural network as defined in (0.11), then {zt} is geometrically ergodic and
{εt} is asymptotically stationary.

Theoretical results on asymptotic stationarity is important for predictions over
larger intervals of time, for example, one might train the network on an available
sample and then use the trained network to generate new data with similar
properties than the training sample.

The asymptotic stationarity guarantees that the model cannot have growing
variance with time.
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Simulation Study

A time series data have been synthesized in such a way that the mean between
multiple segments in both the test and training data differ. The data consists of 165
points out of which 15 data points are kept as test samples (red-colored samples in

the figure).

Table: Performance metrics with 15 points-ahead test set for synthesized data. Figures in ( )
indicate the values of the tuning parameters for each of the forecasting models.

Model 15-points ahead forecast
RMSE MAE MAPE SMAPE

ARIMA(2,1,4) 0.718 0.609 1.689 1.607
ANN(10) 0.967 0.838 2.515 2.169

ARNN(16,8) 0.763 0.664 1.975 1.742
Hybrid ARIMA(2,1,4)-ARNN(8,4) 0.597 0.465 1.322 1.245
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Conclusions

In practice, it is often challenging to
determine whether a time series under
study is generated from a linear or
nonlinear underlying process.

In this chapter, we have built a novel
hybrid model with a multiplicative
approach that performs superior for
forecasting unemployment rates.

The proposed hybrid ARIMA+NNAR
model filters out linearity using the
ARIMA model and predicts nonlinear
tendencies with the NNAR approach.

In this work, we have also investigated
the asymptotic behavior (stationarity
and ergodicity) of the proposed hybrid
approach using Markov chains and
nonlinear time series analysis
techniques.

Figure: Plots of the proposed forecasting model
for training, testing, and 15-points ahead forecast
results on synthesized data.
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Chapter 8: Conclusions and Future
works
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Conclusions & Future Work

We developed some novel Hybrid Prediction models for various problems arising
in classification and regressions.

The problems arise from the area of Business Analytics, Quality Control,
Macroeconomics, and Software Reliability.

We considered the following prediction problems: Feature Selection cum
Classification Problem, Imbalanced Classification Problem, Nonparametric
Regression Problem, Bayesian + Frequentist approach, and Time Series
Forecasting Problem.

We studied several statistical properties of the proposed hybrid models.

The scope of future research of the thesis will be to improve the proposed
classifiers for imbalanced classification problem with concept shift in the data sets.

Another scope of future research of the thesis will be to build Hybrid Models for
Adversarial Machine Learning Problems.
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