Tanujit Chakraborty's Blog
  • HOME
  • BIOGRAPHY
  • RESEARCH
    • Research interests
    • PUBLICATIONS
  • TEACHING
    • DATA ANALYTICS (MBA)
    • ANALYSIS (UG LEVEL)
    • MULTIVARIATE DATA ANALYTICS (MDA)
  • TALKS
  • TUTORIALS
    • LECTURE NOTES
    • BOOKS I WROTE
    • VIDEO LETURES
  • STAT & ML LAB
    • STAT & ML LAB
    • APPLY HERE
    • PAST STUDENTS
    • WORKSHOP ON ML
  • ETC.
Note : 
1. Please click on the "Paper" to access the paper. Also, please refer to my Google Scholar Profile and Research Gate Profile
2. Classifications of Publications: Journal Publication | Conference Publication | ​Book Chapter | Best Paper Award
3. * : Both authors contributed equally; ^ : A student/doctoral fellow/mentee of Dr. Tanujit Chakraborty during the time of the work.
List of Publications (Year-wise) :

2022 :
  • Chakraborty, T., Kamat, G.^, Chakraborty, A. K. (2022). Bayesian Neural Tree Models for Nonparametric Regression. Australian & New Zealand Journal of Statistics, Accepted. [Paper | Code] 
  • Chakraborty, T., Das, S., & Chattopadhyay, S. (2022). A New Method for Generalizing Burr and Related Distributions. Mathematica Slovaca, Vol. 72, pg. 241-264. [Paper | Code]
  • Bhattacharyya, A*., Chakraborty, T.*, & Rai, S. N. (2022). Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid time series model. Nonlinear Dynamics, Vol. 107, pg. 3025-3040. ​[Paper | Code]​
  • ​Chakraborty, T., Ghosh, I., Mahajan, T.^, Arora, T.^ (2022). Nowcasting of COVID-19 confirmed cases: Foundations, trends, and challenges. In Modeling, Control and Drug Development for COVID-19 Outbreak Prevention, Vol. 366, pg. 1023-1064, Springer Book Chapter, Cham. ​​​[Paper | Code]
  • Panja, M., Chakraborty, T., Kumar, U. (2022). Data Dictionary. In Encyclopedia of Mathematical Geosciences, Springer, Cham, Accepted (Invited Book Chapter). ​​​[Paper | Code]
  • Chakraborty, T., Kumar, U. (2022). Loss Functions. In Encyclopedia of Mathematical Geosciences, Springer, Cham, Accepted (Invited Book Chapter). ​​​[Paper | Code]

​2021 :​​
  • Chakraborty, T., Chakraborty, A. K., Biswas, M., Banerjee, S.^, & Bhattacharya, S.^ (2021). Unemployment Rate Forecasting: A Hybrid Approach. Computational Economics, Vol. 57, pg. 183-201. [Paper | Code] 
  • Ray, A.*, Chakraborty, T.*, & Ghosh, D. (2021). Optimized ensemble deep learning framework for scalable forecasting of dynamics containing extreme events​. Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 31, pg. 1-15.​ [Paper | Code]
  • Chattopadhyay, S., Chakraborty, T., Ghosh, K., Das, A. K. (2021). Modified Lomax Model: A heavy-tailed distribution for fitting large-scale real-world complex networks.  Social Network Analysis and Mining, Vol. 11, pg. 11-43. [Paper | Code]
  • Ghosh, I., Chakraborty, T. (2021). An integrated deterministic-stochastic approach for forecasting the long-term trajectories of COVID-19. International Journal of Modeling, Simulation, and Scientific Computing, Vol. 12, pg. 1-15.​ [Paper | Code]
  • Bhattacharyya, A., Pattnaik, M., Chattopadhyay, S., & Chakraborty, T. (2021). Theta Autoregressive Neural Network: A Hybrid Time Series Model for Pandemic Forecasting. In IEEE International Joint Conference on Neural Networks (IJCNN).​ [Paper | Code]
  • Chattopadhyay, S., Chakraborty, T., Ghosh, K., Das, A. K. (2021). Uncovering patterns in heavy-tailed networks : A journey beyond scale-free.  In ACM IKDD CODS-COMAD. [Paper | Code] (Best Paper Award Winner at ACM CODS-COMAD) 

2020 :
  • Chakraborty, T., Ghosh, I. (2020). Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis. Chaos, Solitons & Fractals, Vol. 135, pg. 1-10. [Paper | Code]
  • Chakraborty, T., Chakraborty, A. K. (2020). Hellinger Net : A Hybrid Imbalance Learning Model to Improve Software Defect Prediction. IEEE Transactions on Reliability, Vol. 70, pg. 481-494. [Paper | Code]
  • Chakraborty, T., & Chattopadhyay, S., & Chakraborty, A. K. (2020). Radial basis neural tree model for improving waste recovery process in a paper industry. Applied Stochastic Models in Business and Industry, Vol. 36, pg. 49-61. [Paper | Code]
  • Chakraborty, T., Chakraborty, A. K. (2020). Superensemble classifier for improving predictions in imbalanced data sets. Communications in Statistics - Case Studies and Data Analysis, Vol. 6, pg. 123-141. [Paper | Code]

2019 :
  • Chakraborty, T., Chakraborty, A. K., & Murthy, C. A. (2019). A nonparametric ensemble binary classifier and its statistical properties. Statistics & Probability Letters, Vol. 149, pg. 16-23. ​[Paper | Code]
  • Chakraborty, T., Chattopadhyay, S., & Ghosh, I. (2019). Forecasting dengue epidemics using a hybrid methodology. Physica A: Statistical Mechanics and its Applications, Vol. 527, pg. 1-8. [Paper | Code]
  • Chakraborty, T., Chakraborty, A. K., & Mansoor, Z.^ (2019). A hybrid regression model for water quality prediction. OPSEARCH, Vol. 56, pg. 1167-1178. [Paper | Code]
  • Chakraborty, T., Chakraborty, A. K., & Chattopadhyay, S. (2019). A novel distribution-free hybrid regression model for manufacturing process efficiency improvement. Journal of Computational and Applied Mathematics​, Vol. 362, pg. 130-142. [Paper | Code] (Best Student Paper Award Winner at 52nd Annual Convention of ORSI, India) 

2018 :
  • ​Chakraborty, T., Chattopadhyay, S., & Chakraborty, A. K. (2018). A novel hybridization of classification trees and artificial neural networks for selection of students in a business school. OPSEARCH, Vol. 55, pg. 434-446. [Paper | Code] (B.G. Raghavendra Memorial Award Winner from ORSI, India)​

Contact Me

Dr. Tanujit Chakraborty 
Sorbonne University and Sorbonne Center for Artificial Intelligence.  
Centre for Data Sciences, IIIT Bangalore, India.
​​Email :  tanujitisi@gmail.com​ 

Join Me

Join me on Twitter
Connect me on Linkedin
Code Repository at GitHub
Research profile at Google Scholar & ResearchGate

​​© 2013 - 2023 All rights reserved to Tanujit Chakraborty.​​

  • HOME
  • BIOGRAPHY
  • RESEARCH
    • Research interests
    • PUBLICATIONS
  • TEACHING
    • DATA ANALYTICS (MBA)
    • ANALYSIS (UG LEVEL)
    • MULTIVARIATE DATA ANALYTICS (MDA)
  • TALKS
  • TUTORIALS
    • LECTURE NOTES
    • BOOKS I WROTE
    • VIDEO LETURES
  • STAT & ML LAB
    • STAT & ML LAB
    • APPLY HERE
    • PAST STUDENTS
    • WORKSHOP ON ML
  • ETC.